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Chapter 1: Introduction

1.1 Problem Statement

In urban areas the demand for buses is unevenly distributed over space and
time. It is usually impractical to directly connect all origin-destination pairs with bus
routes due to limited economic and socia resources. In such cases a bus transit
network with limited accessibility and mobility is effective in serving the demand and
consists of several bus routes and transfer centers. In a bus network there is an
additional transfer time at transfer centers in addition to in-vehicle time and waiting
time at bus stops.

In operating a bus network, headway is a key factor to consider in bus
scheduling, and the safety factor built into schedules, called ‘slack time', is another
key factor when vehicle arrival process is stochastic, since both (headway and slack
time) are crucial decision variables affecting total system cost. The headway of a
route directly affects the waiting time of passengers at bus stops and the time spent at
transfer terminals. Several studies show that coordination of headways among routes
can minimize the total system cost of bus operation, which includes operator cost and
user cost.

Slack time can help reduce the probability of missed connections and reduce
expected waiting time at transfer centers. However, excess slack time in a route
schedule can worsen travel time and increase total waiting time. It is known from the

previous research that slack time is sensitive to the demand, the distribution of



headways (e.g. normal distribution, exponentia distribution, etc) and their standard
deviation.'* 2 As a result, it is also very important to optimize slack times in bus
network scheduling in order to minimize connection (or waiting) time among routes
and total system cost.

Several methods in previous research have been proposed to solve bus
network scheduling problem. The main objective of previous methods can be
summarized as finding optimized headways and slack times, and thus minimizing the
total system cost. Even though the past methods had their own strong points, they also
had limitations because there are many sources of complexity on the bus scheduling
problem such as non-linearity of the cost functions, computation complexity of
objective function, which is usually based on network scale, and various stochastic
vehicle arrival processes.

This thesis ams to relax some limitations of previous research and to
introduce two new models for the bus scheduling problem. The models proposed in
this study can reflect dynamic arrival effects resulting from stochastic arrival
processes, alow different slack times in each direction of a route at transfer centers,
and anayze a multiple transfer network mixed with fully-coordinated, semi-
coordinated, and off-phased transfer.

To develop new models for the bus scheduling problem this research uses
genetic algorithms (GAs) and computer simulation. A simple genetic algorithm
(SGA) with some problem-specific genetic operators is used in deterministic arrival
process and a simulation-based genetic algorithm (SBGA) in stochastic arrival

process. In SGA genetic operators are focused on searching for optimized headways.
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On the other hand, in SBGA genetic operators are used to optimize slack times and
computer simulation is used to calculate statistical estimators of headway
distributions under stochastic arrival processes, which are the key elements to
evauate fitness function of SBGA. As a result, two computerized models, SGA and
SBGA, are introduced in this study to search for optimized solutions of the bus

scheduling problem.

1.2 Resear ch Objectives

The objective of this study is to develop new computerized optimization
models for the bus scheduling problem in a coordinated bus network, namely, new
models to find optimized bus headways and slack times. In the new models bus
headways are optimized first under the deterministic arrival process, and then slack
times are introduced to optimization problem for the stochastic arrival processes with
a dispatching strategy that a bus arriving at transfer center earlier than its departure
time leaves on time, regardless of the arrival time of passengers transferring from
other routes.

The objective function of the proposed models is the minimization of total
system cost which is the combination of operator cost and user cost. Operator cost is
determined from the fleet size and travel time of a vehicle, and user cost consisting of
user in-vehicle and waiting time cost is a function of the in-vehicle travel time and

headways of buses.



1.3 Scope

The scope of this study is limited to developing two computerized models for
optimization of bus scheduling. Two models, SGA and SBGA, using GAs and
computer simulation are applied to this study, which are designed to optimize bus
scheduling under deterministic and stochastic arrival processes, respectively. Some of
genetic operators are exclusively used for just one model and others are for both

models, based on the properties of the problem.

1.4 Organization

The remainder of this thesis is divided into five chapters. Chapter 2 reviews
the literature on bus scheduling problem characteristics and methodologies and on
GA applications to transit network.

Chapter 3 defines the formulation for measuring and evaluating the systemic
performance of the transit network and devel ops new computerized models (SGA and
SBGA) using genetic algorithms and computer simulation.

Chapter 4 introduces GAs and some genetic operators including problem-
specific operators.

Chapter 5 presents numerical results obtained when the new models are
applied to an artificia transit network and explores their sensitivity to the changes in
decision variables. A goodnesstest for the solution is also shown in this chapter.

Finally, Chapter 6 presents the conclusions of this study and recommends

further research directions.



Chapter 2: Literature Review

The literature reviewed in this section is divided into the two following
categories. quantitative studies of the bus scheduling problem and GA applications

for transit network problems.

2.1 Quantitative studies of bus scheduling problems

For the past decades, many studies have analyzed the bus scheduling problem
and many optimization models have been proposed. Relatively recent studies have
focused on the joint analysis of optimized headways and slack times, usually
minimizing atotal system cost function.

Newell (1971) analyzed the dispatching policies for a transit route which a
given number of vehicles might be dispatched at any times and the arrival rate of
passengers was a given smooth function of time, typically having one or more peaks.
He showed that if the capacity of vehicles was sufficiently large to serve all waiting
passengers and the number of vehicles was large, then the optima flow rate of
vehicles and the number of passengers served per vehicle, both varied with time
approximately as the square root of the arrival rate passengers. If the vehicles had
limited capacity, their dispatch schedule would be distorted so that certain vehicles
were dispatched as soon as they were full.

Salzborn (1972) proposed a mathematical model for the bus scheduling

problem. For a given passenger arrival rate, the problem was to determinate the bus



departure rate as a function of time. The primary objective of the study was to
minimize the number of buses and a secondary criterion was the minimization of the
passenger waiting time. The results showed that during the peak period loads
represented actual passengers, but at off-peak times the actua loading was much
lower. Thus, it was often desirable to reduce the number of buses that was in
operation during off-peak periods.

Salzborn (1980) adso investigated some rules for scheduling a bus system
consisting of an inter-town route linking a string of interchanges each of which was
the center of a set of feeder routes. He presented the requirements for the inter-town
route and feeder route scheduling under pre-determined parameters.

Hall (1985) developed a model for scheduling vehicle arrivals at
transportation terminals where vehicles were randomly delayed en route and
evaluated the optimal dack time when vehicles were delayed according to an
exponential probability distribution. The results showed that coordinating arrivals
with departures was most important when the headway was large relative to average
vehicle delay.

Abkowitz et al. (1986) proposed headway control strategies as methods for
correcting transit service irregularities and reducing passenger wait times at stops and
addressed a particular strategy which could be implemented on high frequency route
(headways under 10-12 minutes), in which buses were held at a control stop to a
threshold headway. They developed an algorithm which yielded the optimal control
stop location and optimal threshold headway with respect to a system wait function.

They concluded that the headway variation did not increase linearly along a route and
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that the location of the optimal control stop and threshold value were sensitive to the
passenger boarding profile.

Ozekici (1987) formulated an analytic model for analyzing and exploiting the
relation between the arrival and service processes, with emphasis on the impact of
this relation on average waiting times. The results showed that, when a timetable of
the scheduled services is available, the arrival pattern of passengers was not
stationary and passengers chose an optimal time to arrive at the bus stop based on the
information they had about the timetable and their observation on the service
performance.

Banks (1990) studied multi-route transit systems to determine net-benefit
maximizing headways, which were subjected to constraints on vehicle capacity,
subsidy, and fleet size. Conditions of optimality were derived for the unconstrained
case and the various constrained cases. The relation between optimality conditions
based on the assumption of fixed demand and those based on the assumption of
variable demand was expressed with terms incorporating the elasticity of demand
with respect to frequency of service. The results showed that the magnitude of
discrepancies between the true conditions of optimality and their fixed-demand
approximations depended on the elasticity of demand and on the distribution of
ridership and cycle times among the various routes of the system.

Lee and Schonfeld (1991) developed a numerical model for optimizing slack
times for simple systems with transfers between one bus route and one rail line which
could work with arrival distributions. Some analytic results were derived for

empirical discrete and Gumbel distributions of bus arrival times. Relations between
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the optimal slack times and headways, transfer volumes, passenger times values, bus
operating cost, and standard deviations of bus and train arrivals were aso developed
numerically using normally distributed arrivals. The results provided some guidelines
on desirable slack times and showed that schedule coordination between the two
routes was not worth attempting when standard deviations of arrivals exceeded
certain levels.

Bookbinder and Desilets (1992) analyzed the variation of waiting time of
transfer passengers using simulation for the various travel time situations and used
mean disutility function to evaluate the inconvenience under random bus travel times.
The results showed that it was very important to take randomness of travel times into
account when optimizing transfers and that bus travel times could optimize transfers
according to various objective functions and under various holding policies.

Knoppers and Muller (1995) investigated the possibility and limitations of
coordinated transfers in public transit using the minimization of passenger’s transfer
time as the objective function. The results showed that optimal transfer times could be
defined only if fluctuations in passenger arrival times at the boarding point could be
contained within certain time limits and that coordination of timetables was only
worthwhile when the punctuality of standard deviation on the feeder line at the
transfer point was less than 40% of the connecting line.

Ting (1997) studied complex transfer coordination problems by employing
basic calculus and optimization algorithms. A total system cost function was used to
evauate the performance of the coordination. Two optimization agorithms were

developed for transfer coordination with deterministic and stochastic travel time cases.
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The author proposed that a common headway search agorithm was applicable for
transit networks in which the headways on different routes should be fairly similar
and that an integer-ratio headway search approach based on integer multiples of a
base cycle was applicable for networks whose headways should be significantly

different.

2.2 Genetic algorithm applicationsfor transit network problems

There are many GAs applied to various parts of transportation research since
it was introduced in 1975, and it is expanding more and more its boundary. Most
recent studies using GAs in transit network problem can be found for optimization of
route network design in which bus scheduling is usually a part of route optimization
function.

Chakroborty et a. (1995) investigated the mathematical programming
formulation of the bus scheduling problem at one transfer station, whose objective
was to minimize the total waiting time, the sum of transfer time of transferring
passengers at transfer center and initial waiting time of the passengers waiting to
board a bus at their point of origin. The authors aso pointed out the limitations of
classical programming techniques to solve the problem and developed an
optimization model using genetic algorithms with binary coding for decision
variables. They assumed that bus arrival times were deterministic. The results showed
that the GA-based models were able to find optimal schedules without excessive
computational resources.

Chakroborty et a. (1998) expanded the mathematica programming

9



formulation of the bus scheduling problem to the multi-transfer network and analyzed
the computational complexity of the mathematical formulation that was a NLP
problem. They used genetic algorithms to search for the optima values of bus
scheduling on the multi-transfer network under the assumption that bus capacity was
much greater than the demand and that bus arrival times were deterministic.

Chakroborty et al. (1998) developed a procedure using a GA for designing
efficient transit routes forming a transit route network (or route set) for a given road
network. The authors showed that the transit route network design problem was a
discrete, NP-hard, combinatorial problem with a difficult-to-calculate objective
function - features which posed almost unsurmountable difficulties in obtaining a
solution through traditional optimization techniques. The results showed that the GA-
based method performed substantially better than the existing procedures.

Ngamchai (2000) investigated the major components and constraints in bus
transit route design and proposed a new model for optimizing bus transit route
configuration and service frequencies on each bus route. Three mgor components
were used to obtain an efficient solution; those were route generation algorithm, route
evauation model and route improvement agorithm. The objective function of his
paper was to minimize the total system cost, and the author included results of bus
scheduling as a part of objective function. He assumed that each route could only be
coordinated at one transfer point, thus classified transfer centersinto the priority order
according to the volume of demand. The author applied GA to the model to search for
the optimal routes and introduced many problem-specific genetic operators to

facilitate search.
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Bielli et a. (2002) proposed a heuristic approach based on GA to solve
transportation bus network optimization problems. The method involved genetic
operators and a number of additional ingredients which allowed to compute fitness
function values aggregating the values of a number of performance indicators. They
used results of the bus scheduling problem as the performance indicators such as
average number of transfers, average waiting time, average traveling time, and
average walking time.

Chakroborty (2003) summarized the effectiveness of procedures based on
genetic algorithm in solving the urban transit network design problem (UTNDP)
consisting of two sub-problems, namely, the transit routing problem and the transit
scheduling problem and presented the limitations of traditional methods in solving the
UTNDP. He suggested that traditional methods had difficulty in solving the transit
routing and scheduling problems since the UTNDP had discrete decision variables,
and it was a constrained non-linear optimization problem, which was by nature not
easily amenable to mathematical progranming formulations. To show the
effectiveness of GA-based models, the author compared GA -based results with those
of some previous researchers for transit routing problem and anayzed five different
scenarios using GA for transit scheduling problem

V. M. Tom and S. Mohan (2003) proposed a GA-based model, simultaneous
route and frequency coded model (SRFC), to solve transit route network design
(TRND) problem. SRFC adopted a new coding scheme that incorporated the
frequency of the route as a variable in addition to the route details. Some results of

the bus scheduling problem in their paper were reused for performance measures:
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average in-vehicle travel time, average waiting time, and average generalized travel
time

Jitendra Agrawal et a. (2004) applied GA to TRND problem and proposed
two parallel genetic algorithm models. The first was global parallé virtual machine
(PVM) pardlel GA model where the fitness evaluation was done concurrently in a
parallel processing environment using PVM libraries. The second was a global
message passing interface (MPI) parallel GA model where an MPI environment
substituted for the PVM libraries. They aso used results of the bus scheduling

problem to evaluate the performance of new models.

2.3 Summary

After areview of the above studies, it appears that optimization methods for
bus scheduling have aready been well developed analytically. However,
computerized models for bus scheduling have not been widely introduced. Some
models using computer simulation have been applied to simple network scheduling
problems or single transfer center optimization problems. Also, in most GA-based
network optimization models, the bus scheduling was used just as a part of objective
function for route network design problem within the boundary of the previous
research. Therefore, this research focused on extending the methodology to more
complex situations (e.g. introduction of slack times for al directions at transfer
centers), and developing computerized optimization models for the bus scheduling

problem using GA and computer simulation.
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Chapter 3: Model Formulation

The methodology in this chapter includes the introduction of analytical
formulas and the development of their application models. Analytical approaches are
used to formulate cost functions incorporating deterministic and probabilistic vehicle
arrival processes, and application models are used to develop computerized models
which are intended to search for the optimized solution of the total cost function.

Analytical formulas in this study are based on the framework introduced by
Ting (1997), and application models are developed using GAs and computer
simulation. For application models, simple genetic algorithm (SGA) and simulation-
based genetic agorithm (SBGA) are introduced. Both analytical approaches and
application models are constructed for coordinated network operation because
previous research already showed that the coordinated operation is the best way to
minimize the total system cost on the common urban transit network system.
Therefore, this study is limited to coordinated networks.

Solving the bus scheduling problem means finding the optimized headways
for deterministic vehicle arrivals and the optimized headways and slack times (if
applicable) for stochastic arrivals. SGA is devised to solve the problem for the
deterministic case, and SBGA for the stochastic case. SBGA uses computer
simulation to evaluate statistical estimators in the stochastic process. SBGA using
computer simulation is dlightly problematic because simulation is not only time
consuming but also has a variance problem. However, computer simulation can

imitate the complex stochastic process and provide estimators in real time, which is
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the most important point in a computerized optimization model.

It is assumed that this work applies to a predetermined network of urban
transit (bus) routes. All assumptions of Ting (1997) are aso applied to this study as
stated below:

1. The present analysis does not consider the issue of route location, stop

spacing, and service for particular routes and time periods.

2. The origin-destination matrix is given, and is assumed to be (1)
independent of transit service quality, (2) deterministic and uniformly
distributed over time during the specific time period.

3. Passenger arrivals are random and uniformly distributed over time at
each bus stop.?®

In the next two sections, the methodology for deterministic and stochastic bus
arrival processes is presented. Figure 3-1 shows the structure of the total cost for the
coordinated network operation. Total cost includes non-transfer and transfer cost.
Non-transfer cost includes vehicle operating cost, passenger waiting cost, passenger
in-vehicle cost and layover cost, and transfer cost includes inter-cycle delay cost,
dlack time cost, missed connection cost, and dispatching delay cost. Table 3-1 shows

the notation for variables used in this chapter.
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Total Cost

Non-Transfer Cost

Transfer Cost

| Vehicle Operating Cost

| User Waiting Cost

User in-vehicle Cost

Layover Cost

Inter-cycle Delay Cost

| Slack Delay Cost

| Missed Connection Cost

—| Digpatching Delay Cost

Figure 3.1. Structure of total cost for coordinated network operati o’
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Table 3.1 Variable definitions

Variables| Descriptions Units
& fixed vehicle operating cost of route k $/min.
by variable vehicle operating cost of route k $/min.
By vehicle operating cost $/min.
Cq connection delay cost of transfer passengers $/min.
C transfer cost $/min.
C layover time cost $/min.
Cn missed connection cost for transfer passengers $/min.
Co operating cost $/min.
o inter-cycle transfer delay cost due to unequa integer-ratio | ¢/min.
headway
Cs slack delay cost $/min.
Craa total system cost in deterministic arrival headways $/min.
Crso total system cost in stochastic arrival headways $/min.
C, in-vehicle cost $/min.
Cu waiting cost $/min.
Dy number of passengers already on board at transfer center m | passengers/min.
on the direction o of route k
f(to) probability density function of arrival time on the direction
o of route k
Frao transfer demand to direction o of route k at transfer center m | Passengers/min.
Oi greatest common divisor of y; and vy,
hy headway of route k min.
Nimax maximum headway of route k min.
Nimin minimum headway of route k min.
[ index of link
i, k index of route k
[ max maximum load factor of route k
N(c) set of transfer nodes
m index of transfer center

16




Ok transfer demand from routej to route k passengers/min.
Ol transfer demand from the direction o of route j to the | passengers/min.
direction  of route k
Q demand of link i passengers/min.
Q« demand of route k passengers/min.
Qxm maximum demand on route k passengers/min.
S vehicle size of route k seats
Stie slack time at the transfer center m on the direction o of route | min.
Kk
S maximum slack time at the transfer center m on the direction | in.
o of route k
Samin minimum slack time at the transfer center m on the direction | in.
o of route k
¥ travel timeon link i min.
tie travel time on the direction a of link i min.
tio arrival time on the direction o of route j at transfer center
tix average transfer waiting time from route j to k min.
o average transfer waiting time from the direction o of route j | min.
to the direction 3 of route k
typ arrival time on the direction 3 of route k at transfer center
Tk round trip time of route k min.
tu layover time of route k min.
Aty layover time change of route k min.
W transfer waiting time on route k min.
y base cycle min.
a, B direction of bus on round trip
(0, forward direction; 1, backward direction)
Yi integer for headway of route j on base cycle (=hy/y)
Omk 1, if transfer station mison route k; 0, otherwise
o’ variance of headway on route k
u unit waiting time cost passengers/min.
\Y unit in-vehicle cost passengers/min.
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3.1 Deterministic Arrival Process

Under the deterministic arrival process, the link travel times and route
headways are deterministic and all buses arrive at the stop on schedule. In this case it
doesn’t need to introduce slack times to bus scheduling. The objective is to find the
optimized headways in the network to minimize the total system cost which includes
bus operating cost, user waiting cost, user in-vehicle cost, user transfer cost and

layover cost.

3.1.1 Analytic Approach
In this deterministic Situation it is assumed that the travel times of two links

connecting two nodes are equal. The round trip time at each route k is the summation

of travel times of all the links on route k.

T, :Zti (3.2)

The linear vehicle operating cost function and the vehicle capacity constraint
used here are given by:

B, =a, +b S (3.2

(33)

The average operating cost of route k is the product of the needed fleet size

and the unit operating cost. The total operating cost is determined as:
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C :zﬂ (3.4)

It is assumed that passengers arrive at stops randomly and uniformly so the
average waiting time at the origin stop is half of the route headway. The total waiting

costis

(35)

The in-vehicle cost of link i isthe product of passenger demand and in-vehicle

time on each link. The total in-vehicle cost is

C = Z"Qiti (3.6)

The transfer waiting cost is the summation of transfer demand times transfer
waiting times at the transfer centers. It is assumed that the average transfer time from

route j to route k is tj. The total transfer cost is computed as:

C, :Z Z:quktjk (3.7)
Tk

ke

In atransit network a passenger can transfer multiple times. For simplicity the
maximum number of transfers is limited in this study to three times per one-way
passenger trip. Figure 3.2 shows examples of the average transfer waiting times when

using one, two and three transfers.
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Figure 3.2 Waiting times at transfer center
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For the coordination among bus headways at the transfer center, the layover
time of route k (ty) is assumed, which is the extra service time at the end stop of

route k. The total layover cost is
C = Z B, — (3.8)

In the deterministic arrival process, the tota system cost is the sum of
equations (3.4)-(3.8).

Croa =G, +C, +C, +C; +C (3.9)

3.1.2 Headway Optimization Model

It is difficult to solve equation (3.9) with traditional optimization methods for
the networks of redlistic size. Therefore, heuristic algorithms have usually been used
to search for the optimized headways in most previous studies.

Figure 3.3 demonstrates the “noisiness’ of the total system cost function
which has many local optimal solutions in a simple one-way bus network. There are
two bus routes on the example network which consists of two origins (1&2) and
destinations (A&B). Tota system costs are evaluated numerically for the al integer
values within the range (from minimum to maximum) of headways.

The maximum and minimum headways of this study are computed as:

h = max(Sdme o) (3.10)

km

h

kmin

= max(h"‘”‘:aX 2) (3.12)
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4 Demand: 1-A (160), 1-B(40)
2-A (40), 2-B(60)
1 > A . :
Travel Time (min): 1-A(60), 2-B(50)
Optimum Solution (min): (12,12)
2

a) Network geometrics for two one-way routes

og~

b) Total costs vs. headways for two one-way routes

Figure 3.3 Noisiness of the total system cost function
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For the deterministic arrival process this study uses a GA to develop a
headway optimization model, called a simple genetic algorithm (SGA). This SGA has
seven steps in its procedure: initidlization, population, reproduction, crossover,
mutation, next population, and stopping criteria.

Theinitialization proceeds as follows:

1. Optimize headways independently for each route.

2. Rank the routes by sorting them in the order of increasing headway.

3. ldentify the main route which has the most transfer centers along it, or which
has the lowest optimum headway, if needed to break ties.

4. Classify each transfer center as afully coordinated transfer center, a semi-
coordinated transfer center, or ageneral transfer center.

- Fully coordinated transfer center: where the largest number of routes
meets, or where the main route meets the second route in the sorted order
if the number of routes crossing at transfer centersis same.

- Semi-coordinated transfer center: where the main route meets other
routes

- General transfer center: where routes than the main one meet (usually,
off-phased transfer center)

5. Assign travel demand on the links according to the shortest path on the basic
network.

Figure 3.4 shows basic network configuration for the SGA model and figure
3.5 illustrates the procedure of the SGA implementation. The genetic algorithm and

GA operators used in this study will be explained in detail in chapter 4.
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Figure 3.4 Basic network configuration for SGA
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Figure 3.5 SGA implementation procedure
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3.2 Stochastic Arrival Process

In the stochastic case, the vehicle operating cost, passenger waiting cost, and
in-vehicle cost are the same as in the deterministic case. However, the transfer cost is
different because slack time is introduced in the stochastic case. Slack time is the
additional dwelling time of a bus at a transfer center to facilitate passenger transfer
and to reduce the probability of missed connections. Thus it can reduce the expected
waiting time at transfer and decrease the total cost. It is sensitive to passenger demand
and the distribution of bus arrival pattern, so its value differs among routes, among
bus stops on a route and among directions of routes at a transfer center. Therefore, the
total transfer cost function includes all cost components that result from the slack
time and headway. Those are the slack delay cost, inter-cycle delay cost, missed
connection cost, and dispatching delay cost. There is aso layover time change cost in

stochastic process for the change of layover time by the addition of the slack time.

3.2.1 Analytic Approach

The slack delay cost includes the user time cost of passengers on board and

supplier cost for slack time. The slack delay cost is given by:

CS = z z (Dmkav + kaa/’[+%)sn1<a5nk (312)

k meN(c) k
The first term is the dlack time delay cost to passengers already on board and
the second term is the waiting cost for transfer passengers to route k. The last part is

the increased vehicle operating cost for the slack time.
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In a stochastic process, the average waiting time includes the difference of the
dlack time between two routes, thus the average transfer waiting time between routes
involved in a transfer is a little different from the deterministic case. Figure 3.5
illustrates examples of the average transfer waiting time when using one, two, or
three transfer centers.

It is assumed that the average transfer waiting time from the direction o of
routej to the direction B of route k istjk,s. The inter-cycle delay cost is the summation

of all the routes connecting at the transfer centers.

C, =Z Zk: J 2. P S (3.13)
i

K#j

Only one dispatching strategy is considered at the transfer center, which is
that vehicles do not wait for other vehicles arriving behind schedule, and vehicle
arrivals are independent among routes. It is also assumed that passengers can transfer
to the coordinated receiving vehicle at transfer center when bus routes have not only
common but also integer-ratio headways between them, and that the link travel times
on aroute are independent.

The probability of missed connections includes following two cases. (1) the
feeder vehicle j arrives late while the receiving vehicle k is not late and (2) both
vehicles are late, but feeder vehicle| arrives after receiving vehicle k leaves. 2

Figure 3.6 shows two cases of the missed connections from route j to k with

common headways.
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Figure 3.6 Inter-cycle waiting time at transfer center
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The missed connection cost, C,, can be classified into two cases (i.e,

common and integer headways between route j and k), and it is determined as:

o (Snp
Cn= %)Z ; Mjkaﬁé‘mjé‘nk[v[iﬂa Lk (N = Sg — 1, +Sna) T )t f ()L,
meN(c) |
k]

(31449
N (lia=Shia *Sg
Hl LT (O S~ ) T )l £, )
for common headways, and
OiY j
Co= 3 30 3 tehs - 0ndll] [T 8t 1) 1), 0.1,
TN ' (3.14 b)
inh g Mo —Smie tSng
T O S S T ) 4, )

for integer-ratio headways.

The connection delay cost, Cgy, is the additiona waiting cost of passengers
who arrive at transfer center before the departure time of the connecting bus but the
connecting bus arrives behind schedule. The probability of dispatching delay includes
the following two cases regarding the two vehicles involved in a connection: (1) the
feeder vehicle | arrives early while the receiving vehiclek is late and (2) both vehicles
are late, but feeder vehicle| arrives before the receiving vehicle k. 2

Figure 3.7 shows the cases of the dispatching delay with common headways at

the transfer center.
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The dispatching delay cost is given by:

Co= ¥ XX MSnbul[] [Tty =) 0N, T )k,

meN(c) j k
k# (3.153)
h; hy
] e, (¥ S~ =S ) F (b )t (8, )l ]
for common headways, and
C, = 9i¥ G f F(t.)d
o= 220X My OO [ G =) T T G )cl
RO (3.15b)
min[h;.h ] eh
L ] e (i S U~ ) T ()t (1, )

for integer-ratio headways.

The layover time change cost, C,, accounts for the change of layover time at
the end of a route which is occurred by the addition of slack time, and it can be a
negative or positive value according to the size of slack time. The layover time

change cost is given by:
At
Cy =D B h—” (3.16)
k k

In the stochastic arrival process, the total system cost is the sum of equations
(3.12)-(3.16):

CTstozco-'-cw-'-cv-'-cl+Cs+Cp+Cm+Cd+CAI (317)
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3.2.2 Slack Time Optimization Model

The total system cost function (Eq. 3.17) is too complex for finding the
optimized solution (i.e., the optimized headways and slack times) with an anaytical
approach. Ting (1997) used a numerical integration method to compute transfer
delays, but that method also cannot be easily transferred to a computerized model
which has to be able to evaluate the results of stochastic arrival processin real time.

The second computerized optimization model, called a simulation-based
genetic algorithm (SBGA), is developed using computer ssimulation and a genetic
algorithm. Computer simulation is used here because it can provide statistica
estimators resulting from the complex stochastic arrival processin real time.

To illustrate the complexity/effect of stochastic arrival process, figure 3.8
shows a simple bus route with four links whose travel times and standard deviations
are the same on all links and normally distributed. Table 3.2 shows the results of the
average arrival time (M) at the end of each link and its standard deviation (SD) with
the various slack times applied. Even when the slack time is O, average arrival times
at the bus stops B, C, and D are not just the sum of the link travel times because a bus
arrival before the departure time has to wait to depart on time. At 0 slack time, the
average arrival times and their standard deviations are increasing when the buses
approach the last stop (D) of the route although the link travel times are independent.
As slack time increases the average arrival times at each bus stop aso increase due to
the additional delay from the slack time, but standard deviations are diminishing

because slack times can help buses depart on-time. As the slack time increases, the
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average arrival time at a stop approaches the sum of link travel times and slack times,
and its standard deviation becomes the same as the standard deviation at al bus stops.

That situation starts to occur when the slack time reaches 2 minutes in table 3.2.

O 120,1)Y A (20,1) B 3(20,1) C 4(20,1) D
| ] ] ] |

1) Link number (Link travel time (min), Standard deviation)

Figure 3.9 Simple bus route for the example of the effect of stochastic process

Table 3.2 Example of stochastic effect on simple network

Slack Bus Stop

Ti me A B C D

(min) D | M D | M D | M sD
0.0 | 2000 | 1.001 | 4040 | 1.158 | 60.68 | 1.303 | 80.91 | 1434
05 | 2000 | 1.000 | 4070 | 1.083 | 61.30 | 1.140 | 8186 | 1.183
10 | 2000 | 1.001 | 41.08 | 1.033 | 6211 | 1.049 | 8312 | 1.055
20 | 2000 | 0.999 | 42.01 | 1.002 | 6401 | 1.002 | 86.01 | 1.004

Situations become much more complex when the bus network is large, many
transfer centers are located in the network, and each route has a different slack time
for each direction at a transfer center. Therefore, computer simulation is applied here

in spite of its limitations to simulate those situations.
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The results of SGA (i.e., headways) are used as the basic parameters for
SBGA to search for optimized slack times because example tests showed that the
stochastic vehicle arrival process does not change the optimized headways from SGA.
Simulation is applied to evaluate the missed connection and dispatching delay time in
coordinated transfer, and transfer delay time in off-phased transfer within SBGA.

Figure 3.9 shows the procedure of the SBGA implementation.

Begin
- Population Fitness function
L computation
Reproduction >
‘ Slack times
Y & Headways
Crossover ¢
y Simulation
Mutation ¢
i ) Tota Cost
Next population

Figure 3.10 SBGA implementation procedure
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Chapter 4. Genetic Algorithm

A Genetic Algorithm (GA) may be described as a mechanism that imitates the
genetic evolution of species. It was first introduced by Holland in 1975 and getting
increasingly powerful since then. Now, it is the most widely known type of
evolutionary computational methods.

GA isalocal search agorithm, which works starting from an initial collection
of strings (or a population) representing possible solutions of the problem. Each string
of the population is caled a chromosome, and has associated a value called fitness
function that contributes in the generation of new populations by means of genetic
operators (denoted reproduction, crossover and mutation, respectively). At each
generation, the algorithm uses the fitness function values to evaluate the surviva
capacity of each string i of the population using simple operators in order to create a
new population which try to improve on the current fitness function values by using
pieces of the oldest ones.

Maurizio et al. (2002) described the differences between GA and other local

search techniques as follows:

1. GA operates with codes of the parameter set and not with the
parameters themselves;

2. GA searches for a population of points and not a single point;

3. GA uses objective function information and not derived or auxiliary
knowledge;

4. GA uses probabilistic transition rules and not deterministic ones.*®
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These particular aspects make this method applicable in a very general way,
without the limitations imposed by other local search methods (i.e., continuity,
derivative existence, uni-modality). Moreover, it makes possible exploiting
consequent information from more points in the dominion of the solutions, reducing
the probability of finding false peaks, i.e., traps or local optima

Chakroborty et al. (1998) pointed out that the bus scheduling problem was a
nonlinear, mixed-integer program and that the traditional algorithms for solving
nonlinear, mixed-integer programming problems were rare and not efficient,
especialy when the number of variables and constraints was large. They suggested
that the number of variables and constraints in the origina NLP formulation was
O(sr?n?) for atransit network having s transfer stations, r routes passing through each
station, and n transit vehicles plying on each route.”

From the previous studies, we can find that methods to solve bus scheduling
problems in multi transfer network are very limited by the complexity of the
problems. In this study, there are many sources of complexity in the bus scheduling
problem, such as nonlinearity, noisiness, discreteness, and non-convexity of the
objective functions (i.e., Eg. 3.9 & 3.17). As aresult, a straightforward mathematical
programming approach cannot achieve satisfactory results. In previous studies, most
optimization models for the bus scheduling problem in multiple transfer networks
used heuristics based on artificia intelligence. There are several well-known heuristic
methods in artificia intelligence, such as tabu search, ssimulated annealing, genetic
algorithms, and neural networks. Each of them has its inherent strengths and

weaknesses (e.g., excessive computing time in simulation annealing) and limitations
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for application to a specific problem. Therefore, it is very desirable to choose a
method which is suitable for the properties of the problem considered. Based on the
strengths and weaknesses of the potential methods, a GA was selected here for the
bus scheduling optimization. It should also be noted that previous related studies
(Tom & Mohan, Ngamcha & Lovell) have chosen the GA approach for similar
problems.

The application of GA to a specific problem includes severa steps. The
procedure of SGA and SBGA using GA are shown in figure 3.4 and 3.9 in chapter 3.
In the next six sections, GA components such as initial population, fitness function,

reproduction, crossover, mutation, and elitism will be presented.

4.1 Initial Population

Generating initial population is to construct an initial collection of strings of
which individual is a chromosome, a set of headways or slack times. A chromosome
should in some way contain information about the solution it represents. For coding
of a chromosome this study uses integer values (a set of headways) in SGA and
multiples of 0.25 (a set of slack times) in SBGA. The initial population is randomly
generated within the range of slack time in SBGA, but in SGA it is coordinated with
the headway of the main route which has the largest passenger demand among bus
routes on a bus network and severa transfer centers on the route. The initia
population in SGA is aset of integer multiples of the main route headway.

For example, consider two individuals with 5 values (headways or slack
times) each:
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1. Coordinated headways with first value (or headway of route 1)
- Individual 1 5 10 15 10 15
- Individual 2 3 3 6 9 9

2. Randomly generated slack times
- Individual 1 025 05 10 00 0.75

- Individual 2 05 00 15 025 0.75

4.2 Fitness Function
The fitness function evaluates the fitness of each individual i in the population.
We used scaling window method as a fitness function. It transforms the objective
function value into a measure of relative fitness, as follows:
h(x) =g(f(x)) = f(x)-» (4.1)
where
y = aconstant, usually the minimum of f(x)
X = the phenotypic value of individual i
f = the objective function before scaling
g = transform the value of the objective function to a non-negative
number
h = the resulting relative fitness.

The individual fitness after scaling, F(x ), is computed as the individua’s

performance, g(f(x)), relative to the whole population:
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h(x) _ 9(f(x)) (4.2)
20005 g1 %)

F(x)=

where N = the population size.

The following table 4.1 shows an example of a scaling window.

Table 4.1 Example of a scaling window

i Before scaling (y=0) After scaling (y=50)
f(x) P(f(x))" h(x) F(x)
1 53 0.25 3 0.20
2 54 0.25 4 0.27
3 58 0.27 8 0.53
4 50 0.23 0 0.00
Total 215 1.00 15 1.00

1) P(f(x)): Percentage of the objective function before scaling

4.3 Reproduction

The principle behind GA is essentially Darwinian natural selection.
Reproduction (or selection) provides the driving force in GA. With too much force,
genetic search will terminate prematurely; with too little force, evolutionary progress
will be slower than necessary. Typically, alower selection pressure is indicated at the
start of a genetic search in favor of a wide exploration of the search space, while a

higher selection pressure is recommended at the end to narrow the search space.
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This study uses stochastic universal sampling for reproduction, which is a
single-phase sampling algorithm and uses N equally spaced pointers where N is the
number of selections required. The population is shuffled randomly and a single
random number, P, in the range [0 (Sum of fitness function) /N] is generated. The N
individuals are chosen by generating the N pointers spaced by 1, [Py, P», ..., Py], and
selecting the individual s whose fitness span the positions of the pointers.

To illustrate this selection process, consider the situation shown in figure 4.1.

Figure 4.1 Stochastic universal sampling

In the above figure, when N=6, the sum of fitness function=1, and P=0.07, a

new population 1, 2, 2, 4, 5, and 6 is selected.

4.4 Crossover

Crossover operates on selected values from parent chromosomes and creates
new offspring. Simple (or one-point) crossover and two-point crossover are used in

SBGA and coordinated headway crossover is used in SGA.
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4.4.1 Simple Crossover

In simple crossover, one crossover position K[1, 2, ..., N-1], N of the number
of variables (or slack times) of an individual, is selected uniformly at random. After
that, the variables are exchanged between the individuals about this point, and two
new offspring are produced.

For example, consider the following two individuals with 5 slack times each:

- Individual 1 025 0.75 125 225 250
- Individual 2 0.75 025 025 175 225
When the chosen crossover position, K, is 3, the new individuals are created:
- Offspring 1 025 0.75 1.25 | 1.75 2.25
- Offspring 2 0.75 025 025 | 225 250

Figure 4.2 illustrates this process.

(Parents) (Children)

Figure 4.2 Simple crossover
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4.4.2 Two-point Crossover
For two-point crossover, 2 crossover positions k[ 1,2,...,N-1], i=1 and 2, are
chosen at random with no duplicates and sorted in ascending order. Then, the
variables between successive crossover points are exchanged between the two parents
to produce two new offspring. The section between the first variable and the first
crossover point is not exchanged between individuals.
For example, consider the following two individuals with 5 slack times each:
- Individual 1 025 0.75 125 225 250
- Individual 2 0.75 025 025 175 225
When the chosen crossover positions, k, is 2 and 4, the new individuals are
created:
- Offspring 1 025 0.75 | 0.25 175 | 2.50
- Offspring 2 0.75 0.25 | 1.25 2.25 | 2.25

Figure 4.3 illustrates this process.

(Parents) (Children)

Figure 4.3 Two-point crossover



4.4.3 Coordinated Headway Cr ossover

Coordinated headway crossover is the combination of simple crossover and
coordinated headway generator. At first, one crossover position k is selected and the
variables are exchanged between the individual s about this point as the case of simple
crossover. Secondly, it is checked whether the headways of other routes are multiples
of the main route (e.g. route 1). If any route is not coordinated with the main route a
new headway is generated for that route as a coordinated value with the main route.
For example, consider the following parents with 5 headways each:
- Individua 1 2 2 6 6 8
- Individua 2 36 96 9

When the chosen crossover position, K, is 2, the new individuals are created:
- Offspring 1 2 2|8 6 6

- Offspring 2 3 6|6 6 9

4.5 Mutation

The mutation operator plays a secondary role with respect to reproduction and
crossover operators. Nevertheless, mutation is needed to prevent an irrecoverable loss
of potentially useful information which occasionally reproduction and crossover can
cause. Mutation is an occasional random ateration, with small probability, of the
headway or slack time. Uniform mutation is used in SBGA and coordinated headway

mutation used in SGA.



45.1 Uniform Mutation

In uniform mutation a gene (or slack time), x;, of a chromosome is changed to
anew one within its range. A geneis selected for mutation if arandom number (1,) is
less than the probability of mutation (e.g. 0.2 in SBGA) and a new gene is produced
asfollows,

Xingw = F (Ao (X o — Ximin ) [ @ ¥ D)) X + X i (4.4)

where

Xinew = @ NEW slack time of x;

A1, A2 = arandom number

o. = gap of dack time (=0.25)

f = afunction for round-down to integer

Ximin, Ximax = the lower and upper bound of the slack time, respectively.
For example, consider the following individual with 5 slack times:

- Individual x 025 0.75 125 225 250

When the chosen mutation position is third (x=3), A, 1S 0.5, Ximin 1S 0, and Ximax
is 3, the new offspring is created:

- New offspring 025 0.75 15Y 2.25 250

1) f(0.5*(3/0.25+1))*0.25+0 = (6.5)*0.25 = 1.5

4.5.2 Coordinated Headway Mutation

Coordinated headway mutation is developed to facilitate the search for

the optimized headways, based on the fact that the optimized headways are integer
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multiples of the main route headway. A gene (or headway) selected for uniform
mutation is changed into a new gene, which is one of the integer multiples of the
main route headway.
For example, consider the following individual with 5 headways:
- Individual x 3 36 6 9
When the chosen mutation position is third, Xmgain 1S 3, Ximin 1S 2, and Xjmax 1S 11,
the candidates for Xnew are 3, 6, and 9 and the third headway is changed from 6 to 3.
- New offspring 3 3 3 6 9
where
Ximax» Ximin = the upper and lower bound of headway, x;, respectively
Xmain = the headway of the main route

Xinew = @ New headway of x;.

4.6 Elitism

Once a new population has been produced by reproduction, crossover and
mutation of individuals from the old population, the fitness of the individuals in the
new population may be determined. However, there is no guarantee that the best
fitness of the new population is better than that of parents. Elitism is used for the best
individua in the previous generation to be deterministically alowed to propagate
through successive generations. Therefore, the least fit individua in the new

population is replaced by the best fit individua in the previous generation.
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Chapter 5. Case Sudy and Analysis

The objective of this chapter is to illustrate the applicability and
reasonableness of the new models. Two computerized models, SGA and SBGA,
developed in chapter 3 are applied to an artificial bus network for case study.
Deterministic case of bus arrival process is presented in section 5.1 and stochastic
case in section 5.2. At each section, numerical results and sensitivity analysis are
presented first and a goodness test for the best solution resulted from the new model
is then conducted. The goodness tests used in this chapter follow the method
proposed by Jong (1998).

The network configurations for the case study are shown in figure 5.1 and
figure 5.2. Figure 5.1 displays a six-route system with a loop and shows link travel
times, their standard deviations and route numbers. Figure 5.2 shows link and node
numbers, names of transfer centers, and travel demand of passengers (passengers/hr)
at the each node (or origin). In this study it is assumed that the travel time of alink is
equal in both directions and independent from the travel times of other links. It is
usually impossible to coordinate all routes at all transfer centers in multi-transfer
network. Therefore, in this study al routes are fully coordinated at transfer center C
because C is the busiest transfer center, and at other transfer centers other routes are
coordinated to the forward direction of the route 1. Table 5.1 shows the baseline
parameter values for the numerical analysis, which are estimated by linear regression
of the values from the previous studies. The demand ratio matrix between origins and

destinations (O/D) for the example network is shown in table 5.2.
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Figure 5.1 Network configuration for case study 1
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Table 5.1 Baseline parameter values for numerical anaysis

Bk Vehicle operating cost ($/bus-min.) 1.33
u Unit waiting time cost ($/passenger-min.) 04
\ Unit in-vehicle cost ($/passenger-min.) 0.2

Table 5.2 O/D demand ratio matrix for example network

(Ratio of travel demand from origin to destination)

1 2 3 4 5 6 7 8 9 10| 11| 12 | X

1 0 [004]005]010|0.15|0.02|022]|0.12|0.100.08|0.05|0.07|1.00

2 (015 O [0.10|0.06|0.05|002]|0.15|0.08|0.090.07|0.060.17 | 1.00

3 /018/010| O |0.08|0.05|0.03|0.16|0.06|0.07|0.05]|0.15|0.07 | 1.00

4 |012(005{006| O |012,005|0.20|0.09|0.12|0.07|0.08 | 0.04 | 1.00

5 (012/004(005/011| O |005|026|0.15|0.100.05|0.04|0.03]|1.00

6 [013/003({003|007|017| O |[025|0.05|0.13|0.09|0.03|0.02]|1.00

7 1020002003008 |012|006| O |025|0.11|0.05|0.04|0.04|1.00

8 [012/004|004010|018|005/025| O |0.10|0.05|0.04|0.03|1.00

9 /013/004|004(015/010|0.07]021|008| O | 01 |0.05|0.03|1.00

10 | 0.15|0.03{005|0.05|0.12|007|023|006|012| 0 |0.07|005]|1.00

11 /0.21|0.08|0.15|0.07 | 0.08 004|016 |005|005|003| 0 |0.08]|1.00

12 /| 0.25|0.11|0.08|0.06 | 0.05|0.02|0.127|0.07|009|0.02|008| 0 |1.00

2 |176|058|068|093|119|048|226|1.06|1.08 | 0.66 | 0.69 | 0.63

50




5.1 Deter ministic Case

5.1.1 Numerical Results and Sensitivity Analysis

With the above baseline values, we test the deterministic case in which the
link travel times are constants (i.e., their standard deviations are zero). SGA
developed in chapter 3 is applied to the example network. The parameters for the
proposed SGA are summarized in table 5.3. The population size and maximum
number of generationsin SGA are 30 and 30, respectively. Both are much lower than
those in SBGA (see section 5.2.1) since problem-specific genetic operators used in
SGA such as coordinated headway generator, coordinated headway crossover, and

coordinated headway mutation can lead to good solutions within fewer generations.

Table 5.3 Genetic parameters of SGA for the example network

Parameters Value
Population size 30
Maximum number of generation 30
Percentage of crossover 0.9
Percentage of mutation 0.2

Although the problem-specific genetic operators can accelerate SGA’s search
for the optimized solution, the SGA mode is probabilistic and we cannot guarantee

the best solution from SGA is the global optimum for the problem. We run the model
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10 times. All ten runs have same headways and the results from 10 runs are given in
table 5.4. This means that the genetic operators developed for SGA model work very

well in searching for the optimized solution.

Table 5.4 Results of SGA model for the case study

Headways (min) Total Cost
Run $)
H1 H2 H3 H4 H5 H6 (
1~10| 8 16 16 16 16 8 515.1824

The detailed components of the lowest total cost from SGA are shown in table
5.5. The in-vehicle cost (C,) accounts for a large fraction of the total cost and the
vehicle operating cost (C,) is second. The waiting time cost (C,,), the transfer cost (Cy),
and the layover time cost (C)) are listed in the order, respectively. It is important to
note that the transfer cost is a little higher although the bus routes in the example
network are coordinated with each other at most transfer centers. The reason for this
situation is that a considerable portion of the transfer cost comes from the additional
waiting time at the off-phased transfer centers. Therefore, it is very important to
decide how to operate the off-phased centers in a network with multiple transfer
stations. The additiona waiting time cost in the example network is $7.6027, which

accounts for 44% of the transfer cost.
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Table 5.5 Resulting components of the total cost for the deterministic case

Croe ($)

Co

Cw

G

G

C

515.1824

87.6138

57.0667

350.0810

17.0960

3.3250

In order to visualize the evolution of the model (SGA) using coordinated

headway generator, coordinated headway crossover, and coordinated headway

mutation, we plot the minimum objective value (or total cost) in each generation and

the generation number in figure 5.3. The figure shows that total cost reaches its best

value, which is $515.1824 at the 13" generation, and that problem-specific genetic

operators can find a good solution within fewer generations.
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Figure 5.3 Minimum total cost through successive generationsin SGA
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To assess the efficiency of problem-specific genetic operators developed for
SGA model we conduct an analysis to examine the influence of different types of
operators on the solution. We use general (or conventional) genetic operators for
different scenarios. Table 5.6 shows the genetic parameters and operators used in
each scenario. Scenario 1 has the same population size and maximum number of
generations as in the SGA model, but different genetic operators, such as random
headway generator, simple crossover, and uniform mutation. Scenario 2 is just

different from scenario 1 in the maximum number of generations.

Table 5.6 Genetic parameters and operators in other scenarios

Scenario Poqu ation | Max. num_ber of [niti aI Crossover | Mutation
size generation population

Randomly Simple Uniform

1 30 30 generated crossover | mutation

Randomly Simple Uniform

2 30 100 generated crossover | mutation

Tables 5.7 and 5.8 show the results of scenarios 1 and 2, respectively. In 10
runs the best value is $517.3694 in scenario 1 and $515.1824 in scenario 2. The
resulting values in scenario 1 have never reached the optimized value ($515.1824)
found by SGA and those in scenario 2 have only reached that optimized value 3 times.

Those results show how well problem-specific genetic operatorsin SGA work.



Table 5.7 Results of scenario 1

un Headways (min) Total Cost
HL | H2 | H3 | H4 | H5 | He ®)
1 7 7 16 14 14 7 532.9610
2 8 16 8 16 10 8 526.3800
3 8 8 8 12 8 8 521.5835
4 8 16 16 8 8 16 519.4515
5 8 16 8 16 12 8 525.5563
6 8 16 16 8 8 8 517.3694
7 8 16 8 8 12 16 529.3017
8 8 12 10 16 8 8 525.6023
9 8 8 10 8 8 8 522.8950
10 8 8 16 12 7 8 530.6744
Table 5.8 Results of scenario 2
un Headways (min) Total Cost
H1 H2 H3 H4 H5 H6 ®)
1 7 14 14 14 14 7 521.7030
2 8 16 16 16 16 8 515.1824
3 8 16 8 16 8 8 518.1982
4 8 16 16 12 8 8 520.5126
5 8 16 16 16 8 8 515.3702
6 8 16 16 16 8 8 515.3702
7 8 8 16 16 8 8 517.3118
8 8 16 16 16 16 8 515.1824
9 8 16 16 8 8 8 517.3694
10 8 16 16 16 16 8 515.1824
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For sensitivity anaysis we choose three factors affecting the total cost in
deterministic case: bus operating cost, passengers waiting time cost, and travel
demand. Table 5.9 and figure 5.4 show the optimized headways for the operation on
the example network at different vehicle operating costs. As expected, the optimized
headways increase as the operating cost increases. When the vehicle operating costs
varies from 0.5 to 0.75 $/vehicle-min al routes have the same headways, 8 minutes.
However, the headways of route 2 to 5 and headway 6 increase to twice the headway
of route 1 from 1.33 and 2.5 $/vehicle-min, respectively.

Table 5.10 and figure 5.5 show the optimized headways and total costs at
different waiting time values. In this case the optimized headways decrease as the
waiting time cost increases. The headway of route 1 is half the headway of other
routes at 0.1 and 0.2 $/passenger-min, but route 6 becomes to the same headway of
route 1 at 0.3 $/passenger-min and other routes at 0.5 $/passenger-min. Common
headways are preferable from the value of 0.5 $/passenger-min.

Table 5.11 and figure 5.6 show the optimized headways at various demand
levels (ratio value 1 is the base demand). The results show that the headways roughly
decrease as the demand ratio increases. When the ratio is 0.4 and 0.7 the headways of
al routes are same headways, but from the ratio 1 the integer-ratio headways become
preferable. The headways of routes 2 to 5 are twice the headways of the routes 1 and
6 at theratio 1, and the headway of route 6 also becomes twice the headway of route

1 at theratio 1.5.
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Table 5.9 Optimized headways and total costs for different vehicle operating costs

Vehick operating cost ($/veh-m i)

—®—H1l —®H2~H5 4 H6

Cost Headways (min) Total cost
®min) | W1 | H2 | H3 | H4 | H5 | H6 (%)

0.50 8 8 8 8 8 8 441.25

0.75 8 8 8 8 8 8 464.50

1.33 8 16 16 16 16 8 515.18

1.80 8 16 16 16 16 8 547.32

2.50 8 16 16 16 16 16 591.74

3.00 8 16 16 16 16 16 622.61
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Figure 5.4 Optimized headways vs. vehicle operating costs
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Table 5.10 Optimized headways and total costs for different waiting time values

Values Headways (min) Total cost
®min) | W1 | H2 | H3 | H4 | H5 | H6 (%)

0.1 8 16 16 16 16 16 454,03
0.2 8 16 16 16 16 16 475.85
03 8 16 16 16 16 8 496.64
0.4 8 16 16 16 16 8 515.18
05 8 8 8 8 8 8 529.61
1.0 8 8 8 8 8 8 585.44
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Table 5.11 Optimized headways and total costs for different demand ratio

Demand Headways (min) Total cost
Ratio | g H2 H3 H4 H5 H6 )
04 21 21 21 21 21 21 243.87
0.7 12 12 12 12 12 12 386.49
1.0 8 16 16 16 16 8 515.18
15 5 10 10 10 10 10 744.37
2.0 4 8 8 8 8 8 042.44
25 3 6 6 6 6 6 1,1760.00
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Figure 5.6 Optimized headways vs. demand ratio
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5.1.2 Goodness Test

Although the solution found with the proposed SGA model seems reasonable,
it is hard to prove its optimality because SGA cannot guarantee finding the global
optimum. Therefore, we design an experiment to statistically test the goodness of the
algorithm. This goodness test follows the method used by Jong (1998).

The experiment isinitialized by randomly generating sol utions to the problem.
For each of them we then evaluate its objective value. This procedure is a sampling
process. To maximize the generality and satisfy the statistical requirements, the
sample must be created in such a way that the solutions are representative and
independent of each other. The next step in the experiment is to fit a distribution to
the objective values for the random sample. The fitness of the distribution can be
checked with the Chi-Square or K-S tests. Since the sample is randomly generated,
the fitted distribution should be able to reflect the actual distribution of the objective
value for the real population. Based on this distribution, we can compare the solution
found the proposed model and calculate the cumulative probability of the solution in
the distribution. The lower the probability, the better the solution.*?

For the goodness test, we first create a random sample of 10,000 observations.
Total cost of the best solution is $532.1268 and the objective value of the worst
solution is $720.5057. The sample mean is $604.5817 and the standard deviation is
$33.6372. Figure 5.7 shows the distribution of the random sample and the relative
position of the best solution found by SGA. The distribution of the random sampleis

bimodal and seems unfamiliar. The number of observations of the total cost around
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650 is relatively much less than the numbers of 590's and 670’s.

We do not find a known statistical distribution for the random sample.
However, figure 5.7 shows that the total cost ($515.1824) of the best solution found
by SGA is much less than the lowest total cost ($532.1268) of the random sample.
This confirms that SGA is a good model for solving the bus scheduling problem with

adeterministic arrival process.
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Figure 5.7 Distribution of total cost for the random sample by SGA
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5.2 Stochastic Case

5.2.1 Numerical Results and Sensitivity Analysis

On the same example network used for the deterministic case, we test the
stochastic case in which the link travel times are not constants but variables (i.e., their
standard deviations are not zero). The second model, SBGA, is applied to the
example network. To anayze the stochastic arrival process, slack times are
introduced to transfer centers to reduce the probability of missing transfer. Figure 5.8
shows the slack times in the example network. There are 22 dlack times at five
transfer centers and two slack times of a route at a transfer center are different from
each other because there are two travel directions (e.g., s1 and s3 at transfer center A
on the figure).

Table 5.12 shows the parameters for SBGA. The population size is set at 60
and the maximum number of generations is set at 100. Both are much larger than
those of SGA (see section 5.1.1). We cannot develop problem-specific genetic
operators for SBGA since it is very difficult to estimate the relation between slack
times and cost functions in a complex network. Instead, we use general genetic
operators in stochastic case such as stochastic universal sampling, one-point or two-
point crossover, uniform mutation, and elitism. For computer simulation 5,000
random variables are used and that number is decided by the trade-off between the
simulation error and running time. The maximum value of slack time is limited to 3

minutes because more than 3 minutes of slack timeis generally unrealistic.
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Table 5.12 Parameters of SBGA for the example network

Parameters Value
Population size 60
Maximum number of generation 100
Percentage of crossover 0.9
Percentage of mutation 0.2
Number of random variables for simulation 5,000
Range of slack time (minutes) 0~3

As with SGA in the deterministic case, the SBGA model is probabilistic and
cannot guarantee finding the global optimum. We run the model 10 times in the
stochastic case, which requires 32,987 seconds (9 hour 10 min.) of CPU time on
Pentium 4 CPU 3.06Ghz, 512 MB of RAM, Notebook Computer. Table 5.13 shows
the results of SBGA model. On the 10 runs the average total cost and its standard
deviation are $545.2004 and $0.81, and the average dack time and its standard
deviation are 1.10 and 0.79, respectively. From the results, we can infer that it is
difficult to estimate the change pattern of the total cost from the variation of single
slack time at a transfer center since the total cost is the result of the combination of
slack time, link travel time, layover time, transfer volume and coordination method.

The best solution is found at the 5™ run, and total cost and average slack time
are $543.8844 and 1.02. Table 5.14 shows the detailed components of the total cost of
the 5™ run, and figure 5.9 illustrates the minimum total cost through successive

generations in SBGA, which reached the best solution at the 70™ generation.
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Table 5.13 Results of SBGA model for the case study

Run| S1 | S2 | S3 | 4 | S5 | S6 | S7 | S8 | SO |S10(S11|S12 | S13| S14 | S15 | S16 | S17 | S18 | S19 | S20 | S21 | S22 [Mean I:(z;[;l
1 |075(15| 1 2 |15]| 3 0 (275225 2 [(125|0.75|2.75| 15| 05| 15| 15|075|025| O | 0.5|0.25| 1.28 | 544.0900
2 |125| 2 0 2 (125112505 |25|05|15|075|0.75 2 |1.25|1.75| 05 |025(0.75| O 0 3 0 | 1.08 |544.4400
3 1025 3 |05|15| 1 |15( O 1 1 |05]175(225| 1 [15(025] O (025| O (075 O |1.25| 1.5 | 0.94 |545.2500
4 1025| 25| 0 |125( 1 1 (05| 2 |175|175| 1 [125| 2 [175|0.75]|0.75| 1 0 |25 0 | 05 (175| 1.13|545.4400
5 105 ([175]025(1.75(125| 1 0 |125(15|15(075|175|175|1225| 1 [15|0.75/025|025|025(1.25| O |1.02|543.8844
6 [05(075| O 0 0 1 ]025|025| 2 |175| 15| 1 (225(125(05 (175 1 [0.75] 15 (025|275 1 | 1.00 |546.0200
7 [05] 1 0 [125(225(1.25( 05 |225|125| 2 |275]| 1 1 |125]| 1 2 [175/05|05 |05 (275 1 |1.28]545.6400
8 [05]|275] 05| 1 1 175 0 | 15|175]| 1 1 |15 2 |125|075|125( 1 (025 O 1 | 25| 05 |1.13(545.4700
9 0 1 0 [15( 1 1 0 0 [25(05(| 1 [075]|275]|20|125| O |025|1.75|1.75|1.75|1.25| 2 | 1.08 |546.3600
10| O 2 (0251175 1 [125]025(0.75|125| 1 0 |[125| 2 |275( 1 |0.75] O [0.25]|1.75(1.75|1.25| O | 1.01|545.4100
Mean(0.45|1.83|0.25(1.40|1.13(1.35|0.23|1.43(1.58|1.35(1.18(1.23|1.95(1.68|0.88|1.00(0.73|0.53({0.93|0.55|1.70(0.80| 1.10 | 545.2004
Std.?[0.37|0.77|0.33|0.59 | 0.56 | 0.67 | 0.22 | 0.94 | 0.60 | 0.57 | 0.73 | 0.49 [ 0.60 | 0.51 | 0.43|0.71|0.58 | 0.52 | 0.88| 0.71| 0.96 | 0.76 0.81

- 1) Sd: Standard deviation
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Table 5.14 Resulting components of the optimized total cost for the stochastic case

CTsIo ($) Co Cw Cv C|
543.8844 87.6138 57.0667 350.0810 3.3250
Cs Co Cm Cad Cal
16.6202 23.8746 6.1203 0.5644 -1.3816
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Figure 5.9 Minimum total cost through successive generationsin SBGA

To investigate the changes in the components of transfer cost, we select a
dlack time, 9, which is located on the main route (route 1) and the busiest transfer
center (C) in the example network. s9 is varied from O to 3 at intervals of 0.25 and all

other slack times are fixed.
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Table 5.15 and figure 5.10 show the transfer cost (Cy) for different slack times
of 9 and its components. As expected, the slack time delay cost (Cs) increases
linearly, and the missed connection cost (Cy,) and the dispatching delay cost (Cy) are
decreasing as 9 increases. However, the inter-cycle transfer delay cost (C,) varies
more dynamically as 9 increases. It increases slightly at first when s9 increases, but
it decreases at 1 and 1.25 minutes of S9. It increases again after 1.5 minutes of 9. The
transfer cost roughly decreases until s9 reaches 1.5 minutes and, after that, it increases.
The optimized slack time of 9 in the detail investigation is 1.5 minutes, which is the

same value from SBGA.

Table 5.15 Transfer cost for different slack times of 9

Transfer cost (Cr)
9
Cs Co Cn Cq Sum (Cy)
0.00 14.68 25.56 10.22 0.88 51.33
0.25 15.00 25.89 9.40 0.79 51.08
0.50 15.33 26.29 8.29 0.72 50.62
0.75 15.65 26.73 7.72 0.66 50.76
1.00 15.97 26.74 7.08 0.62 50.41
1.25 16.30 25.33 6.53 0.59 48.74
150 16.62 23.94 6.10 0.57 47.22
175 16.94 24.12 5.76 0.55 47.37
2.00 17.27 24.59 5.52 0.54 47.92
2.25 17.59 25.08 5.35 0.54 48.56
250 1791 25.51 5.27 0.54 49.23
2.75 18.24 25.92 5.18 0.53 49.87
3.00 18.56 26.30 5.16 0.53 50.55
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Figure 5.10 Transfer costs vs. slack time s9

As afactor for sensitivity analysis of the stochastic arrival process we choose
the slack time since its variation directly affects the transfer cost and the total cost.
Table 5.16 shows the optimized slack times and total costs for different standard
deviation ratios, and figure 5.11 shows the mean value of slack times and total cost at
various standard deviations. The ratio of standard deviations in the example network
is increased from O to 3 at intervals of 0.25 where the ratio value 1 is the base
standard deviation. The mean value of slack times is O minutes at ratio O (i.e., the
deterministic arrival process) and increases as the ratio increases to 0.75. Afterwards,

it decreases and stays around 0.35 minutes after the ratio 1.5. The peak of the mean
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dack timeis 1.13 minutes at theratio 0.75.

It is important to note in the figure that the mean slack time does not reach 0
minutes even when the standard deviation ratio is relatively large and that the mean
dack time at transfer center C (a fully coordinated transfer center) stays around 0.3
minutes after the ratio 1.5. In most previous research, the mean slack time usually
reaches 0 minutes at a fully coordinated independent transfer center when the
standard deviation goes beyond a threshold. This means that, in a network with
multiple transfer centers, a combination of some slack times can still reduce the total
cost at the system level even at the relatively large standard deviations, and that in the
total cost the reduction due to the slack time combination exceeds the cost increase
due to the introduction of the slack times. This indicates that the combination of slack
times can affect the layover time of a route and the transfer waiting time of
passengers at transfer centers.

For the comparison of the total costs between optimized and O slack times, the

total costs are inserted in the last two columns of table 5.16.
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Table 5.16 Optimized slack times and total costs for different ratio of standard deviation

SP|S1|S2|SB3|S4|S5|S6|S7|S8|S9|S10|S11|S12|S13|S14|S15|S16|S17 | S18 | S19 | S20 | S21 | S22 -I;Z(gstal (S-Iz- (():2) )
0.00( O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 51518 | 515.18
025|075 1 0 [025/05]|05|0.75/15|05|125(0.75{ 05| 1 |0.25[(0.25(0.75| 0.5 |0.25(1.75| O | 05| 05| 53230 | 546.85
050025 2 | 05|075] 05|05 0 |025(125(225| 1 |175(225|15|125|125(0.25|05| 05|05 (1.75| 05| 53791 | 547.29
0.75|0.75(1.25| 1 | 15|0.75(225| 051|075 1 |15 1 |15 2 |125|125| 1 0 1 1 |0.75] 25 (0.25| 541.19 | 547.96
100| 05 |1.75(0.25(1.75|1.25| 1 0 |125| 15|15 (0.75|1.75|1.75(225| 1 | 1.5]0.75(0.25|0.25|0.25|1.25| O | 543.88 | 548.50
125/0.25| 3 0 0 |025| O 0 0 0 |175| 1 1 |(15]| 2 |0.75|/05(0.75/0.25|0.25| O 2 0 | 54753 | 549.01
150(0.25|225| O 0 |075| O 0 0 0 0 0 0 1 (075 O 0 |0.75]1 05]025(025| 25| O | 54841 | 54951
1751025|225| O 0 |075| O 0 0 0 0 0 0 |15| O 0 1 [05|05|025| 0 0 0 | 54855 | 550.07
200| 0 (225 0 [25]|05] O 0 0 0 0 0 0 1 (025 0 |05]| O 0 |05|05( 0 0 | 548.68 | 550.57
225 0 2 0 15| 1 0 |05] O 0 0 0 0 1 |1025( 0 [1.75]0.25|0.25( O [0.75] O 0 | 548.89 | 551.13
2501 0 [1.75) O |[15(15| O 0 0 0 0 0 0 1 ]15| 0 (025]| O 0 0 0 0 0 | 550.01 | 551.55
2751 0 |225] O 0 [05] O 0 0 0 0 0 0 1 2 0 0 1025 O 0 0 0 0 | 550.98 | 552.10
300 O 2 0 0 [025| O 0 0 0 0 0 0 1]115] 0 0 |05| 0 0 0 0 0 | 551.25 | 552.34

1) Sk Ratio of standard deviation,

2) S=0: All slack timesare 0
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Figure 5.11 Optimized mean slack time and total cost vs. standard deviation ratio

To examine more closely the variation of slack time, we select the six slack
times (s9 to s14) at the busiest transfer center (C), a which al routes are fully
coordinated. Only the standard deviation on link 3 is changed from O to 3 at intervals
of 0.25 or 0.5 where aratio value 1 is the base standard deviation of the travel timeon
link 3. All other slack times are fixed at the best solution found by SBGA besides two
slack times (s15 & s17) which are directly related to 9.

Figure 5.12 shows the changes in slack times at transfer center C. Slack time
s9 is 0 minutes at the ratio 0, reaches the peak (1.75 minutes) at the ratio 0.25, and

stays at the peak for ratios between 0.25 and 0.75. Afterwards, it decreases and drops
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to 1.25 minutes at the ratio 2. In this case, s9 also does not reach O minutes at the
relatively large ratio of standard deviation. If the transfer center C is a fully
coordinated independent transfer center, 9 drops to 0 minutes when the ratio goes
beyond a threshold.

The mean of other dack times (s10 ~ s14) at transfer center C increases
dlightly at first and reaches the peak at the ratios 0.5 and 1.5. It decreases after that,
but does not reach 0 minutes. This shows that change of the standard deviation of a

link travel time has a limited influence in changing the slack times.
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Slack time (minute

N
~
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Standard deviation ratio on link 3

—®-s9 —®—mean (s10-s14)

Figure 5.12 Slack time vs. standard deviation ratio on link 3
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5.2.2 Goodness Test

Asin the experiment design introduced in section 5.1.2, a set of representative
and independent solutions is randomly generated. After creating a random sample of
10,000 solutions, we observe that the best solution of the sample yields an objective
value $548.1219 and the worst is $567.8093. The mean of the objective values is
$556.9689 and the standard deviation is $2.7086. Figure 5.13 illustrates the
distribution of the random sample and the relative position of the best solution found

by SBGA. The distribution of the random sample has abell shape.
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Figure 5.13 Distribution of total cost for the random sample by SBGA
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A normality test for the random sample was conducted with the statistical
package Minitab. Figure 5.14 shows the normal probability plot resulting from the
normality test. The more the black points in the figure match the straight line (i.e. red
line), the more the random sample approaches to a normal distribution. Thus, figure
5.14 demonstrates that the normal distribution fits well the random sample in spite of
some glight differences at both ends. Actualy, the P-value of the normality test is

0.0884, which is higher than the minimum criterion (0.05) for anormal distribution.
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Figure 5.14 Normal probability plot for the random sample by SBGA

The following normal distribution was fitted to the random sample.

Total Cost = Normal (556.9689, 7.3365) (5.1)
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With the normal distribution (Eq. 5.1) we can calculate the cumulative
probability of the best solution found by SBGA. The cumulative probability of the

best solution ($548.1219) in the above normal distributionis

TC- 556.9689< 548.1219- 556.9689) _

P(TC<5481219 ) =P <
2.7086 2.7086

P(z<-3.27) =0.0005

This means that the best solution from SBGA dominates more than 99.95% of
the solutions in the distribution and that the solution is excellent when compared to
other possible solutions to the problem. Such results give us confidence in the

proposed model.
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Chapter 6: Conclusionsand Recommendations

6.1 Conclusions

It is difficult to solve the bus scheduling problem with traditional local search
methods in an urban transit network of realistic size due to the complexities of the
objective function and its constraints (e.g. non-linearity, noisiness, computationa
complexity from large number of variables and constraints). Therefore, heuristic
algorithms have usually been used to search for the optimized headways and slack
times. The use of simulation for the bus scheduling problem has been also limited to
simple transit networks.

In this study two computerized models, SGA and SBGA, using genetic
algorithms and computer simulation are developed in chapter 3. We focus on
extending the previous methods to more complex situations and finding an optimized
solution quickly. The genetic algorithm and operators used in this study are described
in chapter 4. In chapter 5 new models are applied to an artificia bus network for
numerical results and sensitivity and goodness test.

The conclusions of this research can be summarized as follows:

1. Thefirst model (SGA) developed for the deterministic arrival process can

find the optimized solution very quickly when joined with problem-
specific genetic operators such as coordinated headway generator,

coordinated headway crossover and coordinated headway mutation.
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. Under the deterministic arrival process, common or integer-ratio
headways among bus routes are the favored way to minimize the tota
system cost in coordinated operation. It is also important to determine how
to operate the off-phased transfer centers since a considerable portion of
transfer cost in the deterministic case results from the additional
passengers waiting time at those centers.

. A sengitivity test for deterministic case shows that common headways are
preferable when operating cost is relatively low, but integer-ratio
headways are more suitable when operating cost increases, as shown in
table 5.9.

. When passenger waiting time cost is relatively low, integer-ratio
headways are preferable, but common headways are favored when the
waiting cost increases, as shown in table 5.10.

. When travel demand is relatively low, common headways are preferable,
but integer-ratio headways are preferred when travel demand increases, as
shownintable 5.11.

. The goodness test shows that the new model (SGA) can find a good
solution for the bus scheduling problem under the deterministic arrival
process, as shown in figure 5.7, even though this study does not find a
suitable statistical distribution for the random sample.

. Under the stochastic arrival process, the total cost is the result of the
complex combination among slack times. Thus, it is difficult to predict the

variation of thetotal cost from the change of some slack times.
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8.

10.

11.

12.

Transfer cost (Cs = Cs + Cp + Ciy + Cg) under the stochastic case accounts
for a much larger fraction of total cost than in the deterministic case, as
shown in table 5.14.

In the stochastic case the slack time delay codt, the inter-cycle transfer
delay cost, and the missed connection cost are the dominant factors in the
transfer cost. The slack time delay cost is a linear function, but the inter-
cycle transfer delay cost and the missed connection cost are non-linear
functions, as shown in figure 5.10.

As the standard deviation increases, the mean slack time increases at first
but decreases beyond some threshold. Unlike for a fully coordinated
independent transfer center, the mean slack time does not drop to zero
even when the standard deviation increases to relatively large values, as
shown in figure 5.11.

The goodness test for the stochastic arrival process verifies that the best
solution from SBGA is an excellent one when compared to other solutions
generated randomly for the problem.

This study used the total system cost as an objective function for the bus
scheduling problem and developed two new models, SGA and SBGA, to
optimize it. However, the new models can be applied to various objective
functions (e.g., mean transfer waiting time) and other scenarios (e.g.,
different passengers arrival distribution at bus stops, or different travel

time pattern of buses) with small changes in the models.
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13. Only an artificial bus network was analyzed using the new models in this

study. However, these models can be applied to optimize schedules for
other transportation systems such as intercity bus networks with feeder
buses, general urban transit networks including rail and bus routes, and

hub-spoke aviation networks.

6.2 Recommendations for Further Resear ch

This study could be extended in the following aspects:

1.

In this study we assume that the passenger demand is known and fixed,
without considering the diverted demand sensitive to the change of bus
headway and travel time. Improved models should consider how changes
in travel time or headway would affect demand.

This study also assumes that passengers choose the route with the shortest
travel time. In reality, some users may prefer a route which is less
crowded or requires fewer transfers. A new model could anayze various
passenger travel preferences regarding travel times and transfers.

The fleet in this study has a single type of bus with pre-specified
characteristics. However, many kinds of buses run on real transit networks
because that may be often economical or beneficia to the users. Therefore,
mixed fleets of buses could be considered in future models.

This study is limited to analyzing bus operations for one dispatching

strategy in which vehicles do not wait for other vehicles arriving behind
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schedule at a transfer center. However, there are some other strategies to
maximize social benefit or minimize total system cost on the bus operation
(e.g., red-time dispatching strategy). Advanced new strategies for the bus
operation could be included in future studies.

. The SBGA model developed in this study uses genera genetic operators
dueto limitations in analyzing relations among decision variables and total
cost under the stochastic arrival process. Slack times in a stochastic case
result from the interaction among headways, passenger demand, transfer
strategy, number of transfers, coordination method and bus arrival process.
Thus, further research should analyze the effect of those factors in detall
and devel op problem-specific genetic operators.

. This study developed two separate models for deterministic and stochastic
cases. In future studies, joining two such models into an integrated one
should be considered to search for jointly optimized solutions (headways

and slack times).
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