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KYKLOS, a new multiple tree-based interconnection network for
multi/parallel processing systems, is proposed. This architecture provides fault
tolerance and asymptotic improvements in performance while retaining the simplicity
and low fanout of the binary tree unlike other augmented tree architéétures proposed

in the literature.

Different topological variations of KYKLOS are presented. In particular,
the interconnection for a dual tree KYKLOS invoives a shuffle of the links in one of
the two trees. Simple distributed routing strategies are defined for KYKLOS and it is
shown that the cross product: {Topology x Routing Strategy} maps to different

distance and traffic characteristics. Maximum link traffic grows subquadratically with
| etwork size (O(N'?)); while the cost of the network increases only linearly with the
" number of processor resources. Also, normalized communication latencies are shown

to be superior to competing tree topologies and to the Hypercube:
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Applications of this network topology to facilitate parallel access to 1/O and
_parallel processing of relational join operations is explored. Finally, it is shown that
KYKLOS has excellent potential in minimizing network diameter under the

constraints of maximum node degree for a given network size.
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Chapter 1

Introduction

Future applications in fields such a—s fluid dynamics and geophysical modeling will
require processing in rates far in excess of what today’s supercomputers can deliver.
Sin gle processor computers like the CRAY-1 and Fujitsu VP200 are already within an
order of magnitude of their technological limit'of 3 gigaflops imposed by the speed of
light. What 1s required for the next genéfation of computers is a detour of the von

Neumann bottleneck through the use of parallelism.

1.1 Parallel Processing and Interconnection Networks

Efforts at exploiting parallelism to achieve speedup necessitate the partitioning of a
» problem 1nto tasks and subtasks to be executed on multiple processing units. The
introduction of a medium to facilitate communication and synchronization between
these processing units is an essential aspect of recent and future computing systems. It
1s this medium of communication that is referred to as the interconnection network

(ICN).

Parallel or distributed systems are generally classified as either multiprocessors or
multicomputers. Multiprocessors permit all processors to share a common memory,
hence they are sometimes referred to as shared memory systems. Multicomputers, on
the other hand, operate by passing messages. In the former, the ICN is used as a
communication medium between processors and memory, 1n the latter case it is used

for interprocessor communication.



The performance of a parallel system is dependent on the ability of the processing
elements (PE’s) to communicate data and synchronization primitives in a smooth and
efficient manner. This means that the ICN should be capable of providing adequate
bandwidth with low communication latencies. In addition, the ICN should have fault
tolerance built in and provide acceptable levels of performance even in the presence of
faults. Finally, concerns of cost, simplicity, etc. can hardly be emphasized. Because
the ICN is such a vital component of a parallel processing system, a thorough
understanding of the attributes of thé ICN in relation to its impact on system
performance is an active area of research. This dissertation will propose a novel way
of interconnecting processors called KYKLOS and will study the properties of this

network.

The next section introduces a taxonomy for ICN’s. In Section 1.3, important issues
that relate to ICN design are presented. Tree topologies are surveyed in Section 1.4

and the dissertation outline concludes this chapter.

1.2 Interconnection Networks: A Taxonomy
Feng has classified ICN’s on the basis of the following four design
decisions[FENGS81]
¢ Network Topology: Network topologies are classified as either static or
dynamic. Static topologies have passive links while dynamic topologies
are characterized by having links that can be reconfigured by setting the

network’s active elements.

¢ Switching Methodology: Data may be transferred using either circuir or
packet switching. In circuit switching, once a device is granted a path in
the ICN,' 1t will occupy that path for the duration of the data transfer. In
packet switching, the information is broken into small packets that

individually compete fora path in the ICN.



e Control Strategy: The control strategy may be either centralized or
decentralized. In the former, all requests are processed by a central
controller. In decentralized systems, requests are handled independently

by different devices in the ICN.

o Operation Mode:r Systems can opcfate in either synchronous or
asynchronous mode. In the formér, a global clock broadcasts the clock
signal to all devices so that they operate in lockstep fashion.
Asynchronous Asystems, on the bther hand, support independent operation.

of the different elements in the network without a global clock.

Since network topology 1s the main focus of the dissertation, we take a close look at

the classification of ICN topologies. in the remainder of this section.

1.2.1 Dynamic Topologies
There are three types of dynamic topologies: crossbar, single stage and multistage.

The classes and subclasses are shown in Fig 1-1.

NETWORK TOPOLOGIES
STATIC DYNAMIC
CROSSBAR  SINGLE STAGE MULTI STAGE

NONBLOCKING REARRANGEABLE BLOCKING

Figure 1-1: Taxonomy of Network Topologies



Crossbar Networks are those in which every input is connected to every output.

Single Stage Networks, as the name suggests have a single stage of switchingv
elements (switches). One of the best known examples in this class is the perfect shuffle
network (Fig. 1-2(a)) first proposed by Stone [STON71]. Here, the inputs at the
leftmost end are permuted before being fed to the array of switches while the outputs

are wrapped around to the input end as shown.

Multistage Networks are made up of several stages of switches. These networks are
further subdivided into three subclasses depending upen their ability to support
- simultaneous connections of more than one input-output pair without conflicts. A
nonblocking nerwork [CLOS53] can handle all possible c@n_xlections without conflict
(Fig. 1-2(b)). A rearrangeable nonblocking network [BENE62] can perform all
possible connections between inputs and outputs by rearranging its existing
connections (if necessary) so that a connection path for a new input-output pair can
always be established (Fig. 1-2(c)). Finally, in blocking networks, simultaneous
connection between two or more input-output pairs may cause conflicts in the use of

communication resources.

All the above categories of multistage networks have been researched in connection
with telephone switching [BENE65]. The last decade, however, saw the emergence of
the blocking multistage networks for a new application viz. multiprocessing systems.
These networks (henceforth called MIN’sl) are characterized by the fact that they
have N inputs and N outputs with log, N stages of switches. Each switch is an mxm

crossbar which can realize any permutation between its m inputs and m outputs. Goke

Lacronym for Multistage Interconnection Network -
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Figure 1-2: Dynamic Topologies



and Lipovski proposed the banyan network [GOKE73] (Fig. 1-2(d)) for partitioning
multiprocessor systems. Other MIN networks that have been proposed include the
Omega[LAWRT75], Baseline [WU80a], Flip [BATC76], multistage Cube [SIEG81],
etc. Wu and Feng [WUS80b] showed that these networks were all isomorphic i.e.
topologically equivalent. Much work has been réported in the literature related to
their performance, both circuit and packet, fault tolerance, VLSI layout, mapping, etc.

A survey of this work in tutorial form appears in [WU84].

1.2.2 Static Topologies

These networks are oftén characterized by the fact that each node is a small computer
with its own local memory. Static network :topologies have been classified on the
basis of node degree. On one end of the spec;tn_lm are simple ring tobologies (Fig.
1-3(a)). At the other extreme, one finds the completely connected network (Fig.
1-3(b)). Important topologies of networks in this class include the full binary tree,
rectangular mesh, n-cube (Fig. 1-3(c)-(e)), multiple buses and the cube-connected

cycles network proposed by Preparéta [PREP&1].

(a) Ring ~ (b) Completely Connected (c) Tree

(d) Mesh

(e) Cube

Figure 1-3: Static Topologies



1.3 Issues in ICN Design
Multicomputer Network topologies are judged on several criteria, some of the more
common being

1. Message Latency
2. F_anout

3. Cost

4. Traffic Load

. Ease of Routing

h

6. Fault Tolerance

7. Scalability

Message Latency: There are several evaluative measures for communication latency.
The maximum internode distance, called diameter, denoted k, is a useful upper bound

on conununication delay.

A measure that better captures the communication delay is expected delay. This is
the average number of links a message would traverse in order to reach its destination.
This depends on the algorithm being implemented and also on the mapping of the
algorithm onto the architecture. For example, if the algorithm and mapping are such
that each node has need to communicate only with its nearest neighbors, then the

average communication latency is simply 1.

On the other hand, in the absence.of any a priori knowledge of an algorithm and/or the -

goodness of a mapping téchni‘que,‘ it behooves the network designer to attempt to



minimize the average communication latency. This assumes that every node may
send a message to every other node with equal probability. Besides the uniform
message distribution, other models have been proposed [REED87]. These assume that
the probability of a message exchange between two nodes is a function of distance

between them. For example, the probability may be an inverse function of distance.

Fanout: This is the number of communication ports supported by each node. The
design of a communication port will depend inter alia upon whether éircuit or packet
switching is being used. In the latter, the port should have the circuitry to buffer in an
incoming packet, read the destination tag and place it in the appropriate output queue.
In a circuit switched énvironment, the logic to handle requests for virtual circuit
reservation with the additional demands on guaranteeing fairness, preventing

deadlock, etc. need to be addressed.

Cost: We define cost as being related to the number of links that are used to connect
all the computers in a multicomputer network or the processing elements in a
multiprocessing network. For networks with uniform degree, the cost of the links is
simply the number of nodes times the degree. Also, the cost of the communication
hardware at the ports in the nodes of the network needs to be considered. In MIN’s,
the additional cost of the switches should be factored in. Finally, in a VLSI

environment, the cost associated with layout is relevant.

Traffic Load: Network traffic isr a furnction of several parameters related to the
topology such as average internode path length and the number of links. In symmetric
networks, i.e. those n&works in which each node has the same view of the network as
any other, the traffic through each link would be the same under the uniform message

- distribution assumption. The traffic density would be proportional to the time each



message spends in transmission (ignoring queueing delays). This in turn is related to

the average path length. Hence message traffic density is

T = No. of messages X Avg. path length
ave No. of links

In non~symmetri§ networks, the message density would, in general, be nonuniform. In
the network of Fig. 1-4, for example, suppose that every pendant node (nodes on the
extreme right and extreme left) needs to send a message to-every other pendant node.
Clearly, the east-west artery between node_a and node_b would carry a total of N?/4
messages in both directions and be the bottleneck. Note that the other links would not
carry as much traffic. While links on the same longitude would see the same number
of messages, link traffic density would increase monotonically from left to right until
node_a and then taper off beyond node_b. Traffic through this network is therefore
asymmetric (nonuniform) unlike networks like the ring or the hypercube that are

inherently symmetric.

The network of Fig. 1-4 is really a binary tree with the two halves rotated 907 away
from each other. The congestion between node_a and node_b is commonly referred to

as the root botileneck problem.

Fault Tolerance: A network is said to be k-fault tolerant (k-ft) if it can survive the
failure of any set of k arbitrary node faults. The survivability criterion may be
_interpreted as connectivity of the network or of a given part thereof [GREY84].
Alternatively, the fault tolerance criterion may be the survival of a completely defined
subnetwork [HAYE76} (for example, a 32 node binary cube within a 64 node

Hypercube.
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N/2-1 N-1

Figure 1-4: Root bottleneck Problem in Binary Trees

Ease of Routing: It is essential that every network have algorithms which enable
routing of messages from every node to every other node. For some topologies, there
may be several routing algorithms, each with different merit. For example, shortest
path routing in a network may not be the -simplest but it will guarantee the least
communication delay [GOODS81]. A common form of routing called distributed tag
routing encapsulates the destination address or some function of source and
destination address (such as their exclusive or) in the data packet. Every intermediate
node on the path between source and destination checks one or more bits of the tag
whichidetermines which link it should be sent through. This technique is common for

hypercube, tree and banyan networks.
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There are other related issues in ICN design. These include such concerns as
extensibility or scalability which is the ability of a large system to scale up with a
minimum of disruption to the existing setup. Another issue relates to the power of a
given network to embed useful topologies. For example, an algorithm well mapped to
an architecture x may be easily implementable on a given network, y, if y embeds x.

For example, an n-cube embeds a full binary tree of height'n—l [DESH&6]. -

1.3.1 Design Tradeoffs

As in other areas of science and engineering, design of networks inevitably warrants
makix'ng tradeoffs in the midst of differing and often cohﬂicting requirements. For
example, the demand of decreased communication latency could be accomplished at
“the cost of increasing the number of links. This could, in addition, increase node
fanout., On the other hand, reduced communication latencies would decrease the
average link traffic and could, under certain circumstances, alleviate traffic

bottlenecks.

A metric that takes both, average distance and fanout, into consideration is simply
their product, called normalized distance [AGRAS86], and denoted L’. Another
metric that relates diameter and degree appears as an upper bound on the number of
nodes that can be packed into a graph. Formally referred to as the (d,k) Graph
Problem it may be stated thus:

Given a maximum degree d and a maximal distance k, find a graph of maximal order.
A variation of the problem is A

Given a number of nodes, interconnect them minimizing both the number of edges
berween nodes (degree) and the distance between nodes. 7

This problem has been popular both, from the vicwpbint of computer networks as well

as a theoretical problem in its own right. There have been a plethora of papers on the
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subject in recent years [ELSP64, AKER65, ERDO66, STOR70, ARDE78, IMASS1,
MEMMS82, DOTY84]. An upper bound on the number of nodes, n, has been
expressed in terms of the diameter (k) and the maximum degree (d) and is referred to

as the Moore bound.

d(d—1)=2

n{dk) < 5

Clearly, networks designed to optimize n will have more computing resources for as
few connections as possible (certainly no more than d per node) without at the same
time exceeding a maximum communication latency of k between any two nodes of the

network.

1.3.2Désigning in multi-dimensional Space

Concerns about cost and performance have traditionally dominated the design of
computer systems. As computer applications proliferated and the demand for reliable,
high-performance systems grew, it became increasingly clear that fault tolerance had
to be factored in during the design phase, not as an afterthought. The repercussions of
this new dimension to thinking and designing have produced many new architectural
enhancements for fault-tolerant MIN’s, which are surveyed in [ADAMS7]. This
chapter will conclude with a brief look at how the seemingly unrelated concerns of
high performance and high reliability? may be integrated in the area of computer

networks with a focus on KYKLOS.

Apropos of the discussion of designing systems that combine performance and fault

tolerance: it is often necessary to maintain a working system in the presence of faults

2This-concept, sometimes called integrity management, was the focus of three workshops held this
year at the University of Texas )
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that can guarantee certain performance levels. The ability of a system to perform at or
above certain specified levels in the presence of faults characterizes the system as

gracefully degradable [CHERS5].

The combined provision for fault tolerance and high perférmance: There are two
_ types of networks in general - those that are inherently fault-tolerant and those that are
not. The former possess multiple redundant pafhs ‘which can be used to bypass faults
in the network. Such examples are the mesh and the binary cube. On the other hand, a
tree network is not intrinsically fault-tolerant. Could the injection of redundancy to
provide fault tolerance be used, in addition, to enhance the performance under the
non-fault condition? Could the effects of this technique on fault tolerance and
performance be somehow quantified? What are the implications of this strategy to
cost? This dissertation will attempt to answer some of these questions by first
proposing the KYKLOS augmented binary tree topology and then understanding its

properties.

A brief survey of tree architectures in multiprocessing systems is undertaken next.

1.4 Tree Topologies in Multicomputer Systems
Trees play an important role in algorithmic studies. For example, divide and conquer
algorithms lend themselves naturally to tree structures. It is not surprising that tree

interconnection schemes perform well on this class of problems.

Algorithms on tree machines for sorting, matrix multiplication and for solving several
NP-complete problems are described in [BROW78]. Here, a binary tree of n
processors can be used to sort n numbers in O(n) time it takes to load and remove the

numbers. For multiplying two nxn matrices on tree machines, the basic divide-and-
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conquer step splits the multiplicand into rows and the multiplier into columns. The
multiplication can be performed in O(n?) time and requires 2n2-1 processors. If the -
data paths between nodes can handle an entire column at once, the multiplication can

be performed in O(n) time.

Tree architectures have been used in a variety of database machines. The Non-Von -
Database Machine[SHAW79] used a hierarchical associative architecture to execute
relational algebra primitives more efficiently than the single' level associative
processor designs. In this design, the primary associative memory(PAM) is organized

as a tree machine with a large number of processors implementable in VLSI.

The binary tree has also been used in such commercially available machines as
Teradata Corpoeration’s Database Computer [EHRE84]. Highly Concurrent Tree
Machines [SONGS0] have been used to solve problems in DBMS. For example, two
complete binary trees connected in a mirror image fashion have been emploved to
perform sorting ia O(log N) time. One of the trees broadcasts streams of data and

instructions and the other tree is used to combine and route outputs (Fig. 1-5).

Many database specific algorithms executed on tree-based architectures involve some
sort of a merge operation on sorted streams of data. This technique has been widely
used for performing joins, duplicate elimination, global sorts, intersections, unions,
etc. The effect of this technique is to meet the need to compare one leaf node’s data

with that of many other leaf nodes.

A problem with these operations is traffic congestion near the root which saturates the
bandwidth of links at or near the root. Thus the advantages of logarithmic delay and

the recursive, scalable structure of a tree are offset by the traffic bottleneck problem.
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Input Root Node

Communication Node

Leaf Node
Ouiput Node

Figure 1-5: Double Tree for Broadcast/Merge
In addition, the tree structure is not tolerant of faults since a single link fault or a

single non-leaf node fault can destroy its connectivity.

There have been many approaches to the rectification of these problems. These
include the addition of extra nodes or links for redundancy or to alleviate the traffic

bottleneck problem. A few of these are described next.

Fault tolerance was the major motivating factor in a scheme proposed by
Hayes[HAYE76]. Here an extra node at each level of the binary tree was added and
~extra links were introduced between nodes at adjacent levels a'sv shown in Fig. 1-6. It
was shown that the redundant structure could sustain the loss of any node and still
contain a subgraph in the resulting structure isomorphic to é full binary tree. The

redundant graph Was shown to be optimal with respect to the number of links added.
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@ = Original Node —— = Original Link

@ = RedundamNode — _ .- .. = Redundant Link

Figure 1-6: Scheme for fault tolerance proposed by Hayes

Half-ring and full-tring X-tree structures were proposed by Patterson and Despain
[DESP78]. In these structures, extra links were added between nodes at the same
horizontal level of the tree as shown in Fig. 1-7(a) and 1-7(b). Another interesting
structure is the Hypermee {GOODS81], so called because extra links were added
between nodes at the same level in the tree that differed by a single address bit as in
the Hypercube (Fig. 1-7(0)). While both of these structures improve the traffic
bottleneck problem, neither of them is fault-tolerant with respect to a single node
failure in the sense that the non-faulty subgraph does not embed a full binary tree of

the same size as the original irredundant tree.

Leiserson proposed Fat-trees [LEIS85] as a means of interconnecting processors as a
binary tree in which the number of wires connecting a node with its parent increase as
one goes up the tree. This provides higher communication bandwidth at the higher

levels of the tree, thus ameliorating the traffic bottleneck problem.
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1.5 KYKLOS in Perspective
As mentioned earlier, KYKLOS is an attempt to integrate the concerns of fault
tolerance and performance in binary tree architectures. A brief history of the network

is presented and this is followed by an outline of this dissertation.

1.5.1 History

‘The primary motivation behind KYKLOS was to provide fault tolerance in the tree-
structured Lookahead Local Area Network [LIPO&2]. Perhaps> the simplest way to do
50, it was felt, would be to add a second tree so that the trees would share the same set
of leaf nodes, in this case workstétions. The Double Tree would, besides providing
fault tolerance, double the potential bandwidth of the network (much like a dual bus
system would under similarcircumstances). The bottom tree was to be a mirror image
of the top tree. It soon became apparent that other useful properties could also be
reaped by the addition of the extra tree and by altering the interconnections in the
bottom tree. This motivated the consideration of other interconnection structures in
which a mere rearrangement of network resources (links or nodes) in the double tree
would bring about an improvement in average communication latencies over and
above the already low communication distances afforded by the sing‘le tree or the
simple Double Tree. Moreover, the root bottleneck problem, a characteristic of the
tree architecture, might also be ameliorated. Finally, the low fanout of the nodes and
the linear cost of the network (with respect to leaf resources) were intentionally placed

at a premium.

In a nutshell, the concerns of simplicity, fault tolerance and performance were to be
integrated and a solution that addressed these was envisioned in ‘the form of

KYKLOS.
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1.5.2 Dissertation Outline

In Chapter II, multiple tree networks are introduced. Both KYKLOS-I and KYKLOS-
II are defined. A constructive definition of KYKLOS-II is presented. It is shown that,
using permutations and labeling sequences, any KYKLOS topology may be dcfined.
An isomorphism of KYKLOS—H called the W-Form, is constructed and it is shown
that- KYKLOS-III, which embeds a ring between a double tree, may be generated quite
eésily from KYKLOS-II. Finally, a theory of optimality for KYKLOS networks is
enunciated and the different KYKIL.OS topologies are examined in the light of thié

optimality criterion.

Various routing strategies. for KYKLOS-II are described in Chapter 3 and the
interprocessor distance distribution for each is computed. It is shown that the distance
distribution has a nice generalized Fibonacci form. The solution of the characteristic
equations of the recurrences describing the distribution are useful in understanding the
asymptotic properties of the network. Reach Factor and average interprocessor

distance for each routing strategy are computed and compared with KYKLOS-L.

In Chapter 4, the traffic density through the different links in the network is examined
under different routing strategies. The concept of a slice in the KYKLOS-II network
is introduced. A new routing strategy which uses this concept to minimize traffic is
defined and an algorithm for implementing it is outlined. Maximum v’traffic density

and link utilization as a function of routing strategy and network size are investigated.

Fault tolerance of KYKLOS is investigated in Chapter 5. Two aspects of fault
tolerance provided by KYKLOS-II are attacked. The ability of KYKLOS-II to
withstand double node faults is compared with that of KYKLOS-I. Finally, the effect

of a single node fault on performance degradation is investigated.
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In Chapter 6, the use of KYKLOS-II as the ICN for an 1/O Engine is proposed. Its
suitability for implementing a distributed Join Processing Algorithm is examined in
relation to KYKLOS-1. The strengths of the modified three-tree KYKLOS as a
candidate solution for the dk Graph Problem are explored. Finally, spinoffs of

KYKLOS in the form of HyperKYKLOS and the SK-Banyan are described.

In Chapter 7, an account of the work performed on KYKLOS is summarized and the

major accomplishments are highlighted. Also, suggestions for future work are made.




Chapter 2

Interconnection Strategies

Tn this chapter, we look at interconnection strategies for multiple tree networks. More
specifically, three versions of the m-ary double tree network are presented. Section 2.1
introduces the basic KYKLOS-I multiple tree-structured topolog;/.rThe KYKI.OS-1I
network is defined in Section 2.2 and an alternative definition using labeling
sequences (L.S’s) is presented. In Section 2.3, an isomorphism of KYKLOS-II is
constructed which séts the stége for the introduction of KYKLOS-UII. Finally, in
Section 2.4, the concept of m-sense optimality in a class of KYKLOS networks is

presented.

2.1 Multiple Tree Networks

The general form of KYKLGOS is an interconnection network consisting of r sets of
m-ary trees joined so that they share a common set of leaf nodes. A three-dimensional
view of such a network is shown in Fig. 2-1. Here, the original ternary tree (shown in

dark links), except for the 9 leaf podes, is replicated three times.

2.1.1 KYKLOS Nomenclature

We employ the notation KYKLOS-x<m,r,n> to represent any member of the
KYKLOS family of interconnection networks. Here

x 1s the version rzumber3 representing the connection strategy,

1 is the tree replication facior, -

m is the tree branching facior,”

3Roman numerals used
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Figure 2-1: A 4-Tree T ernary KYKLOS
and

n=log, N is the height of a single tree? of N leaf nodes.

Unless otherwise stated, processors will be located at the leaf nodes and switches at
the non-leaf nodes. Both, switches and processors perform routing and buffering of
data. However, it is assumed that the switches have far less processing capability and

no access to I/O except in the case of the switches located at the root nodes.

2.1.1.1. Node Labels
The addressing scheme for nodes is hierarchical with each node being represented by

a triple.

The i node at the j* level of the k tree is referred to as node <k,j,i>
1<k<r, ' ' -
0<j)<n,

0 <i<mrv-1.

4full m-ary tree
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Nodes within a level are numbered left to right, hence node 0 is the leftmost node at a

given level.

Most of this document will be concerned with the properties of Double Trees (r=2).

Accordingly, the triple representétion for nodes will be replaced by a compact tuple‘
representation. -The first element of the tuple will represent level number and will
have a sign associated with it (positive for the upper tree and negative for the lower
tree). Thé second element will represent node number. For example, node 2 at level 3
is represemed as‘ <3.2>in the top tre¢ and as <-3,2> in the bottom tree. Finally, each ‘
link also has a 1ével number associated with it. A link between a level *1 node and a

level £(i-1) node is referred to as a level &1 link.

2.1.2 KYKLOS-I
Perhaps the simplest version of KYKLOS is the simple Doubie Tree shown in
Fig.2-2(a). This topology has been employed in DON [IMAI84]. Here, the bottom

tree 1s a mirror image of the top tree.

Note however that the termx "Double Tree" as used here is somewhat of a misnomer:
the topology is neither a perfect duplicate of the original network (only the switches,

not the processors have been duplicated), nor is the overall topology a tree any longer.

2.2 KYKLOS-II

The bottom tree in a binary Double Tree may be connected by combining leaf nodes
in different ways. In the KYKLOS family of hctworks, this is permissible 50 long as
the bottom tree of a configuration is isomorphic to a full binary tree of height n. This
condition is sufficient (though not necessary) to preserve the uniform, bounded degree
condition on the switches? (echpt for the switches at the rootj. One such topology

termed KYKLOS-IT is shown in Fig.2-2(b),

SErom an implementation standpoint, low, uniform fanout is highly desirable
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Link Level #
3

<3,0>

<0,0>

-2 @ = Processor

<20> ® = Switch

(b)

<-3,0>

Figure 2-2: Illustrating notation and connection strategy for KYKLOS-I and
' - KYKLOS-II
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2.2.1 Shuffle Connected Bottom Tree

The connection between any two adjacent levels of the bottom tree (level -i and -(i-+1))
may be visualized by considering level -i nodes, 0<i<n, split into two groups i.e.
node O to node 277! - 1 in one group and nodes 2*1 to 277 - 1 in the second group.
~ The jth node at level -(i+1) is connected to the jth node in each of the two groﬁps.
D,escendant‘s of level -(i+1) nodes from left to right are thus ordered as a perfect

shuffle (by way of analogy to the ordering in, for example, a shuffled deck of cards).

This idea can be generalized to a Double Tree with arbitrary branching factor where .

an m«way shuffle may be used to define the bottom tree of KYKLOS-II<m,2,n>. Thus ,

Forl <j<n
level -j node <-j,i>, 0 <1 < mt9,
is connected to
level -(j-1) nodes:
<-j+1, 1>, <3+ 1, HmO> L <+ i+ (m-Dm D>

and to

level -(3+1) node:
<-j-1, imod mt=-D>,

Root node <-n,0> 1s connected to nodes:
<-n+1, 0>, <-n+1, 1>, ... <-n+1, m-1>.

The interconnection for the top tree is as in KYKLOS-1.

The above definition of KYKLOS-II is a constructive one. We next present a
definition. that uses sequences to describe each wee in KYKILOS. While this
representation is terse, it is the primary vehicle used in unraveling the topological

properties of KYKLOS~H:as shown in Chapters 3-5.
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2.2.2 Labeling Sequences and Permutations

Note that KYKLOS is, by definition, a multiple tree structure sharing the same set of
leaf nodes. Further each of the 1 trees should have the same branching factor. Hence,
the network in Fig. 2-3(a), for example, is disqualified from consideration. Also, the
internal nodes of one tree are not directly connected to the internal nodes of any other
tree. Hence, the network of Fig. 2-3(b) is not a KYKL.OS. The fact being emphasized
here is that, from a graph-theoretic point of view, 7

e cach of the r trees are identical (height and branching factor) and

« there are no connections between the internal nodes of any two trees.

What then is the differencé between the r trees, if any at all? Clearly, there is no
difference between the two tréeé in KYKLOS-1<2,2,3> (Fig. 2-2(a)). For example,
processors O and 1 in this topology are 2 links apart in both, top and bottom trees.
However, the same pair of nodes are ¢ link traversals apart in the bottom tree of
KYKLOS-11<2,2,3> (Fig. 2-2(b)). It is obvious that processors that were x links apart
in the upper tree of KYKLOS-1I<2,2,3> will not, in general, be x links apart in the

bottom tree of that topology.

To understand the interconnection scheme in KYKLOS-II more fully, the bottom tree
of KYKLOS-11<2,2,3> (Fig. 2-4(a)) is redrawn without edge crossings as shown in
Fig. 2-4(b). One possible ordering for the processors (left to right) is
0,4,2,6,1,5,3,7.

It is precisely this sequence that captures the interconnection strétegy of KYKLOS-II.
Note that the corresponding sequence for the bottom tree of KYKLOS-I (Fig. 2-2(a))
is simply |

0,1,2,...,7
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(a) _ )

Figure 2-3: What KYKLOS is not 4
We henceforth refer to a sequence of processors in a given tree of a KYKLOS which
has been redrawn without edge crossings as a Labelling Sequence (L.S). In general,
each tree in an r-replica KYKLOS may be isolated and redrawn without edge
crossings. Further, each of the trees may corréépond to a different LS. The LS’s
distinguish one tree from another and, indeed, one interconnection strategy from
another. Hence the LS’s for each tree are all that are needed to specify a given

KYKLOS Interconnection Strategy.

LS’s will be denoted by uppercase Greek letters with an optional subscript denoting
sequence length. For example,
Qy=<ag a,...,ay >

In particular, the LS for the upper tree in KYKLOS will be represented by I

/\V
(uppercase iota) i.e.

Iy=<0,1,..,N-1>. .

Further, note that the LS’s for each of the other r-1 trees in an N-leaf node KYKLOS

are permutations of I,
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(a) Bottom Tree in KYKLOS-11<2,2,3>

0 N\

(b) Bouom Tree redrawn without edge intersections

Figure 2-4: Redrawn bottom tree of KYKLOS 11€2,2,3>

Intimately related to KYKLOS-1I is the I" Sequence which is introduced next.

2.2.2.1. The I" Sequence
The m-ary I" sequence of length N=m" (m>1, n>0) denoted I'y; is defined as:

I‘Wl

N = <ao, Z‘IO'H]]", C ey ao_*-(ll'l_l)l'l-)n,

a;, a;+m”, ..., a,+m-1)m?,



ay_qs ay_tm7, L, gy Hm-Dm >

where Iy =<a,, a;, . . ., ay_>
and
[=<0>.

Example 2.1
Y= <0>
I =<0,12> -

Frg = <O,3,6, 1 ,4,7,2,S»8>

[, =<09,18,
3,12,21,
6,15,24,
1,10,19,
4,13,22,
7,16,25,
2,11,20,
5,14,23,
8,17,26>

2.2.2.2. Permutations

A permutation, p,, on the elements of the sequence, £2=<a,, a

pp(Q2), is defined as

29

(2.1)

(2.2)

. . ay_>, denoted

Pa(2) = <@g 0y Appay o Ao -1y In general, the elements of the sequence (a,’s)

may represent any object - numbers, tuples, etc. The permutation operator, py

(typically lowercase Greek), operates on the indices O through N-1 and hence causes a

rearrangement of the objects in the sequence.
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Note that the I'y sequence as defined in Eqn. 2.1 is a permutation on I,

Two permutation operators that will be used in this chapter are next defined

Shuffle Permutation

8,,(1) = 2i, 0<i<N2
© =2i+1-N, N2<i<N (2.3)

Digit Reversal Permutation

en .
V) =dghy .. 1,
where i, , .. .1,i;1$ the m-ary representation of i, 0 <1 < N=m". (2.4)

(When the superscript is omitted, 1t 1s assumed to be 2).

Example 2.2
LetQe=<0,1,2,...,7>

Then 04,(Q) =<0,2,4,06,1.3,5,7>
and v,(2) =<0, 4,2,6,1.5.3, 7>.

2.2.3 Relationship between I Sequence and KYKLOS-1I

To show the relationship between the I sequence and KYKLOS-II, consider
redrawing the bottom tree of KYKLOS-11<2,2,4> (Fig. 2-5(a)) so that no two edges
intersect. Starting with level -(n-1) nodes, rearrange the level -(n-2) nodes so that the
descendants of <-n+1,i> precede those of <-n+1j> if <-n+1,i> precedes <-n+1,j>.
Note that by so doing, there are no crossovers between any two or more level -(n-1)
links (Fig. 2-5(b)). Next. place the descendants of each level -(n-1) node in increasing
order left to right. Repeat this procedure for level -(n-i) nodes, 2 <i<n-1 (Fig. 2-5(c)).

The complete picture is shown in Fig. 2-5(d).

Consider the nodes at an arbitrary level, -(n-1) in the bottom tree. Let the ordering of

the -(n-1) nodes in the redrawn bottem tree be
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Ay, Ay, - . . Ay Where N = m’

From the definition of K'YKLOS-II (Section 2.2.1) and the above procedure, the
ordering of the level -(n-i-1) nodes should be

a,, agtmy, | . ., ay+(m-1)m’,

ay, a,+mi, L, a-(m-Dmd,
Ay Gyt L L, aA,,w1+(§11-1)n1’.

Since this holds inductively6 for all i, 0<i<n, we conclude that the above ordering of
level -(n-i-1) nodes is I\ = Fj:,ﬂ. We thus have

Lemma 2.1 The bottom tree in KYKLOS-II<m,2,n> can be redrawn without link

crossovers in which case the ordering of level -(n-1) nodes is I‘:g, 0<i<n. O

A special case of this lemma is when i=n. In that case, the LS for the bottom tree in

KYKLOS-11<m,2,n> is T,

Theorem 2.1 The sequence I, as defined recursively in Eqns. (2.1)-(2.2), is

equivalent to that obtained by reversing the digits in the n-digit m-ary representation,

n=log, N, of each element of the sequence <0, 1, ..., N-1>,

Proof: We use induction on n, the logarithm of the sequence length. The theorem

holds trivially for n=11i.e. for I = <0,1, ... m-1>.
Letl,, =<0,1,.. ,N"-1> - (2.5)

We hypothesize that the theorem is true for n=n’=log N’, so that

0 =<ay, ay, ..., ay > =) ' i (2.6)

It holds for i=0 i.e. for level -n nodes. Also, if it holds for level -(n-1) nodes, then 1t holds for level
-(n-(1+1)) nodes.
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Figure 2-5: Unshuffling the bottom tree in KYKLOS-II<2?2,4>
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To prove that the theorem is true for n=n’-+1, consider an arbitrary, say t*, term of
sequences Iy, and Yo (D, 0<t<mN’. Let

t=km+/, 0<l<mandO<k<m”. , Q.7
Pictorially k and [ may be thought of as the row number and column number
respectively. of an element in Iy as defined in (2.1). So the t* term of I . is

N Yy . B osor
a,+Hm". Also, the t term of Y,

1

oD is >, g where

t= z;:’oq,.'_j’ﬂ, 0<q<m, 0<igsn’ ’ , (2.8)
From (2.7), . .
[ =tmod m ' 7 (2.9)

From (2.8),
q, = tmod m 7 » - : (2.10)

From (2.7) and (2.8) 0 < ,q,, < m. This, in conjunction with (2.9) and (2.10), gives
[=q, (2.11)
Using (2.7), (2.8) and (2.11),

k = 27_1 c]n,_jnﬂ“l

= 3 (2.12)

Hence the k' term of ¥.(I) is

YVolk) = 205 g (2.13)

By the induction hypothesis of Eqn. (2.6), this is a,. Hence

a,= > o qm (2.14)

and using (2.11),

a,+m" = Zﬁo‘lﬁ“’ 7 (2.15)
i.e. the t® elements of 77, and ¥/,.(1) are equal for all t, 0 St<mN’. 0

Using Lemma 2.1 and the above theorem, it follows that -

Corollary 2.1.1 The LS for the bottom tree of KYKLOS-Il<m,2,n>is ¥y(I,.). O] ”



We say that the processors in Fig. 2-5(d) are y-connected.

Example 2.3 The LS for the bottom tree in KYKLOS-11<2,2,3> (see Fig. 2-4(b)) is

<0, 4, 2, 6, 1, 5, 3, 7>. Note that each element here i1s a bit reversal of the

corresponding element of 1.

2.2.4 Physical Interpretatibn of the & Permutation ,
Consider the interconnection of processors as shown in Fig. 2-6(a). Here the single
tree of n levels may be thought of as being composed of two trees, an odd tree and an
even tree. Each of these trees is of height n-1 with the leaf nodes of the odd tree
having odd labels and the leaves of the even tree with even labels. The composite tree
of height n is formed by interleaving the leaf nodes of the odd and even trees so that
the sequence of labels of the leaf nodes appears as the monotonic sequence Ig. Finally,

the roots of the odd and even trees are conpled.

Now the LS for the composite tree is shown in Fig. 2-6(b). Note that the LS is easily
recognizable as 8,(I,). In analogy to the y-connected processors of the previous
section, we say that the leaf nodes in Fig 2-6(b) are 0-connected. Both these structures
will be made use of in the next section in connection with the construction of

KYKLOS-III.

2.2.5 Equivalent Labelling Sequences

The bottom tree of KYKLOS-11<2,2,3> (Fig.2-2(b)) has been redrawn without link
crossovers in Fig. 2-7(a). The sequence of processors here is

<26045137>.

Another LS for the bottom tree reproduced from Fig. 2-4(b) is placed alongside for
comparison. The two LS’s are distinct bur equivalent. Equivalence of two LS’s means
that the pathlength through the tree between any pair of processors is the same using.

either LS.
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‘Even Tree

@ o

Figure 2-6: A 5—connccted bottom tree’

(@) ®)

Figure 2-7: LS’s for the bottom tree in KYKLOS-11<2,2,3>

The concept of equivalent LS’s induces a partitioning (into equivalence classes) on the
N! possible L.S’s for the bottom tree of a double tree KYKLOS. For example, both
LS’s in the above example are members of the same equivalence class. Appendix A
includes a procedure to determine a (unique) equivalence class leader. Using that

procedure, the LS for the bottom tree of KYKLOS-II<m,2,n> would be I},

Since each tree may be characterized by an LS, any KYKLOS-x<m,r,n> may be
represented by an T-tuple <LS, LS,, . . ., LS > where LS, is the LS for the i* tree.

Once again, we use the convention that LS, =1,
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2.3 Obtaining KYKLOS-III from KYKLOS-II

2.3.1 Rings in KYKLOS

Consider the subgraph of KYKLOS-1<2,2,3> (Fig. 2-2(a)) made up of nodes at levels
0, +1 and -1 (Fig. 2-8(a)). There are four disjoint rings each made up of 2 processors
and 2 switches. For the N processor node case, there will be a total of N/2 rings in a
similar subgraph of KYKLOS-I<2,2,n>. Fig. 2-8(6) _showé the corresponding
subgrabh (level O, +1 and -1 nodes) for KYKLOS—IIZ2,2,3> (Fig. 2-2(b)). Note that
‘there are two complée and disjoint rings: Ring A comprises processors O, 1, 4 and 5;
Ring B comprises processors 2, 3, 6 and 7. For the general N-processor node case,

there will be N/4 such rings, each linking 4 processors.

<1.0> 11> <12 <1,3>
<0.2> <0.3> <0,6> <0,7>
<0,0> <0,1> <04> /<0,5> \\/

<-1,0> <-1,1> <1,2> <-1,3>

(a) Rings in KYKLOS-1<2,2,3>

% <13>

<-1,0> T <1,1> <12> <-1,3> Ring B .
(b) Rings in KYKOS-1I<2,2,3>

Figure 2-8: Showing rings as subgraphs of KYKLOS-1 and KYKLOS-II

The rings in KYKLOS-1I<2.2,n> may be useful in a multiprocessing environment
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where a set of processes requiring frequent communication may be assigned to the
four processors forming a given ring thus exploiting network locality. Perhaps of
greater importance 1s the construction of a topology with a single ring threading
through the processors and the level =1 switches in a two-replica KYKLOS. Of
course, the goal here is not merely to obtain the ring but to further improve the already

good properties of KYKLOS-1I that are explored in Chapters 3-5.

In [MENEES5Db], a synthetic approach to building this ring structure is employed. In
this section, we use an analytic procedure to obtain the same result. Our modus
operandi is to build an isomorphic version of KYKLOS-II. A subtie modification to

this structure then provides the desired ring in a topology christened K YKLOS-III.

2.3.2 W-Form of KYKLOS-II
An interesting 1somorphic version of KYKLOS-1I<2,2.n> where the processors
constituting a ring are in close proximity is now introduced. This will be referred to as

the W-Form because of 1ts appearance.

2.3.2.1. Construction of KYKLOS-II W-Form

Step 1 Order the processors in the following sequence:

A=<a,,  apl, ay;-1+N/2,  ag+N/2,
a, a;-1, a-1+N/2,  a+N/2,

3 1 . )
Ao Aot Ayuot LRN/2L ay, (HN/2> (2.16)

where a, = v, (N/2 + 21), 0<i<N/4. 2.17)

Step 2 Top Tree
Level I Link Connections: Connect a,to a-1 and a-1+N/2 10 a+N/2, 0<i<N/4.
Level i Connections, I1<i<n: A <y-connected binary tree of height n-1 on level 1

nodes.
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Step 3 Bottom Tree
Level -1 Link Connections: Connect a; to a+N/2 and a1 to a-1+N/2, 0<i1<N/4.
Level -i Connections, 1<i<n: A 8-connected binary tree of height n-1 on level -1

nodes.

Fig. 2-9 is.a W-Form representation of KYKLOS-IL

Note: ao is followed by ao-1, ao-1+N/2 and aoc+N/2

Figure 2-9: W-Form Representation of KYKLOS-II

Our next task is to show that this representation preserves the interprocessor distances
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of Form-17, KYKLOS-1I<2,2,n> i.e. if processors x and y are 2d links apart in Tree
1(2), Form-I, then they are 2d links apart in Tree 2(1), W-Form. We will first show

this for the top tree and then for the bottom tree.

2.3.2.2. Generating the LS for the Top Tree

Construct the sequence made up of processor pairs,

App =<ty t;, . ., fypr™ _ ' (2.18)
where t,; = <a;, a-1> - :
and t,,, , = <a-1+N/2, a+N/2>, O<i<N/M4 (2.19)

This sequence of t’s corresponds to the sequence of level +1 nodes (Fig. 2-9); the
descendants of each level 1 node correspond to the processor pair defined by Eqn.
(2.19). The level 1 nodes are v-connected. So the subgraph between levels 1 and n can

be redrawn without intersections, the LS for the level 1 nodes being
G /\t\/x-\;/:(())’ byp oo Y@ty Gypemy Y-y

The first N/4 tuples above are of the form Yl 0<i1<N/4; hence they each have even

indices. Similarly, the next N/4 tuples have odd indices. Using (2.19) to expand each

tuple gives8

WA =<t on Aol o ae Ay melh

&y p(Vi-1y2 Ay p(ia-1)12 L,

N2 ag ey tN2

a(Y[‘;ﬁ_(NM}—l w2
‘ - \ye)
A (NR-1y-1) 1+N/2, Ay 1) pa N2>

"This is the shuffle-connected form of Fig.2-2(b).

8The y-operator takes precedence over the arithmetic operators (eg. division, ete))
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Each of the first N/2 elements of the above sequence have terms of the form &y o

0 <1< N/4. Further, note that

Apdn = N2+, (1)) from Eqn. (2.17)
= 2i+] from Result A.3(a) 2.20)

Also, each of the N/2 elements in the latter half of the sequence have terms with
indices of the form (y,,,(N/4+1)-1)/2, 0<i<N/4. Using Result A.3(b), (¥y,(N/4+i)-1)/2
= Yyu(D) so that the corresponding term of the elements in the second half of the

- sequence are of the form

Ly = Yw(N/2 +27,, (1)) from Eqn. (2.17)
= YN+, (1) from Result A.2
= 2j+1 from Result A.3(a)

Consequently, the terms in the second half of the sequence are of the form
QQi+1)-1+N/2, Qi+1D+N/2, ... O<i<N/4.
Hence the LS for the top tree 15

<1,0,3, 2, o N/2-1, N/2-2,
N/2, N/2+1, e N-2, N-1>»
which is equivalent to the LS <0, 1,2, 3, .., N-2, N-1> = [, as it should.

2.3.2.3. Generating the LS for the Bottom Tree

For the bottom tree, we define the following sequence

Byp =<0 G5 - - 5 (l\f,¢~1> ) : (2.21)

where q,, = <a, a+N/2> :
and q,,,, = <a-1, a-1+N/2>, 0<i<N/4 : (2.22)

This corresponds to the sequence of level -1 nodes (Fig. 2-9). If the subgraph made up
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of the bottom tree between levels -1 and -n is redrawn without crossovers (see Section

2.2.4), the sequence of level -1 nodes is

5Nﬁ§B):<QB<O)v sy - - Qova-1y Dsvy - Dsove-1)”
From (2.3)
Syp(B)=<qg Uy -0 Gyp A G ceo Gyt

From this sequence of level -1 nodes, the LS for the bottom tree may be obtained

using (2.22) as

S B) =<a, agtN/2, a;, a;+N/2,. ..
.
cew By A TN/,
agl,  a,1+N/2, api-l, al1+N/2, .
o _ - _ A ~
AN dN/4—-1 1, dN/4—l 1‘*"1\/2/

Using €2.17),

O (B)=<yy(N/2+0),  Y(IN/2+0)+N/2,  v(N/2+2), v (N/2+2)+N/2, . ..
o AWN-2), v (IN-2)+N/2,
YN/2+0)-1,  Y(IN/2+0)-1+N/2, 4, (N/2+2)-1,  y(N/2+42)-1+N/2, . ..
. JWIN-2)-1, v, (N-2)-1+N/2>

Each element of the above sequence has a term of the form v, (N/2+2k), 0 <k<N/4.

From Result A.3(b),
YWIN/2+2K) = 275, (2K)+1
= Yy(2k)+1 from Result A.2 (2.23)

Permuting the two halves of the sequence and using (2.23) on the first half, we obtain

the LS for the bottom tree as

YWB)=<y(0),  YWO+N/2,  vu(2),  Yu(2)+N/2, ...
o oYWIN/2-2), yy(NJ2-2)+N/2,
WON), (NN, (N/2+2), ¥, (N/242)+N/2,
o WWN-2), vy (N-2)+N/2>
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This is I, as it should be for the bottom tree of KYKLOS-11<2,2,n>.

2.3.3 KYKLOS-III
KYKLOS-1IT may be derived quite easily from the W-form of KYKLOS-II. The
procedure to obtain KYKLOS-III is

For 0<i<N/4,
{

Remove the link between q,; and 4,
Connect Gy 10 A,y pmog nya

}

This is shown in Fig. 2-10. The original links are shown in dashed lines while the new
links are in dark lines. Observe that there is a complete ring threading through the
processors and the level +i nodes. It is from this fact that the KYKLOS? Network

derives its name. Finally. note that the degree of each node remains unchanged.

2.3.3.1. LS for the Bottom Tree of KYKLOS-IXI
The LS for the bottom iree in KYKLOS-II<2.2.n> is Iy from Lemma 2.1. From

Theorem 2.1, the LS may be expressed as

Ty=<yy©@),......... ,Y(N/2-1),
TWN/2), YW (N/2+1), YuN/242), . .y (N-2), Y (N-1)> (2.24)

Using Eqn. (2.17) on each of the even terms of the latter half of (2.24), we get -

IKYKLOS is Greek for ring



Note: ao is followed by ao-1, ao-1+N/2 and ao+N/2

= Links removed in KYKLOS-1I1

= Links added to form KYKILGS-II

Figure 2-10: KYKLOS-III

Iy=<w@),. . ..., s Yw(N/2-1),
(2.25)
ag, WNZ2+1),ap, .., ay, ) WwN-1)>

The procedure for building KYKLOS-III from KYKLOS-II involves a readjustment of
link connections between levels 0 and -1 (i.e. in the bottom tree alone). From the
point of view of the bottom twee, the link adjustment is equivalent to the cyclic shift of
Processors

g 7 Ao

—

Ayyg.n Anrjgae
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a, = ay,

do = Qg

In terms of the sequence of (2.25), this corresponds to a left circular shift of the
elements in boldface. Hence, the LS for the bottom tree of KYKLOS-III is the Iy,
Sequence in which every even elemeﬁt of the latter half of the sequence is s_hifted two

notches to the left as under

N ()  vW(N/2-1),
ay, YWN/2+1), a,, . .. ag, Yy(N-1)> (2.26)

Hence, the LS for the bottom tree in KYKI.OS-III is the Quarter-shifted T

Sequence.lo

2.4 KYKLOS Interconnection Philosophy

It a certain subset of processors are clu's4tered in one tree, KYKLOS-IT attempts to
spread them out in each of the other r-1 trees. Thus, link resources in these other trees
may be used to cluster a different subset of processors thereby reducing average
ensemble distances. As a specific example, consider KYKLOS-11<2,2,4> (Fig. 2-11).
Here, processors 4 and 5 are in the same subtree of height 1 in the upper tree.
However, they are in the two different subtrees of height 4 in the bottom tree. Further,
processors 4, 5, 6 and 7 (in the same subtree of height 2 in the top tree) are dispersed
among four different subtrees, each of height 2, rooted at the four nonleaf nodes at
level -2 (the paths from each of these processors to the roots of the subtrees in the

bottom tree is shown in dark lines in Fig. 2-11).

0m [MENESSh], the Quarier-shifted T Sequence is obtained by a right circular shift of the odd
clements in thie latter half of the T Sequence. That topology is-isomorphic to the one generated here.



45

4,5,6,7 are in same subtree

of the top tree.

4,5,6,7 are in four
maximally separated

subtrees of the bottom

tree rooted as shown. v

Figure 2-11: Illustrating m-sense optimality in KYKLOS-11<2,2,4>

Definition 2.1 A KYKLOS-x<m,2,n> is said to satisfy Property P* if any set of m‘ leaf
nodes,

kmd, kmi+1, .., (k+1).m'-1,

0<i<n,

0 <k<m+

in the same subtree of height i in the top tree are each contained in m' distinct subtrees

of height n-i rooted at each of the nonleaf nodes at level -(n-1) in the bottom tree.

In our quest for KYKLOS topologies that try to reduce interprocessor communication
distances (message latencies), this property is especially significant. Note that we are
implicitly considering the use of paths between two processors that are wholly
contained within one of the r trees of a general KYKLOS-x<m,2,n>. As such, we

estimate the pathlength between 2 processors y and z-using each of the r trees. (The
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distance using the ith tree is designated d, (y,z) where x is the KYKLOS version
number.) We then select the one (or ones) that yield(s) the minimum pathlength. We

refer to this distance, d,,.(y,z), as the m-sense distance 1.e.

d,.(y,z) = min,_ 1r {dy(y.2) )

2.4.1 M-sense Optimality

Property P#* can be expressed in terms of m-sense distances in the general case of r
Y

trees:

Definition 2.2 If V y,z € {leaf nodes}, y#z

dly) =21 => - dy(y.2)> 20D,

1 <1 <1, 1#]

then the corresponding KYKLOS-x is said to be optimal with respect to the m-sense

distance characteristics (abbreviated m.s.o.).

Example 2.4 Consider a KYKLOS-1<2,2,3> (Fig. 2-2(a)).
Here d,,(2,3) = 2, where Tree 1 is the top tree.
Howeverd,,(2,3) = 2 <2n - d,,(2,3) where Tree 2 is the bottom tree.

Hence the optimality criterion fails and KYKLOS-I is not m.s.o..

We next turn our attention to constructing m.s.o. KYKLOS topologies.

2.4.2 Procedure to construct m.s.0. KYKLOS-x<m,2,n>

We begin with an unlabeled bottom tree of height n and a list of labels <0, 1, . . .,
N-1>. The list may be thought of as a pack of cards that has to be dealt out by the root
to each of the level -(ri-l) nodes such that at no instant in the dealing process (or at the
end of it) is the number of cards dealt out to any two nodes greater than 1. For

example, the deal shown in Fig. 2-12 is illegal. This is so since a snapshot of the deal,
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represented by the dashed line of Fig. 2-12, shows that at the instant of the snapshot
two more cards were dealt out to node 1 than to node O thus violating the invariant

above.

1

3

7
12 9 1
13 11 14 A VALID SNAPSHOT
23 21 22

Figure 2-12:  Anillegal Deal by the root of a ternary KYKLOS

When all cards have been dealt out by the root, each level -(n-1) node deals out its
recelved deck of cards to its descendants, again taking care to satisfy the above
invariant.  The procedure is repeated until the labels have propagated to the

Processors, one per proCessor.

We state without proof!! that
e The LS that results for the bottom tree using the above procedure

generates an m.s.o. KYKLOS.

« Further, if each node deals out labels in a round-robin fashion starting
with its Jeftmost descendant, the procedure above will generate an LS for
the bottom tree corresponding to I'y. This is shown in Fig. 2-13(a). The

list of labels that each node receives is shown alongside the node.

UPproof of these results are being compiled into a report
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¢ Finally, in a binary Double Tree, let cach node on the right hand side of
the bottom tree (except for level -1 nodes and the root) deal out its labels
in a round-robin fashion up to and including the pénultimate round of the
deal. If in the final round, the cards are dealt out in reverse order, then the
LS so obtained (Fig. 2-13(b)) is the Quarter-shifted I" sequence presented
in [MENES85(b)] which is equivalent to the LS discussed in Section 2.3.3. 7

“Thus, 1n this case KYKLOS-III is generated and the topology is m.s.o.

We will return to the subject of m.s.0. KYKLOS topologies in Chapter 4. Before that
we will look at strategies for routing and associated distance properties for KYKLOS-

il in Chapter 3.



10
12
14

(a) KYKLOS-II

(b) KYKLOS-III

Figure 2-13:

Dealing Iabels to obtain KYKLOS-1I/(1]
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Chapter 3

Basic Routing Strategies and

Associated Distance Properties

"It is reasonable to expect that different topological variations of KYKLOS will employ
different routing tecimiques—. In addition, the same topoldvgy may have a spectrum of
routing strategies used for interprocessor communication. Thus, the Cross—product:
{Topology x Routing Strategy} will, in general, map to different distance and traffic

characteristics as shown in Fig. (2.4).

Set of Routing Strategies,

Topology 1. Set of Characteristics,
Property 1.

Set of Routing Strategies, | Set of Characteristics

Topology j. , Property k.

figure 31 Mapping {Topology x Routing Strategy] to Properties

50
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In the first two sections of this chapter, two different routing strategies for KYKLOS-
II<m,2,n> are presented and their distance characteristics are explored. The last
section concludes by comparing the distance characteristics as a function of topology

and routing strategy.

3.1 M-II Routing and Distance

3.1.1 Motivation _
In Section 2.4 it was shown that both, KYKLOS-II and KYKLOS-IIT were m-—sense'

optimal. The optimality clause for a KYKLOS-x<m,2,n> may be rewritten as:

d,(y,z) + d, (y,z) > 2n.

In words, if the distance between 2 processors in one tree is small ( < n ), the
corresponding distance in the other tree 1s somewhat larger ( > n ). For example, in
KYKILOS-11<2,2,3> (Fig. 3-2), Processors 0 and 1 are separated by 2 link traversals in
the top!? tree. In the botiom tree however, there are 6 links separating them. This
means that some other processcr(s) (eg. 4) has(ve) been brought closer to 0 in the
bottom tree.  The implications of this property to reducing interprocessor
communication latency suggest that we consider the option of using either the top tree

or bottom tree (whichever vields a shorter path) to route messages.

2Top Tree is used synonymously for Upper Tree or Tree 1. Botom Tree is used synonymously for
Lower Tree or Tree 2 - - -
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B

Path between 0 and 1 (Top Tree)

N o Path Between 0 and 1 (Bottom Tree)
Figure 3-2: Illustrating Optimality in KYKLOS-11<2,2,3>
3.1.2 Basic Definitions and Results

Let S be the source address of a message and D be the destination address. For a

KYKLOS-x<m,2.,n>, these may be expressed as n-digit m-ary strings.

S=5,48,5.5 0<s,<m
D=d,_,d,_,..d, 0<d,<m
0<i<n

Definition 3.1 Let Z, be the finite alphabet {0,1, ..., m-1}. Thens, d, € X _and
S,De 2.

It is clear from Fig. 3-3(a) (top tree of Fig. 3.2) that S and D will be in the same half

(subtree of height n-1) of the upper tree if the most significant bits (MSB)!3 of their

3By convention the M_SB is bit 0 from the left or bit n-1 from the right ~
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addresses are the same. Further, they will be in the same subtree of height n-2 if in
addition bit n-2 of their addresses are the same. We could continue to check
successive bits until we find a mismatch, say in bit t from the left i.e. bit n-t-1 in the
example of fig. 3-3(a). This would imply that S and D are in the same subtree of
height n-t but in different subtrees of height n-t-1, 0<t<n, of the top tree. In general,

the equivalence of the following propositions holds:
PL.1 (Sn—l = dn-—l) A (én_z = d,.;z) e A (Sn—z = dn—r) A (’Sm—t——l & dn——l~—1)

P1.2 S and D are in the same subtree of height n-t but in different subtrees of height
n-t-1 of the top tree.

P1.3 d,,(S,D) = 2(n-t)

In Chapter II, it was shown that the LS for the bottom tree of KYKLOS-II<m,2,n>
was a digir reversal of each element of the sequence <0,1,..,m"-1> used to label
processors in the top tree. Hence, the process of searching for a match between
successive digits in S and D to ascertain their distance in the bottom tree would have
to begin from the least significant digit. For example, S and D are in different subtrees
of height n-1 of the bottom wee in Fig.3-3(b) if S and D differed in the least significant
position, etc. Let us suppose that the first mismatch occurred in digit position b. Then

corresponding to P1.1-P1.3 for the top tree, we have for the bottom tree
P21 (sy=dp) A (s, =d) . A, =d, ) A (s, # d,)

P2.2 S and D are in the same subtree of height n-b but in different subtrees of height
n-b-1 of the bottom tree.

P2.3d,(S.D)=2(n-b) .
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&
0000 0100 ® 1000 l 1100
-0101 1001 l 1101
0010 b om0 | 1010 1110
0011 o111 1011 . 1111
(a) Upper Tree

1010 z

1001 ® -
0110 ¢ 0101 l
1100 1110 1101 1111

(b) Lower Tree

Figure 3-3: Ilusmating P1.1-P1.3 and P2.1-P2.3 in KYKLOS-11<2,2,4>

Definition 3.2 The "distance vector" between S and D, denoted X(S,D), is an n-bit
binary string (i.e. X(S,D) € £2) defined as '
X=X, X, e Xp

where
x;=01fs; = d;
=] otherwise.
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We will also use u; or v; to represent a string of digits or bits. The lengthof a string u
will be denoted lul. y; will represent a single digit or bit. Finally "<" will represent the
relation "a substring of" and "" will represent "not a substring of". Thus 011 < 10111

but 011 % 10101.

Remark 3.1: Except in-the trivial case where S=D, X(S,D) may be represented as 0‘u0®
~ where u = 1 or lu;1. In English, t and b are respectively thé maximum number of 0’s

beginning at the MSB and L.SB end of X(S,D). Since IX(S,D)l=n, b+t < n.

Remark 3.2: If u; and u, can respectively take k, and k, different values, uu, (the

concatenation of u; and u,) can take k k, different values.

Using the definition of X(S,D) and the equivalence of P1.1 and P1.3, and P2.1 and
P2.3 we obtain:

Lemma 2.1 (Tree Distance (TD) Lemma) The distance between S and D in KYKLOS-

II<m,2,n>1s

2n-21 using the top tree where X(S,D) = 0'1u,
and

2n-2b using the bottom tree where X(S,D) = u,10°.

An immediate application is to the m-sense distances in KYKLOS-II<m,2,n>
introduced in Section 2.4. These may now be expressed in terms of t and b viz.
d,,(S,D) = min{d,,(5,D), d,,(S,D)}

= min{2(n-t), 2(n-b)}

whence
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Theorem 3.1 In KYKLOS-1I<m,2,n>,

d,»(S,D)=2(n-t) if t 2 b (top tree)

= 2(n-b) otherwise (bottom tree)

3.1.3 M-II Routing Algorithin
The strategy that uses one of two trees exclusively, whichever yields Minimum

distance in KYKLOS-1I<m,2,n> is termed M-II Routing Strategy.

Let S be the source and D the destination for a message transfer.
At source Processor:
Compute X(S,D), t and b.
Then, if t > b, use the top tiee
else if b > t, use the bottom tree

else either tree may be used.

To route through the top (bottom) tree, send message toward the root through n-t (n-b)
switch levels. Then reflect message back toward leaf nodes using

At level i(-1) switch, if digiti-1 (n-i) of D = j, route to j* child.

Example 3.1: Let S =31(11111), D = 13(01101) in KYKLOS-11<2,2,5> (Fig. 3-4).

So X(§,D0)=10010, t=0 and b=1.

In this case, the M-1II Routing Strategy will prescribe the use of the bottom tree and a
message between S and D will traverse four levels towards the root before being

reflected towards its destination.
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= M-sense Path

S=31
D=13

Figure 3-4: M-II Routing in KYKI.OS-11<2,2,5>

3.1.4 Distance Matrices
Interprocessor distances will be represented by N x N matrices. Each such matrix has
two subscripts: the first qualifies distance and the second subscript, x, denotes the
KYKILOS version number.
Definition 3.3
¢ D,, = Tree 1 (Upper Tree) Distance Matrix defined by
D, il =d, (), 1 € {leaf nodes}. |

* D, = Tree 2 (Lower Tree) Distance Matrix defined by

D, [1i] =d,.(1,)) . 1) € {leaf nodes}.
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e D . = M-sense Distance Matrix defined by

D, lijl=4d,.3G.)) ,1j € {leaf nodes}.
These matrices for KYKLOS-11<2,2,3> are shown 1n Fig.3-5.
Comments

Row Permutatibility Property: Any row is a permutation of any other row. This
implies that the distance characteristics as viewed from one processor are identical as
viewed from anv other. For purposes of analysis we need consider any one row (say

row O corresponding to Processor 0).

Worst Case Distance: This is characterized by the following definition.

Definition 3.4 M-sense processor diameter, denoted X, ,, 1S the maximum m-sense
distance between any two processors. By analogy, processor diameters for Tree 1 and
Tree 2 are denoted k,, and k,, respectively. In the case of KYKLOS-11<2,2,3>, for

example, k;,=k,,=k .=6.

Average Distance: The average m-sense interprocessor distance in KYKLOS-
I1<2,2,3> 1s 4.00 (Fig. 3-3) while the corresponding value for KYKLOS-1<2,2,3> is
4.86. Average distance values are computed in Section 3.3. Before that, however, the

m-sense interprocessor distance distribution is derived.



02446666 06462646 02442646 02442446
20446666 606462064 20446264 20444264
44026666 46064626 44024626 44024624
44206666 64606462 44206462 44206442
66660244 26460646 26460244 24460244
66662044 62646064 62642044 42642044
66664402 46264606 46264402 46244402
66664420 64626460 64624420 64424420
Dy, Dy, D,., I)p2

3.1.5 Interprocessor Distance Distribution

Figure 3-5: Distance Matrices for KYKLOS-11<2,2,3>
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To make concrete our comparison of various KYKLOS networks, we attempt to

estimate the number of processors at distance 2d from processor Q.

Definition 3.5 M-sense Reach Numnber, denoted p,,(d,n), is the number of processors

that are at a distance 2d from Processor O using the M-II Routing Strategy in

KYKLOS-x<r,m,n>. In particular, p,,(d,n) = 1{uld_,(0,u) = 2d}I.

Example 3.2 For KYKLOS-1I<2,2,3> (Fig. 3-5),

me(I’S):?"
p,n2(2$3):3:
P ,(3.3)=2.

Theorem 3.2 In KYKLOS-II<m,2,n>,

P,o(d,n) = 2(m-1)md-, 1 <d < ln/2]
= 2(m-Dme ! - L(1-/m)m2 ], [n2] <d <n ‘

Proof Case (i): [n/21<i < n

Define a set of distance veciors,
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(3.1

A; = {ulu=01y,)
Since b+t<n from Remark 3.1 and t=i > fn/Z_L

t>b (3.2)
From Theorem 3.1 _

d,,(0,u)=d ,(0,u)=2(n-1) ' (3.3) .
Define

B, = {ulu=u,10%) : ' (3.4)

In a similar fashion,

b >t (3.5)
and

d,»(0,w)=d,,(0,u)=2(n-1) (3.6)
From (3.3) and (3.6),

{uld, ,(O,u)=2(n-1)} = A, U B, 3.7
Taking cardinality of both sides and using Defn. 3.5,

p,,(n-i,n) = Al + IB| - (3.8)

since from (3.2) and 3.3 A,N B, =@

To find IA[, note that ue A; => u=01y,. In terms of the destination address,
substrings 1 and u, may respectively be defined as elements of S| = {xI xe X, x#0)
and S, = {ul ue 5"} so that IS, = m-1 and IS,| = m"*!. From Remark 3.2, IA] =
(m-1)m-1, "

Since a similar analysis also holds for B, it follows that (3.8) may be expressed as
D a(n-in)=2(m-Dm==1, 0 <i<{n2] | (3.9)



Case(ii): 0 < i < ln/2]
Define A, as

A; = {ul=0Tuu,, lu,l=1,1<u,}

Vu e A, t=iand b<isince 1<u, and lu,l=i

So
b<t

From Theorem 3.1
d,»(0,u)=d,(0,u)=2(n-1) <d,,(O,u)

Define

B ={ulu=v,v 104 Iv.l=i, 1<v, )

By similar reasoning,

t<b

and
d, ,(0u)=d,,(0,0)=2(n-1) <d;,(0,u)

Define
C={ulu=011w107)

So
b=t=i

From Theorem 3.1,

d, ,(0,0)=d,,(0,0)=d,(0,0)=2(n-i)

So
{uld, ,(0,u)=2n-2i}=A UB,UC,

Using (3.11),(3.14) and (3.17)
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(3.10)

(3.11)

(3.12)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
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ANB,=BNC=CnNnA=0 (3.20)

Taking cardinality of both sides of (3.19) and using the above fact,
P,o(-1,n) = 1Al + Bl +IC| (3.21)

To find IA] note that ue A, => u=0lu,u,. In terms of the destination address, the
substrings 1, u; and u, may respectively be defined as elements of the sets §, = {xI x
e %, x#0),8,=(ulue ¥ and S; = (ulu e I, u=0) so that ISl =m-1, IS,l =

m*2-1 and IS, = m-1. From Remark 3.2, 1Al = (m-1)(m-1)m*=2~1. Similarly IB,| =

(m-1)(m-1)m*-2-! dnd ICl = (m-1)?m"2-2, On substitution into (3. 21)

D,o(0-1,1)= °(m DmA - [(m?2-1)/m? Jm2 A (3.22)

Case(iii): i = Ln/2), n odd.

The definitions of A, and B are the same as in Case (ii). However C, is defined as
C )= ulu=0107) (3.23)

Here IC,p)l = m-1
so that

p o (n-Ln/2)n) = 2(m-Dm=! - (m-1) (3.24)

I7l

Combining (3.9), (3.22) and (3.24) and substituting n-i for d, we obtain

p,p(d.n) = 2(m-m1, 1<d<lin /zj
= 2(in-1)md- 3 La-ymymeen ] Tl < d <

(3.25)

Example 3.3 Substituing m=2, we verify the values for p, ,(d,n), 1<d<n for

KYKLOS-11<2,2,3> that were obtained by inspection in Example 3.2.



63

3.2 P-II Routing and Distance

3.2.1 Concept of passthrough

Consider a message transfer where
S=ulylu2y2u3

D=udvy3u2ydud

where ludl=lull, u5l=3l, y1 ¢$/3, y2#y4, l2l=i 2 0.
So X(S,D) =u6 1 0¢1u7 '

where lu6l=lull, lu71=lu3l.

In the first phase, let the message be routed from S to an intermediate processor, A,
throﬁgh the top tree where

A =ul yl u2 y4 ud (See Fig. 3-6)

So X(S,A) = Qul+i+i 1 ug

whérc lugl=lu3!

From the TD Lemma (3.1),

d,,(S,A) = 2(n-lull-1-1)

In the second phase, let the message be routed from A to D through the bottom tree.
Since X(A,D) =u9 1 0 +1+F ju9l=lull,

it follows from the TD Lemma that

dy,(A,D) = 2(n-lu5ki-1) = 2(n-lu3l-i-1)

The total pathlength between S and D is therefore

2(n-lull-i-1) + 2(n-u3l-i-1)

= 2(n-1) + 2(n-lull-lu3l-1-2)

=2(n-1)

This establishes




Theorem 3.3 There exists a path using passthrough of length 2(n-i) between S and D

where X(S,D)=u,10'1u, and lu,+hu,l=n-i-2. O

S=ulylu2y2u3

D=ud y3u2y4us

A=ulylu2ydus

A’=ud y3u2 y2u3

Dual Passthrough Path Passthrough Path

Figure 3-6: TIllustrating Passthrough

Note that the two phases above could be interchanged 1.e. the message could be sent
from S to A’ through the bottom tree first and from A’ to D through the top tree in
Phase 2 where A’ = u4 y3 u2 y2 u3. Itis easy to verify that the pathlength will remain
2(n-1). Also, the depth traversed in the top (or bottom) tree using either option is the

same. We say that these two passthrough paths are duals of each other.

The strategy just described will, in general, entail identifying a cluster of consecutive
zeros flanked by "1°s" on either side. The larger the cluster of zeros, the shorter the
pathlength by Theorem 3.3. Let p be the size of the maximum cluster of zeros flanked
by two "17s" in X(§,D). Then it follows that |

Corollary 3.3.1 The length of the shortest path between S and D using precisely one

passthrough is 2(n-p) where 1071 < X(S,D) and 1071 X X(S,D), j>0. O
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3.2.2 Sthortest Path Routing

We are ready to investigate the shortest path between any two processors, S and
D. The following three possibilities are exhaustive:

» The shortest path may involve a single tree i.e. tree 1 only or tree 2 only

(Fig. 3-7(a)) or

» The shortest path may involve both trees with a single passthrough at

some processor A, A#S and A=D (Fig..3—7(b)) or

e The shortest path may involve both trees with multiple passthroughs at

Ay Ay o A (Fig, 3-7(c)).

A D
S
(a) Non (b) Single (c) Multiple
Passthrough Passthrough Passthrough

Figure 3-7: Three Possibilities for Shortest Path

Let us investigate the third possibility i.e. suppose more than one passthrough resulted
in a shorter path between S and D not possible with either one passthrough or no
passthrough .at all.  Let k>1 be the number of passthroughs that will guarantee the

shortest path between S and D.
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Without loss of generality, let t, Eysenslig) DE the excursions (link traversals toward
root) into the top tree and by,b,,...,by .y be the excursions into the bottom tree (Fig.

3-7(c)). The total pathlength, L is given by

L= 2( Sl glennly, | (3.26) .
Then A
Zgﬁ/ozj L+ ZESB_]WJ b;<n - ' (3.27)
or else a simple path through the root of either of tﬁe two trees could be used between
S and D.
-~ Let ,
Uy = X (1) (1) ‘ (3.28)
and 7
D,e = MAX g | gy t{ by (3.29)

fFrom (3.27),
t +b _<n (3.30)

max " Pinax
This implies that each of the one or more bits between the b, leftmost bits and the
1, Tightmost bits of X(§,D) are zero ie. digits t, . through n-b_ -1 of S and D are
identical (Fig. 3-8).

From Theorem 3.3, there exists a path of length 2(b, . +t, ) between S and D using a
single passthrough.

From (3.26), (3.28) and (3.29), the length of this path is < L. We thus have a shorter

path which uses a single passthrough, a contradiction of our earlier assumption that the

shortest path between a giv'en S-D pair may necessitate multiple passthroughs.

This eliminates the third possibility so that
Theorem 3.4 The shortest path between two processors need never involve more than

one passthrough. . [
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n-1 n-bmax tmax-1 0

s L 777

T T T 7% ]

Figure 3-8: Showingb  andt,_, in X(5,D)

This means that the shortest path between two processors is wholly within 1 tree or
involves both trees with oﬁly a single passthrough. If the former is the case; the
pathlength is related to the size of the larger of the two clusters of zclr‘os beginning at
the MSB or LSB end of X(S,D) by Theorem 3.1. If the latter were the case, the length
of the shortest path Woﬁld be related to the size of the largest cluster of consecutive
zeros flanked by 1’s on either side from Corollary 3.3.1. These two cases may be
combined to obtain 7

Theorem 3.5 The length of the shortest path between S and D, d ,(S,D), is related to
the width of the maximum cluster of consecutive zeros anywhere in X(S,D) or, in
symbols,

d ,(S,D) = 2(n-i) where 0" < X(S,D) and 0% % X(§,D), j>O0. O

The symbol d,,(5,D) was used to define the m-sense distance between S and D. By
analogy d,(5,D) has been used to define the p-sense distance between S and
D. P-sense means that, unlike the m-sense case, there is no restriction on passing
between trees i.e. confining the path to one of two trees. -Strictly speaking, the
qualification p-sense is superfluous since distance, by definition, is the length of the
shortest path betwee_:n At\\'o nodes. We, however, retain it for the sole purpose of

differentiating it from the m-sense case. As a further clarification, note that the p-sense
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path is merely the shortest path between two processors which may not even involve

passthrough.

We ﬁad defined t and b as the size of the maximum cluster of consecutive zeros
beginning at the MSB and LSB end of X(S,D) respectively. Also, p was defined as the
size of the maximum cluster of zeros flanked by "1’s". Using these symbols, Theorem
3.5 may be expressed a-s |

Corollary 3.5.1 dpz(S,D) = 2(n-1) where i = max(t,b,p). O

This leads to the P-1I Routing Stxmegy.

3.2.3 P-TI Routing Strategy

Let S be the source and D the destination of a message.

Compute X(S,D). t, b and p.

Ift > bandt = p, use the top tree

else if b > tand b = p, use the bottom tree

~elseif b=tand b 2 p, use either top or bottom tree

else use passthrovgh in the manner described in subsection 3.2.1. where u2 is chosen

so that lu2l = p.

Example 3.4 Consider routing a message from S=31(11111) to D=13(01101) using the
above routing strategy in KYKLO“S—H<2,2,5>. Here X(§,D)=10010, t=0, b=1 and p=2.
So the distance between S and D is 6 link traversals. The path prescribed by the P-II
Routing Strategy is shown in thick lines in Fig. 3-9. Also shown is the dual path in
dashed lines. rFinaHy, nore that the corresponding pathlength between S and D using

M-II routing is € links as shown in Fig. 3-4.

We note some salient points about the P-II Routing Strategy
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= P-sense Path

o

_ _ _ _=P-sense Dual Path

“S=31
D =13

Figure 3-9: P-II Routing in KYKLOS-1I<2,2,5>

Non Passthrough Case If there are two shortest paths between S and D, one using

passthrough and another without passthrough, the latter will be used.

Passthrough Case As noted earlier, every passthrough path has a corresponding dual.

Hence it is possible to use the bottom tree first before passing into the top tree. To

guarantee fairness, both options should be exercised with the same frequency.

It may also happen that there are several clusters of p consecutive zeros i.e. there may
be several candidate values for the prefix ul in the source address string of Section

3.2.1. A discussion of this is postponed until Chapter 4.
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The following definitions and properties for the p-sense distances are direct analogies

of those in the m-sense case.

Definition 3.6 P-sense Distance Matrix, Dp,, is defined as Dp,[i,j] = dp,(i,j), 1,j €

{leaf nodes}. As an example, DP2 for KYKILOS-11<2,2,3> is shown in Fig. 3-35.

. Row Permutatibility: As in the m-sense case, every row is a permutation of every

~ other row. -

Definition 3.7 Processor Diameter, denoted kpz,' 1s the maximum distance between

two processors. From Fig. 3-5, kp2 of:KYKLOS—H<2,2,3> 1s 6.

Definition 3.8 P-sense Reach Number, denoted p ,(d,n), is the number of processors at

a distance 2d from Processor O using the P-II Routing Strategy in KYKLOS-

IT<m,2,1>. 1.e.
ppz(d,n) =HDI dpz(O,D) =2d}L (3.31)

From Theorem 3.5
ppz(d,n) =D IX(0,D)l=n A 0m4<X(0,D) A 0% X(0,D), j>0} (3.32)

Example 3.5 For KYKLOS-11<2,2,3> (Fig.3-5),
p,a(1.3)=2,
p,2(2,3)=4,
p,»(3,3)=1.
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3.2.4 P.sense Distance Distribution
Definition 3.9 Cumulative P-sense Reach Number, denoted ppx’(d,n), is the number of

processors at a distance 2d or greater from Processor 0 using the P-x (Shortest Path)

Routing Strategy in KYKLOS-x<r,m,n> orl4
P CESED Y MY (3.33)
. From (3.32), - ,
P, (d,n) = {D | IX(0.D)l=n A 0% X(0,D), j>0}1 O (3.34)

Extending Example 3.5,
p,,’(0,3)=8
Py (1,3)=7
P (2,3)=5

P (33)=1.

Remark 3.3: p,"(j,n) = m", 1=0,-1,-2, ...
ppz’(n+k,n) =0, k>0

Theorem 3.6  In KYKLOS-II<m,2,n>,

P,y (dn) = =133 p o (d~k.n—k), 0<d<n,n22.

Proof
LetE,;, = (0 lu; | ul=n-k-1 A 0%y, 1>0) ’ (3.35)
In words, E, ; , is the set of all distance vectors (n-bit strings) prefixed by 0*1 and with

suffixes of length n-k-1 that do not have i (or more) consecutive zeros.

We next consider

M Actually N-pp, ' (d+1,n) represents the cumulative reach number, However, the definition as is -
results in some interesting mathematical properties
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Upe0,Bhin = {0%1u; | 0<k<i A lul=n-k-1 A 0% u,j>0) (3.36)

k.in

The above union results in a set of all n-bit strings that have no more than 1.

consecutive zeros or -

={ul lul=n A 0"%u,j>0) (3.37)

kJk:O,iE

k,in

Taking cardinalities and using (3.34) we get

k=0

P’ (n-in) =I{D1 X(WOD) € U, _oE, - - (3.38)
Since the prefixesAO’ﬁl and 0%1, k,#k,, for every pair of strings, one from Ekl.i.ﬁ and
the other from E, inare h1m11ally exclusive 7

Ekl,[,n M Ekz"-‘n =,  k, =k, ' : (3.39)
So o |

Py (n=in) = 2 Eiial N ’ (3.40)

Consider the cardinality of the set E, ;, defined in Eqn. (3.35).
In terms of the destination addresses, substrings 1 and u;, may be respectively defined
as elements of S; = {xIx € X, x=0} and S, = {ul lul=n-k-1 A 0%/ X u, j>0} so that IS,|

= m-1. Also, from Eqn. (3.34), I5,| = ppz’(n—k—i—l,n—k-l) so that Eqn. (3.40) may be

rewritten as

Py (n=in) = > (m=1)p,’ (n—k—i-=1,n~k-1) (3.41)

k=)

Letting d=n-1 and assigning k-1 to k

n—d+1

Dy’ (dn) = (m=1) Z Py (d=k,n—k), 0<d<n
= :

(3.42)




3.2.5 Computing ppz’(d,n)
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ppz’(d,n) is shown graphed on the d,n plane for m=2 (Table 3-1) and m=3 (Table 3-2).

Remark 3.3 defines the quadrant d<0, n>0. We next show that Remark 3.3 supplies

the initial conditions for a set of recurrences defined by Theorem 3.6 which is used to

determine ppz’(d,n), d=1,2,...,n; n=12,...

n-> | 0 1 2 3 4 5 6 7 8
d=-5| 1 2| 4 8 | 16 | 32| 64 | 128 | 256
d=-4| 1| 2| 4| 8| 16| 32| 64| 128 | 256
d=- ] 2 4 8 | 16 | 32 | 64 | 128 | 256

—2| 1| 2 4| 81 16| 32| 64 | 128 | 256
d=-1] 11 2| 4| 8| 16| 32| 6+ | 128 | 256
d=01 1 2| 4] 8] 16| 32| 64| 128 | 256
d=1 1 3 71 15| 31} 63 | 127 | 255
d=2 - 1 50 13 29| 61 | 125 | 253
d=3 | - - ] 8 | 24 | 56 | 120 | 248
d=4 - - - 1| 13 | 44 | 108 | 236
d=5 1 - - - - - 1] 21 81 | 208
d=6 | - - - - - - 1 34 | 149
d=7 | - - - - - - - 1 35
d=8 | - - - - - - - - 1

Table 3-1:  Cumulative Reach Number Values for KYKLOS-1i<2,2.n> (p-sense)

Expanding Theorem 3.6

ppz’(n-k,n) = (m—l)[ppz’(n-k—l,n—l) + ppz’(n—k—Z,n—Z). .. k+1 terms].

From Remark 3.3,

pp2’(—k,0) = ppz’(—k+l,1) = ... = ppz’((),k) =m¥,

k=0

(3.43)

(3.44)

Equation (3.43) defines a k+1* order recurrence while (3.44) provides the initial

conditions. Together, they determine the sequence

Py (-k,0), P Ck+L D)o Py (-k+2,2),



n-> 0 1 2 3 4 5 6 7 8
d=-4| 1] 3 27 | 81 | 243 | 729 | 2187 | 6561
d=-3| 1] 3 27 | 81 | 243 | 729 | 2187 | 6561
d=-21 1| 3| 9 27| 81| 243 | 729 | 2187 | 6561
d=-1| 1] 3| o 27| 81| 243 | 729 | 2187 | 6561
d=0| 1| 3| o 27| 81| 243 | 720 | 2187 | 6561
d=1] - 2 26 | 80 | 242 | 728 | 2186 | 6560
d=2| - | - 4| 22| 76 | 238 | 724 | 2182 | 6556
d=3 | - | - | - § | 60 | 222 | 708 | 2166 | 6540
d=4 | - | - | - | - | 16| 164 | 648 | 2106 | 6480
d=51 - - - - | 32| 448 | 1892 | 6264
d=6| - | - | - i : 64 | 1224 | 5525
d=71 - | - | - - : - : 128 | 3344
d=8 | - | - : : - : i 236

Table 3-2: Cumulative Reach Number Values for KYKLOS-11<3,2,n> (p-sense)
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This sequence may be thought of as being mapped on to discrete (integral) coordinates

on the semi-infinite line d=n-k originating at d=-k, n=0. We refer to the line d=n as the

principal diagonal and to the family of lines d=n-k as paradiagonals (lines parallel to

the principal diagonal).

The following observations are in the nature of corollaries of Theorem 3.6

i) For k=02, the above sequence maps a geometric sequence with factor m-1 onto the

principal diagonal. In the binary case (Table 3-1), this is a sequence of 1’s. This means

that there is precisely one processor at a maximum distance of 2n from any given

processor in KYKLOS-I1<2,2 n>.

BNote that k+1 is the order of the recirrence.
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ii) For m=2, k=1, the sequence mapped onto the paradiagonal d=n-1 is the well known
- Fibonacci sequence in which any term is the sum of the previous two terms. For m=2,
k>1, the sequence is the sum of the previous k+1 terms referred to as a Tribonacci

sequence in [GODS83].

iii) For m>2, the above sequence is a further generalization of the Fibonacci sequence

in that any given téerm is the sum of the preceding k+1 terms multiplied by m-1.

In Appendix B, an attempt is made at studying the roots of the characteristic
polynomial of (3.43) insofar as the results provide insight into certain asymptotic

properties of KYKLOS.

3.3 Comparison of m-sense and p-sense Distance Characteristics

3.3.1 Reach Factor

Definition 3.10 Reach Factor, denoted p_"(d,n), is defined as the number of

processors within 2d link traversals of node 0 in KYKLOS-x<m,2,n> using the z-x

Routing Strategy, expressed as a fraction of the total number of processors.

From Definition 3.5, 1t follows that

E Pt
P,,Q”(d,’l) = 1—:0‘[\/‘*—' (345\

Using Definition 3.9,
- ppz’(a’+l,n)
N

Py (dn) =

P, (d+1,n)

N (3.46)



76

For purposes of comparing the reach factor using different KYKLOS topologies and
routing strategies, consider a 4096 processor KYKLOS (m=2, n=12). Now, in a single
tree or in KYKLOS-I, no more than 50% of the processors can be reached within a
distance 2n-2 (or 22 link traversals in this case). Using the M-II Routing Strategy,
75% of the processors are within 22 link traversals of a given processor as shown in
Table 3-4. Reach Factor values in the p-sense case for KYKLOS-11<2,2,n> are also
~tabulated in Table 3-3. It is for this case that the reach factor Qalues are truly
impressive rvwith_ close to 100% of the nodes being within a distance of 22 link

traversals.

This 1s a special case of a more general observation that the reach factor valies along a
paradiagonal in the M-I case (or in KYKLOS-I) remain constant beyond a certain
value of n. For example, at and beyond n=4, p_,"(n-2,n) is 44%. The corresponding
figure in KYKLOS-1 is 25%. However, p ,"(n-2,n) increases monotonically.. How

long will 1t increase? Does it have an asymptote?

This may be answered by substituting Eqn. B.26 (Appendix B) into (3.46) to obtain

(3.47)
C et i Lol o TC st il ondsq e R+ 1tCMS
ppz“((l,,lz) - 1 1, d+1, 1, d+1, 2, d+1, 2, dl, i
mt
Since Irjl < m, i=1,2, ... n-d+1 (Egn. B.25), it follows that, for a given value of d
lim ppz“(d,n) =1 (3.48)

This implies that'“the reach factor values along a paradiagonal in the P-II case (Table
3-3) asymptotically approach unity. This does not, however, hold for a simple binary
tree (and hence KYKLOS-I) or for the m-sense case as we had observed earlier. In
fact, regardless of the value of n, ppl“(n—l,n) = .5 (reach factor for KYKLOS-1<2,2,n>)
and p,,"(n-1,n) = .75 (for KYKLOS-11<2,2,n> using the M-II Routing Strategy):.



n-> | 4 5 6 7 8 9 |10 | 11 | 12
d=0 ]0.06,0.0310.02]0.01]0.00}0.00]0.00]0.00|0.00
d=1 {0.1910.09|0.05(0.0210.01{0.0110.000.000.00
d=2 10.5010.25]0.1310.06{0.03{0.02}0.010.00|0.00
d=3 10.94(0.5910.31{0.16}0.08}0.04|0.02 {0.01 | 0.00
d=4 ]1.00]0.97]0.67]0.37]0.19]0.0970.05]0.02}0.01

la=5 |- |1.0010.980.73]0.42|0.22]0.11]0.05]0.03
d=6 |- |- ]1.00]099]0.79|0.46]0.25]0.12]0.06
Cla=7 |- - |- ]100]1.00]0.83]051]027]0.14
=8 [- |- |- |- [r00[100]|086]0.55/0.30
d=9 |- |- |-. |- |- |1.00/1.00]0.89]0.58
a=10]- |- [- |- |- |- |roojroofo9r
d=11- |- |- |- |- |- |- ]100|100
a=12- |- |- |- - |-]- |- Jroo

Table 3-3: Reach Factor Values in p-sense case for KYKLOS-1I<2,2,n>

n-> 4 5 6 7 8 9 10 11 12

d=0 | 0.0¢| 0.03] 0.02| 0.01| 0.00| 0.00} 0.00] 0.00{ 0.00
d=1 | 0.191 0.09] 0.05] 0.02} 0.01| 0.01| 0.00| 0.00| 0.00
d=2 | 04410221 0.11} 0.05] 0.03] 0.01| 0.01] 0.00| 0.00

d=3 | 0751 0.44} 0.23] 0.12| 0.06} 0.03} 0.01| .01 C.00
d=4 | 1.00] 0.75| 0.44| 023} 0.12} 0.06| 0.03} 0.02| 0.01

d=5 | - 1.00] 0.75] 0.44] 023 0.12] 0.06| 0.03| 0.02
d=6 | - - 1.00| 0.75] 0.44] 0.23] 0.12] 0.06| 0.03
d=7 | - - - 1.00| 0.75] 0.44] 0.23] 0.12] 0.06
d=8 | - - - - 1.00| 0.75| 0.44] 0.23] 0.12
d=9 | - - : - - 1.00| 0.75| 0.44| 0.23
d=10] - - - - - - 1.00| 0.75] 0.44
d=11] - - - - - - - 1.00| 0.75
ld=12| - - - - - - - - 1.00

i

Table 3-4: Reach Factor Values in m-sense ease for KYKLOS-11<2,2,n>
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3.3.2 Average Distance Estimation

Average m-sense and p-sense interprocessor distances in KYKLOS-II<m,2,n> are

respectively given by

2 2dp, (d,n)
d == ’ 3.49
o) - | (3.49)
and
. d}; 2dp ,(dn)
d(n) = —
_ 5 { [ppz(n,n)]ﬂppz(n—l,n)+pp2(n,n)}...+[ppz(1,n)+pp2(2,n)...+pp2(r1,n)] }
N
2 2 P “(d,n)
S (3.50)

N

d,,n) and dpz(n) are tabulated (Table 3-5) for the binary tree and KYKLOS-I1<2,2 n>
using both M-II and P-II Routing Strategies. Observe that up to 1024 leaf nodes, P-II
Routing improves the average interprocessor distance by 20-25% over the simple
binary tree (and hence KYKLOS-I) though the improvement in the m-sense case is not

as marked.

In Chapter 7, the average distance values are compared with other augmented Binary

Tree topologies and with the Hypercnbe.
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16.15

12122.00

20.67

17.92

13124.00

22.67

19.71

14126.00

24.67

21.51

BT = Binary Tree
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Table 3-5: Average interprocessor distances, Binary Tree and KYKLOS-11<2,2,n>,

m-sense and p-sense



Chapter 4

Traffic Estimation

In this chapter, we look at the traffic through the links in KYKLOS-II<m,2,n>. We
study both, the variation of network traffic as a function of link level as well as the

performance-limiting traffic bottleneck problem.

As in the case of distance properties, KYKILOS-II will be compared with KYKLOS-1
and with the single binary tree. Also, different routing strategies employed in

KYKLOS-II will be compared with respect to traffic congestion, link utilization, etc.

4.7 Preliminaries

To analyze the traffic characteristics of KYKLOS-II, we assume that each link in the
network is being monitored for messages in both directions. We use the "uniform
1essage distribution” model to analyze network traffic. This model provides a useful
upper bound on maximum link traffic by ignoring the effect of locality under which a
real world system would operate. By so doing, the analysis is somewhat simplified.
Moreover, we have a common standard by which to compare different network
topologies. The following assumptions characterize our model
e Al: The probabilitv of a message transfer between a pa@r of processors is
the same for every pair (1,j), 1#j. Further, the average iength of a message

exchanged by any pair of processors is the same.

s A2: If there is more than one shortest path between a given source-
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destination pair under a given routing scheme, each path will be used with

equal probability.

e A3: Each processor has the same probability of generating a message at

any given instant.

From A3, each processor generates the same number of messages in an "observation
interval”, 1. From A1, this "observation interval” may be thought of as being
~comprised of several rounds of message exchange interleaved, a round being a period

during which each processor sends out a message to every other processor.

4.1.1 Symmetry within a given Link Level

From A3, each pair of level =1 links incident on a processor would see the same
number of messages as any other during 1. From the digit reversal property of the LS
for the bottom tree of KYKLOS-II and Al and A2, we conclude that both trees will be
equally utilized. Hence, each link at level =1 will see the same number of messages.
We can extend this argument to encompass higher and higher levels (lower and lower
levels in the bottom tree) until it is clear that each link, at any given level i or -1 will see

the same number of messages in a round of T.

In summary, given the KYKLOS-1I topology, and A1-A3, we conclude that the traffic
through a link is only a function of its level number!® in the network and is

independent of the tree (i.¢. the sign of the level number).

I8An exception to this rule occurs in KYKLOS-II using H-II routing with n odd. This routing is
introduced in Section 4.3, )
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4.2 M-sense Traffic Characteristics
Definition 4.1 Let T, ,(d,n) be the number of messages that traverse a level +d or -d
link in either direction in a KXYKLOS-1I<m,2,n> using the M-II Routing Strategy

under A1-A3 in a round of message exchange.

For a given source, S, define A
Q,={D1d,(S8D)y=2i} | : (4.1)
In words, Q,, is the set of destinations at an'm-sense distance of 2i from S. This means
that a message from S to D*, D’ e Q;,, will traverse links bgtweén levels 1 to 1 in either
top or the bottom tree as shown in Fig. 4-1.. Since a link at level +1 or -1 must see a
message between processor pairs at an m-sense distance 2i from each other, the total
" number of messages through levels *i due to messages originating at S is 2rl0L

Since there are N source processors and 2m"#1 links at level £i, T,,(i,n) is given by:

n

NS 10,

k=t

T .(n) = (4.2)

7 1

Using Defn. 3.5 for p,-(d.n), we have

Theorem 4.1 In KYKLOS-1I<m,2,n>, the link traffic distribution is given by

Toti) = m=1y poo(kn)
k=i

T, »(i,n) is tabulated as a function of level number for KYKLOS-11<2,2,6> (Table 4-1).
Also, the link utilization (Util), defined as the ratio of link traffic to the traffic in the
maximally congested link in the network, expressed as a percentage, is tabulated. For
' comparison, the link traffic densities and utilizatibn for the single binary tree are

included. Note that the maximum traffic density in KYKLOS-II using M-II Routing is



Figure 4-1: Link Utilization of message between processors at an
m-sense distance = 21 '

only about 25% that in the single tree case. Finally, it is clear that the relative
utilization of link bandwidth 1s more uniform in the M-Il Routing case as compared

with that of the single tree.

Level # B-Tree Util M-II Util
6 2048 100.00 512 88.89
5 153 75.00 576 100.00
4 896 43.75 392 68.05
3 480 23.44 228 39.58
2 248 T12.11 122 21.18
1 126 615 63 10.94

B-Tree = Single Binary Tree
Util = Link Utilization

Table 4-1: Link Traffic Density as function of Level Number
in KYKLOS-11<2,2,6> using M-1I Routing and in a single tree (height 6)
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Our next task is to determine the maximum link traffic density and identify the level

number where this occurs.

In Appendix C, it is shown that for m23 (Eqn. C.4),
Pt (d ny > pod-1,n) 2<d<n, nz22

So zpmq(z AP, o(dn) > 2 Pl

i=d-1

So md"Imef,(z n) > md2 2 pmz(z n)
i=d—1

or T (dn) > T, (d-Ln), 1<d<n, n>l. (4.3)

Using reasoning similar to the above, it follows from Appendix C (Eqn. C.5) that for
m=2, n>2,
T (dn)y > T .(d-1,n), 1<d<n-1. 4.4)

Hence the maximum link traffic should occur at level n or n+1. Using Theorem 3.2

for expressions for p,,(n-1,n) and p, ,(n,n), n=4, and substituting into Theorem 4.1,
T, .(n,n) = N%/8 (4.5)

and
T, (n-1,n) = 9N%/64 (4.6)

Using (4.3)-(4.6) and Theorem 4.1, we have

Theorem 4.2

Under A1-A3, the maximum traffic density in KYKLOS-1I<2,2,n>,

n>4, using M-Il Routing 1s V
ON?/64  messages/link and occurs in level n—1 links.

In KYKLOS-II<m,2,n>, m=3, n=2, the maximum traffic density is
(rm—1)2N?

m3

messages/link and occurs in level no links.
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4.3 H-II Routing and Traffic

4.3.1 Concept of Slice
Definition 4.2: A slice of KYKLOS-x<m,2,n> is a subgraph composed of:

1. nodes from levels i to -(n-1) inclusive,

. links between levelsito -(n-1),0 <1 < n. 7
A slice in KYKLOS-1I<m,2,n> will be denoted by the symbol SL(i,n), where i is the
level number which constitutes the upper (top tree) boundary of the slice (Fig.: 4-2).
The slice SL(n,n) is the subgraph from level n to level O which, of course, corresponds

to the upper tree and SL(0O,n) corresponds to the lower tree.

SL(4,7

Figure 4-2: Slices in KYKLOS-II<m,2.n>

Theorem 4.3 There exist(s) cne (or more) path(s) between every pair of processors in

SL(Ln), n</<0, of an m.s.0. KYKLOS-x<m,2,n>.



86

Proof Define the set of processors within a subtree as follows:
S,,; = [kl k is a processor with ancestral ties to switch <t,/;i>}.

Sets Sy, O<i<m™'and § 0<j<m' are shown in Fig. 4—3(a-)., Without loss of

2ty

generality assume /<n-/. Consider two processors X,y € S, (see Fig. 4-3(a)). So

d,,(xy) € 21 4.7
From the definition of m-sense optimality (Section 2.4.1) _ _
d,,(x,y) > 2(n-1) - 4.8)
Sox € §,, ,;,=>y¥e S, .. In words, no two processors in the same Su,;‘ can exist

in the same S,

peije Slnce IS, | = m' and 0 € j < m/, we conclude that there exists a

bijection 17 s.1.

E(x)=y wherexeS§,, A xeS§ O<y<m’ (4.9)

i 2~y

To prove that every pair of processors within SL(/,n) is connected, consider two

arbitrary processors, a € S and b € S2,n—1,b1‘ If a, = b, they are obviously

Z,n—-l,al

connected. If not, from (4.9), there exist processors §,71(a,) € S“_,a1 and ;7 1(b,) €
“1(n ) £ -1 . -

Synp, St & 7'(@), §7'(by) € S, 5 Hence a path between a and b would be

a->&;7(a,) ->Ey7I(b,) -> b. This is represented pictorially in Fig. 4-3(b). O

To each slice, there corresponds a different routing strategy and hence a different set
of distance and traffic characteristics. A slice of special interest is the mid-slice
defined as SL(.rn/ﬂ). While the mid-slice could be defined using the floor function,

we will use the ceiling function unless otherwise specified.

We next present a routing algorithm which utilizes a mid slice to route a message

between an arbitrary source-destination pair in KYKLOS-II<m,2,n>. Because this

TThe subscript for & should, more appropriately, involve tree and level number besides node .
number. We have, however, dropped the former two since it is clear that we are referring to level [ of
Tree 1 - | ' :



87

SIJ.O

(a) Subtrees within SL(},n)

(b) Pathfromatob.

Figure 4-3: SL(l,n) with subtrees S, ,;and S, ,_,; and
path between aand b

strategy ensures that a message need travel at most half-way (or less) between the

leaves and roots of either tree, it is referred to as the H-II Routing Algorithm.

4.3.2 H-1I Routing Algorithm

- Let the source and destination for a message transfer be respectively represented as
S=ul u2, and

D=u3ud,  lu2i=ludid n/2], lnli=lu3i=Ln/2.].

Let A=ul v4

Step 1 If u2 # u4, use upper tree to route message from S to A. .
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Step 2 If ul # u3 use lower tree to route message from A to D.

Note that X(S,A) = 0126, u6l=l n/2]. From the TD Lemma (3.1), d;,(S,A) < 2(n -
In/2)) =2n2]1 or alternately, no more than [1n/21 levels of the upper tree would be
utilized in this step. By similarly considering X(A,D), we conclude that at most
2Ln/2J link traversals of the bottom tree need be uuhzed in Step 2. Clearly, this
strategy. has confined a path between S and D within a mid slice.!8 In aﬁalogy to P-11
and M-II Routing, we will refer to the path carved out by application of the H-1I
Routing Algorithm between two processors, S and D, as an A-sense path and denote

the pathlength as d,.(S,D).

Finally, as in P-II Routing, the order of the above steps could be reversed i.e. the
message could be sent from S to u3 u2 via the lower tree and then forwarded to D
through the upper tree. This path is the h-sense dual of the path prescribed by the H-11

Routing Algorithm (in analogy to the p-sense dual introduced in Section 3.2.1).

Example 4.1 Consider routing a message from S=OOllOAto D=01011 in KYKLOS-
11<2,2,5>. Here ul=00, u2=110, u3=01, u4=011 and A=00011. So X(S,A)=00101 and
u6=101. The entire h-sense path is sketched in dark lines as shown in Fig. 4-4. Note
that three levels in the top tree and two levels in the bottom tree are used. The dual

h-sense path is shown in the dashed lines of Fig. 4-4.

8Note that Theorem 4.3 established the existence of a path between every pair of processors in a
slice of any m.s.o. KYKLOS. The above algorithm cxplaxm how to route a message between any two
processors in a mid slice of KYKLOS-1I<m.2,n>,
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= H-sense Path

= H-sense Dual Path

“(’? // -

Figure 4-4: Example of H-1I Routing in KYKLOS-1I<2,2,5>

4.3.3 Traffic Analysis of H-II Routing in KYKLOS-II<m,2,n>
Definition 4.3 Let T,,(d,n) be the number of messages that traverse a level +d or -d
link in either direction in a KYKLOS-II<m,2,n> using the H-II Routing Strategy under

A1-A3 in a round of message exchange.

For a given source, S, define a set of processors R, , 1 <i<[n/2]as
R, = (DIX(SD)=u,0"H 1 u,, lul=ln2] lu=i-1) | (4.10)

From Step 1 of the H-Il Routing Strategy, a message from Sto D’, D’ ¢ R,, would -
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passthrough an intermediate processor A>1? such that X(§8,A")=0""1u,. From the TD
Lemma, d,(S,A’)=2i or equivalently two links20 at each level j, 1<j<i, would be
used for the message transfer. The total number of messages originating at S to every
possible destination flowing through level i links in either direction is 22&';.][12,011.
There are N possible source processors and a total of m™ ! links at level i. So the

average traffic per level i link T,,(i,n) in both directions is
[n/2]

SR,

N

,nn—[+1

T,,(t,n)

il

(2]
2mTE YR, (4.11)
i -

1}

In terms of the destination addresses (m-ary strings), substrings u;, 1 and u, in (4.10)
may be respectively defined as elements of the sets S; = {ulu € E&'Im}, S,={ulu e

Z,’n,u¢0>} and Sy = {ulu € Z‘;l} so that from Remark 3.2, R, I = (m-1)min2bk1,

I

Computing Zi’;/iﬂl/?k"! and substituting in (4.11) gives
T o (i,n) = 2mi! (mmmla/2ei-1y 1<i<ln/2] (4.12)

From symmetry considerations, we get
Theorem 4.4 The link traffic density in KXYKLOS-1I<m,2,n>, using the H-II Routing

. Strategy is given by

T,(1n) = 2mi- (mn-mt20-1y | n2f <1 < [nf21, 120
=0, i>[n/2lori<Ln/2l.

Table 4-2 is the counterpart of Table 4-1 showing T,,(i,n) as a function of level

Yexeept if u;=01ec. A'=D

2anc for the rootward, the other for the Teafward traversal of the m cssage
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number in KYKLOS-11<2,2,6>. Comparison of link utilization using H-II Routing
with that in the single tree offers some interesting contrasts. Whereas the most heavily
used links in the single tree are at level n, these links are totally unutilized as a result
of H-II Routing in KYKLOS-II. The luxury of keeping the links between levels n and
[n/2] unutilized is, however, a small price to pay. This is so since the other levels,
where most of the network resources (nodes énd links) are concentrated, are
considerably better (more uniformly) utilized whereas those same levels were sévcrely
underutilized in the case of the single tree. For example, the traffic through level 1.
links is about 50% of the maximum link traffic density using H-II Routing. By>
comparison, level 1 links in a single tree carry only about 6% of the traffic carried by -
the maximally congested links. Finally, the maximum traffic density using H-II.
Routing is only about 12% that in the single tree, a significant improvement. We now

proceed to estimate the maxumum link traffic density as a function of N.

Level # B-Tree Util H-1I utit |
6 2048 100.00 0 0
5 1536 75.00 0 0
4 896 4375 0 0
3 480 23.44 256 100
2 248 12.11 192 75.00
1 126 6.15 112 43.75

B-Tree = Single Binary Tree

Util = Link Utilization

Table 4-2:  Link Traffic Density as function of Level Number
in KYKLOS-11<2,2,6> using H-II Routing and in a single tree (height 6)

Corollary 4.4.1 The maximum link traffic density in KYKLOS-li<m,2,n>, n>3, using

the H-1I Routing Strategy is

o 2(m-1)NI3/m? and occurs in level +n/2 links when n is even and

¢ 2(m-1)N'/m*= and occurs in level (n+1)/2 links when n is odd.
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Proof: In Appendix C (Result C.6), it is shown that in KYKLOS-1I<m,2,n>, n2 3,
Tp@dn) > T,G-1n),  1<i<[n2]

By symmetry,

T, > T,G(+1,n), o2 <i<-1,n24

Using this fact and Theorem 4.4 leads to the result. [
4.4 P-s»ense Traffic Characteristics »

4.4.1 Modified P-1I Routing

4.4.1.1. Motivation 7 |
Consider routing a message from S=000010 o D=101000 in KYKLOS-1I<2,2,6>.
Here X(S,D)=101010, t=0 and b=p=1. ' ‘

From Corollary 3.5.1, the length of the shortest path between S and D is 2(n-

max{t,b,p}) = 10. There are five distinct shortest paths enumerated below (see Fig.

4-5).

S --(bottom tree)---> D

S --(top tree)------ > 001000 ---(bottom tree)--> D
S --(bottom tree)---> 100010 ---(top tree)-----> D
S --(top tree)------ > 000000 ---(bottom tree)--> D
S --(bottom tree)---> 101010 ---(top tree)----- > D

The P-1I Routing Strategy of subsection 3.2.3 would‘ prescribe the path in (1) above.
The spirit of this strategy may be cast as follows: '

"If there are multiple shortest paths between a given source-destination pair, usé one
that does not involve passthrough, if such a one exists." This would, in some meésure,
obviate the need for an intermediate processor to handle routing, leaving that tésk to

the switches wherever possible.
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o
e (v

Path 1

(@) o ©
Figure 4-5:  All shortest paths between S=000010 and D=101010

Paths 2 and 3 are dual paths; they involve levels 1-4 of the top tree and only level 1 of
the bottom tree. Similarly, 4 and 5 are dual paths; they involve levels 1 and 2 of the
top tree and levels 1-3 of the bottom tree. Note that the links involved in paths 4 and 5
are closest to the leaves. Experience with the traffic characteristics of a single tree, and
with the M-II and H-II Routing Strategies in KYKLOS-1II suggests that link saturation
affects links near the roots first?!. This is to be expected because the number of links
decrease geometrically as one proceeds from the leaves to the root. If link traffic were
a consideration, we should use links closest to the rleaves, should such an option exist.
For the example above, thié modified P-1I Routing would prescribe the use of paths 4

or 5.

210 the case of H-II Routing, links at the slice extremitics are maximally.congested
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In general, the modified P-11 Routing Strategy aims at selecting a shortest path which

uses link levels closest to the leaf nodes.

4.4.1.2. Modified P-I1 Routing Algorithm

For a given X(S,D), let k=max{t,b,p} i.e. 0*<X(S.D) A 0¥/ X(§,D), j>0

Let X(S,D)=u,0, s.t. Vv,,vo(X(S,D)=v,0kv, . => My Huyll< vy -lv, 1.

Then, |

if (luy1>0 A lu,/>0),

| use the strategy outlined inr Section 3.2.1 with pa’-ssthr-ough occurring at A
where X(S,A)=u,0%, |

else use M-1I Routing a la Section 3.1.2.

Note that lu,l and lu,! correspond respectively to the excursion into the top tree and
bottom tree.

Example 4.2 Returning to the above example, Table 4-3 shows the differeut
candidates for u, and u, satisfying X(S,D)=u,0u,. Of these, only the candidate in the
third row of the table minimizes the value of llul-lu,ll and hence the modified Routing

Strategy favors paths 4 and 5 with a view to minimizing the maximum traffic density.

Path # ul u2 Hull-juzl|
1 10101 - 5
2.3 1 1010 3
4,5 101 10 1

Table 4-3: u, and u, for alternate shortest paths

4.4.1.3. Muitiple Shortest Paths

As before, any source-destination pair which has a shortest path employing
passthrough will have a dual shortest path. However, in some cases it may be possible
that there exist vy, v,, s.L. ”

X(S.D) = v,0kv, = u,0%u. and llv v 1=l ol = v
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For example, if X(S5,D)=101101,
u,=1, u,=1101
v;=1011, v,=1 so that ly)l-luylt = llv I-lv,ll=3 These two possibilities leading to four

distinct shortest paths are sketched in Figs. 4-6(a) and (b). Observe that the first

alternative (u,=1, u,=1101) uses four levels of the top tree and one level of the bottom
tree. The second alternative uses one level of the top tree and four levels of the bottom _
tree.

Dual Paths,
ul=1,u2=1101

Dual Paths,
v1=1011, v2=1

Figure 4-6: Example of multiple traffic-minimizing, shortest paths

A case that deserves special attention is when X(S,D)=1". In keeping with the spirit of
the modified P-1I Routing Strategy, an intermediate processor, A, could be used where
X(S.A) = o w2 ylnr] op (Lar2dqlne2]

or 1Rl o 1larnigfnn]
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Of course these reduce to just two possibilities for even n.

As in the case for the other routing strategies, we define link traffic density for the
modified P-II Routing Strategy. |

Definition 4.4 Let T ,(d,n) be the number of messages that traverse a level +d or -d
link in either direction in a KYKLOS-II<m,2,n> using the modified P-II Routing

Strategy under A1-A3 in a round of message exchange.

4.4.2 Comparison of Link Traffic Characteristics
A program to implement the modified P-II Routing Algorithm was written. Both
network resource utilization and maximum traffic density for varying network sizes

were obtained. These are discussed nexi.

4.4.2.1. Link Utilization

Shown in Table 4-4 is the waffic density as a function of link level in KYKLOS-
11<2,2,6> (p-sense) and the binary tree. Note that the traffic in the P-1I case exhibits
the best distribution over the different levels compared with the distribution in the
single tree (or KYKLOS-I) or that in KYKLOS-II using the other routing strategies
(see Tables 4-1 and 4-2 for comparison). For example, the plentiful links closer to the
leaves are considerably better utilized with P-II routing in KYKLOS-II than they are
in the single tree while the upper level links (toward the root) have better utilization

than the corresponding links in the H-1I case.

4.4.2.2. Maximum Traffic Density

Table 4-5 shows the maximum link traffic density as a function of n using each of the
three routing strategies for KYKLOS-II<2,2,n> and the level where this occurs.
Included for comparison is the maximum traffic density for KYKLOS-T (K-I). Note
that the performance of P-1I surpasses all other cases up to N=2048. Also, the

improvement over KYKLOS-I in both, P-1I as well as H-II increases with .
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Level # B-Tree Util P-1I Util
6 | 2048 | 100.00 0 0.00
5 1536 75.00 43 24.49
4 896 375 | 152 77.55
3 4380 23.44 196 100.00
2 248 211 154 78.57
1 126 6.15 98 50.00

B-Tree = Single Binary Tree
Util = Link Utilization

Table 4-4: Link Traffic Dex151ty as function of Level Number
in KYKLOS-11<2,2,6> using P-II Routing and in a single tree (height 6)

Table 4-5 shows that the maximally congested links are descendants of the root in
KYKLOS-I, two levels below the root in M-II and at the nud-slice extremities in H-II.
Also, the maximally congested links in P-II are two link levels below the root up to
N=16. Between N=32 and N=2048, the maximum congestion occurs at three link
levels below the root. In fact, beyond N=8192, the maximally congested links descend
yet another level. Of greater significance is the fact that beyond N=2048, H-II

outperforms P-II. Could these observations be rationalized?

To gain a better understanding of the variation of maximum traffic density with N,
T .. has been plotted vs. N on a log-log scale for each routing strategy (Fig. 4-7).
Note that each curve 1s or approximates a straight line (or is piecewise linear). This is
so, since T, . Is O(Nz) for K-I and M-Il differing only by a constant of
proportionality. The average slope for the H-II plot is less, reflecting the O(N3)
variation of T, with N. (Note that the slope 1s proportional to the index of N). The
P-1I plot seems to have a slope that increases very gradually . Could it be that in this
case T, = O(N®) where {(n) is a slowly increasing function of n? A partial answef

to the above question is attempted next.
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n K-I LL# M-1I LL# H-II | LL# | P-II |} LL#
3 16} 3 10 2 16 2 91 1
4 64 4 36 3 321 2 26| 2
5 256 5 144 4 128 3 66| 2
6 1024 6 576 5 2561 -3 196 3 .
7 4096 7 2304 6 1024 4 568 4
8 16,384 8 9216 7 2048 | 4 1616 5 -
9 65,536 9 36,864 8 81921 5 - 4960 6
10 262,144 10 147,456 9 16,384 5 15,808 7
111,048,576 1-1 589,824 10 65,536 6 51,840 8
1214194304 12 12,359.296| 11 131,072, 6 173,568| 8

LL# = Link Level Number 7
K-I=KYKLOS-1<2,2 n>
M-II = KYKLOS-11<2,2,n> using M-I Routing
H-II = KYKLOS3-11<2,2.n> using H-1I Routing
P-II = KYKLOS-1I<2,2.n> using P-II Routing
Tabie 4-5: Max. Traffic Density as function of
Topology % Routing Strateg
4.4.3 Lower Asymptotic Bounds on Maximum P-sense Traffic Density
For a given source processor, S, consider the set of processors in KYKLOS-II<m,2,n>
defined by
Z = {DIX(§,D) =0°1u A lul =n-3 A 0! £u,j>0) (4.13)

From the P-II Routing Strategy (Section 3.2.3), a message from S to D, De Z must
traverse a level n-2 link. For N possible source processors, the total number of
messages through level n-2 links is at least NIZI. Since there are m3 level n-2 links, the -

traffic at level n-2 is bounded as follows
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-+ Single Binary Tree
KYKLOS-I<22,n>

KYKLOS-11<2,2,n>, M-Il

Maximum Traffic

24 4
I Per Link

223
2 | (msgs/link})
KYKLOS-I1<2,2 n>, P-1I

KYKLOS-11<2,2 n>, H-II

221 A

TS ERNN SO NN NS SR S SN S SRS SR
1 A SR IR REN CEN SN RIS SAN SN B R

94 95 96 97 98 29 210 511 912 913 914
N, # of Processors

Figure 4-7: Plot of Maximum Traffic Density vs. N
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(4.14)
2NIZI

T .(n—2,n) >
pZ( 3

To obtain the cardinality of the set Z defined in (4.13), note that the substrings 1 and u
in the definition of Z in (4.13) may be respectively defined in terms of the destination
address as elements of the'sets {ulu € X, u#0} and {ulu e E’r‘f, 0 u, j>01}.
From Definition 3.8 and Remark 3.2, IZ| = (m-1)p,,"(n-4,n-3) which when substituted

into (4.14) yields ,
20m=1)Np ,)2'(_11—4,n~3)

T (n~2.n) > (4.15)
- m3
From Appendix B (Equation B.26),
Py (n-4,n-3) = Ty, Colhn Cy,Cy =constant. (4.16)

3 3 v l.q « n
Since Irj5,i<l, p,’(n-4,n-3) may be approximated to Cil,,, for large n. On

substitution into (4.15),

T,(n-2,n) > KINT#g o i, k=constant

In the binary KYKLOS, the P-II maximum traffic density is thus bounded by
Q(NIHegyra 20y = Q(Nlog1435)) — Q(N169), An analysis similar to the above could be
performed to show that the traffic density bounds at lower levels in the tree would
involve the real root of higher degreed characteristic polynomials albeit with smailer
constants. Since the roots increase with degree, the constants in the expression would
dominate for small N and the function of N would dominate for large N. That is why
the maximally congested links descend slowly from the root. Interestingly enough,
this also éxplains why H-1I (with O(N!) maximum traffic density) outperforms P-II

eventually.






Chapter 5

Fault Tolerance

One of the primary motivations for KYKLOS was the need to provide fault tolerance
to the simple binary tree. In Appendix D, the fault tolerance of a multiple-tree
interconnection network is investigated. The reliability of this structure with respect to
preserving at least one of r trees in an r-replica network is studied. It is shown that,
with respect to preservation of at least one tree, the Failure Probability, Mission Time

(MT), and Mean Time to Failure (MTTF) are significantly better than in a single tree.

In this chapter, a comparison between KYKLOS-I and KYKLOS-II is made in respect
to processor connectivity and performance degradation under switch node faults. For
this purpose, specific examples showing the effect of network switch failure(s) on
performance are examined. A thorough investigation of the effect of faults on
network performance would itself constitute a separate dissertation proposal. No
attempt is made to be exhaustive; instead special cases of the effect of switch faults on
connectivity of processors and on degradation in communication latencies are

explored.
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5.1 Comparison of KYKLOS-I/KYKLOS-II with respect to Connectivity
Preservation under Switch Faults

For a k-node failure, k2r, the probability that at least one of r complete trees survives
in a KYKLOS-x<m,r,n> is a function of m, n and r but is independent of x, the version
number.  While maintenance of a tree structure is a reasonable requirement
[HAYET76], there are applications that require, at the very least, that the processors be
connected. Note that the former implies processor connectivity, though the converse is
not necessarily true. Fig. 5-1 shows a case of four failed switches in KYKLOS-
I1<2,2,4>. Note that with the loss of the faulty switches, neither one of the two full
binary trees has survived. However, the processors are connected and a multicomputer
system based on the network topology of Fig. 5-1 may still function, albeit with

degraded performance.

5.1.1 Conceptual View of Multiple Switch Node Failures in KYKLOS

In a general r-replica KYKLOS, each tree may be examined separately for switch
faults. Switch faults in each of the r trees may cause the set of processors to be
partitioned into two or more disjoint sets. Faults in the i* tree, 1<i<r, will define a
partitioning II, on the set of processors. For example, the fault in the upper tree of
KYKLOS-] of Fig. 5-2(a) would cause the partitioning

IT, = {0,1; 2,3; 4,5,6,7}.

The fragmentation of processors due to the two faults in the bottom tree of KYKLOS-I
results in the partitioning

TL, = {0; 1;2,3,6,7; 4; 5).

Now consider processors 2 and 6. They are in different blocks of I1,. However, they

are in the same block of I1, and are hence connected.

The corresponding partition for the bottom tree of KYKLOS-II is shown in the

redrawn version of its bottom tree in Fig. 5-2(b) as:
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s = Faulty Switch

Figure 5-1: Effect of Switch Faults on Tree Preservation and Connectivity

IT, = (05 4; 2; 6; 1,5,3,7}.

Now consider processors 0 and 2. In both, KYKLOS-I and KYKLOS-II, they are in
different blocks of both, II, and Il,. Further, it may be verified that they are
disconnected in KYKLOS-I. However, there exists a path between them in
KYKLOS-II. More specifically, in the latter case,

0 and 1 are in the same block of IT,

1 and 3 are in the same block of IT,

3 and 2 are in the same block of I1.

Hence 0 and 2 are connected in the faulty KYKLOS-II network.
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% b
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¢ el
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i@

(a) Partitioning in KYKI.OS-I

(b) Partitioning in KYKLOS-II

SA/ .
{k = Faulty Switch

- - -~ = Link connected to Faulty Switch

Figure 5-2: Network Partitioning in the Presence of Faults
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In general, the problem of finding whether two processors, S and D, are connected in
the presence of faults is equivalent to finding a string of processors,

S,aga,...,4a,D

such that any two adjacent processors in the above string are in the same block of at
least one partition. Also, finding whether all processors are connected is equivalent to
performing the sum

I, = er':l 1.

Now, two processors are connected iff they are in the same block of I, so that I
gives the number of components into which the processors are split. In particular, the

set of processors are in a single connected component iff [T =1.

Processors in a two-replica KYKLOS cannot be disconnected by a single switch node
failure. Hence, we focus attention on the effect of a double switch node failure as the

next most probable cause of disconnecting the processors in KYKLOS.

5.1.2 Effect of Double Switch Node Failures on KYKLOS
The following theorem establishes, using induction, the number of double switch node
failures, each of which will cause the processors to be disconnected into two or more

components in KYKLOS-1<2,2,n>.

Theorem 5.1: The total number of pairs of switches, F,, in a KYKLOS-I<2,2,n>, the
failure of any one of which, causes the processors to be disconnected into two or more

sets 1S

F =3(2"-1).

Proof: We induct on n, the height of the tree. We consider the base case, n=2 (Fig.
5-3(a)). Fig. 5-4 lists a set of switch node pairs ; failure of any one (or more) of these
pairs causes the processors to be disconnected. The cardinality of the above set is 9

which corroborates the expression in the theorem statement forn =2, N = 4,
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Hypothesize that the theorem holds in KYKLOS-1<2,2,n> i.c. there are a total of F =
3(27-1) double switch node failures, each of which causes the processors to be

disconnected.

We construct the next higher-order KYKLOS as shown in Fig. 5-3(b). (Dashed lines
represent links added to obtain KYKLOS-1<2,2,n+1>).

"<\n+1.0>
<n0> LT \\\ <a,l>
<n-1,0> mﬁl 1,1> <n-1,2>/<>\<n 1,3>
0 o]

R SRS RsRS:

<-n+1,1>
<-1,0> <LI>  cn4n.0> <n+1.2> <-n+13>

<-2,0> <n,0> \‘~ -7 <nl>

~ -~
~ -
~ -~

(a) KYKLOS<2,2,2> -
<-n-1,0>

(b) Obtaining KYKLOS-II<2,2,n+1>

Figure 5-3: KYKLOS-1<2,2,2> and KYKLOS-1<2,2,n+1>

To see the effect of two node failures on KYKLOS-I<2,2,n+1>, consider the set of
node pairs that caused processors to be disconnected in KYKLOS-1I<2,2,n>. These
node pairs except for <n-1,1>, <-n+1,0> and <n-1,0>, <-n+1,1> will also cause the
processors in KYKLOS-I<2,2,n+1> to be disconnected. Further, KYKLOS-

1<2,2,n+1> is composed of two KYKLOS-1<2,2,n>’s appropriately connected. Hence
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<1,0> <-1,0>,
<1,1> <-1,1>,
<1,0> <-1,1>,
<1,1> <-1,0>,
<1,0> <-2,0>,
<1,1> <-2,0>,
<2,0> <-1,0>,
<2,0> <-1,1>,
<2,0><-2,0>

Figure 5-4: Set of switch node pairs that disconnect processors
in KYKLOS-11<2,2,2>

there are at least 2(F -2) pairs of switch nodes whose failure will disconnect the
processors. In addition, any one of the pairs of switches listed in Fig. 5-5 will also

disconnect the processors.

<n+1.0> <-n-1,0>
<n+1,0> <-n,0>
<n+1,0> <-n,1>
<n,0> <-n-1,0>
<n,1> <-n-1,0>
<n,0> <-n,1>
<n,1> <-n,0>

Figure 5-5: Subset of switch node pairs that disconnect processors
in KYKLOS-1I<2,2,n+1>

Hence the total number of switch node pairs that disconnect the processors in

KYKLOS-1<2,2,n+1> is given by:
F, =2F,-2)+7
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=2[32"-1)-2}+7 (from the induction hypothesis)
= 3(2m1-1). O

In KYKLOS-1I<2,2,n>, the only pairs of switches that cause processors to be
disconnected are the level £ 1 switch nodes adjacent to the same processor. Since
there are N such switch pairs, we state:

Theorem 5.2: The total number of pairs of switches in KYKLOS-II<2,2,n> whose

failure causes the processors to be disconnected is N, the number of processors. O

Obviously there are 3(N-1)/N ~ 3 times as many double switch node failures that
cause processors in KYKLOS-I<2,2,n> to be disconnected as compared with
KYKLOS-1I<2,2n> Thus KYKLOS-1I<2,2,n> is three times less likely to be
disconnected compared with KYKLOS-1<2,2,n> as a result of a double switch node
failure. Further, this is obtained at no additional cost in hardware, only by rearranging

the links in the bottom tree.

Finally, the probability of disconnecting the processors conditional on two switch
node failures may be easily obtained by considering the ratio of double switch node
failures that leave the processors disconnected to the total number of double switch
node failures. For KYKLOS-I1<2,2,n>, this ratio is N/@-2C, = N/[(N-1)(2N-3)] ~
1/2N which decreases with network size. - Of course, the corresponding ratio for

KYKLOS-I<2,2,n> is three times as high.



109

5.2 Degradation under single node failures

Consider a single node failure of switch <2,0> in KYKLOS-1<2,2,4> as shown in Fig.
5-6(a). The effect of this switch fault on the top tree alone is to split the set of
processors into three sets represented by the partitioning

{0,1; 2,3; 4,5,6,7,8,9,10,11,12,13,14,15}.

Clearly, a shortest path between processors 1 and 3 will involve switch <2,0>.
However, because the bottom tree is a mirror image of the top tree, any processor may
communicate with any other processor without any degradation in path length by
using the bottom tree. For example, the distance between processors 1 and 3 is 4 link
traversals. With the switch node fault shown in Fig. 5-6(a), the shortest path between
1 and 3 in the upper tree is disrupted. However, there is an alternate shortest path
through the bottom tree shown in dashed lines. Since this holds for each pair of
processors in KYKLOS-I, we conclude that there is no degradation in average

distance in this topology under single switch node failures.

Single node fault in (a) KYKLOS-I and (b) KYKLOS-II

X$ = Fauity Switch

- - - — = Alternative shortest path

Figure 5-6: Effect of single switch fault on
degradation in pathlength.
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On the other hand, the shortest path between processors 1 and 3 in KYKLOS-
11<2,2,4> using the modified P-II Routing Strategy of Section 4.3.1 must pass through
the faulty switch, <2,0> (see Fig. 5-6(b)). This is because the shortest path in this case
is unique as will be explained in greater detail later. Hence, any alternate route
between this pair employed to bypass the faulty switch will involve a greater path
length and concomitant degradation in performance. It should be noted that this is not
always true in KYKLOS-II i.e. there are processor pairs which have multiple shortest

paths which may, in addition, be node-disjoint.

Our goal in the present section is to quantify the above observations in KYKLOS-
[I<2,2,n>. More specifically, we attempt to answer the questions:
¢ "How many processor pairs could potentially suffer increased path length

due to a single switch node fault?"

¢ "To what extent is the average interprocessor distance increased due to a

single switch node fault?"

The answer to the first question involves identifying those source-destination pairs
connected by a unique shortest path. For this purpose, we define the following
classification. By so doing, each possible destination, for a given source S, is assigned
to one of four categories. The classification is based on the relative values of t, b, and
p in X(§,D).

1. Category 1: {DIp2t,p2bin X(S,D)}.

2. Category 2: {D | t>p, b=t in X(§,D)}.
3. Category 3. {D | t>p, t>b in X(S,D)}.

4. Category 4: {D | b>p, b>t in X(§,D)}.
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From the modified P-II Routing Strategy of Section 4.4.1, it follows that there is a
shortest path that uses passthrough between S and a processor in Category 1. Because
each passthrough path also has its corresponding dual, there are at least two shortest
paths between S and any processor in Category 1. Also, there are two shortest paths
between S and a processor in Category 2, one through the upper tree and the other
through the lower tree. By contrast, destinations represented by categories 3 and 4
have unique shortest paths (USP) from S. We next take a closer look at the

characteristics of multiple shortest paths in KYKLOS-II<m,2,n>.

5.2.1 Disjointness of multiple shortest paths in KYKLOS-II

We first prove an important result about dual shortest paths using paththrough.

Theorem 5.3 Let PP be a shortest path between S and D using passthrough. Let PP’ be
the dual of PP. Then PP and PP’ are disjoint?2.

Proof Without loss of generality assume that there exists a node, X, in common
between the shortest path, PP, and its dual, PP’ in the bottom tree i.e. xe€ PP and
xe PP’ (see Fig 5-7). Also, let 2k be the length of the shortest path contained in the
bottom tree?3. The subpaths of PP and PP’ in the bottom tree may be thought of as
belonging to subtrees ST and ST7, each of height k in the bottom tree. So xe ST and
xe ST’. Now two full binary subtrees between the same levels of the parent tree are
either identical or disjoint. Because ST and ST’ have a common node x, they must be
identical. Hence, S and D are in the same subtree of height k 1.e. the distance between

S and D is 2k or less. This contradicts the assumption that PP is the shortest path

22The implication here is to node disjointness which implies link disjointness.

231n Section 3.2, it was shown that a given passthrough path and its dual traverse the same number of
links in the bottom trec, in this case 2k.
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between S and D. Hence PP and PP’ cannot have a node in common (except for S and

D). O

[P i

Figure 5-7: Node Disjointness of Dual Passthrough Paths

We conclude that a single switch node failure cannot affect the length of the shortest
path between S and D if there exists a shortest path between them involving

passthrough.

The complement of this case is that in which no shortest path between a given source-
destination pair involves passthrough i.e. the shortest path is, in fact, the m-sense path
for that pair. (See categories 2, 3 and 4). Of these, only Category 2 destinations have
two shortest paths, one through the top tree, the other through the bottom tree. Here

again, the two shortest paths are disjoint.

We could summarize the above discussion as follows



Theorem 5.4 The shortest path between a source, S, and destination, D, 1s unique iff
D e {D’I(t>p At>b) v (b>p A b>t) in X(S,D7)}.

If not, there exist at least two shortest paths between S and D that are disjoint. [

Theorem 5.4 may be used to estimate the number of destinations from a given source
that have a unique shortest path (USP). Table 5-1 shows the number of USP
destinations together with the percentage of destinations that are USP. Note that for a
given source, S, a respectable percentage of destinations have unique shortest paths.
Also, the percentage drops with increasing N, This means that, as network size grows,
a smaller fraction of the total number of destinations are potentialiy susceptible to a
single node fault. By way of comparison, a destination in KYKLOS-I is never

susceptible to a single node fault.

N # of USP D’s % of USP D’s

4 2 50

8 4 50

16 & 50
32 14 43.75
64 26 40.62
128 46 35.94
256 84 32.81
512 152 29.69
1024 278 27.15

# of USP D’s = Number of Unique Shortest Path Destir;ations (from S)

% of USP D’s = Percentage of Unique Shortest Path Destinations (from S)
Table 5-1: Number of destinations with USP from a given source

We proceed to estimate the actual degradation in the presence of faults in KYKLOS-

J<2.2,n>,
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5.2.2 Effect of Single Node Faults on Average Distance
Consider a source-destination pair, (§,D), as shown in Fig. 5-8. Let dpz(S,D) = 2d.
Given the presence of a single switch node fault, the conditional probability of it lying

on the shortest path (the fault hit ratio) 1s

2d-1
2(N-1)

where 2(N—1) is the number of switch nodes
in KYKLOS-I11<2.2,n>

We have seen that, if there is a USP between S and D, then that path must be wholly
in one tree. To simplify the calculation of degradation, we assume that, in the event of
a fault lying on the USP of an S-D pair, that pair would use a path through the root of
the other tree as illustrated in Fig, 5-824, Using this alternate path, the increase of

distance that this message would have to traverse = 2n-2d.

Hence the increase in pathlength that a message to a USP destination would have to

traverse on the average is

2d-1

Y| )(271—241)

For a given source, S, the set of all possible destinations, J, , that have a unique

shortest path of length 2d from S is given by Theorem 5.4:
Jin = {D1d(8,D)=2d A ((t>p A t>b) v (b>p A b>1) in X(S,D))

24Using this assumption, we obtain an upper bound on degradation of average interprocessor
distance.
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Faulty Switch
" on USP
between

Sand D

b e— {3,

Path in presence
of fault

R . IR s

<% = Faulty Switch

Figure 5-8: Alternate path in presence of single node failure

Using the definition of t, b and p (Sections 3.1 and 3.2),

Jun, = (Dl (X(8,D)=0"1u A 0m¥A,j20)
v

(X(§,D)=ul04 A 0r9+Acy,j 20))
Note that the two disjuncts above generate mutually exclusive address vectors.
Further, the substrings 1 and u may be thought of as members of sets S; = {ulue Z,,

u#0) and S, = {ul lul=d-1, 0"%*Au, j20}. From Defn. 3.8 and Remark 3.2,
U, =2p,,’(2d-nd-1)

Recalling the expression for average distance (Eqn. 3.50) as

n

2dp ,(d,n)

dpn) = = 5

The increase in numerator will be the total of the increases in path length that S will

see with each processor conditional on a single switch fault. This increase is simply
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2d-1
22 (,Jz—-2d)2(N ]) ' (2d—n,d-1)

Using the above substitute for the numerator in the average distance formula, the
average distance under a single node failure is computed. This has been tabulated
(Table 5-2) together with the percentage degradation and the average distance in
KYKLOS-I. Note that the percentage degradation starts at about 8% and decreases
quite rapidly with increasing N until it is only few tenths of a percentage for N>128.
Also, beyond N=064, the degradation, expressed as a percentage appears to decrease
geometrically. Notwithstanding the fact that the above is a conservative upper bound
on degradation, it is clear that regardless of N, KYKLOS-II is still vastly superior to

KYKLOS-I even with a single node fault.
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N d, d ,[deg] d, % [deg]
4 2.00 2.17 2.50 8.50
3.5 3.43 425 5.54
16 463 4.80 6.13 3.60
32 6.13 6.25 8.06 1.94
64 7.69 7.77 10.03 1.08
128 931 9.36 12.02 0.55
256 10.98 11.01 14.01 0.28
512 12.68 12.70 16.00 0.14
1024 14.40 14.41 18.00 0.07

dp2 = Average (p-sense) Distance in KYKLOS-11<2,2,n>

d ,[deg] = Upper bound on degraded avg. dist. in KYKLOS-11<2,2,n>

dp1 = Average Distance in KYKLOS-1<2,2 n>

%[deg] = Percentage degradation in avg. dist. in KYKLOS-1I<2,2,n>

Table 5-2: Degradation in Average Distance in KYKLOS-II under single node fault






Chapter 6

Applications

In previous chapters, questions related to the properties of KYKLOS were posed and
solved. Much of this chapter attempts to utilize some of those properties for specific
applications. In Section 6.1, the motivation for K'YKLOS as the ICN in an I/O Engine
is investigated. A case study involving distributed joins over the KYKLOS-I and
KYKLOS-II networks is presented in Section 6.2. A KYKLOS-based candidate for
the d,k graph problem is proposed in Section 6.3. Finally, some spinoffs of KYKLOS

are considered in Section 6.4.

6.1 The IO Engine

Research related to the I/O Engine represents effort complementary to that for
improving computational parallelism. In particular, the main objective of the I/O
Engine is to develop an external memory system commensurate with the

computational power of future generations of host machines [BROWS85].

The main hallmarks of the 1/O Engine as proposed involve

e parallel access of databases, and

e parallel operations on data objects that are being streamed from

secondary storage toward the host.
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6.1.1 I/O Engine Design
The gross architecture of the I/O Engine is shown in Fig. 6-1. The architecture is
partitioned into four major levels:

¢ Host processors, which can be either general purpose or specialized

Processors.

e A set of "Node Mappers"25 which make an associative translation from
requested object names (ex. relation names, attribute names) to leaf (I/O)
nodes where the objects are stored by generating a routing tag for the

Interconnection Network.

e The KYKLOS-II ICN which couples host and leaf (I/O) processors, and
also interconnects leaf processors. The non-leaf nodes in this network
incorporate logic and buffering to support merge operations on data

streams.

¢ I/O nodes, each consisting of a general purpose microprocessor,
assoclative disk cache, a sort engine, and an intelligent controller for

associated conventional moving-head disks.

6.1.2 Data Storage

To produce a machine capable of very high speed parallel access to data, the
distribution of that data over the set of I/O nodes is crucial. To make effective use of
the KYKLOS-II interconnection scheme, the data should be distributed to the I/O
nodes, such that, given a sufficiently large quantity of data to be processed, the entire
colleétion of network resources can be applied to that processing. The following data
storage description is based on the relational model. The principal motivating factor in

the design has been to provide a high degree of useful parallelism in processing

25These reside in the root node and are not shown in Fig. 6-1.
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To Host

Figure 6-1: 1/O Engine Overview
relational algebraic operations. Accordingly, each relation is partitioned and
distributed among the leaf nodes of the architecture. There are two apparent methods
for partitioning a given relation, R.
A partitioning by rows produces horizontal fragments r; such that R is the union of all

r; ie. R=u;r;.

14
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A partitioning by columns produces vertical fragments p; such that R is equal to the
natural join of all p; ie. R=};p,

These vertical fragments may then be subject to horizontal fragmentation.

The model chosen for the I/O Engine makes use of both of these types of partitioning.
The horizontal fragmentation, or tuple-based schema (TBS), 1s the primary storage
model and we will be only concerned with it here. Finally, each fragment of the TBS
is mapped to a particular leaf node of KYKLOS by the Node Mapper. Further details
of the partitioning may be found in [MENES87b].

In the next section, we describe an algorith1n26 for efficient parallel processing of an
operation that is a performance-limiting bottleneck for relational database systems.
We show how KYKLOS-II may be used to obtain an appreciable improvement in

performance over the single binary tree or KYKLOS-I.

6.2 Distributed Join Processing in KYKLOS

6.2.1 Semi-Join Algorithm

This discussion assumes that a natural join is to be computed on relations R and S,
each of which is evenly distributed (horizontally) across the N leaf nodes of the 1/O
Engine using the TBS. The semi-join algorithm discussed below is only one of several
parallel join algorithms that can be implemented on the architecture. It is used here as
an example of how the architecture can support operations that require operands from

different I/O nodes.

Letr, and s; denote the fragments of relations R and S at node i.

26Djiscussion with members of the T/0O Project Group under the direction of Dr. A.G.Dale and Dr.
R.M.Jenevcin motivated the consideration of this algorithm for KYKILOS.



Let C denote the set of common attributes between R and S i.e. C =R m S. The semi-

-join algorithm may be thought of as a two-step process
e Phase 1: Each leaf node, 1, broadcasts its lists of common attribute values
c,; = m.r; and Csi = 7S, to every other node?’?. On receipt of ¢ and ¢y, j #
i, each leaf node, 1, computes the semi-joins
rl.j’ =1, Cy=T, i s,
SU’ =3, X ¢, =5 ¢ g
_ Also it computes the join between its local fragments i.e.

rlmsi

e Phase 2: Each pair of leaf nodes, i,j, i#] ships the results of the above

semi-joins to a rendezvous determined by mutual consent, at-which point
a partial join’ '

(ry Ws) o, Ms, ) is performed.

The first phase of the algorithm is particularly straightforward: The two trees in
KYKLOS may be used to broadcast the ¢;’s and ¢,;’s, 0<i<N. These lists are used to
compute that subset 1,7 of r; which will participate in the partial join between the
fragments of i and j. 1t is the second phase of the algorithm that uses the
interconnection structure of KYKLOS-II to achieve a significant improvement in load
balancing and network traffic over a single binary tree or KYKLOS-I. This is

discussed in the next two subsections.

6.2.1.1. The Mid-point Strategy for performing Partial Joins
Consider a 64-node KYKLOS-II (Fig. 6-2) and consider the partial join between the
semi-join fragments of nodes 11(001011) and 46(101110). The shortest paths between

these two nodes as prescribed by the P-1I Routing Strategy of Section 3.2 is sketched

-2 Alternatively, cach 1/O node-may perform a hash’on join atribute values to the set of 1/O nodes in
licu of performing global broadeast, ' ’ -



123

in Fig. 6-2. To minimize network traffic, it makes sense to select a rendezvous for the
partial join between these node fragments somewhere on the shortest path. If the
resnlts of the join were to be sent to the host (located at the root), the partial join
should be done at the node closest to the root as shown in Fig. 6-2. However, it is
often the case that the results of the partial jbin are an intermediate result which needs
_to be returned to the leaf nodes as input for the next phase of a computation. As such,
a reasonable compromise bet\x;een these contlicting requirements would be to perform

the join at the mid-point of the path connecting them.

For the example of Fig. 6-2, the point on the path bc—twvcen' leaf nodes 11 and 46 that is
closest to the (top) roor 1s a level 3 node. However, the strategy béing considered
would select the mid-point for performing the partial join. Thus, a level 2 node is
selected which is closer to the leaf nodes. Intuitively, an added advantage of
performing the partal join at the mid-point and hence at sites closer to the leaves is
that as the level number in the top tree decreases, the number of nodes available for
processing the partial joins increases. As a result, the workload gets more evenly

distributed.

6.2.1.2. Case Study and Analysis
For the purpose of analyzing and comparing traffic using the Mid-point Strategy, a
case study using KYKLOS-I and KYKLOS-II is presented, with each network

composed of two binary trees.

6.2.1.3. Distribution of Partial Joins

In the KYKLOS-I case, the Mid-point Strategy is equivalent to performing the partial
join at the root of the smallest subtree containing both 1 and j, an approach commonly
employed for a single binary tree. Of course, half of the partial joins can be performed

in each tree of KYKLOS-I. -Fig. 6-3 is an example of this approach with N=8. The
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Mid-point

Site of partial join
between fragments at
001011 and 101110

001011

101110
001110

Figure 6-2: Midpoint Strategy in KYKLOS-II with 64 nodes

notation 1i,j at the nodes indicates the joining of the corresponding fragments of the
relations at nodes 1 and j. Note that there are a total of § pairs of leaf nodes whose

fragments join at a root which is the busiest node in the network.

Joining the partial fragments at the mid-point of the path using P-II routing in
KYKLOS-II produces the partial joins shown in Fig. 6-4. Employing the same
resources but a different interconnection strategy, the KYKLOS-II Network reduces

the maximal load to 3. -

Table 6-1 shows the maximum workload i.e. the number of partial joins performed at
the busiest site. (Recall that for each pair of nodes 1,j, i#], the Semi-join Algorithm
reciuires 2 partial joins to be computed). For KYKLOS-1, it is easy to see that the roots
are the sites for the partial joins of every pair of nodes separated by a distance of
2logN. Since there are N%/4 such pairs of nodes and 2 partial joins per pair, there are
N?/2 partial joins to be computed at the roots or N%4 partial joins per root. This

means that over half of the total number of partial joins are done at the root nodes. By
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Figure 6-3: Distribution of partial joins in KYKLOS-I

comparison, the maximnm workload for KYKLOS-II 1s at least an order of magnitude
less for N>32. Also. the workload in KYKLOS-II 1s spread.out more evenly over the

whole network.

6.2.1.4. Response Time

Another benefit from the KYKLOS-IT interconnection strategy is the reduction in the
average distance that the semi-join inputs must travel, thereby improving response
time. For instance, for N=8, the average distance is about 1.8 links traversed as

compared with 2.4 in the case of KYKLOS-I, an improvement of about 25%.
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Figure 6-4: Distribution of partial joins in KYKLOS-II

N KYKLOS-I| KYKLOS-II
' 8 16 - 6
16 64 12
32 256 28
64 1024 88
128 4096 288
256 16,384 928
512 65,536 3008
1024 262,144 9728

Table 6-1: Maximum Number of partial joins at a node site



6.2.1.5. Network Traffic
Three categories of communication requirements may be identified depending on the
task at hand. The tasks requiring communication in the semi-join algorithm are

e Global broadcast of attnibute values to all other leaf nodes

» Broadcast of semi-join inputs to the predetermined site for computing the

partial joins and

© Transfer of semi-join output values to the host or to the leaf nodes.

The global broadcast is well suited to a tree-structured network. Both KYKLOS-T and

KYKLOS-IT will exhibit the same performance characteristics for this operation. -

The second task necessitates transmission of tuples along the shortest path between
every pair of leaf nodes. This task is similar to a transmission of data packets from
one leaf node to every other leaf node. In Chapter 4, it was shown that the maximum
traffic density for this later task is O(N!?) if the H-II Routing Strategy is used.
Though the P-II Routing Strategy has a higher asymptotic bound on maximum traffic
density of ~ Q(NL7), as shown in Section 4.4, the constants in the expressions for
traffic density are such that P-1I actually outperforms H-II Routing up to N=2048. By

comparison, the maximum traffic in KYKLOS-1is O(N?).

Finally, the third task could involve transmission of results to the leaf nodes. Table 6-2
shows the maximum traffic densities for both, KYKLOS-I and KYKLOS-II as a
function of N. Note thatas in the case of the distribution of partial joins, the maximum
traffic in KYKLOS-11 is only a tiny fraction of that in KYKLOS-I. This shows that
congestion is a f‘ar more serious problem with KYKILOS-I. Note that the improvement
in traffic characteristics in KYKLOS-II has been brought about by no addition of

hardware resources, only by altering the-interconnection strategy.
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N KYKLOS-T| KYKLOS-II
8 8 4
16 32 8
32 128 22
64 512 60
128 | 2048 176
256 8192 528
s 32,768 1696
1024 131,072 5664

Table 6-2: Maximum Link Traffic of partial joins at a node site

6.3 KYKLOS and tlie d.k Graph Problem: The Chef{’s Recommendation

In KYKLOS-1I<2.2 n>. the leaf nodes and the root have degree=2 while the other
nodes in the network have degree=3. Clearly, adding a third wree to share the common
set of leaf nodes and coupling the roots of the three trees to a Father Root would not
cost any more in terms of node degree. In Secuon 3.2.5, 1t was shown that that there 1s
precisely one processor at a maximum distance of 2n from any other in KYKILOS-
I<2,2,n>. It also follows from the P-II Routing Strategy that two processors are
maximally separated iff their addresses are the 1’s complements of each other. It
makes sense for the switch nodes at level 1 of the third tree to couple every processor
with its 1’s complement. This immediately leads to the following theorem

Theorem 6.1 The processor diameter of the 3-tree modified KYKLOS as defined

above 1s 2n-2 or less. {1

The connections of the level 2 links in the third tree are dictated by the requirement
that every pair of processors, x and x@0101..., should exist in the same subtree of
height 2. The LS for the third wee is gencrated by the pseudo code in Fig.6-5. A is a

boolean array of length N and LS is the array which holds the LS for the third tree as it
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is generated. Comp(x) returns the 1°s complement cf x and alt(x) returns x ®@0101... .
The prograim works by initializing each element of A to false. The variable, i, is used
to index the array A. Afi]=true implies that the LS array has already been loaded with
i. Note that the LS so generated forces x and x’ to be in the same subtree of height 1.
Also,_x and x®0101... are guaranteed to be in the same subtree of height 2. Tﬁe
program forces the output of a deterministic sequence. In reality, connections for the

rest of the third tree (levels 3 to n) are arbitrary so long as a full binary tree is

obtained.
for(k=0; k<N; Alk++]=false)
=0
1={);
do
{
i (All]==false)
{
LS[j++]=1; Ali]=true;
LS[j++]=comp(i); Alcomp(i)]=true;
LS{j++]=alt(i); Alalt(d)]=true;
LS{j++i=comp(alt()); Alcomp(ali(i))}=irue;
}
1++;
}
while(j<N)

Figure 6-5: Procedure to generate the LS for the third tree
An example of this 3-tree KYKLOS with 16 leaf nodes is shown in Fig. 6-6.

The following [MENES5c¢] is beyond the scope of this dissertation.
Theorem 6.2: The modified KYKLOS-11<2,3,n> as defined above has a diameter <

2n-2. O

The total number of nodes in the modified KYKLOS-11<2.3 n>

=# of leaf nodes + # of non-leat nodes + 1(Father Root)
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Figure 6-6: 3-tree KYKLOS with 16 leaf nodes -

= 4N-2.

This is tabulated as a function of network diameter in Table 6-3. Included for.

comparison is the Moore bound which represents the upper himit on the number of
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nodes in the network for degree=3. In additon, results reported in [MEI\/IMSI]28
enable comparison of KYKLOS with other analytically obtained graphs [ARDE7S,
WILK70, TOUE79).

k MB MR K-11
4 46 30 30
6 190 72 62
8 766 124|126
10 3070 230 - | 254

k = diameter,

MB = Moore Bound,

MR = Results reported in [MEMMSQJ from [ARDE78], [WILK70] and [TOUE79].
K-IT = Modified KYKLOS-1I

Table 6-3: Newwork Size as a function of diameter, degree=3

The results reported herein are only meant to iliustrate the power of the KYKLGOS
idea. Note that the consiruction of the third tree was arbitrary beyond level 2. If more
caution were exercised in building the third tree, it 1s reasonable 1o expect a further
decrease in diameter over that attained by Theorem 6.2. In addition, KYKLOS-III is
known to have superior distance properties compared to KYKLOS-II. By judicious
choice of connections for the third tree using the KYKLOS-III topology, the author
teels that further improvements could result. Finally, note that as N (and hence k) gets
larger, KYKLOS seems to fare better compared to the results reported in [MEMMS1]
which include some of the best networks constructed in the context of the (d.k) graph

problem.

ZThis contains some of the hast known results on diameters of graphs constructed in the context of
the d.k graph problem. : :
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6.4 Topological spinoffs of KYKLOS

6.4.1 HyperKYKLOS: The augmented Hypercube
HyperKYKLOS is a special case of the KYKI.OS Network in which r=n=logN.

The simplest version of KYKLOS 1s KYKLOS-I. Analogously, the simplest version
of HyperKYKLOS is HyperKYKLOS-I defined by the n-tuple

<Ly Ly, .nL, > '

where L, is the LS for the 1 wee.

Let L,(j) be the j" term of L,. Then

L) =p,0)

where p/(j) is the number obtained by rotating j, represented as a binary number, a

total of 1 bits to the left.

Fig. 6-7(a) shows a HyperKYKLOS with N=8, r=3. The LS’s for the three trees of
this structure are

Ly=01234567

L,=02461357

L,=04152637

These are shown in Fig. 6-7(b).

It should be noted that the subgraph made up of the processors and level 1 nodes in
each tree constitutes a modified Hypercube ie. an n-cube with a processor at each
vertex and a level 1 node along each cube edge. As a result, HyperKYKLOS is not

merely an r-tree KYKLOS. It embeds a Hypercube between the level 1 nodes of the r

trees,?? hence the name HyperKYKLOS.

A proof of this for H\pu}\YKLOS [ will be included in a forthcoming mpon on the g,mph~
theoretic propertics ol HyperK YKLOS.
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Figure 6-7: 3-Tree HyperKYKLOS

HyperKYKLOS was motivated by performance studies of distributed database
algorithms on a Hypercube as reported in [MENE872]. Current work includes an
investigation of the topological properties of HyperKYKLOS and enhanced versions

of this topology.
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6.4.2 The SK-Banyan

We have seen-that altering the interconnection of links in the bottom tree of KYKLOS
resulted in a significant improvement in the topolggical properties of the network.
This has motivated a similar study with the SW-Banyan [DeMES6]. Fig. 6-8(a) shows
a non-rectangular banyan with three levels of nodes(0-2}. Level O represents the base
nodes and level 2 represen_t the ap‘ex nodes. With processor-memory pairs at the base
nodes and swilches elsewhere, it would be desirable to reduce the inter-base node

communication latency.

Consider processors 0 and 3 in Fig. 6-8(2). There are two shortest paths of length=2

between these two nodes. In fact, it is easy to see that there are multiple shortest paths
between every pair of processors as in KYKLOS-I. The SK-Banyan (Fig. 6-8(b)) is
an attempt to reduce interprocessor distances by breaking redundant connections and
by-supplanting these with a more intelligent connection scheme without at the same
time compromising cost i.e. note that the number of links is the same in both, Fig.
6-8(a) and 6-8(b). This involves skewing the connections between every pair of
adjacent node levels (hence the name SK-Banyan). Thus, processor 0, at a distance=2
from processors 3 and ¢ in the SW-Banyan is at this minimal distance from four

processors in the SK-Banyun (i.e. 4, 5,7, and 8).

This description in this subsection represents an adumbration of the key idea behind
the SK-Banyan. The details of the interconnection strategies for this topology may be
found in [DeMES86]. Finally, research on network properties such as distance, traffic

and fault tolerance are being actively pursued.
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Chapter 7

Conclusions

7.1 Accomplishments ,
Both, the goals and AC(;omplis.hmems 1n the sgudy of KYKLOS and of this documént,
in particular, divide into the following broad categories:

s Interconnection Strategies

e Network Properties

e Application Areas

Interconnection Strategies: Two major alternative schemes for connecting the
bottom tree were defined in addition to the well-known simple Double Tree. Labeling
sequences and permutations were employed to define each tree in KYKLOS. This has
provided a representation which, while being simple and compact, has proved very
powerful in practice. It has facilitated precise mathematical analysis of the topological
characteristics of the KYKLOS-II Network. Also, the derivation of KYKLOS-III
from KYKLOS-II, while painful,ﬂwas rendered manageable, thanks to the use of

labeling sequences.

The desire to embed a ring structure within the Double Tree KYKLOS motivated the
construction of KYKIL.OS-III. For this purpose, an isomorphic version of KYKLOS-11
called the W-Form was built. A subtle change in the W-Form structure generated

KYKLOS-III.
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The concept of m-sense optimality was defined. This concept is at the heart of the
KYKLOS design philosophy. A procedure to construct m-sense optimal KYKLOS
topologies was prescxﬁed. It was showh that, both, KYKLOS-II and KYKLOS-11I,

were m-sense optimal.

Network Properties: A study of such practical concerns in interconnection networks
as routing, fault tolerance and traffic congestion have been more than adequately
addressed. A noteworthy uspéct of this work concerns the relationship between
different strategies that have been proposed for routing in KYKLOS-1I and the
different performance characteristics obtained for each. For example, P-II is the
“shortest path routing strategy” while H-1T is the one that minimizes traffic bottlenecks
(asymptotically).  M-II Routing is particﬁlarly appealing in a circuit-switched
environment because it is inherently deadlock-free. Further, it serves as a base with
which to cempare the performance of the other routing swategies. Finally, all three
possess simplicity as a common virtue. Each of these three routing algorithms have

been defined and their performance characteristics have been thoroughly investigated.

Expressions for interprocessor distance distribution were obtained. Given the
interprocessor traffic martrix, this enables the estimation of average communication
latency and lLink traffic. Traffic matrices are, in general, a function of application or
algorithm. In the absence of any information about communication patterns for a
specific task, the simplifving assumption of uniform message distribution was used to

compute average distance as in other tree-based networks.

To standardize the comparison of various network topologies, normalized distance,
L’, 1s used here. This is the product of the average distance between processor pairs

and the maximum number of ports per node of the network. For purposes of
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comparison, values for L’ in KYKLOS-II are juxtaposed with corresponding values
for various tree topologies and for the Hypercube as shown in Table 7-130, Note that
L’ is least for the Hypercube up to about n=8 beyond which KYKLOS leads all the

other topologies.

n BT HR FR HC HT K

2 7.50 6.38 5.00 2.00 6.00 6.00
1 12.75 10.50 10.00 4.50 10.00 9.75
4 18.38 16.56 17.50 8.00 15.00 13.89
5 24.19 23.59 26.25 12.50 19.50 18.39
6 30.09 31.11 35.63 18.00 24.75 23.07
7 36.05 38.87 45.31 24.50 29.38 27.93
8 42.02 46.75 55.16 32.00 34.69 3294
9 48.01 54.69 65.08 40.50 39.34 38.04
10| 54.01 62.66 75.04 50.00 44.67 43.20
11} 60.00 70.64 85.02 60.50 49.34 48.45
121 66.00 78.63 95.01 72.00 54.67 53.76

n = Logarithm of number of leaf nodes
BT = Binary Tree

HR = Half Ring X-Tree

FR = Full Ring X-Tree

HC = Hypercube

HT = Hypertree

K = KYKLOS-1I<2,2,n>, p-sense.

Table 7-1: Normalized Distances of different topologies
as a function of Network Size (N)

3oadapted from [GOODS81].
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Both, link utilization and maximum traffic density in KYKLOS were studied. Again,
routing strategy played a significant role in determining their characteristics. The
maximum traffic congestion in KYKLOS-II was shown to be asymptotically less than
that in a single tree or in the simple double tree. The maximum traffic density in the
latter case is O(N?), while it was shown to be O(N!) in the case of KYKLOS-II using
the H-1I Routing Strategy. So, for example, while the simple Double Tree would be
expected to reduce the traffic bottleneck by a factor of 2 over a single tree, KYKLOS-
11 could easily achieve a 2VN ~ 60-fold improvement in traffic density in a 1000 leaf
node KYKLOS. That the cleverness of the interconnection scheme achieves an

asymptotic improvement in traffic properties is no mean achievement.

The slice concept, inexorably linked with that of m-sense optimality, was instrumental
in obtaining the low traffic density in KYKLOS-IL This concept can be generalized to
the 3-wee KYKLOS in which case the maximum traffic density is decreased to
O(NI33), a further asymptotic improvement. Clearly, the communication latencies in
this 3-tree KYKLOS will decline further. This development does hold promise when
you consider the fact that the normalized distance, L’, will shrink further. This is so,
since the communication latencies will be further reduced while fanout remains
unchanged. In addition, the O(N'3%) traffic density surpasses the performance of the

other tree topologies.

Fault tolerance of the KYKLOS network was studied in respect to preserving
connectivity of processing resources under switch node faults. This was exemplified
by the special case of double switch node failures. Here, the probability of
disconnecting processors was three times higher in KYKLOS-I than in KYKLOS-II--
another vindication of the original claim that the shuffle-connected bottom tree of

KYKLOS-II would ameliorate the properties of the simple Double Tree.
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From a theoretical standpoint, KYKLOS-1I represents a class of networks with
generalized Tribonacci distance distributions. It is indeed heartening to see yet
another application of Fibonacci sequences, this time in the realm of network

topologies.

Application Areas: Rich application areas have been identified. In particular, the
usefulness and versatility of KYKLOS as an interconnection network for the 1/0
subsystem of a high-performance host computer have been established. The network
. provides on-the-fly and pipelined data stream processing besides parallel access to
data. Thus, both, 1/0 access and processing, are speeded up. Also, the workload in
computation-intensive join operations may be distributed throughout the network.
Finally, such communication paradigms as the N-broadcast, an integral part of several
distributed join algorithms can be easily accommodated on the network for the very
reason that the traffic characteristics in KYKLOS are superior to other tree-based

architectures.

The work on KYKLOS has been directly applied to the d,k graph problem. A third
tree addition to KYKLOS-II has been constructed, driven by the results on distance in
KYKLOS-II Its characteristics in terms of the d,k graph problem have been very
encouraging. Also, given the results of some preliminary investigation on KYKLOS-
II, it would not be presumptuous to expect even better properties of this structure (i.e.

a three-tree KYKILOS built on top of a double tree KYKLOS-IIT).

In terms of spinoffs in the area of alternative network topologies, the KYKLOS
interconnection concept has spawned similar ventures with the banyan to further
improve some of its properties. Finally, the extension to log N trees in the garb of
HyperKYKLOS and its use in the I/O Engine could have a significant impact on the

performance of the I/O Engine.
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In conclusion, KYKLOS retains the nice, simple properties of trees, yet does not
inherit the obvious weaknesses of traffic congestion and poor fault tolerance. The
linear cost, low fanout and logarithmic communication delays are attractive attributes
of trees and KYKLOS shares those traits. Finally, the ability to embed a ring in
KYKLOS-IIT enhances its utility besides suggesting a further improvement in its

properties.

7.2 Future Work

Several areas of work directly related to KYKLOS may be identified.

e M-sense optimality needs more respectable treatment. Specifically, the
following questions need to be addressed,
"Are the m-sense distance characteristics obtained for KYKLOS-II (or
KYKLOS-III) the ultimate, or is there anything better? If there is
anything better, then what is 1t? If not, then prove it (that nothing better
exists).” Also, these results need to be generalized to more than two trees.
Next, are the m-sense distance expressions derived for KYKLOS-II, in

fact, the sine qua non for m-sense optimality (as it appears)?

e Closely related to the above problem is the question "Are there any I'-like
Sequences lurking around? How can this be generalized to 3, 4, .. ., 100

trees?

e The d,k graph problem needs further investigation. Using KYKLOS or
the KYKLOS idea, there is good reason to believe that we may get better
results than any obtained so far. In particular, KYKLOS-III needs to be
investigated both, in its own right as also from the perspective of the d,k
graph problem. Because they are cousins, it is likely that the analysis in
KYKLOS-III could be inspired by the results on KYKLOS-II.

¢ The Moore bound should be tightened. The insight provided by KYKLOS
could be of use here. An upper bound for average distance seems to be an

interesting extension worth pursuing,



e The m-Tribonacei sequence is still intriguing. Could the complex roots

have an interpretation?

e It already appears that the distance properties in HyperKYKLOS may be
obtained using similar though more complicated recurrences. This should
be analyzed and other HyperKYKLOS topologies should be defined.

e Other areas of research include the study of algorithms that exploit the
structure of KYKLOS, the study of metrics that measure the combined
performance-fault-tolerance characteristic of a network topology and

issues related to VLSI layout.
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Appendix A.

Auxiliary Results on Permutations
and LS’s

Result A.1

Trivially
(X)) = x. (A.D)

A.1 Results Related to the y-Permutation
The next three results will be used in Section 2.3

Result A.2
W) =270, 0 <x <N/2 (A2)

Letx =01, .11, (since x <N/2)
So Y (x) = igi;...1, 50
n—c

Also Yyp(x) = 141,15

or 2Yy,(X) = 1igly...1,,0.

Result A.3(a)
WINZ2 +%p(X)]=2x+1, 0<x <N/2 (A.3)

Result A.3(b)
WIN/2Z +y] = 2yy,(y) + 1, 0<y<N2 (A.4)
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Letx =0i,_,..11, (since x < N/2)
Tp(X) = 1glyd,

N/2 + Yo (x) = 1ig;..d,_,

YWIN/Z + Yy (X)) =1, 5.1 11
=1 5.0 +1
=2x+1
= RHS.

Since y < N/2, lety = ¥y5(X), s0

YWIN/2 + y1 = VA IN/2 + Yy p(x)]
=2x + 1 from Result 2.3(a)
= 2Yyn(Vyp (X)) + 1 ... from Result 2.1

= 2Yyp(y) + 1
= RHS.

A.2 Procedure to obtain the Equivalence Class Leader, given an LS

Let MIN(,}) be a function that returns the minimum-valued leaf node label in the

subtree rooted at the i descendant of node j.

Then the following procedure will permute zero or more non-leaf nodes to obtain an

LS that is equivalent to the given LS.

For x=1ton

{
For y=0 to m">* - 1
{
Permute the descendants of <-x,y> so that:
C,<¢, => MIN(c,,<-x,y>)<MIN(c,,<-X,y>)

where 0<c¢,,c,<m.




Appendix B.

Roots of the Characteristic Polynomial

of the pp2’ Recurrence Relations

B.1 Co-ordinate Transformation

In Chapter 3 (Theorem 3.6), it was shown that
ppz’(d,n) = u[ppz’(d—l,n-l) + ppz’(d~2,n—2) +...n-d+] terms]

where
U=m-1
Substituting
Ppo (A1) = 85,y ogi
gives
B =M oy T At ]
where
k =n-d+1

1s the order of the recurrence.

(B.1)

(B.2)

(B.3)

B.4)

(B.5)

In Table B-1 a,,, , are mapped onto integral coordinates in the octant bounded by d=n,

d=0 of the d,n plane. The above transformation allows a pictorial representation of the

recurrence in (B.4). The sequence

A, & A3 - -

appears on the semi-infinite line originating at d=0, n=0, inclined at 45° to the n-axis

and extending in a south-easterly direction to infinity. (This has been referred to as the

principal diagonal in Section 3.2.5). Sequences parameterized by k, k>1,

Qg1 Vhsr Vps1 o -«
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are mapped to lines parallel to the principal diagonal beginning at d=0, n=k-1. (These

semi-infinite lines are referred to as paradiagonals in Section 3.2.5).

d n=0 n=1 n=2 n=3 n=4 n=>35 n=6 n=7
0 a 3, ds3 274 g5 16 37 5,8
1 - 4. | C¥p) 463 dg4 4105 4126 Q14,7
2 - - a3y 85, 73 9 4 a5 4136
3 - - - A4 de 2 g3 a10,4 A5
4 - - - - ds ) a5 g3 14
5 - - - - - .1 g 403
6 - - - - - - 471 )
7 - - - - - - - g1

Table B-1: Mapping a,,’s onto the d,n plane

Solution of (B.4) for u=1 with predefined initial conditions has been
attempted MILEG7, FLLOR67, GODSE3]. This work attempts to generalize some of

those results. The characteristic polynomial, E,(z) of (B.4) is

- ) ~
E(z) = 2% - p(z& 142024+ 0 +1) (B.6)
If E,(2)=0 has distinct 10018, T} ., Ty 4o - -+ Tip e then the general solution for (B.4) is
. i + n + + n B.7
Dk =1 h! Vo T2 ! 2 hem ™ FClpm e m (B.7)
where ¢; ., Cyy s - - - €4y ATE CONSLants.

In the next section, we proceed to gain some insight into the location of these roots.
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B.2 Roots of the Characteristic Equation

From (B.6),
E (z) =2 - wzk-D/(z-1), z=#1 (B.8)

Multiplying by z-1 gives A
E,(2) = (z-DE, = ¥ - (u+1)zF + 1 (B.9)

From the Fundamental Theorem of Algebra, E,(z) and E,(z) have k and k+1 roots

respectively which are investigated below.
Statement B.1 E (z) has ai least one root berween |4 and L+1.

From (B.6),

E (W) = pk - p(ubtep=s oo+
= (U lpk2 ) < 0. (B.10)

Also from (B.6),

E (+1) = (DA - p{ (U+DFT + (uD)F2 L +1]
=] (B.11)

Since E,(1) <0, E,(u+1) = 1 and E,(2) is continuous, there must be a real root between

KL and p+1.

The goal of the remainder of this subsection is to show that the remaining k-1 roots of

E,(2)=0 are distinct and lie inside the unit circle.
Statement B.2 E,(z) has no roots on the unit circle except for z=1 (with multiplicity 1).
Let z, be a root of E,(z)=0 on the unit circle.

So z, = Cos +1Sin6 (B.12)

Substituting for z, in E,(z,)=0 and noting that
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(CosB +1SinB)" = Cos(nB) + 1Sin(nb) (B.13)
gives
E,(0) = Cos(k+1)8 +iSin(k+1)6 - (u+1)[Cos(k0) +iSin(k®)] + 1 =0 (B.14)

Subtracting p from both sides, taking magnitudes and rearranging terms obtains

Cos?(k+1)6 + Sin?2(k+1)8 + (u+1)?[Cos?(k8) + Sin2(k8)] (B.15)
-2(u+1){Cos[(k+1)6]Cos(k0) + Sin[(k+1)0]Sin(k6)} = n?

or 1 + (u+1)2-2(u+1)CosB = u? => Cosb =1

From (B.12),
z,= 1. (B.16)

(That there are no multiple roots at z=1 is a consequence of Statement B.3).

Statement B.3 E, has distinct roots in and on the unit circle.

Differentiating E,(z) (Eqn. (B.9)) gives
E)’(2) = (k+1)z* - k(u+1)z*! (B.17)

The roots of E,’(z) are

k(p+1)
(k+1)

z=0 and z=

Of these the first is not a root of E,(z) and the latter is outside the unit circle for k=2,

n=1. So E,(z) has no repeated root on or in the unit circle.

Statement B.4 E, has k distinct roots in or on the unit circle.

Define

f(z) = z*1 (B.18)
and ]

g(z) = -(u+1)zF + 1 (B.19)
so that

E,(z) = {(z) + g(2). (B.20)
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We consider the behavior of Ig(z)I/If(z)! just ourside the unit circle i.e. at Izl = (1+g)V,

>0 and small
lg(2)! = -(u+1)(1+e)e® + pl B.2D)

Since the magnitude of the sum of two vectors is greater or equal to the difference of
their magnitudes,
lg(z)l 2 (u+1)(1+€) - p
=1+ (u+l)e (B.22)
So lg)Nf(2)! 2 [1+(u+1)e]/(1+e)k+ ik (B.23)

Denoting the RHS of the above inequality as F(g),

(DI He)* DT+ (u+ DE][ (k+1)/K) (148) 1
- (1+€) A2k

F'(g) (B.24)
Now F(0) = 1 and F’(0) = (u+1) - [(k+1)/k] > 0. So lg(2)//lf(z)! 2 1 on the unit circle
and is > 1 just outside it.

From Rouche’s Theorem, g(z) and g(z)+{(z) = E,(z) have the same number of roots on
and 1n the unit circle.

Since g(z) = -(L+1)z*F + 1 has all k roots inside the unit circle, E,(z) has k roots on or

in the unit circle.

From statements 2 and 3, E,(z) has k-1 distinct roots in the unit circle. Finally, since
E,(z) and E,(z) have the same roots except for z=1, we conclude using statement 1 that

+ E(2)=0 has k-1 roots inside the unit circle and 1 real root between p and pL+1.
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Let the k roots be denoted 1y ;.15 4 s+ T gm
where

o< Ty, < U+]

and

Il < 1oi= 12,0,k 1).

(B.25)

420 + 345i /—

1.618 \'74% 1.839
{

-420 + -.345i

k=2, m=2 k=3, m=2

Figure B-1: Roots of the Characteristic Polynomial: k=2,3; m=2

Finally, from (B.3) and (B.7),

4 N n N 71 . n
P (m)=Cy ) o Copnd 2 ™+ Cpom jopm 1 SASNN22.

(B.26)

Where ¢, . € 4w -+ s Cppn @€ COnstants and ry .. 1, are described in (B.25).

Fig. B-1 shows the roots for k=23 and m=2.
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B.2.1 The real root, Cikm

The root r,, , (k=2 in E,(2)=0) is the solution of the quadratic equation

z2-uz-pu=0
which lies outside the unit circle
J2
or  Iox = S s 2“ A (B.27)

In the binary case, this is the well-known golden ratio, (1+\/§)/2.

In the general case of k>2, the real root outside the unit circle may be obtained quite

easily as follows:

Let

Tyom = 1+u-0 (B.28)
where

o<1 (B.29)

Upon substitution in E(z) = 0
(T4L-8)*1 - (U+D(+1-0)*+ =0 (B.30)

So
S(u+1-d)f =p
or
§ = H B.31

(1+p—-8)* b
At this point we note that as k— o, 8—0. This serves as a lower bound for & and
may be used as an initial value for & which on substitution into the RHS of (B.31) will
obtain r, by iteration. Values of r,,, are tabulated as a function of k (Table B-2).

Note thatr, , , increases monotonically with k and has p+1 as asymptote.



k oo

2 1.618
3 1.839
4 1.927
5 1.966
6 1.984
7 1.991
8 1.996
9 1.998
10 1.999

Table B-2: 1, ,, as a function of k
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Appendix C.

Auxilary Results for Traffic

C.1 Monotonicity of p,,(d,n) with respect to d, m>2
We need to. prove that p,,(d,n) > P, ,(d-1,n), 2<d<n, in KYKLOS-II<m,2,n>, m=3,
n=1. We first consider the case of n odd. For this purpose, we split the problem into

three parts viz.

P,o(d,n) >p (d-1,0) 2 <d<ln/2] (C.1)
p,,(d,n) >p (d-1n)  n=d>[n2] (C2)
Pa((n-1)/2,n) > p,,((n+1)/2,n) > p,((n+3)/2,n) (C.3)

Proving Result 3-3

Since m=>3,
2(m-1)m4! > 2(m-1)m=
Using Theorem 3.2,

po(dn) >p (d-1,n)  2<d<|n2]

Proving Result (C.2)

Form>3,d<n

2 > [(m+1)/m]*md—=

So 2(m-1)2m%2 > (m-1)2(m+1)2m?@n-2/m?2

So 2(m-1)m!-(1-1/m%)m*" > 2(m- 1)m?2-(1-1/m2)m?2¢--2
Using Theorem 3.2, we get

p.o(d,n)>p, ,(d-1,n) n=d>[n/2]
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Proving Result (C.3)

We first show that p,,((n+3)/2,n) > p,,,((n+1)/2,n), n=3.

Form 2 3,

m?-3m+1 >0

Se 2(m-1)m > m?*+m-1

Forn 23 (and odd)

2(m-1)m®»D2 > m2+m-1

So 2(m-Dm™D2(m-1) > (m-1)(m*+m-1)

So 2(m-1)(m™ D2 m&=-1D2) > (1-1/m>m3-(m-1)

So 2(m-Dm®*32-1 - (1-1/m2)m2e+32-1 > 2(m-1)me+D2-1| (1-1/m2)m2r+1)2-n |
Using Theorem 3.2,

Po((n+3)/2,n) > p,,((n+1)/2,n)

Form 23,n 23

2(m-1)m»32(m-1) > (m-1)

So 2(m-Dm@ 12 - 2(m-1)mr32 > (m-1)
2(m-1)me+D2-1 (1-1/m2)m2e+2=n | 5 2(m- 1 )m-1)2-1
Using Theorem 3.2,

P((m+1)/2,1) > p,,((n-1)/2,n)

In a similar way, it can be shown that for even n, m=23, Pn2(d.n) increases

monotonically with respect to d so that

In a KYKLOS-II<m,2,n> m=3,n>1,
P,o(d.n) > p, ,(d-1.n), 2<d<n (C.4)
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C.2 Bitonicity of p,,(d,n) with respect to d, m=2
The proof for m=2 is similar except in the special case when d=n. For this case
p,»(d,n) <p,,(d-1,n) so that

In a KYKLOS-11<2,2,n>, n>2,
P,o(d,n) > p,.(d-1,n), 2<d<n-1
and

p,o(nn) < p,,(10-1,n) (C.5)

C.3 Monotonicity of T,,(i,n) with respect to i, 1<=i<=(n+1)/2
.Fovr‘l Siérn/?:], mz2,

m %21 > mi(m+1)/m?

So m*(m-1) > mt2ki=2(m?2-1)

So 2mHm-mla2ii=1) > 2mim2(mn-mladi-2)

Combining this with Theorem 4.4 we get,

In a KYKLOS-II<m,2,n>,
T,.(,0) > T(-1.0), 1<i<[n/2] (C.6)







Appendix D.

Reliability of a Multiple-Tree Network

Let N_ be the number of switches in the original simplex tree.

(For the binary tree, N, = N - 1).

Let A be the constant failure rate of a single switch node.

Let R be the reliability of a single switch node = e™.

(Reliability of a switch node represents reliability of its logic and connections.)

We need to compute R, defined as the probability that at least one of r complete trees

is operational. Using the classical approach, this reliability may be expressed as
R,,,=1--R) (D.1)

where R = Reliability of the original simplex network.

In terms of switch reliability

R, =1-1-RNs) (D.2)
Defining the failure probability (or unreliability) of the network as
F.=1-R,_,
and failure probability of a switch as
F.=1-R;
enables us to rewrite (D.2) in terms of failure probabilities as

F, = [1-(1-F)Ns 1" A (D.3)
Failure probability (FP) of the network is shown plotted against failure probability of
the switch (Fig. D-1) for the simplex, duplex and triple-tree cases with 128 processors.

Observe that for small values of F (F, << 1/N_), F,  is far more sensitive to F, in the

simplex case as compared to the duplex and triplex trees. The improvement in
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reliability of the multiple tree structure over the simplex tree may be obtained by

examining the above equation for FP of the network.

F . =11-(1-F)»NJr (D.4)
=[1-(1-NF +.. W

For small values of F, (F <<1/N), this may be approximated to
Fnel = (Nst)r (DS)

0.7§

vy v v v ey YTy

0.15

NETFP
0.10

1]

I

005

4
4
/
4

e

000 004 00 012 016 0
FWITCH FPx 102

Figure D-1: Failure Probability vs. N
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For example, at F = .002, F 15 .225 in the simplex tree but .050 and .011 in the duplex
and triplex trees respectively. This implies that the simplex tree is more than 4 times
as likely to fail as compared to the double tree and over 20 times as likely to fail as

compared to the triple tree when the reliability of the switch is 0.998.

The equation for network reliability may be rewritten to show the explicit dependence
of R,,, on time as

R, =1-(1-eNy (D.6)
Reliability of the network (simplex, duplex and triplex cases) is plotted as a function
of time for N = 12§ (Fig. D-2). It is assumed that the switch failure rate is 0.1 per
million hours - a fairly representative value in view of the fact that a switch node in
KYKLOS has low fanout and corresponding low complexity. Note that the plots for
r>1 have a low gradient during the first few thousands of hours of operation. This is in
marked contrast to the simplex case where the slope is much steeper. Differentiation

of the reliability expression with respect to time confirms this observation. Thus

dR,,/dt=d[1 - (1-e™*Ny]/dt (D.7)
= A NeMr, r=1
= AN e—?u\"/ (1~€‘7‘ Nz)r—l’ r>1

This feature of the plots for multiple trees is responsible for the great improvement in
mission time (MT) in KYKLOS.
Let k be the mission time reliability of the r-replica network. Substituting for R, in
(D.6) and solving for MT yields

MT = {-In[1-(1-k)V"]}/(AN) (D.8)
For k~1, the above expression may be approximated (using the series expansion for

In(1-x), x~0) to
MT = (1-k)V/(AN) (D.9)

The mission time improvement (MTI), defined as the ratio of the MT in the r-replica

case to the MT in the simplex case, is easily estimated from
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D.10
MTI = (1-k)!#-! ®10

Fig. D-2 also shows a detailed view of R(t) during the first few years of the operation
of the network. Consider an MT reliability of 0.9. While the MT for the simplex tree is
about 8000 hours of operation or less than a year, that for the double tree shows close
to a fourfold improvement (over 3 years) while that for the triple tree shows a sixfold

improvement (nearly 6 years of continuous operation).

For some ultra-reliable applications where a high value of MTTF is at a premium, it is
meaningful to compare the MTTF’s of the multiple tree structure with that of the

simplex tree.

Using (D.6), the MTTF for the general r-replica case may be expressed as
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MTTF= j “[1=(1—e)y|ds
0
=[N TQ=0)(-xldr where x = 1-¢ %
0

=(1/KN3)J l [T+x+x2....+xdx
0
=(1/7\NS)[1+1/2+1/3 ..... +1/r] ' D.11D)

This implies that the use of a double tree increases the MTTF (graphically the area
under the Reliability curve of Fig. D-2) by 50% over that of a single tree while adding

a second replica has a cumulative effect of increasing the MTTF by about 83%.
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