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Ultracold bose gas systems can perform quantum simulations of high temper-

ature superconductors in certain parameter regimes. Specifically, 2D bose gases at

low temperatures exhibit a superfluid to thermal gas phase transition analogous to

the superconductor to insulator transition in certain superconductors. The unbind-

ing of thermally activated vortex pairs drives this phase transition, and disorder is

expected to affect vortex motion in this system. In addition, disorder itself can drive

phase transitions in superconductors.

We have designed and built a system which produces two 2D ultracold Bose gas

systems separated by a few microns. In addition, we have also produced a disordered

speckled laser intensity pattern with a grain size of ∼1 µm, small enough to provide

a disordered potential for the two systems. We have observed the superfluid phase

transition with and without the presence of disorder. The coherence of the system,

which is related to superfluidity, is strongly reduced by the presence of disorder,

even at small disorder strength, but the effect of the disorder on observed vortices

in the system is less clear.
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Chapter 1

Background

1.1 Introduction

The study of ultracold gases has proven to be a very versatile field. The abil-

ity to engineer simple designer Hamiltonians has driven innovation in the types of

science that can be done in these systems. Within the last few years, the capa-

bility to control and investigate the role of strong interactions between particles in

these systems has increased their usefulness in understanding science that cannot

be analyzed in other systems [25]. The basic building blocks of these systems are

not difficult to understand, but an amazing number of Hamiltonians can be built

from these few components. Variable parameters in ultracold systems include di-

mensionality, temperature, atom number, density, quantum states, and strength of

interactions. Great physical intuition about the behavior of these systems can be

found in the simple Schroedinger equation, and the rudimentary level of complica-

tion added by mean field theory for weak interactions goes even farther in aiding

understanding. Still, once strong interactions are added to the system, it becomes

more difficult to model these systems, and experiments are necessary to determine

the physics governing the behavior of the particles.

In fact, because of their versatility and simplicity, ultracold atom systems are

ideal candidates to do quantum simulation. Quantum simulation allows us to under-

1



stand complicated quantum mechanical systems. Richard Feynman recognized that

simple quantum systems can often reveal key properties of more complex material

systems [60]. Frequently, even the behavior of these simple systems is still theoret-

ically intractable, so the outcome of experiments on analog systems, i.e. quantum

simulators, can provide otherwise unavailable insights. Some important quantum

systems, such as high-Tc superconductors, are not easily amenable to direct calcula-

tion, and may have many important parameters that are not separately adjustable in

experiment. Strong interactions between a large number of particles make these sys-

tems complex, and their description using Bose condensation of Cooper pairs makes

these systems quantum. Ultracold atom systems, through quantum simulation, may

be able to shed light on the behavior of complicated solid systems.

The layout of this chapter is to first provide some motivation for studying 2D

ultracold Bose gases with disorder, and show that they can be used as quantum

simulators. Then, the work that has already been done in 2D systems will be

reviewed in Sec. 1.3. Disorder in ultracold gases will be briefly summarized in Sec.

1.4, followed by the small amount of work done with disorder in 2D bosons in Sec.

1.5.

1.2 Motivation: 2D Ultracold Bose Gases with Disorder

When designing an experiment on ultracold atoms, it is necessary to restrict

the available number of parameters to focus on a specific type of science. We are

focusing on the physics of disorder. Disorder is ubiquitous in nature, and we wish
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to examine its effects in ultracold atom systems. Specifically, this thesis examines

the role of disorder in 2D systems.

There are a few reasons for studying 2D systems. Keeping with the theme of

quantum simulation, many of the high temperature (high-Tc) superconductors are

governed by two-dimensional Bosonic physics [24]. Although it seems odd to model

a solid’s electronic properties with a gas of neutral atoms, it turns out that many

of the models governing type-II superconductivity have a great deal of similarities

to a 2D gas of bosons. First, superconductivity is mediated by Cooper pairs -

pairs of electrons bound together acting as composite bosons. Superconductivity

comes about when these Cooper pairs become phase coherent, and in 2D the pairing

temperature and superconducting transition temperature can differ significantly,

which is different than in 3D [119]. Bosonic models are applicable in any temperature

range when pairing has occurred, and thus the transition to phase coherence can be

analogous in ultracold gases. In addition, most of the high-Tc superconductors are

stacks of 2D planes weakly coupled together, meaning that much of the physics is

2D. Finally, although electrons interact via the Coulomb interaction, most models

of high-Tc superconductivity replicate the fundamental behavior of these materials

without including these long-range interaction effects [6].

It is worth noting that there are models of high-Tc superconductivity which

do not make these assumptions, and there is no current agreement about which

model is correct. The systems are too complicated to calculate exactly, and clean

measurements on solids that reveal microscopic physics are difficult to make. Ul-

tracold gas systems can be used to measure cleaner indicators of the microscopic

3



mechanisms predicted by bosonic models of superconductivity. However, bosonic

systems cannot address the many open questions about the pairing mechanisms in

superconductors. Our system only simulates the correct physics after the electrons

are bound into Cooper pairs. Thus, we can only use a system of 2D bosons to

replicate and perhaps constrain bosonic models of high-Tc superconductors.

Predictions about the physics of 2D superconductors with disorder are given

by the “dirty boson” model [62, 149]. This model is summarized by the phase di-

agram given in Fig. 1.1. As a function of temperature, we see that we have the

two transitions mentioned earlier. At Tc0, we have the bulk 3D pairing temperature,

below which the Bosonic description becomes correct. Tc, meanwhile, is the super-

conducting transition, where the pairs develop partial long-range phase coherence.

A good starting point on pairing in superconductors is Ref. [131], and our system

cannot simulate this type of physics. Therefore, we will examine the microscopic

physics of bosonic 2D systems, which our system can simulate.

2D systems exhibit “marginal” behavior. Peierls argued in 1935 that in an

infinite uniform 2D system, there can be no long-range order [115], and it has since

been rigorously shown [83, 108, 107]. In a 2D fluid, thermal fluctuations at any non-

zero temperature will destroy true Bose-Einstein condensation (BEC) [26, 56, 57, 1],

when the multiparticle state of the system has all of the particles in the same

single-particle ground energy state. BEC is also indicated by the first order Bosonic

correlation function being constant in the limit of infinite distance. In an interacting

fluid system, at low enough temperature, a superfluid (flow without friction) can

still exist without true BEC. In this case, we can define a local superfluid order

4



Figure 1.1: Generic phase diagram of a 2D superconductor with disorder strength ∆
as a function of temperature T . ∆c is the critical disorder strength, Tc is the critical
temperature for the superconducting transition, and Tc0 is the pairing temperature
for Cooper pairs. Figure from [149].
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parameter, and the transport properties of the system exhibit superfluidity, but

without all of the particles being in the ground state. In this 2D superfluid, the

first order Bosonic correlation function always falls off algebraically, preventing true

BEC. This is in contrast to 3D, where BEC and superfluidity happen at the same

time. The superfluid transition is often identified with the superconducting phase

transition - the Cooper pairs become superfluid.

The mechanism for the transition between this superfluid and a normal fluid is

elucidated by the theory of Berezinskii, Kosterlitz, and Thouless (BKT) [95, 94, 16,

17]. This theory says that just above zero temperature, the thermal excitations in

the superfluid take two forms - long-wavelength phase fluctuations called phonons

and also pairs of bound vortices. A vortex is a spot of zero density in the superfluid

with locally circular flow around this spot, and a bound pair of these is two vortices

with opposite directions of circulation very close together. Since the derivative of

the phase of the superfluid order parameter is the velocity of the fluid, vortices can

be thought of as phase defects. If the vortices are closely bound together, they

do little to disturb the overall long-range phase coherence of the fluid, since their

effects cancel away from the pair. The long-range phase coherence falls off slowly

only through phonons. However, as the temperature is raised, the binding of the

vortex pairs starts to loosen, and the vortices start to move in the fluid. When the

pairs start to unbind and move about the fluid, the phase coherence of the fluid is

destroyed, and the superfluid transitions to a normal fluid, or the superconductor

becomes an insulator.

BKT theory has been remarkably successful in describing and predicting the
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physics of 2D superfluids. It is applicable to many other types of systems as well,

including Coulomb gases [110], exciton systems [139, 31], polariton systems [91, 4],

and spin-polarized hydrogen [133]. Torsional oscillator experiments in thin films of

superfluid 4He showed excellent agreement with the predicted critical temperature

[20, 21]. However, in a finite system, especially an inhomogeneous system, the

transitions between the different phases become more difficult to discern. In fact,

true BEC becomes possible in 2D in a finite system (Sec. 1.3). Identifying both the

macroscopic and microscopic indicators of transitions between the various phases is

still of experimental interest [75], especially in ultracold gases.

Now we can look at the effects of disorder in the phase diagram in Fig. 1.1. At

low disorder strengths, both transition temperatures are lowered, until at a critical

disorder strength ∆c, the transition temperature for coherence is lowered to zero.

Above this critical disorder strength there is no superconducting state, as a quantum

phase transition occurs between the superconducting state and an insulating state.

This phase transition has received a great deal of attention. There are experimental

[98, 80] and theoretical works [34, 68, 62] indicating that the transition happens

straight from the superconductor to insulator phase. Some theoretical work has

indicated that there is a finite universal conductivity right at the separatrix between

the two phases [149, 63, 33, 140]. Stemming from some experiments [88], many

theorists now put forth that there should be an intervening metallic phase [48],

which could be a phase glass [47, 155, 43]. Two good reviews of this 2D phase

transition are given in Refs. [69, 119].

I will briefly summarize some of the controversy from the above papers. Exper-
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imentally, one measures the resistance of a sample as a function of temperature for

different values of disorder strength, which is often tuned by changing the thickness

of the superconducting layer in the sample. Thinner layers allow more disorder to

enter the layer from the substrate. In the case where there is no intervening metallic

phase, there is a separatrix between the resistivity - it asymptotically approaches

either 0 or ∞ as the disorder is tuned through the critical point (Fig. 1.2). However,

in some materials, there is a range of disorder strengths over which the resistance

seems to level as the temperature is lowered, as in Fig. 1.3. This would indicate a

metallic phase, since it is neither insulating nor superconducting.

The idea of a metallic phase for Bosonic Cooper pairs is problematic in 2D.

In low dimensions, not even non-interacting electrons can remain metallic at zero

temperature in the presence of disorder [119]. So, a metallic phase must have an

exotic explanation, such as a phase or vortex glass [155], which could have a finite

resistivity. Perhaps the pairing amplitude of the Cooper pairs begins to fluctuate, or

long range Coulomb interactions become important in this metallic state. There is

no current agreement about the cause or physical mechanism of this metallic state.

There are a few reasons why an investigation into this system using cold gases

might serve to answer some of the outstanding questions in 2D superconductors.

First, cold atom systems have better control and reproducibility of disorder strength

and size. As shown in Sec. 4.2, we can carefully control and calibrate our disorder.

Second, there is no “pairing amplitude” to worry about. If there is a quantum

phase transition in our system, it is a Bosonic one. Also, our particles interact only

through low-energy s-wave scattering, so we can rule out the long-range effects of

8



Figure 1.2: Temperature dependence of sheet resistance of Bismuth film as a func-
tion of temperature and disorder. More disordered films are thinner. Except for a
nearly infinitesimal region, the films are either superconducting or insulating as T
approaches 0. Figure from [69].
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Figure 1.3: Temperature dependence of sheet resistance of Ga films as a function of
temperature and disorder. Film thicknesses range from 12.75 to 16.67 Angstroms
and increase from top to bottom. More disordered films are thinner. The films
exhibit a wide range of disorder strength over which the resistance plateaus as T
approaches 0, indicating a metallic phase. Figure from [119].
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the Coulomb interaction causing any observed transition. Finally, the measurements

which can be made in cold atom systems can directly access the phase of the order

parameter, a very difficult feat in superconductors. Our cold atom system spans

a smaller, more controllable set of the parameter space than that available to true

solid systems, and can thus eliminate or constrain some of these theories.

Finally, for reasons that do not involve quantum phase transitions, it is im-

portant to understand the interplay between disorder and vortices, which might

be investigated in 2D ultracold gases. Superconductors are known for the Meiss-

ner effect, an expulsion of all magnetic fields inside the superconductor. However,

most high-Tc superconductors are type II, meaning that above a critical amount

of magnetic field, flux penetrates the material in quantized vortices. These vortices

are small areas of non-superconducting material, shielded from the rest of the su-

perconductor by the Meissner effect. The magnitude of external field required to

penetrate the superconductor is often very small, perhaps µG, meaning that these

systems almost always have vortices penetrating the superconductor. These vortices

repel one another and form lattices when the flux is large, creating “vortex lattices”

[2]. Because the vortices are bundles of magnetic flux, they also move perpendicular

to current flow in a superconductor, causing a small amount of resistance as they

traverse the material.

In fact, this resistance would make high-Tc superconductors nearly useless if

not for the fact that vortices can be pinned by disorder [24]. If vortices are pinned,

they don’t move in the presence of current, so there is no resistance caused by their

movement. Dissipation-free flow in the superconductor is restored. A great deal of
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work is currently focused on maximizing this pinning by changing doping and carrier

concentrations, allowing superconductors to work in a wider variety of magnetic field

strengths. Thus, it is important to understand the interplay between disorder and

vortex transport. If the true microscopic mechanism for the BKT phase transition

is the unbinding of vortex pairs, then we expect that adding disorder near this

phase transition should help us to understand how a disordered potential interacts

with vortices in 2D systems. Because of the fine control and unique measurements

possible in cold atom systems, we should be able to explore measurements that

cannot be done in other systems.

The long-term motivation for studying disorder in 2D ultracold Bose gases is

therefore to answer some interesting questions and gain insight into the mechanisms

behind high-Tc superconductivity. With better understanding of these materials,

room-temperature superconductivity might become possible, an achievement possi-

bly on par with the discovery of the transistor. Because of their Lego-like building

block characteristics, ultracold gases make excellent quantum simulators. However,

there are some hurdles to be overcome, mainly due to the finite size, non-uniform

density, and interparticle interactions in ultracold gases. These hurdles are discussed

in the next section.

1.3 2D Ultracold Gases

This section describes the work that has been done so far with ultracold Bose

gases in 2D without disorder. There are many interesting questions still unan-
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swered. We wish to discern what types of phases and transitions can exist in 2D

ultracold Bose gas systems. The four possible phases are the thermal gas, superfluid,

BEC, and quasicondensate - BEC with a fluctuating phase. The system considered

is a dilute gas of bosons which has very precisely controllable temperature. Ex-

perimentally, the external trapping potential confining these systems modifies the

density, and interactions between atoms become very important at the high densi-

ties and low temperatures required for any transition. This gives us four total cases

to consider: with or without an external trapping potential, and with or without

interactions. For a uniform system in 2D, there is no possibility of BEC, with or

without interactions. However, there can still be a transition to a superfluid at low

temperatures if there are interactions. There is a critical temperature at which the

system transforms from a superfluid to a regular fluid, mediated by vortices. This

is a BKT transition in a superfluid system. In the absence of interactions, there is

no phase transition, but the first-order correlation function gradually changes from

a Gaussian to exponential function.

Next, consider a harmonically trapped system. For a trapped ideal gas with

no interactions, a true BEC is possible [11]. In an ultracold trapped atom system

with weak interactions (the regime of most current experiments), a true BEC is

expected at near-zero temperature, with a BKT transition to a superfluid at slightly

higher temperatures, and finally a transition to a quasicondensate non-superfluid at

a higher temperature [138, 38]. So, for the four different cases considered, true

BEC is only theoretically possible for a trapped gas, and for a trapped gas with

weak interactions, only in the case of near-zero temperature. However, a BKT
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Figure 1.4: In a trapped, non-interacting gas, true BEC occurs at non-zero tem-
perature. In an interacting homogeneous gas, no BEC occurs, but there is a BKT
transition to superfluid. In the trapped, interacting case, there can be superfluid
BEC, non-BEC superfluid, as well as a fluctuating-phase, non-superfluid quasicon-
densate [38]. There is no phase transition in a non-interacting homogeneous system
(not shown). Figure adapted from [143].

type transition to a superfluid occurs in all cases except the infinite uniform non-

interacting fluid. This information is summarized in Fig. 1.4

The phenomena of superfluidity and BEC are closely related, but the connec-

tion is very subtle. Superfluidity is the more general phenomenon. Superfluidity is

defined by its transport properties, while BEC is a description of the multi-particle

quantum state. A non-condensed superfluid in 2D lacks the one-body correlation

length coherence of true BEC. A true condensate is phase coherent over its entire

area, while a quasi-condensate can still have phase fluctuations, and also be non-

superfluid. For a more detailed explanation of the subtle connection between BEC,

quasicondensate and superfluid, see the appendix of [25].
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1.3.1 Non-Interacting Systems

For the case of no interactions between the particles in our system, there are

two different behaviors depending on the presence of a harmonic trapping potential.

We are always interested in the behavior of the first order correlation function

g1(r) ≡
〈

Ψ̂†(r)Ψ̂(0)
〉

, (1.1)

where Ψ̂(r) is the annihilation operator for a particle at a position r. The long

range behavior of this quantity tells us about the phase of the system. For a BEC,

g1 stays finite as r approaches infinity. In 2D, as has been mentioned, this is an

impossibility. Long wavelength phonons always cause g1 to decay as a function of r

by causing positional fluctuations of the phase of the quantum state. However, the

functional form of g1 can differ above and below any phase transition, even if true

long range coherence does not exist.

For the case of a uniform non-interacting fluid, there is no phase transition.

However, there is still a gradual change in the functional form of g1, which goes

from Gaussian in the regular phase to exponential when the phase space density

gets very large [75]. The length scale of the decay of these correlations is related

to the thermal deBroglie wavelength λ = h/
√
2πmkBT , with m the mass of the

particle and T the temperature. Thus, in the high temperature regime

g1(r) ≈ ne−πr2/λ2

, (1.2)

with n the particle density. Meanwhile, at much lower temperatures,

g1(r) ≈ e−r/l, with l ≈ λenλ
2/2

√
4π

. (1.3)
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From Eq. 1.3, we see that we can increase the correlation length l by reducing

the temperature of the system. This indicates that true BEC might be possible

in a finite system, as we could perhaps lower the temperature to the point when l

spans the entire system. Indeed, it can be shown that for a non-interacting Bosonic

collection of atoms in an isotropic trap U(r) = U0(
r
a
)η, BEC occurs at the critical

temperature [11]

kBT
2D
BEC = (

Nh2U
2
η

0

2π2ma2g2(η, 0)
)

η
2+η , (1.4)

where N is the number of atoms, and

g2(η, 0) = Γ(
2

η
+ 1)ζ(

2

η
+ 1), (1.5)

with ζ the Reimann Zeta function and Γ the gamma function.

1.3.2 Interactions in a Uniform System

In order to describe how interactions affect 2D physics, we must describe how

the particles interact. We would like to describe two-dimensional scattering using a

contact interaction g2δ(x) in two dimensions, but in general the scattering potential

is energy dependent, so this cannot be done. However, for low energy scattering

in a situation where the confinement in the third dimension is not too tight, we

can get an approximate g2 which is energy independent. Consider two particles of

mass m moving in a two dimensional plane with low energy so that the scattering

is isotropic. The scattering state is [3]

ψk(x) ≈ eik·x −
√

i

8π
f(k)

eikr√
kr
, (1.6)
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where k is the incident wave vector and f(k) the dimensionless scattering amplitude

for the relative energy E = ~
2k2/m. At low energy, the scattering amplitude is

f(k) =
4

− cot δ0(k) + i
→ 4π

2 ln(1/ka2) + iπ
, (1.7)

which defines the two dimensional scattering length a2.

We are interested then in a value of a2. We will assume that we have a

system in three dimensions tightly confined in z such that the potential along z,

V (z) = mω2
zz

2/2 confines the atoms in the Gaussian ground state. This means that

µ, kBT ≪ ~ωz. The scattering amplitude has been calculated using bound states to

be [117, 118, 53]

a2(a) = lz

√

π

B
exp

(

−
√

π

2

lz
a

)

, (1.8)

with B = 0.905, a the 3D scattering length, and lz = [~/(mωz)]
1/2 the relevant

confinement length scale in the third dimension. Plugging Eq. (1.8) into Eq. (1.7)

yields

f(k) =
4π√

2πlz/a+ ln(B/(πk2l2z)) + iπ
. (1.9)

In all 2D experiments performed so far, the confinement length lz has been much

larger than a so that the imaginary term and the logarithm in the scattering ampli-

tude are negligible, meaning that

f(k) ≈
√
8π
a

lz
≡ g̃2, (1.10)

where g̃2 is a dimensionless scattering length. We can use g̃2 to characterize virtually

all of the behavior of the interactions in our 2D system.
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In a uniform interacting system, there is one phase transition from a normal

fluid to a superfluid via the BKT mechanism. As described in Sec. 1.2, the micro-

scopic mechanism behind this transition is the binding of vortex pairs. A simple

argument gives a remarkably satisfying expression for the critical temperature of

this phase transition. We would like to calculate the free energy F = U − TS of an

unbound vortex, with U the energy of the vortex, T the temperature of the fluid,

and S the entropy of the vortex. First, we can assume, without loss of generality,

that the system is circular with size R, and say that the size of the vortex core is

r0. We can calculate the energy of a vortex by assuming that the velocity field is

v = (~)/(mr). Then

U = πρm

∫

v2(r)rdr =
πρ~2

m
ln

(

R

r0

)

, (1.11)

with ρ the superfluid density. The entropy is determined by the number of ways

that we can place a vortex of size r0 in a system of size R, giving

S = kB ln

(

R2

r20

)

, (1.12)

which means that

F =
π~2ρ

m
ln

(

R

r0

)

− kBT ln

(

R2

r20

)

=
kBT

2
(ρλ2 − 4) ln(R/r0). (1.13)

We can immediately see that the free energy changes sign when ρλ2 = 4, with λ

again the deBroglie wavelength. Because the system size R is much larger than r0,

the coefficient of the free energy is large, meaning that this free energy goes from

being large and negative to large and positive at the transition. This corresponds
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to a free vortex being thermodynamically either very likely or very unlikely, and

provides clear evidence of the phase transition.

An important point here is that ρ is the superfluid density of the system,

and not the bare system density. These two quantities are not synonymous, and

they can be very different, especially in a non-uniform system at finite temperature.

Therefore, calculation of the transition temperature for an interacting cold atom gas

is complicated. A combination of analytical [61] and numeric [123, 124] efforts have

led to the critical phase-space density

Dc = (nλ2)c = ln

(

C

g̃2

)

, (1.14)

where n is the total system density and C = 380±3 has been calculated by classical

field Monte-Carlo technique [123]. In a uniform system, this is expected to be the

transition point from normal fluid to superfluid.

1.3.3 Interactions in a Harmonic Trap

Things get more complicated when a harmonic trap is added to this picture.

The density is non-uniform, which means that the phases in the trap can become

mixed. There are many ways to approach this, with the most intuitive being the

use of the local density approximation (LDA). The local density approximation is

made by substituting a local chemical potential of the form [75, 116]

µ(r) = µ− V (r)− 2mg̃

~2
n(r), (1.15)

into the equation of state for the number of atoms in the gas. In this equation, µ

is the bare chemical potential, V (r) is the external trapping potential, and n(r) is
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the density of the atoms. The equation of state for the phase space density D of

spinless bosons is

D =

∫ ∞

0

dx
1
Z
ex − 1

= − ln(1− Z), (1.16)

where Z = eβµ is the fugacity. It is interesting to note that using the LDA in the

case of no interactions (g̃ = 0) yields a prediction for the critical atom number for

the BEC transition with no interactions in an isotropic harmonic trap of frequency

ω [75]:

N id
c (T ) ≈ π2

6

(

kBT

~ω

)2

. (1.17)

This is the same result that can be derived straight from the density of states of

spinless non-interacting bosons. However, this result using the LDA corresponds to

a diverging spatial density in the center of the trap.

In the presence of interactions, the behavior of the equation of state changes

significantly. As one might reasonably guess, the repulsive interactions prevent the

divergence of the spatial density at the center of the trap, and thus prevent BEC.

Experimental results suggest it is valid to assume that the BKT phase transition

happens when the density at the center of the trap using the LDA reaches the density

given by Eq. 1.14, the critical density in a uniform system. It can be shown that

the critical atom number to reach this central density in the presence of interactions

using this mean-field version of the LDA is [85, 84]

N
(mf)
c

N
(id)
c

= 1 +
3g̃

π3
D2

c . (1.18)

This is a fairly simple and powerful equation for determining the critical atom

number. In practice, the most important corrections to Eq. 1.18 come from the
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fact that the experiments are “quasi-2D”. There are generally still some atoms in

the excited states along the tightly confined z-direction, which modifies the volume

assumed to get N
(id)
c . The excitations along this direction can be accounted for

either semiclassically [86] or with quantum Monte Carlo calculations [85], with the

result that the critical density has to be ∼4-5 times higher than predicted in Eq.

1.18 due to deviation of the density distribution from the strictly 2D case [77]. It was

difficult to see this correction experimentally, as at the BKT phase transition, there

is no discontinuous jump in any quantity other than the non-observable superfluid

density. The critical point was eventually extrapolated from data showing the linear

dependence of interference contrast on atom number [96], which does seem to have

sharp jump at the transition.

Now that we have developed some intuition for the BKT phase transition,

we need to address the two other phases represented in the interacting trapped

case in Fig. 1.4. It has been shown using a classical field Monte-Carlo analysis

that the atom cloud develops an extended phase coherence over the entire cloud at

temperatures 10-20% above the BKT transition temperature [22]. This could be

regarded as a non-superfluid condensate; the BKT transition has not happened, so

there is no superfluidity, but there is some coherence, with a fluctuating phase [90].

This fluctuating phase prevents true superfluidity. Meanwhile, it is theoretically

predicted that at very low temperatures, a true BEC can be obtained, although

this has not been observed yet [25]. It should be noted that there has been a

great deal of theoretical work on the different phase transitions in an interacting

trapped sample beyond what was presented here. I hope to have given the most
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straightforward and easily understandable approach to the problem, even if it is not

the most involved or the approximation is not accurate. Still, the mean-field LDA

does match the experiments discussed in the next section. For more information on

other theoretical work, see the reviews available in Refs. [75, 25, 122] and references

therein.

1.3.4 2D Ultracold Bose Gas Experiments

A large number of experiments have been performed in 2D ultracold Bose gas

systems. The goal of most of these experiments is to identify the different phases

of the gas by examining correlation lengths or density/momentum distributions.

Some of the earliest investigation was done in the group of Wolfgang Ketterle [71]

and Massimo Inguscio [30], and early work with phase defects was done in the

group of Jean Dalibard [78, 144, 143]. This was followed by investigations of the

BKT transition as a function of temperature [76] and atom number [96, 38, 77].

The most recent experiments have revealed the equilibrium density distribution of

a quasi-2D Bose gas [126] and shown universal scale invariance right at the BKT

phase transition [87].

Most of the experiments have struggled with the differences between 2D and

3D. In 3D, the ideal gas approximation is surprisingly accurate, while the 2D physics

is strongly dependent on the interactions and fluctuations of the atoms near the

critical region. In addition, the appearance of a bimodal distribution in momentum,

the consequence of Bose-Einstein condensation in a 3d harmonic trap, is a relatively

22



easy experimental signature of the 3D BEC phase transition. The appearance of a

bimodal distribution or even phase coherence, observed by interfering the system

with a phase reference, is not enough to show a phase transition in 2D, and so

experimental signatures of 2D phase transitions are more difficult. It now seems that

the BKT phase transition happens at a phase space density somewhat higher than

where the system develops phase coherence or a bimodal distribution. However,

this region is still within reach of the experiments, and the theory developed in

this section provides strong corroborative evidence of the observation of the BKT

superfluid phase transition. There is still no consensus as to whether true BEC is

possible in experiments involving trapped interacting atoms, and no evidence has

yet been put forth.

1.4 Disordered Ultracold Gases

There are many groups working on experimental implementations of disorder

in ultracold gases [59]. Aside from investigation into the basic behavior of atoms in

a disordered potential [35, 39, 45, 41, 101], there has been a big push to observe two

different types of physics typically associated with condensed matter systems. The

first is Anderson localization [5], the lack of diffusion of non-interacting particles

in the presence of a disordered potential. This effect has been realized in ultra-

cold gases [19], along with an experimental observation [129] of localization in the

closely-related Aubry-André model [10]. The second pursuit is for an experimental

observation of a Bose glass phase [64] in an optical lattice. Work in this direction
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has been done in Ref. [58], and the corresponding disordered Bose-Hubbard model

has also been explored in Refs. [106, 151]. These experiments reveal that the effects

of disorder in ultracold gas systems are analogous to the effects in solids, and add

credence to the motivation of using ultracold gases in quantum simulation.

For the purposes of the work performed in this thesis, the most useful results

from these experiments analyze how a BEC responds to a disordered potential.

It turns out that in equilibrium, disorder introduces small density modulations in

quasi-1D BEC’s [35, 39]. When the atoms are released from the trap, these initially

small modulations quickly convert (via mean-field interactions) into phase fluctua-

tions which lead to large density modulations later in the expansion, when the atoms

are typically imaged [39]. If the disorder strength is increased to the point that the

condensate fractures initially, then the random phases of each of these pieces de-

stroy the modulations during expansion. There has not been much work done on

this outside of quasi-1D systems, but the physics should be similar.

1.5 Disordered 2D Experiments

There has been very little work done on Bosonic 2D systems with disorder. One

very recent experiment in ultracold atom systems has observed anisotropic diffusion

in 2D in the presence of a disordered potential [130], most likely as a precursor to

a measurement of Anderson localization. There has also been some experimental

work on the BKT transition in disordered thin films of 4He [99] or CaF2 [100], along

with a theoretical effort to explain the results [12]. These experiments showed that
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disorder broadens the sharp jump in superfluidity, but this broadening might be

caused by the finite size of the system.

We can use the body of knowledge about 2D ultracold gases to lead our in-

tuition about experiments with disorder in 2D. The results of these experiments

can help us to constrain models of superconductivity, determining whether observed

phase transitions in superconductor systems are truly bosonic or perhaps whether

they involve the Coulomb interaction. The ability to observe vortices and measure

correlations in ultracold atom systems should lead to new insights which cannot

be gleaned from condensed matter systems. The interactions between disorder and

vortices might be better understood through these investigations as well.

It should be emphasized that the difference between the experiments presented

here and previous experiments on 2D ultracold gases is the addition of disorder.

Until now, there has been no experimental study of the effect of disorder on the

properties of the BKT phase transition in ultracold gases, though the phase transi-

tion without disorder has been investigated (Sec. 1.3.4). Preliminary results in our

system indicate that disorder smoothly destroys the integrated visibility of interfer-

ence patterns that indicate long range phase coherence. It is less clear whether the

disorder has any effect on the thermally activated vortices in the system.

The structure of this thesis is to provide a background for the basic experi-

mental apparatus used to create BEC’s in Chapter 2, followed by a detailed look

at this process in Chapter 3. Chapter 4 details how we confine our 3d BEC to two

dimensional dynamics and add a disordered potential. Finally, the measurements

and results are presented in Chapter 5.
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Chapter 2

Experimental Sequence

2.1 Overview

This section describes the physics behind our basic experimental set-up. I have

chosen to separate the theory behind our experimental set-up from the construction.

Much of the theory has been well described in the references given in this section.

Therefore, this is a very brief introduction to the method that we use to obtain Bose-

Einstein condensates. Where possible, I will point out how our set-up differs from

the “typical” BEC set-up. Putting the theory first will help motivate the reasons

behind the physical construction of the apparatus described in Chapter 3.

The starting point of almost everything that we do is a BEC. In order to

form a BEC in a dilute gas, we must trap and cool a source of thermal atoms at

373 Kelvin to temperatures of only a few tens or hundreds of nanoKelvin, nearly

ten billion times colder. To date, there are only a few ways of attaining these

tremendously cold temperatures in dilute gases [116]. The main method to do the

bulk of the cooling is laser cooling, followed by evaporation [92], with confinement

in either an optical [72] or magnetic trap [18]. In our experiment, we use both types

of confinement. In addition, it is not uncommon to transport atoms to other areas

of a set-up, as in [73], which we also do. A typical experimental sequence consists

of the following steps:
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1. Zeeman slow a thermal beam of atoms

2. Load a Magneto-Optic Trap (MOT)

3. Transfer from the MOT to a magnetic trap

4. Cool using radio-frequency evaporation (can cool to BEC)

5. Load an optical trap

6. Transport the atoms to a science chamber

7. Turn on the second optical trapping beam for additional confinement

8. Optically evaporate to BEC

2.2 Thermal Source and Zeeman Slower

Our source of atoms is a heated pool of rubidium inside our vacuum chamber.

It is described in more detail in Section 3.2.2 and in [55]. The atoms are heated to

100 ◦C, and then sent through a tube so that a beam of atoms enters the region

where we do our trapping and cooling. If the tube length is chosen appropriately,

then the transverse velocity of the beam can be made small.

The atoms in the beam are moving too fast to be captured by the MOT, so the

first stage of cooling is done using a Zeeman slowing technique [120, 14, 109, 49].

This is one of many cooling techniques that makes use of the fact that photons

carry momentum. When an atom absorbs a photon, it absorbs the momentum

of the photon. At a later time, it will re-emit this photon through spontaneous
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emission, getting a momentum kick opposite to the direction of emission. However,

because the direction of spontaneous emission is random and symmetric (such as

a dipole pattern), the average momentum kick after many emission events is zero.

Therefore, if an atom absorbs a large number of photons from a laser, there will be

a net momentum transfer in the direction of laser propagation, as the re-emission

kicks will average to zero. This momentum transfer can be used to slow the forward

velocity of the beam.

Since the atoms only absorb an appreciable number of photons if the laser

frequency is within a few linewidths of the atoms’ resonant frequency (6 MHz for

87Rb), the only trick to this technique is keeping the laser on resonance with the

atoms. The atoms have a changing effective resonance frequency as they slow due

to their changing Doppler shift. This is compensated by a changing magnetic field

as the beam propagates.

We use a σ+-σ− hybrid slower design, as in Ref. [15, 154]. Since different

atomic hyperfine levels shift differently in a magnetic field, the laser will only be

on resonance between two hyperfine levels. Therefore, optical pumping to different

sublevels should be kept to a minimum. In original slower designs, this was imple-

mented by picking either σ+ or σ− for the polarization of the slower beam. With

this polarization the atom only makes transitions between two states. For example,

for σ+ polarization, with the laser on resonance for the F = 2 to F′ = 3 D2 transition

hyperfine state (Fig. 2.1), the F = 2, mF = 2 ground state magnetic sublevel can

only make a transition to the F′ = 3, mF = 3 excited state, even in zero magnetic

field, and the only allowed decay is back to the mF = 2 ground state, creating an
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effectively two-level “stretched state” system. If the laser was π polarized, the atom

could be pumped and decay among different magnetic sublevels, possibly shifting

the atom completely off resonance if a magnetic field is present.

The two different polarizations require two different magnetic field profiles

to keep the atoms on resonance, as shown in Fig. 2.2. For σ− polarization, the

energy levels get closer together in higher field, while for σ+ polarization, the energy

levels get farther apart in higher field. Since the Doppler shift pushes the excited

state to lower energy, σ+ slowing requires a decreasing magnetic field as a function

of position, with the laser frequency above the bare (no field or Doppler shift)

resonance, while σ− slowing requires the opposite. A hybrid slower starts in a

high field as a σ+ slower, but the field crosses zero at some position, switches sign,

increases in magnitude again, and becomes a σ− slower. Only one laser is needed

for this. At the zero crossing, the atoms must be moving fast enough to diabatically

change their spin from the “+” stretched state to the “−” stretched state. Because

the direction of the field has changed, the polarization of the incoming beam changes,

now becoming σ− light for the new switched magnetic field axis.

This approach has advantages over each of the non-hybrid designs. The σ+

slower design has the disadvantage that because the magnetic field must be small at

the exit of the slower, the slowing laser must be close to resonance. Since the atoms

are supposed to be captured in a MOT after slowing, the slower beam always passes

through the MOT, making it undesirable for the slower beam to be near resonance.

The σ− slower solves this problem, since the magnetic field will be large at the exit

of the slower. The advantage of the hybrid slower over the σ− design is that the
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Figure 2.1: 87Rb level structure, with arrows indicating transitions used in the
experiment. Frequencies are detunings from nearest indicated transition.
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Figure 2.2: 87Rb Zeeman splitting, D2 excited state and ground state. Allowed level
transitions for given polarizations are indicated. Figure from [14].

total amount of required current is less. The total amount of slowing is proportional

to the total difference in magnitude of the field. Because the field in the hybrid

design crosses 0, the total magnitude difference can be large without either of the

individual maximums being large. This results in a lower overall amount of current

in the coil, less required power and cooling, and less stray field at the end of the

slower.
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2.3 MOT

The MOT is perhaps the most important tool in cold-atom physics [125, 109].

It combines the momentum transfer technique used in the Zeeman slower with a

position-dependent force supplied by a magnetic field gradient. This traps the atoms

in a volume on the order of mm3 at temperatures on the order of 100’s of µK.

To get an idea of how a MOT works, it is easiest to consider a 1D example.

Imagine that an atom is sitting at the intersection of two counter-propagating beams,

each detuned slightly below the atomic resonance of the atom. If the atom starts to

move, its Doppler shift will make the beam propagating opposite to its velocity seem

closer to resonance. This makes it more likely to absorb photons which will slow its

velocity, supplying a velocity-dependent force. However, this force does not confine

the atoms, since there is no position dependence to the light force. A magnetic

field gradient is then applied to add position dependence to the light force, as in

Fig. 2.3. Imagine that the atom has only one ground state with zero spin, and the

excited state has three spin states. If the light carries the correct polarization, then

the atom will be more likely to absorb a photon and transition to the level that is

shifted closer to resonance. For example, in Fig. 2.3, if the atom is to the right

of the center, the me = -1 level is closer to resonance, and the light propagating

to the left has σ− polarization. This makes absorbing a photon from that beam

more likely. The reverse is true if the atom is to the left of the center of the trap.

Thus, the combination of light polarization and magnetic field gradient supplies a

position-dependent force to the atoms. A MOT then supplies both cooling, due
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to the velocity-dependent absorption, and trapping, due to the position-dependent

absorption. Generalization to 3D requires six beams, two from each direction, and

a quadrupole field, creating the correct magnetic field gradients in each direction.

It should be noted that real atoms have more complicated level structure than

shown in Fig. 2.3. In particular, in 87Rb, there is another ground state lower in

energy (F = 1). The atom can make off-resonant transitions to F’ = 2 and then

decay to the F = 1 ground state (see Fig. 2.1). This requires repumper lasers in

both the slower and the MOT to put the atoms back into the cycling transitions.

If this is not done, it only takes a few milliseconds for all of the atoms to end up in

the wrong ground state.

There are many different ways to create the required combinations of lasers

and magnetic fields for a MOT. Our MOT magnetic field is created by a U-shaped

wire sitting a few mm away from the atoms, plus a constant bias field, similar to

[74, 135, 153]. This field geometry restricts optical access, so we have a “mirror

MOT” (Fig. 2.4). Instead of sending six beams at the atoms, there are four large

beams. Two of the beams are reflected off of a mirror sitting in between the atoms

and the U-shaped wire. Since the beams are large, these two beams hit the atoms

both before and after reflection. For more details, see Section 3.4.

2.4 Magnetic Trap

The momentum transfer of the laser-atom interaction is useful to cool the

atoms to a certain point, but the energy gain from each absorbed photon will set a
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Figure 2.3: Simplified schematic of a MOT. The laser frequency ωL is detuned
lower than resonance to compensate the Doppler shift. A magnetic field gradient
shifts the excited states so that on one side of the zero field, the mF=+1 level is
closer to resonance, with the opposite true on the other side of zero field. The laser
polarizations must be as shown to make the transition to the correct spin state.
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Figure 2.4: Schematic of “Mirror MOT” operation. Each beam hits the atoms
(black circle) before and after bouncing off of the mirror, imitating perpendicular
sets of counter-propagating beams.
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lower limit on attainable temperatures in a MOT. Therefore, we transfer from the

MOT to pure magnetic trapping.

Before transferring to the magnetic trap, we have a stage of additional cooling

known as “optical molasses”. Optical molasses has attainable temperatures on the

order of a few µK. Temperatures in a MOT are limited by the high atom density

through“radiation trapping”. Photons emitted by one atom have a good chance

of being reabsorbed by another atom in the MOT, creating an outward radiation

pressure at typical MOT densities. This effect can be mitigated by decreasing the

density of the MOT, which we achieve by momentarily turning off the magnetic field

gradient and detuning the MOT beams farther from resonance, which decreases re-

absorption. Because the magnetic field gradient is off, there is no longer confinement

for the atoms, but there is cooling due to the beams. The temperature quickly drops,

and then the atoms start to leave the original trapping area. We confine them in a

magnetic trap before the size of the cloud grows too large.

Referring to Fig. 2.1, we see that there are two different ground states, F =

1 and F = 2. In addition, as seen in Fig. 2.2, these two levels are each split into

different spin states which have different energies in non-zero magnetic fields. We

choose to trap the F = 2, mF = 2 spin state, which is at its lowest potential energy

at the minimum of a magnitude field. An optical pumping pulse is applied just

before turning on the magnetic trap to ensure that most of the atoms are in the

correct state (Section 3.5).

Magnetic trapping works on the principle that the potential energy of an atom
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with a magnetic moment

µF = gF ·mF · µB (2.1)

with gF the Landé g-factor and µB the Bohr magneton, is given by

V (~r) = − ~µF · ~B(~r) (2.2)

If you make the assumption that the atom is cold enough that its spin adiabatically

follows the direction of the magnetic field, then only the magnitude of the magnetic

field matters. Then, the sign of µF determines whether the atom is high-field seeking

or low-field seeking. Because Maxwell’s equations forbid a 3D magnetic field maxi-

mum in free space, magnetically trappable states are generally low-field seeking. In

87Rb, these states are the F = 2, mF = 1 and mF = 2 states or the F = 1, mF = -1

state (due to the change of sign of gF between the two different F levels).

The type of trap we use is an Ioffe-Pritchard trap [109, 18]. Imagine four

infinitely long current-carrying wires situated equidistant from each other. Each

wire runs current in the opposite direction as its nearest neighbors. By symmetry,

the magnetic field for these wires is constant along the axis of the wires. For any

given plane along the wires, the magnetic field will be 0 at the center, and then

increasing in any direction away from the center, as in Fig. 2.5. This configuration

provides trapping for low-field seeking atoms in the plane. “Pinch coils” running

current so the field from each coil points in the same direction are used to confine

the atoms in the third direction. It is worth noting that the pinch coils run current

in the same direction to prevent Majorana spin flips [28, 145]. The magnetic field

magnitude would be zero at the center of the trap if the currents in the pinch coils
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Figure 2.5: Vector field profile of 2D quadrupole. Direction of arrow indicates field
direction, length of arrow indicates magnitude of field.

are opposite. If the atoms see a zero field, their spins cannot be defined, since there

is no preferred axis in space. Then, if the atoms move away from the center of the

trap, they might have flipped their spin with respect to the direction of the field

they enter, causing them to become untrapped. Our trap uses a field profile very

similar to this, but created in a very different way (Section 3.6).

2.5 RF Evaporation

RF evaporation in a magnetic trap is used to increase the phase space density

of the gas by many orders of magnitude [82, 92]. It works by the same principle as
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regular evaporation. In a trapped gas sample, the atoms have a Maxwell-Boltzmann

distribution of energy. Our trap has a finite depth, and the atoms most likely to be

found near the top of this trap have the most energy. If we lower the depth of the

trap slightly, some of the atoms with the most energy will leave the trap. The atoms

that are left will then rethermalize via collisions [102]. When they do, the average

energy of the gas will be lower, indicating a lower temperature. This process can

be repeated until the number of atoms gets too low to rethermalize efficiently. The

efficiency of the process and lowest attainable temperature depend crucially on the

collisional properties of the gas.

The RF photons lower the depth of the trap by causing transitions from

trapped spin states to untrapped spin states. As seen in Fig. 2.2, the magnitude of

the magnetic field changes the relative energy spacing between different spin states

in a given F hyperfine manifold. This energy corresponds to radio frequencies, and

the energy between states is greater in a larger magnetic field. The magnetic field

magnitude gets larger farther from the center of the trap, and atoms with more

energy will sample the regions of higher magnetic field. If the RF frequency is set

to resonantly drive transitions between spin states for a magnetic field that only

the highest energy atoms will sample, then the depth of the trap is effectively made

smaller. The RF photons do not drive transitions for any atoms whose trajectories

do not have enough energy to take them through the resonant magnetic field. If the

RF power is set correctly, the process of ejecting atoms from the trap can be made

nearly 100 percent efficient. By varying the frequency of the RF radiation, the trap

depth can be modified to be nearly any value. Any atom with enough energy to
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have a trajectory that samples the resonant magnetic field value will be ejected from

the trap.

2.6 Optical Trap

Though RF cooling can be used to cool the sample below the BEC transition

temperature, we often want to move the atoms to the “science chamber”, a small

glass chamber with better optical access than the region used for magnetic trapping.

We use an “optical tweezers” technique [73], loading the atoms into a focused-beam

trap and then translating the focus to move the atoms.

Atoms interact with off-resonant light through the induced electric dipole mo-

ment. It can be shown that potential felt by a two-level atom in the presence of

off-resonant light is given by [72]

U(~r) =
3πc2

2ω3
0

Γ

∆
I(~r), (2.3)

with c the speed of light, ω0 the natural resonant frequency of the atom, ∆ the

detuning of the laser from atomic resonance, Γ the decay rate of the excited state,

and I(~r) the intensity of the laser. Equation 2.3 shows that the atom feels a potential

which is linearly proportional to the intensity of an incident laser. In addition,

the sign of the detuning determines whether the atom is attracted or repelled from

regions of high intensity. We detune our laser below the atomic transition frequency,

meaning that the atoms are attracted to the focus of the beam. Since the optical

potential is not very deep, it is necessary to pre-cool using RF evaporation before

loading atoms into the optical potential.
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Once the atoms are loaded into the optical trap, the focus of the beam is

translated and the atoms follow, moving a distance of approximately 30 cm. With

the atoms in the science chamber, an additional beam is used to increase the con-

finement of the atoms. More cooling will be required once the atoms are moved, as

the collision rate in the optical tweezer is insufficient.

Optical evaporation proceeds based on the same principles as RF evaporation.

In this case, the depth of the trap is lowered by simply decreasing the intensity of

the beam. However, the oscillation frequencies of the optical trap in the radial (ωr)

and axial (ωz) directions are [72]:

ωr =

√

4U(0)

mω2
0

(2.4a)

ωz =

√

2U(0)

mz2R
, (2.4b)

with U defined in Eq. 2.3, ω0 the resonance frequency of the atom, m the mass of the

atom, and zR = πω2
0/λ the Rayleigh range of the laser with wavelength λ. Therefore,

the oscillation frequencies, and hence the collision rate, also depend on the intensity

of the beam [112]. Optical evaporation must follow a different trajectory of trap

depth vs. time as the oscillation frequencies change during evaporation. Despite

this, optical evaporation can still be very efficient, as the initial confinement is

typically very tight, allowing a high collision rate. Our optical evaporation produces

BEC’s after about 10 seconds of evaporation.

The above experimental sequence producing BEC’s in either the magnetic or

optical trap is the starting point for most of the experiments that we do. A more

detailed look at the technical details of the above sequence follows below, and the
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design and implementation of lattices and disorder is described in chapter 4.
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Chapter 3

Technical Details of BEC Production

3.1 Overview

This chapter details the experimental apparatus used to create BEC’s. The

intended audience is people that will be working in this lab in the future, or peo-

ple that are building a BEC apparatus. Many of the topics covered here are also

discussed in Ref. [55], including many of the part numbers for the equipment.

3.2 Vacuum

3.2.1 Main Chamber

In order to achieve Bose-Einstein condensation, we must be able to confine

our gas of atoms with lasers and magnetic fields for about 30 seconds. This requires

an ultra-high vacuum environment, on the order of 10−11 Torr, as collisions with

background gases limit the amount of time we can hold atoms in a trap. In order

to get and maintain this type of vacuum, all vacuum connections on the chamber

are conflat-type, sealing with a stainless steel knife edge digging into a both sides

of a copper gasket. There are two sections to the chamber, maintained at different

pressures. The main UHV chamber is on the order of 10−11 Torr, while the Rubidium

oven is at 10−9 Torr. Originally, the chamber was designed without an oven, using
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Figure 3.1: Picture of the outside of the main vacuum chamber. The 4 way cross is
visible, as are 3 of the 4 coils attached to the spherical octagon. The ion pump is
attached to the left side of the 4-way cross.

Rb getters instead [55].

The main UHV chamber is pictured in Fig. 3.1. The bottom is a spherical

octagon, with 8 2-3/4” Conflat connections. This is connected on the top by 4-

way 6” conflat cross. Attached at the top of the cross and hanging down into the

spherical octagon is the structure shown in Fig. 3.2, used to create the magnetic

fields for our MOT and magnetic trap (see Secs. 3.4, 3.6). One side of the cross

is an ion pump with a titanium sublimation pump. The other side of the cross is

reduced to 2-3/4” conflat and attached to a 2-3/4” T in order to put in a nude ion
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Figure 3.2: Structure to hold and cool the U and Z shaped wires used for the MOT
and magnetic trap. The whole structure is mounted upside down from this picture
inside the vacuum chamber.
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gauge to measure the pressure in the chamber.

The spherical octagon has 5 of its 8 ports attached to vacuum windows, and

a large 6” window on the bottom. Three of the windows are anti-reflection (AR)

coated for 780 nm normal-incident light (MOT), while 2 of them are AR coated for

normal-incident light at 1550 nm (optical trapping) (Fig. 3.3). The large window

on the bottom is coated for 45◦-incident 780 nm light. The other three ports on the

octagon are used for the Zeeman slower, an extension for a microchannel plate (for

studies on Rydberg atoms), and a science cell. The chamber for the microchannel

plate is a 2-3/4” cube attached to a 2-3/4” nipple. The cube’s 5 other sides have 2

blanks and 3 windows. The window on the microchannel plate chamber which looks

in on the main chamber is coated for 1550 nm light, while the other two windows

are coated for 780 nm.

The science cell is a quartz fluorometer cell available from Starna cells, part

number 3/Q/20. It is 12.5 x 22.5 x 45 mm. We have this cell attached to a quartz-to-

metal seal connected to a conflat flange by a company called Bomco. Interestingly,

Bomco claims that the quartz to metal seal is insensitive to temporal temperature

gradients. They said that just after making the seal at high temperatures, they dip

the seal in liquid nitrogen to cool it. We have the optics shop and glass blower at

NIST attach the fluorometer cell to the quartz to metal seal. A disc that is the

same size as the cylinder attached to the flange is fritz-sealed to the cell, and then

the glassblower attaches the disc to the cylinder (Fig. 3.4).

The structure inside the vacuum chamber has 2 leads for the U-shaped wire

to create the MOT magnetic field, 2 leads for the Z-shaped wire used to create the
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Figure 3.3: Top view of spherical octagon forming the bottom part of the main
vacuum chamber. Beams entering each window are shown, along with externally
mounted coils. Arrows indicate field direction on exterior coils, and current flow in
the U and Z-shaped wires. Windows are anti-reflection (AR) coated at 90◦ incidence
for 780 nm (slower axis, y-axis) or 1550 nm (MCP axis, x-axis). The science cell is
not AR coated. Not shown in this picture are the coil wound around the bottom
flange used for the MOT or the MOT beams entering from the bottom of the
chamber at 60◦ in the x-z plane.
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Figure 3.4: Photo of science chamber attached to the main vacuum chamber.
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magnetic trap, and 4 leads which were previously used to run current for Rubidium

dispensers [55], but which now serve as electrodes used in experiments with Rydberg

atoms. In addition, there are two water feedthroughs which feed a stainless steel

can attached to a copper block, in turn connected to a piece of aluminum-nitride in

which sit the U and Z-shaped wires. Aluminum-nitride was chosen for this purpose

because although it is an electrical insulator, it is a good thermal conductor. On top

of the wires sits a gold mirror used to reflect MOT beams, held in place by metal

clips screwed to the copper block behind the aluminum-nitride. The gold mirror is

a silicon wafer coated with gold by the Fab Lab at the University of Maryland and

then broken into a 3 cm square.

3.2.2 Rubidium Oven

A schematic of the inside of the Rb oven is shown in Fig. 3.5 and in [55]. An

additional picture showing the cold plate, ball valve, and end of the collimator is

shown in Fig. 3.6. The Rb sits in a 1-1/3” inch bellows which we use to crush the

ampoule that contains the Rb. This hangs from a 1-1/3” “tee” which is connected

to a spherical square chamber on one side and blanked off on the other side. The

spherical square chamber (2-3/4” on sides, 4-1/2” on the top and bottom) is con-

nected to the tube for the Zeeman slower on the side opposite. The connection on

the bottom has both a 3/4” copper feedthrough and a rotary feedthrough; one side

is an all-metal valve, one side is a window, and the top is connected to an extender

tube and then to a 30 L/s ion pump. The all-metal valve is used to rough out the
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Figure 3.5: Cut-away side view schematic of the Rb oven.

system before turning on the ion pump, and the extender tube is needed to decrease

the effect of the fringing magnetic fields from the ion pump.

Inside the bellows, next to the ampoule, we put a gold mesh (gold evaporated

on a stainless steel mesh). This is an attempt to mimic the “candlestick source”’

[148, 79]. Once the ampoule is broken and the bellows is heated, the Rb should

turn into a liquid, and the mesh should stick into this liquid and then up out of the

bellows into the tee. However, it is unclear whether our mesh serves as a source of

atoms from the top of the mesh or recycles atoms back into the pool of Rb. The

original candlestick source has two different meshes for each of these purposes. If

the mesh is at a higher temperature at the top, then capillary action drives the Rb
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up to the top, and the heat at the top drives the atoms off of the mesh, so the

top of the mesh acts as a source of hot atoms. However, if the mesh is cooler at

the top, atoms can collect there, and then gravity and capillary action can carry

them back down the mesh into the pool of Rubidium. According to [79], the reason

gold-plated stainless steel is used is that Rb will only wet to stainless steel if the

stainless steel is very clean. The process of gold plating seems to electropolish the

surface of the stainless steel, making it very clean. The Rb forms an alloy with the

gold, effectively removing it, and then wets to the stainless steel. In our case, the

oven seems to work with the mesh, so we continue to use it.

Inside the tee sits a tube to collimate the beam of atoms. This is a copper

tube, approximately 2 inches long and tapered to two different diameters. The

larger diameter, closer to the bellows, serves to sit just interior to the tee to help

hold the tube in place. The smaller diameter closer to the chamber serves as the

actual collimator. The smaller diameter is about 2 mm inner diameter. The tube

is held in place by a spring which pushes from the blank on the back side of the

tee. Additionally, the smaller part fits snugly into the gasket holding the tee to the

reducer which connects it to the spherical square chamber. The gasket is a copper

disc which was drilled out with a 3/8” hole to hold the collimating tube.

Closer to the main chamber, sitting about 2” from the the end of the colli-

mating tube, in the spherical square chamber, is a 3” diameter copper plate with

a hole drilled in it. This plate is attached to the copper feedthrough, and we cool

the feedthrough to approximately -10◦ C with a large copper block attached to a

thermoelectric cooler (TEC). The back of the TEC is cooled with a Thermaltake
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Figure 3.6: View looking down into spherical square chamber just in front of the
Rb source.
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closed-loop water cooler intended to cool computer processors for overclocking. The

plate provides additional collimation for the atomic beam and also catches the Rb

which sprays outside the confines of the beam. This is important, as Rb will ruin

the ion pump on the source side.

Next, closer to the main chamber and Zeeman slower, is a sphere of 1” di-

ameter with a large hole drilled through the center. This sits just in front of the

tube used to maintain the pressure differential between the main chamber and the

oven chamber. It is connected to the rotary feedthrough, and it is used to reduce

the conductance to the main chamber when we are not actively loading the MOT.

The ball rotates so that during the MOT load atoms are free to move through the

large opening, but that opening is perpendicular to the pressure differential tube

at all other times. The tube to maintain the pressure differential between the oven

and the main chamber is the last object between the oven and main chamber. This

tube serves to maintain a pressure differential of 2-3 orders of magnitude. Based on

the pressure reading in the main chamber, we expect that the pressure in the oven

is maintained at a few 10−9 Torr.

3.3 Lasers

There are four lasers currently used in the experiment. Two are diode lasers,

a Toptica DLX-110 and a Sacher Lynx laser. We also have a Titanium-Sapphire

(Tekhnoscan TIS-SF-07) laser pumped by a 10 W 532 nm Coherent Verdi V-10.

Finally, we have a 15 W fiber laser (IPG photonics ELR-1567-LP-SF). Both diode
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lasers are 780 nm diodes. The Sacher is 100 mW and used for repumping on the

MOT and Zeeman slower beams. The Toptica is 500 mW and used for the MOT

beams, slower beam, optical pumping, and probe lasers. The Toptica actually has a

1 W diode installed, but because it was refurbished, it still has a low power optical

isolator which restricts the output to 500 mW. The Titanium-Sapphire (Ti-Saph)

laser is tunable between 750 and 850 nm, outputs approximately 1 Watt of power

when fully tuned near its peak wavelength, and is used for optical lattices and the

creation of speckle disorder. The fiber laser outputs 15 W at 1563.8 nm and is used

for the optical trap. Beam path diagrams for the diode lasers are in Ref. [55], while

the fiber laser beam path diagram is in section 3.8, and the Ti-Saph diagram is in

chapter 4.

3.3.1 Frequency Stabilization

The two diode lasers have to be frequency stabilized to drive atomic transitions.

The frequency width of the laser should be less than the linewidth of the transition

that the laser is driving. For 87Rb, the linewidth of the D2 transition is about 6 MHz

[142]. For the trapping laser, the requirement is actually more stringent than that,

since measurements are made using absorption of this light by the atomic sample.

If the frequency width of the laser is too wide, the absorption will be inconsistent,

even with repeated measurements of the same sample. Therefore, this frequency is

stabilized to 500 kHz. The requirements on the repumper are less stringent, so a

less complicated lock set-up is required.
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In order to lock the frequency of a laser, we must generate a voltage signal

proportional to the frequency of the laser which switches sign at the frequency at

which we want to lock. The output of a feedback circuit can then be used to “push”

the frequency back to the desired value by applying a voltage to either the piezo

controlling the grating feedback to the laser, or to the diode current, or both. For

the Toptica (trapping) laser we feed back to the current, while we apply feedback

to the piezo of the Sacher (repumper) laser.

The error signal input to the lock is generated from the trapping laser using

a technique similar to Pound-Drever-Hall [23]. An electro-optic modulator (EOM)

phase modulates the beam at 14 MHz. This generates frequency sidebands at the

driving frequency which are 180◦ out of phase with one another. When the laser

frequency is sitting exactly at the peak of an absorption feature, both sidebands

are absorbed equally by symmetric absorption on either side of the peak. However,

if the center frequency is changed to the side of the absorption feature, one of the

sidebands will be absorbed more than the other, giving an intensity modulation at

the sideband frequency. The phase of this modulation will depend on which side

of the resonance the center frequency is. This can then be mixed with the driving

sideband frequency to give an appropriate locking signal, using the set-up shown in

Fig. 3.7. When the phase of the modulation switches, the mixed output voltage

switches sign. Electronically, the bias-T directly after the photodiode prevents any

DC voltage from going to the sensitive RF amplifier used to amplify the 14 MHz

signal. Because there are many higher frequency sidebands generated, the output

of the mixer must be filtered to obtain the low-frequency lock signal. This laser is
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Figure 3.7: Electronics setup to generate error signal used to lock trapping laser.
“MC” indicates a Mini-Circuits part. The dotted line is the pump beam used to
generate the Doppler-free spectrum of the atomic resonance.

locked with a commercial feedback circuit, the Precision Photonics LB1005 (now sold

by Newport). The Doppler-free absorption feature is generated using a saturated

absorption technique [103, 50, 51], illustrated by the crossing of the additional strong

pump beam (dotted) in Fig. 3.7.

The repumper laser is locked using a DAVLL method [42]. Due to the energy

level shift in a magnetic field shown in Fig. 2.2, the resonant frequency for σ+

polarized light is shifted from that of σ− in a non-zero magnetic field, since each

type of light drives a different transition. A beam with a mixture of the two po-

larizations is sent through a Rb vapor cell with magnets alongside it. The beam is
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subsequently split into its constituent polarizations with a polarizing beam-splitter

and then the absorption profile of the two is directed onto two separate photodiodes

and electronically subtracted. This gives a zero right in the middle of the absorption

feature, where each polarization is absorbed equally, and then an opposite voltage

on each side of the feature. Since the absorption spectrum is not Doppler-free in

this case, the feature is much wider than the locking signal used on the other laser.

In addition, the magnetic field from the magnets used to form the magnetic field

in the cell is very sensitive to temperature changes. Therefore, we put the magnets

and vapor cell inside a box and stabilize the temperature. We have an additional

Doppler-free saturated absorption signal which we use as a frequency reference to

adjust the lock point.

Since the other two lasers used in the experiment are far off resonance for

the atoms, they do not need to be frequency stabilized. The IPG fiber laser for

the optical trap has a linewidth of 5.5 MHz (FWHM). The Ti-Saph comes with an

electronic control box which can be used to lock the frequency by dithering a piezo

on the thick etalon and feeding back, but we rarely use it.

3.3.2 Intensity Stabilization

The requirements on the intensities of the different lasers are reversed from

their frequency requirements. The two diode lasers’ intensities do not matter much,

while the Ti-Saph and fiber lasers must have their intensities stabilized. For the fiber

laser, this is because the depth of the optical trap is directly proportional to the
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intensity. When we evaporate in the optical trap, we must be able to precisely control

this depth. For the Ti-Saph, many of our measurements require a precise knowledge

of the depth of the optical lattices formed by the laser, which are proportional to

intensity.

The two different lasers share the same basic lock set-up. A small amount of

light from the beam is sampled after either an EOM or an acousto-optic modulator

(AOM). This light is used as the input error signal for the lock, and the feedback

goes to the AOM or EOM.

There is an EOM in the beam path for the fiber laser which can be used

to control the intensity of the light. A voltage across the crystal will change the

polarization of the light traveling through the EOM, and a beam cube converts this

polarization change to an intensity change. A Thorlabs photodiode is placed behind

the mirror directly after this EOM. The leakage light through the mirror is enough

to lock the laser, since the photodiodes we use (Thorlabs DET10C) are very sensitive

at 1550 nm. The signal from the photodiode goes to a home-built transimpedance

amplifier and is used as one input to a Precision Photonics LB1005. The other input

to the LB1005 is an analog voltage from the computer control. The output of the

lock will feedback to adjust the intensity on the photodiode so that the photodiode

output voltage matches the computer control voltage. There is a low-pass RC filter

between the computer control and the lockbox. This helps a great deal in preventing

noise on the computer control signal from being written onto the intensity of the

laser. However, it greatly restricts how fast we can change the intensity of the laser.

Meanwhile, the overall bandwidth of the lock is limited to about 200 kHz by the
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EOM high voltage controller.

Due to the comparatively lower power involved in the beams from the Ti-Saph

(<250 mW per beam), there are fibers used to direct the beams to the experiment.

The AOM’s used to control the intensity of these beams are placed before the inputs

of the fibers, with the first order diffracted beam used as the fiber input. Then, the

beam is sampled using either a glass slide or a Thorlabs beam pick-off (BSF10-B).

A short focal-length lens is used to focus the sampled beam onto the photodiode

(Thorlabs PDA36A). If the beam is small at the pick-off, then the reflections from

the front and back surfaces can be separated and a razor blade can be used to block

one of the reflections to prevent interference on the photodiode. Feedback from

an electronic lockbox adjusts the RF power (with a voltage controlled attenuator,

Mini-circuits ZX73-2500+) to the AOM to maintain a constant optical power in the

beam after the fiber. One disadvantage to this set-up is the strong thermal beam

steering of the AOM. We must be careful to keep the RF power incident on the

AOM’s constant so that when we want the beam on, it is aligned into the fiber.

Otherwise, when the AOM has cooled down, the injection into the fiber will be

poor, leading to a low maximum output until the AOM is fully warm. A shutter is

in place so that the RF power to the AOM’s only has to be off for the time required

to open the shutter, on the order of tens of milliseconds.
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Figure 3.8: Calculated magnetic field profile of the Zeeman slower. The source is at
distance zero.

3.4 Zeeman Slower and MOT

The Zeeman slower is designed with 7 separate coils wound on an aluminum

tube of 3” diameter. Each coil is 2” wide, and the coils are all wound on the tube

butted up against the next coil in line. The first four coils (starting from the source)

are two layers of 25 turns of 14 AWG rectangular wire, while coils 5 and 7 are four

layers, and coil 6 is six layers. The field at the center of each coil is 27 G/A for

each layer on the coil. A calculated field profile for the slower is shown in Fig. 3.8.

To drive currents to the coils, a single linear supply is used in conjunction with 7

transistors [55] to divide the current to the separate coils.

The MOT quadrupole field is created by the U-shaped wire shown in Fig. 3.9

with the addition of an external bias field opposing the field from the flat middle

section of the U [74, 135, 153]. The fields from the leads cancel each other at the

minimum, so that no field is felt from the leads by the atoms. The bias field for the
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Figure 3.9: Pictures of the wire traps used to form the MOT and magnetic trap
(from Ref. [55]).

U-shaped wire is created by two coils external to the chamber wound in Helmholtz-

type configuration (“x-bias” in Fig. 3.3). These coils are square shaped hollow wire

which create a field of magnitude 0.75 G/A, and we cool them by running water

through them [55]. In order to run the water through the coils, short (1”) sections

of round copper tubing are soldered (with a blowtorch) to the ends of the wire, and

then swagelock connections are made from the copper to plastic tubing. In addition

to this bias field, there is also a coil wound directly around the large bottom window

of the chamber. This “tilts” the MOT field and facilitates loading of the MOT. The

widening of the central bar of the U has a similar purpose.

The U-wire is attached to the vacuum chamber with the structure shown in

Fig. 3.2, and on top of it is the gold mirror used for two of the four MOT beams,

as shown in Fig. 2.4. These beams enter the vacuum chamber through the large

window on the bottom at an angle of approximately 60◦ from vertical. Because a

MOT requires laser light from 6 perpendicular directions, the beams which hit the
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mirror have diameters of approximately 1.5”, and they hit the atoms both before and

after reflecting off of the mirror, providing a mirror MOT [128, 97]. This provides

four of the six beams, with the other two coming in perpendicular to the plane of

the mirror in two of the windows of the octagon. All four MOT beams come from

the four outputs of a fiber splitter, which has four inputs as well. Two of the inputs

of the splitter are coupled to all four outputs, while two of the inputs are coupled

to only two of the outputs. The repumper light for the MOT is combined onto the

two beams incident on the gold mirror using one of the “two-output” ports of the

fiber splitter. We typically load for approximately 8-10 seconds, collecting on the

order of 109 atoms in the MOT.

3.5 Optical Molasses/Optical Pumping

Our optical molasses step occurs just after the MOT step in the experimental

sequence. The fields from the coils are extinguished quickly using insulated gate

bipolar transistors (IGBT) [55], while the MOT beams are detuned almost five

linewidths further from resonance (∼28 MHz). During this time, it is important to

have no magnetic field where the atoms are sitting, as magnetic field causes a drift

in σ+-σ− cooling. In order to zero the field, we have trim coils wound in Helmholtz

configuration glued directly to the flanges on the vacuum chamber, including the

bottom and top of the chamber. We also have a single coil glued opposite the slower

to compensate any stray fields from the slower (Fig. 3.3). This molasses step lasts

for about 5 ms, a time long enough to cool the atoms to 40 µK while only about
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5% of the atoms leave the trapping area.

Just after the optical molasses, we apply an optical pumping pulse to spin-

polarize the ensemble. After the MOT and molasses, the spin distribution of the

atoms is unknown, although probably close to isotropic. We trap the F = 2, mF = 2

spin state, so the light for the optical pumping is tuned from the F = 2 ground state

to the F ′ = 2 excited state, and the light is σ+ polarized. Using this combination

of frequency and polarization assures us that once an atom is in the desired ground

state, it no longer makes resonant transitions. The allowed transition would be to

the F ′ = 2, mF = 3 state, which does not exist. This limits heating during the

optical pumping pulse. We use a pulse time of 350 - 500 µs with a power of 250 -

350 µW in a beam of 1 cm diameter.

3.6 Magnetic Trap

The magnetic trap that we use is an Ioffe-Pritchard trap (Sec. 2.4) [74, 135,

153]. It is created by the Z-shaped wire shown in Fig. 3.9, which sits on top of the

U-wire on the structure in Fig. 3.2, electrically insulated by a sheet of Kapton. As

the field from the center wire falls off linearly inversely with the distance from the

wire, a uniform bias field cancels the field at a distance r0 from the wire. The field

increases in magnitude radially around r0 in the plane perpendicular to the center

bar of the Z-wire. The same exterior coils used in the MOT form the bias used to

define r0. The leads of the Z do not compensate one another, unlike for the U, so

these leads play the role of the “pinch coils” in a regular Ioffe-Pritchard type trap.
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In addition, we have another set of Helmholtz type coils outside the vacuum (0.4

G/A) which enhance the field from the leads and significantly compress the trap.

Because the atoms are not far away from the Z-trap compared to the size of

the wire, a calculation of the magnetic field at the atoms must go beyond the thin

wire approximation. In order to calculate the trapping frequencies of the magnetic

trap, we first find a closed form solution for the magnetic field of a finite length

infinitely thin wire. Then, this solution is numerically integrated over the plane of

the actual spatial distribution of the entire Z-shaped wire by parameterizing each

section’s current flow. In order to model the current density in the sharp corners of

the wire, the solution is found for all of the current flowing into each corner, and

then all of the current flowing out of each corner, and then averaged. Once the field

from the wire is calculated, the uniform bias field from the exterior coils is added

to the calculation, and a 1D minimum is found as a function of distance from the

Z-wire. Typical magnetic traps have a minimum approximately 2-3 mm from the

wire. Once the minimum is found, the potential is assumed to be harmonic about

the minimum, and the second derivative is calculated in all three dimensions to get

trap frequencies. A more advanced solution would use finite element analysis to

model the actual current density in the wire, but we get fairly good agreement with

experimentally measured trap frequencies using this method. A plot of magnetic

trap frequencies versus current in the “pinch” bias coil is given in Fig. 3.10, with

the other bias and Z-wire current at 75 Amps.

We load approximately 2 X 108 atoms in a large volume, weakly confining trap

for approximately 10 ms, and then immediately compress the trap for 250 ms to its
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Figure 3.10: Magnetic trap frequencies as a function of “pinch” bias current with
other two coils running 75 A.
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final value. Because the depth of the trap is set by the bias field opposing the center

bar of the Z-wire, the compression, which increases this bias field, serves to deepen

the trap as well as tighten it. We typically have trapping frequencies between 100

and 400 Hz in the tight directions of the trap (the plane perpendicular to the center

bar of the Z), and 30 to 100 Hz in the loose direction. The highest frequencies

correspond to currents of 75 A in the z-wire, 75 A in the bias coils opposing the field

from the center bar, and 65 A in the coils supplying bias fields in the same direction

of the leads of the z-wire. The temperature of the atoms after compression to this

trap is around 500 µK.

Once the atoms are loaded into the magnetic trap, we can cool them using RF

evaporation all the way to BEC, or stop the process at some point in order to load

them into an optical trap (Sec. 3.8). The RF coil is approximately 3 turns of wire

wound in an oval shape of 4” x 2” . This is placed nearly against the large bottom

window of the vacuum chamber, aligned so that the minor axis of the coil sits in

between the entering beams for the MOT. The RF function generator controlling

the RF sweep is connected to a 4 Watt RF amplifier, and then a BNC cable. The

center lead of the BNC cable is then soldered to the wire forming the antenna, and

the other side of the antenna is soldered to another BNC cable connected to a 50 Ω

terminator. The ground braids of the two BNC cables on either side of the antenna

are soldered together to close the circuit. The RF frequency sweep goes from about

40 MHz down to frequencies of 1 to 8 MHz, depending on the trapping currents.

Typically, in order to load the atoms into the optical trap, the evaporation

in the magnetic trap is stopped and the atoms are decompressed to a trap with
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frequencies of 115 x 65 Hz in a 250 ms linear ramp of the currents to 55 A (z-wire),

75 A (center bar bias), and 40 A (z-wire lead bias).

3.7 Power Supplies and Grounding

The supplies which run the MOT and magnetic trap are Sorenson DLM-600

model supplies. The bottom coil for the MOT is run by a Sorenson XLT-60 supply,

and the trim coils used in the optical molasses are run by Kepco ATE15-3 supplies.

There is an interlock circuit to keep the water-cooled coils (including the U and Z

wire) from being run without the water cooling, and IGBTs are used to turn off the

coils quickly for expansion measurements of the atoms [55].

The initial ramp of the power supplies is also critical to capturing atoms in

the magnetic trap. Since the IGBT’s are not part of the servo loop which controls

the current output of the supplies, it is possible to get transients when switching the

supplies on. If the supplies are being commanded to drive any amount of current

while the IGBT’s are preventing current from running, the supplies will then rail

at their maximum voltage as they try to drive current to the open loop. As soon

as the circuit closes, this voltage will cause a spike in current before the supply can

effectively feed back to manage the current. In fact, even if the supply has been

commanded to a value of 0 or less than 0, there will be a delay before the feedback

starts once the supply is commanded to switch to some positive voltage. Therefore,

to get a linear ramp of current when the supplies turn on, the timing control of

the analog voltage to the supplies running current during the magnetic trap must
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be such that the commanded current is less than zero during the MOT, and then

driven positive for a time on the order of 10’s of ms before the ramp is to start. This

ensures a linear turn-on of the magnetic fields for the magnetic trap.

Ground loops are a large problem for any magnetic trap. If there is any

resistance between the grounds of supplies, there can be a beating due to the phase

difference of the 60 Hz power input to the DC power supply. This beating gives us

current noise on our supplies at 60 Hz, a frequency slow enough for the atoms to

respond to, especially if any of the trapping frequencies are near 60 Hz or a harmonic

of 60 Hz. To mitigate this, we tie all of the grounds of our Sorenson supplies to the

optical table using AWG 6 wire. The optical table, in turn, is connected to both

the ground of one of the wall circuits via a grounding braid and also tied to a large

pipe running across the ceiling of the lab. The wire running to the pipe is AWG

1/0, and another wire of this type is run to the 19” rack which we use to break out

all of our computer control (Sec. 3.10.1).

In addition, to prevent 60 Hz noise on the analog inputs which control the

current output of the supplies, we use a USB to optical converter which breaks the

ground connection to the computer control (Icron USB 2.0 Ranger 442) for our USB

DAQ card (NI USB-6229). One further step to eliminate 60 Hz noise is that digitally

triggerable low pass filters are placed between the USB DAQ card and the power

supplies. These can be turned on once the magnetic trap cycle has started. If they

are turned on too early, they limit the bandwidth of the control signals to the power

supplies. Despite all of these precautions, there is still a trap frequency dependent

heating rate (∼100 nK) which we attribute to magnetic field noise, although it did
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Figure 3.11: Optics and optical path for control and shaping of the 1550 nm optical
dipole trap.

seem to be lessened by these changes when we made them.

3.8 Optical Trap

The beam path for the optical trap is shown in Fig. 3.11. A beam cube is used

to purify the polarization of the beam before it goes through the EOM used to lock

the intensity, and an AOM is used to split the beam power to be used for a crossed

dipole trap in the cell. The main beam used for the optical tweezer passes through
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a telescope which expands the beam, and then through an f = 600 mm focusing lens

on a translation stage. The beam is then relay imaged to the atoms in the chamber.

Meanwhile, the cross beam passes through a lens to expand it, and then through a

focusing lens of f = 20 cm, set on a translation stage, before crossing the tweezer

beam in the science chamber.

For most optical traps, it is beneficial to have a small beam waist. This

increases the trapping frequencies, giving a large collision rate and tight confinement.

For our setup, there is approximately 30 cm between the end of the quartz cell science

chamber and the position of the atoms during the initial transfer to the optical trap.

Since the beam must travel through the end of the cell before hitting the atoms, it

must be smaller than the smallest dimension of the cell face (1 cm) in order to pass

into the chamber with a minimum amount of diffraction. A Gaussian beam waist

w(z) expands along its axis z as

w(z) = w0

√

1 +

(

z

zR

)2

, (3.1)

with zR =
πw2

0

λ
the Raleigh range, and w0 the waist of the beam at its smallest point.

This equation shows that a more tightly focused beam diverges faster, which sets a

minimum waist size of 40 µm for our tweezer beam.

In addition, when we initially set up the optical trap, diffraction was a problem

all along the beam path. We were not careful to follow the general rule that the

diameter of any aperture for a beam should be four times the beam waist to prevent

diffraction [81]. When a beam diffracts from a circular aperture, the size of the
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waist of the beam doesn’t change much, but power is redistributed to the wings of

the intensity distribution. We spent a good deal of time measuring beam waists

using a razor blade on a translation stage, always coming up with waists which

were pretty close to what we expected. However, the measured trapping frequencies

of our optical trap (dependent only on intensity and wavelength) were much lower

than we expected. Characterization of the beam profile is hampered by the fact

that CCD cameras (and Silicon photodiodes) are not sensitive at 1550 nm. So, it

turns out that the razor blade and translation stage method for measuring beam

waists that we were using did not have the spatial resolution to see the deformation

of the beam due to diffraction. We finally discovered the problem after modeling

the system in Oslo optical design software, and then measuring the intensity profile

using a 2 µm pinhole translated with a New Focus Picomotor.

The first problem with diffraction is that the aperture diameter on the EOM

is only 2.7 mm. However, the damage threshold for the crystal is 500 W/cm2. In

order to avoid diffraction, we focus the beam through the EOM, and the intensity

is 3000 W/cm2 - well above the damage threshold for the crystal. A discussion with

Con-Optics revealed that the damage threshold is very conservative, and that as

long as there were no fast temporal changes in beam power, causing large thermal

gradients, the crystal would probably not crack. After that problem was solved,

the focusing lens for the optical trap was changed from 1” diameter to 2” diameter.

The relay optics were also an issue, as the beam waist at each lens changes as the

stage moves. The beam waist is much larger at the second relay optic, meaning that

this optic has to be larger than the first one. The final solution uses a Gradium
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lens (Lightpath GPX40-150) for the first optic and a pair of f = 300 mm, D = 50.4

mm achromat lenses for the second relay optic. The first optic cannot be a typical

achromat because the waist of the beam gets very small when the stage is near its

back position. Typical achromats are held together with glue, so they are damaged

by high-intensity beams. The second relay optic never sees a high intensity. Paired

achromats are used for the second relay optic because achromat lenses are designed

to focus a collimated beam to a point. Pairing two f = 300 mm lenses allows us to

image the focus of the beam while still using each lens to focus a collimated beam.

The system was modeled in Oslo with the exception of the Gradium lens, which

did not have an Oslo-compatible lens file. The company uses Zeemax for optical

modeling, and Oslo was unable to open the Zeemax files.

The main goal of the optical trap is to produce a BEC in the science chamber.

Intuitively, the easiest way to accomplish this would be to transfer a BEC from the

magnetic trap into the optical trap and then transport it to the science chamber. In

practice, there is large amount of heating (6-8 µK) in the transfer from the magnetic

trap to the optical trap, making this scheme an impossibility. Instead, after some

RF evaporation, a 22 µK thermal sample of 2.5 X 107 atoms is transferred from the

magnetic trap to the optical tweezers, with 25% transfer efficiency, giving 5 X 106

atoms at 10 µK in the optical trap.

The efficiency of the transfer is optimized with slow changes in the two traps.

After evaporation in a relatively tight magnetic trap (400 Hz x 110 Hz), the magnetic

trap is decompressed to a trap with frequencies 115 X 65 Hz. This serves to both

move the magnetic trap farther from the surface of the gold mirror used to form
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the MOT and also to adiabatically cool the atoms. Since the limiting factor in the

transfer between the two traps is the depth of the optical trap, the transfer can be

made more efficient with this adiabatic cooling prior to transfer to the optical trap.

The optical trap is linearly ramped up to half power in 250 ms after the magnetic

trap decompression, and then ramped to full power while the magnetic trap currents

are linearly ramped to zero in 1.5 seconds.

The oscillation frequencies in the tweezer beam are 1000 Hz and 6.5 Hz in

the radial and axial directions, respectively. These were measured with observation

of dipole (axial) and quadrupole (radial) mode oscillations [46, 89]. To excite the

dipole mode along the axis of the optical trap, the waist of the trapping beam is

offset 2.5 mm from the position of the magnetic trap. After the atoms are transferred

from the magnetic trap, their position will oscillate about the waist of the optical

trap. This oscillation occurs at the frequency of the trap in that dimension. To

measure the radial trapping frequency, a quadrupole mode (breathing) oscillation is

excited by snapping off the optical trapping potential for 500 µs and then turning it

back on. After a variable hold time, the cloud is imaged after 5 ms of time-of-flight

expansion, and the radial size oscillates at twice the trapping frequency.

A calculation for the trapping frequencies of the tweezer beam as function of

power and waist for our wavelength (1567 nm) including the effect of gravity and

the counter-rotating term yields [72]

ωr = 2.98 ∗ 10−6

√

8P

πw4
(3.2a)

ωz = 2.98 ∗ 10−6

√

3.17 ∗ 10−13P

w6
, (3.2b)
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where ωr is the radial trapping frequency, ωz is the axial trapping frequency, P is

the power in the beam, and w is the Gaussian waist of the beam, with all quantities

in SI units. It is evident from these equations that an estimate for the waist of the

beam is given by

w =
ωr

ωz

∗ 3.53 ∗ 10−7 (3.3)

This is an easy way to find the waist of the beam once the trapping frequencies are

measured.

With the crossing beam on (described later), the trapping frequencies become

a function of the powers and waists of both beams, as well as the crossing angle

between them in the x− z plane. Taking the second derivative of the total trapping

potential at the potential minimum for each of the original axes of the tweezer trap

gives an indication of the trapping frequencies. Once the cross beam is added, the

eigenaxes of the trap rotate, but a rough estimation of the trapping frequencies can

still be obtained by considering the old eigenaxes. These frequencies are given by

ωx = 1.13 ∗ 10−18

√

8P1

πw4
1

+
8P2Cos(θ)2

πw4
2

+
3.17 ∗ 10−13P2Sin(θ)2

w6
2

(3.4a)

ωy = 2.98 ∗ 10−6

√

8P1

πw4
1

+
8P2

πw4
2

(3.4b)

ωz = 2.98 ∗ 10−6

√

3.17 ∗ 10−13P1

w6
1

+
3.17 ∗ 10−13P2Cos(θ)2

w6
2

+
8P2Sin(θ)2

πw4
2

, (3.4c)

with ωy the frequency in the direction of gravity, ωz the frequency along the original

axial direction of the tweezer beam, and ωx the frequency in the direction orthogonal
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to the other two directions. The subscripts 1 and 2 refer to each of the two beams,

and θ is the crossing angle between the two beams, and again all units are SI.

The 1/e lifetime of the atoms in the optical trap is estimated to be 10 seconds,

based on holding in the trap after loading. This is not exactly the lifetime. Trap

heating also causes atom loss, as the initial temperature of the atoms corresponds

to an energy near to the maximum confineable energy. However, 10 seconds is also

the lifetime measured after evaporation in the cross-beam optical trap. This lifetime

is shorter than the lifetime of the magnetic trap, indicating that it is not vacuum-

limited [134]. For a period of time, we found that the lifetime of the atoms in the

optical trap was 3 seconds when the atoms were in the science cell. This was caused

by diffuse scattered near-resonant light, which we remedied by enclosing all of the

trapping and cooling lasers in black boxes, with shutters to keep all scattered light

inside the boxes. This scattered light was enough to effect the atoms despite the

fact that there were no beams visible near the chamber even while looking through

an IR viewer with all of the room lights off.

Once the atoms are loaded into the optical trap, an air-bearing translation

stage (Aerotek ABL20040-10-LT40AS-NC) is used to translate an f = 600 mm fo-

cusing lens to translate the waist of the beam. For an appropriate velocity profile

(Sec. 3.10.2), the atoms will follow the focus of the beam a distance of 30 cm to the

quartz science cell chamber. The entire movement can be done with 90% transfer

efficiency in as little as 1.5 seconds. We typically use a time of approximately two

seconds. The stage only checks for a trigger signal every 100 ms, and so the timing

of the movement is synchronized with the rest of the experimental cycle only to 100
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ms. Since the experimental cycle is 30 seconds, this is a small perturbation which

can be handled by allowing a little bit of extra time in the timing step controlling

the movement.

With the atoms in the science cell, we need to perform further evaporation

to reach quantum degeneracy. Since the collision rate in the single beam alone is

insufficient to evaporatively cool the atoms efficiently, a second crossing beam is used

to increase the collision rate by greatly increasing the trapping frequency (originally

6.5 Hz) along the axis of the original beam. The naive approach to increasing this

frequency is to overlap the other beam at a perpendicular crossing angle, overlapping

the strongest confining direction of each beam with the weakest confinement of the

other beam. However, for the power we have available, the volume and depth of

the crossed trap is insufficient to load a significant number of the atoms into the

overlap region. This is probably due to the large spatial extent (3 mm) of the

atoms along the axis of the first beam when the cross beam is turned on. A simple

classical calculation of the dynamics of the cross loading reveals that the maximum

temperature of an atom captured in the cross-beam trap can be greatly increased by

decreasing the crossing angle between the two beams. We currently use an angle of

16.9◦ between the beams, bringing the cross beam in through the edge of the same

face of the science cell as the tweezer beam. At full power, the cross-beam trap has

frequencies of 950 X 950 X 200 Hz.

Finally, we have to be very careful to turn off the optical trap cleanly. Ideally,

we would like all of the trapping potentials to turn off in a time short compared to

the atoms’ movement, which means we would like to turn off the beams in about
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10 µs. There are multiple hurdles to overcome in our system. First, the intensity

stabilization has a 60 Hz filter on the input control, meaning that the light inten-

sity cannot be changed faster than about 16 ms with the analog control from the

computer. In addition, the EOM only has an extinction ratio of 100:1, which means

that there is still an appreciable amount of light incident on the atoms even when

the EOM is turning the beam “off”. The cross beam can be turned off very fast

independently of the tweezer beam by simply turning off the AOM, but we do not

want to kick the atoms by deforming the potential before it is turned off. A shutter

can be used to fully extinguish the beams, but shutters are typically slow, on the

order of 100’s of µs.

We use a combination of EOM, AOM, and a shutter to entirely extinguish the

optical trap. A digital multiplexer (Analog Devices ADG201HSJNZ) is placed at the

output of the intensity stabilization feedback to the EOM high-voltage controller.

This can be used to quickly switch the EOM voltage to its minimum output value.

A shutter is placed at an intermediate focus of the tweezer beam between the two

relay optics. Because the beam is small there, and for a set shutter speed a smaller

beam is turned off faster, it can be extinguished in 125 µs. The EOM is switched

off in less than 10 µs just before the shutter enters the beam, and then the AOM is

switched off (dumping all of the power into the shutter) midway during the closing

of the shutter. The shutter is a 0.5” mirror glued to the arm of a disassembled

laptop hard drive [104, 136]. The mirror directs the beam to a beam dump.
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3.9 Data Collection (Imaging)

Acquisition of data in this experiment is always done through absorption imag-

ing, usually after a significant amount of free expansion of the atoms. Absorption

imaging works on the principle of Beer’s law for the amount light absorbed by the

sample:

I(x, y) = I0(x, y)e
−σA

∫
n(x,y,z)dz. (3.5)

Here, I(x, y) is the observed intensity of the light after the sample, I0(x, y) is the

light intensity incident on the sample, σA is the absorption coefficient of the atoms,

n(x, y, z) is the density of the sample, and the probe beam illuminating the atoms

is presumed to travel along the z-axis. By taking two images, one with the atoms

and one without the atoms, and then dividing the two images and taking the log of

the result, the optical depth (O.D.) can be recovered:

O.D.(x, y) = σA

∫

n(x, y, z)dz. (3.6)

Obviously, determination of the correct optical depth requires knowledge of

the absorption coefficient σA for a two level atom:

σA =

(

3

2

)

(

λ2

2π(1 + I
Isat

+ 4∆)

)

, (3.7)

where λ is the wavelength of the probe light, I is the intensity of the probe, Isat

is the saturation intensity of the atoms (3.58 mW/cm2 for isotropically polarized

light on the D2 transition in 87Rb), and ∆ is the detuning of the atoms from atomic

resonance. The factor of 3
2
in front of the expression changes depending on the po-

larization of the light illuminating the sample, and is used to adapt the expression
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to a multi-level atom. Assuming linearly polarized light and doing an approximate

optical pumping calculation for the atoms yields a factor of 3
2
, while circularly po-

larized light gives a factor of 3 [65]. Most of the time, we work in the limit of low

saturation intensity and on resonance, which makes the denominator in Eq. 3.7

particularly simple, and has the additional advantage of eliminating any positional

dependence of σA from the calculation of optical depth in Eq. 3.6. The resulting

signal used in all of our analysis (Sec. 3.10.2) allows us to determine the 2D density

of the atoms after integration over the direction of probe beam propagation.

One technical detail which is very important in the above analysis involves the

determination of I0(x, y). We desire to know the intensity of the probe beam exactly

as seen by the atoms. The way this is typically done is to get rid of the atoms and

then take another picture of the probe beam alone, under the assumption that the

condition of the probe beam will be exactly the same during this second picture as

it was for the first picture. However, invariably, there are fringes and distortions

in the probe beam intensity, and if any of the optics move or the intensity of the

beam drifts slightly between the two pictures, these features are written onto the

optical depth, causing noise in the image. The most effective method to eliminate

this noise is to make sure that the two images are taken very close together in time.

The limiting factor here is almost always the camera frame rate, although there are

certain cameras which have modes allowing multiple images to be taken with small

delays.

One promising method to help eliminate this type of noise is called “principal

component analysis” (PCA) [137, 105]. I first heard about this technique from Dr.
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Ian Spielman. Basically, the idea is that if we were to take a large number of images

of the probe beam, we would see all of the different permutations of the possible

fringe patterns that could come about. Then, we can think of each image as a

set of pixels which we could easily arrange into a vector. The set of all of these

background “vectors” can then be diagonalized. Since the original vectors were

most likely degenerate, a much smaller subset of these new basis vectors represents

most of the information from the entire set. So, if we now take an image with atoms,

we can project that image (minus the small area occupied by the atoms) onto this

basis set. This projected image becomes the new “background” image used in the

division to obtain the O.D. If the basis set truly contains the information available

from all of the background images, this can make for much cleaner looking data.

One caveat is that the number of images it is necessary to keep in the basis set to

obtain all of the information is not precisely defined, so it is difficult to quantify

errors from the truncation of the basis set.

Once these issues are minimized, characterization of a general imaging system

is complicated by the choice of metrics to use in the characterization, and an imaging

system for absorption imaging is perhaps even worse. Typically, we can look at the

modulation transfer function or point spread function as an indication of how good

an imaging system is. These are still considerations in absorption imaging. We

would like to form an image of the density distribution, and the resolution we have

in that image is limited by camera pixel size (∼5 µm) and the numerical aperture of

the imaging system. The fact that the atoms are in vacuum means that the window

of the vacuum system is also part of the imaging system, so the window must be
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considered when attempting to image with high resolution. However, we must also

consider the finite depth of the object, which limits the imaging resolution to ∼7

µm for a BEC of 50 µm extent along the axis of the beam [29].

In addition, the imaging system in absorption imaging must take into account

the rays from the probe beam which are unaffected by the atoms, as well as those

rays which propagate through the atoms. An easily-understandable approach to the

process of absorption imaging (taken roughly from Ref. [146]) is that we have a

plane wave represented as parallel rays impinging on the atoms. As these rays pass

through the atoms, pure absorption does not deflect them unless the density starts

to vary on wavelength-size scales. Therefore, after passing through the object, each

ray is undeflected, but has been absorbed differently depending on where it went

through the cloud. Each of these rays starts to diffract after the object, and we can

now propagate them using the Helmholtz wave equation in free space, starting with

the initial condition of the wavefront having an amplitude inversely proportional

to the density of the atoms. However, we must pay attention to make sure that

the rays passing on either side of the atoms do not end up on our detector in the

position of the atoms, a situation which can easily occur while recreating the object

using a combination of lenses.

Our solution here is to use a “4f” imaging system. We place the object at the

focus f1 of the first lens, then place a second lens at the sum of the two focal lengths

f1 + f2 of the lens, followed by a camera at the back focus f2 of the second lens.

This set-up has the advantage that it images both a plane wave and the object, thus

preventing the problem of the probe light getting imaged onto the wrong place on the
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camera. The magnification M of the system is simply given by the ratio f2/f1. In

our system, the imaging set-ups on the magnetic trap and the horizontal imaging in

the science cell use f1 = f2 = 100 mm to give M = 1, while the vertical imaging in

the cell uses f1 = 50 mm and f2 = 100 mm to giveM = 2. In order to calibrate the

magnification of the horizontal imaging systems, we plot the position of the freely

falling atoms after release from the trap, which should be a parabola determined by

gravity. To calibrate the value of M in the vertical direction, we compare the size

of the cloud on that camera to the size of the cloud on the horizontal camera.

Finally, we must be careful to calibrate the optical depth of the atoms, total

counts, and actual intensity of the probe beam at the atoms. If the optical depth

of the atoms gets too high, then the probe beam can be fully absorbed, giving large

fluctuations in O.D. with only a few counts of noise on a pixel. The greatest O.D.

which can be measured is thus limited by the dynamic range of the camera, which

is 212 = 4096 counts in our case. We can always increase this dynamic range to that

limit by either increasing the length of the probe pulse or increasing the intensity of

the probe beam. However, we would like find a good regime where the pulse time

is not too long that the atoms move during the pulse (< 250 µs), the intensity is

still much less than Isat, but we get a large number of counts on each pixel without

saturating it. In our case, a pulse time of 150 µs with a ∼150 µW beam of a few

mm waist fulfills these conditions. Still, in most cases of BEC, the O.D. of the cloud

should be kept <2, which can be done with free expansion of the cloud or detuning

of the probe. However, detuning of the probe can introduce refraction in the cloud,

which makes analysis more difficult.
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There are also a few alternatives to using absorption imaging. All of these

methods rely on the fact that the atoms phase-shift light if the probe is not exactly

on resonance, and they work in the limit of very low absorption. By making some

assumptions, we can recreate the initial density of the object by either interfering it

with a phase reference or computationally determining what the diffraction pattern

means. Examples of these methods include phase contrast imaging [7], polarization

contrast imaging [27], or defocus-contrast imaging (DCI) [146, 147]. These tech-

niques have two advantages. First, because the absorption is small, there is no need

to worry if the density of the cloud is too high. Second, the techniques are somewhat

non-destructive, since the probe light is far off resonance. This allows for multiple

pictures of the same sample, an impossibility with absorption imaging. The major

disadvantage of these techniques is that they are more difficult to implement and

use.

We have implemented the software to do DCI in our experiment, but have not

really tested it yet (Sec. 3.10.2). This technique is actually fairly easy to setup, as

it only requires defocussing the imaging system and detuning the probe beam from

resonance. The basic idea is that with these changes, we take two images just like

in absorption imaging. However, the image of the atoms in this case will look like a

diffraction pattern. If we know exactly how detuned we are and how far the camera

is defocused, an algorithm can be implemented to recover the original 2D density

of the atoms, similar to absorption imaging. The disadvantage to using this type

of imaging is that it is strongly dependent on the distance of the camera from true

focus, which is a free parameter in the algorithm, so it is difficult to quantify errors.
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Figure 3.12: Diagram showing the hardware and software control setup for the
experiment.

3.10 Control and Analysis

3.10.1 Hardware

A schematic of the computer hardware and software control system is shown

in Fig. 3.12. Three computers are used for this purpose, although “computer #3”

is dedicated solely to controlling the translation stage used to transport the atoms

to the science cell. “Computer #1” is dedicated to hardware control, containing

almost all of the digital and analog output channels used to control the equipment,

while “computer #2” is used mainly for data acquisition and analysis, except that

it also controls the RF evaporation.
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The main experimental timing is controlled by a Pulseblaster PB24-100-PCI-

512 in computer #1. The Pulseblaster is a digital output card with 24 channels

which has a 100 MHz clock with a resolution of 10 ns and a minimum pulse time of

50 ns (5 clock cycles), as well as an on-board memory of 512 lines. The timing of

everything in the experiment is synchronized to this card (Table A.1).

One digital line from the pulseblaster is used to trigger the analog output

cards in order to generate analog control signals to different pieces of equipment

(Table A.2). The digital lines control anything that only takes on two different

states during the cycle (such as a shutter), while the analog outputs control any

piece of equipment which needs to take on a continuous range of states (e.g., coils

producing magnetic fields). Two 19” rack panel BNC boards break out all of the

digital and analog outputs (except the four channels from the USB card), and BNC

cables are run to the equipment in the apparatus.

There are three different analog output cards. Two are NI PCI-6713 analog

output cards, and one is a NI USB-6229. The two PCI cards are in computer #1,

and the USB card is connected to computer #1 through an optical link, as described

in Section 3.7. This gives a total of twenty analog outputs - each of the PCI cards has

eight, while the USB card has four. We use the four from the USB card to control

the most noise-sensitive pieces of equipment in the experiment - the magnetic trap

coils and the intensity of the optical dipole trap. Because the analog channels do not

have enough output current to drive a 50 Ω load, each channel is first run through

a current buffer (Analog Devices BUF634P) before the 19” rack panel board.

Computer #2 controls both the RF evaporation cycle and the cameras. A
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second Pulseblaster (PB24-50-PCI-32K-SP2) occupies a PCI slot in this computer.

It is different from the pulseblaster card in computer #1 in that it has a slower clock

(50 MHz) and more on board memory, up to 32000 steps. In addition, the wiring of

the internal header pin outputs are different, and the windows drivers are different

(indicated by the SP2 designation). This card is used to drive a frequency synthe-

sizer (PTS-160) that controls the RF evaporation sequence in the magnetic trap.

The function driver takes four digital bits per digit of frequency resolution, with the

binary value of the four bits controlling which value that digit has. The binary value

has to be between 0 and 9. The only exception is the “ten MHz” digit, which can

go to 10 to represent 100 MHz. The RF frequency scan is preloaded into the Pulse-

blaster (which can take up to 20 seconds) so that a digital trigger from computer

#1 can simply trigger the scan at the appropriate time in the experimental cycle. A

glitch in the particular Pulseblaster card running the RF synthesizer requires that

a second digital signal be sent to the “hardware reset” bit on this Pulseblaster just

before the signal to trigger the sequence. With 24 digital bits from the Pulseblaster,

we can have 6 digits of resolution, corresponding to 100 Hz in frequency resolution.

A typical frequency sweep starts at 40 MHz and ends between 2 and 10 MHz at

BEC.

There are three cameras currently in use in the experiment. The camera

imaging in the main chamber is a Pixelfly QE made by Cooke Corporation, while the

two on the science chamber are a Flea2 and Flea2G from Point Grey Research, Inc.

All three cameras have pixels that are approximately 4.5 µm square. In addition,

each camera outputs 12 bits of data, but the S/N is better on the Pixelfly, and
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the Flea2G has a much better sensitivity at 780 nm, the wavelength that we use

for imaging. Both Flea cameras have an IEEE-1394 (Firewire) interface with the

computer, which has a Firewire card occupying one of its PCI slots. The Pixelfly

interfaces with a Framegrabber card, also in a PCI slot in the computer. The trigger

inputs for the Flea cameras are available from a connector at the camera, while

triggering of the Pixelfly takes place at the framegrabber. For more information on

the imaging systems, see Sec. 3.9.

The third computer only controls the Aerotech air-bearing stage used to trans-

port the atoms in the optical tweezers, which comes with its own PCI card that

controls a brushless servo motor to drive the stage. The stage requires air at 80 PSI,

and we use both a dryer and a filter to clean the air before it gets to the stage.

3.10.2 Software

There are three different software programs in use to control the equipment.

The bulk of the interface and control is done with NI Labview, while the majority

of the analysis is done with Igor Pro from Wavemetrics. The airstage has its own

control software as well. The original software in Labview and Igor was written by

Dr. Trey Porto and then modified by Dr. Ian Spielman before I configured it for

use in our experiment. An overview of how the two main control programs work

is given in Fig. 3.13. There is a set of master global variables shared by the two

programs “CycleX.vi” and “SetList.vi”. Operation typically runs in a loop, with

CycleX looping a set of timed commands (defined in the global variables) to each
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Figure 3.13: Diagram showing the control software used in the experiment. A set of
global variables is shared between two programs, with SetList primarily interacting
with the user, while CycleX primarily interacts with the hardware.

piece of equipment and then restarting the loop unless stopped by the user. The

Setlist VI has a graphical user interface (GUI) to accept input and write it to the set

of global variables, while CycleX reads these global variables, loads the hardware,

and triggers the experimental cycle.

An example of the main interface of the setlist is shown in Fig. 3.14. Time

runs in the vertical direction. Each green circle represents a digital output from the

pulseblaster, while the analog outputs are in the columns on the right. The value of

the “delay” column is how long each set of outputs is held before switching to the

next row of outputs. In addition, linear ramps from one analog output to the next

can be implemented in the “option” column on the left-hand side. This implements

a linear ramp for any analog output values which are changed on the “ramp” step.
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Figure 3.14: Graphical user interface for the software controlling the apparatus.
Green circles represent digital outputs, while red numbers are analog outputs. Each
set of outputs is held for the amount of time in the “delay” column.

In addition, the setlist can run automated scans of analog values or delays, stepping

through a set of defined variable values, scanning multiple values at once if required.

The timing is controlled so that each experimental cycle deterministically moves on

to the next value in the scan. This timing control is implemented by allowing only

one of CycleX or Setlist to have access to the global variables at one time. CycleX

allows Setlist access once per cycle, and if in scan mode, the Setlist updates the

variables every time it has access. The name of the scanned variables can be input

as well, and communicated to Igor using DDE, a communication protocol between

programs and computers.

Digital line #23 is used to trigger the analog channels. Basically, the set of all

analog values including ramps is loaded onto the analog cards sequentially during
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the “load hardware” phase of CycleX sequence. Since all the timing is controlled by

the Pulseblaster, the analog cards store the entire list of analog values and switch to

the next value with every trigger from the Pulseblaster. All of the analog channels

can be scaled and named in NI Measurement and Automation Explorer (MAX).

The scaling maps a value defined with arbitrary units to the actual voltage required

to output that value. For instance, if a 1 Volt output sets a function generator to 80

MHz, then the scaling can be changed so that the user inputs 80 MHz to the GUI,

and the software automatically outputs 1 V to the function generator. Meanwhile,

every time a channel is renamed, the name must be correspondingly changed in the

list of channels programmed by CycleX during the load hardware phase.

The Pulseblaster accepts instructions as an 80-bit “word”. Twenty-four bits

control the state of each of the 24 outputs, 4 bits define an “op code”, allowing

the pulseblaster to do loops and accept external triggers, 20 bits define a data

field corresponding to the op code, and 32 bits define the delay time to hold that

particular command. The data field means something different for each op code,

specifying things such as the number of loops to perform during a “loop” command.

One example of the use of a “loop” op code is implemented for the analog voltage

ramps. Each time a ramp is requested, the analog voltage values for the ramp are

loaded onto the analog cards. Then, the digital outputs for the pulseblaster on the

ramp step are duplicated into two steps with the exception of the trigger to the

analog card, which is changed from low to high on the second step, while setting the

delay time equal to the total time of the ramp divided by twice the number of ramp

steps. Looping these two pulseblaster commands will keep all of the digital output
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commands the same and trigger the analog cards to go their next saved value. In

this way, only two command steps are stored in the Pulseblaster memory, while the

analog voltage can be ramped from its start to end value in as many steps as the

user wants.

In computer #2, a second Pulseblaster is programmed in a similar way in

order to control the RF synthesizer which sweeps the radiation used for evaporation

in the magnetic trap. In this case, there is a Labview VI which accepts an arbitrary

number of linear frequency ramps with an arbitrary number of steps up to the 32000-

step memory of the Pulseblaster. Each user-specified ramp is divided into time and

frequency steps in Labview, and then the appropriate combination of digital outputs

is loaded into the pulseblaster memory. A trigger from the first Pulseblaster sends

this series of commands to the function generator, with an analog voltage controlling

the amplitude of the RF output signal from the function generator.

The third control software program runs the airstage in order to move the

atoms out to the science cell in the optical tweezer beam. In Ref. [36], it is found

that a trapezoidal acceleration profile is appropriate for the movement of the stage

in order to minimize heating and loss during the movement of the atoms. A constant

value for the jerk results during each part of the movement. This profile is very close

to having a sinusoidal position as a function of time, which can be programmed fairly

simply in the stage software. First, we calculate the velocity and position profile

that we want and determine what the maximum velocity is during this movement.

Then, setting a ramp command to be half of the value of the total time required for

the move and commanding the distance with this same maximum velocity generates
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an appropriate profile. In this case, the stage must be set to not smooth the velocity

profile (command “g9”) during the move to give the correct result. In the past, we

divided the required movement into a series of discrete time steps and fed them to

the stage, but this requires significant processing power from the computer running

the stage, and does not seem to be advantageous compared to the current scheme.

The software driving the stage is similar to the “C” programming language, but it

has its own set of functions and commands.

The pictures are all acquired in Labview on computer #2 using National In-

struments drivers for the cameras. The Pixelfly camera has its own drivers, while

the Flea cameras use generic Firewire camera drivers. For some reason, the Pixelfly

images are straightforward to obtain and analyze using Labview driver VIs, but

there are some tricks for the Flea cameras. The IMAQdx drivers for these cameras

are not part of a standard Labview installation, and are only available in the “Vi-

sion” Labview add-on. In addition, the settings for the cameras must be adjusted

in NI-MAX. Each camera sends 16 bits of data, but 4 bits are set to be always 0, so

MAX must be set to ignore the appropriate bits in each pixel. The correct settings

for this in MAX are:

Actual Bit Depth 12 bits

Bit Alignment MSB

Byte Order Little Endian

In addition, the speed of the cameras was limited by windows XP service pack

updates, so patches from Point Grey Research had to be applied to use the full

frame rate of these two cameras - 15 fps for the Flea2 and 30 fps for the Flea2G.
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Finally, the Flea2G has an unresolved triggering issue, which seems to trigger it at

the wrong point in the experimental cycle occasionally, despite the fact that we use

the same trigger signal for all of the cameras.

One recent modification allows the Labview VI which acquires pictures from

the Flea2 cameras to take and save scope traces from a Tektronix TDS2014B oscil-

loscope. These traces can be sent to Igor along with the pictures, as well as saved

to the hard drive. We typically use these traces to monitor the intensity locks of

lattice or speckle beams.

Finally, all of the analysis on the absorption images is done in a program

called Igor Pro. Igor receives two images via DDE - one of the atoms and one of the

probe beam without atoms, with the background image already subtracted from

each of them. By dividing these two images we can calculate quantities such as

temperature, phase space density, chemical potential, and density. The software is

advanced enough that most of these quantities can be calculated in real-time as the

images come in, since the creation of our sample typically takes about 30 seconds.

As each image comes in, the density profile is fit with either a Gaussian func-

tion, Thomas-Fermi function ([46, 32]), or a combination of both. From the Gaussian

width and amplitude plus the user-supplied values of the expansion time and trap

frequencies, the number and temperature of the thermal atoms can be calculated.

The Gaussian width σ of an initially Gaussian atom sample of width σ0 with indi-

vidual atomic masses m and temperature T after an expansion time t in 1D is given
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by (see appendix A of Ref. [150]):

σ2 = σ2
0 +

kBTt
2

m
, (3.8)

with kB Boltzmann’s constant.

Since the total energy for a particle traveling between ±x0 in a harmonic trap

with frequency ω is 1
2
mω2x0, we can equate x0 with σ0 and use the equipartition

theorem for a harmonic oscillator to find

1

2
kBT =

1

2
mω2σ2

0. (3.9)

Substituting this into Eq. 3.8 yields an expression for the original size of the cloud

that depends only on the initial trap frequency, expansion time, and size after ex-

pansion. These two relationships are used in the software to calculate both the

temperature and the original size of the cloud. In order to get the number of atoms

in the cloud we can assume that the image we see is the optical density as a func-

tion of two spatial coordinates and then assume that the cloud is Gaussian in the

third dimension and that the absorption image has integrated over that dimension.

The optical depth is related to the atomic density via Beer’s law (Sec. 3.9), and so

integration of the Gaussian optical depth yields an expression for the total number

N based on the widths of the cloud σx and σy, the amplitude A of the absorption

and the absorption coefficient σA:

N =
Aπσxσy
σA

. (3.10)

With the number and temperature now determined, the phase space density

of the atoms in the trap ρPSD = N
V
λ3dB can be calculated. In this expression, V is
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the volume of the trap and λdB is the deBroglie wavelength of the atoms in the trap.

For particles in a harmonic trap, the volume of the trap can be calculated similarly

to above by relating the temperature of the atoms to the endpoints of the motion.

This yields:

ρPSD =
Nωxωyωz~

3π
3
2

8k3BT
3

, (3.11)

where ωi is the trap frequency in each direction.

Once the atoms are cold enough that they condense into a BEC, they can

be fit with a Thomas-Fermi function, which is a truncated upside-down parabola.

This fit assumes that there enough atoms in the condensate that the Thomas-Fermi

approximation holds, which is the usual situation in most BEC experiments. The

fits yield an amplitude A and a width of the distribution given by the Thomas-Fermi

radius RTFi
, the x or y-value of the fit when the z-value goes to zero. The number

of atoms in the condensate can be calculated in a similar way as in the Gaussian

case, by assuming a 3D Thomas-Fermi density distribution and then integrating

that distribution over all space to determine the relationship between the number

of atoms in the BEC NBEC and the fit parameters A, RTFx , and RTFy , as well as

the absorption coefficient σA:

NBEC =
2πARTFxRTFy

5σA
. (3.12)

In addition, because of the relationship between between chemical potential and to-

tal atom number, there is a relationship between the trap frequencies, Thomas-Fermi

radii, and atom number, eliminating the amplitude of the fit from the calculation,
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but adding in dependence on the trap frequencies:

N =
aHO

15σA

(

(RTFxRTFyRTFz)
1/3

aHO

)5

. (3.13)

Here, aHO =
√

~

mωHO
, and ωHO = (ωxωyωz)

1/3. Once the total number of atoms has

been determined, the chemical potential µ of the BEC is simply given by

µ =
~ωHO

2

(

15Na

aHO

)

, (3.14)

where a is the scattering length of the atoms. If the sample contains thermal atoms

and condensed atoms, the software can use a combination Gaussian and Thomas-

Fermi fit to fit the distribution, calculating parameters in a similar way to that given

above, yielding separate attributes for each part of the bimodal distribution.

The experimental parameters such as coil currents for the magnetic trap or

beam powers for the optical trap are passed to Igor using DDE. Thus, the user inputs

these values in the Setlist.vi GUI, and then Igor uses these values to calculate trap

frequencies using the methods described in Secs. 3.6 and 3.8. The numerically

calculated magnetic trap frequencies as a function of coil currents are preloaded

into the Igor software and used as a lookup table, while the optical trap frequencies

are calculated each time from the simple algebraic relations given in Sec. 3.8.

In addition, there are two sets of functions implemented in the software that

have not really been utilized yet, but have been tested and seem to work. One

set of functions allows for defocus contrast imaging [146, 147], while the other set

of functions can build and use a PCA basis (Sec. 3.9)[137]. The defocus contrast

imaging functions allow the user to select (in the Labview imaging software) the

type of imaging being done and specify a distance defocused. The software then
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applies the defocus contrast imaging algorithms to the input images in order to

generate the optical depth. In order to build a PCA basis, a function can be called

in IGOR which will take a set of images and use the second picture (probe beam

background) from each of the images to generate a basis set. Then, a checkbox in

the Igor front panel allows the user to divide by the projection of the absorption

image onto the PCA basis rather than the incoming background image to get the

optical depth. This may result in cleaner images.
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Chapter 4

Advanced Experimental Setup

Now that I have detailed the how the apparatus creates Bose-Einstein con-

densates, I will use this chapter to detail how we interact with the condensate to

perform experiments. In general, we use off-resonant light to manipulate the sample,

forming either a periodic or disordered potential, or a combination of both. This

light is produced by the Ti-Sapphire laser, and its beam path diagram is shown in

Fig. 4.1.

4.1 Incommensurate Lattices

The first experiments performed on this apparatus were done in the magnetic

trap [54], and the disorder in this case was provided by incommensurate lattices

- two or three superposed optical lattices of incommensurate period. An optical

lattice is a periodic potential created by a standing wave of light, which provides a

periodic spatial intensity pattern, and therefore a periodic potential (Eq. 2.3). The

easiest way to create this standing wave is to reflect a beam back on itself, providing

a sinusoidal intensity at a period of half of the wavelength λ. However, this could

just as easily be two independent beams with the same frequency and polarization

(Fig. 4.2). In this case, we can also intersect the beams at an angle θ less than 180◦,
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Figure 4.1: Beam path for Ti-Saph laser used to create lattices and disorder. Feed-
back to the AOM stabilizes beam intensities at the outputs of the fibers on the top
left.
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Figure 4.2: Intersecting two lattice beams at an angle θ changes the period of the
lattice (Eq. 4.1).

which changes the period d of the lattice as

d =
λ

2Sin( θ
2
)
. (4.1)

We use this property to change the period of our lattices in the chamber. The

specifics are detailed in [55, 54], but the basic idea is that we use the in-vacuum

mirror to reflect our lattice beams. If the beam is incident normal to the mirror,

then the period of the lattice is λ/2, which gives a period of ∼400 nm for our

lattice. However, if the beam is incident on the mirror at an angle, and the beam

is large enough to hit the atoms both before and after reflection, then the angle of

intersection between the incident and reflected beams will no longer be 180◦, and

the period of the lattice will be longer. We could put as many as three beams in at
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once, each creating a lattice with a different spacing, with ratios of d1/d2 ≈ 0.806

and d1/d3 ≈ 0.919, where d1 = λ1/2 is the beam at normal incidence. The gold

mirror provides a convenient node in all three standing waves, allowing the lattices

to be effortlessly phase-locked, normally a difficult task.

4.2 Speckle Disorder

In the science chamber, our disorder is provided by a speckle intensity pattern,

similar to [45, 152, 151, 35, 101, 40, 41]. The field of optical speckle is very broad,

and there has been significant investigation into its properties [70]. Basically, if

laser light incident on a rough surface is subsequently focused, there will be a disor-

dered intensity pattern at the focus, with a smaller average feature size for a larger

numerical aperture of the focusing lens.

Our speckle disorder is created with a collimated Gaussian beam hitting a

phase diffuser made by Luminit, model #L.5P1-2. This phase diffuser is a surface

relief structure replicated from a holographically recorded master. It acts as a series

of micro-lenslets, and diverges the incoming light by a specified angle, 0.5◦ in our

case. The result can be thought of as randomizing the phase of the wavefront. We

focus this randomly phased wavefront onto our sample using a Gradium lens made

by Lightpath Technologies, model #GPX10-10. Gradium lenses use a varying index

of refraction along the lens to allow lower f-numbers at larger working distances.

This lens has a 1 cm back focal length and a diameter of 1 cm, with f/# 1.1.

Physically, because we also want to send a probe beam along the path of the

101



Figure 4.3: Implementation to create speckle potential. The gold mirror has a hole
in the middle to allow the focused probe light to pass through to the gradium lens
and onto the atoms. The large speckle beam is reflected by the gold mirror through
the gradium lens.
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speckle, the optics are arranged as shown in Fig. 4.3. The entire setup is on a

translation stage in order to allow fine alignment of the speckle potential on the

atoms. The two beams are combined with a 1” square gold mirror which has a ∼1-2

mm hole in the center, fabricated at the Fab Lab at UMD by plating gold on an

optical flat. The probe beam is tightly focused through this hole, goes through the

gradium lens, and ends up roughly collimated at the atoms. The speckle beam is

large and collimated when it hits the gold mirror, and so it is focused at the atoms.

The small hole in the mirror does not seem to have a large effect on the speckle

pattern, as aberrations do not affect the random pattern.

To characterize the disordered potential, we need to know two things: the

size of the features and the average strength of the potential. The first of these

can be simply characterized by taking the speckle system offline and measuring the

autocorrelation length of the intensity. The autocorrelation function C(~r) of an

intensity I(~r) is defined as

C(~r) =

∫

I(~r)I(~r − ~r′)d~r′, (4.2)

and the width of the peak around zero represents a measure of the average feature

size of the speckle pattern, known as the correlation length [41, 152]. We need this

feature size to be much less than the size of our condensate in order to make a

disordered potential, and so we would like a peak width on the order of 1 µm.

We observed the speckle pattern on a CCD camera by imaging with micro-

scope objective to get the necessary spatial resolution. A sample speckle image is

shown in Fig. 4.4. In addition, by translating the entire imaging system by small
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Figure 4.4: Example of radial speckle intensity pattern used for random potential.

Figure 4.5: Example of a cut along the axis of a speckle intensity pattern used for
random potential.
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amounts, we can map out the speckle pattern as a function of axial distance along

the beam by piecing together separate pictures at ∼30 nm separation. The images

are then corrected for small camera jitter by computationally translating each image

to minimize the radial correlation function between it and the previous image. A

cut along the center of such an analysis is shown in Fig. 4.5. It is clear that the

feature size along the axis of the beam is much larger than the feature size radially.

A plot of the 2D autocorrelation function for both the radial and axial intensity

is shown in Fig. 4.6. An exponential fit can be used to define an autocorrelation

length [59], and the fit yields widths of the peaks of ∼700 nm radially and ∼6 µm

axially. However, these images are taken with a Helium-Neon laser, which has a

wavelength of 633 nm, and we use a wavelength of 800 nm in the experiment, which

increases the correlation length by the ratio of the wavelengths. We thus expect

correlation lengths of ∼885 nm radially and ∼7.5 µm axially. The radial size of the

speckle is still much smaller than the size of our BEC. Finally, because the speckle

is smallest at the focus of the beam, we would like to know how sensitive the radial

correlation function is as a function of axial distance from the focus. This will tell

us how sensitive the alignment of the beam is. A plot of the transverse correlation

function peak height between consecutive images after correction for camera jitter

is shown in Fig. 4.7. It shows that the transverse correlation length does not change

much over 100 µm, since the correlation function peak height does not change much

over this distance. We also simulated the wall of the vacuum chamber in the beam,

finding that it did not make any difference in the speckle size, as expected for

random speckle. Most of the above characterization and analysis was performed by
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Figure 4.6: 2D autocorrelation function along the axis of the speckle beam and in
one transverse direction. The origin is at the focus of the beam.

our postdoc, Dr. Tao Hong.

Now that we have characterized the size of the features in the disorder, we

need to have some way to characterize the overall average strength of the potential.

Since the potential depth is equal to the light shift that the atoms experience, we

could measure the light shift directly [41]. Another possible way to measure this

strength is to displace the beam slightly from being centered on the atoms, which

should apply a force that displaces them [152]. We decided to use the effect of a

short pulse of light on a thermal ensemble of atoms to measure the strength of the

potential. For a short pulse of light, each atom should receive an impulse which is

proportional to the derivative of the intensity at that point. The result is that the

shape of the momentum distribution of the atoms stays the same, but the width

of the distribution (the effective temperature) becomes larger. We can measure
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Figure 4.7: Unnormalized correlation peak height of consecutive images as a function
of distance from the focus of the disordered beam, corrected for camera jitter.
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this increase in momentum width by pulsing the speckle beam on the atoms and

then immediately allowing them to expand and measuring their average momentum

width before and after pulses of different strengths.

In order to translate this information into an average strength, we must be

able to compare the resulting increase in momentum width with some theory. The

process can be simulated by first modeling a speckle intensity pattern, using an

algorithm from [70]. We can then model the atoms because we know the initial

momentum distribution, and because the trap is harmonic, we also know the initial

spatial distribution. We use the size of the initial spatial distribution to determine

the size of the speckle distribution that the atoms sample, assuming that we know

the correlation length of the speckle from the offline measurements. Then we can

use a Monte-Carlo simulation to randomly choose an atom from the appropriate

momentum distribution. This atom receives an impulse proportional to the deriva-

tive of the intensity at a point randomly chosen from the part of the speckle being

sampled. If we do this for a large number of atoms, it should simulate the effect of

a speckle pulse on a thermal ensemble of atoms.

This process is then repeated for different speckle patterns, since the process

of simulating speckle changes the pattern from realization to realization. In fact, in

order to make sure that we are using correctly-sized speckle, we take the autocorre-

lation of the generated pattern and use that for calibration on every new run. Then,

we have to scale the speckle by an overall “strength” which most closely matches

the effect of the pulse in the experiment. This strength is the average potential

value that we are looking for. Because of the nature of the process, each step must
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be averaged - we use different speckle distributions, strengths, and many atoms for

each run. The result allows us to calibrate the strength of the speckle to within

10%.

With the information about both the speckle grain size and overall average

strength of the speckle potential, we know all the parameters necessary to use it

in the experiment. Sample images of the effect of speckle disorder on a 3D BEC

are shown in Fig. 4.8. After creating a 3D BEC, the disorder potential is linearly

ramped on in 500 ms, and then the atoms are held for 200 ms before 26.95 ms of free

expansion. The axis of the speckle beam is horizontal in these images, leading to

striations and increased width in the vertical direction. This is due to the fact that

the speckle correlation length is anisotropic, and thus smooth along the horizontal

axis of the image.

4.3 2D System Creation

If we want to investigate the effects of disorder on 2-dimensional systems, then

we must tightly confine our 3-dimensional condensate in one dimension. In order to

be in the 2D regime, the oscillation energy ~ω in the tight direction must be much

greater than both the thermal energy kBT and the chemical potential µ of the BEC.

For typical BEC parameters, this works out to be ω
2π

≫3 kHz.

There have been many methods used to create 2D ultracold gases [71, 38, 132,

67, 87]. One conceptually simple way to create a stack of 2D gases is with a deep

optical lattice [113, 30, 93, 111, 141]. In this case, even for relatively shallow lattices,
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Figure 4.8: Effect of disorder on 3D BEC. The disordered potential was linearly
ramped on in 500 ms to 0 (top), 750 Hz (middle), or 4 kHz (bottom), and the atoms
were held for 200 ms in the potential before 26.95 ms of free expansion. The axis of
the speckle beam is horizontal in these images.
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the oscillation frequency in each plane can easily be large enough to place the gas

strongly in the 2D regime. The disadvantage to the optical lattice is that the spacing

of the planes is small, and a typical 3d BEC creates many 2D systems. With many

2D systems, only average quantities can easily be measured. The method that we

use to overcome this problem is to bring in the lattice beams at a shallow angle,

which greatly increases the lattice period (Fig. 4.2) [78, 144, 76]. This will allow

us to create a small number of 2D systems at the expense of a lower oscillation

frequency in the tight direction. However, there is an experimentally accessible 2D

parameter regime which creates only 1 or 2 2D systems.

Since many of the quantities that we are interested in are related to the phase

coherence of our sample, it is actually advantageous to have 2 planes instead of 1,

so that one of the planes can be used as a phase reference in quantum interference

experiments. For our wavelength near 780 nm, an angle between the beams of ∼15◦

generates a lattice spacing of about 6 µm, which should divide our 3D BEC into

two planes along its shortest axis.

Since the shallow angle weakens the lattice, we must use a large intensity

or tune our lattice beams relatively close to atomic resonance in order to get the

required oscillation frequencies to reach the 2D regime. However, we must also

minimize the absorption and rescattering of photons, which causes heating. We do

not observe significant heating in our lattice, observed by ramping the lattice on

and then back off. The issue of heating in an optical lattice is still an interesting

one [66].

Physically, because space is tight around the science chamber with the cross-
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Figure 4.9: Orientation of shallow angle lattice for creating 2D systems and speckle
beam for producing a disordered potential. The thinner beams are the lattice, while
the sharply converging beam is the speckle beam.

beam optical trap, speckle beam and probe beam optics, the lattice enters the science

chamber from above at 45◦ from vertical. A schematic showing the orientation of

the lattice and speckle beams is shown in Fig. 4.9. This geometry gives us planes

oriented vertically, so that the speckle beam’s axis is normal to the planes. This

gives us the smallest speckle size in the planes, and since the planes are so close

together, the disordered pattern should not be appreciably different between the

two planes. With 100 mW in each beam at a wavelength of 776.5 nm we can

predominantly load two planes with oscillation frequencies greater than 8 kHz in

the tight direction. However, one thing which we did not fully appreciate about this

geometry is that the lattice is not along a symmetry axis of the original trap. Since
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the cross beam comes in at an angle of 16.7◦ in the horizontal plane, the symmetry

axis of the condensate is at ∼8◦ from the lattice axis, which causes a position offset

in the two planes that load (Chap. 5).

In order to create the two beams, a second platform is installed above the

science cell, with a slot cut in the middle above the science cell. An output fiber

coupler generates a beam which goes through a polarizing beam cube to clean up

the polarization, followed by a pick-off for intensity stabilization. This beam hits a

50/50 beam splitter, and the reflected and transmitted beams are focused by an f =

150 mm lens onto the atoms. The camera used for vertical imaging is also mounted

on this platform.

Typically, one can calibrate the depth of an optical lattice by observing the

population in higher momentum modes. Atoms in an optical lattice populate only

discrete states in momentum at the reciprocal lattice vectors [9, 52], and the deeper

the lattice, the more atoms populate the higher modes. For a BEC in a typical

optical lattice, these higher order momentum peaks can easily be distinguished from

the atoms with no momentum transferred from the lattice. The population in these

other peaks is a simple function of the depth of the lattice. It can be measured after

either pulsing the lattice [114] or adiabatically loading the lattice [44], and then

observing the resulting momentum distribution after a period of free expansion

(Sec. 3.9). In either case, we are interested in the population in the first-order

diffraction peaks - those atoms that have made the first discrete jump in possible

momentum transfer.

However, with a large-period lattice, the higher order momentum states are not
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significantly separated from the rest of the cloud after free expansion, since a larger

period lattice has a smaller reciprocal lattice. If the first order peaks aren’t separated

significantly from the rest of the cloud, it is difficult to measure the population in

these peaks. If we are indeed loading just two wells in the lattice, then after free

expansion, the two planes will overlap and exhibit a sinusoidal interference pattern.

After an expansion time t, the period d of that interference pattern is [8]

d =
ht

md
, (4.3)

where h is Planck’s constant and m is the mass of the atoms. For reasonable

parameters, this gives an interference pattern with d ∼ 10 µm, which is much smaller

than the normal mean-field-produced ∼100 µm width of the cloud after expansion.

Without the first-order peaks being separated from the rest of the atoms, the typical

lattice calibration tools are not available. Also, because we do not control the phase

of the lattice, and there is only really one or two nodes of the lattice hitting the

cloud, a pulse will significantly kick all of the atoms one way or another depending

on where the nodes hit the cloud, which varies randomly from shot to shot.

The method we use to calibrate the depth of the lattice is taken from Ref.

[143]. If the atoms are tightly confined in the planes, then we can assume that the

atoms are in the Gaussian ground state of each of the wells which are occupied. The

size Z of the cloud after expansion from each of the wells (ignoring the initial size

of the cloud) is

Z =
√

Z2
0 + (vt)2, (4.4)

where v is the average particle velocity in the cloud, Z0 is the size of the cloud after
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expansion in the limit of no lattice, and t is the expansion time. To find the average

velocity, we assume that because the atoms are in the ground state of the potential,

the total energy E = 1
2
~ω2, with ω the oscillation frequency in each well. At any

given time, this is evenly split between kinetic and potential energy, so that the

average velocity v =
√

(

2
m

)

1
4
~ω2. This is where the depth of the lattice comes in.

There is a relationship between the depth of the lattice and the oscillation frequency

in each well. We can write the lattice potential as

U(x) = U0Cos
2
(πx

d

)

, (4.5)

where U0 is the depth of the lattice we are interested in and d = λ
2Sin( θ

2
)
the lattice

spacing, since θ is the angle between the lattice beams. By taking the second

derivative of Eq. 4.5 and setting it equal to mω2, we can find ω in terms of U0, to

finally end up with

Z =

√

√

√

√Z2
0 +

(

√

~π

m

(

U0

2m

)
1
4

t

)2

. (4.6)

This equation can be used to fit the size of the cloud as a function of lattice depth,

as shown in Fig. 4.10.

This calibration technique suffers from two assumptions which may not be true.

The first assumption is that the atoms are not interacting during the expansion from

the lattice, which is almost certainly violated. The second assumption is that the

atoms are tightly confined only in the ground state of the lattice, which is true only

if the temperature is very low or the confinement is very tight. However, since it

was used in Ref. [78], we expect that it should be close to the correct calibration.
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Figure 4.10: Cloud width as a function of lattice depth, with Umax and Z0 as fit
parameters, in units of Umax = 4.4 ± 0.2 X 10−27 J, with Z0 = 98 ± 5 µm. Error
bars are standard deviations of three scans.
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Chapter 5

Experimental Methods and Results

5.1 2D Systems and Observation of BKT Transition

After setting up the lattice we would like to observe the BKT phase transition.

Once we are sure that the oscillation frequency in the lattice is high enough to

put us in the 2D regime, there are two main experimental indicators of the BKT

phase transition to a superfluid [76]. As the system starts to develop long-range

phase coherence and turn superfluid, two independent systems will interfere with

one another if they overlap during free expansion (Fig. 5.1). Because each of

the systems expands most rapidly in the tightly confined direction after release,

there will be total overlap if the two systems are within a few microns of each

other. The phase of this interference pattern will be random from realization to

realization, set by the overall uncontrolled phase of each system, and the average

fringe visibility over many shots is related to the coherence length of the two systems

[121, 127]. In addition, the freely expanding distribution will become bimodal, with

a narrow distribution on top of a broader thermal background. The appearance of

an interference pattern coincides with the appearance of the bimodal distribution.

Another indicator of the BKT phase transition is the occasional appearance

of “fringe dislocations” in the interference pattern, which indicate vortices. At

temperatures near the phase transition, the appearance of free vortices becomes
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more and more likely. Vortex pairs are also more likely, but they annihilate early

in the expansion of the cloud, and so we cannot observe them [76]. The phase of

the order parameter of a single 2D system containing a single vortex wraps by 2π

around that vortex. If we interfere this system with another system with a smooth

phase, then the 3D interference pattern will take on a corkscrew shape along the axis

of the interference. The spot of zero density in the center of the vortex will be filled

by the uniform phase reference cloud, and thus turn into a spot of zero visibility.

Since absorption imaging integrates over one dimension of this pattern (Sec. 3.9),

the signature of a single vortex in one of the planes is a phase dislocation (or “fork”)

in the observed interference pattern. The appearance of these phase dislocations in

a bimodal interference pattern as we increase the phase space density tells us that

we are observing the BKT phase transition.

Experimentally, in order to observe these signatures, we evaporate in the op-

tical trap to obtain a 3D BEC at different temperatures (Sec. 3.8), and then ramp

up the intensity of the lattice beams to their final value in 500 ms, splitting the

3D BEC into two 2D systems. After a 200 ms hold, all of the potentials are shut

off, and the atoms are allowed to fall for a variable amount of time before they are

imaged (Sec. 3.9). The ramp and hold times are chosen to mimic those used by

group of Jean Dalibard [76], which has determined these times to be adiabatic and

in equilibrium in a very similar system. The imaging is in the vertical direction

(from above in Fig. 4.9), so that we can observe the two systems after they overlap

during expansion.

Our first attempts to observe this phase transition yielded strong suggestive
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Figure 5.1: Sample absorption images of the interference of 2 2D systems after 37
ms of free expansion. Images are from the side of the initially flat systems, as shown
schematically. After expansion, the two systems are completely overlapped due to
the fast expansion in the initially tightly confined direction. The image on the top
shows no phase dislocations, indicating that each system has a smooth phase. The
image on the bottom shows a fringe dislocation caused by a vortex being present
in one of the systems just before release. The phase and geometry of each of the
systems before expansion is schematically illustrated on the left.

evidence of the transition. We saw a bimodal distribution with an interference pat-

tern after expansion (Fig. 5.1), and some of the images yielded vortices, as we

expected. With increasing temperature, the fringe visibility and bimodal distribu-

tion disappeared (Fig. 5.2). The spacing of the fringes after 35.95 ms TOF indicated

that the original lattice spacing separating the two 2D systems was ∼5.6 µm, as we

expected.

However, the fringes of the interference pattern were tilted at an angle with

119



Figure 5.2: Scan of fringe visibility as a function of final trap depth in the 5.6 µm
lattice. The X-axis is roughly 30 nK per data point, increasing in temperature to
the right, starting at the lowest temperature that we see atoms. The Y-axis is the
maximum value of the peak in Fourier space in the small region corresponding to
observed frequencies of the interference pattern. Error bars are 1 standard deviation
of the average of five images at each point.
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respect to the angle of the lattice. This angle changed somewhat from shot to shot,

with an average of ∼60◦. In addition, the frequency of the fringes depended on the

angle, with the projection of the frequency along the direction of the lattice being

constant. The widest direction of the cloud is perpendicular to the lattice, so the

angle is easy to see. In the 2D limit, we expect that the kinetic energy of the atoms

dominates their expansion, causing them to expand as free particles. Calculations of

the free expansion of two Gaussian wavepackets with our initial conditions indicate

that this tilt and frequency change could be caused by an initial relative velocity

between the two planes as small as 0.2 mm/s. However, we tried every conceivable

experimental method for changing or eliminating a velocity during the loading and

turn off of the lattice, and the angle did not change. Its non-zero average indicated

a systematically induced velocity on every shot, although we had no mechanism for

such a velocity.

A second problem that we were experiencing was instability in the visibility of

the fringes. Under the same conditions, the shot to shot visibility of the interference

pattern was erratic. In addition, there seemed to be a long term drift that would

occasionally yield virtually no visibility for a series of shots despite the fact that the

bimodal distribution still existed.

An explanation for both of these phenomena can be found by examining how

the BEC loads into the lattice. The lattice planes are in the direction of the tweezer

beam for the optical trap. The long axis of the BEC without a lattice will be

approximately midway in between the angle between the tweezer beam and the

crossing beam. Thus, the planes should be offset from one another, as the minimum
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Figure 5.3: Optical lattice potential with and without the lattice on showing the
position offset of the lattice planes. Note the unequal scales on the axes. The offset
of the planes is ∼70◦.

potential at each plane will be separated along the axis of the tweezer beam (Fig.

5.3). Looking at Fig. 5.3, we can measure the angle of offset between the planes,

and it comes out to ∼70◦, which is very close to the angle of the fringes that we

observe. Since the lattice spacing is so large, we can also experimentally image the

atoms after only 10 µs of free expansion and see the atoms loaded into each plane

of the lattice (Fig. 5.4). We do indeed see this position offset.

In addition, in Fig. 5.4 we see that most of the atoms seem to be loaded into

one site in the lattice. The amplitude and size of the absorption at that one site

is much greater than any other site, although an exact analysis of atom number is

difficult. The relative number of atoms in this site fluctuates from shot to shot, as

we do not control the phase of the lattice, and there are some shots where barely

any atoms appear at any other site. We believe this to be the cause of the fringe

visibility fluctuations. In order to get consistent fringes, we must be loading a
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Figure 5.4: Absorption images after 10 µs expansion from 5.6 µm lattice. The top
picture shows that the lattice (along with some diffraction) is visible on the camera
over the extent of the cloud. The bottom image is zoomed in just on the center of
the cloud, with darker colors indicating higher density. Two planes are visible in
the zoomed image, with the majority of the density in just one. The centers of the
planes are offset by ∼6 µm horizontally and ∼20 µm vertically. Vertical Gaussian
fits on each plane have a 29 µm width.
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nearly equal number of atoms into the two interfering planes. This also explains

weird fringe patterns like in Fig. 5.5, as with few atoms in the second plane, we

only get significant interference where the two clouds overlap, which changes from

shot to shot. This problem is exacerbated by the long expansion times that we use

so that the fringe period is above our imaging resolution. In addition, fewer atoms

in the second plane might mean that we do not reach the densities required for the

BKT phase transition in that plane on every shot.

One thing which must be addressed in this explanation of the tilted fringes

is that the observed position offset of the clouds does not give tilted fringes in

simulations of freely expanding Gaussian wavepackets. The fringe angle is set by

the difference in the overall direction of the momentum vector between the two

planes. Because the momentum is so high transverse to the planes, this simulation

always yields fringes along the lattice direction. However, we cannot ignore the effect

of interactions, which produce momentum along the planes. It is straightforward to

do a calculation of our system in the opposite limit, ignoring the kinetic energy and

considering only the interaction energy in the mean-field approximation [32]. In this

case, the interactions do indeed produce tilted fringes (Fig. 5.6). However, we are

not really in this limit. In the mean-field approximation, we can simulate our system

including both interactions and kinetic energy using the Gross-Pitaevskii equation

[116]. We are currently working on this simulation in order to verify the tilt in our

system is not due to a systematic non-zero velocity, but rather due to interactions

and the initial position offset.

In order to try to resolve the problems with fringe visibility, we decreased
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Figure 5.5: Absorption images of interference patterns after 37 ms expansion which
do not extend over the whole cloud due to the lack of complete overlap between the
two planes or lower density in the second plane.
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Figure 5.6: Calculated interference pattern of two 2D systems using system param-
eters similar to ours. Pattern is calculated after expansion using the Castin-Dum
scaling [32]. In this simulation, the fringes tilt due to an initial position offset of the
two planes.
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the spacing of our lattice in order to more equally load two planes. Physically, we

changed the focusing lens for the lattice beams and moved it closer to the atoms.

With the same separation at the lens, this produces a larger angle between the

beams, which gives a smaller spacing. This also means that the lattice frequency is

higher at a lower value of the potential depth, so a neutral density filter was installed

and the lattice was recalibrated. In addition, we moved the lattice frequency farther

from resonance to 773 nm. With this configuration, the fringe pattern is much more

stable, although it still sits at an average angle of ∼20◦. The lattice spacing in this

new configuration is approximately 2.6 µm, which is smaller than the resolution of

our imaging system, so we cannot directly image the lattice. We assume that the

new spacing has decreased the offset along the planes. Example absorption images

of this new setup after free expansion are shown in Fig. 5.7.

5.1.1 Analysis of Interference Patterns

The main quantities that we would like to extract from images such as those

in Fig. 5.7 are fringe visibility and phase. In addition, we are often interested

in temperature, atom number, and the ratio of atoms in each part of a bimodal

distribution. These latter quantities can be determined from the methods described

in Sec 3.9, with some small modifications described later.

If we label the axes of the images as shown in Fig. 5.7, with Z along the

fringes and X along the cloud, then we can fit the profile F (x, z) of the image with
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Figure 5.7: Absorption images after 26 ms of free expansion of two 2D systems from
a 2.6 µm period lattice. Two planes are predominantly loaded in this configuration,
with a small occupation of exterior planes. The image in the middle has a fringe dis-
location, indicating a vortex, while the curves in the fringes indicate long-wavelength
phonon-like excitations.
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a function of the form

F (x, z) = A(x)e−
z2

σ2

(

1 + C(x)Sin

(

2πz

D
+ φ(x)

))

, (5.1)

with D = ht
md

, as in Eq. 4.3. We are interested in the values of C(x) and φ(x),

which represent the fringe visibility and the phase of the interference pattern. The

visibility is related to the coherence of the the two planes, and we are interested in

the phase because the fringes are straighter at temperatures below the transition,

producing a constant φ(x). In order to extract these, we do not directly fit the

image. Rather, we perform two Fourier transforms, one a 2D transform and the

other a series of 1D transforms of Z as a function of X (Fig. 5.8).

The 2D Fourier transform gives us the dominant angle of the fringes with

respect to the axis of the lattice, which is still typically non-zero in all of our current

images, and changes slightly from shot to shot. The peak in 2D Fourier space

appears at an angle with respect to the axes of the image which is the same as

the angle of the fringes. As mentioned previously, although the angle of the fringes

changes from shot to shot, the projection of the frequency onto the Z-axis does not

change, as it is set by the lattice spacing. If the angle changes, the fringe frequency

changes in order to keep this projection the same. Therefore, the overall frequency

of the fringes changes along with the angle, and the peak in the 2D transform in

Fig. 5.8 moves up and down along the px axis of the image. We perform a 1D

Gaussian fit of the peak in Fourier space along px in order to determine the angle

of the fringes in every image. This will be used to find φ(x) accurately.

The 1D Fourier transform of a function of the form of Eq. 5.1 in the Z direction
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Figure 5.8: Absorption image after 26 ms of free expansion of two 2D systems from
a 2.6 µm period lattice with both 2D (middle) and 1D (bottom) positive-spectrum
Fourier transforms. The position of the peak in the 2D Fourier transform can be
used to find the dominant fringe angle, while the peak in the 1D Fourier transform
gives the visibility and phase of the interference pattern.
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is

A(x)
σ

2
√
2

(

2e−
p2zσ

2

4 + iC(x)

(

−e− (2π/D+pz)
2σ2

4
−iφ(x) + e−

(2π/D−pz)
2σ2

4
+iφ(x)

))

. (5.2)

Since we are interested in values of C(x) and φ(x), we first observe that at pz=0,

Eq. 5.2 simplifies to

A(x)σ√
2

(

1− C(x)e−
(2π/D)2σ2

4 Sin(φ(x))

)

. (5.3)

However, the exponential is negligible, and so the amplitude of the Fourier peak

at pz=0 is related only to the value of A(x). Similarly, if we look at the peak at

pz = ±2π/D, we see that Eq. 5.2 simplifies to

σ

2
√
2

(

A(x)e−
(2π/D)2σ2

4 + iA(x)C(x)e−iφ(x)
(

e2iφ(x) − e−(2π/D)2σ2
)

)

. (5.4)

Again the exponentials eliminate two of the three terms, leaving us with the peak

value at pz = ±2π/D of

σ

2
√
2
iA(x)C(x)eiφ(x). (5.5)

We can see then that dividing the value of the Fourier transform at pz = 2π/D by

the value at pz = 0 and multiplying by 2 gives us the value of C(x). In addition, we

see that Eq. 5.5 also allows us to calculate the value of the phase φ(x) by finding

the phase angle of the peak.

The other way to find C(x) and φ(x) is to do a fit to the cloud, which turns out

to be very sensitive to the initial fitting parameters and guesses for the functional

form of the observables. The analysis above is a simple fast Fourier transform plus

some simple algebra, so it is much easier, with a few caveats. First, the peak at
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pz = 2π/D is not a delta-function in Fourier space, so we have to know where that

frequency sits exactly. Also, there is a finite step size in Fourier space, and if the

true frequency lies in between two of these steps, which is almost inevitable, then

the amplitude is split between two pixels. We do not know the actual position of

this peak by any other method than observing it, so we actually sum two pixels to

get the effective visibility. This probably overestimates the actual value of C(x), but

as a relative measure it should be consistent, and we are almost always interested in

relative changes. The second subtlety of this analysis method is that our fringes are

at an angle with respect to the axis of the 1D Fourier transform. This means that

φ(x) has a linear part to it with the slope being the angle of the fringes. We account

for this by finding the angle of the fringes in each image and then subtracting off

this linear tilt from the phase. This produces the actual untilted φ(x).

The total analysis proceeds as follows: Each image is initially fitted with a

Gaussian to represent the thermal fraction of the cloud. However, the expansion

of the cloud in the tightly confined direction overlaps the thermal cloud in this

direction, so the thermal fit is only done in the X-direction. Then, a bimodal fit is

performed in the X-direction using the initially fit thermal parameters as guesses

for the thermal cloud fit coefficients. Once this fit converges, the thermal coefficient

values are used in the Z-direction, and a dual fit is done in this direction while

not changing the thermal coefficients. This relies on the isotropic expansion of

the thermal part of the sample, and allows us to fit the overall envelope of the

thinner part of the bimodal distribution in both directions. Once this is performed,

the analysis in Sec. 3.9 is used to extract the atom number in each part of the
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distribution, as well as widths of each part, and the temperature of the ensemble.

The analysis of visibility and phase can then be performed on just the thinner

“condensed” part of the distribution, as described above.

Many of the images do not have a significant thermal fraction, and thus cannot

be used in this type of analysis. When we report atom number and temperature,

we have used only those images where the dual fit could be performed. In addition,

correct calibration of atom number and temperature are difficult, especially in a

lattice. There can be large systematic uncertainties, leading many experimental

groups to just assume 10% error bars on these measurments. Our temperature

measurement is even more inaccurate owing to its 1D nature. However, if we are

interested in relative changes, then we expect that applying consistent methods

should yield consistent relative results. If we are truly interested in an accurate

measurement of the temperature and atom number, we must do a more careful

job of calibrating our imaging system. C(x) also suffers from absolute calibration

error owing to our analysis method, while φ(x) may be slightly modified by the

subtraction of the linear tilt. However, if we are only interested in visibility, we can

make some gains against statistical error by performing a more-stable Gaussian fit

on just the thinner portion of the cloud, ignoring the thermal component. We then

find C(x) and φ(x) on just this part, which allows us to increase the number of

images that can be used for averaging these quantities.
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5.1.2 BKT Transition in 2.65 µm Lattice

To verify that we can observe the BKT phase transition in a 2D Bose gas,

we calibrated the lattice to have a depth U0/h = 1 MHz, which gives an oscillation

frequency in each well of fz = 18 kHz. We create a 3D BEC at a variable temperature

and then ramp the lattice on in 500 ms and hold for 200 ms to attempt to ensure

equilibrium. We then turn off all of the potentials and image the interference pattern

after 26.95 ms of free expansion, collecting images such as those in Fig. 5.7. These

images are analyzed and quantities are extracted using the techniques given above

in Sec. 5.1.1. Table 5.1 summarizes the parameters of the system for the data in

the following sections.

The results are shown in Fig. 5.9. There are two different ways the data is

analyzed. In either case, the integral of the visibility over the “condensed” part of

the sample of length L is calculated:

V =
1

L

∫ L

0

C(x)eiφ(x)dx. (5.6)

For the top two plots, this is shown on the Y-axis. For the bottom two plots, φ(x)

is assumed constant. The reason for this is that it is predicted and observed that as

the BKT transition region is approached from below, the phase of the interference

pattern exhibits more and more curvature [76]. This is indicated by the phase

varying over the cloud. We see a small difference in the slopes of the two types

of analysis, indicating that the phase curvature does reduce the growth of fringe

visibility and coherence in Eq. 5.6. Each pair of plots shows both raw data and

average binned data in 20 nK bins.
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Table 5.1: 2D System Parameters

fz 18 kHz

fx 28 Hz

fy 117 Hz

Number of Atoms Per Plane 50000

Temperature 35 nK

Chemical Potential in Each Plane µBEC 7 kHz

Thomas-Fermi Radius RTFz 70 nm

RTFx 45 µm

RTFy 11 µm

Angle between lattice beams 16.7◦

Lattice spacing 2.65 µm

Lattice depth U0/h 1 MHz

Harmonic Oscillator Length lz =
√

~

mωz
80 nm

g̃ 0.34

Critical Phase Space Density Dc = ln
(

380
g̃

)

7.0
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Figure 5.9: The visibility at different temperatures in the 2.65 µm lattice. In the
top 2 plots, representing raw (top) and 20 nK binned average data, the visibility is
calculated using Eq. 5.6, while the bottom two plots assume a constant φ(x) in the
integral calculation.
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The data indicates that as the temperature decreases lower than ∼300 nK,

the visibility of the fringes slowly grows, leveling at ∼175 nK. This is similar to the

results seen in Ref. [76], and is a strong indication that we are observing the BKT

phase transition.

5.2 2D Systems with Disorder

We see from Fig. 5.9 that there is a range of temperatures over which the

visibility is fairly insensitive to temperature changes. In order to observe the effects

of disorder in our system, we evaporated to this temperature range and then followed

a similar procedure as above. This time, both the speckle disorder potential and the

lattice are ramped on at the same time. Typical images are shown in Fig. 5.10. As

the disorder gets stronger, the visibility decreases and the sample starts to look more

disordered overall. Similar to Fig. 4.8, the axis of the speckle beam is horizontal,

so the predominant effect of the speckle is in the vertical direction. A systematic

study of the changes in the atomic cloud is shown in Figs. 5.11 and 5.12.

Fig. 5.11 shows that as the speckle depth is increased, the number of atoms

in the thermal part of the distribution increases while the number of atoms in the

“condensed” part of the distribution decreases. The temperature seems to stay

constant. There is a significant effect on these quantities even when the disorder

strength is much lower than the chemical potential in each plane, indicating that

we are not just “fracturing” the BEC. It should be noted that there were many

images in this data set with no significant thermal fraction, especially at low speckle
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Figure 5.10: Typical absorption images of 2D systems in the presence of speckle
disorder after 27 ms of expansion. The top image is at a speckle depth of U0/h =
750 Hz, while the bottom image has U0/h = 4 kHz.

depths. For the purposes of measuring temperature and number, these images were

not used, as we do not have a good method to measure the number of thermal atoms

or the temperature in these pictures. Thus, the number of points used in averaging

at each speckle depth in Fig. 5.11 is as low as 10, but as high as 30 at the higher

speckle depths.

Fig. 5.12 shows that as the disorder depth increases, the integrated visibility,

with or without assuming a constant φ(x), decreases. These fits were not bimodal

fits, and thus the error bars are standard deviations of at least 35 images in each

case. We assume from the constant temperature data shown in Fig. 5.11 that even

in images where the temperature could not be measured due to little or no thermal

fraction, the temperature was still not significantly different from the images with

measurable temperatures. Again, we note a significant effect of the disorder on the
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Figure 5.11: Number of thermal atoms, condensed atoms, total atom number, and
temperature as a function of disorder strength in the 2.65 µm lattice. Error bars
are one standard deviation of the measurements at each disorder strength.
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Figure 5.12: The visibility at different disorder strengths in the 2.65 µm lattice.The
visibility is calculated using Eq. 5.6 in the top plot, while the bottom plot assumes
a constant φ(x) in the integral calculation. Error bars are the standard deviations
of at least 35 images at each disorder strength. “No lattice” indicates the visibility
calculated this way with zero visibility in the interference pattern, using images with
0 lattice depth.
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visibility at strengths of 500 Hz - 1/14 of the chemical potential in each plane. Only

a small amount of disorder produces a significant effect.

One other thing that must be addressed is the role of vortices in this system.

As we have seen, vortices do appear in our interference patterns, and we would like

to know how the disorder affects them. As seen in the middle column of Fig. 5.13,

the phase of the fringes does not seem to change across disorder-induced valleys in

the visibility along the X-axis. However, vortices still appear in some images, as the

right column in Fig. 5.13 shows. Vortices can be counted by looking at the phase

of the interference pattern across the cloud and looking for jumps in the phase.

This was done for two cases; 8 out 37 images with zero disorder and 10 out of 36

images with 750 Hz disorder strength contained a vortex. If we assume that vortex

appearance follows a binomial distribution, then the probability of observing either

number of vortices is consistent with a true vortex probability of 25.2%. Thus, it

seems that the disorder has little effect on the probability of observing a vortex.

However, a more systematic way of counting vortices must be developed, and more

images must be taken to get better statistics on the number of vortices observed.

The decrease of both the number of atoms in the condensed part of the bimodal

distribution and the visibility of interference fringes are consistent with a decrease

in the coherence in the system, but theoretical support will be necessary to work out

the subtleties of exactly what is happening microscopically. It is unclear from the

data taken so far whether the disorder has any effect on the vortices appearing near

the BKT phase transition. We need to take more data at different temperatures

to discern if the suppression of visibility occurs at the same disorder strength, and
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Figure 5.13: Each column shows an absorption image after 26.95 ms expansion from
the 2.65 µm lattice, as well as a vertical cut of the visibility (middle) and phase (top)
of the interference pattern across the sample. The image on the left has no disorder,
with a nearly constant phase where the visibility is high. The image in the middle
has 750 Hz disorder strength, and the phase still seems nearly constant across the
cloud. The image on the right is also at 750 Hz disorder strength, but this time a
vortex is indicated by the π phase shift and loss of visibility near the center of the
cloud.
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try to determine a critical temperature as a function of disorder strength. We

should explore higher disorder strengths to see where the fringe visibility completely

vanishes, perhaps at strengths near the chemical potential in each plane. In addition,

we need to take more images and develop a more systematic way of counting vortices

to see if the disorder affects the vortex statistics.

5.3 Conclusions

We have designed and built a system to study the effect of disorder in ultracold

2D bose gases. According to many models, this system should mimic the behavior

of high-Tc superconductors under the Cooper pairing temperature. 2D superfluid

systems exhibit a phase transition to a normal fluid at a critical temperature which

is expected to be analogous to the superconductor to insulator transition in high-Tc

superconductors, where the fluid is formed of Cooper pairs. The BKT mechanism of

the unbinding of vortex pairs is expected to drive this phase transition, and because

disorder strongly effects vortex transport in high-Tc superconductors, we expect

disorder to strongly affect this phase transition.

Experimentally, we create two 2D bose gas systems with a controllable tem-

perature and atom number. We observe the experimental signature of the BKT

phase transition in this system as the appearance of an interference pattern and

bimodal distribution in the overlap region of the two systems during free expansion.

In addition, the microscopic mechanism of the BKT phase transition is revealed

by phase jumps in the interference pattern which indicate vortices in the system.
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The addition of disorder while deforming the system from 3D to 2D smoothly re-

duces both the visibility of the interference pattern and the proportion of atoms in

the “condensed” part of the bimodal distribution. Disorder strengths much smaller

than the chemical potential of the systems still have a noticeable effect on these

quantities. The number of vortices observed in repeated measurements does not

seem to be effected by the disorder. More work, including a theoretical treatment

of our system, will be necessary to fully characterize what these observations mean.

The apparatus is now in a good position to carry on further work in the area of

disordered 2D ultracold gases.
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Appendix A

Digital and Analog Outputs

Table A.1: Digital Outputs

Digital Channel Number Equipment Controlled

0 Zeeman slower shutter

1 IGBT for x bias Coils

2 RF scan trigger

3 IGBT for y bias coils

4 MOT shutter

5 AOM for Optical Pumping

6 Repumper shutter

7 UMOT IGBT/Dipole trap shutter

8 Z-wire IGBT

9 Ti-Saph shutter

10 Probe AOM

11 Optical pumping shutter

12 Second probe shutter

13 z-coil (Bottom) IGBT

14 Ti-Saph AOM #1
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15 Hardware Reset for RF

16 Slower repumper shutter

17 60 Hz filters for magnetic trap

18 Dipole trap AOM

19 Ti-Saph AOM #2 and #3

20 Stage movement trigger

21 1st Probe shutter

22 Camera trigger

23 Analog cards trigger

Table A.2: Analog Outputs

Analog Channel Number Rack Breakout # Equipment Controlled

Device 1 (PCI)

0 16 U-Wire

1 4 Rydberg E-field

2 15 AOM #1 (Ti-Saph)

3 3 Z Bias Coil (Bottom of Chamber)

4 14 Not in Use

5 2 Trim Coils

6 13 MOT AOM Frequency

7 1 Probe AOM Frequency
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Device 2 (PCI)

0 24 Optical Pumping Frequency

1 12 IPG AOM Amplitude

2 23 Not in Use

3 11 RF Power

4 22 Ball Valve Motor

5 10 Slower Detuning

6 21 AOM #3 (Ti-Saph)

7 9 AOM #2 (Ti-Saph)

Device 3 (USB)

0 X-Bias Coils

1 Z-Wire

2 Y-Bias Coils

3 IPG EOM
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Appendix B

1D Gross-Pitaevskii Equation Solution

In our previous publication [54], we did some calculations which solved the

Gross-Pitaevskii equation (GPE) [46, 116]. This appendix details how these calcu-

lations were done.

The GPE equation has been extremely successful at describing the behavior

and dynamics of near zero-temperature condensates commonly produced in exper-

iments. It is similar to the linear Schrödinger equation, with the addition of a

nonlinear term which takes into account the interactions between the atoms in a

mean-field approximation. Thus, it is single particle solution that includes a term

accounting for how all of the other particles affect the particle being simulated.

Since all of the particles in a BEC are in the same state, simulating the dynamics

of one particle in this way describes the behavior of all of the particles.

The GP equation takes the form

i~
∂ψ(r, t)

∂t
= − ~

2

2m
∇2ψ(r, t) + V (r)ψ(r, t) +NU0|ψ(r, t)|2ψ(r, t), (B.1)

where r = (x, y, z) is the three-dimensional position vector, t is time, ψ(r, t) is the

order parameter describing the particle, V (r) is the potential the particles experi-

ence, m is the mass of one of the atoms, and N is the number of atoms. U0 describes

the strength of the interactions between the atoms as

U0 =
4π~2a

m
, (B.2)
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with a the s-wave scattering length between the atoms. The wave function in this

case is normalized to 1:
∫

ℜ3

|ψ(r, t)|2dr = 1. (B.3)

Our solution to the GP equation follows the recipe given in Ref. [13]. The

equation is solved using the time-spectral splitting algorithm that works by break-

ing the Hamiltonian into two parts, the part that commutes with the momentum

operator and the part that commutes with the position operator. Typical quan-

tum mechanical propagators for each part are assigned separately. A small time

step ∆t is taken with the position propagator operating on an initial guess for the

order parameter ψ(r, 0). Then, a Fast Fourier Transform (FFT) is performed on

ψ(r,∆t), followed by operating the momentum part of the propagator for ∆t on the

transformed ψ. The inverse FFT is performed, and then the position operator is

applied for another step of ∆t, and then these three steps are repeated. Because ψ

commutes with the Hamiltonian in both position and momentum due to the FFT,

propagation is simply multiplication by a number in each case. If ∆t is kept small,

the error in time propagation using this method can be made small.

We use this method to both find the ground state of atoms in a lattice and

simulate the process of turning on a lattice potential on the BEC. We can use an

imaginary time propagation algorithm to easily find the ground state of the system

[37]. The idea behind this is that the energy of the ground state is the smallest

energy in the problem. If we change the time t in Eq. B.1 to it, the propagator

will cause all of the eigenstates in the problem to decay in imaginary time, with the

149



decay constant set by the energy of each eigenstate. Because the ground state is the

lowest energy, it will be the only one to have any amplitude after a long imaginary

time, and thus propagation in imaginary time converges to the ground state and

ground energy of the system.

Although our system does not fulfill the criterion for being one-dimensional, for

the problems we are considering, all of the dynamics are happening in the direction

of the applied 1D incommensurate lattices. Therefore, in order to make the problem

more tractable, we reduced the 3D GP equation to its 1D counterpart. In addition

to the assumption of separability, this reduction also requires assuming density

distributions in the two directions not being simulated, and then using those to

calculate a new 1D coefficient for the nonlinear term in Eq. B.1. In addition, to

make the calculation easier, all of the variables are scaled in order to make the

computation easier. Our particular scaling uses the lattice wavevector as the length

scale, but the basic method for determining the scaling comes from [13].

Our potential energy V (r) is

V (r) =
m

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) + V0Sin

2(kx), (B.4)

with the ωi’s the harmonic trapping frequencies and the Sine function representing

the lattice. Let us assign new scaled variables in Eq. B.1 as follows:

r̃ = rk, t̃ = ωRt, ψ̃(r̃, t̃) = k−3/2ψ(r, t), (B.5)

with ωR = ~k2

2m
. With these substitutions, Eq. B.1 becomes

i
∂ψ̃(r̃, t̃)

∂t̃
=

(

−∇2 +
1

4ω2
R

(ω2
xx̃

2 + ω2
y ỹ

2 + ω2
z z̃

2) +
V0
ER

Sin2(x̃) + κ|ψ̃(r̃, t̃)|2
)

ψ̃(r̃, t̃),

(B.6)
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where ER = ~2k2

2m
and κ = NU0k3

ER
. From this point on, I will drop the “tilde” on the

scaled variables to make the notation cleaner.

We assume that the dynamics in the y and z directions can be ignored, and

we separate the order parameter, kinetic energy, and potential energy parts of Eq.

B.6 into three parts, one for each direction, and we ignore the y and z equations.

However, we need to scale the nonlinear interaction term for use in the 1D equation

for the x variable, since it cannot be separated out. We do this by defining a 1D

interaction coefficient

κ1D = κ

∫

ℜ2

ψ4
23(y, z)dydz, (B.7)

where

ψ23(y, z) =

(
∫

ℜ

|φg(x, y, z)|2dx
)1/2

(B.8)

is the x-trace of the ground state position density |φg(x, y, z)|2. For |φg(x, y, z)|2,

we use the ground state Thomas-Fermi approximation for the atoms in a harmonic

trap (Eq. B.6 minus the Sine term):

ψg(x, y, z, t) = φg(x, y, z)e
−iµt =

√

1

κ

(

µ− 1

4ω2
R

(ω2
xx

2 + ω2
yy

2 + ω2
zz

2)

)

e−iµt, (B.9)

with µ the chemical potential of the atoms. Before the lattice is turned on, this is

expected to be the state of our system. Normalization of ψg gives

µ =

(

15κωxωyωz

64πω3
R

)2/5

, (B.10)

so that we plug Eq. B.10 into Eq. B.9, then plug that solution into Eq. B.8, and

finally use Eq. B.7 to find

κ1D =
5κ
(

5
2π

)3/5
ωyωz

8ω2
R

(

3κωxωyωz

ω3
R

)2/5
. (B.11)
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With the value of κ1D, we can now simulate our system by applying the time

splitting spectral method to the 1D GP equation

i
∂ψ(x, t)

∂t
= −∇2ψ(x, t) +

(

1

4ω2
R

ω2
xx

2 +
V0
ER

Sin2(kx)

)

ψ(x, t) + κ1D|ψ(x, t)|2ψ(x, t).

(B.12)

An algorithm to do this, written in Matlab, is included in Appendix C, and was

used to do the calculations in Ref. [54].
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Appendix C

1D Gross-Pitaevskii Equation Solver in MATLAB

function [Psi3, Energy] =

evolvestrang(Ntau, N, tau, Lx, Psi0, Ux, Uxtime, U0, J)

%{

This function does time evolution or ground state wave function

calculations in 1D using a split step operator method, using a

fast fourier transform to switch between momentum space and

position space. This makes the operators very easy to deal with.

It includes a psi^2 term for modeling the Gross-Pitaevskii

equation, and allows a linear ramp of part of the x-dependent

potential (Uxtime). The momentum operator is defined in this

function, and may need to be changed depending on the units

scaling that is done. The variable J determines whether the

function does time propagation (J=i) or imaginary time evolution

to find the ground state wave function (J=1). The nonlinear term

is calculated using a predictor-corrector loop, taking a time

step, calculating the wave function, and using the average of

the new psi^2 and the old psi^2 to actually take the time step.
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%}

deltax=Lx./(2.*N-1); %x step size

deltak=2*pi/(Lx); %momentum step size

x=(-N:1:(N-1)).*deltax; %x array

k=(-N:1:(N-1)).*deltak; %momentum array

ks=fftshift(k);

%move zero order momentum component to beginning of array

%Normalize Psi0

Psi0=Psi0./sqrt(sum(abs(Psi0).^2).*deltax);

tic %timing

Jtau=J.*tau; %time step (real or imaginary, depending on J)

Up=ks.^2; %Kinetic energy operator

%Build time evolution functions

Uxtau=Ux.*Jtau;

Uxtautime=Uxtime*Jtau;

Uptau=Up.*Jtau;

U0tau=U0*Jtau;

%Initialize energy array
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Energy = zeros(1, Ntau);

PotEnergy=zeros(1,Ntau);

KinEnergy=zeros(1, Ntau);

%Plot initial wave function

figure(1);

plot(x, abs(Psi0).^2);

axis([-100 100 0 1]);

axis ’auto y’;

%If statement to avoid unnecssary normalization if doing

%time evolution

if J==1

%Ground state evolution Loop

for II=0:1:(Ntau-1)

Psistar=exp(-(Uxtau+Uxtautime*II...

+U0tau*abs(Psi0).^2)/2).*Psi0;

Psistarstar =ifft(exp(-Uptau).*fft(Psistar));

%Kinetic Energy (momentumum space)

Psi3=exp(-(Uxtau+Uxtautime*II...

+U0tau*abs(Psistarstar).^2)/2).*Psistarstar;

%position space

Psi3=Psi3./sqrt(sum(abs(Psi3).^2).*deltax);

%Normalize
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KinEnergy(II+1)=sum(abs(fft(Psi3)).^2.*Up)...

./sum(abs(fft(Psi3).^2));

PotEnergy(II+1)=sum(abs(Psi3).^2.*(Ux+Uxtime*II)...

+U0.*abs(Psi3).^4).*deltax;

Energy(II+1)=KinEnergy(II+1)+PotEnergy(II+1);

%Calculate some sort of energy,

although this is not true energy

Psi0=Psi3;

end

elseif J==i

for II=0:1:(Ntau-1)

Psistar=exp(-(Uxtau+Uxtautime*II...

+U0tau*abs(Psi0).^2)/2).*Psi0;

Psistarstar =ifft(exp(-Uptau).*fft(Psistar));

%Kinetic Energy (momentum space)

Psi3=exp(-(Uxtau+Uxtautime*II+U0tau...

*abs(Psistarstar).^2)/2).*Psistarstar;

%position space

Energy(II+1)=sum(abs(fft(Psi3)).^2.*Up)...

./sum(abs(fft(Psi3).^2))+sum(abs(Psi3).^2...

.*(Ux+Uxtime*II)+U0.*abs(Psi3).^4).*deltax;
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%Calculate some sort of energy, although this is not true energy

KinEnergy(II+1)=sum(abs(fft(Psi3)).^2.*Up)...

./sum(abs(fft(Psi3).^2));

PotEnergy(II+1)=sum(abs(Psi3).^2.*(Ux+Uxtime*II)...

+U0.*abs(Psi3).^4).*deltax;

Energy(II+1)=KinEnergy(II+1)+PotEnergy(II+1);

Psi0=Psi3;

end

else

’Incorrect J value’

end

toc

%plot final wavw function

figure(2);

plot(x, abs(Psi3).^2);

axis([-100 100 0 1]);

axis ’auto y’;

%plot energy array

figure(3);

plot(Energy)

figure(4)
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plot(KinEnergy)

figure(5)

plot(PotEnergy)

%plot momentum distribution

figure(6);

plot(k,abs(fftshift(fft(Psi3))).^2...

./(sum(abs(fft(Psi3).^2)*deltak)));

axis([-6 6 0 1]);

axis ’auto y’;
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L. Sanchez-Palencia, P. Bouyer, and A. Aspect. Direct observation of
Anderson localization of matter waves in a controlled disorder. Nature,
453(7197):891–894, 2008. 1.4

[20] D. J. Bishop and J. D. Reppy. Study of the superfluid transition in two-
dimensional 4He films. Phys. Rev. Lett., 40(26):1727–1730, Jun 1978. 1.2

[21] D. J. Bishop and J. D. Reppy. Study of the superfluid transition in two-
dimensional 4He films. Phys. Rev. B, 22(11):5171–5185, Dec 1980. 1.2

[22] R. N. Bisset, M. J. Davis, T. P. Simula, and P. B. Blakie. Quasicondensation
and coherence in the quasi-two-dimensional trapped bose gas. Phys. Rev. A,
79(3):033626, Mar 2009. 1.3.3

[23] Eric D. Black. An introduction to pound–drever–hall laser frequency stabi-
lization. American Journal of Physics, 69(1):79–87, 2001. 3.3.1

[24] G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M.
Vinokur. Vortices in high-temperature superconductors. Rev. Mod. Phys.,
66(4):1125–1388, Oct 1994. 1.2, 1.2

[25] Immanuel Bloch, Jean Dalibard, and Wilhelm Zwerger. Many-body physics
with ultracold gases. Reviews of Modern Physics, 80(3):885, 2008. 1.1, 1.3,
1.3.3

[26] S. N. Bose. Z. Phys., 26:178, 1924. 1.2

[27] C. C. Bradley, C. A. Sackett, and R. G. Hulet. Bose-Einstein condensa-
tion of lithium: Observation of limited condensate number. Phys. Rev. Lett.,
78(6):985–989, Feb 1997. 3.9

[28] D. M. Brink and C. V. Sukumar. Majorana spin-flip transitions in a magnetic
trap. Phys. Rev. A, 74(3):035401, Sep 2006. 2.4

160
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magnetic surface traps. Phys. Rev. Lett., 83(17):3398–3401, Oct 1999. 3.4

[129] Giacomo Roati, Chiara D’Errico, Leonardo Fallani, Marco Fattori, Chiara
Fort, Matteo Zaccanti, Giovanni Modugno, Michele Modugno, and Massimo
Inguscio. Anderson localization of a non-interacting Bose-Einstein condensate.
Nature, 453(7197):895–U36, JUN 12 2008. 1.4

[130] M. Robert-de Saint-Vincent, J.-P. Brantut, B. Allard, T. Plisson, L. Pezzé,
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