
ABSTRACT

Title of Dissertation: Cluster Algebras and Polylogarithm Relations

Zachary Greenberg
Doctor of Philosophy, 2021

Dissertation Directed by: Professor Christian Zickert
Department of Mathematics

We seek to illuminate the connection between multiple polylogarithm relations

and cluster algebras in two ways. First, we give a uniform description of the cluster

modular group of affine and doubly extended cluster algebras. This will be critical

for the future work of extracting polylogarithm relations from infinite type cluster

algebras. Second, we introduce a differential one form, ωn, associated to each multi-

ple polylogarithm, which can be used to compute multiple polylogarithm relations.

This form satisfies a clean recurrence relation, mirroring the inductive definition of

multiple polylogarithms. We are able to use this recurrence to find several families

of “small” polylogarithm relations that hold in any weight. Finally for small values

of n, we extract polylogarithm relations from type An and Dn cluster algebras.



Cluster Algebras and Polylogarithm Relations

by

Zachary Greenberg

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2021

Advisory Committee:
Professor Christian Zickert, Chair/Advisor
Professor Jeffery Adams
Professor William Goldman
Professor Jonathan Rosenberg
Professor William Gasarch, Deans Representative



© Copyright by
Zachary Greenberg

2021



Acknowledgments

I would first like to thank my advisor, Christian for all of his guidance and

support throughout this entire process. I also want to thank Dani and Haoran for

all our enlightening discussions and encouragement. Finally I want to thank my

family for keeping me grounded and sane.

ii



Table of Contents

Acknowledgements ii

Table of Contents iii

List of Figures v

List of Abbreviations vii

Chapter 1:Introduction 1
1.1 Cluster Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Dynkin Classification . . . . . . . . . . . . . . . . . . . . . . . 18
1.1.3 The Cluster Structure of the Grassmannian . . . . . . . . . . 20
1.1.4 The Cluster Algebra of a Surface . . . . . . . . . . . . . . . . 25

1.2 Cluster Modular Group . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.2.1 The Cluster Complex . . . . . . . . . . . . . . . . . . . . . . . 31
1.2.2 Computing Cluster Modular Groups . . . . . . . . . . . . . . 32
1.2.3 Reddening Elements . . . . . . . . . . . . . . . . . . . . . . . 33
1.2.4 Surface Cluster Modular Groups . . . . . . . . . . . . . . . . . 34
1.2.5 Cluster Modular Group of Finite Type Cluster Algebras . . . 36
1.2.6 Grassmannian Cluster Modular Groups . . . . . . . . . . . . . 40

1.3 Polylogarithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.3.1 Classical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.3.2 Analytic Continuation . . . . . . . . . . . . . . . . . . . . . . 42
1.3.3 Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.3.4 The Dilogarithm . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.3.5 Stuffle Product . . . . . . . . . . . . . . . . . . . . . . . . . . 50
1.3.6 Low Weight Relations . . . . . . . . . . . . . . . . . . . . . . 51
1.3.7 Bloch-Suslin Complex . . . . . . . . . . . . . . . . . . . . . . 52

Chapter 2:Cluster Modular Group and Exotic Cluster Coordinates 53
2.1 Type Tn,w Cluster Algebras . . . . . . . . . . . . . . . . . . . . . . . 56

2.1.1 Tn,w Quivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.1.2 The Cluster Modular Group of a Tn,w Cluster Algebra . . . . 59
2.1.3 BC Type Quivers . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.2 Affine Cluster Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 66

iii



2.2.1 The Normal Subgroup Generated by γ . . . . . . . . . . . . . 74
2.2.2 Affine Associahedra . . . . . . . . . . . . . . . . . . . . . . . . 75
2.2.3 Counting Facets in the Affine Associahedra . . . . . . . . . . . 77

2.3 Doubly Extended Cluster Algebras . . . . . . . . . . . . . . . . . . . 89
2.3.1 Structure of the Cluster Modular Group . . . . . . . . . . . . 90
2.3.2 Other Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2.3.3 Special Quotients and Counting Clusters . . . . . . . . . . . . 99
2.3.4 Counting Facets in Doubly Extended Generalized Associahedra103

Chapter 3:Multiple Polylogarithm Relations 111
3.1 Universal Abelian Cover . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.2 Differential Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.2.1 Relation To Symbol . . . . . . . . . . . . . . . . . . . . . . . . 116
3.2.2 Pullback Map Notation . . . . . . . . . . . . . . . . . . . . . . 119
3.2.3 Recurrence Relation . . . . . . . . . . . . . . . . . . . . . . . 119
3.2.4 Retraction Maps . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.2.5 Recursive Formulation . . . . . . . . . . . . . . . . . . . . . . 126
3.2.6 Symmetrization . . . . . . . . . . . . . . . . . . . . . . . . . . 136

3.3 General Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
3.3.1 Inversion Relation . . . . . . . . . . . . . . . . . . . . . . . . . 140
3.3.2 Dynkin Reversing Relations . . . . . . . . . . . . . . . . . . . 147

3.4 Relations on An Cluster Algebras . . . . . . . . . . . . . . . . . . . . 151
3.5 Relations on Dn Cluster Algebras . . . . . . . . . . . . . . . . . . . . 159

3.5.1 Relation on D4 . . . . . . . . . . . . . . . . . . . . . . . . . . 160
3.5.2 Relation on D6 . . . . . . . . . . . . . . . . . . . . . . . . . . 162
3.5.3 Relation on D2k+1 . . . . . . . . . . . . . . . . . . . . . . . . 164

Chapter A: Dynkin Diagrams 165

Appendix B: Full Cluster Relations 171
B.1 Q3 Relation on Gr(2, 6) . . . . . . . . . . . . . . . . . . . . . . . . . . 171
B.2 Q4 Relation on Gr(2, 7) . . . . . . . . . . . . . . . . . . . . . . . . . . 172
B.3 Q5 Relation on Gr(2, 8) . . . . . . . . . . . . . . . . . . . . . . . . . . 172
B.4 α6 Relation on D6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Bibliography 179

iv



List of Figures

1.1 A T(2,3,3),(1,1,1) quiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Quiver Mutation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Matrix Mutation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Example of a Quiver with Weighted Nodes. . . . . . . . . . . . . . . . 8
1.5 A Mutation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 X Mutation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 Example of a Non-Injective Relationship Between A and X Cluster

Algebras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.8 Grassmannian Diagonal Grid Quiver. . . . . . . . . . . . . . . . . . . 21
1.9 Example Transformation Between the Diagonal Grid and Grid Quivers. 22
1.10 Surface Quiver Example. . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.11 Untagged vs Tagged Arcs in a Punctured Digon. . . . . . . . . . . . . 27
1.12 The only sub-triangulations that produce double edge quivers. . . . . 28
1.13 A simple quiver before and after mutation. . . . . . . . . . . . . . . . 30
1.14 Quiver Mutation Graphs for A2,1. . . . . . . . . . . . . . . . . . . . . 33
1.15 The Cluster Modular Group of Finite Simply Laced Cluster Algebras. 38
1.16 The Cluster Modular Groups of Finite Non-simply Laced Cluster

Algebras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.17 The Local System for Standard Polylogarithms. . . . . . . . . . . . . 44

2.1 The Quiver T ′n,w. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.2 The Quiver Tn,w. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3 A TBCn Quiver with 3 Tails. . . . . . . . . . . . . . . . . . . . . . . . 59
2.4 Applications of a Twist of a Tail of Length 4. . . . . . . . . . . . . . 65
2.5 Triangulations of an Annulus With 4 Marked Points on Each Boundary. 68
2.6 Triangulations of a Twice Punctured Disk with 4 Marked Points on

the Boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.7 All Affine Cases of Tn,w. . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.8 Affine Cluster Modular Groups. . . . . . . . . . . . . . . . . . . . . . 74
2.9 A2,1 Associahedron . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.10 D̃4 Associahedron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.11 Counting Subalgebras in D̃4. . . . . . . . . . . . . . . . . . . . . . . . 78
2.12 Triangulations of the Annulus Modulo the Mapping Class Group Ac-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.13 Triangulations of the Twice Punctured Disk Modulo the Mapping

Class Group Action. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

v



2.14 All Doubly Extended Cases of Tn,w. . . . . . . . . . . . . . . . . . . . 90
2.15 Centers of Doubly Extended Cluster Modular Groups. . . . . . . . . 93
2.16 Folding Doubly Extended Cluster Algebras. . . . . . . . . . . . . . . 107
2.17 Exotic Foldings of Doubly Extended Quivers. . . . . . . . . . . . . . 108
2.18 Quiver Isomorphism Classes of D

(1,1)
4 . . . . . . . . . . . . . . . . . . 108

2.19 The 1-Skeleton of B
(2,1)
2 and G

(1,1)
2 . . . . . . . . . . . . . . . . . . . . 109

2.20 Counting Clusters in the Quotient of Doubly Extended Cluster Alge-
bras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

2.21 Counting Codimension k Facets in Doubly Extended Associahedra. . 110

3.1 Root Bigons in the Symbol Algorithm. . . . . . . . . . . . . . . . . . 139
3.2 Q3 Relation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
3.3 The Arguments to ω2,1 Terms in the Relation on Gr(3, 6). . . . . . . . 160
3.4 Weight 3 Relation on D4. . . . . . . . . . . . . . . . . . . . . . . . . . 162

A.1 Weights of Nodes in Dynkin Diagrams. . . . . . . . . . . . . . . . . . 165
A.2 Simply Laced Finite Dynkin Diagrams. . . . . . . . . . . . . . . . . . 166
A.3 Folded Finite Dynkin Diagrams. . . . . . . . . . . . . . . . . . . . . . 166
A.4 Simply Laced Affine Dynkin Diagrams. . . . . . . . . . . . . . . . . . 167
A.5 Folded Affine Dynkin Diagrams. . . . . . . . . . . . . . . . . . . . . . 167
A.6 Twisted Affine Dynkin Diagrams. . . . . . . . . . . . . . . . . . . . . 168
A.7 Simply Laced Doubly Extended Dynkin Diagrams. . . . . . . . . . . 169
A.8 Folded Doubly Extended Dynkin Diagrams. . . . . . . . . . . . . . . 170

vi



List of Abbreviations

N Natural numbers (starting at 1)
Z Integers
R Real numbers
C Complex numbers
[n] {1, . . . , n}
x The vector (x1, . . . , xd)←−x The reverse of the vector x, (xd, . . . , x1)
x− 1 The vector (x1 − 1, . . . , xd − 1)(
m
n

)
The product of binomial coefficients

∏(mi

ni

)
Zn The cyclic group with n elements
Sn The symmetric group on n objects
R× Multiplicative group of a ring R.
Aut(Q) The automorphism group of a quiver Q
Mod(S) The mapping class group of a surface S
AQ The cluster algebra associated to a quiver Q
Mut(Q) The set of all quivers mutation equivalent to Q
C(A) The cluster complex of cluster algebra A.
Sg,b,p,n The oriented surface with genus g,

b boundary components, p punctures,
and n marked points

χ(S) The Euler characteristic of S
An, Dn, E6, E7, E8 Simply laced finite Dynkin diagrams
Bn, Cn, F4, G2 Folded finite Dynkin diagrams
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Chapter 1: Introduction

Polylogarithms are a family of functions generalizing the classic logarithm.

For any n, the weight n-logarithm Lin(z) can be defined inductively by Lin(z) =∫ Lin−1(z)
z

dz, where Li1(z) = − log(1− z). Polylogarithms have a wide variety of ap-

plications across mathematics and physics. In particular, the scattering amplitudes

associated to particle collisions are expressed in terms of polylogarithms [1]. The

dilogarithm has also been used to compute volume in hyperbolic 3 space [2].

Our motiving reason for studying polylogarithms is to obtain a concrete model of

motivic cohomology. This would be a “universal cohomology theory” for smooth

algebraic varieties X. In [3], Goncharov constructs a family of groups Bn(X) using

the function relations of the polylogarithms that is conjectured to be such a concrete

model. There are two key issues to be overcome. The first is that the full set of

polylogarithm relations for general n are unknown. The second issue is that even

by weight 4, the family of polylogarithms must be generalized further to “multiple

polylogarithms”. In the following we attack both problems.

To understand the difficulty of computing the polylogarithm relations we look at

1



the example of the dilogarithm, Li2(z). There is a classical “five term relation”

Li2(x) + Li2(y) + Li2

(
1− x
1− xy

)
+ Li2(1− xy) + Li2

(
1− y

1− xy

)
=
π2

6
− log(x) log(1− x)− log(y) log(1− y) + log

(
1− x
1− xy

)
log

(
1− y

1− xy

)

Already in this simple case, the relation is fairly complicated. We see that every

term in this relation is either a single weight 2 polylogarithm or a product of lower

weight logarithms whose total weight is 2. Our first simplification is to remove the

terms that are products of logarithms, which reduces the above relation to the five

dilogarithm terms. This can be justified by replacing Li2(z) with the Bloch-Wigner

dilogarithm (Section 1.3.4) that satisfies the relation without the product terms.

This inspires us to look for “relations modulo products” in higher weights as well.

Even with this simplification, the arguments x, y, 1−x
1−xy , 1−xy,

1−y
1−xy don’t lend them-

selves to obvious generalization. In this case Li2(z) also satisfies two simple relations

modulo products Li2(z) = −Li2(1 − z) and Li2(z) = −Li2(1
z
). These combine to

obtain Li2(z) = Li2( z−1
z

) = Li2( 1
1−z ). Applying these combined relations to terms

1,2 and 5, allows us to rewrite the 5 term relation as:

Li2

(
−x− 1

−x

)
+Li2

(
− −1

1− y

)
+Li2

(
− x− 1

1− xy

)
+Li2

(
−1− xy
−1

)
+Li2

(
− 1− xy
y(x− 1)

)

Now consider the matrix M =

1 0 1 1 y

0 1 1 x 1

. This matrix represents a point

on the affine Grassmannian G̃r(2, 5), by considering the rows to be the generating

2



vectors of a 2-plane in C5. The “Plücker” coordinates on G̃r(2, 5) are functions,

pij = det

[
Mi Mj

]
where Mi and Mj are the columns of M . (See Section 1.1.3

for more details). In this way each argument of the five term relation is −1 times a

“cross ratio” of four Plücker coordinates:

Li2

(
−p12p34

p14p23

)
+Li2

(
−p15p23

p35p12

)
+Li2

(
−p34p15

p13p45

)
+Li2

(
−p12p45

p24p15

)
+Li2

(
−p23p45

p25p34

)

For every k and n, Gr(k, n) has the additional structure of a “cluster algebra” (Sec-

tion 1.1). These five cross ratio arguments are all five X-coordinates of the cluster

algebra of Gr(2, 5). In weight 3 the trilogarithm Li3(z) also has a functional relation

whose arguments are −1 times X-coordinates of the Gr(3, 6) cluster algebra. While

this relation does not use every X-coordinate, the arguments are symmetric under

the symmetry group of the cluster algebra, called the “cluster modular group” (Sec-

tion 1.2).

Therefore to understand potential polylogarithm relations, we seek a better under-

standing of the cluster modular group of cluster algebras. Both Gr(2, 5) and Gr(3, 6)

are “finite type” cluster algebras and as such have only finitely many possible X-

coordinates. One of the early results of the theory of cluster algebras is that a

cluster algebra is finite type if and only if it is associated with a finite type Dynkin

diagram. Most Grassmannian cluster algebras are not of finite type and it is impor-

tant to understand the cluster modular groups of infinite type cluster algebras.

Chapter 2 presents a uniform computation of the cluster modular group of affine

and doubly extended cluster algebras. Both Gr(4, 8) and Gr(3, 9) are doubly ex-

3



tended cluster algebras and we expect the analysis in this chapter to be critical in

studying these cases. This was joint work with Dani Kaufman and covered in [4].

The key idea is that every affine and doubly extended cluster algebra is also associ-

ated to a family of quivers (directed graphs), which we call Tn,w (Figure 1.1). Using

these quivers we are able to give a uniform description of the elements of the cluster

modular group. In addition, we are able to classify every cluster algebra with a

Tn,w quiver as either affine, doubly extended, or “infinite mutation type” (Theorem

1.0.1).

Figure 1.1: A T(2,3,3),(1,1,1) quiver.

Theorem 1.0.1. For n,w m dimensional vectors of integers, let

χ(Tn,w) =
∑

(wi(n
−1
i − 1)) + 2

Then

1. If χ > 0 then Tn,w is the underlying quiver of an affine cluster algebra.

2. If χ = 0 then Tn,w is the underlying quiver of a doubly extended cluster algebra.

3. If χ < 0 then Tn,w is the underlying quiver of an infinite mutation type cluster

algebra.

In Chapter 3, we provide a new tool to computationally understand multiple

polylogarithms. This is joint work my advisor Christian Zickert, as well as Dani
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Kaufman and Haoran Li. For any vector n of length d, the multiple polylogarithm

Lin(z) is assigned a differential form ωn that lives on the universal abelian cover Ûd

of the domain of Lin(z). This generalizes the forms discovered by Zickert in [5] for

the standard polylogarithms.

We show that these forms can be obtained as a further symmetrization of the “sym-

bol modulo products” which is the classic algebraic tool used to study polylogarithm

relations. The forms offer several advantages over the symbol. The first is that the

forms satisfy a simple recurrence relation (Section 3.2.3):

ωn =
∑

δiωn + v[1...n]

∑
m≺1n

cm

(
m− 1

n− 1

)
ωm

The second is that differential forms come with a natural chain complex with

coboundary given by the differential d. As such linear combinations of forms that

are closed under d can be integrated to obtain well defined functions on Ûd.

Using these forms we are able to establish a variety of general relations necessary to

extract relations from the type An cluster algebras. In particular we generalize the

inversion relation Lin(z) + (−1)n Lin(1/z) = 0 to arbitrary depth (Section 3.3.1):

(−1)d(−1)
∑
niωn(1/z) =

∑
m�n

cm

(
m− 1

n− 1

)∑
c

r̂cωc·m

We note the similarity in structure between the terms occurring in the recurrence

and the inversion relation.

Finally we are able to use our understanding of the cluster algebra structure and the

5



differential forms to compute multiple polylogarithm relations up through weight 5

coming from the An cluster algebras. This builds on the work of Charlton, Gangl,

and Radchenko in [6] who obtained similar relations without using the cluster algebra

structure. We then use the relationship between type An and type Dn cluster

algebras to provide a method of canceling all depth 2 multiple polylogarithm terms

from the relation in all known cases. We conjecture this holds for any odd weight

relation (Section 3.5).

1.1 Cluster Algebras

1.1.1 Basic Definitions

In the following we focus on cluster algebras of geometric type. These are clus-

ter algebras whose seeds are described by quivers where some nodes are considered

“frozen”.

Definition 1.1.1. A quiver is a finite weighted directed graph without self loops or

2-cycles.

We often think of quivers as graphical representations of skew symmetric ma-

trices ε where there is an arrow of weight εi,j from node i to node j. Note that

under this interpretation a negative weight arrow from i to j is the same as a posi-

tive weight arrow from j to i. When the weight is an integer, we call the weight the

number of arrows from i to j.

Definition 1.1.2. For each node k of a quiver, mutation at node k produces a

6



new quiver Q′ = µk(Q) via the following process

• For each path i
εik−→ k

εkj−→ j through k add an edge of weight εikεkj from i to

j. Note that if there is already an edge from i to j we add εikεkj to the weight

present (εij).

• Reverse every edge incident to k. So k
w−→ j becomes j

w−→ k.

See Figure 1.2 for an example mutation.

It is not hard to check that µk(µk(Q)) = Q and so mutation is an involution.

Furthermore if i isn’t adjacent to j then µiµj = µjµi.

1 2 3
1 2 3

Figure 1.2: Mutating at node 2 transforms between the two quivers above.

Note that this rule can be encoded as a mutation of the skew symmetric matrix

as follows

ε′i,j =− εi,j if i = k or j = k

ε′i,j =εi,j +
|εik|εkj + εik|εkj|

2
otherwise

 0 1 −1
−1 0 1
1 −1 0

 0 −1 0
1 0 −1
0 1 0


Figure 1.3: The two matrices above represent the quivers in Figure 1.2. Once again
mutation at node 2 transforms between the two matrices.
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Remark 1.1.3. It is possible to generalize the notion of a quiver to include weighted

nodes as well as weighted edges. In this case each node is assigned a weight wi > 0.

The quiver is then represented by a skew-symmetrizable matrix ε. Such a ma-

trix has an associated diagonal matrix D such that εD−1 is skew symmetric. The

matrix εD−1 is the adjacency matrix of the associated quiver and the weight of node

i is the ith diagonal entry of D (Dii = wi). See Figure 1.4 for an example of the

correspondence.

We use the skew symmetric matrix mutation rule to obtain the mutation rule for

the skew-symmetrizable matrices. See Section 2.2 of [7] for more details.

1 2 3

(a) Q

 0 −1 0
−1 0 1
0 2 0


(b) ε

1
1

2


(c) D

Figure 1.4: A quiver Q corresponding the skew-symmetrizable matrix ε with weight
matrix D.

Definition 1.1.4. The mutation class of a quiver Mut(Q) is the set of all quivers

that can be obtained from Q via a sequence of mutations. Two quivers are mutation

equivalent if they belong to the same mutation class.

To define a cluster algebra (of type A or X ) we attach variables to the nodes

of the quiver and then add rules for relations between the variables of two quivers

that differ by a single mutation.
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1.1.1.1 A Cluster Algebras

Definition 1.1.5. Let F = Q(z1, . . . , zN) be the field of rational functions in

z1, . . . zN . A seed of an A cluster algebra is a pair (Q, a) of a quiver Q and a

list, a, of algebraically independent elements of F . The elements of a are called the

A-coordinates of the seed. We index the A-coordinates and the nodes of the quiver

with the same set, so ai is “attached” to node i of the quiver.

Definition 1.1.6. Each A-coordinate of a seed is declared to be unfrozen or

frozen. The unfrozen coordinates are also called mutable coordinates. As the

name suggests we only allow mutation at nodes associated to mutable coordinates.

An A cluster algebra will be defined by starting from an initial seed and then

applying all possible mutations to it. For any mutable node, we extend the quiver

mutation rule to include the A-coordinates as follows:

Definition 1.1.7. Mutation of a seed (Q, a) at node k produces a new seed

(Q′, a′) where Q′ is obtained from Q by quiver mutation and the new variables a′

satisfy the relations a′i = ai if i 6= k and

ak · a′k =
∏
i
wi−→k

awi
i +

∏
k

wj−→j

a
wj

j

Remark 1.1.8. These relations imply that the A-coordinates in a mutated seed,

(Q′, a′) can be written as a rational function in the A-coordinates of the initial seed

(Q, a). This remains true after applying any finite sequence of mutations to initial

9



a1 a2 a3

a1

a1+a3
a2 a3

Figure 1.5: The A mutation rule at node 2 transforms between the two quivers
above.

seed. Therefore the field F can be taken to be Q(a) for any seed obtained from the

initial seed by a finite sequence of mutations.

Definition 1.1.9. The A cluster algebra generated by an initial seed (Q, a) is

the subalgebra of Q(a) generated by the set of all A-coordinates that appear in a seed

obtained from the initial seed by a finite sequence of mutations.

Definition 1.1.10. The rank of a cluster algebra generated by a seed (Q, a) is the

number of mutable coordinates. We index a so the first n elements a1, . . . , an are

mutable and the remaining m elements an+1, . . . , an+m are frozen.

See Figure 1.5 for an example of the A cluster algebra mutation rule.

Remark 1.1.11. The inclusion of A-coordinates in the mutation rule, preserves the

facts that mutation is an involution and mutations at nonadjacent nodes commute.

A surprising fact about cluster algebras is that the number of seeds (and thus

number of A-coordinates), only depends on the mutatable portion of the seed. In fact

each cluster variable can be indexed by a length n vector called the d-vector. This

relies on the following nontrivial property of A-coordinates, the Laurent phenomena:

Theorem 1.1.12. Every A-coordinate in a cluster algebra can be written as a Lau-

rent polynomial in the initial A-coordinates.

Proof. This was shown in the original cluster algebras paper [8].
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Definition 1.1.13. The d-vector associated to an A coordinate, a is the powers of

a1, . . . , an in the denominator of the Laurent expansion of a in terms of the initial

mutatable variables.

Conjecture 1.1.14. If a and b are two A-coordinates in a cluster algebra with the

same d-vectors, then a = b.

Proof. For finite cluster algebras this was proved in [9]. Further work on this was

done in [10]. It is an open conjecture in arbitrary cluster algebras.

1.1.1.2 X Cluster Algebras

The X cluster algebra will be defined analogously to the A cluster algebra,

but with a different mutation rule on the coordinates.

Definition 1.1.15. Let F = Q(z1, . . . , zN) be field. A seed of a X cluster algebra

is a pair (Q,X) of a quiver Q and a list, X, of algebraically independent elements

of F . The elements of X are called X-coordinates. As in the A cluster algebra,

each coordinate Xi is associated to node i of Q.

Definition 1.1.16. Mutation of a seed (Q,X) at a node k produces a new seed

(Q′,X′) where Q’ is obtained from Q via quiver mutation and the new coordinates

X′ satisfy the following relations:

X ′i = µk(Xi) =



X−1
i i = k

Xi(1 +Xk)
w i

w−→ k

Xi(1 +X−1
k )−w k

w−→ i

11



X1 X2 X3
X1(1 +X2) X−1

2 X3(1 +X−1
2 )−1

Figure 1.6: The X mutation at node 2 transforms between the two quivers above.

Remark 1.1.17. As in the A cluster algebra, the new X-coordinates can be written

as rational functions in the initial X-coordinates. This remains true after any finite

sequence of mutations. Thus for any seed obtained from an initial seed (Q,X) by

finite sequence of mutations, the field F can be taken to be Q(X).

Definition 1.1.18. The X -cluster algebra generated by an initial seed (Q,X)

is the subalgebra of Q(X) generated by the set of all X-coordinates that appear in a

seed obtained from the initial seed by a finite sequence of mutations from (Q,X).

Remark 1.1.19. The X mutation changes every X-coordinate adjacent to Xi not

just Xi. See Figure 1.6 for an example.

Let (Q, a) be the seed of a rank n A cluster algebra. Using the same quiver

we can define a seed (Q,X) of a X cluster algebra. We have a map between the A

and X cluster algebras induced via:

ρQ(Xk) =
∏
k

w−→j

awj /
∏
i
w−→k

awi

The image of Xk under ρQ is the ratio of A-coordinates out of node k to the A-

coordinates coming into node k.

Claim 1.1.20. If Q and Q′ are two quivers related by a single quiver mutation µk

12



then the following diagram commutes:

(Q, (Xi)) (Q′, (X ′i))

(Q, (ai)) (Q, (a′i))

µk

ρQ ρQ′

µk

Proof. See [11] for the proof.

This implies that ρQ respects the mutation relations and thus extends to a map

ρ∗ from the entire X cluster algebra to the A cluster algebra. Fock and Goncharov

call the pair of the A cluster algebra and the X cluster algebra associated to the

same starting quiver a cluster ensemble. In most cases ρ∗ is injective, but isn’t

1 2 3
1 2 3

4 5 6

Figure 1.7: In the left quiver, ρ∗X1 = a2 and ρ∗X3 = a2 even though X1 6= X3.
Adding the framing as shown on the right correctly distinguishes X1 and X3 as
ρ∗X1 = a2a4 and ρ∗X3 = a2a6.

always. This simplest example is on the following quiver with 3 nodes (Figure 1.7).

Here ρ∗(X1) = a2 and ρ∗(X3) = a2. This problem can be fixed by adding frozen

vertices such that no two vertices of the quiver have the exact same set of neighbors

even after arbitrary mutations. One way to guarantee this is to frame the quiver

with one frozen node for each unfrozen node.

Definition 1.1.21. A framing of a quiver Q is any quiver Q̃ such that the mutable

portion of Q and Q̃ are the same. The c-vectors of Q̃ is the collection, {ci|0 ≤ i ≤

n}, of m-dimensional vectors given by cji = εi,(j+n)

13



Let Q be a quiver which consists of only mutable nodes. There is a canonical

framing, Q̂, obtained from Q by adding a frozen node Fi with matching weight wi

for each node Ni and a single arrow from Ni to Fi. Q̂ is called the “ice” quiver

associated with Q. The cluster algebra formed by starting with Q̂ is called the

cluster algebra with principal coefficients.

Remark 1.1.22. There are two possible conventions of c-vectors, the other possibil-

ity is cji = ε(j+n),i). This is the convention used by Bernhard Keller’s quiver mutation

applet1. With the convention we chose, the matrix of c-vectors [cji ] associated to Q̂

is the identity matrix.

Theorem 1.1.23 ( [12]). The sets of c-vectors of quivers in Mut(Q̂) are in one-to-

one correspondence with the clusters in the cluster algebra with principal coefficients

associated with Q.

Via this theorem, we see that by considering sets of c-vectors, one may un-

derstand whether a mutation sequence returns to a cluster with the same cluster

variables without actually computing them. We only need to check that their sets

of c-vectors are the same.

Definition 1.1.24. Let k be a node of a quiver Q with frozen vertices. We call k

green (resp. red) if the c-vector associated with k has all positive (resp. negative)

entries.

Remark 1.1.25. The canonical framing Q̂ is the one where every node is green.

1https://webusers.imj-prg.fr/~bernhard.keller/quivermutation/
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Theorem 1.1.26 (sign coherence [13, 14]). Let Q be a quiver without frozen vari-

ables. Then every quiver R ∈ Mut(Q̂) also has the property that every node of R is

either red or green.

Let Q̌ be the framing of Q by adding a frozen node Fi with matching weight

wi for each node Ni and a single arrow from Fi to Ni.

Theorem 1.1.27 ( [15]). Suppose there is R ∈ Mut(Q̂) satisfying that every node

of R is red. Then R ' Q̌.

Definition 1.1.28. Suppose that Q̌ ∈ Mut(Q̂). We call a sequence of mutations

taking Q̂ to Q̌ a reddening sequence.

Remark 1.1.29. The existence of a reddening sequence is an important property

of a given quiver, and is conjectured to be related to several “niceness” properties of

the cluster algebra [15].

We will explicitly construct reddening sequences for the family of quivers in-

troduced in Section 2.1.

Theorem 1.1.30 (Muller, [15]). Let Q be a quiver with no frozen vertices and let

R ∈ Mut(Q). Then Q̂ has a reddening sequence if and only if R̂ does.

1.1.1.3 Poisson Structure on X Cluster Algebras

The X-coordinates of a cluster algebra have additional structure given by

a Poisson bracket. The following definitions were given in [16]. Since every X-

coordinate can be written in terms of the initial seed it suffices to define the bracket

between the X-coordinates in the initial seed:

15



Definition 1.1.31. The bracket of two X-coordinates xi, yj in the initial seed with

mutation matrix εij is given by {xi, xj} = εijxixj. The bracket is extended to arbi-

trary X-coordinates via the Leibniz rule and multi-linearity.

Remark 1.1.32. This bracket is preserved by mutation and so is independent of

starting seed.

Example 1.1.33. We consider the example of an X mutation given in Figure 1.6.

Let x1, x2, x3 be the starting X coordinates on a oriented 3 cycle. Then after mutation

at the node 2, the new X coordinates are x1(1 + x2), x2, x3(1 + x−1
2 )−1 on a directed

path. Using the Leibniz rule and multi-linearity we compute:

{x1(1 + x2), x3(1 + x−1
2 )−1}

={x1, x3
x2

1 + x2

}(1 + x2) + {1 + x2, x3
x2

1 + x2

}x1

={x1, x3}x2 + {x1, x2}x3 − {x1, 1 + x2}
x3x2

1 + x2

+ {x2, x3}
x1x2

1 + x2

+ {x2, x2}
x1x3

1 + x2

− {x2, 1 + x2}
x1x2x3

(1 + x2)2

=− x1x2x3 + x1x2x3 −
x1x

2
2x3

1 + x2

+
x1x

2
2x3

1 + x2

+ 0− 0

=0

This would agree with the definition of the bracket starting from the path as x′1 =

x1(1 + x2) and x′3 = x3(1 + x−1
2 )−1 are not adjacent.

Corollary 1.1.34. If x and y are two X coordinates that appear in a seed on non

adjacent nodes, then x and y never appear on adjacent nodes in any seed.
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Proof. If x, y are not adjacent in a seed, then εij = 0 when x is on node i and y is

on node j. So {x, y} = 0 in the bracket starting on that seed. This implies that the

bracket is zero between these two coordinates in any other seed. Thus ε′i′j′ = 0 and

x and y are not adjacent.

Definition 1.1.35. A Casimir element of a cluster algebra is a function of the

X-coordinates that has zero Poisson bracket with every element.

Theorem 1.1.36. If v is in the null space of ε then
∏
xvii is a Casimir element of

the cluster algebra.

Proof. It suffices to compute the bracket of
∏

i x
vi
i with xj for each xj in the seed

with matrix ε.

{
∏
i

xvii , xj} =
∑
i

x1 . . . xi−1{xvii , xj}xi+1 . . . xn

=
∑
i

x1 . . . xi−1vi{xi, xj}xi+1 . . . xn

=
∑
i

x1 . . . xi−1viεijxixjxi+1 . . . xn

=x1 . . . xnxj
∑
i

εijvi

=0

So
∏

i x
vi
i commutes with each generator and thus commutes with all the X-coordinates.

Corollary 1.1.37. The cluster algebra associated to the right quiver in Figure 1.6

has a Casimir element x1x3.
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Proof. The null space of the matrix ε associated to this quiver is generated by

(1, 0, 1).

1.1.2 Dynkin Classification

Definition 1.1.38. A cluster algebra A is of finite type if there are finitely many

seeds.

The cluster algebra is of finite mutation type if there are finitely many quivers

in the mutation class of Q (with potentially infinitely many coordinates)

Theorem 1.1.39. A cluster algebra AQ is of finite type if and only if there is

a quiver in the mutation class of Q whose mutable portion is an orientation of a

Dynkin diagram.

Proof. See [9] for a full proof. A key aspect of this proof is the relationship between

the almost positive roots of the associated root system and the cluster algebra.

We can take the initial quiver of the cluster algebra to be the quiver Q that is

an orientation of the associated Dynkin diagram. Consider the set of simple roots

{r1, . . . , rn} of the associated root system. The d-vector of each A coordinate ai in

the initial seed is −ei. This directly corresponds to −ri. In general the A coordinate

with associated d-vector v corresponds to
∑
viri.

Remark 1.1.40. Theorem 1.1.39 remains true even when discussing cluster alge-

bras with weighted quivers.

Using the Dynkin quivers, we can compute Casimir elements of the Poisson

structure of finite type cluster algebras.
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Remark 1.1.41. For n = 2k − 1, An has a Casimir element that is a product of k

X-coordinates.

Proof. The Dynkin type quiver has the vector (1, 0,−1, 0, 1, . . . ) in the null space.

So by Theorem 1.1.36 the corresponding product of k X-coordinates is a Casimir

element.

Remark 1.1.42. The type An cluster algebras for n even does not have any Casimir

elements of this form.

Remark 1.1.43. The type D2k cluster algebras have a two Casimir element that are

a product of k X-coordinates. These are found by freezing one of each small tail and

taking the Casimir of the corresponding A2k−1 cluster algebra. In the Dynkin type

quiver, this does not include the X-coordinate on the degree 3 vertex so the frozen

tail commutes with the product.

Remark 1.1.44. For any n, Dn has a Casimir element given by the quotient of

Xa/Xb where a and b are the short tails. When n is even this is equal to the quotient

of the two A2k−1 Casimir elements.

We also obtain nice classes of cluster algebras by looking at generalizations

of the finite Dynkin diagrams. Cluster algebras with quivers corresponding to ori-

entations of Affine Dynkin diagrams are called affine cluster algebras. These

cluster algebras have infinitely many cluster variables, but can be characterized by

the fact that the number of cluster variables grows at a linear rate with number of
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mutations. See [10] for more information between the affine root system and cluster

algebra structure.

In Chapter 2 we study the doubly extended cluster algebras. These have

quivers that are orientations of Dynkin diagrams formed by adding two nodes. For

more information on the classification of doubly extended Dynkin diagrams see [17].

To see all the diagrams in this family see Figures A.7 and A.8.

1.1.3 The Cluster Structure of the Grassmannian

Our other key example of Cluster Algebras comes from the homogeneous co-

ordinate ring of the affine cone of Grassmannian C[G̃r(k, n)].

Definition 1.1.45. The Grassmannian Gr(k, n) is the set of k dimensional sub-

spaces of Cn. Recall each point in Gr(k, n) can be viewed as an equivalence class of

k × n matrices whose rows span the given subspace.

There is a standard embedding of Gr(k, n) into projective space called the

Plücker embedding.

Definition 1.1.46. For I ⊆ [n] of size k, the Plücker coordinate pI : G̃r(k, n)→ C

is the function that takes the determinant of the k × k submatrix using columns in

I.

Claim 1.1.47. Taking a different basis of a subspace simultaneously changes all

Plücker coordinates by the same constant. This gives the standard Plücker embedding

of Gr(k, n) in projective space.
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Claim 1.1.48. For any k and n, G̃r(k, n) has an A cluster algebra structure. There

is an explicit initial seed where each A-coordinate corresponds to a Plücker coordi-

nate.

Proof. There are several recipes to obtain an initial seed of the cluster algebra

structure. In [18], Scott gives a combinatorial construction of seeds that generate a

cluster algebra isomorphic to the coordinate ring of Ĝr(k, n). In [16], Golden, et al.

give a uniform description of seeds that will generate the cluster algebra structure

for any k and n. The quivers in these seeds can be arranged so that all but one

node is in a k × (n− k) grid with a diagonal edge through each square of the grid.

See Figure 1.8 for the general shape of these “diagonal grid quivers”. In this picture

the blue vertices are frozen and correspond to Plücker coordinates whose index set

is cyclicly adjacent.

Figure 1.8: An example of the diagonal grid quiver in Gr(4, 8).

Corollary 1.1.49. Every Grassmannian cluster algebra has a seed whose A - coordi-

nates are Plücker, such that the mutatable portion of the quiver is a (k−1)×(n−k−1)

grid (with no diagonal edges).

Proof. In Scott [18], he shows that mutating a node with exactly 2 arrows in and
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2 arrows out transforms a Plücker coordinate into another Plücker coordinate. We

call such nodes “good” for the remainder of this proof. So it suffices to specify a

mutation sequence of good nodes from Goncharov’s Plücker quiver (Figure 1.9a) to

the grid quiver (Figure 1.9e). To do this we label the diagonals of the k × (n − k)

grid parallel to the “extra” diagonal edges 1 to n− 1. Since the edges on a diagonal

aren’t adjacent we can mutate at all the nodes on the diagonal in any order and

achieve the same result. Call the mutation sequence for the ith diagonal di

Mutating d1 removes the extra edge of the first square and makes every node on

the second diagonal good. In general if every node on the ith diagonal is good and

squares above are free of extra edges, mutating at di makes every node on the (i+1)st

diagonal good. In addition, di removes the extra edges directly below at the cost of

adding extra edges directly above. These can be removed by mutating di−2. This

adds extra edges which again are removed by mutating 2 diagonals back. This can

be repeated until the extra edges would be added off the grid. So let mi be the

mutation sequence didi−2di−4 . . . d1
2.

At the start there are n − 2 sets of extra edges to clear so the mutation sequence

2If i is even stop at d2 instead of d1.

(a) Grassman-
nian Diagonal
Grid.

(b) (c) (d) (e) Grid Quiver.

Figure 1.9: The mutation algorithm outlined in Corollary 1.1.49 transforms the
quiver on the left to the one on the right.
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m1m2, . . . ,mn−2 takes Goncharov’s quiver to a pure grid. Figure 1.9 shows the result

applying mi to a quiver from Gr(4, 9)

Recall that there is an isomorphism between Gr(k, n) and Gr(n − k, n) that

sends a k subspace to its complementary n − k dimensional subspace. This is re-

flected in the Plücker coordinates by sending pI to p[n] \ I and extends to a map of

cluster algebras by reversing all the arrows in the starting seed. As such we only

need to study Gr(k, n) when k ≤ n
2
.

Remark 1.1.50. For each 1 ≤ i ≤ n+1 there are maps ai : Gr(k, n+1)→ Gr(k, n)

given by forgetting the ith dimension. This induces a map a∗i : C[Gr(k, n)] →

C[Gr(k, n + 1)] by sending pI to pfi(I) where fi(x) =


x x < i

x+ 1 x ≥ i

. Again this

gives an inclusion of cluster algebras showing Gr(k, n) is a subcluster algebra of

Gr(k, n + 1). There is another inclusion of cluster algebras bi : Gr(k, n) → Gr(k +

1, n+1) obtained by conjugating ai by the dual map above. This sends pI to p{i}∪f(I).

Claim 1.1.51. [18] The Grassmannian cluster algebra is of finite type if and only

if (k − 2)(n− k − 2) < 4 and finite mutation type when (k − 2)(n− k − 2) ≤ 4.

In fact Gr(2, n + 3) is type An, Gr(3, 6) is type D4, Gr(3, 7) is type E6 and

Gr(3, 8) is type E8.

The only finite mutation type, but not finite type cluster algebras are Gr(3, 9) =

Gr(6, 9) and Gr(4, 8).
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In Gr(2, n) the only cluster coordinates are Plücker coordinates, but even in the other

finite type cases there are “exotic” cluster coordinates. In Gr(3, 6) there are only

two exotic coordinates that Scott calls X and Y . These can be expressed as polyno-

mials in the Plücker coordinates X = p134p256−p156p234 and Y = p136p245−p126p345.

Claim 1.1.52. Every exotic cluster coordinate can be expressed as a polynomial in

the Plücker coordinates.

Proof. This follows from Claim 1.1.48 as the coordinate ring of the Grassmannian

is generated by the Plücker coordinates.

Remark 1.1.53. In [18], Scott explicitly computes all of the exotic coordinates in

the remaining finite cases. In particular, the only exotic coordinates in Gr(3, 7) are

lifts of X and Y via the inclusions a∗i (Remark 1.1.50). Additionally, in Gr(3, 8)

there are 24 additional exotic coordinates. Scott refers to 8 as Aρ
i

as the polynomials

in Plücker coordinates are related by applying ρ, the cyclic shift of all of the indices

modulo 8. The remaining 16 have two orbits under the cyclic shift. These two orbits

are additionally related by applying a dihedral flip σ (on the octagon) to the Plücker

coordinates of each polynomial. As such Scott refers to these exotic coordinates as

Bρi or Bσρi.

Remark 1.1.54. When referring to exotic coordinates in Section 3.5 we use the

following notation for these exotic coordinates. One goal of this new notation is

to emphasize the degree of the polynomial corresponding to each exotic coordinate.

For example, X = p134p256 − p156p234 is degree 2 and so we refer to it as e2x. We
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also refer to the images of coordinates under the inclusion map by the index of the

inclusion rather than the six indices of the corresponding Gr(3, 6) subalgebra. For

example, we write e2x1 rather than X234567.

New Notation Scott

Gr(3, 6)
e2x X

e2y Y

Gr(3, 7)
e2x1 X234567

e2y1 Y 234567

Gr(3, 8)

e2x12 X345678

e2y14 Y 235678

e3Aρ
3

Aρ
3

e3Bρ4 Bρ4

e3Bσρ5 Bσρ5

1.1.4 The Cluster Algebra of a Surface

In this section, we review cluster algebras associated to surfaces. For a com-

plete description see [19] or Section 3 of [20].

Definition 1.1.55. A marked surface, Sg,b,p,n is an orientable surface of genus g

with b boundary components, p punctures and n marked points on the boundary. We

always require that each boundary component has at least one marked point. An arc

on a marked surface S is a (non-contractible) isotopy class of curves between marked

points or punctures on S. An ideal triangulation of a marked surface is a maximal
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collection of non-crossing arcs on S.

Let S be a marked surface. Given an ideal triangulation ∆ of S, we associate

a quiver, Q∆ to ∆, as follows: For each arc e ∈ ∆ we add a node Ne and for

each triangle t ∈ ∆ we add a clockwise oriented cycle of arrows between the nodes

associated with the arcs of t. In the situation where we have arrows between two

nodes in opposite directions, we cancel them. The nodes associated to boundary

edges are frozen. There are −3χ(S) + 2n total nodes and n frozen nodes (Figure

1.10).

(a) (b) (c)

Figure 1.10: The quiver associated to a triangulation of the disk with 5 marked
points. In 1.10a we see the triangulation alone. In 1.10b we place a node on each
edge and attach them with a clockwise oriented cycle for each triangle. Figure 1.10c
shows the resulting quiver by itself.

There is one minor complication when S has punctures. In this case it may be

possible to have a “self folded” triangle in an ideal triangulation of S (Figure 1.11a).

In this case, the construction mentioned above does not produce the correct quiver.

However, we can always find a triangulation of S with no self folded triangles, and

use this to construct a quiver associated with the triangulation.

Then mutation of nodes in Q∆ corresponds to a “flip” or “Whitehead move” in

∆ at the corresponding arc. Again, there is a caveat to this when S has punctures.
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(a) Arcs in a punctured digon. (b) The tagged arc flip graph.

Figure 1.11: Untagged vs tagged arcs in a punctured digon.

The interior arc of a self folded triangle cannot be flipped, but the corresponding

node in the quiver can be mutated. This is addressed in [19] by the addition of

“tagged” arcs. Essentially, we replace the outside arc of a self folded triangulation

with a tagged arc as shown in Figure 1.11. There is then a rule for flipping tagged

arcs which agrees with the mutation rule for quivers. With this addition, we may

always flip any arc and this always agrees with mutation of corresponding quivers.

We do not need the details of this in general.

Remark 1.1.56. Since every triangulation of a surface can be reached via a series

of flips, all triangulations of a surface are in the same mutation class.

Remark 1.1.57. A quiver associated to a surface can only have a double edge if

the triangulation contains one of the two sub-triangulations in Figure 1.12.
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Figure 1.12: The only sub-triangulations that produce double edge quivers.

1.2 Cluster Modular Group

We will now review how to associate a group to any quiver or cluster algebra

called the cluster modular group. The following is adapted from the discussion

in my joint paper [4]. This group is essentially the automorphism group of the

mutation structure of a cluster algebra associated with a given quiver. We can use

our definitions of c-vectors to give a definition of this group without any reference

to the cluster variables.

Let Q be a quiver without frozen vertices. By identifying the mutable nodes

of Q with the integers [n] = {1, . . . , n}, we obtain a right action of Z∗n2 on quivers

in the mutation class, Mut(Q), by mutating at each node in sequence. We refer to

elements of Z∗n2 as mutation paths.

We would now like to focus on the subset of paths that return Q to an isomor-

phic quiver. In order to define a group structure on this subset, we need to consider

pairs (P, σ) of mutation paths P and quiver isomorphisms σ : Q → P (Q). We
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write quiver isomorphisms as elements of the symmetric group Sn. The symmetric

group acts on mutation paths by permuting the elements of the path and on itself

by conjugation.

Given two such pairs (P, σ) and (R, τ) we can multiply by forming the com-

posite path P · σ(R) and the composite quiver isomorphism στ .

Q P (Q) P (σ(R)(Q))σ

στ

σ(τ)
(1.1)

This multiplication rule can also be obtained by viewing these pairs as elements of

the semidirect product

Z∗n2 o Sn. (1.2)

This gives a group structure on the set of mutation paths which return Q to

an isomorphic quiver paired with isomorphisms from the starting to ending quiver;

we call this group the quiver modular group associated with Q denoted Γ̃Q.

Elements of the quiver modular group act on the cluster variables of a seed i

associated with Q. The path P provides a path to a new seed, and σ gives a map

from the cluster variables on i to those on P (i).

Definition 1.2.1. A pair (P, σ) which acts trivially on the cluster variables of any

initial seed associated with Q is called a trivial cluster transformation. Let T be the

group of trivial cluster transformations; this is a normal subgroup of Γ̃Q. The group

ΓQ = Γ̃Q/T is called the cluster modular group associated with the quiver Q.

Equivalently, a trivial cluster transformation is an element (P, σ) of Γ̃Q for
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1 2

(a) Q

1 2

(b) Q’

Figure 1.13: A simple quiver before and after mutation.

which σ is a frozen isomorphism Q̂→ P (Q̂). In this way, we may define ΓQ without

any regard to cluster variables.

Remark 1.2.2. Our notion of a quiver isomorphism requires that all of the arrow

directions are preserved. In other definitions of the cluster modular group, such

as those in [11, 21, 22], one includes arrow reversing quiver automorphisms. Our

version of the cluster modular group is an index two subgroup of this more general

notion.

Example 1.2.3. Consider the quiver Q with two nodes and a single edge between

them (Figure 1.13a). Mutation at 1 in Q yields a quiver with the edge now going

from 2 to 1 (Figure 1.13b) If we want to perform the “same” mutation in Q′ that we

did in Q we want to mutate at the vertex corresponding to 1 under the isomorphism

f : Q → Q′, which is 2. In this case there is a unique isomorphism, but in general

each choice of isomorphism gives rise to a different element of the cluster modular

group. It is convenient to write these isomorphisms as permutations in Sn. The

element described above would be written g = (1, (12)). In this case g generates the

cluster modular group and g5 = id.
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1.2.1 The Cluster Complex

Recall that for any cluster algebra, AQ, there is an associated simplicial com-

plex C(AQ) called the cluster complex. This complex is defined in detail in [8, 23].

We will review the basic definitions of this complex here. First we will need the

notion of compatibility of cluster variables.

Definition 1.2.4. Two cluster variables are compatible if they appear in a cluster

together.

The k-dimensional simplices of C(AQ) correspond to size k collections of mu-

tually compatible cluster variables in AQ. In other words, the cluster complex is

the “clique complex” of the compatibility rule for cluster variables. In particular

each vertex corresponds to an individual cluster variable and each edge connects

two cluster variables when they can be found in a cluster together. The maximal

dimension simplices correspond to the clusters of AQ.

Remark 1.2.5. In [11] the cluster modular group is defined to be the simplicial

symmetry group of the cluster complex. This symmetry group contains the cluster

modular group as described in this paper as a proper subgroup.3 The distinction

between these groups does not affect the main results of this thesis.

The 1-skeleton of the dual complex of the cluster complex is called the “ex-

change graph” of the cluster algebra. The vertices of this graph correspond to

clusters and the edges correspond to mutations between clusters.

3For cluster algebras of finite mutation type the only potentially missing symmetry is given by
reversing all the arrows in a quiver.
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1.2.2 Computing Cluster Modular Groups

We would like to have an algorithm to compute the cluster modular group.

For general quivers, this can be very difficult since the mutation class can be infinite.

When the quiver in question has finitely many quivers in its mutation class, there is

an algorithmic construction of the cluster modular group, see Ishibashi’s paper [24].

We present a simplified version of the algorithm which only computes a generating

set without computing all the relations.

Definition 1.2.6. The directed quiver mutation graph, G, associated to a finite

mutation class cluster algebra is a multi graph with a node for each quiver iso-

morphism class and a directed edge for each single mutation between isomorphism

classes. The (undirected) quiver mutation graph replaces directed two cycles corre-

sponding to inverse mutations with a single undirected edge.

Note, unlike the graph in [24], in our formulation the degree of each node is

the rank of the cluster algebra.

Each element (P, f) of the cluster modular group corresponds to a cycle in G

by following P in G. Furthermore the set of cycles in G is finitely generated with one

generator for each edge not in a fixed spanning tree of G. Since the automorphism

group of each quiver is finite, this gives a finite list of generators of the cluster

modular group.

In practice this method doesn’t give the shortest possible list of generators

of the cluster modular group. However it places an upper bound on how long the

shortest path representing a generator of the cluster modular group can be. If d is
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the diameter of the spanning tree for G, then the maximum length of the mutation

path of a generator is 2d+ 1.

Remark 1.2.7. To check if a group surjects onto the cluster modular group it suffices

to check that it reaches every quiver isomorphic to the starting quiver in distance

2d+ 1.

Example 1.2.8. The mutation class of an A2,1 quiver has two quiver isomorphism

classes Q1, Q2, shown in Figure 1.14. It is easy to compute the directed and undi-

rected quiver mutation graphs for this quiver simply by performing each of the three

mutations on each quiver isomorphism class.

We can then compute a set of generators of the cluster modular group. There

are two generators e1, e2 corresponding to the two loops from Q1 and Q2 to them-

selves.

(a) Q1 (b) Q2

Q1 Q2

(c) Directed mutation graph.

Q1 Q2

(d) Undirected mutation graph.

Figure 1.14: The quiver mutation graphs for A2,1.

1.2.3 Reddening Elements

If a quiver Q has a reddening sequence (Definition 1.1.28), then there is a

unique element r ∈ ΓQ called the “reddening element” of ΓQ.
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Explicitly, r = (Pr, σP ) where Pr is any reddening sequence and σP : Q →

P (Q) is the isomorphism which extends to an isomorphism Q̌ → P (Q̂) by adding

the identity permutation on all of the frozen vertices.

The following theorem is probably well known, but we give a proof for com-

pleteness.

Theorem 1.2.9. The reddening element (when it exists) is in the center of ΓQ.

Proof. To show r is in the center we take any other group element g = (P, f). Using

the labeling induced by the initial framing the permutation σr is the identity. Then

g · r · g−1 = (P · f(Pr) · f(σr(f
−1(
←−
P ))), f ◦ σr ◦ f−1) = (P · f(Pr) ·

←−
P , id) (1.3)

Conjugating the reddening path Pr by any other path again produces a reddening

sequence (see [15]) so

Pr ∼ P · f(Pr) ·
←−
P (1.4)

and we have r = grg−1 as needed.

1.2.4 Surface Cluster Modular Groups

We can define a faithful action of the mapping class group, Mod(S), on the

triangulations of S and hence identify the mapping class group as a subgroup of the

cluster modular group, ΓS, of our cluster algebra S. We give an explicit construction

of this subgroup here as a nice example of our notation. We refer to [25] section 2
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for computations involving the mapping class group of selected surfaces.

Given f ∈ Mod(S) we can define γf ∈ ΓS as follows: f gives a new trian-

gulation of S and hence by [19] there is a path of flips, Pf , taking ∆ to f(∆).

Furthermore, f defines a map between the edges of ∆ and f(∆) that preserves the

adjacency relations between the triangles of ∆. So ∆ and f(∆) have the same asso-

ciated quivers. The path P induces a map between the nodes of Qf(∆) and P (Q∆)

since these quivers come from the same triangulation. Let σf,P be the isomorphism

of quivers Q∆ to P (Q∆) defined by the composition

σf,P : Q∆
f−→ Qf(∆)

P−→ P (Q∆). (1.5)

Thus to f we associate γf = {Pf , σf,P}.

It is not immediately clear that this does not depend on the choice of the path,

P . Let {P, σ} and {R, τ} be two possible representatives of γf . Then we have

{P, σ}{R, τ}−1 = {P, σ}{τ−1(R−1), τ−1} = {Pστ−1(R−1), στ−1}. (1.6)

We need to show that this element is a trivial cluster transformation. First note

that στ−1 is the quiver isomorphism from R(Q∆) to P (Q∆) coming from the fact

that these both correspond to the same triangulation of S. The composite mutation

path, Pστ−1(R−1), consists of following P and then following R−1 back to our initial

cluster. This introduces a permutation on the cluster variables determined by the

map τσ−1 : P (Q∆) → R(Q∆). Together these permutations act trivially on the
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cluster variables, and γf is well defined in the cluster modular group.

Remark 1.2.10. For all but finitely many quivers associated with surfaces, the clus-

ter modular group is essentially equal to the mapping class group, see [26] proposition

8.54. For the remaining surfaces, one may check case by case that Mod(S) is always

a finite index normal subgroup of Γ.

1.2.5 Cluster Modular Group of Finite Type Cluster Algebras

From the classification of finite cluster algebras, we know every finite cluster

algebra has a seed whose underlying quiver is an orientation of a finite Dynkin

diagram. In fact, every orientation of the Dynkin diagram appears in the mutation

class. We make a canonical choice that we call the “Dynkin quiver” where every

node is either a source or a sink and there are at least as many sources as sinks.

We now give a presentation the cluster modular group of each finite type based at

the Dynkin quiver.

Lemma 1.2.11. Let Q be a quiver where every node is a source or a sink. Let P

be any path formed by first mutating at all the original sources and then mutating

at all the original sinks. Then following P results in a new quiver isomorphic to Q.

Proof. First, notice that two sources cannot be adjacent, so the mutation at two

distinct sources commute. Therefore the order of the sources in P does not affect

the final quiver. Since there are no directed paths through a source, the quiver

4The standard choice of mapping class group fixes the set of marked points on the boundary.
We need to allow transformations that permute these marked points to achieve equality. We also
need to include a mapping class group action that swaps the tagging at each puncture.
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mutation rule is especially simple at a source: simply reverse all the arrows incident

to the source. After mutating at all the sources every arrow in Q will be reversed.

This makes the original sinks into sources and so we see the second half of the path

returns to an isomorphic quiver.

Definition 1.2.12. The path P in the previous lemma is called the “sources/sinks

path”. It correspond to an element of the cluster modular group gS = (P, f) where

the f is the “identity permutation” induces by carrying the indexing along P .

Theorem 1.2.13. The cluster modular group for any finite cluster algebra has order

h+2
2
|Aut(Q)| where h is the Coxeter number of the underlying Dynkin diagram.

Proof. Fomin and Zelevinsky show that ` = h+2
2

applications of gS returns to the

original quiver where h is Coxeter number of the associated root system. Further-

more they showed that every Dynkin quiver is reached during these ` applications

and all ` applications are needed. So the cluster modular group is generated by gS

and Aut(Q).

Remark 1.2.14. To identify the group exactly we must be more careful, as g`S

doesn’t always return with the identity permutation. In A2k+1,D2k+1 and E6 it turns

out that g`S = σ where σ is the order 2 generator of Aut(Q). In these two cases it

is clear that σ and gS commute and the full cluster modular group is cyclic of order

2` as claimed.

In every other case g`S is the identity. However gS and Aut(Q) still commute as any

automorphism preserves the set of sources and the set of sinks and we established P
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is independent of reordering within these sets. In these cases 〈gS〉 and Aut(Q) are

disjoint commuting subgroups and so the overall group is 〈gS〉 × Aut(Q) which has

the correct order.

Remark 1.2.15. The previous theorem needs a slight adjustment for A2k. In this

case the Coxeter number is 2k+ 1, so we are claiming that gS has order 2k+3
2

which

is a non integer. The issue is that in this case mutating only the sources returns

you to a Dynkin quiver. In this case we take hS, the sources path5, and we know

that h2
S = gS. The theorem then says that the order of hS is 2k + 3. Furthermore

the automorphism group is trivial. So in this case the cluster modular group is

Z2k+3 = Zn+3. Interestingly, when we compare this to the n = 2k + 1 odd case we

also saw the cluster modular group was Zn+3.

Similarly the cluster modular group of Dn = Zn × Z2 regardless of if n is odd or

even. This is because when n is odd Z2n
∼= Zn × Z2

Type Coxeter Number Modular Group Order of the modular group

An n+ 1 Zn+3 n+3
D4 6 Z4 × S3 24
Dn 2n− 2 Zn × Z2 2n
E6 12 Z7 × Z2 14
E7 18 Z10 10
E8 30 Z16 16

Figure 1.15: The cluster modular groups of finite simply laced cluster algebras.

See Figures 1.15, 1.16 for the modular groups in all the finite cases.

5Since Aut(A2k) = 1 there is only one choice of isomorphism.
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Type Coxeter Number Modular Group Order of the modular group

Bn 2n Z2n+2 2n+ 1
Cn 2n Z2n+2 2n+ 1
F4 12 Z7 7
G2 6 Z4 4

Figure 1.16: The cluster modular groups of finite non-simply laced cluster algebras.
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1.2.6 Grassmannian Cluster Modular Groups

The Grassmannian Gr(k, n) has a natural action of Sn that sends the Plücker

coordinate pI to pσI . In order for this action to induce a cluster algebra action it

needs to preserve the set of frozen Plücker coordinates. This restricts the group to

D2n = 〈r, f |rn = f 2 = frfr = 1〉 as the frozen coordinates have adjacent indices

under the cyclic order.

Since the flip reverses the cyclic ordering, it induces an “orientation reversing”

cluster automorphism, which also flips all the arrows of the quiver. As such we

focus only on the cyclic group generated by r.

Claim 1.2.16. Since every cycle in the grid quiver is even length the nodes of the

grid can be two colored. As we saw with the sources/sinks path, since the nodes of

each color are not adjacent the order of mutation does not affect the resulting quiver.

Let PTC be the mutation path given by mutating each color of node. The element of

the cluster modular group corresponding to r has mutation path PTC or
←−−
PTC.

Corollary 1.2.17. The sources/sinks path on Gr(2, n) corresponds to cyclicly shift-

ing the indices of the Plücker coordinates modulo n.

Remark 1.2.18. We call the cyclic shift of indices, the rotation action on the

Grassmannian.

Proof. In Gr(2, n) the grid quiver is the Dynkin quiver of type An−3. The sources

and sinks are the two coloring of the grid and so these two mutation paths are

identical.
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Remark 1.2.19. In Gr(k, n) there is an additional symmetry called the parity map.

Unlike rotation, the parity map mixes Plücker coordinates and exotic coordinates,

which is critical for obtaining the full cluster modular group of Gr(k, n). For this

paper it suffices to know the parity map can be expressed in terms of the sources/sinks

element of the cluster modular group for Gr(3, 6), Gr(3, 7) and Gr(3, 8).

1.3 Polylogarithms

1.3.1 Classical

Definition 1.3.1. Let n ∈ Nd and z ∈ Cd with |zi| < 1.

The multiple polylogarithm is defined by the summation: Lin(z) =
∑

0<k1<···<kd

z
k1
1 ...z

kd
d

k
n1
1 ...k

nd
d

.

Definition 1.3.2. The weight of Lin(z) is n =
∑
ni and the depth is d.

When the depth is 1, we refer to Lin(z) as the standard polylogarithms.

This family of functions is a natural generalization of the familiar logarithm

function and in fact Li1(z) = − log(1 − z). From the Taylor series definition it is

simple to compute the derivatives of an arbitrary multiple polylogarithms. When

ni > 1, ∂
∂zi

Lin1,...,nd
(z1, . . . , zd) = 1

zi
Lim1,...mi−1,...,md

(z1, . . . , zd). When ni = 1 the

derivative only depends on if zi is the first, last, or middle variable. Thus for clarity
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we show the derivatives for a depth 3 polylogarithm Lim,n,p(x, y, z).

∂

∂x
Li1,n,p(x, y, z) =

1

1− x
Lin,p(y, z)−

1

1− x
Lin,p(xy, z)−

1

x
Lin,p(xy, z)

∂

∂y
Lim,1,p(x, y, z) =

1

1− y
Lim,p(xy, z)−

1

1− y
Lim,p(x, yz)−

1

y
Lim,p(x, yz)

∂

∂z
Lim,n,1(x, y, z) =

1

1− z
Lim,n(x, yz)

(1.7)

1.3.2 Analytic Continuation

Definition 1.3.3. In [27], Zhao analytically continues Lin(z) to Cd \ Xd where Xd

is the singularity set of a depth d multiple polylogarithm.

Xd = {z ∈ Cd|
d∏
i=1

zd ·
∏

1≤i≤j≤d

(1−
j∏
r=i

zr) = 0}

Definition 1.3.4. The basic liftable functions in depth d are zi for 1 ≤ i ≤ d

and 1−
∏j

r=i zi for 1 ≤ i ≤ j ≤ d.

Remark 1.3.5. The singularity set of the polylogarithm Xd is the zero set of the

basic liftable functions.

In order to compute the analytic continuation, Zhao writes each polylogarithm

as an iterated integral. While the explicit formula is rather technical we can easily

see the following:

Claim 1.3.6. Each one-form in the iterated integral has the form d log f where f

is a basic liftable function.

Proof. From the analysis of the derivative of multiple polylogarithms in Equation
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1.7, we see the differential d Lin(z) is a sum of terms of the form d log f multiplied

by a polylogarithm of lower weight whose arguments are products of adjacent coor-

dinates. Thus inductively each smaller multiple polylogarithm can be written using

products of arguments that are products in the ordinal arguments.

Example 1.3.7. The iterated integral for Li1,1(x, y) is

∫
d log(1− y)d log(1− x) + d log(1− xy)d log(1− y)

+ d log(1− xy)d log(x)− d log(1− xy)d log(1− x)

Example 1.3.8. The iterated integral for Li2,1(x, y) is

∫
Li1,1(x, y)d log(x) + Li2(xy)d log(1− y)

=

∫
d log(1− y)d log(1− x)d log(x) + d log(1− xy)d log(1− y)d log(x)

+ d log(1− xy)d log(x)d log(x)− d log(1− xy)d log(1− x)d log(x)

+ d log(1− xy)d log(x)d log(1− y) + d log(1− xy)d log(y)d log(1− y)

Furthermore this analytic continuation only depends on the homotopy class

of path in Cd \ Xd. However as Cd \ Xd isn’t simply connected, we only have

Lin(z) defined as a single valued function on the universal cover of Cd \ Xd. This is

analogous to the situation for log z =
∫
γ

1
z
dz whose value changes by 2πi depending

on how many times γ winds around z = 0.

To fully understand the ambiguity we build on the work of Hain (for standard poly-
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logarithms [28]) and Zhao (multiple polylogarithms [27]) to express the multiple

polylogarithms as the local system defined by a differential equation on Cd \ Xd.

This local system is defined by a variation matrix and a monodromy matrix that

describes how the variation matrix changes around each singularity. See Figure 1.17

for the local system of the standard polylogarithms. The multiple polylogarithms

have many more possible loops and so the full monodromy matrices are more com-

plicated to enumerate.

As such we seek algebraic tools to understand multiple polylogarithms. The classic

tool is called the symbol.
1 0

Li1(z) 2πi
Li2(z) ∗ (2πi)2

... ∗ ∗ . . .

Lin(z) 2πi
n!

Logn−1(z) (2πi)2

(n−1)!
Logn−2(z) . . . (2πi)n


(a) Variation Matrix.

1 0

0 exp


0
1 0

0 1
. . .
. . .

1 0




(b) Mondromy z = 0.

 1 0
−1

Id
0


(c) Mondromy z = 1.

Figure 1.17: The local system for a standard polylogarithm. This consists of a
variation matrix and monodromy around the two singularities at z = 0 and z = 1.
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1.3.3 Symbol

The symbol is an attempt to transfer the study of polylogarithms to an alge-

braic setting by assigning an element of the tensor algebra over C(X)∗.

Definition 1.3.9. Consider a collection of rational functions fi,j defined on a space

X with complex coefficients. Then the Symbol associated to the function of the

form

φ =
∑
i

∫
d log(fi,1) . . . d log(fi,k)

is the k fold tensor S(φ) =
∑
i

fi,1 ⊗ . . .⊗ fi,k.

Example 1.3.10. From the iterated integral expression for Li1,1(x, y) in Example

1.3.7 we see the symbol of Li1,1(x, y) is:

(1− y)⊗ (1− x) + (1− xy)⊗ (1− y) + (1− xy)⊗ x− (1− xy)⊗ (1− x)

Example 1.3.11. We use the iterated integral expansion of Li2,1(x, y) in Example

1.3.8 to compute the symbol of Li2,1(x, y):

(1− y)⊗ (1− x)⊗ x+ (1− xy)⊗ (1− y)⊗ x+ (1− xy)⊗ x⊗ x

− (1− xy)⊗ (1− x)⊗ x+ (1− xy)⊗ x⊗ (1− y) + (1− xy)⊗ y ⊗ (1− y)

Remark 1.3.12. With this definition the symbol is only defined up to constant

multiples as d log(fi,j) = d log(cfi,j) for all c ∈ C. So the symbol would only live

in T •(C(X)∗/C). However for multiple polylogarithms there is an algorithm [29] to
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define a unique lift of this symbol to T •(C(X)∗). Furthermore in this lift the func-

tions fi,j are all basic liftable functions.

Remark 1.3.13. Since the fi,j are arguments to the logarithm we can treat the

fi,j as living in a multiplicative group. As such we usually write f1f2 ⊗ g to mean

f1 ⊗ g + f2 ⊗ g.

Remark 1.3.14 (Torsion). The symbol is taken to have the property that the symbol

of a1⊗ . . .⊗ an = 0 whenever ai is the logarithm of a root of unity. Thus the symbol

of (2πi)kqφ is 0 for any k and q rational.

Claim 1.3.15. If {φi} is a collection of functions with symbols and
∑
ciφi = 0 then∑

ciS(φi) = 0

Proof. This follows directly from the definition.

However computing the symbol for a multiple polylogarithm depends on know-

ing the iterated integral representation explicitly, and the computational complexity

increases rapidly. Already for depth 3 weight 9 it can take over an hour for the al-

gorithm in [30] to compute the symbol on an average laptop.
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1.3.4 The Dilogarithm

1.3.4.1 Dilogarithm Relations

There are several known relations for the dilogarithm. The most famous is the

five term relation [2]

Li2(x) + Li2(y) + Li2(
1− x
1− xy

) + Li2(1− xy) + Li2(
1− y

1− xy
) (1.8)

=
π2

6
− Log(x) Log(1− x)− Log(y) Log(1− y) + Log(

1− x
1− xy

) Log(
1− y

1− xy
) (1.9)

In addition we have short relations relating Li2(z) to Li2(1
z
) and Li2(1− z)

Li2(
1

z
) = − Li2(z)− π2

6
− 1

2
Log2(−z)

Li2(1− z) = − Li2(z) +
π2

6
− Log(z) Log(1− z)

There are two key problems to generalizing these relations to higher polylogarithms.

The first is that these relations involve “product terms” of lower weight polylog-

arithms. To handle these product terms we generally consider relations modulo

products of lower weight polylogarithms, which we refer to as “relations modulo

products”. This is justified by modifying the dilogarithm by a linear combination

of products of polylogarithms, so these relations are satisfied exactly. The second

problem is that the arguments to the five dilogarithm terms as stated don’t satisfy

a clear pattern. We will see that these arguments can be naturally interpreted as

cross ratios in weight 2, and more generally correspond to X−coordinates in the
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Grassmannian cluster algebra.

1.3.4.2 Bloch Wigner

Definition 1.3.16. The Bloch-Wigner dilogarithm is a single valued real ana-

lytic function D2 : C \ X1 → R given by

D2(x) = =Li2(x) + Log(|x|) arg(1− x)

This function justifies ignoring product terms as D2 exactly satisfies the pre-

vious relations without the product terms.

1.3.4.3 Hyperbolic Volume

One nice application of the dilogarithm is computing the volume of ideal hy-

perbolic simplices. The key idea is that the boundary of hyperbolic 3 space can be

identified with the Riemann sphere. Using hyperbolic isometries the 4 vertices of

the simplex can be moved to be ∞, 1, 0 and z. The number z is called the cross

ratio and can also be computed as z = cr(z1, z2, z3, z4) = (z2−z1)(z4−z3)
(z4−z1)(z3−z2)

. Notice that

permutations of the vertices can at most change z to 1
z
, 1 − z, 1

1−z ,−
1−z
z

or − z
1−z .

The volume of the simplex is D2(z). Note that the transformations z 7→ 1
z

and

z 7→ 1− z generate all 6 possible cross ratios. Since the Bloch-Wigner dilogarithm

satisfies the relations D2(z) = −D2(1
z
) and D2(z) = −D2(1−z) this volume function

is well defined up to sign.

Furthermore choosing a consistent cross ratio gives an interpretation of the five
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term relation. First chose five ideal points in hyperbolic 3 space, z1, . . . , z5. We

use a hyperbolic isometry to take the points to ∞, 0, 1, 1
x
, y. The five cross ratios,

xi = cr(z1, . . . ẑi . . . , zd) are:

1− xy
y(1− x)

1− xy
(1− x)

1− xy 1− y x− 1

x

The volume of the simplex Si given by removing point i is D2(xi). The full volume

can be dissected as S2 ∪ S4 or S1 ∪ S3 ∪ S5. Therefore we have

D2

(
1− xy
(1− x)

)
+D2 (1− y) =D2

(
1− xy
y(1− x)

)
+D2(1− xy) +D2

(
x− 1

1

)
(1.10)

−D2

(
1− x
1− xy

)
−D2 (y) =D2

(
1− y

1− xy

)
+D2(1− xy) +D2 (x) (1.11)

Note that this corresponds exactly to the five Li2(z) terms of the original five term

relation in Equation 1.8.

Remark 1.3.17. In hyperbolic geometry the cross ratio is usually chosen to be

− cr(z1, z3, z2, z4). Under this convention the five term relation is

D2 (x)−D2 (y) +D2

(y
x

)
−D2

(
1− x−1

1− y−1

)
+D2

(
1− x
1− y

)

The cross ratio we chose aligns with the X-coordinates of the Gr(2, 5) cluster algebra

and so generalizes better.
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1.3.5 Stuffle Product

Let G be the free abelian group whose generators are finite strings of integers.

Definition 1.3.18. The shuffle product of a = a1 . . . am ∈ G, b = b1 . . . bn ∈ G

a� b is the sum of all possible ways to “shuffle” or interleave the elements of a and

b. Defined recursively we have:

[]� b =b

a� [] =a

a1a� b1b =a1(a� b1b) + b1(a1a� b)

Definition 1.3.19. The stuffle product is the shuffle product plus terms from

“stuffing” entries of the two lists together by adding the entries. So inductively:

[]� b =b

a� [] =a

a1a� b1b =a1(a� b1b) + b1(a1a� b) + (a1 + b1)(a� b)

The product of two polylogarithms of weight n and m can be written as a sum

of polylogarithms of weight n+m by the stuffle product of their weight vectors. The

arguments to the polylogarithm follow their weight indices and when two entries are
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stuffed together the corresponding arguments are multiplied. For example

Lin1,n2(x1, x2) Lim(y) = Lin1,n2,m(x1, x2, y) + Lin1,m+n2(x1, yx2)

+ Lin1,m,n2(x1, y, x2) + Lin1+m,n2(x1y, x2) + Lim1n1n2(y, x1, x2)

1.3.6 Low Weight Relations

Previously the polylogarithm relations known for weight greater than 2 were
scattered. In weight 3, Goncharov had discovered a 22 term relation consisting
entirely of Li3 terms. The following expression, modulo products is equal to Li3(1):

Li3(1− x + xz) + Li3

(
1− x + xz

xz

)
+ Li3(z) + Li3

(
1− z + yz

y(1− x + xz)

)
− Li3

(
1− x + zx

z

)
+ Li3

(
(1− z + yz)x

1− x + xz

)
− Li3

(
1− z + yz

(1− x + xz)yz

)

+Li3(1− y + yx) + Li3

(
1− y + yx

yx

)
+ Li3(x) + Li3

(
1− x + zx

z(1− y + yx)

)
− Li3

(
1− y + xy

x

)
+ Li3

(
(1− x + zx)y

1− y + yx

)
− Li3

(
1− x + zx

(1− y + yx)zx

)

+Li3(1− z + zy) + Li3

(
1− z + zy

zy

)
+ Li3(y) + Li3

(
1− y + xy

x(1− z + zy)

)
− Li3

(
1− z + yz

y

)
+ Li3

(
(1− y + xy)z

1− z + zy

)
− Li3

(
1− y + xy

(1− z + zy)xy

)

+Li3(−xyz)

One can see the arguments to this relation are similar to the arguments of the five

term relation, yet there is not a clear pattern.

Separately a forty term relation of Li3 terms whose arguments come from the

Gr(3, 6) cluster algebra was discovered. However this relation doesn’t use all the

X-coordinates and so doesn’t give a clear path to generalize to higher weights.

In weight 4 the situation is even less clear. Recent work by Gangl found a 931 term

relation in R4 although the nature of the arguments remain mysterious [31]. There

are two key issues that make generalizing to weight 4 difficult. The first is that

Li4 no longer generates all the multiple polylogarithms. By including the missing

generator Li31(x, y), Goncharov and Rudenko were able to find a relation they call
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Q4 whose arguments come from the A4 cluster algebra. [32].

1.3.7 Bloch-Suslin Complex

In [3], Goncharov defines the “higher Bloch Complex” Bn(F ) to be the free

abelian group on P1F quotiented by Rn the set of weight n “polylogarithm rela-

tions”. These groups fit into the chain complex

Bn(F )→ Bn−1(F )⊗ F× → Bn−2 ⊗
2∧
F× → · · · → Bn−2 ⊗

n−2∧
F× →

n−2∧
F×.

It is conjectured that the cohomology of this complex rationally computes motivic

cohomology. The group R2 is generated by 5 term relations of the Dilogarithm

(Section 1.3.4.1). When n ≥ 4 elements of Rn become difficult to write down. The

931 term relation found by Gangl is conjectured to be the defining relation of B4(F ).
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Chapter 2: Cluster Modular Group and Exotic Cluster Coordinates

The following is joint work with Dani Kaufman. The following is adapted from

our preprint paper [4] by moving the discussion of affine cluster algebras arising from

triangulated surfaces from the Appendix into the main text.

As discussed in the introduction, particle physicists obtain polylogarithm func-

tions in the computation of “scattering amplitudes”. In particular in N = 4 Super

Yang Mills theory they obtain polylogarithms whose arguments are X-Coordinates

in the Gr(4, 8) cluster algebra. This cluster algebra is of infinite type, in particu-

lar it is doubly extended type E
(1,1)
7 . Attempts to find a finite description to find

polylogarithm relations inspired the following work.

The primary results of this discussion are the following theorems:

Theorem 2.0.1. Let n,w be m dimensional vectors of positive integers. Let χ(Tn,w) =∑
(wi(n

−1
i − 1)) + 2. Then we have the following:

1. If χ > 0, then Tn,w provides a seed of an affine cluster algebra.

2. If χ = 0, then Tn,w provides a seed of a doubly extended cluster algebra.

3. If χ < 0, then Tn,w provides a seed of an infinite mutation type cluster algebra.
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Moreover almost1 every affine and doubly extended cluster algebra has a seed with

underlying quiver isomorphic to a Tn,w for some n,w.

Informally, the cluster modular group is the automorphism group of the muta-

tion structure of the cluster algebra. We show that there is an abelian subgroup, Γτ ,

of the cluster modular group of cluster algebras coming from Tn,w quivers generated

by “twists” τi for each “tail” i = 1, . . . ,m and an element γ satisfying τni
i = γwi for

all i. Let H = Aut(Tn,w) be the automorphism group of a Tn,w quiver. This group

acts on Γτ by permuting twists τi and τj whenever ni = nj and wi = wj.

Theorem 2.0.2. 1. The cluster modular group of an affine cluster algebra is

isomorphic to Γτ oH.

2. The cluster modular group of a doubly extended cluster algebra is generated by

the elements of Γτ oH and one new generator, δ.

See Sections 2.1.2 and 2.3.1 for the full definitions of τi, γ, δ.

We conjecture the following about infinite mutation type Tn,w quivers, i.e.

when χ < 0.

Conjecture 2.0.3. If χ < 0, then the cluster modular group of a cluster algebra

with initial seed given by a Tn,w quiver is isomorphic to Γτ oH.

We use the computation of the cluster modular group of Tn,w cluster algebras

to construct natural finite quotients of the cluster complex.

1The twisted Dynkin diagrams that are Langlands dual to standard diagrams have “dual” Tn,w
quivers. However their cluster structure is identical to their duals, so we mostly don’t need to treat

them. The A
(1,1)
1 and BC(4)

n cluster algebras are simple to treat as special cases.
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In the affine case, the element γ generates a finite index subgroup of the cluster

modular group. We define the quotient cluster complex where cells are equivalence

classes up to the action of γ. The dual to the quotient complex is analogous to the

generalized associahedron associated to finite type cluster algebras. We compute

the basic properties of this affine generalized associahedron including the number

of codimension 1-cells and dimension 0-cells and we conjecture that they are each

homomorphic to a sphere.

We have the following theorems,

Theorem 2.0.4 (Theorem 2.2.21). The number of distinct cluster variables in an

affine cluster algebra up to the action of 〈γ〉 is given by

∑
i

(ni − 1)ni +
n

χ
(2.1)

The number of distinct clusters in an affine cluster algebra up to the action of 〈γ〉

is given by

2

χ

∏
i

(
2ni − 1

ni

)
(2.2)

These two equations provide the number of codimension 1-cells and dimension

0-cells of an affine generalized associahedron respectively.

In the doubly extended case, the element γ no longer generates a normal

subgroup. Instead, we find that the normal closure of this element, in most cases,

is a free, finite index normal subgroup of the cluster modular group. We compute

the number of clusters in the quotient cluster complex by this group in Table 2.20.
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We define doubly extended generalized associahedra to be the dual of this quotient

complex.

We conjecture that affine and doubly extended generalized associahedra are

each homeomorphic to a product of spheres.

Conjecture 2.0.5. 1. The affine generalized associahedron of an affine cluster

algebra of rank n+ 1 is homeomorphic to a sphere of dimension n.

2. The cluster complex of a doubly extended cluster algebra of rank n + 2 is ho-

motopy equivalent to Sn−1.

3. The doubly extended associahedron associated with a doubly extended cluster

algebra is homeomorphic to Sn−1 × S2 in all cases other than E
(1,1)
8 where it

instead is homeomorphic to S7 × S1 × S1.

2.1 Type Tn,w Cluster Algebras

In this section we will consider a family of quivers Tn,w for n,w equal length

vectors of positive integers, and their associated cluster algebras. These algebras

each have a canonical subgroup of the cluster modular group with a simple descrip-

tion in terms of “twist mutation paths” and automorphisms of quivers. We call a

cluster algebra ”type Tn,w” if it has a seed with a Tn,w quiver underlying it.

We then show in Sections 2.2 and 2.3 that each of the affine-type and doubly

extended cluster algebras are type Tn,w for certain values of n and w. We show

that that the canonical subgroup is the cluster modular group of each affine type

cluster algebra. In the doubly-extended case, we will find that this subgroup along
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with one extra element generates the cluster modular group. We conjecture that in

all other cases, this canonical subgroup is exactly the cluster modular group.

2.1.1 Tn,w Quivers

Let n = (n1, n2, . . . , nm), ni > 1 and w = (w1, w2, . . . , wm) be m tuples of

positive integers. We consider a weighted quiver, Tn,w, with n =
∑

(ni − 1) + 2

nodes constructed in the following way: First consider the star shaped quiver T ′n,w

with n−1 nodes consisting of one central node, N1 of weight 1 and m tails of length

ni − 1 of weight wi nodes i2, . . . , ini
connected in a source-sink pattern with N1 as

a source (Figure 2.1).

2n2 . . . 22 32 . . .

1n1 . . . 13 12 N1 m2 . . .

Figure 2.1: The quiver T ′n,w.

Tn,w is constructed from T ′n,w by adding an additional weight 1 node N∞ along

with a double arrow from N∞ to N1 and single arrows from each of the m other

neighbors of N1 to N∞, as shown in Figure 2.2.

When m ≤ 3 and wi = 1 for all i, we let (p, q, r) = (n1, n2, n3) with p, q, r

possibly equal to 1 and write Tp,q,r for Tn,w.

2n2 . . . 22 N∞ 32 . . .

1n1 . . . 13 12 N1 m2 . . .

Figure 2.2: The quiver Tn,w.
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Definition 2.1.1. The nodes ij are called the tail nodes of Tn,w. The nodes i2 are

called the boundary tail nodes. The ith tail subquiver is the quiver obtained by

removing all of the tail nodes kj, k 6= i.

Our motivation for considering these quivers is based on the following remark:

Theorem 2.1.2. Let χ(Tn,w) =
∑

(wi(n
−1
i − 1)) + 2. If χ > 0 then Tn,w has a

(non-twisted) affine Dynkin quiver in its mutation class and T ′n,w is a finite Dynkin

quiver. If χ = 0 then Tn,w is a doubly extended Dynkin quiver and T ′n,w is an affine

Dynkin quiver.

The first statement will be proved in Section 2.2. The second statement can

be verified by checking the finitely many cases where χ = 0 (Figure 2.14).

Remark 2.1.3. χ is preserved by replacing a length n tail with weight w with w

weight 1 tails of length n. This follows the idea that higher weight nodes can be

analyzed by folding larger quivers.

Remark 2.1.4. The middle two nodes of a Tn,w quiver as we have described always

have weight 1. The twisted affine types will have quivers which look like Tn,w quivers,

but with weighted nodes in the middle positions. The non-BC twisted affine types

are dual to ordinary affine quivers. However the type BC twisted affine quivers

are special. For example, the type BC(4)
n quivers have the following quiver in their

mutation class:

. . .
(2.3)
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. . .. . .

. . .

Figure 2.3: A TBCn quiver with 3 tails.

In light of this remark we will define a BC variant of Tn,w quiver denoted TBCn

which will have the BC(4)
n types in their mutation class.

Definition 2.1.5. A TBCn quiver consists of two middle nodes of weight 4 and 1

with a single arrow between them and tails of weight 2 nodes of length ni, see Figure

2.3. We define

χ(TBCn ) =
∑
i

(
1

ni
− 1) + 1 (2.4)

2.1.2 The Cluster Modular Group of a Tn,w Cluster Algebra

We will construct a subgroup, Γτ , of the cluster modular group of a Tn,w

cluster algebra generated by “twist” mutation paths associated with each tail. The

automorphism group Aut(Tn,w) acts on Γτ by permuting twists associated to tails

of the same length and weight.

Definition 2.1.6. The group ΓTn,w = Γτ o Aut(Tn,w) is the canonical subgroup of

the cluster modular group of a Tn,w type cluster algebra.

Conjecture 2.1.7. If χ(Tn,w) 6= 0 then the cluster modular group of a type Tn,w

cluster algebra is exactly ΓTn,w .
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Let

iodd = {ij|3 ≤ j ≤ ni, j odd} and ieven = {ij|3 ≤ j ≤ ni, j even}. (2.5)

Definition 2.1.8. We have a twist τi ∈ Γτ given by the following mutation paths

depending on wi:

wi = 1 let τi = {ioddieveni2N∞N1, (i2N∞N1)} (2.6)

wi = 2 let τi = {ioddieveni2N∞N1i2N1, id} (2.7)

wi = 3 let τi = {ioddieveni2N∞N1i2N∞i2N1, id} (2.8)

When wi ≥ 4 there is no twist for tail i.

Let γ = {N∞, (N1N∞)}, which we think of as a twist of a tail of length 1.

Definition 2.1.9. Γτ is the group generated by all of twists, τi, and γ.

Remark 2.1.10. Once again we see the importance of using folding to understand

weighted quivers. One can verify that when wi = 2, τi is the same as replacing tail i

with two tails of the same length twisting each of them and then refolding into a tail

of weight 2. The same holds for splitting into 3 tails when wi = 3. However when

wi = 4 mutation at i2 reverses the direction of the double edge without mutating

at N1 or N∞ and so there is no possible equivalent twist of 4 tails. When wi > 4

mutation at i2 results in edge of weight higher than 2; this situation only happens in

infinite mutation type cluster algebras which we don’t consider for the remainder of

the paper.
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We have the following theorem:

Theorem 2.1.11. Γτ is an abelian group and the only relations are τni
i = γwi.

Proof. In order to show that Γτ is abelian, we simply need to check that two twists

tails of length 2 commute with each other and with γ. This is because the additional

mutations which appear as the tail length increases always happen at sources. Thus

they don’t change the adjacency of the quiver and stay disconnected from the other

tail through the entire path. Therefore all that remains is a simple computation to

check commutativity for each possible combination of weights for tails of length 2.

We now focus on a single tail of length n and weight 1 and show that τn = γ.

It suffices to look at T(n),(1) since τi only mutates at vertices on tail i. In Section

2.2 we see that this quiver is associated to an annulus with n marked points on the

interior (labeled v1, . . . , vn clockwise) and one marked out on the outer boundary

component. Then by Lemma 2.1.12 we see that τ corresponds to rotating the interior

circle by 2π
n

radians and γ is the full Dehn twist. So τn is a full rotation and is equal

to γ.

The previous remark completes the theorem when wi > 1.

Lemma 2.1.12. Let S be an annulus with n marked points on the inner boundary

component and 1 marked point on the outer boundary. The the twist τ (Defini-

tion 2.1.8) corresponds to rotating the inner boundary component 2π
n

radians and γ

corresponds to a full Dehn twist and thus γ = τn.

Proof. To analyze τ we break the mutation sequence into two pieces [ioddieven],

[i2, N∞, N1]. On the annulus, the arc associated with node i2 begins and ends at v1.
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Thus [ioddieven] is a “sinks then sources” sequence inside an n−gon. This rotates the

zig-zag triangulation clockwise one tick so the outermost arc goes from v2 clockwise

around to v1. Then treating this arc as an arc of the inner boundary component

reduces puts us exactly in the situation of a T(2),(1) quiver.

It is then a simple computation to see that the mutation path [i2, N∞, N1]

returns to a quiver isomorphic to the original but with the self loop around v2

instead of v1. Note that N1 is now the self loop and i2 and N∞ are the source and

sink of the double edge respectively, justifying the permutation (i2, N∞, N1). See

Figure 2.4 for an example of a tail with length 4.

Therefore each application of τ moves one tick clockwise around the inner

boundary component. Therefore n twists returns to v1 having made a full clockwise

twist about the inner boundary component. Furthermore, the self loop at v1, treated

as the edge of the boundary component, always separates N1 and N∞ from the rest

of the tail.

So it suffices to analyze γ on the annulus with one marked point on each bound-

ary component. Then it is clear applying γ is equivalent twisting once clockwise

around the inner boundary component and so is equal to τn.

Figure 2.4 shows the explicit action of twisting about a tail on the surface

representation of the cluster algebra.

Remark 2.1.13. Let ` =
∏
ni. We may view Γτ as the subgroup of Z ×

∏
Zni

generated by the elements γ = (`, 0, . . . , 0) and τi = (wi`/ni, 0, . . . , 1, . . . , 0). Let Γ◦τ

be the kernel of the projection Γτ → Z. Then Γτ ' Γ◦τ o Z
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Remark 2.1.14. When there are zero tails, T(),() is just a double edge. It is clear

in this case γ2 is the reddening element. This generalizes to the following theorem.

Theorem 2.1.15. The element r ∈ Γτ given by r = γ2
∏

i(τiγ
−wi) is the reddening

element of Tn,w.

Proof. Suppose that m = 1. It is a simple computation to check this statement for

each possible weight when n1 = 2. Then, for n1 > 2 we can see that the mutating

at ieveniodd always mutates at a source and so is a reddening sequence for the non-

boundary nodes of the tail. Since 13 is initially connected towards 12, we now have

12 out to 13. Finally, we can complete the reddening sequence by using the the

n = 2 case.

Now consider m > 1. Let ri = γ2τiγ
−wi be the reddening element for the ith

tail subquiver. Rewrite r as follows

r = γ2
∏
i

(τiγ
−wi) =

(∏
i

(riγ
−2)
)
γ2 (2.9)

We can see that this element is reddening by noting that riγ
−2 has the effect of

reddening the nodes on the tail i, while keeping the middle two nodes green. Thus

for each i, the element ri always gets applied to an all green subquiver. Therefore,

the effect of the product of elements of the right hand side of equation 2.9 is to make

all of the nodes other than the middle two red. Then, tacking on γ2 makes all the

nodes red. This element returns us to an isomorphic quiver with out permuting any

of the frozen nodes, and is thus the reddening element.
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Corollary 2.1.16. When χ > 0, r is a conjugation of the source-sink mutation path

on the corresponding affine Dynkin diagram.

This corollary follows since the reddening element of an affine Dynkin diagram

is the source-sink mutation path. Then since χ > 0 implies there is an quiver

corresponding to an affine Dynkin diagram, Theorem 1.1.30 states the two reddening

elements must be conjugate.

Remark 2.1.17. In terms of the group presentation of Remark 2.1.13, the reddening

sequence is given by the element (χ`, 1, 1, . . . , 1).

2.1.3 BC Type Quivers

The TBCn type quivers have an analogous abelian subgroup, Γτ = 〈τi, γ|τni
i =

τ
nj

j = γ〉, generated by twists of the tails. γ is the mutation path consisting of

mutation at the weight 4 node and then the weight 1 node and the twist paths are

the same twist paths in the wi = 2 case of a regular Tn,w quiver.

The reddening element is given by

r = γ
∏
i

(τiγ
−1). (2.10)
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Figure 2.4: Application of single twist for a tail of length 4. The result is shown after
[ioddieven], i2, N∞, and then N1. At each stage the dashed gray edges are replaced
with the red edges.
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2.2 Affine Cluster Algebras

Our analysis of the cluster modular group of the affine cluster algebras stems

from the observation in Remark 2.1.2. Our primary goal is the following theorems:

Theorem 2.2.1. The cluster algebra associated to the quiver Tn,w is of affine type

if and only if χ > 0. Furthermore, every affine type cluster algebra has a seed whose

quiver is a Tn,w or TBCn with χ > 0.

Theorem 2.2.2. The cluster modular group of a cluster algebra of affine type is

Γτ o Aut(Tn,w), where the action of the automorphism group is by permuting the

twists of tails of the same weight and length.

In order to prove Theorem 2.2.1 we need to carefully analyze the triangulations

of both the annulus and the twice punctured disc.

Definition 2.2.3. There are three classes of arcs on an annulus. Crossing arcs con-

nect two marked points on different boundary components. Boundary arcs connect

two marked points on the same boundary component. A self loop is a boundary arc

between the same marked point that travels around the center.

Proof of Theorem 2.2.1. First we note that we can write T(n) = Tn,1,1 and T(p,q) =

Tp,q,1 so we can handle both of these cases together. Here we can construct a Tp,q,1

quiver from a triangulation of S0,2,0,p+q, the annulus with p marked points on one

boundary and q marked points on the other. We also construct a triangulation

corresponding to an affine Ap,q Dynkin diagram (Figure 2.12). Since any two tri-
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angulations are related by a series of flips this shows Tp,q,1 is in the same mutation

class as Ap,q as needed.

The first triangulation can be constructed by choosing a self loop on each

boundary component. This divides the annulus into three regions: a p-gon, an

annulus with one marked point on each boundary, and a q-gon. In the p-gon and

q-gon, we then use the “zig/zag” triangulation starting from the self loop, to obtain

portions of quiver that are a single line of nodes starting such that each node is

a source or a sink. Finally add two distinct crossing arcs into the inner annulus

completing the triangulation. See figure 2.5a for an example with p = 4 and q = 4.

The second triangulation will correspond to an orientation of the Ap,q Dynkin

diagram with a single source and sink. To construct this quiver, we first add a

crossing arc between a marked point on each boundary. Next we connect the outer

marked point of the initial arc to each inner marked point in a series of nested

clockwise crossing arcs. Similarly attach the inner point of the initial arc to each

other outer marked point in a series of nested counterclockwise crossing arcs, see

figure 2.5b for an example with p = 4 and q = 4.

Similarly, T(n,2,2) occurs as the quiver obtained from a triangulation of twice

punctured disk with n marked points on the boundary. We also construct a trian-

gulation of the twice punctured disk that corresponds to an D̃n Dynkin diagram.

So as in the Ãn case this shows Tn,2,2 corresponds to the type D̃n cluster algebras.

For the first triangulation, connect the punctures with an edge and a loop

from one puncture around the other (tagged arc). Then the outside of this loop is
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(a) T4,4. (b) A4,4 Dynkin diagram.

Figure 2.5: Two different triangulations of an annulus with 4 marked points on each
boundary component.

an annulus with one marked point on the inner “boundary” and n marked points

on the outer boundary. We then complete the quiver using the construction of a

Tn,1,1 quiver as described before (see figure 2.6a).

The second triangulation corresponding to a sources/sink orientation of a D̃n

Dynkin diagram. First, connect each puncture to a different boundary vertex. Then

add a self loop from the boundary vertex around the corresponding puncture. Out-

side these self loops is a disk with n marked points that can be triangulated with a

“zig/zag” starting from one self loop and ending at the other (see figure 2.6b).

For k = 3, 4, 5 observe that T ′k,3,2 is an Ek+3 finite Dynkin diagram oriented

so every vertex is a source or a sink. Let g = [N1, iodd, ieven, i2] be the mutation

path corresponding to the sources/sinks move for Ek+3. One can verify that gh/2

transforms Tk,3,2 into the affine Dynkin diagram for Ẽk+3 where h is the order of g

in Ek+3 (h = 7, 10, 16 respectively). Note that applying g 7
2

times for T3,3,2 means
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(a) T4,2,2. (b) D̃6 Dynkin diagram.

Figure 2.6: Two different triangulations of a a twice punctured disk with 4 marked
points on the boundary.

apply g 3 times, then mutate at the sources [N1, iodd] one more time to achieve a

sources/sinks orientation of the Ẽ6 diagram.

For the non simply laced cases we have explicit foldings of the simply laced

cases. First consider T(n,2),(1,2) which we claim has type B̃n+1. This quiver can be

obtained from the D̃n+2 by folding the length 2 tails of the Tn,2,2 quiver. As in the

other cases doing h/2 applications of the underlying finite sources sink mutation

transforms this quiver into the standard Dynkin type quiver for B̃n+1. Note this

agrees with the usual Dynkin folding of D̃n+2 into B̃n+1.

The other cases are similar, C̃n is obtained from folding the two tails An,n

which corresponds on the Dynkin side via gh/2 to folding a 2n+ 1 cycle in half. F̃4

is obtained from T(3,2),(2,1) by folding the two length three tails of T3,3,2 (Ẽ6). The

final affine quiver G̃2 is T(2),(3) obtained by folding all three tails in T2,2,2.

Note that every possible affine Dynkin diagram (figures A.4,A.5) has appeared

as one of these cases.
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We now prove theorem 2.2.2 by showing the cluster modular group is Γτ o

Aut(Q) in each case. It is clear that Γτ o Aut(Q) is a subgroup of the cluster

modular group, so it suffices to show their are no other possible cluster modular

group elements.

Proof of Theorem 2.2.2 for Ap,q. Any cluster modular group element must send our

original Tp,q quiver to another Tp,q quiver. So it suffices to construct every possi-

ble Tp,q quiver on the annulus and show they are in the image of the proposed group.

Once again we will rely on the correspondence between seeds in the cluster

algebra and triangulations of an annulus. Since this quiver has a double edge, by

remark 1.1.57 the only possible construction of a Tp,q,1 quiver is the one given in the

proof of theorem 2.2.1.

However there was some freedom in this construction. The first is the choice

of marked point on each boundary component to add a self loop around. There are

pq total possible choices for this. The other more subtle degree of freedom is the

action of the mapping class group of the annulus, generated by a single Dehn twist

about the center. Note the Dehn twist only changes crossing arcs which correspond

to nodes N1 and N∞. A simple analysis shows that γ corresponds exactly to the

action of the Dehn twist.

Then Γτ/〈γ〉 = Zp×Zq has order pq. Therefore each distinct copy of Tp,q,1 up
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to mapping class group is the image of a distinct twist as needed. Since no other

triangulation produce an isomorphic quiver we are done as long as p 6= q.

When p = q there is an extra symmetry of the triangulation given by swapping

the inner and outer boundary components. However this is exactly automorphism

of Tp,p,1 that swaps each tail. This corresponds exactly to the action of Aut(Tp,p,1)

on Γτ as needed.

Proof of Theorem 2.2.2 for D̃n. As in the Ap,q case the only possible construction of

the Tn,2,2 quiver is the one described in the proof of theorem 2.2.1. Thus we look at

the ambiguity of the construction of the Tn,2,2 quiver. The obvious choices are which

puncture is inside the self loop, the boundary vertex that is attached to the punc-

ture, and the winding number of these crossing edges. There is an additional subtle

choice from the tagged arc complex. In this generalization the self loop around a

puncture is replaced with a singly tagged arc between the two punctures. There is

then an additional way to get an isomorphic quiver by switching the tagging at a

puncture. This operation at the puncture with a tagged arc simply swaps the two

arcs between the punctures and thus corresponds to the extra semidirect product

with Z2 when n 6= 4. However flipping the tagging at the other puncture results in

a new triangulation in every case. Putting this all together gives 4n triangulations

up to winding number. Mutation along the double edge correspond to the Dehn

twist around both punctures so we can again see that Γτ/〈γ〉 = Zn × Z2 × Z2 has

order 4n and so reaches every possibility.
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When n = 4 not every automorphism of T2,2,2 corresponds to a symmetry of

the twice punctured disk as described above, but otherwise the analysis is exactly

the same.

Proof of Theorem 2.2.2 for Ẽ6, Ẽ7, Ẽ8. In [21] they compute the cluster modular

group for the Dynkin type quivers as Z × S3, Z × Z2, and Z for Ẽ6, Ẽ7, Ẽ8 re-

spectively. In each case the Z is generated by the full sources/sinks move on the

Dynkin quiver. This is the reddening element as is conjugate to r by theorem 2.1.15.

Recall the subgroup Γ0
τ of combinations of twists of finite order from Remark 2.1.13.

The remaining finite portion of each group is given by Γ0
τ oAut(Q) in each case.

Lemma 2.2.4. Folding the tails of the Tn,w quivers only changes the cluster modular

group by reducing automorphism group of the quiver and identifying the generators

corresponding to twists about the folded tails.

Proof. This follows from Remark 2.1.10 that weight 2 or 3 twists are equivalent to

simultaneous twists of the corresponding number of equal length tails.

Proof of Theorem 2.2.2 for non simply laced diagrams. To prove each non simply

laced affine Tn,w corresponded to an affine diagram, we gave an explicit folding

of each simply laced Tn,1 quiver and so the previous lemma applies.

The association between the affine types and values of n and w is given in

Figure 2.7. The following well known Lemma (included for completeness) proves

that this is every possible option for χ > 0.
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Lemma 2.2.5. There are finitely many families of (n,w) such that χ > 0.

Proof. Following Remark 2.1.3, we begin with the case where every tail has weight

1. If χ > 0, we need: ∑ 1

ni
> m− 2

The only options for n are (n), (p, q), (n, 2, 2), (3, 3, 2), (4, 3, 2) and (5, 3, 2).

Then the higher weight tails come from folding the above cases. When p = q we can

fold to obtain ((p), (2)). Similarly the two length two tails in (n, 2, 2) and the length

3 tails of (3, 3, 2) can be folded to obtain ((n, 2), (1, 2)) and ((3, 2), (2, 1)). Finally

we can fold (2, 2, 2) to obtain ((2), (3)).

The BC case follows easily by direct inspection.

Remark 2.2.6. These cluster modular groups have already been computed [21] based

at the Dynkin type quivers. However the computations based at the Tn,w quivers

allows for a uniform treatment of the affine and double extended cluster algebras.

Type n w

A1,1 () ()
Ap,q (p, q) (1, 1)

D̃n (n− 2, 2, 2) (1, 1, 1)

Ẽ6 (3, 3, 2) (1, 1, 1)

Ẽ7 (4, 3, 2) (1, 1, 1)

Ẽ8 (5, 3, 2) (1, 1, 1)

Type n w

C̃n (n) (2)

B̃n (n− 1, 2) (1, 2)

F̃4 (3, 2) (2, 1)

G̃2 (2) (3)

BC(4)
n (BC-Type) (n) -

Figure 2.7: All possible values of Tn,w that result in affine cluster algebras.
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Affine Type Cluster Modular Group Quotient

Ap,p D2p o Z (Zp × Zp) o Z2

Ap,q Zgcd(p,q) × Z Zp × Zq
D̃4 S4 × Z (Z2 × Z2 × Z2) o S3

D̃n Even (Z2 × Z2) o Z2 × Z Zn−2 × (Z2 × Z2) o Z2

D̃n Odd (Z2 × Z2) o Z Zn−2 × (Z2 × Z2) o Z2

Ẽ6 S3 × Z Z2 × (Z3 × Z3) o Z2

Ẽ7 Z2 × Z Z2 × Z3 × Z4

Ẽ8 Z Z2 × Z3 × Z5

C̃n Z2 o Z Zn
B̃n Z2 × Z Zn−1 × Z2

F̃4 Z Z2 × Z3

G̃2 Z Z2

BC(4)
n Z Zn

Figure 2.8: Affine cluster modular groups and their quotients.

2.2.1 The Normal Subgroup Generated by γ

Our goal now is to construct a natural finite quotient of the exchange graphs

and cluster complexes of each of the affine cluster algebras. We dualize the quotient

cluster complexes to produce an “affine generalized associahedron”.

The subgroup of the cluster modular groups of the affine Tn,w quivers generated

by γ = {N∞, (N1N∞)} is a normal, finite index subgroup.

Remark 2.2.7. In the Ã case, this subgroup can be seen to be given by the mapping

class group action on the triangulations of an annulus. We therefore consider this

subgroup to be an analog to the mapping class group in each of the affine cases.

Figure 2.8 shows the cluster modular groups and quotients by the subgroup

generated by γ.

We wish to understand the quotient of the exchange graph of an affine cluster
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algebra by the action of the group 〈γ〉. A possible way to accomplish this is by

introducing a special framing of a Tn,w quiver, and compute the graph by identifying

the clusters via their c-vectors as usual.

Consider the quiver T fn,w obtained from Tn,w by adding a frozen node for

vertices i2, . . . , ini
in each tail and one vertex associated with the double edge. In

particular for each tail i add frozen nodes of weight wi labeled fi,2, . . . , fi,ni
with a

single arrow from ij to fi,j. Then add a frozen node f1 of weight 1 along with single

arrows N1 to f1 and f1 to N∞.

Conjecture 2.2.8. Two quivers in the exchange graph of Q = Tn,w are in the same

orbit of the action of 〈γ〉 if and only if the projection of those quivers in the exchange

graph of T fn,w is the same.

The “if” part of the statement follows since the framing is preserved by the

action of γ. However, it is not clear that the only quivers which are identified are

the ones which are in the same γ orbit.

2.2.2 Affine Associahedra

Recall the cluster complex associated to a finite cluster algebra has a dual

complex called the “generalized associahedon”. We cannot simply dualize an affine

cluster complex immediately as there are vertices in the cluster complex with infinite

degree. This is because there are cluster variables that are compatible with infinitely

many other cluster variables, and so occur in infinitely many seeds. However, up to

action of γ, there are only finitely many cluster variables. If we quotient the cluster
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complex by the action of γ, we obtain a finite cell complex.

In order to construct a dual complex, we need to see that the quotient complex

is a “combinatorial cell complex”. Technically, the quotient by γ is not combinatorial

because there are facets that contain multiple cluster variables in the same orbit.

Instead we quotient by γ3 which ensures that every maximal facet corresponds to a

unique collection of distinct orbits. There is still a finite number of clusters up to

γ3 so by the work of Basak [33] this complex has a dual cell complex. We then can

quotient the dual by γ to obtain the dual cell complex we originally desired.

Definition 2.2.9. Let C(A) be the cluster complex associated to the affine cluster

algebra A. The affine associahedron is the dual complex to C(A)/〈γ〉. The 1-

skeleton of an affine associahedron is the quotient exchange complex of an affine

cluster algebra.

Remark 2.2.10. We could define an affine associahedron as a quotient of any power

of γ. All of our analysis of the combinatorics of affine associahedra can be easily

extended to a quotient by any other power of γ.

Example 2.2.11. The simplest example is the A2,1 cluster algebra. In Figure 2.9a

we see the full exchange graph extending infinitely in both directions. Below is the

quotient associahedron. There are four folded 2-cells. Two correspond to the top and

bottom pentagons and the remaining two correspond to the A1,1 subalgebras. Despite

the folding, this associahedron has the homology type of a sphere.

Example 2.2.12. A slightly more complicated example is D̃4 in Figure 2.10. Again

we see the exchange graph extending infinitely in both directions. The 1-skeleton of
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(a) Exchange Graph.

(b) Associahedron.

Figure 2.9: A2,1 Exchange Graph and Associahedron.

the affine associahedron is shown. This was graph was computed using the special

framing mentioned in the previous section. This computation finds the correct num-

ber of 0−cells in the associahedron, and thus confirms Conjecture 2.2.8 in this case.

The complete counts of all subalgebras in D̃4 up to the action of γ can be found in

Figure 2.11. The total counts of corank k subalgebras is the number of codimension

k facets of the affine associahedron.

2.2.3 Counting Facets in the Affine Associahedra

Let Q be any quiver of affine mutation type of rank n, and let A be the cluster

algebra associated to this quiver. Let n = (ni),w = (wi) be the vectors defining a

Tn,w quiver in the mutation class of Q and let χ(A) =
∑

(wi(n
−1
i − 1)) + 2.

The affine associahedron associated to A will have a k−cell for each rank k

subalgebra of A. Since a rank k subalgebra is obtained by freezing n − k nodes in

a quiver underlying a seed of A, we will count codimension 1 facets by counting

cluster variables up to the action of γ.
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(a) Exchange Graph.

(b) 1-skeleton of the associahedron.

Figure 2.10: D̃4 exchange graph and affine associahedron.

Corank Subalgebra Types Total

1
A2,2 D4 D2 ×D2 16

6 8 2

2
A2,1 A3 A1 × A1 × A1 96
12 60 24

3
A1,1 A2 A1 × A1 244

8 128 108

4
A1 270
270

5
A0 (Clusters)

108
108

Figure 2.11: Type and number of subalgebras in the D̃4 cluster algebra up to the
action of γ.
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Definition 2.2.13. Let R ∈ Mut(Q). We call a node k of R finite if the quiver ob-

tained by freezing k is of finite mutation type. We call k affine if the quiver obtained

by freezing k is of affine mutation type. We call the cluster variables associated with

affine or finite nodes affine or finite respectively.

Lemma 2.2.14. Every node of R is either finite or affine.

Proof. If Q is of type A or D then this follows by seeing that every possible arc

in the associated marked surface cuts the surface into regions which are surfaces of

type A or D. In the E case, this may be checked by brute force. The non simply

laced cases then follow by folding.

Remark 2.2.15. The arcs which correspond to cluster variables on finite nodes in

the A and D cases are exactly the arc which have non trivial intersection number

with the arc that generates the Dehn twist δ i.e. the crossing arcs.

Lemma 2.2.16. The cluster variable associated with every finite node appears on a

quiver which is an orientation of the associated affine Dynkin diagram. Every affine

cluster variable appears on a tail node of a Tn,w quiver in the mutation class of Q.

Proof. The first statement follows in the A and D cases by noticing that each arc

which intersects δ can be found in a triangulation which is a source-sink orientation

of the Dynkin diagram. In the E case, this follows by a slightly more sophisti-

cated brute force calculation similar the the calculation of the previous lemma. The

remaining cases again follow from the folding.

The second statement is proved in a similar way to the first. We notice that

each affine cluster variable is associated with a boundary arc, and each boundary
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arc can be found in a triangulation corresponding to a Tn,w quiver. Again, in the E

case this is checked by brute force.

Remark 2.2.17. Freezing an affine node produces an affine subalgebra of A. Since

these nodes always appear on the tail of a Tn,w quiver, we can see that γ is also

an element of the cluster modular group of every affine subalgebra of A. Thus, the

action of γ on the cluster complex of A restricts to the action of γ on the cluster

complex of any affine subalgebra of A. Thus it makes sense to consider the affine

associahedra of subalgebras to be facets of the affine associahedra of A.

Definition 2.2.18. We write Ck(A) resp. Ck(A) for the sets of codimension resp.

dimension k facets of the affine associahedron of A.

The size of C1(A) is equal to the number of distinct cluster variables in A up

to the action of γ.

Theorem 2.2.19. The number of distinct cluster variables in an affine cluster al-

gebra up to the action of 〈γ〉 is given by

|C1(A)| =
∑
i

(ni − 1)ni +
n

χ(A)
(2.11)

Proof. We simply need to count the number of finite and affine cluster variables up

to the action of 〈γ〉. The action of γ is trivial on the affine cluster variables, so we

simply need to count them. By Lemma 2.2.16, each affine cluster variable appears

on the tail of a Tn,w. On tail i there are ni − 1 affine cluster variables, and each

application of τi gives an entirely new collection of affine cluster variables; This may
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be seen by examining the Ap,1 case. Thus, in total there are
∑

i(ni − 1)ni affine

cluster variables.

To count the number of finite cluster variables up to the action of γ, we again

use Lemma 2.2.16, so that we only need to count the number of cluster variables

appearing on source-sink oriented Dynkin diagrams. The source-sink mutation path

takes each collection of cluster variables to an entirely new collection [21]. By

Theorem 2.1.15 we know that the source-sink mutation path is equivalent in the

cluster modular group to r. We can calculate that the order of r in ΓQ/〈γ〉 is

χ−1 using the presentation of Remark 2.1.13. Thus since there are n finite cluster

variables on each source-sink oriented Dynkin quiver, there must be n
χ

up to the

action of γ.

Remark 2.2.20. The number of distinct cluster variables up to the action of 〈γ`〉

is given by ∑
i

(ni − 1)ni +
`n

χ(A)
. (2.12)

This is because higher powers of γ identify fewer finite cluster variables.

Lemma 2.2.21.

|Ck(A)| = 1

n− k
∑

B∈C1(A)

Ck(B) (2.13)

This follows since each dimension k facet appears n−k times as a dimension k

facet of distinct corank 1 subalgebras. This lemma allows us to compute the number

of facets of any particular affine associahedron inductively.

Conjecture 2.2.22. Each affine associahedron is topologically a sphere.
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This conjecture is known to be true in the type-A cases, see [34]. One may

also check it case-by-case for the exceptional types.

We will now compute a uniform closed form expression for the number of

vertices (number of clusters) of an affine associahedron.

Theorem 2.2.23. The number of distinct clusters in an affine cluster algebra up

to the action of 〈γ〉 is given by

|C0(A)| = 2

χ(A)

∏
i

(
2ni − 1

ni

)
(2.14)

We will prove this theorem in the simply laced cases. Each of the exceptional

cases can be computed inductively by Lemma 2.2.21. The non-simply laced cases

have similar proofs to the one for D̃n shown here.

First we review some facts about the Catalan numbers, Cn = 1
n+1

(
2n
n

)
, and the

middle binomial coefficients Bi =
(

2i
i

)
that will be useful in proving this counting

formula. Let C(x) =
∞∑
i=0

Cix
i and B(x) =

∞∑
i=0

Bix
i be the generating functions for

the Catalan numbers and middle binomial coefficients respectively. Then we have

the following identities that hold wherever the sums converge.

C(x) =
1−
√

1− 4x

2x
, 1− 2xC(x) =

√
1− 4x (2.15)

(1− 2xC(x))−1 = (1− 4x)−1/2 = B(x) =
∞∑
i=0

(
2i

i

)
xi (2.16)

2(1− 4x)−3/2 =
∞∑
i=1

i

(
2i

i

)
xi−1 (2.17)
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It will also be helpful to define the truncated generating function Cbkc(x) =
k−1∑
i=0

Cix
i.

We are now ready to consider the Ap,q case. Let Ap,q be the number of clusters

in and Ap,q cluster algebra up to γ. In this case the formula for the number of

distinct clusters simplifies to:

Ap,q =
pq

2(p+ q)

(
2p

p

)(
2q

q

)
(2.18)

Proof of Theorem 2.2.21 for Ãn. In Lemma 2.2.24 we establish the recurrenceAp,q =

2
p−1∑
i=0

CiAp−i,q +qCp+q. Then for each q, let Aq(x) =
∞∑
i=1

Ai,qx
i+q. The recurrence cor-

responds to the following equation of generating functions:

Aq(x) = 2xC(x)Aq(x) + qx
(
C(x)− Cbqc(x)

)
(2.19)

Solving for Aq(x) gives

Aq(x) =
qx
(
C(x)− Cbqc(x)

)
1− 2xC(x)

(2.20)

In Lemma 2.2.25 we compute the powers series expansion of the right hand side is:

2x(C(x)− Cbqc(x))

1− 2xC(x)
=
∞∑
i=1

i

i+ q

(
2i

i

)(
2q

q

)
xi+q. (2.21)

As Ap,q is the coefficient of xp+q this means that Ap,q = p
p+q

(
2p
q

)(
2q
q

)
as needed.
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Lemma 2.2.24. Ap+1,q = 2

p−1∑
i=0

CiAp−i,q + qCp+q.

Proof. We can obtain this recurrence by partitioning the set of triangulations by

the triangle that contains the edge between o1 and o2 on the outer boundary. The

third vertex of the triangle can either be on the outer or inner boundary. If the

third vertex is some o the edges can either go clockwise or counterclockwise around

the center. In either case it splits the annulus into a polygon with i + 2 sides and

an annulus with p− i outer marked points and q inner marked points. The triangu-

lations of the polygon are fixed by γ and there are Ci ways to triangulate an i + 2

gon. So there are 2
p−1∑
i=0

CiAp−i,q possible triangulations where the third vertex is on

the outer boundary component.

If the third vertex is on the inside there is only one possible triangle up to γ.

Once this triangle is picked, it leaves a p + q + 2 sided polygon regardless of which

of the q possible points we choose. So there are qCp+1 ways in this case. See Figure

2.12 for a visual of all three cases.

Lemma 2.2.25.

2x(C(x)− Cbqc(x))

1− 2xC(x)
=
∞∑
i=1

i

i+ q

(
2i

i

)(
2q

q

)
xi+q. (2.22)

Proof. In order to determine the coefficients of this power series we will examine
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Figure 2.12: All kinds of triangles including the blue edge up to the action of the
mapping class group.

the power series associated with the following integral.

Iq(x) =

∫ x

0

2zq(1− 4z)−3/2dz (2.23)

We will evaluate Iq in two different ways. First, notice the integrand has a power

series expansion given by equation 2.17. By integrating this power series we find

that:

Iq(x) =
∞∑
i=1

i

i+ q

(
2i

i

)
xi+q (2.24)

Second, we use the standard calculus method of substitution to find that

Iq(x) = R(x)(1− 4x)−1/2 −R(0) (2.25)

where R(x) is some polynomial of degree q.

We claim R(x) =
(

2q
q

)−1
(1− 2xCbqc(x)). We verify this claim in the following

two steps.
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First, by comparing the two different power series representations of Iq ob-

tained in equations 2.24 and 2.25, we may see that R(x)(1 − 4x)−1/2 must have

coefficient zero on xi in its power series for 1 ≤ i ≤ q. The only polynomials of

degree q which we can multiply (1− 4x)−1/2 and achieve this are constant multiples

of (1− 2xC(x))bq+1c since 1− 2xC(x) is the inverse of (1− 4x)−1/2. Thus we have

R(x) = R(0)(1− 2xCbqc(x)).

Now we may evaluate R(0) by comparing the terms xq+1 terms of each of the

power series representations. From equation 2.24, we have the q+1 term is 2
1+q

xq+1.

From equation 2.25, we find that the q + 1 term is

R(0)

((
2q

q

)
− 2

q∑
i=1

Ci−1

(
2(q + 1− i)
q + 1− i

))
xq+1 = R(0)(2Cq)x

q+1 (2.26)

since 1− 2xC(x) is the inverse power series of
∑∞

i=0

(
2i
i

)
xi. Thus we find that

R(0) =

(
2q

q

)−1

. (2.27)

Finally, multiplying through by
(

2q
q

)
, we obtain the equation

∞∑
i=1

i

i+ q

(
2i

i

)(
2q

q

)
xi+q =

1− 2xCbqc(x)√
1− 4x

− 1 =
2x(C(x)− Cbqc(x))

1− 2xC(x)
. (2.28)

Next we will show a similar proof for the D̃n case. We will simply write D̃n for

the number of tagged triangulations of a twice punctured disk with n − 2 marked

86



points on the boundary. As before we build on the combinatorics in the finite case.

Recall that Dn = 3n−2
n

(
2(n−1)
n−1

)
is the number of tagged triangulations of a once

punctured disk with n marked points. For notational convenience let D0 = 1. This

lets us define the generating function D(x) =
∞∑
i=0

Dix
i

In this case the statement of Theorem 2.2.21 becomes:

D̃n = 9(n− 2)

(
2(n− 2)

(n− 2)

)
, n ≥ 3 (2.29)

Proof of Theorem 2.2.21 for D̃n. In Lemma 2.2.26 we show that D̃n+1 = 2
n−3∑
i=0

CiD̃n−i+

2
n∑
j=0

DjDn−j. Let D̃(x) =
∑∞

i=3 D̃ix
i be the generating function for D̃i. The recur-

rence above becomes:

D̃(x) = 2xC(x)D̃(x) + 2x(D(x)2 − 1− 2x) (2.30)

Again solving for D̃(x) we find

D̃(x) =
2x(D(x)2 − 1− 2x)

1− 2xC(x)
(2.31)

We can see easily that D(x) = 3xB(x)− 2xC(x) + 1 = 3xB(x) +B−1(x). Thus the

previous equation becomes

D̃(x) =
2x(9x2B2(x) +B−2(x) + 6x− 1− 2x)

1− 2xC(x)
(2.32)
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and using the fact that B2(x) = 1
1−4x

(Equation 2.16) we have

D̃(x) = 18x3(1− 4x)−3/2 =
∑
i=3

9(i− 2)

(
2(i− 2)

(i− 2)

)
xi (2.33)

as desired.

Lemma 2.2.26. D̃n+1 = 2
n−3∑
i=0

CiD̃n−i + 2
n∑
j=0

DjDn−j

Proof. As in the Ãn case we partition the triangulations based on the triangle con-

taining a fixed boundary edge. In this case there are six cases up to a full twist

around both punctures (Figure 2.13). The first two cases correspond to triangles

with third vertex on the boundary with edges going around both punctures (clock-

wise or counter clockwise). In either case the triangle splits the region into a i sided

polygon and a twice punctured disk with n− i marked points. This covers the first

summation in the recurrence.

The next two cases correspond to triangle where the edges go between the

punctures. If we label the n− 2 marked points 1 to n− 1, the triangle between the

punctures going to vertex j splits the region into a punctured disk with j marked

points and one with n− j marked points. This covers the terms 2
n−1∑
j=1

DjDn−j.

The final two cases are the triangles with endpoint on a puncture. Up to the

full twist there is only one way to reach each puncture. There is an additional tagged

triangulation in each case. In any of these cases the remaining region is a disk with

n marked points. Since we took D0 = 1 we can write the number of triangulations
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Figure 2.13: All kinds of triangles including the blue edge up to the action of the
mapping class group.

in this case as D0Dn and DnD0 covering the missing terms in the second summation

of the recurrence.

2.3 Doubly Extended Cluster Algebras

In this section we consider Q = Tn,w to be of doubly-extended type, i.e we have

χ = 0. Let A be the cluster algebra associated to Q. There are only finitely many

possibilities for n,w with χ = 0 listed in Figure 2.14. Other than A
(1,1)
1 , which has

to be treated separately, only D
(1,1)
4 is associated to a surface (the four punctured

sphere).
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Type n w |N | ord(r) dual

A
(1,1)
1 N/A N/A 1 1 self

D
(1,1)
4 (2, 2, 2, 2) (1, 1, 1, 1) 196 2 self

E
(1,1)
6 (3, 3, 3) (1, 1, 1) 54 3 self

E
(1,1)
7 (4, 4, 2) (1, 1, 1) 16 4 self

E
(1,1)
8 (6, 3, 2) (1, 1, 1) 6 6 self

BC
(4,1)
1 (2) (4) 1 1 BC

(4,4)
1

B
(2,1)
2 (2, 2) (2, 2) 4 2 self

BC
(4,2)
2 (2, 2) (BC-Type) 2 2 self

B
(1,1)
3 (2, 2, 2) (1, 1, 2) 24 2 C

(2,2)
3

F
(1,1)
4 (3, 3) (1, 2) 3 3 F

(2,2)
4

F
(2,1)
4 (4, 2) (2, 1) 4 4 self

G
(1,1)
2 (2, 2) (1, 3) 2 2 G

(3,3)
2

G
(3,1)
2 (3) (3) 3 3 self

Figure 2.14: All possible values of Tn,w that result in double extended cluster alge-
bras.

We will not consider the A or BC cases for the first part of this section, and

treat them separately later. Since our Tn,w quivers always have weight 1 middle

nodes, we will only construct quivers for the types on the left hand side of the table

in Figure 2.14. The types on the right hand side are dual to types with Tn,w quivers.

2.3.1 Structure of the Cluster Modular Group

Let Γ be the cluster modular group of A. Let Q′ = T ′n,w be the underlying

affine-type quiver of the doubly extended type quiver, Q. Let s be the source-sink

mutation path on Q′, χ′ = χ(Q′) and arrange that n1 = max(ni) and that w1 is

minimal if there are multiple tails of the same maximal length. It is easy to verify in
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each case that s(χ′n1)−1
returns to an isomorphic quiver. Thus δ = (s(χ′n1)−1

, id) ∈ Γ.

Theorem 2.3.1. Γ is generated by ΓT and δ.

Proof. This is checked in a case by case way for each of the simply-laced dou-

bly extended cluster modular groups. Most of these groups have been computed

elsewhere. Fraser, [22], has presentations for the E7 and E8 cases using the Grass-

mannian cluster algebra structures of Gr(4, 8) and Gr(3, 9) respectively. We note

that our notion of the cluster modular group does not include arrow reversing quiver

automorphisms, so our groups are the orientation preserving subgroups of his.

Its a simple matter to check that each of Fraser’s generators can be written

with the above elements. For example Fraser’s presentation of Γ
E

(1,1)
8

is

〈ρ, P, t, : ρ3 = P 2 = t2, ρ9 = 1, tρ = ρt, tP = Pt〉. (2.34)

In our notation

ρ = rδτ1, P = r2δτ1δ, t = r (2.35)

where r is the reddening element.

Fraser’s presentation of the cluster modular group for E
(1,1)
7 is

〈σ1, σ2, σ3, t|σ1σ2σ1 = σ2σ1σ2, σ2σ3σ2 = σ3σ2σ3, σ1σ3 = σ3σ1, (2.36)

σ1σ2σ
2
3σ2σ1 = (σ3σ2σ1)8 = 1, (σ3σ2σ1)4 = t2, tσi = σit〉. (2.37)
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In our presentation we have

σ1 = τ1 σ2 = rδ σ3 = τ2 t = r. (2.38)

The E6 case is new and we have computed it using Remark 1.2.7 and Theorem

2.3.4 below. It has the following presentation:

〈τ1, τ2, τ3, σ23, ω, δ|τiτj = τjτi, τ
3
i = τ 3

j = γ,

σ2
23 = 1, ω3 = 1, σω = ω−1σ, τ2 = ωτ1ω

−1, τ3 = ωτ2ω
−1,

τ1δτ1 = δτ1δ, (τ1δ)
3 = r2σ23〉

where r = τ1τ2τ3γ
−1 is the reddening element. The automorphism group of T3,3,3 is

generated by σ23 that swaps tails 2 and 3 and ω which rotates all three tails.

The non-simply laced cases follow from Remark 2.1.3.

To best describe the relations between δ and the other generators of Γ, it will

be helpful to recall some basic properties of the rank 2 Artin-Tits braid groups of

type A2, B2 and G2. The groups B(X2) have the presentation

B(A2) = {a, b|aba = bab} (2.39)

B(B2) = {a, b|abab = baba} (2.40)

B(G2) = {a, b|ababab = bababa} (2.41)

Remark 2.3.2. B(A2) is generally known as the braid group on 3 strands, B3. The
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center, Z of these groups is an infinite cyclic group generated by z = ababab, z =

abab and z = ababab for B(A2), B(B2), B(G2) respectively. We have an isomorphism

B(A2)/Z ' PSL(2,Z) (2.42)

If we let X2(k) = A2, B2, or G2 if k = 1, 2, or 3 respectively, then the subgroup of

B(A2) generated by {a, bk} is isomorphic to B(X2(k))

Claim 2.3.3. For each i we have a map ψi : B(X2(n1wi/ni))→ Γ given by {a, b} →

{τi, rδ}. Moreover, the image of the element z is shown in Table 2.15.

Proof. In each case it suffices to check the images satisfy the braid relations.

Type i = 1 i = 2 i = 3

D
(1,1)
4 id id id

E
(1,1)
6 r2σ23 r2σ13 r2σ12

E
(1,1)
7 r2 r2 rσ12

E
(1,1)
8 r2 r4 r

B
(2,1)
2 r r -

B
(1,1)
3 id id rσ12

F
(1,1)
4 r2 r -

F
(2,1)
4 r r -

G
(1,1)
2 id r -

G
(3,1)
2 r - -

Figure 2.15: Images of the central element ψi(z) = c for the group homomorphisms
of Claim 2.3.3.

Let N = Γ◦τ oAut(Q) where Γ◦τ was defined in Remark 2.1.13 by the following

exact sequence:

1→ Γ◦τ → Γτ → Z→ 1 (2.43)
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Theorem 2.3.4. The following sequence is exact:

1→ N → Γ→ B(X2(w1))/Z → 1 (2.44)

Proof. First, it is necessary to check that N is a normal subgroup, which we may

do for each of the four simply laced cases and fold to get the non simply laced cases.

To see that the quotient is as described, we only need to show that the induced map

B(X2(w1))/Z → Γ/N (2.45)

from Claim 2.3.3 is an isomorphism. Since τ1 has the smallest possible Z component

in Γτ and Aut(Q) ⊂ N , τ1 generates Γτ o Aut(Q)/N ' Z. Thus τ1 and δ generate

Γ/N . Therefore, we only need to check that the only relations come from those in

the braid group modulo its center. In the simply laced cases, this follows by checking

that the only relations between δ and τ1 is (δτ1)3 = id.

We check this by first seeing that it is true in the D
(1,1)
4 case, since this algebra

is associated with a 4-punctured sphere and δ and τ1 correspond to elements of

PSL(2,Z) as a quotient group of the mapping class group.

Then, we can check that the maps of cluster modular groups induced by folding

operations of Figure 2.16 preserve this subgroup faithfully. Since folding realizes the

cluster modular group of the folded algebra as a subquotient of the unfolded algebra,

we must check that no extra relations are added and that δ and τ1 appear in this

subquotient.
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Let A → B be any folding of doubly extended type cluster algebras. Let

n = n1(A), w = w1(A) and m = n1(A), z = w1(A) be the length and weights of the

first tail of Tn,w quivers representing seeds of these algebras. Let τ, η be the twist

elements of the first tails and δ, ε be the extra generators in the modular groups of

A and B respectively.

The double arrows corresponding to Langlands dual obviously preserve the

subgroup. The solid edges, corresponding to folding the Tn,w quivers directly, only

quotient by elements in N , which are zero in Γ/N . This follows since we fold by an

automorphism of the Tn,w quiver which are contained in N .

Furthermore, we clearly have that δ = ε in the standard folding case. Finally,

we see that if w = z we have that τ directly descends to the cluster modular group

of the folded algebra. Otherwise, z tails of length n are folded, and we have that η is

equivalent to successive twists around each of these unfolded tails. In the quotient

ΓA/N we have that successive twists around z tails of the same length is equal to

τ z. Thus Remark 2.3.2 proves the theorem.

Then the only nonstandard folding (dashed arrows) we need to check are

E
(1,1)
7 99K C

(2,2)
3 , E

(1,1)
8 99K G

(3,3)
2 , E

(1,1)
8 99K F

(2,2)
4 . See Figure 2.17 to see the

folds in each case. One checks for each of these cases that these automorphisms

are also contained in N . We will dualize each of these folded algebras so that we

may compare their cluster modular groups using the presentation coming from Tn,w

quivers.

We start with E
(1,1)
8 99K G(3,3)

2 ⇔ G
(1,1)
2 . We have a path of valid folds and
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unfolds from D
(1,1)
4 to G

(1,1)
2 so we know their are no extra relations in G

(1,1)
2 . Thus

it suffices to write δE and τE1 in terms of δG and τG1 . Let

P = (22141513121423N1N∞) (2.46)

be a path of mutations from T6,3,2 to the triangular quiver shown in Figure 2.17a.

Then

δE = PδGτG(δG)−2τGP−1 (2.47)

τE1 = PτGP−1. (2.48)

By replacing P with P ′ = P (τG)2 and using braid relations, we can see that

δE = P ′δGP ′−1 (2.49)

τE1 = P ′τGP ′−1. (2.50)

The next case to consider is E
(1,1)
8 99K F (2,2)

4 ⇔ F
(1,1)
4 . Once again if we can

write τF1 and δF in terms of the generators τE1 and δE any extra relations in F
(1,1)
4

would descend to relations in E
(1,1)
8 which we just showed didn’t have extra relations.

A simple computation shows that

P = (16321514161312N1) (2.51)
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is a path from T6,3,2 to the quiver shown in Figure 2.17b. Then

τF1 = P−1τE1 P (2.52)

δF = P−1(τE1 )−1(δE)−3(τE1 )−1(δE)−1(τE1 )P = P−1. (2.53)

Again using braid relations we can see in the quotient that δF = P−1δEP .

The final case is E
(1,1)
7 99K C(2,2)

3 ⇔ B
(1,1)
3 . Here we have a path of valid folds

and unfolds D
(1,1)
4 → B

(1,1)
3 . So all that remains is to write the generators for E

(1,1)
7 ,

τE and δE in terms of the generators for B
(1,1)
3 , δB and τB. Let

P = (241423221312N1). (2.54)

Then

δE = PδBP−1 (2.55)

τE1 = PτB1 P
−1. (2.56)

The following commutative diagram summarises the structure of the cluster

modular groups of doubly extended cluster algebras in each case where w1 = 1.

1 Z B3 PSL(2,Z) 1

1 N Γ PSL(2,Z) 1

z7→

c
(2.57)
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Corollary 2.3.5. Cluster modular groups are generated by “cluster Dehn twists” of

Ishibashi, [35].

Proof. Consider the twist generators τi ∈ Γτ . From Theorem 2.1.11, we saw that

τni
i = γwi . In the surface cases γ is a Dehn twist in the surface cases, and in the

exceptional cases is a cluster Dehn twist.

Furthermore, the element δn1 = s1/χ can be seen to be conjugate to γ in the

following way. First by freezing nodes 1n1 and N∞ we are left with the corresponding

finite type quiver. Let g be the sources sinks mutation pattern on this finite type

quiver and let h be the order of this element. Then we have α = {gh/2, (1n1N∞)} ∈ Γ

and αγα−1 = δn1 . Thus δ is a cluster Dehn twist.

Finally, we see that the elements of Aut(Q) each are periodic elements akin to

periodic mapping class group elements. It is possible to generate these elements in

each case using cluster Dehn twists. The images of central element, c, for various

maps from braid groups is always generated by the cluster Dehn twists τi and δ. We

can see in table 2.15 that quiver automorphisms can be obtained in case from this

central element. We note that in the D
(1,1)
4 case we obtain σ12 = r(τ3τ4rδ)

2, as can

be seen via the folding D
(1,1)
4 → B

(1,1)
3
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2.3.2 Other Cases

In the previous section, we ignored the A and BC cases. These cases are

simpler, so we simply show their cluster modular groups.

Γ
A

(1,1)
1

= B(A2)/Z = PSL(2,Z) (2.58)

Γ
BC

(4,1)
1

= Γ
BC

(4,1)
1

= B(B2)/Z = Z ∗ Z2 (2.59)

Γ
BC

(4,2)
2

= B(B2)/Z × Z2 = (Z ∗ Z2)× Z2 (2.60)

2.3.3 Special Quotients and Counting Clusters

We will construct a special finite quotient of the cluster modular group of

each of the simply laced doubly extended cluster algebras. We will use this normal

subgroup to construct a finite quotient of the cluster complex and thereby construct

a doubly extended generalized associahedron.

Following the ideas in the affine case, we would like to quotient Γ by 〈γ〉.

However, 〈γ〉 is no longer a normal subgroup. We will now construct free normal

subgroups N , such that γk ∈ N �Γ and Γ/N is finite group containing the normal

subgroup N .

Let n = ord(r) be the order of the reddening element. We can see that in the

quotient Γ/N = PSL(2,Z), we have

γ =

1 n

0 1

 (2.61)
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in each case. We denote the normal closure in Γ of the group element γ by N (γ).

This is a finite index subgroup of the cluster modular group in all cases other than

E
(1,1)
8 since N (γ)/N is finite index in PSL(2,Z). This group is not free in the

E
(1,1)
6 orE

(1,1)
8 cases, but N (γr2) and N (γr4) are free in these cases respectively.

Claim 2.3.6. For D
(1,1)
4 , the group N (γ) is the puncture preserving mapping class

group of a four punctured sphere.

We can verify this claim easily by seeing that γ is a Dehn twist. Thus by [25]

we have that N (γ) ' F2. We have an exact sequence

1→ N (Γ)→ Γ
D

(1,1)
4
→ H → 1 (2.62)

where H is a group of order 1152 given by an extension

1→ N → H → S3 → 1. (2.63)

Claim 2.3.7. For E
(1,1)
7 , the group N (γ) is a finite index free group. It is isomorphic

to the congruence subgroup Γ̄(4) of PSL(2,Z)

We have the following diagram of exact sequences

1 Z2 SL(2,Z) PSL(2,Z) 1

1 N Γ PSL(2,Z) 1

(2.64)

The element γ ∈ Γ is in the image of the map from SL(2,Z) and is given by
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the matrix

1 4

0 1

. The normal closure of this matrix in SL(2,Z) is the level 4

congruence subgroup Γ(4) and is torsion free. Since γ commutes with all of N , its

normal closure in Γ is isomorphic to its normal closure in SL(2,Z).

Thus we have the following diagram

1 1

N (γ) Γ(4)

1 N Γ PSL(2,Z) 1

1 N Γ/N (γ) S4 1

1 1

. (2.65)

Claim 2.3.8. The normal closure N (γr2) is a finite index free group of the clus-

ter modular group of E
(1,1)
6 . It is isomorphic to the congruence subgroup Γ̄(3) of

PSL(2,Z).
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We have the following diagram of exact sequences:

1 1

N (γr2) Γ(3)

1 N Γ PSL(2,Z) 1

1 N Γ/N (γr2) A4 1

1 1

. (2.66)

Claim 2.3.9. In the E
(1,1)
8 case, the normal closure N (γr4) is a free group, but is

not of finite index. The groups Nk = N (γr4, (rδ)k(τ)k) are free groups of index

36, 108 and 144 for k = 1, 2, 3.

The images of the groups Nk in PSL(2,Z) are normal subgroups of index 6, 18

and 24 for k = 1, 2, 3. We denote these groups and their respective quotients by

Fk,6/k and Gk,6/k, see [36].

We have the following diagram of exact sequences:

1 1

Nk Gk,6/k

1 Z6 Γ PSL(2,Z) 1

1 Z6 Γ/Nk Fk,6/k 1

1 1

. (2.67)
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While we have not explicitly described them, there are analogous finite index

normal free subgroups of each of the non simply laced doubly extended cluster

modular groups. These can be understood by folding the simply laced algebras.

We can defined doubly extended generalized associahedra by first quotienting the

cluster complexes by the action of these subgroups and then dualizing.

2.3.4 Counting Facets in Doubly Extended Generalized Associahedra

We can compute the total number of cluster variables and clusters in the

quotient of doubly extended cluster complexes. The number of cluster variables is

equal to the number of corank 1 subalgebras of our given algebra and is equal to

the number of codimension 1 facets of the generalized associahedra.

First we will count the number of cluster variables in each coset of the action

of the normal subgroup N . This count has a uniform description in each case. Since

the quotient modular groups are extensions of finite groups by N , we can count the

total simply by multiplying by the size of the corresponding finite group.

Theorem 2.3.10. The number of distinct cluster variables in each coset of the

action of N on the cluster complex of A is given by:

d
w1

n1

(
∑

(ni − 1)ni) (2.68)

where d = 1 unless A is self dual, in which case we have d = 2.

Proof. In each of the finitely many simply laced cases one can check that every

cluster variable appears in a Tn,w quiver not on the double edge. This is a finite
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computation, as we only have to check each location in each quiver isomorphism

class has a mutation path to a quiver with a double edge. For most cases this

requires extensive computational aid2. However D
(1,1)
4 only has a 4 isomorphism

classes so we can show the full computation in Figure 2.18.

Then it suffices to count how many different variables can appear on the tails

of the Tn,w quivers up to the action of N . Recall that N = Γ◦τ o Aut(Tn,w). Since

the action automorphism group does not generate new cluster variables, we only

need to count variables in each coset of Γ◦τ .

We have the following exact sequence

1→ Γ◦τ → Γτ → Z→ 1 (2.69)

where γ ∈ Γ maps to n1 ∈ Z. There are ni(ni− 1) distinct cluster variables on each

tail of length ni after applying τi. These variables are fixed by the action of γ ∈ Γ.

Finally, since Γ◦τ is index n1/w1 in Γτ/〈γ〉 the theorem follows.

In the cases which are each self dual, each cluster variable appears on the tail

of a Tn,w or its dual. Thus we simply have to multiply the count by two.

We can now count the number of clusters in each coset of the action of N on

the cluster complex. Each cluster variable corresponds to a corank 1 subalgebra of

the our cluster algebra. By the proof Theorem 2.3.10, these subalgebras can always

be found by freezing variables on the tails of Tn,w quivers. Thus, every corank 1

2See https://www.math.umd.edu/~zng/notes/DoubleExtendedStructureProof/ for full
computational details.
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subalgebra is affine type.

Let Aij be the affine subalgebra obtained by freezing the tail node ij and let

Cij be the number of clusters in Aij up to γ. The number of clusters in each affine

subalgebra in each coset of N is equal w1Cij/n1. Then the total number of clusters

in each coset is

1

n

∑
i

ni

ni∑
j=2

Cij
w1

n1

(2.70)

where n is the rank of the doubly extended cluster algebra we are considering. The

factor of 1/n appear since each cluster appears in n corank 1 subalgebras.

We can compute the number of clusters in Γ/N by multiplying the number in

the coset by the size of (Γ/N )/N .

More generally, we can count the number of any dimension facets on a doubly

extended associahedron using the formula

|Ck(A)| = 1

n− k
∑

B∈C1(A)

Ck(B) (2.71)

of Lemma 2.2.21.

Example 2.3.11. We will compute the number of clusters in the quotient complex of

type E
(1,1)
7 by N . By freezing nodes on a tail of length 4 we can obtain subalgebras of

type Ẽ7, D̃6×A1, A2,4×A2. These have sizes 252, 000, 5040, and 1400 respectively.

There is only one node to freeze on the tail of length 2 corresponding to a subalgebra

of type A4,4 which contains 4900 clusters up to the action of γ. So the total number
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of clusters in each coset of N is

1

9

(
2 · 4

(
252, 000

4
+

5040

4
+

1400

4

)
+ 2

4900

4

)
=

65730

9
=

21910

3
. (2.72)

It remains to multiply the size of the quotient group S4, 24, obtaining the final count

of 175, 280.

We note that doubly extended associahedra are not generally homotopy equiv-

alent to spheres. Let A be a doubly extended cluster algebra of rank n + 2. We

conjecture the following:

Conjecture 2.3.12. The exchange complex of A is homotopy equivalent to Sn−1.

The doubly extended associahedron associated with A is homotopy equivalent to

Sn−1 × S2 in all cases other than E
(1,1)
8 where it instead is homomorphic to S7 ×

S1 × S1.

Figure 2.20 contains the results of the counting arguments for the number

of clusters in the other doubly extended cases. We include the A and BC cases,

which can be done individually and are somewhat degenerate. Figure 2.21 shows the

total count of codimension k subalgebras obtained by inductively counting corank

1 subalgebras.
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B
(1,1)
3 C

(2,2)
3

A
(1,1)
1 E

(1,1)
7

B
(2,1)
2 BC

(4,2)
2

D
(1,1)
4 F

(2,1)
4

BC
(4,1)
1 BC

(4,4)
1

G
(3,1)
2

G
(1,1)
2 G

(3,3)
2

E
(1,1)
6 E

(1,1)
8

F
(1,1)
4 F

(2,2)
4

Figure 2.16: The doubly-extended family tree. The solid arrows represent folding
of Tn,w quivers, dashed arrows are special foldings, and the double arrows represent
Langland’s-duality.
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(a) E
(1,1)
8 99K G(3,3)

2 ⇔ G
(1,1)
2 .

(b) E
(1,1)
8 99K F (2,2)

4 ⇔ F
(1,1)
4 .

(c) E
(1,1)
7 99K C(2,2)

3 ⇔ B
(1,1)
3 .

Figure 2.17: Exotic foldings of doubly extended quivers. The first folds are by the
180 degree rotational symmetry and the last is by the 3-fold rotational symmetry.

(a) Q1.
(b) Q2. (c) Q3. (d) Q4.

Q1 Q2 Q3 Q4

1 6,4,5 2,6,5,4 2,6,5,4 4,2,3,5,6
2 6,4,5 1,5,6,3 1,6,5,4 4,1,3,5,6
3 5,1,2 4,5 6,4,5 〈〉
4 2,3,6 3,6 3 〈〉
5 2,3,6 3,6 3 〈〉
6 5,1,2 4,5 3 〈〉

Figure 2.18: The four quiver isomorphism classes for D
(1,1)
4 and mutation paths so

that vertex i is in a double edge quiver without mutating i.
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(a) B
(2,1)
2 . (b) G

(1,1)
2 .

Figure 2.19: The 1-skeleton of the doubly extended associahedra of types B
(2,1)
2 and

G
(1,1)
2

Type Number of clusters in coset of N |(Γ/N )/N | Number of clusters in quotient

A
(1,1)
1 1 1 1

D
(1,1)
4 72 6 432

E
(1,1)
6 1575 12 18,900

E
(1,1)
7

21910
3

24 175,280

E
(1,1)
8 34,105 6 18 24 204,630 613,890 818,520

BC
(4,1)
1 1 2 2

B
(2,1)
2 12 2 24

BC
(4,2)
2 12 2 24

G
(1,1)
2 4 6 24

G
(3,1)
2 21 3 63

B
(1,1)
3 18 6 108

F
(1,1)
4 105 12 1260

F
(2,1)
4 348 8 2784

Figure 2.20: Counting clusters in the quotient of doubly extended cluster algebras
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Chapter 3: Multiple Polylogarithm Relations

In order to study multiple polylogarithm relations we introduce a new algebraic

invariant associated to a multiple polylogarithm, ωn. This is joint work with my

advisor as well as Dani Kaufman and Haoran Li. We are currently working on

additional properties and characterizations of ωn beyond the scope of this thesis.

Each multiple polylogarithm is a multi-valued function, Lin(z) : Cd \ Xd → C. We

let Ûd → Cd \ Xd be the universal abelian cover of Cd \ Xd. Then we define

ωn ∈ Ω1(Ûd) to be a well defined one-form on the universal abelian cover.

In Section 3.2.1, we will see how these forms can be obtained from the symbol of the

multiple polylogarithms via a further symmetrization operation. In Section 3.2.5,

we will see these forms satisfy a simple recurrence formula that greatly speeds up

the computation time of these forms. Next we describe several families of relations

satisfied by ωn. In particular, we give a closed formula for ωn(1/z) generalizing the

well known standard polylogarithm relation Lin(z) + (−1)n Lin(1/z) = 0 modulo

products. This is critical for discussing polylogarithm relations associated to cluster

algebras, as functions extracted from the cluster algebra are usually only well defined

up to inversion.

In the final section we describe how to extract polylogarithm relations, which we
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call Qn from the An cluster algebras for n ≤ 6. Using the cluster algebra structure

we are able to give evidence for the following conjecture.

Conjecture 3.0.1. For all n odd, the signed sum αn+1 =
∑

An∈Dn
Qn(An) is non

trivial with no depth 2 terms.

For all n even, the corresponding sum is identically zero.

In particular α6 is composed entirely of terms ω5(x) or ω3,1,1(xyz, 1/y, 1/z)

where x, y, z are X-coordinates of D6 and xyz is one of the two generating Casimir

elements of D6. Since dω5(x) = 0 for any x, and dα6 = 0 this implies that the

differential of all the ω3,1,1 terms is also 0. So this combination of terms should be

integrable on the universal abelian cover and corresponds to a well defined polylog-

arithm function.

3.1 Universal Abelian Cover

In Section 1.3.2 we defined the “basic liftable functions” in depth d to be zi and

1−
j∏
r=i

zi for 1 ≤ i ≤ j ≤ d. We saw the singularity set of a depth d polylogarithm is

the zero set of the basic liftable functions. We now will define the universal abelian

cover of Cd \ Xd. The name “basic liftable function” will be justified as these

function are lifted to the basic coordinate functions on the cover.

Definition 3.1.1. There is a covering space of p : Ûd → Cd \ Xd given by:

Ûd = {(ui, v[i,j])1≤i≤j≤d|∀i ≤ j.−
j∏
r=i

eur + ev[i,j] = 1}
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where p(ui, v[i,j]) = (eu1 , . . . , eud).

Sections of the cover correspond to a choice of the branch of the logarithm

around each singularity in Xd. In other words, ui is the lift of Log(zi) and vi,j is

the lift of Log(1−
∏j

r=i zj). Thus functions defined on Ûd are well defined up to the

specification of number of loops around each singularity.

Remark 3.1.2. There is an isomorphic covering space for each choice of sign vec-

tors εij = ±1 and ηij = ±1 for 1 ≤ i ≤ j ≤ d, where the relation among the u’s

and v’s is given by εij
j∏
r=i

eur + ηije
v[i,j] = 1. We chose εij = −1 and ηij = 1 so that

inverting every coordinate on Cd \ Xd lifts to an involution of Ûd.

Lemma 3.1.3. The fundamental group of Cd \ Xd is torsion free and of rank

nd = 2d+
(
d
2

)
.

Proof. It is simple to verify this is true for d = 1 where C1 \ X1 is homeomorphic

to the wedge of two circles. Thus π1(C1 \ X1) = Z ∗Z and is torsion free of rank 2.

We then prove the lemma by induction.

First, we split the singularity set Xd into three parts: the singularities that do not

involve zd, the singularities that involve only zd, and the singularities involving both

zd and any other zi.

Xd = Xd−1 ∪ {zd = 0, zd = 1} ∪ {1−
d∏
r=i

zr|1 ≤ i < d}

Let A = Cd \ (Xd−1 ∪ {zd = 0, zd = 1}) be the space without the first two sets of

singularities and B = Cd \ ({1 −
∏d

r=i zr|1 ≤ i < d} ∪ {zi = 0|1 ≤ i ≤ d}) be the
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total space without the final set of singularities and the set of zi = 0. We then see

that A ∩B = Cd \ Xd.

It is then simple to compute π1(A) as A splits as a product A ∼= Cd−1 \ Xd−1 ×

C1 \ X1. So π1(A) = π1(Cd−1 \ Xd−1) × π1(C1 \ X1). Inductively Cd−1 \ Xd−1 is

torsion free of rank 2d− 2 +
(
d−1

2

)
and π1(C1 \ X1) = Z ∗Z has rank 2. So the rank

of π1(A) is 2d− 2 +
(
d−1

2

)
+ 2 = 2d+

(
d−1

2

)
.

To analyze B we can “straighten” the product terms via the isomorphism z 7→

(
∏d

r=1 zi,
∏d

r=2 zr, . . . , zd). If we use w for the image, this map sends the singularity

1 −
d∏
r=i

zr to 1 − wi. Similarly the singularities zi = 0 as a set are sent to the set

wi = 0. This is necessary for the inverse w 7→ (w1/w2, w2/w3 . . . , wd−1/wd, wd) to

be continuous. This shows that:

B ∼= Cd \ {wi = 1, wi = 0|1 ≤ i ≤ d} ∼= C1 \ X1 × · · · × C1 \ X1

So π1(B) = π1(C1 \ X1)d = (Z ∗ Z)d. By Van Kampen’s Theorem, we have a short

exact sequence:

0 π1(A ∩B) π1(A) ∗ π1(B) π1(A ∪B) 0

Then A ∪ B = C \ ({zd = 1} ∪ {zi = 0|1 < i ≤ d}) ∼= (S1)d−1 × C1 \ X1. So

π1(A ∪ B) = Zd−1 × (Z ∗ Z). So π1(A ∪ B) is torsion free and of rank d + 1.

Furthermore π1(Cd \ Xd) must be torsion free as any torsion elements would map

to torsion in π1(A ∪B).
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In this case the rank of π1(A) ∗ π1(B) is equal to the sum of ranks of π1(Cd \ Xd)

and π1(A ∪B). So nd−1 + 2 + 2d = nd + d+ 1 and thus nd = nd−1 + d+ 1

Using our inductive hypothesis on rank this gives nd = 2(d − 1) +
(
d−1

2

)
+ d + 1 =

2d+
(
d−1

2

)
+
(
d−1

1

)
= 2d+

(
d
2

)
as needed.

Corollary 3.1.4. The first homology group of Cd \ Xd is Znd.

Claim 3.1.5. Ûd is the universal abelian cover of Cd \ Xd.

Proof. By the previous corollary we know the abelianization of π1(Cd \ Xd) is

H1(Cd \ Xd) = Znd . We also have an obvious transitive action on the fiber of

z ∈ Cd \ Xd of Znd by adding 2πik to the appropriate coordinate. As this is the full

deck transformation group of the cover Ûd corresponds to the abelianization of the

fundamental group as claimed.

3.2 Differential Forms

To each multiple polylogarithm Lin(z) we associate a differential one-form ωn

on Ûd. We can think of form as the differential of a “lifted multiple polylogarithm”

that is well defined on Ûd.

We will see these forms are related to the classical symbol of a multiple polyloga-

rithm. However they have a major advantage in that they satisfy a simple combina-

torial recurrence. Additionally differential forms have a natural coboundary map d.

There is an analogous coboundary map for multiple polylogarithms defined in [37]).

In low weights, we have verified the map sending Lin(z) to ωn fits into a commuta-

tive diagram with these two coboundaries.
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3.2.1 Relation To Symbol

Recall the symbol of a multiple polylogarithm (Definition 1.3.9) is a weight n

tensor whose entries are basic liftable functions. We will define the associated form

as a symmetrization of this classic construction.

Remark 3.2.1. Let U = Cd \ Xd. The symbol of a multiple polylogarithm, lives

in T •(C(U)∗/µ∞) where µ∞ is the group all roots of unity. As such any tensor

a1 ⊗ . . .⊗ an is 0 if any ai is a rational multiple of (πi)k.

From the symbol we can define an associated one-form. This is achieved by

first lifting the symbol to a tensor on Ûd by sending zi to ui and 1 −
j∏
r=i

zr to v[i,j].

From there we can define a map to one-forms on Ûd by extending the following map

linearly:

f1 ⊗ · · · ⊗ fn 7→ (−1)n−1

n∑
i=1

(−1)i−1

n!

(
n− 1

i− 1

)
(f1 . . . f̂i · · · fn)dfi

Definition 3.2.2. The map described above is the symbol to forms map. We can

see this sends elements of T •(C(U)∗/µ∞)→ Ω1(Ûd).

The mysterious coefficients of the symbol to forms map can be explained by

factoring through the product projector. The product projector ρ is defined
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recursively as follows:

ρ1(a) =a

ρn(a1 ⊗ . . .⊗ an) =
n− 1

n
(ρn−1(a1 ⊗ . . .⊗ an−1)⊗ an − ρn−1(a2 ⊗ . . .⊗ an)⊗ a1)

The product projector is zero on the symbol associated to products of logarithms

and thus gives a representative of the symbol of a polylogarithm “modulo products”.

We then define a new map φ as follows:

φ : a1 ⊗ . . .⊗ an 7→
(−1)n−1

(n− 1)!
a2 . . . anda1

Theorem 3.2.3. The symbol to forms map factors as the composition φ ◦ ρ.

Proof. This is clear when n = 1 as a1 is sent to da1 by both maps.

For n > 1, we expand φ(ρn(a1 ⊗ . . .⊗ an)). Note that when n > 1:

φ(a1 ⊗ . . .⊗ an) =
−1

n− 1
anφ(a1 ⊗ . . .⊗ an)
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The rest of the proof follows inductively from the definition of ρ:

φ(ρn(a1 ⊗ . . .⊗ an))

=φ

(
n− 1

n
(ρn−1(a1 ⊗ . . .⊗ an−1)⊗ an − ρn−1(a2 ⊗ . . .⊗ an)⊗ a1)

)
=
n− 1

n
(φ(ρn−1(a1 ⊗ . . .⊗ an−1)⊗ an)− φ(ρn−1(a2 ⊗ . . .⊗ ad)⊗ a1))

=
n− 1

n

(
−1

n− 1
anφ(ρn−1(a1 ⊗ . . .⊗ an−1))− −1

n− 1
a1φ(ρn−1(a2 ⊗ . . .⊗ ad)

)
=− 1

n

(
an(−1)n−2

n−1∑
i=1

(−1)i−1

(n− 1)!

(
n− 2

i− 1

)
a1 . . . âi . . . an−1dai

−(−1)n−2a1

n∑
i=2

(−1)i

(n− 1)!

(
n− 2

i− 2

)
a2 . . . âi . . . andai

)

=− 1

n

(
(−1)n−2

(n− 1)!

(
n−1∑
i=1

(
(−1)i−1

(
n− 2

i− 1

)
− (−1)i

(
n− 2

i− 2

))
a1 . . . âi . . . andai

))

=
(−1)n−1

n!

(
n−1∑
i=1

(−1)i−1

(
n− 1

i− 1

)
a1 . . . âi . . . an

)

The final line is the image of the original symbol to product map as needed.

Corollary 3.2.4. If
∑

i Lini
(zi) is a relation of polylogarithms modulo products then

the corresponding sum of forms obtained by the symbol to forms map,
∑

i ωni
(zi) = 0.

Proof. This is clear as the map to forms factors through the product projector where

any polylogarithm relation modulo products is zero.
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3.2.2 Pullback Map Notation

Although the forms are defined on Ûd it is often convenient to write the argu-

ments as elements of Cd \ Xd. This is especially useful for pulling back forms by

rational maps between f : Cd \ Xd → Ck \ Xk where 1 −
∏j

r=i f(xr) factors into

products of basic liftable functions. In this case f induces a map f̂ : Ûd → Ûk. We

write ωn(f(x1), . . . , f(xd)) for the pullback by f̂ , f̂ ∗ωn : Ω1(Ûk)→ Ω1(Ûd).

Example 3.2.5. Consider the map r : C2 \ X2 → C1 \ X1 by r(x1, x2) = x1x2.

This lifts to a map r̂ : Û2 → Û1 given by r̂(u1, u2, v1, v2, v12) = (u1 + u2, v12). Then

we write ω3(xy) to mean r̂∗ω3 = ω3(u1 + u2, v12).

Example 3.2.6. As a more complicated example consider f : C2 \ X2 → C2 \ X2

by r(x1, x2) = (x1x2, 1/x1). This lifts to

r̂(u1, u2, v1, v2, v12) = (u1 + u2,−u1, v12, v1 − u1, v2)

We write ω4,1(x1x2, 1/x1) instead of r̂∗ω4,1 = ω4,1(u1 + u2,−u1, v12, v1 − u1, v2)

3.2.3 Recurrence Relation

First we discuss some combinatorics needed to state the recurrence relation.
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3.2.3.1 Compositions of an Integer

Several of the formulas in this section involve summing over the set of “com-

positions” of an integer:

Definition 3.2.7. A composition of d is an ordered partition of positive integers

c = c1 + c2 + · · · + ck such that
∑
ci = d. We write Comp(d) for the set of all

compositions of any length and Compk(d) for the set of composition of length less

than or equal to k. It will sometimes be helpful to allow 0 as an entry ci in the com-

position. In this case we write Comp0(d) (or Comp0
k(d)) for the set of compositions

of d including zero of any length (or length less than or equal to k).

Remark 3.2.8. Compositions differ from the standard notion of a partition as

(3, 1, 2) and (1, 2, 3) are two distinct compositions of 6.

Definition 3.2.9. We then define the following partial ordering on Comp0
k(d) where

a � b if and only if for each i either ai = 0 or ai > bi. Furthermore if an entry

ai = 0 then either i = 1 or for all j greater than i aj = 0. Loosely this means that

a can be formed from b by deleting entries from the end of b (and possibly the first

entry) and redistributing the weight.

Example 3.2.10. All of the compositions that are less than (2, 2, 2) under this

120



ordering are

(0, 4, 2) (0, 3, 3) (0, 2, 4) (0, 6, 0) (4, 2, 0) (3, 3, 0) (2, 4, 0) (6, 0, 0)

Note that both (0, 0, 6) and (4, 0, 2) are not less than (2, 2, 2) in this order because

the second entry is 0, but not every entry after is zero.

Remark 3.2.11. This partial order extends to an order on
⋃
d

Comp0
k(d). However

we will use ≺ to compare vectors of the same weight and ≺k to compare a vector of

weight n− k with a vector of weight n.

For n ∈ Comp0
k(d) with ` nonzero entries, ωn is understood to be the pullback

form on Ûk from Û` by ignoring the coordinates corresponding to the zero entries of

n. For example, ω0,1,2,0(x, y, z, w) = ω1,2(y, z).

We will also need the following two lemmas relating to summing products of

binomial coefficients of vectors under this order. The key idea in both lemmas is to

use the binomial theorem to expand (1 + x+ y)p in both possible ways.

Definition 3.2.12. For two vectors of integers n and m of length d, we define

(
m

n

)
=

d∏
i=1

(
mi

ni

)
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Lemma 3.2.13. For any vector p ≺ n with pd = 0,

(
p− 1

n− 1

)
=

∑
p�m≺n

md=0,mi>0

(
p− 1

m− 1

)(
m− 1

p− 1

)

Proof. Let x = (x1, . . . , xd) and y = (y1, . . . , yd). Then we use the binomial theorem

to expand (1 + (x + y))p[1,d−1]−1:

(1 + (x+y))p[1,d−1]−1

=
d−1∏
i=1

∑
ki≥0

(
pi − 1

ki

)
(xi + yi)

ki

=
d−1∏
i

∑
ki,`i≥0

(
pi − 1

ki

)(
ki
`i

)
x`ii y

ki−`i
i

=
d−1∏
i

∑
mi,ni≥1

(
pi − 1

mi − 1

)(
mi − 1

ni − 1

)
xni−1
i ymi−ni

i [ni − 1 = `i,mi − 1 = ki]

=
∑

mi,ni≥1

d−1∏
i=1

(
pi − 1

mi − 1

)(
mi − 1

ni − 1

)
xni−1
i ymi−ni

i

If we then take all yi = y, each term in the sum has
∏
ymi−ni
i = y

∑
mi−

∑
ni . In

the case we are interested in
∑
mi =

∑
ni. So we look at the coefficient of xn−1y0.

Note that md = 0, so it is fine to include it in the previous computation. Therefore

the coefficient of xn−1 is

∑
m

mi≥1,
∑
mi=

∑
ni

d−1∏
i=1

(
pi − 1

mi − 1

)(
mi − 1

ni − 1

)

We see that unless mi ≥ ni,
(
mi−1
ni−1

)
= 0. Similarly if pi 6= 0, then we must have

pi ≥ mi to have a nonzero term. If we let m = (m1, . . . ,md−1) then the previous
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condition is exactly p � m ≺ n with md = 0,mi ≥ 1. We also compute that(
md−1
nd−1

)
= (−1)nd−1 and we consider 1 =

(−1
−1

)
=
(
pd−1
md−1

)
. Therefore we see the

coefficient of xn−1 can be written as

(−1)nd−1
∑

p�m≺n
md=0,mi≥1

(
p− 1

m− 1

)(
m− 1

p− 1

)
(3.1)

On the other hand, we can expand ((1 + xi) + yi)
pi−1 to obtain

∑
ki≥1

∏
i

(
pi − 1

ki − 1

)
(1 + xi)

ki−1ypi−kii

Since we want the coefficient of xni−1
i we need to take ki ≥ ni. Additionally we

want y0 after setting all yi = y so
∑
pi =

∑
ki. Furthermore

∑
pi =

∑
ni, so∑

ki =
∑
ni. Therefore no ki can be strictly greater than ni. So the coefficient

of xni
i y

0 in this expansion is
∏d−1

i=1

(
p−1
n−1

)
. Once again

(
pd−1
nd−1

)
= (−1)nd−1, so we can

write the coefficient from the second expansion as:

(−1)nd−1

(
p− 1

n− 1

)
(3.2)

Since Equations 3.1 and 3.2 are both the coefficient of xn−1, they must be equal

proving the lemma.

Lemma 3.2.14. Let p be any vector with pd = 0 and p ≺1 n. Then we have the
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following identity

(
p− 1

n− 1

)
=

∑
p�m≺1n
md=0,mi>0

(
p− 1

m− 1

)(
m− 1

n− 1

)

Proof. The proof of this lemma is almost identical to the last. The key difference is

that
∑
mi−

∑
ni = −1. So we look at the coefficient of xn−1y−1 instead of xn−1y0.

However this doesn’t affect any of the arguments and we obtain the formula we

needed.

3.2.4 Retraction Maps

Definition 3.2.15. For any composition c = (c1, . . . , ck) of d, the retraction

r̂c : Ûd → Ûk is given by combining successive sets of ci variables. Formally let

i` =
∑`

i=1 ci be the vector of partial sums of c. Then we define r̂ by specifying the

image in coordinate ut and v[s,t]:

ut =uit + · · ·+ uit+1−1

v[s,t] =v[is,it+1−1]

Remark 3.2.16. This is a lift of the map Cd \ Xd → Ck \ Xk taking

rc : (x1, . . . , xd) 7→ (

i1∏
t=i0+1

xt, . . . ,

t=ik∏
t=ik−1+1

xt)
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Using the pullback notation of Section 3.2.2 we write:

ω2(x1x2) =r̂∗(2)ω2

ω4,1,2(x1x2, x3, x4x5x6) =r̂∗(2,1,3)ω4,1,2

We also define the “retraction action” of a composition c = (c1, . . . , ck) ∈ Comp(d)

on a vector n of length d to be the length k vector formed by summing the next

consecutive ci terms of n. Formally

c · n = (

i1∑
t=i0

nt, . . . ,

ik∑
t=ik−1+1

nt)

Example 3.2.17. The action of the composition c = (2, 1, 3) on n = (3, 1, 4, 2, 5, 2)

yields (3 + 1, 4, 2 + 5 + 2) = (4, 4, 9).

It is often convenient to combine these two retraction actions as r̂∗cωc·n to

obtain forms with equal weight and shorter depth that are still defined on Ûd.

r̂∗cωc·n = ωc·n(z1 . . . zc1 , . . . , zc1+···+ck−1
. . . zd)

Example 3.2.18. Again using c = (2, 1, 3) and n = (3, 1, 4, 2, 5, 2) the form r̂∗cωc·n

is equal to ω4,4,9(z1z2, z3, z4z5z6).

Note that c = 1d leaves a form of depth d unchanged.
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Remark 3.2.19. We use 0 entries in a composition to mean removing the corre-

sponding entry. As an example consider c = (0, 1, 1, 2, 0) and n = (3, 1, 4, 2, 5, 2).

Then r̂∗cωc·n = ω1,4,7(x2, x3, x4x5).

3.2.5 Recursive Formulation

One advantage of the differential form ωn over the symbol is that they satisfy

a clean recurrence relation. The recurrence is analogous to the derivative of the

corresponding polylogarithm Lin(z), with additional “cross terms”. There is a cross

term for each vector m ≺1 n. Let cm = 1 if m1 > 0 and cm = −1 otherwise. Then

the recurrence relation is:

ω1 = du1

ω2 =
1

2
(u1dv1 − v1du1)

ω1,1 =
1

2
(v12du1 + (v2 − v12)dv1 + (v12 − v1)dv2 + (−u1 + v1 − v2)dv12)

ωn =
1∑
ni

(
d∑
i=1

δiωn + v[1,d]

∑
m≺1n

cm

(
m− 1

n− 1

)
ωm(z)

)
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Here δi is the derivative like operator:

δiωn =



v1ωn[2,d]
(z2, . . . , zd)− (v1 − u1)ωn[2,d]

(z1z2, z3, . . . , zd) i = 1, n1 = 1

viωn[1,i−1]n[i+1,d]
(z1, . . . , zi−2, zi−1zi, zi+1, . . . , zd)

− (vi − ui)ωn[1,i−1],n[i+1,d]
(z1, . . . , zi−1, zizi+1, zi+2, . . . , zd)

1 < i < d, ni = 1

vdωn[1,d−1]
(z1, . . . , zd−2, zd−1zd)− vdωn[1,d−1]

(z1, . . . , zd−1) i = d and nd = 1

−uiωn1,...,ni−1,...,nd
(z1, . . . , zd) ni > 1

If we compare δiωn to the ∂i Li(z) we see that 1
zi

is replaced with ui and 1
1−zi is

replaced with vi. There is an “extra” term in δd when ni = 1 mirroring the deleting

first entry term of δ1 when n1 = 1.

Note that in depth 1 there are no smaller depth cross terms and so the re-

currence simplifies to ωn = − 1
n
u1ωn−1. A more complicated example is the depth 3

recurrence:

(p+ q + r)ωp,q,r

=δ1ωp,q,r + δ2ωp,q,rωp,q,r + δ3ωp,q,r

+ v123(−1)q+r
(
p+ (q + r − 1)− 1

q + r − 1

)
ωp+q+r−1(u1)

− v123(−1)p+r
(
q + (p+ r − 1)− 1

p+ r − 1

)
ωp+q+r−1(u2)

− v123

∑
m1+m2=r−1

(−1)r
(
p+m1 − 1

m1

)(
q +m2 − 1

m2

)
ωp+m1,q+m2(u1, u2)

+ v123

∑
m1+m2=p−1

(−1)p
(
q +m1 − 1

m1

)(
r +m2 − 1

m2

)
ωq+m1,r+m2(u2, u3)
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In particular we see that 6ω3,2,2 = −u1ω2,2,2 − u2ω3,1,2 − u3ω3,1,2 + v123(10ω5(u1) +

5ω5(u2)− 3ω4,2(u1, u2)− 2ω3,3(u1, u2)− 3ω4,2(u2, u3)− 4ω3,3(u2, u3)− 3ω2,4(u2, u3))

Theorem 3.2.20. The forms ωn satisfy the recurrence relation.

Proof. We can quickly check base cases as the symbol of Li2(z) is 1 − z ⊗ z which

lifts to v ⊗ u. This is sent to 1
2
(udv − vdu) via the symbol to forms map.

Similarly the symbol of Li1,1(z1, z2) lifts to

−(v12 ⊗ u1 − v12 ⊗ v1 + v12 ⊗ v2 + v2 ⊗ v1)

Under the symbol to forms map we obtain:

−1

2
(u1dv12 − v12du1 − v1dv12 + v12dv1 + v2dv12 − v12dv2 + v1dv2 − v2dv1)

=
1

2
(v12du1 + (v2 − v12)dv1 + (v12 − v1)dv2 + (−u1 + v1 − v2)dv12)

Note that in weight 1, ω1 corresponds directly to log(z) which has lifted symbol u,

not Li1(z) which has lifted symbol −v.

In the inductive case we must carefully examine the algorithm to assign a symbol

to a multiple polylogarithm. For this we follow the algorithm of [29] to compute the

symbol by extracting tensors from decorated polygons. The polygon, P , associated

to Lin(z) is a (1 +
∑
ni)-gon with a distinguished “root vertex”. The sides of the

polygon are labeled according to the conversion from Lin(z) to “G-notation” for
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iterated integrals. We have that:

Lin(z) = (−1)dG(0md−1,
1

zd
,0md−1−1,

1

xd−1xd
, . . . ,0m1−1,

1

x1 . . . xd
; 1)

where

G(a1, . . . , an;x) =

∫ x

0

dt

t− a1

G(a2, . . . , an; t)

If the sides of P are labeled counterclockwise from the root vertex, G(a1, . . . an;x)

corresponds to P (an, . . . , a1, x)1. We call side labeled x, the root side and draw a

double edge to distinguish it. For a multiple polylogarithm this root side is always

labeled 1. Each term in the symbol corresponds to a choice of a maximal non-

crossing set of arrows from vertices to edges. This dissects the polygon into digons

each of which correspond to an entry in the tensor. The ordering in the tensor

product is given by first constructing the tree dual to the dissection. The root of

this tree is the digon containing the root vertex and root edge. Every linear order

that is compatible with partial order of the rooted tree corresponds to a term in the

symbol.

For this proof we need a few key facts about this algorithm:

1. If the dual tree is not linear, then the tensors corresponding to that dissection

can be written using a shuffle product. As such the product projector ρ kills

any such terms.

2. If Pi is the polygon formed by deleting edge i the symbol corresponding to P ,

1Note the reversed ordering of indices between P and G.
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S(P ) can be written as

S(P ) =
n−1∑
i=1

S(Pi)⊗ S(P (ai, ai+1))−
n−1∑
i=2

S(Pi)⊗ S(P (ai, ai−1))

Here P (a, b) is the digon with root side b and non-root side a.

3. The symbol associated to the digon P (a, b) is

S(P (a, b)) =



0 a = 0, b = 1

b a = 0, b 6= 1

1− b
a

a 6= 0

We then consider ρn(S(Lin(z)). In the inductive case, to compute ρ we need to

gather the terms of the symbol by the last entry and by the first entry. It turns out

the terms gathered by the last entry correspond to the δiωn terms and the terms

gathered by the first entry correspond to the “cross term” with the v[1...d]. The

mysterious extra term of δd also occurs in this section when nd = 1.

Explicitly we can simplify φ(ρn(S(Lin(z)))) as follows:

φ(ρn(S(Lin(z)))) = φ(ρn(S((−1)dG(a; 1))))

= (−1)d
n− 1

n

[∑
an

φ(ρn−1(
∑

a1 ⊗ . . .⊗ an−1)⊗ an) −
∑
a1

φ(ρn−1(
∑

a2 ⊗ . . .⊗ an)⊗ a1)

]

= (−1)d
n− 1

n

[∑
an

−1

n− 1
anφ(ρn−1(

∑
a1 ⊗ . . .⊗ an−1)) −

∑
a1

−1

n− 1
a1φ(ρn−1(

∑
a2 ⊗ . . .⊗ an))

]

=
(−1)d

n

[∑
an

−anφ(ρn−1(
∑

a1 ⊗ . . .⊗ an−1)) +
∑
a1

a1φ(ρn−1(
∑

a2 ⊗ . . .⊗ an))

]

(3.3)
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We now analyze the terms that appear when the symbol is gathered by last term.

Fact 2 decomposes the symbol into terms of the form “the symbol of the polygon

without side i” tensor “the digon associated to side i” for all non-root sides. Since

the labels come from a multiple polylogarithm, any non-root side i of the polygon

is labeled 0 or 1
zj ,...zd

for some j. Let ai be the label of side i.

If ai = 0 then i is in a string of mj − 1 zeros and mj > 1. As such, deleting

edge i yields the polygon corresponding to (−1)d Lin−ej(z). We also see from Fact

3 that S(P (ai, ai+1)) = 0 unless ai+1 = 1
zj+1...zd

. Similarly S(P (ai, ai−1)) = 0 unless

ai−1 = 1
zj ...zd

. So the only terms corresponding to P ((−1)d Lin−ej(z)) are

S(P ((−1)d Lin−ej(z)))⊗ 1

zj+1 . . . zd
− S(P ((−1)d Lin−ej(z)))⊗ 1

zj . . . zd

=S(P ((−1)d Lin−ej(z)))⊗ zj

When we lift zj becomes uj. At the end of Equation 3.3 this term becomes

−ujφ(ρn−1(S(P ((−1)d Lin−ej(z)))))

which inductively is equal to −uj(−1)dωn−ej = (−1)dδjωn. Note that the original

conversion has a factor of (−1)d so this distributes leaving δjωn as we needed.

If ai 6= 0 then ai = 1
zj ...zd

for some j. If nj > 1 then ai+1 = 0. So S(P (ai, ai+1)) = 1

and this term doesn’t contribute to the symbol. Otherwise nj = 1 and ai+1 =

1
zj+1zj ...zd

. In this case S(P (ai, ai+1)) = 1 − zj which lifts to vj. Deleting side i
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corresponds to a G function whose nonzero terms skip from 1
zj+1...zd

to 1
zj−1zjzj+1...zd

.

When converting back to Li form the (j− 1)st argument becomes zj−1zj. Therefore

this situation results in (−1)d−1S(Lin[1,j−1],n[j+1,d]
(z[1,j−2], zj−1zj, z[j+1,d]))⊗vj. If j < d

(and nj = 1 still) we also get a contribution from ai−1 = 1
zj ...zd

and ai = 1
zj+1...zd

.

Here S(P (ai, ai+1)) = 1− 1
zj

which lifts to vj − uj. With the shift in index the new

polygon corresponds to (−1)d−1 Lin[1,j−1],n[j+1,d]
(z[1,j−1], zjzj+1, z[j+2,d]).

So gathering all the terms with uj or vj for 1 ≤ j < d results in:

S((−1)d−1 Lin[1,j−1],n[j+1,d]
(z[1,j−2], zj−1zj, z[j+1,d]))⊗ vj

− S((−1)d−1 Lin[1,j−1],n[j+1,d]
(z[1,j−1], zjzj+1, z[j+2,d]))⊗ (vj − uj)

As in the nj > 1 case we see that sending this through φ as in Equation 3.3 this

becomes

−(−1)d−1vdωn[1,j−1],n[j+1,d]
(z[1,j−2], zj−1zj, z[j+1,d])

+ (−1)d−1(vj − uj)ωn[1,j−1],n[j+1,d]
(z[1,j−1], zjzj+1, z[j+2,d])

Distributing the (−1)d fixes the signs, so that this is δjωn as well. When j = d we

only get the term of δdωn that exactly matches derivative of the polylogarithm. The

other term of δd we will see comes from the other half of the product projector.

To compute the other half of the product projector we need to gather the terms of

the symbol by the first entry of the tensor. In the polygon dissection this is the

entry coming from the root bigon. In Figure 3.1 we can see the 6 possible root
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bigons. Clearly Figures 3.1c, 3.1e, and 3.1f all correspond to nonlinear trees. As

such by Fact 1 the terms coming from these cases contain a shuffle product and are

0 after the product projector.

Next we focus on Figure 3.1d. Removing the root bigon results in a new poly-

gon where side n is now the root side. If nd > 1 then this side is labeled 0

and the G function for this polygon ends in 0. Any G function whose last en-

try is 0 is 0 and so there are no terms in the symbol when nd > 1. However if

nd = 1 then the new root is 1
zd

. Using the change of variables u = zdt we see that

G(a1, . . . , an,
1
zd

) = G(zda1, . . . , zdan, 1). Since G came from Lin(z), the new polygon

corresponds to Lin[1,d−1]
(z[1,d−1]). The symbol of the root bigon is S(P ( 1

zd
, 1)) = 1−zd

which lifts to vd. This is the missing term from δdωn as needed.

The last two cases (Figures 3.1a,3.1b) together will give us all of the cross terms. In

both cases the symbol of the root bigon is 1− z1 . . . zd which lifts to v[1,d] as needed.

It remains to identify the G function of the polygon obtained by deleting the root

bigon.

For Figure 3.1a this function is G(0, 1
zd
, . . . ,0, 1

z2...zd
,0, 1) as the edge corresponding

to 1
z1...zd

is removed. This function directly converts to a degenerate polylogarithm.

However by shuffle regularizing, this can be written in a non-degenerate way. In

fact by Lemma 3.2.21, this is equal to (−1)d−1
∑

m≺1n
m1=0,mi>0

(
m−1
n−1

)
Lim(z).

For Figure 3.1b deleting the root bigon removes the root edge. This results with the

new root being 1
z1...zd

and the entries of G reversed. We can make a change of vari-

ables to change the root to 1 resulting in every entry being multiplied by z1, . . . zd.
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Thus the G function is G(0m1−1, zd,0m2−1, zd−1, . . . ,0md−1−1, z1 . . . zd−1,0md−1; 1).

Following Lemma 3.2.21 this is equal to (−1)d−1
∑

m≺1n
md=0,mi>0

(
m−1
n−1

)
Li←−m(1/←−z ). Then

using the inversion theorem (Theorem 3.3.22) this becomes

(−1)d−1
∑
m≺1n

md=0,mi>0

(
m− 1

n− 1

)∑
p�m

Lip(z) = (−1)d−1
∑
p≺1n
pd=0

cp

(
p− 1

n− 1

)
Lip(z)

The final equality is by Lemma 3.2.14. This term also picks up a negative sign as

flipping the polygon reverses the condition determining the sign of the tensor. So

distributing the (−1)d from Equation 3.3 leaves the terms from Figure 3.1a with

a negative sign and the terms from Figure 3.1b with a positive sign. This exactly

corresponds to the sign coefficient cm.

So combining these two sets of terms results in
(∑

m≺1n cmS(Lim(z)
)
⊗ v[1,d] which

is sent to the cross term via the symbol to form map as claimed.

Lemma 3.2.21 (Extract Trailing Zeros). For any sequence of arguments x:

G(x,0k; y) = (−1)k
∑

z∈x�0k
z`+k 6=0

G(z; y)

So if G(x, 1) = (−1)d Lin then

G(x,0k; 1) = (−1)d
∑

m≺(k+1,n)
m1=0,mi>0

(
m− 1

n− 1

)
Lim

2The proof of the inversion theorem only relies on the symbol to forms map, and not on this
recurrence.
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Proof. The first part of the lemma follows from the algorithm outlined in Section

4.2 of [30] for extracting trailing zeros by “unshuffling powers of logarithms”. In

other words they consider the following sum of products:

k−1∑
i=0

(−1)k−iG(x,0i; y)G(0k−i; y)

Recall that G(0n; y) = 1
n!

logn(y) justifying the description of this a product of

powers of logarithms. Furthermore any product of G functions with the same last

argument can be expand as a sum of shuffles. So for each i we obtain a sum over

Si = x0i � 0k−i. Let Si(j) be the set of shuffles in Si with exactly i + j trailing

zeros. Then Si =
k−i⋃
j=0

Si(j). Clearly Si(j) = Si+1(j − 1) and so in the alternating

series everything cancels except S0(0) and Sk−1(1). Then Sk−1(1) has only one term,

G(x,0k, y) which is the original function. Similarly S0(0) is the set of shuffles with

no trailing zeros that we wanted. Therefore

k−1∑
i=0

(−1)k−iG(x, xm+1,0i; y)G(0k−i; y) = (−1)k
∑

z∈S0(0)

G(z; y)−G(x,0k, y)

Now let x be the vector that makes Lin(z) = (−1)dG(x, 1). We can further gather

the terms of S0(0) by the number of zeros between the nonzero entries of x. Let m

be a length d vector of positive integers. For 1 ≤ i ≤ d, in order for mi−1 to be the

number of zeros before the d+1− ith nonzero entry of x we need mi−1 ≥ ni−1 and∑
mi = k+

∑
ni. In other words (0,m) ≺1 (k+ 1,n) with mi > 0. The number of

ways to get m from n by this procedure is
∏(mi−1

ni−1

)
. Furthermore recall (−1)k =

135



(−1
k

)
=
(
m0−1
n0−1

)
. Therefore the sum over S0(0) is (−1)d

∑
m≺1(k+1,n)
m1=0,mi>0

(
m−1
n−1

)
Lim(z).

Modulo products we then have

G(x,0k, y) = (−1)d
∑

m≺1(k+1,n)
md=0,mi>0

(
m− 1

n− 1

)
Lim(z)

3.2.6 Symmetrization

Definition 3.2.22. Let sn be the “symmetrization” operation on homogeneous poly-

nomial one-forms that sends basis elements p(x)dy to p(x)dy − 1
n
(d[p(x)y]) where

n− 1 is the degree of p.

It is easy to see this operation is idempotent and preserves the differential of

the one-form.

Definition 3.2.23. A one-form, ω whose coefficient polynomials that are degree n

is symmetric if ω = snω.

We now have two proofs that ωn is symmetric. First we use the symbol to

forms definition.

Theorem 3.2.24. The symbol to forms map (Definition 3.2.2) results in a sym-

metric form.

Proof. It is a simple computation to show the image is fixed by the symmetrization

map sn.
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For each i, sn(f1 . . . f̂i . . . fndfi) = f1 . . . f̂i . . . fndfi− 1
n
d[f1, . . . fn]. So the subtracted

term is 1
n
d[f1, . . . , fn] in each case. Combining this with the coefficients from the

summation we obtain

n∑
i=1

(−1)i
(
n− 1

i− 1

)
d[f1 . . . fn] = d[f1 . . . fn]

n∑
i=1

(−1)i−1

(
n− 1

i− 1

)

It is a classic application of the binomial theorem that 0 = (1−1)n−1 =
n∑
i=1

(−1)i−1
(
n−1
i−1

)
and so the extra terms of the symmetrization are zero as needed.

The second proof uses the recurrence and the following simple lemmas:

Lemma 3.2.25. If ω =
∑

i p(x)dyi is a symmetric one-form, then zω is also sym-

metric.

Proof. In order for ω to be symmetric, we have

0 =
1

n

∑
i

d[pi(x)yi] =
1

n
d

[∑
i

pi(x)yi

]

So
∑

i pi(x)yi = C for some constant C. Furthermore this sum is a homogeneous

degree n polynomial for n > 1, so to be a constant it must 0. Then

1

n+ 1

∑
i

d[zpi(x)yi] =
1

n+ 1

∑
i

pi(xyidz + zd[pi(x)yi]

=
1

n+ 1

((∑
i

pi(xyi)

)
dz + z

(
d

[∑
i

pi(x)yi

]))

=0dz + z(0) = 0
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Lemma 3.2.26. The sum of two symmetric forms is symmetric.

Proof. This is clear as the symmetry operator is linear.

Theorem 3.2.27. The one-forms defined via the recurrence relation are symmetric.

Proof. This can be seen inductively. In the base cases clearly ω1 = du, ω2 =

1
2
(udv − vdu) and ω1,1 are symmetric. Then the inductive step is a sum of lower

weight forms scaled by single variables. The previous two lemmas show this preserves

symmetry.

Remark 3.2.28. For any one-form ω we have that dsnω = dω since the modification

is by an exact form. As such symmetrization provides a method for choosing a

canonical representative of the integral of a closed 2 form.
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: All possible root bigons.
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3.3 General Relations

3.3.1 Inversion Relation

Since z = 0 ∈ X1 the map τ : C1 \ X1 → C1 \ X1 sending z to 1/z is

holomorphic and thus induces a map τ ∗ : Û1 → Û1. In coordinates this map sends

(u, v) 7→ (−u, v − u). Recall that in depth 1 for any weight we have the following

relation [5]:

ωn(x) + (−1)nωn(1/x) = 0

There is a depth d generalization of τ given by (z1, . . . , zd) 7→ (1/z1, . . . , 1/zd).

This lifts to the map sending ui to −ui and vi,j to vi,j −
∑j

r=i ur. It is then natural

to ask if there is a depth d relation corresponding to this involution. In fact in depth

2 we have the following relation:

Claim 3.3.1. For all m,n the following quantity is 0:

ωm,n(x, y)− (−1)m+nωm,n(1/x, 1/y)

+ ωm+n(xy)− (−1)n
(
m+ n− 1

m− 1

)
ωm+n(x) + (−1)m

(
m+ n− 1

n− 1

)
ωm+n(y)

Proof. This can be shown inductively using the recurrence in depth 2. It will also

follow from Theorem 3.3.4.
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3.3.1.1 Inversion Reversing Relation

While we could state a similar “inverse” relation for any depth polylogarithm,

it is most convenient to state the relation in two steps, first a relation that also

reverses the arguments while inverting them and then a relation to reverse all the

arguments. We use the notation ←−z = (zd, . . . , z1) to indicate that a vector should

be reversed.

With this idea in mind we see there is a simpler depth 2 inversion relation with one

fewer term:

(−1)m+nωn,m(1/y, 1/x)+ωm,n(x, y)−
(
m+ n− 1

n− 1

)
ωn+m(x)+

(
m+ n− 1

m− 1

)
ωn+m(y)

This can be seen to be equivalent to the previous relation by applying the stuffle

relation ωm,n(x, y) + ωn,m(y, x) + ωn+m(xy) = 0. In general we have the following

theorem:

Theorem 3.3.2 (Inversion Reversing Relation). For any vector n with
∑
ni > 1

we have

−(−1)
∑
niω←−n (1/←−z ) =

∑
m�n

cm

(∏
i

(
mi − 1

ni − 1

))
ωm

where we recall that
(−1
k

)
= (−1)k and cm =


−1 m1 = 0

1 m1 6= 0

Proof. This can be proved using an inductive formula of Goncharov in Section 2.6
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of [38]. He defines the following generating series B(z|t):

B(z|t) =
∑

−∞<k1<···<kd<∞

∏
i

zkii
ki − ti

He then defines a multiple polylogarithm generating series:

Li(z|t) =
∑

Lin(z)tn−1

Using these two series he establishes the identity

d∑
j=1

(−1)j Li(1/←−−z[1,j]| −
←−−
t[1,j]) Li(z[j+1,d]|t[j+1,d])

+
d∑
j=1

(−1)j

tj
Li(1/←−−−−z[1,j−1]| −

←−−−
t[1,j−1]) Li(z[j+1,d]|t[j+1,d])

=
d∑
j=1

(−1)j Li(1/←−−−−z[1,j−1]|tj −
←−−−
t[1,j−1])B(z1 . . . zd|tj) Li(z[j+1,d]|t[j+1,d] − tj)

To establish a relation of forms we can simplify the above relation modulo products.

First we note that in each sum the only terms that don’t contain product terms are

the first and last terms.

Next we simplify B(z1 . . . zd|tj). There is a “classic identity” that

B(z|t) = −2πi
∑
n≥0

Bn(Log(z))
(2πit)n−1

n!

where Bn(z) is the nth Bernoulli polynomial. Only the constant term of Bn(Log(z))

is nonzero mod products, so B(z|t) reduces to −
∑

n≥0Bn
(2πi)n

n!
tn−1. Unless n = 0
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each term is a rational multiple (2πi)n. Since the symbol is defined to ignore torsion

every term with n > 0 is 0 in the image form. This reduces to the friendlier relation:

Li(z|t) + (−1)d Li(1/←−z | − t)− 1

t1
Li(z[2,d]|t[2,d]) +

1

td
(−1)d Li(1/←−−−z1,d−1| −

←−−−−
t[1,d−1])

=
−1

t1
Li(z|t[2,d] − t1) +

1

td
(−1)d Li(1/←−z |td − t[1,d−1])

Finally we extract the coefficient of tn−1. This is simple for the first terms yielding

Lin(z). The second term, has a sign of
∏

(−1)ni−1 = (−1)d(−1)
∑
ni from the −t.

The (−1)d, from the equation, cancels out the (−1)d from −t to obtain exactly

(−1)
∑
ni Li←−n (1/←−z ) from the second term. Both the third and fourth terms have no

contribution, as they have t−1
1 or t−1

d and neither n1 or nd can be 0.

For the right hand side, we use the binomial theorem to expand 1
t1

d∏
i=2

(ti − t1)mi−1

in −1
t1

Li(z|t[2,d] − t1) to get

−
∑

k2···+kd=n1

(−1)n1tn1−1
1

d∏
i=2

(
mi − 1

mi − 1− ki

)
tmi−1−ki
i

So to get tn−1 we need mi− ki = ni. In other words m is a vector such that m1 = 0

and mi > ni with the same weight as n. This is {m ≺ n|m1 = 0,mi > 0}. So the

polylogarithms that appear as a coefficient of tn−1 here as:

∑
m≺n

m1=0,mi>0

(−1)n1−1
∏(

mi − 1

ni − 1

)
Lim(z) =

∑
m≺n

m1=0,mi 6=0

(
m− 1

n− 1

)
Lim(z)

Note that the (−1)n1−1 is encoded here as
( −1
n1−1

)
=
(
m1−1
n1−1

)
.
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Similarly when we expand 1
td

d−1∏
i=1

(td − ti)
mi−1 with binomial theorem, we get a tn

whenever mi − ki = ni. So this gives a sum over all m ≺ n with md = 0

and all other mi > 0. We also pick up a sign
d−1∏
i=1

(−1)mi−1−ki =
d−1∏
i=1

(−1)ni−1 =

(−1)d−1(−1)n1+···+nd−1 . As before, we want to include a
(
md−1
nd−1

)
= (−1)nd−1 term.

Multiplying in (−1)nd−1(−1)nd−1 leaves the summation unchanged but makes the

leftover sign, (−1)d(−1)
∑
ni = (−1)d(−1)

∑
mi . Therefore the coefficient of tn−1 is:

(−1)d
∑
m≺n

md=0,mi>0

(
m− 1

n− 1

)
(−1)

∑
mi Li←−m(1/←−z )

Putting this all together gives us

Lin(z) + (−1)d(−1)
∑
ni Li←−n (1/←−z )

=
∑
m≺n

m1=0,mi>0

(
m− 1

n− 1

)
Lim(z) + (−1)2d

∑
m≺n

(
m− 1

n− 1

)
(−1)

∑
mi Li←−m(1/←−z )

We then can inductively apply our relation to all the terms in the final sum since

md = 0, m has smaller depth than n. The final summation then becomes:

∑
m≺n

md=0,mi>0

(
m− 1

n− 1

)(
(−1)

∑
p�m

cp

(
p− 1

m− 1

)
Lip(z)

)

= −
∑
p≺n
pd=0

cp

 ∑
p�m≺n

md=0,mi>0

(
m− 1

n− 1

)(
p− 1

m− 1

)Lip(z)

= −
∑
p≺n
pd=0

cp

(
p− 1

n− 1

)
Lip(z)
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The final equality is by Lemma 3.2.13 showing that
(
p−1
n−1

)
=

∑
p�m≺n

md=0,mi>0

(
p−1
m−1

)(
m−1
p−1

)
.

Substituting this transformation into our relation gives:

Lin(z) + (−1)
∑
ni Li←−n (1/←−z )

=
∑
m≺n

m1=0,mi>0

(
m− 1

n− 1

)
Lim(z)−

∑
p≺n
pd=0

cp

(
p− 1

n− 1

)
Lip(z)

=−
∑
m≺n

m1=0,mi>0

cm

(
m− 1

n− 1

)
Lim(z)−

∑
p≺n
pd=0

cp

(
p− 1

n− 1

)
Lip(z)

=−
∑
m≺n

cm

(
m− 1

n− 1

)
Lim(z)

Finally since
(
n−1
n−1

)
= 1 and n1 6= 0 so cn = 1, we can include Lin(z) in the summation

on the right to obtain the desired relation modulo products

−(−1)
∑
ni Li←−n (1/←−z ) =

∑
m�n

cn

(
m− 1

n− 1

)
Lim(z)

Then since the forms satisfy all the relations of polylogarithms modulo products

this lifts to the relation

−(−1)
∑
niω←−n (1/←−z ) =

∑
m�n

cn

(
m− 1

n− 1

)
ωm(z)
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3.3.1.2 Index Reversing Relations

Theorem 3.3.3 (Index Reversing Relation). For any vector n of depth d we have:

−(−1)dω←−n =
∑

c∈Comp(d)

r̂∗cωc·n

Proof. This is analogous to Theorem 4.1 of [39] about reversing the arguments of

iterated integrals. In this case we can find an appropriate combination of stuffle

relations that results in the above formula. To simplify notation we write (x)(y) to

represent stuffle relation from multiplying Lim(x) · Lin(y).

In depth 2 the stuffle relation for (x)(y) is ωm,n(x, y) + ωn,m(y, x) + ωm+n(xy) = 0

which is exactly the relation needed.

For higher depth consider the following sum of stuffle relations

d−1∑
k=1

(−1)k(zk, . . . , z1)
∑

c∈Comp(d−k)

c · (zk+1, . . . , zd)

For c ∈ Comp(d−k), let Sk(c) be the set of stuffles of (zk, . . . , z1) and c·(zk+1, . . . , zd) =

(yk+1, . . . , yk+`). Following Goncharov, we partition Sk(c) into three sets S<k (c),

S=
k (c), S>k (c) based on whether zk comes before, is stuffed with, or comes after yk+1.

We then observe that S>k (c) =


S<k+1(c2, . . . , c`) c1 = 1

S=
k+1(c1 − 1, c2, . . . , c`) c1 > 1

. Therefore in the

alternating sum every S>k (c) cancels out all of the S<k+1 and S=
k+1. This leaves S<1 (c),

S=
1 (c) and S>d (c). Each of these sets only contain a single vector. The terms that

correspond to compositions of the form 1, c come from S<1 (c). Similarly the terms
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indexed by c1, c with c1 > 1 correspond to S=
1 (c1 − 1, c). The fully reversed term,

with the coefficient (−1)d comes from the final set S>d−1((1)).

3.3.1.3 Inversion Relation

Theorem 3.3.4 (Inverse Relation). For any vector n with
∑
ni > 1 we have

(−1)d(−1)
∑
niωn(1/z) =

∑
m�n

cm

(
m− 1

n− 1

)∑
c

r̂cωc·m

where cm =


−1 m1 = 0

1 m1 6= 0

and the inner sum is over all compositions c of the

number of nonzero entries of m.

Proof. This follows from taking the inversion reversing relation (Theorem 3.3.2)

with ←−n . Then for each term of the summation apply the index reversing relation

(Theorem 3.3.3) to obtain a sum of contractions.

3.3.2 Dynkin Reversing Relations

We now use the recurrence relation and inverse relations together to remove

the ambiguity of extracting terms from an An cluster algebra. Recall the Dynkin

quiver in type An is a path oriented so each node is a source or sink. In odd n

there is an element of the cluster modular group, σ reversing the order of the path.

Therefore any relation given by specifying coordinates from such a quiver must be

invariant under σ.
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We will see the arguments to the high depth polylogarithms consist of “factoriza-

tions” of the Casimir element along the Dynkin quivers. For example, for each

Dynkin quiver in A3 we label the X-coordinates at the sources x1 and x3. The

Casimir element is then x1/x3. However if we apply σ this swaps x1 and x3 re-

sulting in the inverse of the Casimir x3/x1. Thus if we use ωm,1(x1
x3
, x3) we need to

understand how this relates to ωm,1(x3
x1
, x1).

In order to make it easier to distinguish the Casimir from its inverse we take x1 = x

and x3 = 1/y so the Casimir becomes xy. We then have the following theorem:

Theorem 3.3.5 (Depth 2 Flip). For all m, ωm,1(xy, 1
x
)− (−1)mωm,1( 1

xy
, y) = 0

Proof. This can be verified using the recurrence relation in depth 2. The base case

m = 1 can be confirmed via simple calculation. Then for m > 1 the recurrence

relation simplifies to

ωm,1 =
1

m+ 1
(−u1ωm−1,1 + v2ωm(xy)− v2ωm(x) + (−1)mv12ωm(y)− v12ωm(x))

Since everything will be multiplied by 1
m+1

we drop the fraction for the remainder
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of the computation. Expanding the relation we see:

ωm,1(xy,
1

x
)− (−1)mωm,1(

1

xy
, y)

=− (u1 + u2)ωm−1,1(xy,
1

x
) + (v1 − u1)ωm(y)− (v1 − u1)ωm(xy)

+ (−1)mv2ωm(
1

x
)− v2ωm(xy)

− (−1)m(u1 + u2)ωm−1,1(
1

xy
, y)− (−1)m(v2)ωm(1/x) + (−1)mv2ωm(1/(xy))

− (v1 − u1)ωm(y) + (−1)m(v1 − u1)ωm(
1

xy
)

=− (u1 + u2)

(
ωm−1,1(xy,

1

x
)− (−1)m−1ωm−1,1(

1

xy
, y)

)
− (v1 − u1 + v2)

(
ωm(xy)− (−1)mωm(

1

xy
)

)
=0

The final equality is 0 by the inductive hypothesis and the depth 1 inversion relation.

Interestingly we can combine the depth 2 flip with inversion to obtain a relation

for applying σ without inverting the Casimir.

Corollary 3.3.6 (Dynkin Reversal Depth 2). For all m, the following expression

is trivial:

ωm,1(xy, 1/x) + ωm,1(xy, 1/y) +m · ωm+1(xy) + ωm+1(x) + ωm+1(y)
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Proof. Apply the inverse relation to ωm,1(1/(xy), y) to obtain

(−1)m+1ωm,1(1/(xy), y) = ωm,1(xy, 1/y) + ωm+1(x)

− (−1)m−1ωm+1(1/y) +m · ωm+1(xy)

Adding ωxy,1/x to both sides yields:

ωm,1(xy, 1/x)− (−1)mωm,1(1/(xy), y) = ωm,1(xy, 1/x) + ωm,1(xy, 1/y)

+ ωm+1(x) + ωm+1(y) +m · ωm+1(xy)

The left hand side is exactly the depth 2 flip relation (Theorem 3.3.5) and so we see

the right hand side is 0 as needed.

The situation in A5 is slightly different. Here the Casimir can be written as a

product of three X-coordinates x1x3
x2

and is preserved by σ which swaps x1 and x3.

Thus we would like to relate ωm,1,1(x1x3
x2
, 1
x1
, x2) with ωm,1,1(x1x3

x2
, 1
x3
, x2). To write

a general relation we take x1 = x, x2 = 1/y and x3 = z and obtain the following

theorem:

Theorem 3.3.7 (Dynkin Reversal Depth 3). For all m the following expression is

trivial:

ωm,1,1(xyz, 1/x, 1/y) + ωm+1,1(xy, 1/y) = ωm,1,1(xyz, 1/z, 1/y) + ωm+1,1(yz, 1/z)
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Proof. This can be shown using the recurrence formula in depth 3.

Depth 4 should be analogous to depth 2, as the Casimir in A7 is flipped by

σ. However the inversion relation in depth 4 is not only long, but requires a wider

range of multiple polylogarithms. As such the depth 4 flip is not particularly useful.

Nevertheless we have found the combined Dynkin reversal relation in depth 4:

Theorem 3.3.8 (Dynkin Reversal Depth 4). For all m, the following expression is

trivial:

+2ωm,1,1,1(xyzw, 1/x, 1/y, 1/z) + 2ωm,1,1,1(xyzw, 1/w, 1/z, 1/y)

+2ωm+1,1,1(xyz, 1/z, 1/y) + 2ωm+1,1,1(yzw, 1/y, 1/z)

+ωm,1,2(xyzw, 1/z, 1/(yz)) + ωm,1,2(xyzw, 1/w, 1/(yz))

+ωm+1,2(xyz, 1/(yz)) + ωm+1,2(yzw, 1/(yz))

Proof. As in the depth 3 case this can be shown inductively using the recurrence.

Conjecture 3.3.9 (Dynkin Reversal Arbitrary Depth). There is a Dynkin reversing

relation for any depth.

3.4 Relations on An Cluster Algebras

We now focus on extracting the polylogarithm relations from the An cluster

algebras. We see that the arguments in each relation are cluster X-coordinates or

Casimir elements of A2k−1 cluster algebras. For n ≤ 5 we present the relations so

that the cluster symmetry is obvious and every coefficient is ±1. This mirrors work
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in [6] to compute analogous relations using the symbol and without explicit links to

the cluster algebra structure.

3.4.0.1 Subalgebra Structure

We will see that the terms of each relation come from the odd weight subal-

gebras of An. Each A1 subalgebra has a single X-coordinate. This is trivially the

Casimir element of the A1 cluster algebra. So for each A1 subalgebra we define

LCn (A1) = ωn(x)

Note that the depth 1 inversion relation ωn(x) = −(−1)nωn(1/x) explains the am-

biguity of choosing x or x−1. As such LCn (A1) is well defined up the “orientation”

of the subalgebra.

This situation generalizes to higher weight subalgebras. While any A3 cluster

algebra has 15 distinct X-coordinates, it has a unique Casimir element (up to in-

verse). This Casimir element can be written as a product of X coordinates in three

distinct ways corresponding, to the three seeds whose underlying quiver has the

form xi ← • → yi. If we write each of these factorizations as x1/y1 = x2/y2 = x3/y3

we obtain the following quantity:

LCn (A3) = −(n− 1)ωn(x1/y1) +
∑
i

ωn−1,1(xi/yi, 1/xi)− ωn−1,1(xi/yi, yi)

+ (−1)nωn(1/xi) + (−1)nωn(yi)
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Note that we have a quiver automorphism σ that switches xi and yi. Applying σ

we obtain

−(n− 1)ωn(y1/x1) +
∑
i

ωn−1,1(yi/xi, 1/yi)− ωn−1,1(yi/xi, xi)

+ (−1)nωn(1/yi) + (−1)nωn(xi)

We then use the depth 2 flip (Theorem 3.3.5) on the ωn−1,1 terms and standard

inversion on the ωn terms to obtain

(n− 1)(−1)nωn(x1/y1) +
∑
i

(−1)n−1ωn−1,1(xi/yi, 1/xi)− (−1)n−1ωn−1,1(xi/yi, yi)

− ωn(yi)− ωn(1/xi)

= (−1)n−1

(
−(n− 1)ωn(x1/y1) +

∑
i

ωn−1,1(xi/yi, 1/xi)− ωn−1,1(xi/yi, yi)

(−1)nωn(yi) + (−1)nωn(1/xi)

)

As such LCn (A3) behaves analogously to the A1 case.

Similarly each A5 subalgebra has a unique Casimir element C5 that can be

written as a product of 3 X coordinates. There are 12 distinct factorizations that

come in 4 sets of 3 corresponding the Dynkin quiver and the two neighbors given
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by mutating at a single sink:

xLi → • ← xMi → • ← xRi

yLi ← • → yMi → • ← xRi

xLi → • ← zMi → • ← zRi

Here the full Casimir element is C5 = xMi /(x
L
i x

R
i ) = yMi /(y

L
i x

R
i ) = zMi /(x

L
i z

R
i ).

Furthermore, mutating at one sink preserves the A3 type Casimir corresponding to

that A3. So we for each factorization we define

f(L,M,R) =ωn−2,1,1

(
M

LR
,L,

1

M

)
+ ωn−2,1,1

(
M

LR
,R,

1

M

)
+

1

2

(
ωn−1,1

(
M

L
,L

)
− ωn−1,1

(
M

L
,

1

M

)
− (n− 1)ωn

(
M

L

)
+ ωn(L)

)
+

1

2

(
ωn−1,1

(
M

R
,R

)
− ωn−1,1

(
M

R
,

1

M

)
− (n− 1)ωn

(
M

R

)
+ ωn(R)

)

We apply f to every possible factorization and include a term for the full Casimir

element to obtain the following

LCn (A5) =− 2(n+ 1)ωn(C5)

+
∑
i

f(xLi , x
M
i , x

R
i ) +

1

2
ωn(xMi )− f(yLi , y

M
i , x

R)− f(xLi , z
M
i , z

R
i )
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Remark 3.4.1. The non-integer coefficients in LCn (A5) are necessary to easily de-

scribe the coefficients in the relation on the A5 cluster algebra. We can always

multiply everything described in the weight 5 discussion by 2 to have integer coeffi-

cients.

Remark 3.4.2. Since the function f(L,M,R) is defined to be symmetric under

swapping L and R it is clear that LCn (A5) is fixed by the cluster modular group of

an A5 cluster algebra.

3.4.0.2 Relation on A1

Recall that we define ω1(u) = du. Let x be the unique X-coordinate on an A1

cluster algebra. Then we have:

ω1(x) + ω1(1/x) = dx+−dx = 0

This is the basic relation that we call Q1(A1).

Remark 3.4.3. In the Grassmannian we have Q1(Gr(2, 4)) is:

ω1

(
p12p34

p14p23

)
+ ω1

(
p14p23

p12p34

)
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3.4.0.3 Relation on A2

We have already seen the five term relation for the dilogarithm. Using our

new language the 5 term relation in weight 2 becomes:

Q2(A2) =
∑
A1⊆A2

LC2 (A1)

For this to be unambiguous we need to consistently choose the orientation of each

A1. In general this can be done by picking a starting x and then using the cluster

modular group to choose all the identical xi on other Dynkin quivers. For A2 we

can be more explicit since each A1 is incident to a Dynkin quiver. Here we take x

from each A1 such that x is X-coordinate of a source in the Dynkin quiver.

Remark 3.4.4. There is a single orbit of A1 subalgebras in A2. Since the coefficient

of every term in the orbit is the same, we can view this relation as a single term.

Remark 3.4.5. Using Gr(2, 5) as the A2 cluster algebra we see that Q2(Gr(2, 5)) is

ω2

(
p14p23

p12p34

)
+ ω2

(
p12p35

p15p23

)
+ ω2

(
p13p45

p15p34

)
+ ω2

(
p15p24

p12p45

)

3.4.0.4 Relation on A3

Using our new cluster functions and knowledge of orbits to rewrite Goncharov’s

22 term relation as a sum over all the A3 and A1 data in the cluster algebra. In

Gr(2, 6) the map from X-coordinate to ratio of A-coordinates is injective so we refer
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to X-coordinates by the corresponding ratio of A-coordinates. There are three orbits

of X coordinates which we refer to by a representative coordinates:p14p23
p12p34

, p15p23
p12p35

, and

p15p24
p12p45

. Then the relation Q3 is:

0 = LC3 (A3) + 2LC3
(

p14p23

p12p34

)
− 2LC3

(
p15p23

p12p35

)
+ 2LC3 (

p15p24

p12p45
)

Note that in odd weight LC3 (A3) is unambiguous as (−1)3−1 = 1. We note under

this phrasing it is obvious the relation is fixed by the cluster modular group. See

Figure 3.2 to see the symmetry of the relation in the cluster complex. Each edge

corresponds to an X coordinate and red edges correspond the coefficient −2, while

the blue edges have coefficient 2.

Figure 3.2: The cluster symmetry of the Q3 relation.

3.4.0.5 Relation on A4

Even more impressively the A4 relation can be written a sum over all the A1

and A3 data where the coefficient of every term A3 term is 1 and every A1 term is
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2.

0 =
∑
A3∈A4

LC4 (A3) +
∑
A1∈A3

2LC4 (A1)

Similarly to the A2 case, there is a choice of “orientation” for each A3 that determines

the sign of each LC4 (A3). From a cluster perspective each A4 Dynkin quiver has two

overlapping A3 Dynkin quiver only one of which matches our standard choice of

sources/sink orientation. This A3 can be considered the source and the other A3 is

the sink. Furthermore the source A3 has well defined outside/inside in the A4 giving

a consistent choice of initial x1, y1 in the A3. This fixes a consistent orientation of

the Casimir x1/y1.

See Appendix B.2 to see the full Q4 relation with every term written explicitly in

ratios of Plücker coordinates.

3.4.0.6 Relation on A5

Following the pattern the relation Q5 on A5 consists of a signed sum over all

the A3 and A1 subalgebras.

LC5 (A5) +
∑
A3∈A5

cA3LC5 (A3) +
∑
A1∈A5

cA1LC5 (A1)

The A5 cluster algebra has 4 orbits of A3 subalgebras with distinct Casimir elements.

We write a representative of each orbit as they appear in Gr(2, 8).

p12p34p56

p16p23p45

p13p46p78

p18p34p67

p13p45p67

p17p34p56

p13p46p78

p18p34p67
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The first two orbits appear with a coefficient of 1 and the second two appear with

a coefficient of −1. Similarly there are 10 orbits of X-coordinates/A1 subalgebras.

Four orbits get coefficient 2:

p13p45

p15p34

p15p67

p17p56

p12p57

p17p25

p12p46

p16p24

The remaining orbits all have coefficient −2:

p12p56

p16p25

p12p45

p15p24

p12p47

p17p24

p12p34

p14p23

p14p56

p16p45

p13p57

p17p35

Remark 3.4.6. Under the full cluster modular group, the orbit of p13p57
p17p35

includes

its inverse. As such it technically appears with coefficient −1. However we can use

the inversion relation in weight 5 to fix an orientation such that each term has a

coefficient of 2.

3.5 Relations on Dn Cluster Algebras

A key advantage of the cluster algebra formulation of the relations is we can

easily embed relations in larger subalgebras. These subalgebra relations can overlap

in interesting ways and thus can be combined to cancel out terms. Our first example

recovers the 40 term relation on D4 = Gr(3, 6) this way.
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3.5.1 Relation on D4

There are 12 A3 subalgebras of D4 corresponding to freezing each tail of the

D4 Dynkin diagram. We label the Q3 relation corresponding to the sub-algebra

obtained by freezing a, Q3(a). Furthermore these can be separated into 3 orbits

under the action of the sources sinks path, gS. Recall that gS corresponds to the

“parity map” in Gr(3, 6) (Remark 1.2.19).

Theorem 3.5.1. Let a be an A-coordinate on the tail of a D4 Dynkin type quiver.

Then 1
2

∑3
i=0(−1)iQ3(giSa) consists only of ω3 terms with coefficients ±1. In fact this

is the 40 term relation that is fixed under the full action of the D4 cluster modular

group.

Proof. The following table (Figure 3.3) shows the X coordinates in positions 1 and

3 in each Dynkin quiver in one orbit of A3 subalgebras.

Freeze 125 Freeze 346 Freeze 245 Freeze 136

X1 X−1
3 X1 X−1

3 X1 X−1
3 X1 X−1

3

p123·p345
p234·p135

p135·p456
p345·p156

p234·p156
e2x

e2x
p123·p456

p456·p126
p156·p246

p246·p123
p126·p234

p234·p156
e2y

e2y
p123·p456

p123·p456
e2x

e2x
p234·p156

p234·p126
p123·p246

p246·p156
p126·p456

p456·p123
e2y

e2y
p156·p234

p156·p345
p456·p135

p135·p234
p345·p123

p456·p125
p156·p245

p245·p123
p125·p234

p156·p234
p456·p136

p136·p234
p346·p123

p123·p245
p234·p125

p125·p456
p245·p156

p234·p136
p123·p346

p346·p156
p136·p456

Figure 3.3: The arguments to ω2,1 terms in the relation on Gr(3, 6).

From this table we see that all the {−,−}2,1 terms vanish. The second row

of each column matches the first row of the column to the right but with X1 and

X3 swapped. We saw that {−,−}2,1 terms are fixed under this transformation and
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so cancel under the alternating signs. Similarly the third row matches two columns

to the right under the transform X1 ↔ X−1
3 . This swaps the positive and negative

{−,−}2,1 terms and so also these terms cancel. The Casimir term −2{X1 ·X−1
3 }3 is

identical (or the inverse which is the same) in all 4 A3 subalgebras and so also cancels

out. The {X1}3 and {X−1
3 }3 terms cancel from the first two rows and pick up a

coefficient of 2 from the third row. The remaining 36 terms from 2{X2}3, −2{ 1+X3

X2X3
},

−2{ 1+X1

X1X3
} are unique in each subalgebra. Combined with the 4 uncanceled terms

this gives 40 terms, each with a coefficient of ±2 entirely in {−}3 with X coordinates

as arguments.

Corollary 3.5.2. The 40 term relation is fixed (up to sign) by the full cluster

modular group of D4.

Proof. Recall that the cluster modular group of a D4 cluster algebra is Z4 × S3

(Figure 1.15). This can be presented from a sources sink Dynkin cluster, where the

Z4 is generated by the sources sink element gS and the S3 is the symmetry group

of the D4 quiver. We defined the relation via a sum over the orbit of gS and so

gS clearly preserves the relation up to a sign. A similar computation to what was

done above shows that we obtain the same relation from the other 2 orbits of A3

subalgebras (corresponding to freezing a different tail of the D4). So this relation is

fixed under rotating the tails. Swapping two tails is the same as switching X1 and

X3 in an A3 and so also preserves the 40 relation. Therefore the 40 term relation is

fixed under the entire cluster modular group.
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See Figure 3.4 to see the cluster symmetry of the relation in the cluster com-

plex. Once again we color edges blue for positive coefficients in the relation and

red for negative coefficients. The black edges correspond to X-coordinates that are

absent from the relation. Note in α4 these coefficients are ±2, but can be reduced

to ±1.

Figure 3.4: The relation on D4 consisting entirely of ω3(X) terms.

3.5.2 Relation on D6

There is a similar result for A5 relations in D6.

Theorem 3.5.3. Let Q5(a) be the weight 5 relation obtained from the A5 subalgebra

of D6 where a is frozen. Let gS be the element of cluster modular group corresponding

to the sources/sinks path and σ be the element that swaps the two short tails of the

Dynkin diagram. Then α6 =
∑5

i=0Q5(giSa) − Q5(giSσa) has no depth 2 terms. In

other words this is a relation with only ω5 and ω311 terms.

Proof. This can be shown via a long but straightforward computation. The remain-

ing 12 ω5 terms consist of a single orbit under the cluster modular group. There are
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96 ω311 terms left. See Appendix B.4 for the full list of ω311 terms If we consider

the D6 subalgebra of Gr(3, 8) given by freezing p467 and p378 we can write the

X-coordinates as ratios of Plücker and exotic coordinates3:

2

(
ω5

(
e2x45

p128p367

)
+ ω5

(
e2x45

p178p236

)
+ ω5

(
p123p178p368

p128p136p378

)
+ω5

(
p136p234

p123p346

)
+ ω5

(
p234p367p456

p236p345p467

)
+ ω5

(
p368p467

p346p678

))
− 2

(
ω5

(
e2x16p178

e2x36p378

)
+ ω5

(
e2x16p467

p234p457p678

)
+ ω5

(
e2x26p128

p123p178p458

)
+ω5

(
e2x26p234

p123p345p478

)
+ ω5

(
e2x36

p128p457

)
+ ω5

(
p458p467

p456p478

))

Corollary 3.5.4. The ω311 terms of the D6 relation correspond to a well defined

function.

Proof. Since α6 = 0, dα6 = 0. Furthermore dω5 is always 0, so the combination of

ω311 terms must also have zero differential. Therefore this combination is a closed

form and has a primitive.

Remark 3.5.5. If we fix one tail of D4 to be the “long tail” and compute

α4 =
3∑
i=0

Q3(σia)−Q3(σiτa)

we obtain 4 times the 40-term relation.

3See Remark 1.1.54 for an explanation of the exotic coordinate notation.
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3.5.3 Relation on D2k+1

Unfortunately this technique doesn’t yield any new results in D2k+1. Recall

that the cluster modular group for D2k+1 is cyclic of order 2(2k+1) and is generated

by gS (Figure 1.15). Then σ = g2k+1
S is the automorphism of the Dynkin diagram

swapping the short tails. We decompose the group as Z2k+1 × Z2 with generators

h = gSσ and σ.

Theorem 3.5.6. The analogous sum α2k+1 =
2k∑
i=0

Q2k(h
ia) − Q2k(h

iσa) = 0 for

k = 1, 2

Proof. It is a simple computation to take the corresponding sums of the A2 and A4

relations in D3 = A3 and D5 respectively.

Based on this information we make the following conjecture:

Conjecture 3.5.7. For odd n, the relation αn+1 =
n∑
i=0

Qn(σia) − Qn(σiτa) has no

depth 2 forms. For even n the sum αn+1 = 0.
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Appendix A: Dynkin Diagrams

For reference we include all the finite, affine, and doubly extended Dynkin di-

agrams. To align with the cluster algebras, we draw the non simply laced diagrams

using “fat” nodes whose weight (Figure A.1) corresponds to the number of nodes

“folded” together from the simply laced diagram. In the standard root system lan-

guage these fat nodes correspond to the shorter roots of the root system. In the

B,C, F cases the fat nodes are all weight 2. In the BC case there are nodes of

weight 2 and 4. The G case has nodes of weight 3.

1 2 3 4

Figure A.1: Weights of nodes in Dynkin Diagrams.
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(a) An
(b) Dn

‘

(c) E6 (d) E7

(e) E8

Simply laced finite Dynkin diagrams.

Figure A.2: Simply Laced Finite Dynkin Diagrams.

(a) Bn

(b) Cn

(c) F4 (d) G2

Folded finite Dynkin diagrams.

Figure A.3: Folded Finite Dynkin Diagrams.
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Each affine diagram can be formed by adding a single node to the correspond-

ing finite diagram. In figures A.4, A.5, A.6 the nodes that could be the extension

are colored red.

(a) Ãn
(b) D̃n

‘

(c) Ẽ6

(d) Ẽ7

(e) Ẽ8

Figure A.4: Simply laced Affine Dynkin diagrams.

(a) B̃n

(b) C̃n (c) F̃4

(d) G̃2

Figure A.5: Folded Affine Dynkin diagrams.

167



(a) Twisted C
(2)
n

(b) Twisted B
(2)
n

(c) Twisted BC
(4)
n

(d) Twisted F
(2)
4 (e) Twisted G

(3)
2

Twisted Affine Dynkin diagrams.

Figure A.6: Twisted Affine Dynkin Diagrams.
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Similarly each double extended diagram can be formed by adding two nodes

to a finite diagram or one node to the affine diagram. Each red node in figures A.7,

A.8 is a possible extension of the corresponding affine Dynkin diagram.

(a) A
(1,1)
1

(b) D
(1,1)
4

‘

(c) E
(1,1)
6 (d) E

(1,1)
7

(e) E
(1,1)
8

Simply laced doubly extended Dynkin diagrams.

Figure A.7: Simply Laced Doubly Extended Dynkin Diagrams.
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(a) B
(1,1)
3 (b) B

(2,1)
2 (c) BC

(4,1)
1

(d) C
(2,2)
3 (e) BC

(4,2)
2 (f) BC

(4,4)
1

(g) G
(1,1)
2

(h) F
(1,1)
4

(i) G
(3,3)
2

(j) F
(2,2)
4

(k) G
(3,1)
2

(l) F
(2,1)
4

Folded doubly extended Dynkin diagrams.

Figure A.8: Folded Doubly Extended Dynkin Diagrams.
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Appendix B: Full Cluster Relations

B.1 Q3 Relation on Gr(2, 6)

− ω21

(
p12p34p56

p16p23p45

,
p14p23

p12p34

)
+ ω21

(
p12p34p56

p16p23p45

,
p16p45

p14p56

)
+ ω21

(
p12p34p56

p16p23p45

,
p23p45

p25p34

)
− ω21

(
p12p34p56

p16p23p45

,
p16p25

p12p56

)
+ ω21

(
p12p34p56

p16p23p45

,
p16p23

p12p36

)
− ω21

(
p12p34p56

p16p23p45

,
p36p45

p34p56

)
− 2ω3

(
p12p34p56

p16p23p45

)
+ 2

(
ω3

(
p15p24

p12p45

)
+ ω3

(
p13p46

p16p34

)
+ ω3

(
p26p35

p23p56

))
− 2

(
ω3

(
p15p23

p12p35

)
+ ω3

(
p12p46

p16p24

)
+ ω3

(
p13p45

p15p34

)
+ω3

(
p16p35

p13p56

)
+ ω3

(
p26p34

p23p46

)
+ ω3

(
p24p56

p26p45

))
+ 2

(
ω3

(
p14p23

p12p34

)
+ ω3

(
p12p36

p16p23

)
+ ω3

(
p16p25

p12p56

)
+ω3

(
p14p56

p16p45

)
+ ω3

(
p25p34

p23p45

)
+ ω3

(
p36p45

p34p56

))
− 1

(
ω3

(
p14p23

p12p34

)
+ ω3

(
p16p23

p12p36

)
+ ω3

(
p16p25

p12p56

)
+ ω3

(
p16p45

p14p56

)
+ω3

(
p23p45

p25p34

)
+ ω3

(
p36p45

p34p56

))
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B.2 Q4 Relation on Gr(2, 7)

Recall the cluster modular group of Gr(2, 7) is Z7 generated by mutating all the

sources in the Dynkin quiver. In Section 1.2.6 that this corresponds to automorphism

of Gr(2, 7) give by rotating the indices of Plücker coordinates modulo 7.1. The sum

of the orbit of following combination of multiple polylogarithm forms under this

action is trivial:

2ω4

(
p12p34

p14p23

)
+ 2ω4

(
p15p23

p12p35

)
+ 2ω4

(
p12p36

p16p23

)
+ 2ω4

(
p12p45

p15p24

)
+ 2ω4

(
p12p45

p15p24

)
+ω4

(
p14p23

p12p34

)
+ ω4

(
p12p35

p15p23

)
+ ω4

(
p15p24

p12p45

)
+ ω4

(
p16p23

p12p36

)
− 3ω4

(
p12p34p56

p16p23p45

)
−ω31

(
p12p34p56

p16p23p45

,
p14p23

p12p34

)
+ ω31

(
p12p34p56

p16p23p45

,
p23p45

p25p34

)
− ω31

(
p12p34p56

p16p23p45

,
p36p45

p34p56

)
ω31

(
p12p34p56

p16p23p45

,
p16p45

p14p56

)
− ω31

(
p12p34p56

p16p23p45

,
p16p25

p12p56

)
+ ω31

(
p12p34p56

p16p23p45

,
p16p23

p12p36

)

B.3 Q5 Relation on Gr(2, 8)

As in Gr(2, 7) we recall the cluster modular group of Gr(2, 8) is Z8 generated

by rotating the indices of Plücker coordinates modulo 8. To simplify the expression

of Q5 we only give representatives of each orbit.

1pij 7→ p(i+ 1)(j + 1)
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The contributions of A1 subalgebras of Gr(2, 8) to Q5 are

2

(
ω5

(
p12p35

p15p23

)
+ ω5

(
p12p46

p16p24

)
+ ω5

(
p17p23

p12p37

)
+ ω5

(
p13p47

p17p34

))
−2

(
ω5

(
p12p34

p14p23

)
+ ω5

(
p15p24

p12p45

)
+ ω5

(
p16p23

p12p36

)
+ ω5

(
p16p25

p12p56

)
+ ω5

(
p16p34

p13p46

))
−1ω5

(
p17p35

p13p57

)

To write down the contributions of LC3 (A3) terms, we first gather the A3 subalgebras

into 4 orbits under Z8 based on their Casimir element. Despite the fact that LC3 (A3)

has A3 symmetry, if we add all the terms in a Casimir orbit we can write the result

as a sum of Z8 orbits. The contributions of the orbit of p16p23p45

p12p34p56
are:

− ω41

(
p16p23p45

p12p34p56

,
p12p34

p14p23

)
− ω41

(
p16p23p45

p12p34p56

,
p12p56

p16p25

)
+ ω41

(
p16p23p45

p12p34p56

,
p12p36

p16p23

)
+ ω41

(
p16p23p45

p12p34p56

,
p14p56

p16p45

)
+ ω41

(
p16p23p45

p12p34p56

,
p25p34

p23p45

)
− ω41

(
p16p23p45

p12p34p56

,
p34p56

p36p45

)
+ 4ω5

(
p16p23p45

p12p34p56

)
+ 3ω5

(
p12p34

p14p23

)
+ 2ω5

(
p12p36

p16p23

)
+ 2ω5

(
p12p56

p16p25

)

The contributions of the orbit of p17p23p46

p12p34p67
are:

− ω41

(
p17p23p46

p12p34p67

,
p12p34

p14p23

)
+ ω41

(
p17p23p46

p12p34p67

,
p14p67

p17p46

)
+ ω41

(
p17p23p46

p12p34p67

,
p26p34

p23p46

)
− ω41

(
p17p23p46

p12p34p67

,
p12p67

p17p26

)
+ ω41

(
p17p23p46

p12p34p67

,
p12p37

p17p23

)
− ω41

(
p17p23p46

p12p34p67

,
p34p67

p37p46

)
+ 4ω5

(
p17p24p56

p12p45p67

)
+ 2ω5

(
p12p67

p17p26

)
+ ω5

(
p14p67

p17p46

)
+ ω5

(
p12p34

p14p23

)
+ ω5

(
p12p37

p17p23

)
+ ω5

(
p26p34

p23p46

)
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The contributions of the orbit of p17p23p45

p12p34p57
are:

+ ω41

(
p17p23p45

p12p34p57

,
p12p34

p14p23

)
− ω41

(
p17p23p45

p12p34p57

,
p14p57

p17p45

)
− ω41

(
p17p23p45

p12p34p57

,
p25p34

p23p45

)
+ ω41

(
p17p23p45

p12p34p57

,
p12p57

p17p25

)
− ω41

(
p17p23p45

p12p34p57

,
p12p37

p17p23

)
+ ω41

(
p17p23p45

p12p34p57

,
p34p57

p37p45

)
− 4ω5

(
p17p23p45

p12p34p57

)
− 2ω5

(
p12p34

p14p23

)
− ω5

(
p12p35

p15p23

)
− ω5

(
p16p24

p12p46

)
− ω5

(
p12p37

p17p23

)
− ω5

(
p12p57

p17p25

)

We have to be more careful with p12p35p67

p17p23p56
as p17p23p56

p12p35p67
appears in the orbit. As we do

not wish to double count any A3 we only apply r0, r1, r2, r3 to the following:

− ω41

(
p12p35p67

p17p23p56

,
p15p23

p12p35

)
+ ω41

(
p12p35p67

p17p23p56

,
p17p56

p15p67

)
+ ω41

(
p12p35p67

p17p23p56

,
p23p56

p26p35

)
− ω41

(
p12p35p67

p17p23p56

,
p17p26

p12p67

)
+ ω41

(
p12p35p67

p17p23p56

,
p17p23

p12p37

)
− 4ω5

(
p12p35p67

p17p23p56

)

However the “half orbits” of the remaining ω5 (x) terms can be assembled into 3

“full orbits”

− ω5

(
p15p23

p12p35

)
− ω5

(
p15p24

p12p45

)
− ω5

(
p17p23

p12p37

)
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Finally we include the terms from LC5 (A5). The full A5 Casimir is fixed up to inverse

by Z8 and so appears as

−6ω5

(
p18p23p45p67

p12p34p56p78

)
− 6ω5

(
p12p34p56p78

p18p23p45p67

)

Once again these come in orbits under Z8:

+

(
ω311

(
p18p23p45p67

p12p34p56p78

,
p12p38

p18p23

,
p34p78

p38p47

)
+

1

2
ω41

(
p18p23p47

p12p34p78

,
p34p78

p38p47

)
− 1

2
ω41

(
p18p23p47

p12p34p78

,
p12p38

p18p23

))
−
(
ω311

(
p18p23p45p67

p12p34p56p78

,
p12p34

p14p23

,
p14p78

p18p47

)
+

1

2
ω41

(
p18p23p47

p12p34p78

,
p14p78

p18p47

)
− 1

2
ω41

(
p18p23p47

p12p34p78

,
p12p34

p14p23

))
−
(
ω311

(
p18p23p45p67

p12p34p56p78

,
p12p38

p18p23

,
p34p58

p38p45

)
+

1

2
ω41

(
p18p23p45

p12p34p58

,
p12p38

p18p23

)
− 1

2
ω41

(
p18p23p45

p12p34p58

,
p34p58

p38p45

))
− 2ω5

(
p18p23p47

p12p34p78

)
− 1

2
ω5

(
p12p34

p14p23

)
− 1

2
ω5

(
p27p36

p23p67

)

B.4 α6 Relation on D6

We give the terms in α6 for the D6 subalgebra of Gr(3, 8) given by freezing

p467 and p378.
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The ω5 terms are:

2

(
ω5

(
e2x45

p128p367

)
+ ω5

(
e2x45

p178p236

)
+ ω5

(
p123p178p368

p128p136p378

)
+ω5

(
p136p234

p123p346

)
+ ω5

(
p234p367p456

p236p345p467

)
+ ω5

(
p368p467

p346p678

))
− 2

(
ω5

(
e2x16p178

e2x36p378

)
+ ω5

(
e2x16p467

p234p457p678

)
+ ω5

(
e2x26p128

p123p178p458

)
+ω5

(
e2x26p234

p123p345p478

)
+ ω5

(
e2x36

p128p457

)
+ ω5

(
p458p467

p456p478

))

The remaining 96 ω311 terms in α6 are presented below. They are grouped by the last
argument, which is the middle X-Coordinates of the corresponding A5 subalgebra.
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Note that like in the α4 case every coefficient is ±2.

− 2ω311

(
p178p234p456

p128p345p467

,
p128p137

p123p178

,
e2x28

p137p456

)
− 2ω311

(
p178p234p456

p128p345p467

,
p123p345p467

e2x28p234

,
e2x28

p137p456

)

+ 2ω311

(
p128p345p467

p178p234p456

,
p123p178

p128p137

,
p137p456

e2x28

)
+ 2ω311

(
p128p345p467

p178p234p456

,
e2x28p234

p123p345p467

,
p137p456

e2x28

)

+ 2ω311

(
p178p234p456

p128p345p467

,
p128p137

p123p178

,
e2x26p467

p137p456p478

)
+ 2ω311

(
p178p234p456

p128p345p467

,
p123p345p478

e2x26p234

,
e2x26p467

p137p456p478

)

− 2ω311

(
p128p345p467

p178p234p456

,
p123p178

p128p137

,
p137p456p478

e2x26p467

)
− 2ω311

(
p128p345p467

p178p234p456

,
e2x26p234

p123p345p478

,
p137p456p478

e2x26p467

)

− 2ω311

(
p178p234p456

p128p345p467

,
e2x56

p178p234

,
e2x35p345

e2x56p456

)
− 2ω311

(
p178p234p456

p128p345p467

,
p128p467

e2x35
,
e2x35p345

e2x56p456

)

+ 2ω311

(
p128p345p467

p178p234p456

,
p178p234

e2x56
,
e2x56p456

e2x35p345

)
+ 2ω311

(
p128p345p467

p178p234p456

,
e2x35

p128p467

,
e2x56p456

e2x35p345

)

+ 2ω311

(
p178p234p456

p128p345p467

,
e2x56

p178p234

,
p128p345p478

e2x56p458

)
+ 2ω311

(
p178p234p456

p128p345p467

,
p458p467

p456p478

,
p128p345p478

e2x56p458

)

− 2ω311

(
p128p345p467

p178p234p456

,
p178p234

e2x56
,

e2x56p458

p128p345p478

)
− 2ω311

(
p128p345p467

p178p234p456

,
p456p478

p458p467

,
e2x56p458

p128p345p478

)

+ 2ω311

(
p178p234p456

p128p345p467

,
e2x45

p178p236

,
e2x35p236p345

e2x45p234p456

)
+ 2ω311

(
p178p234p456

p128p345p467

,
p128p467

e2x35
,
e2x35p236p345

e2x45p234p456

)

− 2ω311

(
p128p345p467

p178p234p456

,
p178p236

e2x45
,
e2x45p234p456

e2x35p236p345

)
− 2ω311

(
p128p345p467

p178p234p456

,
e2x35

p128p467

,
e2x45p234p456

e2x35p236p345

)

+ 2ω311

(
p178p234p456

p128p345p467

,
p128p367

e2x45
,

e2x28e2x45

p123p178p367p456

)
+ 2ω311

(
p178p234p456

p128p345p467

,
p123p345p467

e2x28p234

,
e2x28e2x45

p123p178p367p456

)

− 2ω311

(
p128p345p467

p178p234p456

,
e2x45

p128p367

,
p123p178p367p456

e2x28e2x45

)
− 2ω311

(
p128p345p467

p178p234p456

,
e2x28p234

p123p345p467

,
p123p178p367p456

e2x28e2x45

)

+ 2ω311

(
p178p234p456

p128p345p467

,
p128p378

p178p238

,
p238p367

p236p378

)
+ 2ω311

(
p178p234p456

p128p345p467

,
p236p345p467

p234p367p456

,
p238p367

p236p378

)

− 2ω311

(
p128p345p467

p178p234p456

,
p178p238

p128p378

,
p236p378

p238p367

)
− 2ω311

(
p128p345p467

p178p234p456

,
p234p367p456

p236p345p467

,
p236p378

p238p367

)

− 2ω311

(
p178p234p456

p128p345p467

,
p128p378

p178p238

,
p238p345p678

e2x17p378

)
− 2ω311

(
p178p234p456

p128p345p467

,
e2x17p467

p234p456p678

,
p238p345p678

e2x17p378

)

+ 2ω311

(
p128p345p467

p178p234p456

,
p178p238

p128p378

,
e2x17p378

p238p345p678

)
+ 2ω311

(
p128p345p467

p178p234p456

,
p234p456p678

e2x17p467

,
e2x17p378

p238p345p678

)

+ 2ω311

(
p178p234p456

p128p345p467

,
e2x26p128

p123p178p458

,
p123p345p458p678

e2x17e2x26

)
+ 2ω311

(
p178p234p456

p128p345p467

,
e2x17p467

p234p456p678

,
p123p345p458p678

e2x17e2x26

)

− 2ω311

(
p128p345p467

p178p234p456

,
p123p178p458

e2x26p128

,
e2x17e2x26

p123p345p458p678

)
− 2ω311

(
p128p345p467

p178p234p456

,
p234p456p678

e2x17p467

,
e2x17e2x26

p123p345p458p678

)

− 2ω311

(
p128p378p467

p178p234p678

,
p123p178

p128p137

,
p137p345p678

e2x28p378

)
− 2ω311

(
p128p378p467

p178p234p678

,
e2x28p234

p123p345p467

,
p137p345p678

e2x28p378

)

+ 2ω311

(
p178p234p678

p128p378p467

,
p128p137

p123p178

,
e2x28p378

p137p345p678

)
+ 2ω311

(
p178p234p678

p128p378p467

,
p123p345p467

e2x28p234

,
e2x28p378

p137p345p678

)

+ 2ω311

(
p128p378p467

p178p234p678

,
p123p178

p128p137

,
p137p346p678

p136p378p467

)
+ 2ω311

(
p128p378p467

p178p234p678

,
p136p234

p123p346

,
p137p346p678

p136p378p467

)

− 2ω311

(
p178p234p678

p128p378p467

,
p128p137

p123p178

,
p136p378p467

p137p346p678

)
− 2ω311

(
p178p234p678

p128p378p467

,
p123p346

p136p234

,
p136p378p467

p137p346p678

)

+ 2ω311

(
p128p378p467

p178p234p678

,
p178p234

e2x56
,

e2x56p368

p128p346p378

)
+ 2ω311

(
p128p378p467

p178p234p678

,
p346p678

p368p467

,
e2x56p368

p128p346p378

)

− 2ω311

(
p178p234p678

p128p378p467

,
e2x56

p178p234

,
p128p346p378

e2x56p368

)
− 2ω311

(
p178p234p678

p128p378p467

,
p368p467

p346p678

,
p128p346p378

e2x56p368

)
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− 2ω311

(
p128p378p467

p178p234p678

,
p178p234

e2x56
,
e2x56p678

e2x35p378

)
− 2ω311

(
p128p378p467

p178p234p678

,
e2x35

p128p467

,
e2x56p678

e2x35p378

)

+ 2ω311

(
p178p234p678

p128p378p467

,
e2x56

p178p234

,
e2x35p378

e2x56p678

)
+ 2ω311

(
p178p234p678

p128p378p467

,
p128p467

e2x35
,
e2x35p378

e2x56p678

)

+ 2ω311

(
p128p378p467

p178p234p678

,
e2x16p178

e2x36p378

,
e2x36p234p678

e2x16e2x35

)
+ 2ω311

(
p128p378p467

p178p234p678

,
e2x35

p128p467

,
e2x36p234p678

e2x16e2x35

)

− 2ω311

(
p178p234p678

p128p378p467

,
e2x36p378

e2x16p178

,
e2x16e2x35

e2x36p234p678

)
− 2ω311

(
p178p234p678

p128p378p467

,
p128p467

e2x35
,

e2x16e2x35

e2x36p234p678

)

− 2ω311

(
p128p378p467

p178p234p678

,
p178p238

p128p378

,
e2x17

p238p456

)
− 2ω311

(
p128p378p467

p178p234p678

,
p234p456p678

e2x17p467

,
e2x17

p238p456

)

+ 2ω311

(
p178p234p678

p128p378p467

,
p128p378

p178p238

,
p238p456

e2x17

)
+ 2ω311

(
p178p234p678

p128p378p467

,
e2x17p467

p234p456p678

,
p238p456

e2x17

)

+ 2ω311

(
p128p378p467

p178p234p678

,
p178p238

p128p378

,
e2x16

p238p457

)
+ 2ω311

(
p128p378p467

p178p234p678

,
p234p457p678

e2x16p467

,
e2x16

p238p457

)

− 2ω311

(
p178p234p678

p128p378p467

,
p128p378

p178p238

,
p238p457

e2x16

)
− 2ω311

(
p178p234p678

p128p378p467

,
e2x16p467

p234p457p678

,
p238p457

e2x16

)

+ 2ω311

(
p128p378p467

p178p234p678

,
p123p178p368

p128p136p378

,
e2x17p136

p123p368p456

)
+ 2ω311

(
p128p378p467

p178p234p678

,
p234p456p678

e2x17p467

,
e2x17p136

p123p368p456

)

− 2ω311

(
p178p234p678

p128p378p467

,
p128p136p378

p123p178p368

,
p123p368p456

e2x17p136

)
− 2ω311

(
p178p234p678

p128p378p467

,
e2x17p467

p234p456p678

,
p123p368p456

e2x17p136

)

+ 2ω311

(
p128p378p467

p178p234p678

,
e2x36

p128p457

,
p123p178p345p457p678

e2x28e2x36p378

)
+ 2ω311

(
p128p378p467

p178p234p678

,
e2x28p234

p123p345p467

,
p123p178p345p457p678

e2x28e2x36p378

)

− 2ω311

(
p178p234p678

p128p378p467

,
p128p457

e2x36
,

e2x28e2x36p378

p123p178p345p457p678

)
− 2ω311

(
p178p234p678

p128p378p467

,
p123p345p467

e2x28p234

,
e2x28e2x36p378

p123p178p345p457p678

)

− 2ω311

(
p178p234p456

p128p345p467

,
e2x26p128

p123p178p458

,
p458p467

p456p478

)
− 2ω311

(
p178p234p456

p128p345p467

,
p123p345p478

e2x26p234

,
p458p467

p456p478

)

− 2ω311

(
p178p234p456

p128p345p467

,
e2x26p128

p123p178p458

,
p123p345p478

e2x26p234

)
− 2ω311

(
p178p234p456

p128p345p467

,
p458p467

p456p478

,
p123p345p478

e2x26p234

)

− 2ω311

(
p178p234p456

p128p345p467

,
p458p467

p456p478

,
e2x26p128

p123p178p458

)
− 2ω311

(
p178p234p456

p128p345p467

,
p123p345p478

e2x26p234

,
e2x26p128

p123p178p458

)

+ 2ω311

(
p128p345p467

p178p234p456

,
p178p236

e2x45
,

e2x45

p128p367

)
+ 2ω311

(
p128p345p467

p178p234p456

,
p234p367p456

p236p345p467

,
e2x45

p128p367

)

+ 2ω311

(
p128p345p467

p178p234p456

,
p178p236

e2x45
,
p234p367p456

p236p345p467

)
+ 2ω311

(
p128p345p467

p178p234p456

,
e2x45

p128p367

,
p234p367p456

p236p345p467

)

+ 2ω311

(
p128p345p467

p178p234p456

,
e2x45

p128p367

,
p178p236

e2x45

)
+ 2ω311

(
p128p345p467

p178p234p456

,
p234p367p456

p236p345p467

,
p178p236

e2x45

)

− 2ω311

(
p128p378p467

p178p234p678

,
e2x16p178

e2x36p378

,
e2x36

p128p457

)
− 2ω311

(
p128p378p467

p178p234p678

,
p234p457p678

e2x16p467

,
e2x36

p128p457

)

− 2ω311

(
p128p378p467

p178p234p678

,
e2x16p178

e2x36p378

,
p234p457p678

e2x16p467

)
− 2ω311

(
p128p378p467

p178p234p678

,
e2x36

p128p457

,
p234p457p678

e2x16p467

)

− 2ω311

(
p128p378p467

p178p234p678

,
e2x36

p128p457

,
e2x16p178

e2x36p378

)
− 2ω311

(
p128p378p467

p178p234p678

,
p234p457p678

e2x16p467

,
e2x16p178

e2x36p378

)

+ 2ω311

(
p178p234p678

p128p378p467

,
p123p346

p136p234

,
p128p136p378

p123p178p368

)
+ 2ω311

(
p178p234p678

p128p378p467

,
p368p467

p346p678

,
p128p136p378

p123p178p368

)

+ 2ω311

(
p178p234p678

p128p378p467

,
p123p346

p136p234

,
p368p467

p346p678

)
+ 2ω311

(
p178p234p678

p128p378p467

,
p128p136p378

p123p178p368

,
p368p467

p346p678

)

+ 2ω311

(
p178p234p678

p128p378p467

,
p128p136p378

p123p178p368

,
p123p346

p136p234

)
+ 2ω311

(
p178p234p678

p128p378p467

,
p368p467

p346p678

,
p123p346

p136p234

)
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