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Chapter 1: Introduction

1.1 Problem Statement

In urban areas the demand for buses is unevenly distributed over space and 

time. It is usually impractical to directly connect all origin-destination pairs with bus 

routes due to limited economic and social resources. In such cases a bus transit 

network with limited accessibility and mobility is effective in serving the demand and 

consists of several bus routes and transfer centers. In a bus network there is an 

additional transfer time at transfer centers in addition to in-vehicle time and waiting 

time at bus stops. 

In operating a bus network, headway is a key factor to consider in bus 

scheduling, and the safety factor built into schedules, called ‘slack time’, is another 

key factor when vehicle arrival process is stochastic, since both (headway and slack

time) are crucial decision variables affecting total system cost. The headway of a 

route directly affects the waiting time of passengers at bus stops and the time spent at 

transfer terminals. Several studies show that coordination of headways among routes 

can minimize the total system cost of bus operation, which includes operator cost and 

user cost. 

Slack time can help reduce the probability of missed connections and reduce 

expected waiting time at transfer centers. However, excess slack time in a route 

schedule can worsen travel time and increase total waiting time. It is known from the 

previous research that slack time is sensitive to the demand, the distribution of 
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headways (e.g. normal distribution, exponential distribution, etc) and their standard 

deviation.14, 23 As a result, it is also very important to optimize slack times in bus 

network scheduling in order to minimize connection (or waiting) time among routes 

and total system cost.

Several methods in previous research have been proposed to solve bus 

network scheduling problem. The main objective of previous methods can be 

summarized as finding optimized headways and slack times, and thus minimizing the 

total system cost. Even though the past methods had their own strong points, they also 

had limitations because there are many sources of complexity on the bus scheduling 

problem such as non-linearity of the cost functions, computation complexity of 

objective function, which is usually based on network scale, and various stochastic 

vehicle arrival processes.

This thesis aims to relax some limitations of previous research and to 

introduce two new models for the bus scheduling problem. The models proposed in 

this study can reflect dynamic arrival effects resulting from stochastic arrival 

processes, allow different slack times in each direction of a route at transfer centers, 

and analyze a multiple transfer network mixed with fully-coordinated, semi-

coordinated, and off-phased transfer.

To develop new models for the bus scheduling problem this research uses 

genetic algorithms (GAs) and computer simulation. A simple genetic algorithm 

(SGA) with some problem-specific genetic operators is used in deterministic arrival 

process and a simulation-based genetic algorithm (SBGA) in stochastic arrival 

process. In SGA genetic operators are focused on searching for optimized headways. 
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On the other hand, in SBGA genetic operators are used to optimize slack times and 

computer simulation is used to calculate statistical estimators of headway 

distributions under stochastic arrival processes, which are the key elements to 

evaluate fitness function of SBGA. As a result, two computerized models, SGA and 

SBGA, are introduced in this study to search for optimized solutions of the bus 

scheduling problem.

1.2 Research Objectives

The objective of this study is to develop new computerized optimization 

models for the bus scheduling problem in a coordinated bus network, namely, new 

models to find optimized bus headways and slack times. In the new models bus 

headways are optimized first under the deterministic arrival process, and then slack 

times are introduced to optimization problem for the stochastic arrival processes with 

a dispatching strategy that a bus arriving at transfer center earlier than its departure 

time leaves on time, regardless of the arrival time of passengers transferring from 

other routes.

The objective function of the proposed models is the minimization of total 

system cost which is the combination of operator cost and user cost. Operator cost is 

determined from the fleet size and travel time of a vehicle, and user cost consisting of 

user in-vehicle and waiting time cost is a function of the in-vehicle travel time and 

headways of buses.
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1.3 Scope

The scope of this study is limited to developing two computerized models for 

optimization of bus scheduling. Two models, SGA and SBGA, using GAs and 

computer simulation are applied to this study, which are designed to optimize bus 

scheduling under deterministic and stochastic arrival processes, respectively. Some of 

genetic operators are exclusively used for just one model and others are for both 

models, based on the properties of the problem.

1.4 Organization

The remainder of this thesis is divided into five chapters. Chapter 2 reviews 

the literature on bus scheduling problem characteristics and methodologies and on 

GA applications to transit network.

Chapter 3 defines the formulation for measuring and evaluating the systemic 

performance of the transit network and develops new computerized models (SGA and 

SBGA) using genetic algorithms and computer simulation.

Chapter 4 introduces GAs and some genetic operators including problem-

specific operators.

Chapter 5 presents numerical results obtained when the new models are 

applied to an artificial transit network and explores their sensitivity to the changes in 

decision variables. A goodness test for the solution is also shown in this chapter.

Finally, Chapter 6 presents the conclusions of this study and recommends

further research directions.
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Chapter 2: Literature Review

The literature reviewed in this section is divided into the two following 

categories:  quantitative studies of the bus scheduling problem and GA applications 

for transit network problems.

2.1 Quantitative studies of bus scheduling problems

For the past decades, many studies have analyzed the bus scheduling problem 

and many optimization models have been proposed. Relatively recent studies have 

focused on the joint analysis of optimized headways and slack times, usually 

minimizing a total system cost function.

Newell (1971) analyzed the dispatching policies for a transit route which a 

given number of vehicles might be dispatched at any times and the arrival rate of 

passengers was a given smooth function of time, typically having one or more peaks. 

He showed that if the capacity of vehicles was sufficiently large to serve all waiting 

passengers and the number of vehicles was large, then the optimal flow rate of 

vehicles and the number of passengers served per vehicle, both varied with time 

approximately as the square root of the arrival rate passengers. If the vehicles had 

limited capacity, their dispatch schedule would be distorted so that certain vehicles 

were dispatched as soon as they were full.

Salzborn (1972) proposed a mathematical model for the bus scheduling 

problem. For a given passenger arrival rate, the problem was to determinate the bus 
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departure rate as a function of time. The primary objective of the study was to 

minimize the number of buses and a secondary criterion was the minimization of the 

passenger waiting time. The results showed that during the peak period loads 

represented actual passengers, but at off-peak times the actual loading was much 

lower. Thus, it was often desirable to reduce the number of buses that was in 

operation during off-peak periods.

Salzborn (1980) also investigated some rules for scheduling a bus system 

consisting of an inter-town route linking a string of interchanges each of which was 

the center of a set of feeder routes. He presented the requirements for the inter-town 

route and feeder route scheduling under pre-determined parameters.

Hall (1985) developed a model for scheduling vehicle arrivals at 

transportation terminals where vehicles were randomly delayed en route and 

evaluated the optimal slack time when vehicles were delayed according to an 

exponential probability distribution. The results showed that coordinating arrivals 

with departures was most important when the headway was large relative to average 

vehicle delay.

Abkowitz et al. (1986) proposed headway control strategies as methods for 

correcting transit service irregularities and reducing passenger wait times at stops and 

addressed a particular strategy which could be implemented on high frequency route 

(headways under 10-12 minutes), in which buses were held at a control stop to a 

threshold headway. They developed an algorithm which yielded the optimal control 

stop location and optimal threshold headway with respect to a system wait function. 

They concluded that the headway variation did not increase linearly along a route and 
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that the location of the optimal control stop and threshold value were sensitive to the 

passenger boarding profile.

Özekici (1987) formulated an analytic model for analyzing and exploiting the 

relation between the arrival and service processes, with emphasis on the impact of 

this relation on average waiting times. The results showed that, when a timetable of 

the scheduled services is available, the arrival pattern of passengers was not 

stationary and passengers chose an optimal time to arrive at the bus stop based on the 

information they had about the timetable and their observation on the service 

performance.

Banks (1990) studied multi-route transit systems to determine net-benefit 

maximizing headways, which were subjected to constraints on vehicle capacity, 

subsidy, and fleet size. Conditions of optimality were derived for the unconstrained 

case and the various constrained cases. The relation between optimality conditions 

based on the assumption of fixed demand and those based on the assumption of 

variable demand was expressed with terms incorporating the elasticity of demand 

with respect to frequency of service.  The results showed that the magnitude of 

discrepancies between the true conditions of optimality and their fixed-demand 

approximations depended on the elasticity of demand and on the distribution of 

ridership and cycle times among the various routes of the system.

Lee and Schonfeld (1991) developed a numerical model for optimizing slack 

times for simple systems with transfers between one bus route and one rail line which 

could work with arrival distributions. Some analytic results were derived for 

empirical discrete and Gumbel distributions of bus arrival times. Relations between 
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the optimal slack times and headways, transfer volumes, passenger times values, bus 

operating cost, and standard deviations of bus and train arrivals were also developed 

numerically using normally distributed arrivals. The results provided some guidelines 

on desirable slack times and showed that schedule coordination between the two 

routes was not worth attempting when standard deviations of arrivals exceeded 

certain levels.

Bookbinder and Desilets (1992) analyzed the variation of waiting time of 

transfer passengers using simulation for the various travel time situations and used 

mean disutility function to evaluate the inconvenience under random bus travel times. 

The results showed that it was very important to take randomness of travel times into 

account when optimizing transfers and that bus travel times could optimize transfers 

according to various objective functions and under various holding policies.

Knoppers and Muller (1995) investigated the possibility and limitations of 

coordinated transfers in public transit using the minimization of passenger’s transfer 

time as the objective function. The results showed that optimal transfer times could be 

defined only if fluctuations in passenger arrival times at the boarding point could be 

contained within certain time limits and that coordination of timetables was only 

worthwhile when the punctuality of standard deviation on the feeder line at the 

transfer point was less than 40% of the connecting line.

Ting (1997) studied complex transfer coordination problems by employing 

basic calculus and optimization algorithms. A total system cost function was used to 

evaluate the performance of the coordination. Two optimization algorithms were 

developed for transfer coordination with deterministic and stochastic travel time cases. 
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The author proposed that a common headway search algorithm was applicable for 

transit networks in which the headways on different routes should be fairly similar 

and that an integer-ratio headway search approach based on integer multiples of a 

base cycle was applicable for networks whose headways should be significantly 

different.

2.2 Genetic algorithm applications for transit network problems

There are many GAs applied to various parts of transportation research since 

it was introduced in 1975, and it is expanding more and more its boundary. Most 

recent studies using GAs in transit network problem can be found for optimization of 

route network design in which bus scheduling is usually a part of route optimization 

function. 

Chakroborty et al. (1995) investigated the mathematical programming 

formulation of the bus scheduling problem at one transfer station, whose objective 

was to minimize the total waiting time, the sum of transfer time of transferring 

passengers at transfer center and initial waiting time of the passengers waiting to 

board a bus at their point of origin. The authors also pointed out the limitations of 

classical programming techniques to solve the problem and developed an 

optimization model using genetic algorithms with binary coding for decision 

variables. They assumed that bus arrival times were deterministic. The results showed 

that the GA-based models were able to find optimal schedules without excessive 

computational resources.

Chakroborty et al. (1998) expanded the mathematical programming 
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formulation of the bus scheduling problem to the multi-transfer network and analyzed 

the computational complexity of the mathematical formulation that was a NLP 

problem. They used genetic algorithms to search for the optimal values of bus 

scheduling on the multi-transfer network under the assumption that bus capacity was 

much greater than the demand and that bus arrival times were deterministic.

Chakroborty et al. (1998) developed a procedure using a GA for designing 

efficient transit routes forming a transit route network (or route set) for a given road 

network. The authors showed that the transit route network design problem was a 

discrete, NP-hard, combinatorial problem with a difficult-to-calculate objective 

function - features which posed almost unsurmountable difficulties in obtaining a 

solution through traditional optimization techniques. The results showed that the GA-

based method performed substantially better than the existing procedures.

Ngamchai (2000) investigated the major components and constraints in bus 

transit route design and proposed a new model for optimizing bus transit route 

configuration and service frequencies on each bus route. Three major components 

were used to obtain an efficient solution; those were route generation algorithm, route 

evaluation model and route improvement algorithm. The objective function of his 

paper was to minimize the total system cost, and the author included results of bus 

scheduling as a part of objective function. He assumed that each route could only be 

coordinated at one transfer point, thus classified transfer centers into the priority order 

according to the volume of demand. The author applied GA to the model to search for 

the optimal routes and introduced many problem-specific genetic operators to 

facilitate search. 
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Bielli et al. (2002) proposed a heuristic approach based on GA to solve 

transportation bus network optimization problems. The method involved genetic 

operators and a number of additional ingredients which allowed to compute fitness

function values aggregating the values of a number of performance indicators. They 

used results of the bus scheduling problem as the performance indicators such as 

average number of transfers, average waiting time, average traveling time, and 

average walking time.

Chakroborty (2003) summarized the effectiveness of procedures based on 

genetic algorithm in solving the urban transit network design problem (UTNDP) 

consisting of two sub-problems, namely, the transit routing problem and the transit 

scheduling problem and presented the limitations of traditional methods in solving the 

UTNDP. He suggested that traditional methods had difficulty in solving the transit 

routing and scheduling problems since the UTNDP had discrete decision variables, 

and it was a constrained non-linear optimization problem, which was by nature not 

easily amenable to mathematical programming formulations. To show the 

effectiveness of GA-based models, the author compared GA-based results with those

of some previous researchers for transit routing problem and analyzed five different 

scenarios using GA for transit scheduling problem

V. M. Tom and S. Mohan (2003) proposed a GA-based model, simultaneous 

route and frequency coded model (SRFC), to solve transit route network design 

(TRND) problem. SRFC adopted a new coding scheme that incorporated the 

frequency of the route as a variable in addition to the route details. Some results of 

the bus scheduling problem in their paper were reused for performance measures: 
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average in-vehicle travel time, average waiting time, and average generalized travel 

time

Jitendra Agrawal et al. (2004) applied GA to TRND problem and proposed 

two parallel genetic algorithm models. The first was global parallel virtual machine 

(PVM) parallel GA model where the fitness evaluation was done concurrently in a 

parallel processing environment using PVM libraries. The second was a global 

message passing interface (MPI) parallel GA model where an MPI environment 

substituted for the PVM libraries. They also used results of the bus scheduling 

problem to evaluate the performance of new models.

2.3 Summary

After a review of the above studies, it appears that optimization methods for 

bus scheduling have already been well developed analytically. However, 

computerized models for bus scheduling have not been widely introduced. Some 

models using computer simulation have been applied to simple network scheduling

problems or single transfer center optimization problems. Also, in most GA-based 

network optimization models, the bus scheduling was used just as a part of objective 

function for route network design problem within the boundary of the previous 

research. Therefore, this research focused on extending the methodology to more 

complex situations (e.g. introduction of slack times for all directions at transfer 

centers), and developing computerized optimization models for the bus scheduling 

problem using GA and computer simulation.
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Chapter 3: Model Formulation

The methodology in this chapter includes the introduction of analytical 

formulas and the development of their application models. Analytical approaches are 

used to formulate cost functions incorporating deterministic and probabilistic vehicle 

arrival processes, and application models are used to develop computerized models 

which are intended to search for the optimized solution of the total cost function.

Analytical formulas in this study are based on the framework introduced by 

Ting (1997), and application models are developed using GAs and computer 

simulation. For application models, simple genetic algorithm (SGA) and simulation-

based genetic algorithm (SBGA) are introduced. Both analytical approaches and 

application models are constructed for coordinated network operation because 

previous research already showed that the coordinated operation is the best way to 

minimize the total system cost on the common urban transit network system. 

Therefore, this study is limited to coordinated networks.

Solving the bus scheduling problem means finding the optimized headways 

for deterministic vehicle arrivals and the optimized headways and slack times (if 

applicable) for stochastic arrivals. SGA is devised to solve the problem for the 

deterministic case, and SBGA for the stochastic case. SBGA uses computer

simulation to evaluate statistical estimators in the stochastic process. SBGA using 

computer simulation is slightly problematic because simulation is not only time 

consuming but also has a variance problem. However, computer simulation can

imitate the complex stochastic process and provide estimators in real time, which is 
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the most important point in a computerized optimization model.

It is assumed that this work applies to a predetermined network of urban 

transit (bus) routes. All assumptions of Ting (1997) are also applied to this study as 

stated below:

1. The present analysis does not consider the issue of route location, stop 

spacing, and service for particular routes and time periods.

2.  The origin-destination matrix is given, and is assumed to be (1) 

independent of transit service quality, (2) deterministic and uniformly 

distributed over time during the specific time period.

3.  Passenger arrivals are random and uniformly distributed over time at 

each bus stop.23

In the next two sections, the methodology for deterministic and stochastic bus 

arrival processes is presented. Figure 3-1 shows the structure of the total cost for the 

coordinated network operation. Total cost includes non-transfer and transfer cost. 

Non-transfer cost includes vehicle operating cost, passenger waiting cost, passenger 

in-vehicle cost and layover cost, and transfer cost includes inter-cycle delay cost, 

slack time cost, missed connection cost, and dispatching delay cost. Table 3-1 shows 

the notation for variables used in this chapter.
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Figure 3.1. Structure of total cost for coordinated network operation

Total Cost

Non-Transfer Cost Transfer  Cost

Vehicle Operating Cost

User Waiting Cost

User in-vehicle Cost

Inter-cycle Delay Cost

Slack Delay Cost

Missed Connection Cost

Layover Cost Dispatching Delay Cost

23



16

Table 3.1 Variable definitions

Variables Descriptions Units

ak fixed vehicle operating cost of route k $/min.

bk variable vehicle operating cost of route k $/min.

Bk vehicle operating cost $/min.

Cd connection delay cost of transfer passengers $/min.

Cf transfer cost $/min.

Cl layover time cost $/min.

Cm missed connection cost for transfer passengers $/min.

Co operating cost $/min.

Cp
inter-cycle transfer delay cost due to unequal integer-ratio 
headway

$/min.

Cs slack delay cost $/min.

CTdet total system cost in deterministic arrival headways $/min.

CTsto total system cost in stochastic arrival headways $/min.

Cv in-vehicle cost $/min.

Cw waiting cost $/min.

Dmkα number of passengers already on board at transfer center m 
on the direction α of route k

passengers/min.

f(tkα) probability density function of arrival time on the direction 
α of route k

Fmkα transfer demand to direction α of route k at transfer center m passengers/min.

gjk greatest common divisor of γj and γk

hk headway of route k min.

hkmax maximum headway of route k min.

hkmin minimum headway of route k min.

i index of link

j, k index of route k

lmax maximum load factor of route k

N(c) set of transfer nodes

m index of transfer center
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qjk transfer demand from route j to route k passengers/min.

qjkαβ transfer demand from the direction α of route j to the 
direction β of route k

passengers/min.

Qi demand of link i passengers/min.

Qk demand of route k passengers/min.

Qkm maximum demand on route k passengers/min.

Sk vehicle size of route k seats

smkα slack time at the transfer center m on the direction α of route 
k

min.

smkαmax
maximum slack time at the transfer center m on the direction 
α of route k

min.

smkαmin
minimum slack time at the transfer center m on the direction 
α of route k

min.

ti travel time on link i min.

tiα travel time on the direction α of link i min.

tjα arrival time on the direction α of route j at transfer center

tjk average transfer waiting time from route j to k min.

tjkαβ average transfer waiting time from the direction α of route j 
to the direction β of route k

min.

tkβ arrival time on the direction β of route k at transfer center

Tk round trip time of route k min.

tkl layover time of route k min.

∆tkl layover time change of route k min.

wk transfer waiting time on route k min.

y base cycle min.

α, β direction of bus on round trip
(0, forward direction; 1, backward direction)

γj integer for headway of route j on base cycle (=hk/y)

δmk 1, if transfer station m is on route k; 0, otherwise

σk
2 variance of headway on route k

µ unit waiting time cost passengers/min.

ν unit in-vehicle cost passengers/min.
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3.1 Deterministic Arrival Process

Under the deterministic arrival process, the link travel times and route 

headways are deterministic and all buses arrive at the stop on schedule. In this case it 

doesn’t need to introduce slack times to bus scheduling. The objective is to find the 

optimized headways in the network to minimize the total system cost which includes 

bus operating cost, user waiting cost, user in-vehicle cost, user transfer cost and 

layover cost.

3.1.1 Analytic Approach

In this deterministic situation it is assumed that the travel times of two links 

connecting two nodes are equal. The round trip time at each route k is the summation 

of travel times of all the links on route k.

∑
∈

=
)(kAi

ik tT (3.1)

The linear vehicle operating cost function and the vehicle capacity constraint 

used here are given by:

kkkk SbaB += (3.2)

k

kk
k l

hQ
S = (3.3)

The average operating cost of route k is the product of the needed fleet size 

and the unit operating cost. The total operating cost is determined as:
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∑=
k k

kk
o h

TB
C (3.4)

It is assumed that passengers arrive at stops randomly and uniformly, so the 

average waiting time at the origin stop is half of the route headway. The total waiting 

cost is

∑=
k

k
kw

h
QC

2
µ (3.5)

The in-vehicle cost of link i is the product of passenger demand and in-vehicle 

time on each link. The total in-vehicle cost is 

∑=
i

iiv tQC ν (3.6)

The transfer waiting cost is the summation of transfer demand times transfer 

waiting times at the transfer centers. It is assumed that the average transfer time from 

route j to route k is tjk. The total transfer cost is computed as:

∑∑
≠

=
jk

k
jkjk

j
f tqC µ (3.7)

In a transit network a passenger can transfer multiple times. For simplicity the 

maximum number of transfers is limited in this study to three times per one-way 

passenger trip. Figure 3.2 shows examples of the average transfer waiting times when 

using one, two and three transfers. 
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             h1                h1 j

tjk  from j to k = h1/2

                         2 h1 k                                  (h: headway)

a) Using one transfer (A) from route j to k

        h1             h1              h1 j

         3/2 h1                 3/2 h1 k tjk  from j to k = h1/2

                          3h1 l  tjl  from j to l = h1

b) Using two transfers (A, B) from route j to l

        h1              h1               h1              h1 j

        4/3 h1               4/3 h1             4/3 h1 k tjk  from j to k = h1/2

                2 h1                             2 h1 l  tjl  from j to l = h1

                                 4 h1 m tjm  from j to m = 3h1/2

c) Using three transfers (A, B, C) from route j to m

(h: headway, s: slack time, Transfer center: A(j-k), B(k-l), C(l-m))

Figure 3.2 Waiting times at transfer center
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For the coordination among bus headways at the transfer center, the layover 

time of route k (tkl) is assumed, which is the extra service time at the end stop of 

route k. The total layover cost is

∑=
k k

kl
kl h

t
BC (3.8)

In the deterministic arrival process, the total system cost is the sum of 

equations (3.4)-(3.8).

lfvwoT CCCCCC ++++=det (3.9)

3.1.2 Headway Optimization Model

It is difficult to solve equation (3.9) with traditional optimization methods for 

the networks of realistic size. Therefore, heuristic algorithms have usually been used 

to search for the optimized headways in most previous studies.

Figure 3.3 demonstrates the “noisiness” of the total system cost function 

which has many local optimal solutions in a simple one-way bus network. There are 

two bus routes on the example network which consists of two origins (1&2) and 

destinations (A&B). Total system costs are evaluated numerically for the all integer 

values within the range (from minimum to maximum) of headways.

The maximum and minimum headways of this study are computed as:

)2,max( max
max

km

k
k Q

lS
h = (3.10)

)2,
4

max( max
min

k
k

h
h = (3.11)
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                           B

     1                                           A

                  2

a) Network geometrics for two one-way routes

b) Total costs vs. headways for two one-way routes

Figure 3.3 Noisiness of the total system cost function

Demand: 1-A (160), 1-B(40)

2-A (40), 2-B(60)

Travel Time (min): 1-A(60), 2-B(50)

Optimum Solution (min):  (12,12)
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For the deterministic arrival process this study uses a GA to develop a 

headway optimization model, called a simple genetic algorithm (SGA). This SGA has 

seven steps in its procedure: initialization, population, reproduction, crossover, 

mutation, next population, and stopping criteria.

The initialization proceeds as follows:

1. Optimize headways independently for each route.

2. Rank the routes by sorting them in the order of increasing headway.

3. Identify the main route which has the most transfer centers along it, or which 

has the lowest optimum headway, if needed to break ties.

4. Classify each transfer center as a fully coordinated transfer center, a semi-

coordinated transfer center, or a general transfer center.

- Fully coordinated transfer center: where the largest number of routes 

meets, or where the main route meets the second route in the sorted order

if the number of routes crossing at transfer centers is same.

- Semi-coordinated transfer center: where the main route meets other 

routes

- General transfer center: where routes than the main one meet (usually, 

off-phased transfer center)

5. Assign travel demand on the links according to the shortest path on the basic 

network.

Figure 3.4 shows basic network configuration for the SGA model and figure 

3.5 illustrates the procedure of the SGA implementation.  The genetic algorithm and 

GA operators used in this study will be explained in detail in chapter 4.
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Figure 3.4 Basic network configuration for SGA
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Figure 3.5 SGA implementation procedure
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3.2 Stochastic Arrival Process

In the stochastic case, the vehicle operating cost, passenger waiting cost, and 

in-vehicle cost are the same as in the deterministic case. However, the transfer cost is 

different because slack time is introduced in the stochastic case. Slack time is the 

additional dwelling time of a bus at a transfer center to facilitate passenger transfer 

and to reduce the probability of missed connections. Thus it can reduce the expected 

waiting time at transfer and decrease the total cost. It is sensitive to passenger demand 

and the distribution of bus arrival pattern, so its value differs among routes, among 

bus stops on a route and among directions of routes at a transfer center. Therefore, the 

total transfer cost function includes all cost components that result from the slack 

time and headway. Those are the slack delay cost, inter-cycle delay cost, missed 

connection cost, and dispatching delay cost. There is also layover time change cost in 

stochastic process for the change of layover time by the addition of the slack time.

3.2.1 Analytic Approach

The slack delay cost includes the user time cost of passengers on board and 

supplier cost for slack time. The slack delay cost is given by:

∑ ∑ ++=
∈k

mkmk
k

k
mkmk

cNm
s s

h

B
FDC δµν ααα )(

)(

(3.12)

The first term is the slack time delay cost to passengers already on board and 

the second term is the waiting cost for transfer passengers to route k. The last part is 

the increased vehicle operating cost for the slack time.
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In a stochastic process, the average waiting time includes the difference of the 

slack time between two routes, thus the average transfer waiting time between routes 

involved in a transfer is a little different from the deterministic case. Figure 3.5 

illustrates examples of the average transfer waiting time when using one, two, or 

three transfer centers.

It is assumed that the average transfer waiting time from the direction α of 

route j to the direction β of route k is tjkαβ. The inter-cycle delay cost is the summation 

of all the routes connecting at the transfer centers.

αβαβµ jkjk

jk
kj

p tqC ∑∑
≠

= (3.13)

Only one dispatching strategy is considered at the transfer center, which is 

that vehicles do not wait for other vehicles arriving behind schedule, and vehicle 

arrivals are independent among routes. It is also assumed that passengers can transfer 

to the coordinated receiving vehicle at transfer center when bus routes have not only 

common but also integer-ratio headways between them, and that the link travel times 

on a route are independent.

The probability of missed connections includes following two cases: (1) the

feeder vehicle j arrives late while the receiving vehicle k is not late and (2) both 

vehicles are late, but feeder vehicle j arrives after receiving vehicle k leaves. 23

Figure 3.6 shows two cases of the missed connections from route j to k with 

common headways.
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 (h: headway, s: slack time, Transfer center: A(j-k), B(k-l), C(l-m))

tjkαβ from route j to k    = 1/2 h1 + s1 - s2   (through one transfer center A)

tjlαβ from route j to l     =       h1  + s1 - s3  (through two transfer centers A and B)

tjmαβ from route j to m  = 3/2 h1 + s1 - s4   (through three transfer centers A, B, and C)

Figure 3.6 Inter-cycle waiting time at transfer center
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Figure 3.7 Cases of missed connections with common headways
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The missed connection cost, Cm, can be classified into two cases (i.e., 

common and integer headways between route j and k), and it is determined as:

∫∫
∫∫∑∑∑
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for common headways, and
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for integer-ratio headways.

The connection delay cost, Cd, is the additional waiting cost of passengers 

who arrive at transfer center before the departure time of the connecting bus but the 

connecting bus arrives behind schedule. The probability of dispatching delay includes 

the following two cases regarding the two vehicles involved in a connection: (1) the 

feeder vehicle j arrives early while the receiving vehicle k is late and (2) both vehicles 

are late, but feeder vehicle j arrives before the receiving vehicle k. 23

Figure 3.7 shows the cases of the dispatching delay with common headways at 

the transfer center.



31

Figure 3.8 Cases of dispatching delay with common headways
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The dispatching delay cost is given by:
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for common headways, and
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for integer-ratio headways.

The layover time change cost, C∆l, accounts for the change of layover time at 

the end of a route which is occurred by the addition of slack time, and it can be a 

negative or positive value according to the size of slack time.  The layover time 

change cost is given by:

∑ ∆
=∆

k k

kl
kl h

t
BC (3.16)

In the stochastic arrival process, the total system cost is the sum of equations 

(3.12)-(3.16):

ldmpslvwoTsto CCCCCCCCCC ∆++++++++= (3.17)
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3.2.2 Slack Time Optimization Model

The total system cost function (Eq. 3.17) is too complex for finding the 

optimized solution (i.e., the optimized headways and slack times) with an analytical 

approach. Ting (1997) used a numerical integration method to compute transfer 

delays, but that method also cannot be easily transferred to a computerized model 

which has to be able to evaluate the results of stochastic arrival process in real time.

The second computerized optimization model, called a simulation-based 

genetic algorithm (SBGA), is developed using computer simulation and a genetic 

algorithm. Computer simulation is used here because it can provide statistical 

estimators resulting from the complex stochastic arrival process in real time.

To illustrate the complexity/effect of stochastic arrival process, figure 3.8 

shows a simple bus route with four links whose travel times and standard deviations 

are the same on all links and normally distributed. Table 3.2 shows the results of the 

average arrival time (M) at the end of each link and its standard deviation (SD) with 

the various slack times applied. Even when the slack time is 0, average arrival times 

at the bus stops B, C, and D are not just the sum of the link travel times because a bus 

arrival before the departure time has to wait to depart on time. At 0 slack time, the 

average arrival times and their standard deviations are increasing when the buses 

approach the last stop (D) of the route although the link travel times are independent. 

As slack time increases the average arrival times at each bus stop also increase due to 

the additional delay from the slack time, but standard deviations are diminishing 

because slack times can help buses depart on-time. As the slack time increases, the 
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average arrival time at a stop approaches the sum of link travel times and slack times, 

and its standard deviation becomes the same as the standard deviation at all bus stops. 

That situation starts to occur when the slack time reaches 2 minutes in table 3.2. 

Figure 3.9 Simple bus route for the example of the effect of stochastic process

Table 3.2 Example of stochastic effect on simple network

Bus Stop

A B C D
Slack
Time
(min)

M SD M SD M SD M SD

0.0 20.00 1.001 40.40 1.158 60.68 1.303 80.91 1.434

0.5 20.00 1.000 40.70 1.083 61.30 1.140 81.86 1.183

1.0 20.00 1.001 41.08 1.033 62.11 1.049 83.12 1.055

2.0 20.00 0.999 42.01 1.002 64.01 1.002 86.01 1.004

Situations become much more complex when the bus network is large, many 

transfer centers are located in the network, and each route has a different slack time 

for each direction at a transfer center. Therefore, computer simulation is applied here 

in spite of its limitations to simulate those situations.

1(20, 1)1) (20, 1) 3 (20, 1) 4 (20, 1)

1) Link number (Link travel time (min), Standard deviation)

A B C DO
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The results of SGA (i.e., headways) are used as the basic parameters for 

SBGA to search for optimized slack times because example tests showed that the 

stochastic vehicle arrival process does not change the optimized headways from SGA. 

Simulation is applied to evaluate the missed connection and dispatching delay time in 

coordinated transfer, and transfer delay time in off-phased transfer within SBGA. 

Figure 3.9 shows the procedure of the SBGA implementation.

Figure 3.10 SBGA implementation procedure
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Crossover

Mutation

Next population

Stop ?

Begin

End
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& Headways

Simulation

Total Cost

Yes

No
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Chapter 4: Genetic Algorithm

A Genetic Algorithm (GA) may be described as a mechanism that imitates the 

genetic evolution of species. It was first introduced by Holland in 1975 and getting 

increasingly powerful since then. Now, it is the most widely known type of 

evolutionary computational methods.

GA is a local search algorithm, which works starting from an initial collection 

of strings (or a population) representing possible solutions of the problem. Each string 

of the population is called a chromosome, and has associated a value called fitness 

function that contributes in the generation of new populations by means of genetic 

operators (denoted reproduction, crossover and mutation, respectively). At each 

generation, the algorithm uses the fitness function values to evaluate the survival 

capacity of each string i of the population using simple operators in order to create a 

new population which try to improve on the current fitness function values by using 

pieces of the oldest ones.

Maurizio et al. (2002) described the differences between GA and other local 

search techniques as follows:

1. GA operates with codes of the parameter set and not with the 

parameters themselves;

2. GA searches for a population of points and not a single point;

3. GA uses objective function information and not derived or auxiliary 

knowledge;

4. GA uses probabilistic transition rules and not deterministic ones.15
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These particular aspects make this method applicable in a very general way, 

without the limitations imposed by other local search methods (i.e., continuity, 

derivative existence, uni-modality). Moreover, it makes possible exploiting 

consequent information from more points in the dominion of the solutions, reducing 

the probability of finding false peaks, i.e., traps or local optima.

Chakroborty et al. (1998) pointed out that the bus scheduling problem was a 

nonlinear, mixed-integer program and that the traditional algorithms for solving 

nonlinear, mixed-integer programming problems were rare and not efficient, 

especially when the number of variables and constraints was large. They suggested 

that the number of variables and constraints in the original NLP formulation was 

O(sr2n2) for a transit network having s transfer stations, r routes passing through each 

station, and n transit vehicles plying on each route.5

From the previous studies, we can find that methods to solve bus scheduling 

problems in multi transfer network are very limited by the complexity of the 

problems. In this study, there are many sources of complexity in the bus scheduling 

problem, such as nonlinearity, noisiness, discreteness, and non-convexity of the 

objective functions (i.e., Eq. 3.9 & 3.17). As a result, a straightforward mathematical 

programming approach cannot achieve satisfactory results. In previous studies, most 

optimization models for the bus scheduling problem in multiple transfer networks

used heuristics based on artificial intelligence. There are several well-known heuristic

methods in artificial intelligence, such as tabu search, simulated annealing, genetic 

algorithms, and neural networks. Each of them has its inherent strengths and 

weaknesses (e.g., excessive computing time in simulation annealing) and limitations 



38

for application to a specific problem. Therefore, it is very desirable to choose a 

method which is suitable for the properties of the problem considered. Based on the

strengths and weaknesses of the potential methods, a GA was selected here for the 

bus scheduling optimization. It should also be noted that previous related studies 

(Tom & Mohan, Ngamchai & Lovell) have chosen the GA approach for similar 

problems.

The application of GA to a specific problem includes several steps. The 

procedure of SGA and SBGA using GA are shown in figure 3.4 and 3.9 in chapter 3. 

In the next six sections, GA components such as initial population, fitness function, 

reproduction, crossover, mutation, and elitism will be presented.

4.1 Initial Population

Generating initial population is to construct an initial collection of strings of 

which individual is a chromosome, a set of headways or slack times. A chromosome 

should in some way contain information about the solution it represents. For coding 

of a chromosome this study uses integer values (a set of headways) in SGA and 

multiples of 0.25 (a set of slack times) in SBGA. The initial population is randomly 

generated within the range of slack time in SBGA, but in SGA it is coordinated with 

the headway of the main route which has the largest passenger demand among bus 

routes on a bus network and several transfer centers on the route. The initial 

population in SGA is a set of integer multiples of the main route headway.

For example, consider two individuals with 5 values (headways or slack 

times) each:
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1. Coordinated headways with first value (or headway of route 1)

- Individual 1          5    10     15     10     15

- Individual 2 3  3   6   9   9

2. Randomly generated slack times

- Individual 1    0.25    0.5     1.0     0.0     0.75

- Individual 2    0.5      0.0     1.5     0.25   0.75

4.2 Fitness Function

The fitness function evaluates the fitness of each individual i in the population. 

We used scaling window method as a fitness function. It transforms the objective 

function value into a measure of relative fitness, as follows:

γ−== )())(()( iii xfxfgxh (4.1)

where

γ = a constant, usually the minimum of f(x)

xi = the phenotypic value of individual i.

f = the objective function before scaling

g = transform the value of the objective function to a non-negative 

number

h = the resulting relative fitness.

The individual fitness after scaling, )( ixF , is computed as the individual’s 

performance, g(f(xi)), relative to the whole population:
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where N = the population size.

The following table 4.1 shows an example of a scaling window.

Table 4.1 Example of a scaling window

Before scaling (γ=0) After scaling (γ=50)
i

f(xi) P(f(xi))
1) h(xi) F(xi)

1 53 0.25 3 0.20

2 54 0.25 4 0.27

3 58 0.27 8 0.53

4 50 0.23 0 0.00

Total 215 1.00 15 1.00

1) P(f(xi)): Percentage of the objective function before scaling

4.3 Reproduction

The principle behind GA is essentially Darwinian natural selection. 

Reproduction (or selection) provides the driving force in GA. With too much force, 

genetic search will terminate prematurely; with too little force, evolutionary progress 

will be slower than necessary. Typically, a lower selection pressure is indicated at the 

start of a genetic search in favor of a wide exploration of the search space, while a 

higher selection pressure is recommended at the end to narrow the search space.
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This study uses stochastic universal sampling for reproduction, which is a 

single-phase sampling algorithm and uses N equally spaced pointers where N is the 

number of selections required. The population is shuffled randomly and a single 

random number, P, in the range [0 (Sum of fitness function) /N] is generated. The N

individuals are chosen by generating the N pointers spaced by 1, [P1, P2, …, PN], and 

selecting the individuals whose fitness span the positions of the pointers.

To illustrate this selection process, consider the situation shown in figure 4.1.

Figure 4.1 Stochastic universal sampling

In the above figure, when N=6, the sum of fitness function=1, and P=0.07, a 

new population 1, 2, 2, 4, 5, and 6 is selected.

4.4 Crossover

Crossover operates on selected values from parent chromosomes and creates 

new offspring. Simple (or one-point) crossover and two-point crossover are used in 

SBGA and coordinated headway crossover is used in SGA.

0.20 0.49
0.53 0.66 0.86 1

1 2 3 4 5 6

P1 P2 P3 P4 P5 P6
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4.4.1 Simple Crossover

In simple crossover, one crossover position k[1, 2, ..., N-1], N of the number 

of variables (or slack times) of an individual, is selected uniformly at random. After 

that, the variables are exchanged between the individuals about this point, and two 

new offspring are produced. 

For example, consider the following two individuals with 5 slack times each: 

- Individual 1           0.25   0.75   1.25   2.25   2.50

- Individual 2           0.75   0.25   0.25   1.75   2.25

When the chosen crossover position, k, is 3, the new individuals are created: 

- Offspring 1           0.25   0.75   1.25   |   1.75   2.25

- Offspring 2     0.75   0.25   0.25   |   2.25   2.50

Figure 4.2 illustrates this process.

Figure 4.2 Simple crossover

(Parents) (Children)
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4.4.2 Two-point Crossover

For two-point crossover, 2 crossover positions ki[1,2,...,N-1], i=1 and 2, are 

chosen at random with no duplicates and sorted in ascending order. Then, the 

variables between successive crossover points are exchanged between the two parents 

to produce two new offspring. The section between the first variable and the first 

crossover point is not exchanged between individuals.

For example, consider the following two individuals with 5 slack times each: 

- Individual 1           0.25   0.75   1.25   2.25   2.50

- Individual 2           0.75   0.25   0.25   1.75   2.25

When the chosen crossover positions, k, is 2 and 4, the new individuals are 

created: 

- Offspring 1           0.25   0.75  |  0.25   1.75  |  2.50

- Offspring 2     0.75   0.25  |  1.25   2.25  |  2.25

Figure 4.3 illustrates this process.

Figure 4.3 Two-point crossover

(Parents) (Children)
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4.4.3 Coordinated Headway Crossover

Coordinated headway crossover is the combination of simple crossover and 

coordinated headway generator. At first, one crossover position k is selected and the 

variables are exchanged between the individuals about this point as the case of simple 

crossover. Secondly, it is checked whether the headways of other routes are multiples 

of the main route (e.g. route 1). If any route is not coordinated with the main route a 

new headway is generated for that route as a coordinated value with the main route.

For example, consider the following parents with 5 headways each:

- Individual 1           2   2    6    6    8

- Individual 2           3    6    9    6    9

When the chosen crossover position, k, is 2, the new individuals are created: 

- Offspring 1            2    2  |  8    6    6

- Offspring 2      3    6  |  6    6    9

4.5 Mutation

The mutation operator plays a secondary role with respect to reproduction and 

crossover operators. Nevertheless, mutation is needed to prevent an irrecoverable loss 

of potentially useful information which occasionally reproduction and crossover can 

cause. Mutation is an occasional random alteration, with small probability, of the 

headway or slack time. Uniform mutation is used in SBGA and coordinated headway 

mutation used in SGA.
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4.5.1 Uniform Mutation

In uniform mutation a gene (or slack time), xi, of a chromosome is changed to 

a new one within its range. A gene is selected for mutation if a random number (λ1) is 

less than the probability of mutation (e.g. 0.2 in SBGA) and a new gene is produced 

as follows, 

 minminmax2 ))1/)((( iiiinew xxxfx +×+−= ααλ (4.4)

where

xinew = a new slack time of xi

λ1, λ2 = a random number

α = gap of slack time (=0.25)

f = a function for round-down to integer

ximin, ximax = the lower and upper bound of the slack time, respectively.

For example, consider the following individual with 5 slack times: 

- Individual x           0.25   0.75   1.25   2.25   2.50

When the chosen mutation position is third (xi=3), λ2 is 0.5, ximin is 0, and ximax

is 3, the new offspring is created: 

- New offspring           0.25   0.75   1.51)  2.25   2.50

1)  f(0.5*(3/0.25+1))*0.25+0 = f(6.5)*0.25 = 1.5

4.5.2 Coordinated Headway Mutation

Coordinated headway mutation is developed to facilitate the search for 

the optimized headways, based on the fact that the optimized headways are integer 
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multiples of the main route headway. A gene (or headway) selected for uniform 

mutation is changed into a new gene, which is one of the integer multiples of the 

main route headway. 

For example, consider the following individual with 5 headways: 

- Individual x           3    3    6    6    9

When the chosen mutation position is third, xmain is 3, ximin is 2, and ximax is 11, 

the candidates for xinew are 3, 6, and 9 and the third headway is changed from 6 to 3.

- New offspring        3    3    3    6    9

where

ximax, ximin = the upper and lower bound of headway, xi, respectively

xmain = the headway of the main route

xinew = a new headway of xi.

4.6 Elitism

Once a new population has been produced by reproduction, crossover and 

mutation of individuals from the old population, the fitness of the individuals in the 

new population may be determined. However, there is no guarantee that the best 

fitness of the new population is better than that of parents. Elitism is used for the best 

individual in the previous generation to be deterministically allowed to propagate 

through successive generations. Therefore, the least fit individual in the new 

population is replaced by the best fit individual in the previous generation.
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Chapter 5: Case Study and Analysis

The objective of this chapter is to illustrate the applicability and 

reasonableness of the new models. Two computerized models, SGA and SBGA, 

developed in chapter 3 are applied to an artificial bus network for case study. 

Deterministic case of bus arrival process is presented in section 5.1 and stochastic

case in section 5.2. At each section, numerical results and sensitivity analysis are 

presented first and a goodness test for the best solution resulted from the new model 

is then conducted. The goodness tests used in this chapter follow the method 

proposed by Jong (1998).

The network configurations for the case study are shown in figure 5.1 and 

figure 5.2. Figure 5.1 displays a six-route system with a loop and shows link travel 

times, their standard deviations and route numbers. Figure 5.2 shows link and node 

numbers, names of transfer centers, and travel demand of passengers (passengers/hr) 

at the each node (or origin). In this study it is assumed that the travel time of a link is 

equal in both directions and independent from the travel times of other links. It is 

usually impossible to coordinate all routes at all transfer centers in multi-transfer 

network. Therefore, in this study all routes are fully coordinated at transfer center C 

because C is the busiest transfer center, and at other transfer centers other routes are 

coordinated to the forward direction of the route 1. Table 5.1 shows the baseline 

parameter values for the numerical analysis, which are estimated by linear regression 

of the values from the previous studies. The demand ratio matrix between origins and 

destinations (O/D) for the example network is shown in table 5.2. 
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Figure 5.1 Network configuration for case study 1
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Figure 5.2 Network configuration for case study 2
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Table 5.1 Baseline parameter values for numerical analysis

Bk Vehicle operating cost ($/bus-min.) 1.33

µ Unit waiting time cost ($/passenger-min.) 0.4

ν Unit in-vehicle cost ($/passenger-min.) 0.2

Table 5.2 O/D demand ratio matrix for example network

(Ratio of travel demand from origin to destination)

D
O

1 2 3 4 5 6 7 8 9 10 11 12 Σ

1 0 0.04 0.05 0.10 0.15 0.02 0.22 0.12 0.10 0.08 0.05 0.07 1.00

2 0.15 0 0.10 0.06 0.05 0.02 0.15 0.08 0.09 0.07 0.06 0.17 1.00

3 0.18 0.10 0 0.08 0.05 0.03 0.16 0.06 0.07 0.05 0.15 0.07 1.00

4 0.12 0.05 0.06 0 0.12 0.05 0.20 0.09 0.12 0.07 0.08 0.04 1.00

5 0.12 0.04 0.05 0.11 0 0.05 0.26 0.15 0.10 0.05 0.04 0.03 1.00

6 0.13 0.03 0.03 0.07 0.17 0 0.25 0.05 0.13 0.09 0.03 0.02 1.00

7 0.20 0.02 0.03 0.08 0.12 0.06 0 0.25 0.11 0.05 0.04 0.04 1.00

8 0.12 0.04 0.04 0.10 0.18 0.05 0.25 0 0.10 0.05 0.04 0.03 1.00

9 0.13 0.04 0.04 0.15 0.10 0.07 0.21 0.08 0 0.1 0.05 0.03 1.00

10 0.15 0.03 0.05 0.05 0.12 0.07 0.23 0.06 0.12 0 0.07 0.05 1.00

11 0.21 0.08 0.15 0.07 0.08 0.04 0.16 0.05 0.05 0.03 0 0.08 1.00

12 0.25 0.11 0.08 0.06 0.05 0.02 0.17 0.07 0.09 0.02 0.08 0 1.00

Σ 1.76 0.58 0.68 0.93 1.19 0.48 2.26 1.06 1.08 0.66 0.69 0.63



51

5.1 Deterministic Case

5.1.1 Numerical Results and Sensitivity Analysis

With the above baseline values, we test the deterministic case in which the 

link travel times are constants (i.e., their standard deviations are zero). SGA 

developed in chapter 3 is applied to the example network. The parameters for the 

proposed SGA are summarized in table 5.3. The population size and maximum 

number of generations in SGA are 30 and 30, respectively. Both are much lower than 

those in SBGA (see section 5.2.1) since problem-specific genetic operators used in 

SGA such as coordinated headway generator, coordinated headway crossover, and 

coordinated headway mutation can lead to good solutions within fewer generations.

Table 5.3 Genetic parameters of SGA for the example network

Parameters Value

Population size 30

Maximum number of generation 30

Percentage of crossover 0.9

Percentage of mutation 0.2

Although the problem-specific genetic operators can accelerate SGA’s search 

for the optimized solution, the SGA model is probabilistic and we cannot guarantee 

the best solution from SGA is the global optimum for the problem. We run the model 
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10 times. All ten runs have same headways and the results from 10 runs are given in 

table 5.4. This means that the genetic operators developed for SGA model work very 

well in searching for the optimized solution.

Table 5.4 Results of SGA model for the case study

Headways (min)
Run

H1 H2 H3 H4 H5 H6 

Total Cost
($)

1~10 8 16 16 16 16 8 515.1824

The detailed components of the lowest total cost from SGA are shown in table 

5.5. The in-vehicle cost (Cv) accounts for a large fraction of the total cost and the 

vehicle operating cost (Co) is second. The waiting time cost (Cw), the transfer cost (Cf), 

and the layover time cost (Cl) are listed in the order, respectively. It is important to 

note that the transfer cost is a little higher although the bus routes in the example 

network are coordinated with each other at most transfer centers. The reason for this 

situation is that a considerable portion of the transfer cost comes from the additional 

waiting time at the off-phased transfer centers. Therefore, it is very important to 

decide how to operate the off-phased centers in a network with multiple transfer 

stations. The additional waiting time cost in the example network is $7.6027, which 

accounts for 44% of the transfer cost.
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Table 5.5 Resulting components of the total cost for the deterministic case

CTdet ($) Co Cw Cv Cf Cl

515.1824 87.6138 57.0667 350.0810 17.0960 3.3250

In order to visualize the evolution of the model (SGA) using coordinated 

headway generator, coordinated headway crossover, and coordinated headway 

mutation, we plot the minimum objective value (or total cost) in each generation and 

the generation number in figure 5.3. The figure shows that total cost reaches its best 

value, which is $515.1824 at the 13th generation, and that problem-specific genetic 

operators can find a good solution within fewer generations.

Figure 5.3 Minimum total cost through successive generations in SGA
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To assess the efficiency of problem-specific genetic operators developed for 

SGA model we conduct an analysis to examine the influence of different types of 

operators on the solution.  We use general (or conventional) genetic operators for 

different scenarios. Table 5.6 shows the genetic parameters and operators used in 

each scenario. Scenario 1 has the same population size and maximum number of 

generations as in the SGA model, but different genetic operators, such as random 

headway generator, simple crossover, and uniform mutation. Scenario 2 is just 

different from scenario 1 in the maximum number of generations.

Table 5.6 Genetic parameters and operators in other scenarios

Scenario
Population 

size
Max. number of 

generation
Initial 

population
Crossover Mutation

1 30 30
Randomly 
generated

Simple 
crossover

Uniform 
mutation

2 30 100
Randomly 
generated

Simple 
crossover

Uniform 
mutation

Tables 5.7 and 5.8 show the results of scenarios 1 and 2, respectively. In 10 

runs the best value is $517.3694 in scenario 1 and $515.1824 in scenario 2. The 

resulting values in scenario 1 have never reached the optimized value ($515.1824) 

found by SGA and those in scenario 2 have only reached that optimized value 3 times. 

Those results show how well problem-specific genetic operators in SGA work.
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Table 5.7 Results of scenario 1

Headways (min)
Run

H1 H2 H3 H4 H5 H6 

Total Cost
($)

1 7 7 16 14 14 7 532.9610

2 8 16 8 16 10 8 526.3800

3 8 8 8 12 8 8 521.5835

4 8 16 16 8 8 16 519.4515

5 8 16 8 16 12 8 525.5563

6 8 16 16 8 8 8 517.3694

7 8 16 8 8 12 16 529.3017

8 8 12 10 16 8 8 525.6023

9 8 8 10 8 8 8 522.8950

10 8 8 16 12 7 8 530.6744

Table 5.8 Results of scenario 2

Headways (min)
Run

H1 H2 H3 H4 H5 H6 

Total Cost
($)

1 7 14 14 14 14 7 521.7030

2 8 16 16 16 16 8 515.1824

3 8 16 8 16 8 8 518.1982

4 8 16 16 12 8 8 520.5126

5 8 16 16 16 8 8 515.3702

6 8 16 16 16 8 8 515.3702

7 8 8 16 16 8 8 517.3118

8 8 16 16 16 16 8 515.1824

9 8 16 16 8 8 8 517.3694

10 8 16 16 16 16 8 515.1824
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For sensitivity analysis we choose three factors affecting the total cost in 

deterministic case: bus operating cost, passengers waiting time cost, and travel 

demand. Table 5.9 and figure 5.4 show the optimized headways for the operation on 

the example network at different vehicle operating costs. As expected, the optimized 

headways increase as the operating cost increases. When the vehicle operating costs 

varies from 0.5 to 0.75 $/vehicle-min all routes have the same headways, 8 minutes. 

However, the headways of route 2 to 5 and headway 6 increase to twice the headway 

of route 1 from 1.33 and 2.5 $/vehicle-min, respectively.

Table 5.10 and figure 5.5 show the optimized headways and total costs at 

different waiting time values. In this case the optimized headways decrease as the 

waiting time cost increases. The headway of route 1 is half the headway of other 

routes at 0.1 and 0.2 $/passenger-min, but route 6 becomes to the same headway of 

route 1 at 0.3 $/passenger-min and other routes at 0.5 $/passenger-min. Common 

headways are preferable from the value of 0.5 $/passenger-min.

 Table 5.11 and figure 5.6 show the optimized headways at various demand 

levels (ratio value 1 is the base demand). The results show that the headways roughly 

decrease as the demand ratio increases. When the ratio is 0.4 and 0.7 the headways of 

all routes are same headways, but from the ratio 1 the integer-ratio headways become 

preferable. The headways of routes 2 to 5 are twice the headways of the routes 1 and 

6 at the ratio 1, and the headway of route 6 also becomes twice the headway of route 

1 at the ratio 1.5.
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Table 5.9 Optimized headways and total costs for different vehicle operating costs

Headways (min)Cost 
($/min) H1 H2 H3 H4 H5 H6

Total cost 
($)

0.50 8 8 8 8 8 8 441.25

0.75 8 8 8 8 8 8 464.50

1.33 8 16 16 16 16 8 515.18

1.80 8 16 16 16 16 8 547.32

2.50 8 16 16 16 16 16 591.74

3.00 8 16 16 16 16 16 622.61

H1 H2~H5 H6

Figure 5.4 Optimized headways vs. vehicle operating costs
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Table 5.10 Optimized headways and total costs for different waiting time values

Headways (min)Values 
($/min) H1 H2 H3 H4 H5 H6

Total cost 
($)

0.1 8 16 16 16 16 16 454.03

0.2 8 16 16 16 16 16 475.85

0.3 8 16 16 16 16 8 496.64

0.4 8 16 16 16 16 8 515.18

0.5 8 8 8 8 8 8 529.61

1.0 8 8 8 8 8 8 585.44

H1 H2~H5 H6

Figure 5.5 Optimized headways vs. waiting time values
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Table 5.11 Optimized headways and total costs for different demand ratio

Headways (min)Demand
Ratio H1 H2 H3 H4 H5 H6

Total cost 
($)

0.4 21 21 21 21 21 21 243.87

0.7 12 12 12 12 12 12 386.49

1.0 8 16 16 16 16 8 515.18

1.5 5 10 10 10 10 10 744.37

2.0 4 8 8 8 8 8 942.44

2.5 3 6 6 6 6 6 1,1760.00

H1 H2~H5 H6

Figure 5.6 Optimized headways vs. demand ratio



60

5.1.2 Goodness Test

Although the solution found with the proposed SGA model seems reasonable, 

it is hard to prove its optimality because SGA cannot guarantee finding the global 

optimum. Therefore, we design an experiment to statistically test the goodness of the 

algorithm. This goodness test follows the method used by Jong (1998).

The experiment is initialized by randomly generating solutions to the problem. 

For each of them we then evaluate its objective value. This procedure is a sampling 

process. To maximize the generality and satisfy the statistical requirements, the 

sample must be created in such a way that the solutions are representative and 

independent of each other. The next step in the experiment is to fit a distribution to 

the objective values for the random sample. The fitness of the distribution can be 

checked with the Chi-Square or K-S tests. Since the sample is randomly generated, 

the fitted distribution should be able to reflect the actual distribution of the objective 

value for the real population. Based on this distribution, we can compare the solution 

found the proposed model and calculate the cumulative probability of the solution in 

the distribution. The lower the probability, the better the solution.12

For the goodness test, we first create a random sample of 10,000 observations. 

Total cost of the best solution is $532.1268 and the objective value of the worst 

solution is $720.5057. The sample mean is $604.5817 and the standard deviation is 

$33.6372. Figure 5.7 shows the distribution of the random sample and the relative 

position of the best solution found by SGA. The distribution of the random sample is 

bimodal and seems unfamiliar. The number of observations of the total cost around 
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650 is relatively much less than the numbers of 590’s and 670’s.

We do not find a known statistical distribution for the random sample. 

However, figure 5.7 shows that the total cost ($515.1824) of the best solution found 

by SGA is much less than the lowest total cost ($532.1268) of the random sample. 

This confirms that SGA is a good model for solving the bus scheduling problem with 

a deterministic arrival process.

Figure 5.7 Distribution of total cost for the random sample by SGA
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5.2 Stochastic Case

5.2.1 Numerical Results and Sensitivity Analysis

On the same example network used for the deterministic case, we test the 

stochastic case in which the link travel times are not constants but variables (i.e., their 

standard deviations are not zero). The second model, SBGA, is applied to the 

example network. To analyze the stochastic arrival process, slack times are 

introduced to transfer centers to reduce the probability of missing transfer. Figure 5.8 

shows the slack times in the example network. There are 22 slack times at five 

transfer centers and two slack times of a route at a transfer center are different from 

each other because there are two travel directions (e.g., s1 and s3 at transfer center A 

on the figure).

Table 5.12 shows the parameters for SBGA. The population size is set at 60 

and the maximum number of generations is set at 100. Both are much larger than 

those of SGA (see section 5.1.1). We cannot develop problem-specific genetic 

operators for SBGA since it is very difficult to estimate the relation between slack 

times and cost functions in a complex network. Instead, we use general genetic 

operators in stochastic case such as stochastic universal sampling, one-point or two-

point crossover, uniform mutation, and elitism. For computer simulation 5,000 

random variables are used and that number is decided by the trade-off between the 

simulation error and running time. The maximum value of slack time is limited to 3 

minutes because more than 3 minutes of slack time is generally unrealistic.
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Figure 5.8 Slack times in the example network
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Table 5.12 Parameters of SBGA for the example network

Parameters Value

Population size 60

Maximum number of generation 100

Percentage of crossover 0.9

Percentage of mutation 0.2

Number of random variables for simulation 5,000

Range of slack time (minutes) 0 ~ 3

As with SGA in the deterministic case, the SBGA model is probabilistic and 

cannot guarantee finding the global optimum. We run the model 10 times in the 

stochastic case, which requires 32,987 seconds (9 hour 10 min.) of CPU time on 

Pentium 4 CPU 3.06Ghz, 512 MB of RAM, Notebook Computer. Table 5.13 shows 

the results of SBGA model. On the 10 runs the average total cost and its standard 

deviation are $545.2004 and $0.81, and the average slack time and its standard 

deviation are 1.10 and 0.79, respectively. From the results, we can infer that it is 

difficult to estimate the change pattern of the total cost from the variation of single 

slack time at a transfer center since the total cost is the result of the combination of 

slack time, link travel time, layover time, transfer volume and coordination method.

The best solution is found at the 5th run, and total cost and average slack time 

are $543.8844 and 1.02. Table 5.14 shows the detailed components of the total cost of 

the 5th run, and figure 5.9 illustrates the minimum total cost through successive

generations in SBGA, which reached the best solution at the 70th generation.



65

Table 5.13 Results of SBGA model for the case study

Run S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 Mean
Total 
Cost

1 0.75 1.5 1 2 1.5 3 0 2.75 2.25 2 1.25 0.75 2.75 1.5 0.5 1.5 1.5 0.75 0.25 0 0.5 0.25 1.28 544.0900

2 1.25 2 0 2 1.25 1.25 0.5 2.5 0.5 1.5 0.75 0.75 2 1.25 1.75 0.5 0.25 0.75 0 0 3 0 1.08 544.4400

3 0.25 3 0.5 1.5 1 1.5 0 1 1 0.5 1.75 2.25 1 1.5 0.25 0 0.25 0 0.75 0 1.25 1.5 0.94 545.2500

4 0.25 2.5 0 1.25 1 1 0.5 2 1.75 1.75 1 1.25 2 1.75 0.75 0.75 1 0 2.5 0 0.5 1.75 1.13 545.4400

5 0.5 1.75 0.25 1.75 1.25 1 0 1.25 1.5 1.5 0.75 1.75 1.75 2.25 1 1.5 0.75 0.25 0.25 0.25 1.25 0 1.02 543.8844

6 0.5 0.75 0 0 0 1 0.25 0.25 2 1.75 1.5 1 2.25 1.25 0.5 1.75 1 0.75 1.5 0.25 2.75 1 1.00 546.0200

7 0.5 1 0 1.25 2.25 1.25 0.5 2.25 1.25 2 2.75 1 1 1.25 1 2 1.75 0.5 0.5 0.5 2.75 1 1.28 545.6400

8 0.5 2.75 0.5 1 1 1.75 0 1.5 1.75 1 1 1.5 2 1.25 0.75 1.25 1 0.25 0 1 2.5 0.5 1.13 545.4700

9 0 1 0 1.5 1 1 0 0 2.5 0.5 1 0.75 2.75 2.0 1.25 0 0.25 1.75 1.75 1.75 1.25 2 1.08 546.3600

10 0 2 0.25 1.75 1 1.25 0.25 0.75 1.25 1 0 1.25 2 2.75 1 0.75 0 0.25 1.75 1.75 1.25 0 1.01 545.4100

Mean 0.45 1.83 0.25 1.40 1.13 1.35 0.23 1.43 1.58 1.35 1.18 1.23 1.95 1.68 0.88 1.00 0.73 0.53 0.93 0.55 1.70 0.80 1.10 545.2004

Std.1) 0.37 0.77 0.33 0.59 0.56 0.67 0.22 0.94 0.60 0.57 0.73 0.49 0.60 0.51 0.43 0.71 0.58 0.52 0.88 0.71 0.96 0.76 0.81

- 1) Std: Standard deviation
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Table 5.14 Resulting components of the optimized total cost for the stochastic case

CTsto ($) Co Cw Cv Cl

543.8844 87.6138 57.0667 350.0810 3.3250

Cs Cp Cm Cd C∆l

16.6202 23.8746 6.1203 0.5644 -1.3816

Figure 5.9 Minimum total cost through successive generations in SBGA
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Table 5.15 and figure 5.10 show the transfer cost (Cf) for different slack times 

of s9 and its components. As expected, the slack time delay cost (Cs) increases 

linearly, and the missed connection cost (Cm) and the dispatching delay cost (Cd) are 

decreasing as s9 increases. However, the inter-cycle transfer delay cost (Cp) varies 

more dynamically as s9 increases. It increases slightly at first when s9 increases, but 

it decreases at 1 and 1.25 minutes of s9. It increases again after 1.5 minutes of s9. The 

transfer cost roughly decreases until s9 reaches 1.5 minutes and, after that, it increases. 

The optimized slack time of s9 in the detail investigation is 1.5 minutes, which is the 

same value from SBGA.

Table 5.15 Transfer cost for different slack times of s9

Transfer cost (Cf)
s9

Cs Cp Cm Cd Sum (Cf)

0.00 14.68 25.56 10.22 0.88 51.33

0.25 15.00 25.89 9.40 0.79 51.08

0.50 15.33 26.29 8.29 0.72 50.62

0.75 15.65 26.73 7.72 0.66 50.76

1.00 15.97 26.74 7.08 0.62 50.41

1.25 16.30 25.33 6.53 0.59 48.74

1.50 16.62 23.94 6.10 0.57 47.22

1.75 16.94 24.12 5.76 0.55 47.37

2.00 17.27 24.59 5.52 0.54 47.92

2.25 17.59 25.08 5.35 0.54 48.56

2.50 17.91 25.51 5.27 0.54 49.23

2.75 18.24 25.92 5.18 0.53 49.87

3.00 18.56 26.30 5.16 0.53 50.55
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Figure 5.10 Transfer costs vs. slack time s9

As a factor for sensitivity analysis of the stochastic arrival process we choose 

the slack time since its variation directly affects the transfer cost and the total cost. 

Table 5.16 shows the optimized slack times and total costs for different standard 

deviation ratios, and figure 5.11 shows the mean value of slack times and total cost at 

various standard deviations. The ratio of standard deviations in the example network 

is increased from 0 to 3 at intervals of 0.25 where the ratio value 1 is the base 

standard deviation. The mean value of slack times is 0 minutes at ratio 0 (i.e., the 

deterministic arrival process) and increases as the ratio increases to 0.75. Afterwards, 

it decreases and stays around 0.35 minutes after the ratio 1.5. The peak of the mean 
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slack time is 1.13 minutes at the ratio 0.75.

It is important to note in the figure that the mean slack time does not reach 0 

minutes even when the standard deviation ratio is relatively large and that the mean 

slack time at transfer center C (a fully coordinated transfer center) stays around 0.3 

minutes after the ratio 1.5. In most previous research, the mean slack time usually

reaches 0 minutes at a fully coordinated independent transfer center when the 

standard deviation goes beyond a threshold. This means that, in a network with 

multiple transfer centers, a combination of some slack times can still reduce the total 

cost at the system level even at the relatively large standard deviations, and that in the 

total cost the reduction due to the slack time combination exceeds the cost increase 

due to the introduction of the slack times. This indicates that the combination of slack 

times can affect the layover time of a route and the transfer waiting time of 

passengers at transfer centers.

For the comparison of the total costs between optimized and 0 slack times, the 

total costs are inserted in the last two columns of table 5.16.
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Table 5.16 Optimized slack times and total costs for different ratio of standard deviation

SR
1) S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22

Total 
Cost

TC
(S=02) )

0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 515.18 515.18

0.25 0.75 1 0 0.25 0.5 0.5 0.75 1.5 0.5 1.25 0.75 0.5 1 0.25 0.25 0.75 0.5 0.25 1.75 0 0.5 0.5 532.30 546.85

0.50 0.25 2 0.5 0.75 0.5 0.5 0 0.25 1.25 2.25 1 1.75 2.25 1.5 1.25 1.25 0.25 0.5 0.5 0.5 1.75 0.5 537.91 547.29

0.75 0.75 1.25 1 1.5 0.75 2.25 0.5 0.75 1 1.5 1 1.5 2 1.25 1.25 1 0 1 1 0.75 2.5 0.25 541.19 547.96

1.00 0.5 1.75 0.25 1.75 1.25 1 0 1.25 1.5 1.5 0.75 1.75 1.75 2.25 1 1.5 0.75 0.25 0.25 0.25 1.25 0 543.88 548.50

1.25 0.25 3 0 0 0.25 0 0 0 0 1.75 1 1 1.5 2 0.75 0.5 0.75 0.25 0.25 0 2 0 547.53 549.01

1.50 0.25 2.25 0 0 0.75 0 0 0 0 0 0 0 1 0.75 0 0 0.75 0.5 0.25 0.25 2.5 0 548.41 549.51

1.75 0.25 2.25 0 0 0.75 0 0 0 0 0 0 0 1.5 0 0 1 0.5 0.5 0.25 0 0 0 548.55 550.07

2.00 0 2.25 0 2.5 0.5 0 0 0 0 0 0 0 1 0.25 0 0.5 0 0 0.5 0.5 0 0 548.68 550.57

2.25 0 2 0 1.5 1 0 0.5 0 0 0 0 0 1 0.25 0 1.75 0.25 0.25 0 0.75 0 0 548.89 551.13

2.50 0 1.75 0 1.5 1.5 0 0 0 0 0 0 0 1 1.5 0 0.25 0 0 0 0 0 0 550.01 551.55

2.75 0 2.25 0 0 0.5 0 0 0 0 0 0 0 1 2 0 0 0.25 0 0 0 0 0 550.98 552.10

3.00 0 2 0 0 0.25 0 0 0 0 0 0 0 1 1.5 0 0 0.5 0 0 0 0 0 551.25 552.34

- 1) SR: Ratio of standard deviation, 

- 2) S=0: All slack times are 0
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Figure 5.11 Optimized mean slack time and total cost vs. standard deviation ratio

To examine more closely the variation of slack time, we select the six slack

times (s9 to s14) at the busiest transfer center (C), at which all routes are fully 

coordinated. Only the standard deviation on link 3 is changed from 0 to 3 at intervals

of 0.25 or 0.5 where a ratio value 1 is the base standard deviation of the travel time on 

link 3. All other slack times are fixed at the best solution found by SBGA besides two 

slack times (s15 & s17) which are directly related to s9.

Figure 5.12 shows the changes in slack times at transfer center C. Slack time 

s9 is 0 minutes at the ratio 0, reaches the peak (1.75 minutes) at the ratio 0.25, and 

stays at the peak for ratios between 0.25 and 0.75. Afterwards, it decreases and drops 
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to 1.25 minutes at the ratio 2. In this case, s9 also does not reach 0 minutes at the 

relatively large ratio of standard deviation. If the transfer center C is a fully 

coordinated independent transfer center, s9 drops to 0 minutes when the ratio goes 

beyond a threshold.

The mean of other slack times (s10 ~ s14) at transfer center C increases 

slightly at first and reaches the peak at the ratios 0.5 and 1.5. It decreases after that, 

but does not reach 0 minutes. This shows that change of the standard deviation of a 

link travel time has a limited influence in changing the slack times.

s9 mean (s10- s14)

Figure 5.12 Slack time vs. standard deviation ratio on link 3
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5.2.2 Goodness Test

As in the experiment design introduced in section 5.1.2, a set of representative 

and independent solutions is randomly generated. After creating a random sample of 

10,000 solutions, we observe that the best solution of the sample yields an objective 

value $548.1219 and the worst is $567.8093. The mean of the objective values is 

$556.9689 and the standard deviation is $2.7086. Figure 5.13 illustrates the 

distribution of the random sample and the relative position of the best solution found 

by SBGA. The distribution of the random sample has a bell shape.

Figure 5.13 Distribution of total cost for the random sample by SBGA

Number of 

observation

Total Cost

Optimum of SBGA
(543.8844)
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A normality test for the random sample was conducted with the statistical 

package Minitab. Figure 5.14 shows the normal probability plot resulting from the 

normality test. The more the black points in the figure match the straight line (i.e. red 

line), the more the random sample approaches to a normal distribution. Thus, figure 

5.14 demonstrates that the normal distribution fits well the random sample in spite of 

some slight differences at both ends. Actually, the P-value of the normality test is 

0.0884, which is higher than the minimum criterion (0.05) for a normal distribution.

Figure 5.14 Normal probability plot for the random sample by SBGA

 The following normal distribution was fitted to the random sample.

Total Cost = Normal (556.9689, 7.3365) (5.1)

Total Cost
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With the normal distribution (Eq. 5.1) we can calculate the cumulative 

probability of the best solution found by SBGA. The cumulative probability of the 

best solution ($548.1219) in the above normal distribution is

0005.0)27.3()
2.7086

556.9689548.1219

2.7086

556.9689
()1219.548( =−≤=−≤−=≤ zP
TC

PTCP

This means that the best solution from SBGA dominates more than 99.95% of 

the solutions in the distribution and that the solution is excellent when compared to 

other possible solutions to the problem. Such results give us confidence in the 

proposed model.
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Chapter 6:  Conclusions and Recommendations

6.1 Conclusions

It is difficult to solve the bus scheduling problem with traditional local search 

methods in an urban transit network of realistic size due to the complexities of the 

objective function and its constraints (e.g. non-linearity, noisiness, computational 

complexity from large number of variables and constraints). Therefore, heuristic 

algorithms have usually been used to search for the optimized headways and slack 

times. The use of simulation for the bus scheduling problem has been also limited to 

simple transit networks.

In this study two computerized models, SGA and SBGA, using genetic 

algorithms and computer simulation are developed in chapter 3. We focus on 

extending the previous methods to more complex situations and finding an optimized 

solution quickly. The genetic algorithm and operators used in this study are described 

in chapter 4. In chapter 5 new models are applied to an artificial bus network for 

numerical results and sensitivity and goodness test.

The conclusions of this research can be summarized as follows:

1. The first model (SGA) developed for the deterministic arrival process can 

find the optimized solution very quickly when joined with problem-

specific genetic operators such as coordinated headway generator, 

coordinated headway crossover and coordinated headway mutation.
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2. Under the deterministic arrival process, common or integer-ratio 

headways among bus routes are the favored way to minimize the total 

system cost in coordinated operation. It is also important to determine how 

to operate the off-phased transfer centers since a considerable portion of 

transfer cost in the deterministic case results from the additional 

passengers waiting time at those centers.

3. A sensitivity test for deterministic case shows that common headways are 

preferable when operating cost is relatively low, but integer-ratio 

headways are more suitable when operating cost increases, as shown in 

table 5.9.

4. When passenger waiting time cost is relatively low, integer-ratio 

headways are preferable, but common headways are favored when the 

waiting cost increases, as shown in table 5.10.

5. When travel demand is relatively low, common headways are preferable, 

but integer-ratio headways are preferred when travel demand increases, as 

shown in table 5.11.

6. The goodness test shows that the new model (SGA) can find a good 

solution for the bus scheduling problem under the deterministic arrival 

process, as shown in figure 5.7, even though this study does not find a 

suitable statistical distribution for the random sample.

7. Under the stochastic arrival process, the total cost is the result of the 

complex combination among slack times. Thus, it is difficult to predict the 

variation of the total cost from the change of some slack times.
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8. Transfer cost (Cf = Cs + Cp + Cm + Cd) under the stochastic case accounts 

for a much larger fraction of total cost than in the deterministic case, as 

shown in table 5.14.

9. In the stochastic case the slack time delay cost, the inter-cycle transfer 

delay cost, and the missed connection cost are the dominant factors in the 

transfer cost. The slack time delay cost is a linear function, but the inter-

cycle transfer delay cost and the missed connection cost are non-linear 

functions, as shown in figure 5.10.

10. As the standard deviation increases, the mean slack time increases at first 

but decreases beyond some threshold. Unlike for a fully coordinated 

independent transfer center, the mean slack time does not drop to zero 

even when the standard deviation increases to relatively large values, as 

shown in figure 5.11.

11. The goodness test for the stochastic arrival process verifies that the best 

solution from SBGA is an excellent one when compared to other solutions 

generated randomly for the problem.

12. This study used the total system cost as an objective function for the bus 

scheduling problem and developed two new models, SGA and SBGA, to 

optimize it. However, the new models can be applied to various objective 

functions (e.g., mean transfer waiting time) and other scenarios (e.g., 

different passengers arrival distribution at bus stops, or different travel 

time pattern of buses) with small changes in the models.
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13. Only an artificial bus network was analyzed using the new models in this 

study. However, these models can be applied to optimize schedules for 

other transportation systems such as intercity bus networks with feeder 

buses, general urban transit networks including rail and bus routes, and 

hub-spoke aviation networks.

6.2 Recommendations for Further Research

This study could be extended in the following aspects:

1. In this study we assume that the passenger demand is known and fixed, 

without considering the diverted demand sensitive to the change of bus 

headway and travel time. Improved models should consider how changes 

in travel time or headway would affect demand.

2. This study also assumes that passengers choose the route with the shortest 

travel time. In reality, some users may prefer a route which is less 

crowded or requires fewer transfers. A new model could analyze various 

passenger travel preferences regarding travel times and transfers.

3. The fleet in this study has a single type of bus with pre-specified 

characteristics. However, many kinds of buses run on real transit networks 

because that may be often economical or beneficial to the users. Therefore, 

mixed fleets of buses could be considered in future models.

4. This study is limited to analyzing bus operations for one dispatching 

strategy in which vehicles do not wait for other vehicles arriving behind 
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schedule at a transfer center. However, there are some other strategies to 

maximize social benefit or minimize total system cost on the bus operation 

(e.g., real-time dispatching strategy). Advanced new strategies for the bus 

operation could be included in future studies.

5. The SBGA model developed in this study uses general genetic operators 

due to limitations in analyzing relations among decision variables and total 

cost under the stochastic arrival process. Slack times in a stochastic case 

result from the interaction among headways, passenger demand, transfer 

strategy, number of transfers, coordination method and bus arrival process. 

Thus, further research should analyze the effect of those factors in detail 

and develop problem-specific genetic operators.

6. This study developed two separate models for deterministic and stochastic 

cases. In future studies, joining two such models into an integrated one 

should be considered to search for jointly optimized solutions (headways 

and slack times).
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