
ABSTRACT

Title of dissertation: MARMOSET: A PROGRAMMING PROJECT ASSIGNMENT
FRAMEWORK TO IMPROVE THE FEEDBACK CYCLE
FOR STUDENTS, FACULTY AND RESEARCHERS

Jaime W. Spacco, Doctor of Philosophy, 2006

Dissertation directed by: Professor William W. Pugh
Department of Computer Science

We developed Marmoset, a system that improves the feedback cycle on pro-

gramming assignments for students, faculty and researchers alike.

Using automation, Marmoset substantially lowers the burden on faculty for

grading programming assignments, allowing faculty to give students more rapid

feedback on their assignments.

To further improve the feedback cycle, Marmoset provides students with lim-

ited access to the results of the instructor’s private test cases before the submission

deadline using a novel token-based incentive system. This both encourages students

to start their work early and to think critically about their work. Because students

submit early, instructors can monitor all students’ progress on test cases and identify

where in projects students are having problems in order to update the project re-

quirements in a timely fashion and make the best use of time in lectures, discussion

sections, and office hours.

To study in more detail the development process of students, Marmoset can

be configured to transparently capture snapshots to a central repository every-time

students save their files. These detailed development histories offer a unique, detailed

perspective of each student’s progress on a programming assignment, from the first

line of code written and saved all the way through the final edit before the final

submission. This type of data has proved extremely valuable for many uses, such

as mining new bug patterns and evaluating existing bug-finding tools.

MARMOSET: A PROGRAMMING PROJECT ASSIGNMENT
FRAMEWORK TO IMPROVE THE FEEDBACK CYCLE FOR

STUDENTS, FACULTY AND RESEARCHERS

by

Jaime W. Spacco

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2006

Advisory Committee:

Professor William W. Pugh, Chair/Advisor
Professor Adam Porter
Professor Jeffrey K. Hollingsworth
Professor Atif M. Memon
Professor Kent Norman

c© Copyright by

Jaime W. Spacco

2006

This dissertation is dedicated to the memory of Frank “Dudley” Wallen.

ACKNOWLEDGMENTS

I want to thank Bill for having patience with me back when I didn’t know how

to do research, and then once I started to figure it out, for pushing me to do better

work than I thought I would ever be capable of doing.

I want to thank both sets of parents for their unconditional love, support and

inspiration, even if they still have no clue what it is that I actually do for a living.

Thanks to my current and former roommates at Geek House for ice cream,

video games, cookouts, super bowl parties, and board games.

Thanks to everyone I’ve played on an intra-mural team with over the last seven

years—I’ll never forget stepping onto the turf at night and playing under the lights.

That all meant much more to me than it probably should have... Good times, good

times.

Overall, I want to thank all of my friends, here at Maryland and everywhere

else, for being wonderful. All I need to say about my friends is that if I ever get to

the gates of heaven and have to pick the criteria they’ll use to judge me, I would

say “Judge me by the quality of the people who have chosen me as a friend”.

iii

TABLE OF CONTENTS

List of Tables vii

List of Figures ix

1 Introduction 1

1.1 Improving Feedback to Students . 2

1.2 Improving Feedback to Instructors 4

1.3 Improving Feedback for Researchers 5

1.4 Thesis . 7

1.5 Contributions . 7

2 Design and Implementation 9

2.1 Overview . 9

2.2 SubmitServer . 11

2.3 Distributed BuildServers . 11

2.3.1 Handling Inconsistent Test Cases 12

2.4 Security . 15

3 Release Testing 18

3.1 Motivation . 18

3.2 The Release Testing Mechanism . 20

3.3 Goals of Release Testing . 24

3.4 Student Experiences with Release Testing 26

iv

4 Instructor Feedback 29

4.1 Viewing Student Data . 29

4.1.1 Aggregate Data for an Entire Class 29

4.2 Fixing Instructor Test Suites . 32

5 Data Collection with Marmoset 35

5.1 Motivation . 35

5.2 The Course Project Manager Plugin 37

5.3 CS-2 Data Collected with Marmoset 40

5.4 Examining Runtime Exceptions in CS-2 41

5.5 Evaluating and Tuning FindBugs . 44

6 Helping Students Appreciate Test-Driven Development (TDD) 48

6.1 Motivation for Test-Driven Development 48

6.1.1 Marmoset’s support for TDD 49

6.2 Getting students to write tests . 50

6.3 When coverage is not enough . 54

6.4 Future Work: Enchancing Marmoset 58

6.4.1 Code coverage information . 58

6.4.2 Tests that cover uncovered methods 59

6.4.3 Covering the source of exceptions 60

7 Survey 62

7.1 Survey Goals . 62

v

7.2 Overview of Survey Results . 63

7.3 Evaluating Student Programs . 64

7.3.1 Time Spent Grading per Submission 65

7.3.2 What Contributes to the Final Score of an Assignment? . . . 66

7.3.3 Style vs. Functional Correctness 68

7.4 Course Management Systems . 70

7.5 Automated Style Checkers . 71

7.6 Integrated Development Environments (IDEs) 73

7.7 Perceived Impediments to Effective Grading 74

7.8 Conclusions . 77

8 Related Work 78

8.1 Automated Grading Systems . 78

8.2 Data Collection with BlueJ . 80

8.3 Hackystat . 81

8.4 Software Repository Mining . 82

8.5 Test-Driven Development in the Curriculum 85

9 Conclusions and Future Work 94

9.1 Conclusions . 94

9.2 Future Work . 95

A Text of the Survey 97

Bibliography 105

vi

LIST OF TABLES

3.1 Screenshot of Marmoset’s display of a release-eligible submission be-

fore requesting release testing. 22

3.2 Screenshot of Marmoset’s display of a release-eligible submission after

requesting release testing. 23

3.3 Student Survey Results, CS-2 Fall 2005, 48 respondents out of 105

students . 27

4.1 Test Suites changed by the instructor after students began submitting. 33

5.1 Overall data collected by Marmoset for 4 consecutive semesters of

CS-2 at the University of Maryland 39

5.2 Number of lines changed between snapshots collected by the Course

Project Manager plugin over four semesters of CS-2 at the University

of Maryland. 40

5.3 Most common exceptions over four semesters of CS-2 at the Univer-

sity of Maryland. Course taught in Java, 29 total projects represented

in this data, data sorted by number of projects in which the exception

occurred. 41

5.4 Observed false positive rates for selected FindBugs detectors. 46

5.5 Observed false negative rates for selected FindBugs detectors. 46

7.1 Breakdown of the sizes of schools where survey respondents taught. . 63

7.2 Breakdown of the courses taught by survey respondents. 64

vii

7.3 Grid showing number of minutes spent on each submision evaluating

style concerns and functional correctness. 65

7.4 Factors that contribute to the final score of a programming assign-

ment (55 responses). Note that the totals will sum to more than the

number of responses because respondents could select more than one

answer. 67

7.5 Weighting of style and functional correctness in grades. 68

7.6 Submission mechanisms used by survey respondents. 70

7.7 Electronic submission systems other than emailed used by survey

respondents. 70

7.8 IDEs used by survey respondents. 73

7.9 Survey results of respondents’ evaluation of perceived impediments

to effective grading, from the survey administered for this thesis. Im-

pediments marked with a * showed statistically different (with p <

0.05) distributions of responses between Vastani’s 2004 survey and

this survey. 75

viii

LIST OF FIGURES

2.1 Overview of the design of Marmoset 10

4.1 Overall progress for the entire class for a CS-2 poker hand evaluator

project from Spring 2005. The submission deadline was February 11

and the late deadline February 12. 30

5.1 Example of CS-2 infinite recursive loop bug pattern. 42

5.2 Example of CS-2 bad cast bug pattern. 42

6.1 Code coverage added after reaching functional correctness. Values

along the diagonal represent students who did not improve their test

suites after achieving functional correctness; values along the top rep-

resent students who eventually achieved 100% code coverage. 53

6.2 Breakdown of when students achieved at least 80% coverage. 54

6.3 Unique and redundant coverage by failing test cases 56

ix

Chapter 1

Introduction

Feedback is an extremely important part of the educational process: Students want

feedback on how well they are learning the course material; instructors want feed-

back on how well their students are learning the course material as well as how ef-

fectively they are teaching the material; and researchers want to use feedback about

the actions and interactions of both students and instructors to better understand

effective ways for instructors to teach and for students to learn.

Many computer science courses have a strong programming component, where

completing one or more programming assignments is an important means for stu-

dents to demonstrate mastery of the course material. However, most programming

assignments are evaluated using an outdated model where instructors provide feed-

back and a final grade only on each student’s final submission, and only after the

submission deadline. Because their work has already graded and the grades cannot

be improved, students have little incentive to carefully review the feedback they’ve

received on a programming assignment. Furthermore, the timing often works out

such that students receive feedback from a previous assignment while already hard

at work on the next assignment, giving them even less incentive to review the feed-

back. Finally, the final submissions are produced through an opaque process that

captures very little detailed data about students’ development process.

1

To improve the feedback provided to students, instructors and researchers, we

built Marmoset, an automated snapshot, submission and testing system. Marmoset1

improves upon the state of the art by doing three things well:

• Lower the overhead for grading by taking advantage of automation whenever

possible

• Provide feedback to students before the submission deadline without simply

giving students all of the test cases ahead of time (since that practice may

encourage students to blindly “code to the tests”)

• Transparently and unobtrusively capture as much “naturally-occurring” data

about student programming practices as possible

1.1 Improving Feedback to Students

Traditionally, students receive feedback about their programming assignments through

a variety of channels, ranging from informal feedback such as advice, hints or clari-

fications provided during lecture, office hours, lab sessions, or exchanges on a course

newsgroup or wiki, to more formal feedback such as the final grade, results of run-

ning the program against test cases, or an evaluation of the programming style used

in the program.

The standard practice when grading programming assignments is to give stu-

dents a project description or specification and a deadline by which students must

1We wanted to name the project after a small, cute animal, so we picked “Marmoset” somewhat

randomly. The name is not an acronym for anything and has no special significance.

2

complete the assignment, then collect the programs at the deadline, evaluate them,

and provide grades and other feedback to the students.

The grading process usually has a high overhead, and can take anywhere from

two days to two weeks. Students often do not receive their formal grade and feed-

back about a programming assignment until they are hard at work on the next

assignment, and therefore have less incentive to review carefully the feedback from

a previous assignment because it cannot change their grade.

Marmoset automates the collection and grading of submissions, an extremely

important step that frees instructors from the burden of writing scripts to manage

submissions, run submissions against test cases, record the results, compute final

grades based on these results, and return the results to the students. The time saved

can then be spent helping students with the aspects of programming with a higher

cognitive load, such as program design, efficiency, or programming style.

Many systems exist that help automate the grading process to various de-

grees [54, 15, 24, 12, 25]; however, none of these systems address the issue of pro-

viding feedback to students before the submission deadline, when students can best

use that feedback to improve the quality of their programs as well as their grade on

the assignment.

Providing feedback to students before the submission deadline is crucial—

because students can still improve their grade, they have incentive to pay careful

attention to the feedback. On the other hand, we believe (and all other educators

we’ve spoken to agree with us) that simply giving students the complete set of test

data their programs will be expected to handle encourages students to “code to the

3

tests”. One particularly bad habit students often adopt when given the complete

set of test inputs is programming by “Brownian motion”, where students make a

series of small, seemingly random changes to the code in the hopes of making their

program pass the next test case.

To solve this problem, we have devised a feedback system called “Release

Testing” that provides feedback about the outcomes of executing student programs

against instructor-supplied test cases. Release testing is limited in that it is subject

to a token-based incentive system that rewards students for beginning work early

and for writing their own test cases.

1.2 Improving Feedback to Instructors

Instructors want to know how well students are learning the material, and how

well they themselves are teaching the material. In the context of programming

assignments, instructors would like to be able to ask questions such as:

• How many students have passed at least half of the test cases?

• The project is due in three days; how many students have not started?

• Are there any test cases that very few or no students are passing?

• Are there test cases that test parts of the specification that students seem to

be misinterpreting?

However, the typical feedback mechanisms available to instructors, such as

questions raised during lecture, office hours, lab sessions, or on a course newsgroup

4

or wiki, final submissions and final grades, and course evaluations, are too coarse-

grained, incomplete and inadequate to answer any of the questions listed above in

any meaningful way. Furthermore, these feedback mechanisms are subject to bias

by a vocal minority of students whose concerns do not necessarily represent the

concerns of the rest of the class.

We have designed Marmoset such that students are encouraged to submit early

and often. In addition, we store all submissions as well as the outcomes of running

each submission against the instructor provided test suite. Instructors can access

this rich data source to get overviews of the progress of the entire class that answer

questions such as those listed above. Instructors can then use this information to

identify difficult test cases, and adjust lecture or lab sessions as appropriate to cover

the material students are struggling with.

1.3 Improving Feedback for Researchers

Recently, working groups in the computer science education community have begun

rigorous studies of novice programmers in order to assess what novices are learning

and ultimately to determine the best way to teach novices. Unfortunately, these

studies have been expensive to conduct, requiring either carefully crafted questions

and a standardized marking system so the questions can be administered at several

institutions (see McCracken at al [38]), or time-consuming “think aloud” studies

(see Lister et al [33]) where students are encouraged to talk aloud while working on

problems so that their vocalizations can be recorded, transcribed and later analyzed.

5

In addition, these studies require students to work in a closed environment such as a

timed lab session or examination, and therefore gather little data about how students

work independently, in an untimed fashion and with access to whatever resources

they normally use for programming, such as textbooks, online APIs, or Google.

To learn about how students work “in the wild”, we must unobtrusively col-

lect data from students as they are working on programming assignments. The

data available to researchers under the traditional model of assigning and grading

programming assignments consists mainly of the feedback mechanisms available to

instructors, such as questions raised during lectures or office hours, course evalua-

tions, and final submissions. This data is useful, but ultimately inadequate: Final

submissions are too coarse-grained, and contain too little information about the

development process, to enable studies of novice programming practices.

To remedy this situation, we have built the Course Project Manager [46], a

plugin for the popular Eclipse Integrated Development Environment (IDE) that

captures to a central repository regular snapshots of student code every time stu-

dents save their files. These fine-grained snapshots grant researchers a view with

an unprecedented level of detail at the development history of hundreds of students

implementing dozens of projects.

The resulting dataset has proved useful for a variety of purposes, such as

mining new bug patterns and evaluating and tuning selected bug detectors in Find-

Bugs [16], the popular open-source bug checker; the work evaluating FindBugs rep-

resents one of the first comprehensive analyses of false negatives as well as false

positive in the static error detection community.

6

1.4 Thesis

The thesis for this research is as follows:

We can greatly improve the feedback provided to students, instructors,

and researchers by building and deploying a system that takes advantage

of automation whenever possible, provides feedback to students before

the deadline, and transparently collects students’ “naturally-occurring”

data.

1.5 Contributions

This research makes the following contributions:

1. We describe building and deploying Marmoset, a system for automated test-

ing of student programming assignments and fine-grained data collection of

students’ development process.

2. We conduct a multi-institution survey of computer science educators’ grading

practices for programming assignments in order to shed light on how assign-

ments are assessed and how the graded parts of an assignment are weighted.

3. We introduce “release testing”, a token-based incentive system that provides

students with limited feedback of the outcomes of running their submissions

against the instructors’ test suite.

4. We describe the Course Project Manager, a plugin that transparently collects

students’ “naturally-occurring” data.

7

5. We evaluate the precision and recall of select bug detectors in the open-source

static checker FindBugs [16] using the Marmoset dataset.

6. We study programming assignments designed to encourage students to adopt

Test-Driven Development (TDD), and report on our experiences.

8

Chapter 2

Design and Implementation

In this chapter, we peek behind the curtain at the underlying design and architecture

of Marmoset. We specifically discuss how the design of Marmoset addresses security,

robustness and scalability.

2.1 Overview

We designed Marmoset to test student submissions in a fully automated and robust

manner. We had the following design goals in mind when building and improving

the system:

• No human intervention is required: Once the system is configured, Marmoset

tests student submissions, whenever they are submitted by students, fully

automatically.

• Poorly written student code should not cause any disruptions to the system:

Code with infinite loops or deadlocks cannot hang the system, and buggy code

should not crash the system.

• The system should not require regular downtime for maintenance and/or re-

boots. Once the system is up and running, it should continue running, without

any human intervention, unless a bug is discovered and a patch needs to be

9

SubmitServer:
WebServer and

Database

.
StudentStudentStudent

BuildServerBuildServerBuildServer

Instructor

Figure 2.1: Overview of the design of Marmoset

rolled out.

• Whenever possible, the system should detect and correct errors due to hard-

ware failure or other system-level issues.

• Even if there is a bug in Marmoset or in an instructor’s test suite, Marmoset

should do something sensible from the perspective of the students.

Our goals are for Marmoset to be able to test any (potentially buggy) student

code at 3:00AM without requiring any human intervention or other type of main-

tenance. This turns out to be a non-trivial engineering task that required a careful

10

design. Figure 2.1 shows the overall design of the Marmoset system, which consists

of a web front-end called the SubmitServer and a database both running on one

host, and a series of distributed BuildServers running on one or more other hosts.

The design of the SubmitServer is described in Section 2.2 and the BuildServer is

described in Section 2.3.

2.2 SubmitServer

The SubmitServer is a web application that runs on top of a servlet container. The

codebase is targeted at Apache Tomcat [2], but other servlet containers, such as

Resin [6], can be used with minimal configuration changes.

The SubmitServer essentially displays views of the data stored in a database.

The database is normally located on the same physical host machine as Tomcat,

providing additional security as the database can then be configured to only accept

connections from localhost (particularly useful for versions of MySQL [41] prior to

5.0, as they do not support SSL by default).

2.3 Distributed BuildServers

A BuildServer is a daemon process that periodically connects to the SubmitServer,

requests a submission to run against a set of test cases, performs the necessary

testing, and then returns the results to the SubmitServer.

A BuildServer does not maintain any state between testing one submission

and testing the next one; therefore, many BuildServers can connect to the same

11

SubmitServer to distribute work more efficiently.

If a machine running a BuildServer goes down, new BuildServers can be quickly

brought online on a different machine so that students do not experience any down-

time. Similarly, a single machine can host multiple BuildServers in order to better

harness multiple CPUs. Similarly, if there is a backlog of new submissions to be

tested (such as close to a project deadline, the re-test of many submissions triggered

by an instructor uploading a new test-setup, or at the end of a semester when all

CVS snapshots are dumped into a research database) then dozens or hundreds of

BuildServers can be started, for example by using a cluster, to quickly and efficiently

test many submissions in parallel.

If a BuildServer or its host machine crashes while testing a submission, the

SubmitServer will eventually “time out” that submission and send it to a different

BuildServer to be re-tested. In this manner, Marmoset automatically detects and

adapts to changing conditions in the network.

2.3.1 Handling Inconsistent Test Cases

Marmoset is a production system, used by students, TAs and faculty at all hours

of the day and night. The system tests submissions fully automatically, without

oversight or supervision. We have tried to design the system to detect potential

problems and bring them to the attention of a Marmoset administrator.

Hardware failures, such as network outages or machine crashes, are inevitable

in any production system like Marmoset, and should be anticipated and handled

gracefully whenever possible. If a major hardware or network failure takes place,

12

for example if the machine hosting the SubmitServer web application crashes or the

network path leading to this machine is disrupted, the system becomes very clearly

unusable, and very little can be done to recover from this sort of error short of

restoring the SubmitServer database from backups and reinstalling the SubmitServer

web-application onto another machine. On the other hand, if a machine hosting

a BuildServer crashes or otherwise becomes unusable, other BuildServers can be

quickly and easily brought online on other machines to handle the work.

A more difficult error to detect and correct occurs when one or more test cases

return incorrect outcomes for a student submission. These type of intermittent

problems typically manifest as a test case failing that should have passed, although

it is possible for a test case to pass that should have failed. This can happen for

two main reasons:

• Network or hardware failure: Some test cases rely on external resources such

as an external website, or files located on the filesystem, and can occasionally

fail due to an intermittent network outage, a momentary spike in the load on

a machine, and so on.

• A bad test case that returns inconsistent results: Instructors rarely design

inconsistent test cases for single-threaded projects, but it does occassionally

happen in practice. Furthermore, testing multi-threaded programming assign-

ments often necessitates inconsistent test cases.

Incorrect test outcomes due to intermittent reliability issues are less likely to

plague instructors who are writing and running their own grading scripts because

13

they will likely notice any such errors immediately and either choose another machine

that does not exhibit the problem, or re-run the test cases to ensure their correctness.

Because Marmoset is constantly testing submissions without human oversight,

it is more likely to experience an intermittent hardware problem, such as a router

briefly going offline and dropping packets, or a spike in the load on a machine making

processor or filesystem resources to temporarily appear unavailable. It is difficult to

predict when these types of errors are going to occur, and they are unlikely to occur

on multiple runs of the same code. Thus, Marmoset runs each test case multiple

times to ensure the accuracy of the results.

In order to detect incorrect test outcomes, Marmoset constantly performs back-

ground retesting by re-testing an old submission when there are no new submissions

to be tested. If the results of a retest are the same as the original, Marmoset notes

that there has been one consistent re-test; if the results are different, the system

keeps the set of new results and notes that there has been one inconsistent back-

ground re-test. After a submission has been retested 5 times, we stop testing that

submission. Instructors can then look for evidence of inconsistent test outcomes

by for example listing all the submissions that have returned inconsistent results,

or all test cases that have re-tested inconsistently. Thus far, the vast majority of

inconsistent test results have been due to test cases that use threads (common in

some junior and senior-level courses that use Marmoset), bugs in Marmoset itself,

or hardware/network outages.

Currently, we do not attempt to perform any sort of automatic corrections

based on the results of inconsistent retests—we simply point the instructor to any

14

inconsistent retests. In this manner, background retesting is a simple means of

establishing confidence in test outcomes, something that, like the errors in instructor

test suites discussed in Section 4.2, we had never considered prior to developing

Marmoset.

The background retests help Marmoset behave more like a fault-tolerant pro-

duction system and less like ad-hoc grading scripts. Other automated grading sys-

tems, such as Steve Edwards’ WebCAT [12], focus on the pedagogical and/or labor-

saving benefits of such systems, and make no mention of detecting intermittent errors

and scant mention of designing and operating a robust system.

2.4 Security

When designing a system with security in mind, we are really managing risk, as

no system is ever 100% secure. We took as many reasonable precautions regarding

security when designing Marmoset, such as:

• Security Manager: Student-written Java code runs in a security manager that

prevents potentially insecure operations such as opening sockets, executing

shell commands, or reading/writing files, except where the instructor grants

specific permissions required by test cases

• Unprivileged account: Student-written code in other languages, such as C or

Ruby, runs under an unprivileged account can only write in the directory where

it will run student code, but cannot read the parent directory and therefore

cannot navigate into other directories. This approximates the behavior granted

15

by the ’chroot’ program (which makes the current directory appear to be

’/’) but avoids the complications of compiling and linking against standard

libraries in /usr/include or /usr/lib.

• Student code is executed on a physically separate machine from the webserver

and database: The distributed design of the BuildServers means that student-

written code is always executed on a physically separate machine from the

machine hosting the production SubmitServer web application and the Sub-

mitServer database. Thus, if students submit malicious or broken code, the

worst that can happen is that one of the BuildServer machines will crash or be

compromised; student data such as grades and test outcomes are not at risk.

Furthermore, because every single student submission is stored in the Submit-

Server’s database, we have a record of any malicious1 code that is submitted

and can use log messages to quickly identify the perpetrator.

• Use Secure Sockets Layer (SSL) to encrypt all traffic to the SubmitServer

web application and between the SubmitServer and the BuildServers. This

means that all passwords are encrypted, which is particularly important when

students and faculty are working in a wireless environment.

• Regularly run static analysis tools such as FindBugs [16] or Fortify [17] on the

Marmoset codebase to look for vulnerabilities. Fortify is particularly helpful

for this purposes as it scans for vulnerabilities that are specific to servlets and

SQL databases.

1Thus far, we have not seen any evidence of malicious submissions.

16

After four semesters of use (Fall 2004 through Spring 2006, plus summer and

winters sessions), we have not encountered any malicious code submitted by stu-

dents. The security of Marmoset could of course be improved, but at this point we

have taken all of the reasonable precautions we could think of, and would need to

perform a cost-benefit analysis to justify further efforts in this area.

17

Chapter 3

Release Testing

In this chapter, we discuss the motivation for and implementation of release testing,

a novel incentive-based feedback system for programming assignments.

3.1 Motivation

Instructors typically evaluate functional correctness1 (i.e. does the program do what

the specification requires it do, and not do what the specifications requires it doesn’t

do?) of student programs by executing them against a series of test cases2.

When grading programming assignments for functional correctness, one major

question always arises: How much feedback, if any, should students receive about

their work before the assignment deadline? At one extreme, students can receive no

feedback at all, and at the other extreme, students can see the results of running all

of the instructor’s test cases against their submission. The standard compromise is

to partition the test cases into public test cases that are given to students before the

deadline and demonstrate the types of inputs that student programs are expected

to pass, and secret3 test cases that exercise the code more rigorously and are not

1Student programs are also evaluated along other dimensions, such as style, but these other

grading concerns are orthogonal to this discussion, and for the purposes of this chapter, “grading”

specifically refers to the evaluation of functional correctness.
2In this document, test cases will be used interchangeably with test data and test inputs.
3At other institutions, secret tests have been referred to as private tests, instructor tests or

18

given to students until after the deadline.

We want to provide students with feedback before the assignment deadline

regarding how close their work is to passing all of the secret test cases (and therefore

fulfilling all of the functional correctness requirements) without simply giving all of

the test cases to students 4.

While the public/secret partition works reasonably well in practice, there are

still some drawbacks. First, instructors often write the secret tests after the project

deadline passes because there is no incentive to do so any sooner, which can lead

to instructors assigning features that will be difficult to evaluate. Also, because

the public tests are distributed to the students, instructors have no direct way

of accessing the outcomes of executing student code against the public tests and

therefore cannot easily find places where the specification is ambiguous and modify

the public tests accordingly. Next, instructors may make the public tests the “easy”

tests and keep the complicated or “tricky” test cases secret. This can surprise

students, as they may pass all of the public tests and submit their work confident

that they’ve done well, then find out a week later that they have failed all of the

secret tests. Students can become especially frustrated when post-deadline feedback

from secret tests reveals a simple misconception, misinterpretation, or error that

could have been fixed quickly or easily, but the feedback has come too late to make

grading tests.
4Virtually all educators agree that giving students unrestricted access to all the test cases before

the deadline encourages “coding to the tests”, whereby student programs handle the specific test

inputs but few other inputs. Isaacson [24] describes this problem, although it is undoubtedly

discussed in many other places and other contexts.

19

a difference in the student’s grade.

In an ideal world, students receive their grades and post-deadline feedback

and use this information to learn from their mistakes. In reality, both students and

instructors have moved on to the next project by the time students receive post-

deadline feedback, and, with the exception of grading mistakes, students find little

incentive to focus on an old project whose grade cannot be changed when there are

fresh points still to be earned implementing the next project.

In the next section, we describe our mechanism to providing students with

limited feedback to secret test cases, and discuss some of the implications.

3.2 The Release Testing Mechanism

In addition to the public and secret tests, Marmoset provides a new category of

test case called a release test5. Release tests differ from public tests in that they

are stored on a central server and are never distributed to the students; release

tests differ from secret tests in that the results of release tests are selectively made

available to students according to a release policy.

To be eligible for release testing, a student’s submission must first pass all

of the public tests. Because public tests are distributed to students, they should

already know whether or not their submission passes all of the public tests before

uploading their work to the server.

5The term release test comes from industry, where development teams need to decide when

software is ready for release, either to the Quality Assurance team, to the alpha testers, to the

public, or wherever.

20

When a student is eligible for and requests release testing for a particular

submission, the Marmoset system reveals to the student the number of release tests

the submission passes and fails and the names only of the first two failed release

tests (if any). For example, for a Poker hand evaluator project, students might be

told that their submission passed 6 release tests, failed 4 release tests, and that the

names of the first two failed test cases are testFlush and testFourOfAKind6.

In addition, students are limited in how often they can request release testing.

Each release test consumes a release token; students receive a fixed number of tokens,

and each token regenerates after a fixed period of time. For example, the default

configuration grants students 3 release tokens, each of which regenerates 24 hours

after use.

All of these parameters can be configured on a per-project basis; we chose to

reveal the names of two release tests and to give students three release tokens arbi-

trarily, and have not conducted any studies to determine whether these parameters

are optimal.

Figure 3.1 is a screenshot of Marmoset’s display of the results of the Poker

hand evaluator project before a student requests release testing, while Figure 3.2

is a screenshot of what is displayed to the student after requesting release testing.

Note that after requesting release testing, the student only has 2 release tokens

remaining, as the token just spent requires 24 hours to regenerate.

6Currently Marmoset displays only the names of the test cases. However, it would not be

difficult to to display the name of the test and an instructor- supplied “hint”.

21

Table 3.1: Screenshot of Marmoset’s display of a release-eligible submission before
requesting release testing.

22

Table 3.2: Screenshot of Marmoset’s display of a release-eligible submission after
requesting release testing.

23

3.3 Goals of Release Testing

The token-limited restrictions imply that if students wait until the day before a

project is due to begin working, they can only use 3 release tokens. This is a

very concrete incentive for students to begin working early because they can utilize

more release tokens, receive more feedback, and ultimately earn better grades on

programming assignments.

Release testing also has two goals that are more subtle than the obvious in-

centive to start early: To encourage students to think critically about their code,

and encourage students to write their own test cases.

Even a student who begins every assignment early will eventually run into

the following situation: “...Only one precious release token remaining... No release

tokens will regenerate for many hours... Am I really ready to use spend this final

token?”. Students are regularly required to ask themselves: Have I really done

everything I can to debug my code such that burning this final release token will

reveal new information? This situation causes students a good deal of anxiety;

however, it also encourages students to think carefully and critically about their code

before spending a release token. We hope that students will learn to think carefully

about their programs as a matter of course, and begin to see critical thinking as a

normal part of the software development cycle.

Encouraging students to write their own test cases is the other major goal of

the release testing process. A release test merely gives students the name of the test,

such as testFlush; it does not give concrete information such as a stack trace or

24

the line number where the error happens. We tell students (and instruct our TAs to

tell students) that the best way to figure out why their code doesn’t pass testFlush

is to write their own test case that checks for a flush. This requires that students

understand at a high level the expectation of the test case 7, and then figure out

how to validate their own code against these expectations—in short, students are

encouraged to learn to write good test cases on their own.

Students can benefit from learning to write test cases in many ways; in Sec-

tion 8.5, we review recent literature on the benefits of introducing testing into the

computer science curriculum. Edwards [14] provides perhaps the most eloquent

and succinct description of the student’s primary benefit from learning to test their

own code thoroughly: it helps them change their development methodology from

“trial-and-error” to “reflection-in-action”.

Writing good test cases is empowering for students because it provides them

with a rigorous methodology for debugging, as Edwards discusses [14]. Furthermore,

the mentality encouraged by considering method pre-conditions and post-conditions

and the circumstances under which they may be violated is similar to constructing a

type of empirical proof that their program is correct. To push this analogy farther,

if a program is a proof that solves an interesting problem, then a thorough test suite

is a meta-proof that the first proof is indeed correct.

In Chapter 6, we discuss in detail additional strategies for motivating students

to write their own test cases.

7Marmoset is dependent upon instructors to come up with names for each test case that are

descriptive of the test at a high-level.

25

The release testing system provides feedback about the instructor’s secret tests

to students before the project deadline, when the students can best use feedback to

learn from their mistakes and improve their programs. Furthermore, release tests

are a very concrete incentive for students to start working on their programming

assignments early; the earlier they start, the more release tokens they can use!

Release tests also mean that students who finish the project early and are satisfied

with their score are rewarded for their diligence with the peace of mind that they

are done. Finally, because all tests are run on the server for every submission,

release tests provide feedback to the instructional staff about the progress students

are making on each test case, which in turn helps instructors identify difficult test

cases in time to adjust lectures or lab sessions to cover the material covered by the

difficult test cases (More information about feedback to instructors can be found in

Chapter 4).

3.4 Student Experiences with Release Testing

Directly assessing the pedagogical impact of Release Testing is a challenge. One

possibility is to perform a controlled experiment: Split the class into two groups,

one of which can use release testing for project 1 while the other can use it for

project 2. However, this system is not fair to the students if the difficulty level of

the projects is not the same. Since the difficulty level for projects generally increases

as the semester progresses and we are unlikely to find projects of the same level of

difficulty, we have not felt it was ethical to perform this type of controlled study.

26

Question 1 2 3 4 5 NA
Is your overall impression positive? (1=negative, 5=pos-
itive)

0 5 12 32 21 0

Do you prefer release testing over traditional post-
deadline testing? (1=post-deadline, 5=release)

5 3 9 14 39 0

Were you able to make good use of feedback from release
tests? (1=no, 5=yes)

4 13 6 31 16 0

Did release testing encourage you to start projects ear-
lier that you might have otherwise? (1=no, 5=yes)

3 10 8 34 15 0

Did release testing make you feel more relaxed and confi-
dent (or, conversely, more tense and unsure)? (1=tense
and unsure, 5=relaxed and confident)

6 20 20 19 5 0

For projects with secret test cases, did you keep working
after you had passed all of the release tests? (1=no,
5=yes)

10 7 10 17 25 1

Table 3.3: Student Survey Results, CS-2 Fall 2005, 48 respondents out of 105 stu-
dents

Another possibility would be to compare different semesters of the same course

before and after the introduction of Marmoset. We were not able to perform

such a comparison because the initial deployment of Marmoset at the University

of Maryland coincided with a major restructuring of the introductory curriculum

that changed the language used in the first two semesters from C/C++ to Java, and

introduced an entirely new sequence of projects.8

Although a direct assessment of the impact of release testing on student

achievement has not been possible so far, we did want to gain some understand-

ing of how students perceived the system, and whether or not they felt it enhanced

their experience or detracted from it. To this end, we conducted a survey; the

questions and responses are in Figure 3.3.

8In the future, we hope to make such a comparison by using Marmoset in a different course

without making other simultaneous curriculum changes.

27

The students who took the survey had used Marmoset in Object-Oriented

Programming I, and were currently enrolled in Object-Oriented Programming II.

We solicited responses using a Likert scale from 1 to 5, where 1 is the least positive

outcome, 3 is neutral, and 5 is the most positive outcome.

In general, students had a positive impression of the system. According to

the student responses, the feedback from the release tests was useful, and were a

motivation to start work early. Surprisingly, even given the positive reaction to

the system overall, the students were split evenly on the question of whether or

not release tests helped them feel relaxed and confident. We speculate that some

students found themselves in a situation where their project failed one or more

release tests, but they either did not understand the reason for the failure, or did not

understand how to fix the problem. Using a traditional program-grading workflow,

there would be a lag time of a week or two between a submitting a programming

assignment and receiving the grade; Marmoset, however, supplies the grade before

the deadline, meaning that the anxiety and lack of confidence students feel is very

likely a reaction to their poor grade rather than to the release test mechanism itself.

28

Chapter 4

Instructor Feedback

In this chapter, we discuss the feedback Marmoset provides to instructors. Marmoset

provides instructors with a breakdown of how many students have passed each test

case for several days leading up to the deadline, which helps instructors plan lectures

and lab sessions to cover the material students are finding the most difficult. In

addition, Marmoset is designed to detect mistakes in instructor-provided test suites

and handle these mistakes gracefully.

4.1 Viewing Student Data

Marmoset provides instructors with a variety of views of student data. Instructors

can peruse aggregate data illustrating the progress of the entire class on each test

case, or a breakdown of how the best submission for each student performs on each

test case. In addition, instructors can drill down for a particular student and view

that student’s submission history.

This section describes each of these views in more detail.

4.1.1 Aggregate Data for an Entire Class

Figure 4.1 is a screenshot of a table available through Marmoset illustrating how

many students in the entire class have passed each test case for the days leading up

29

Figure 4.1: Overall progress for the entire class for a CS-2 poker hand evaluator
project from Spring 2005. The submission deadline was February 11 and the late
deadline February 12.

30

to the deadline. The deadline was February 11 and the late deadline was February

12 for this project, which was a poker hand evaluator. There were 138 students

registered for the course when this project was assigned, although several students

did not complete the project and some students did not finish the course.

The data contained in this screenshot is useful for noting broad trends. For

example, the test for Straight caused students the most difficulty, as only 108 stu-

dents passed this test by the late deadline, the fewest number of students for any of

the test cases by about 4.5%. We could predict that this test would be one of the

most difficult test cases several days in advance because on February 8—a full 72

hours before the on-time deadline—test for Straight was also one of the test cases

that students had the most trouble passing.

This type of high-level overview feedback reveals which test cases are giving

students the most trouble several days before a project deadline, allowing instructors

to devote part of lecture, lab time, or recitation sections to the concepts or issues

covered by the more difficult test cases.

Note that on February 9—a full 48 hours before the submission deadline—

over half of the class had passed all of the test cases and were therefore done,

which is indirect evidence that at least half of the students are done with their

programming assignments well before the deadline. This of course does not prove

that Marmoset was the deciding factor that encouraged students to begin their

assignments early, and we do not have data showing when at least half the class

had finished a programming assignment for courses not using Marmoset. However,

we believe Marmoset encourages students to begin working earlier, and we hope to

31

show evidence for this in the future.

4.2 Fixing Instructor Test Suites

The initial version of Marmoset deployed in the Fall 2004 semester näıvely assumed

that the instructor’s test suite was correct and would never need to be changed.

Unfortunately, five of the eight projects assigned in CS-2 that semester had errors

in the initial instructor’s test suite that required a series of hacks to update. These

errors come in two basic flavors:

• Ambiguous specification: The project specification is ambiguous. This usually

becomes obvious when part of the class interprets the specification differently

from the rest of the class. One can either clear up the confusing part of the

specification, or strengthen or relax the requirements for any test cases that

exercise the poorly-specified functionality.

• Bad test case: Occasionally, an instructor will write a bad test case, such as

a test case that returns inconsistent results or that can fail on correct student

code.

Many of these errors were pointed out by the detailed feedback about student

progress Marmoset provides to instructors.

We quickly realized that instructor mistakes were not rare, isolated events but

rather part of the normal working pattern for grading. Thus, re-designing Marmoset

between the Fall 2004 and Spring 2005 semesters, we added a workflow for updat-

ing instructor test suites and automatically re-testing student submissions against

32

semester # projects # projects updated % changed
Spring 2005 23 9 39%

Fall 2005 39 13 33%
Spring 2006 37 18 49%

Total 99 40 40%

Table 4.1: Test Suites changed by the instructor after students began submitting.

the latest test suite. We also began requiring instructors to submit a reference or

canonical implementation of each project, and began storing all the test outcomes

for every test run of a submission against each version of the test suite. The addi-

tional data helps us track when test suites are changed and the impact of a new test

suite on student performance (which is helpful for explaining to students how test

suites evolve in response to specification ambiguities and resolving grade disputes).

Since adding the workflow for updating test suites after the project has been

posted, we can more accurately track which test suites need to be updated after

being posted. The breakdown of test suite modification per semester is given in

Figure 4.1. This Figure shows that between 1/3 and 1/2 of test suites need to

be updated after students begin submitting, often as a direct response to feedback

provided by Marmoset.

After all, test cases are code, and instructors, like everyone else, make mistakes

when writing code. Using a traditional automated testing workflow (i.e. where

instructors or TAs build or modify ad-hoc scripts for each project), one of the

reasons that grading takes so long is that test suites often reveal weaknesses in

the project description, or bugs in the testing code itself. Under this traditional

workflow, the feedback unfortunately comes too late to amend the specification or

33

otherwise give students more useful feedback. In fact, it is very likely that bugs

in the test suite would be missed using a traditional workflow due to a number of

factors, such as the time pressure to finish the grading and the lack of the high-

level views of student performance on each test case to reveal patterns. The burden

of discovering problems in the test suite is shifted onto the students’ shoulders.

However, since the grading for a project is typically performed after the deadline

passes but before the submission deadline for the next project, students are likely

to focus most of their attention on the points still available on the current project

rather than the points lost on the previous project. Thus, students are less likely to

focus careful enough attention on the outcome of their test results to find any but

the most obvious mistakes in the test suite.

On the other hand, the feedback Marmoset provides helps reveal problems in

a timely fashion both to instructors (who can easily isolate a test case that too few

or too many students are passing) and to students (who have incentive to figure

out why a test case is failing and are more likely to discover a faulty test case or

ambiguous specification), so that instructors can fix problems quickly and provide

students with feedback early enough for students to make use of it.

Although it was not an initial design goal of the Marmoset system, one of the

strengths of Marmoset is that instructor mistakes are anticipated and handled in a

graceful way. We are unaware of any other automated grading systems that address

this issue.

34

Chapter 5

Data Collection with Marmoset

In this chapter, we detail our motivation for collecting fine-grained research data,

and use the Marmoset dataset to mine new bug patterns and evaluate the precision

and recall of the FindBugs [16] open-source static checker.

5.1 Motivation

Virtually all instructors have strongly-held opinions about the “right” way to teach

computer science. A recent overview by Kim Bruce [5] of a thread on the SIGCSE

members mailing list about the advantages and disadvantages of teaching introduc-

tory computer science using an “Objects First” approach is a prime example of

the spirited debate inspired by discussions of effective teaching methods. Unfortu-

nately, these debates too often rely on “folk wisdom” and anecdotal evidence rather

than rigorous scientific studies and strong research. Part of this is likely because,

as instructors, we have a very indirect and limited view of how well students are

learning to program. Our standard sources of feedback—questions in class or office

hours, posts to a class newsgroup, project grades, course and instructor evaluations,

students’ logfiles and reports from group projects, and the experiences of instruc-

tors and TAs during office hours, to name a few—are rather crude, coarse-grained

mechanisms from which it is often difficult to draw meaningful conclusions.

35

Recently, the computer science education community has formed a series of

working groups to better assess students’ mastery of basic programming concepts,

with the ultimate goal of improving pedagogy techniques in computer science. The

results of these initial studies have not been encouraging. The “McCracken Re-

port” [38], a multi-institution study at eight universities in five countries, revealed in

2001 (to the dismay of many educators) that in general students could not program

as well as their instructors expected upon completion of the introductory program-

ming sequence. Further multi-institutional work by Lister et al [33] demonstrated a

similar lack of proficiency in students’ ability to read and trace code. These studies,

as well as continuing studies by ITiCSE working groups, have served as a powerful

wake-up call to CS educators that many students are not learning to program, and

that pedagogical methods in our field drastically need improvement.

Unfortunately, multi-institution studies of this variety are expensive and time-

consuming to conduct. The McCracken report required standardized questions and

grading scales to be developed before the semester, administered at many universi-

ties in different countries, then evaluated, coded and analyzed according to the same

criteria. The work on program tracing and understanding done by Ray Lister’s work-

ing group relied in part on “think-aloud” sessions, where students are encouraged to

speak their thoughts out loud as they answer the questions. Their vocalizations are

recorded, then later transcribed and analyzed; this is a very time-consuming process

that limits the amount of data that can easily be collected.

In addition to the overhead, collecting this type of data requires that students

work in class on prepared questions much like an examination, or in closed lab

36

sessions. Students typically do not have access to the same types of resources they

may rely on in their natural programming environment, such as their textbook or

Google.

These studies fail to capture a much cheaper source of naturally occurring

data—snapshots of code written by students. Student code snapshots are orthogonal

to the kind of data collected by the ITiCSE working groups, and shine light on what

students do when working on their own, without strict time constraints and with

access to whatever outside resources they typically use when programming.

Studying students’ code artifacts, while unlikely to improve our understand-

ing of how students learn introductory computer science concepts or why students

make certain mistakes, nonetheless gives us an excellent window into exactly what

students are doing, such as the types of mistakes they are making, the amount of

time they are spending on various tasks, when they are writing the majority of their

code, and so on. By collecting detailed snapshot-based development histories and

automatically testing these snapshots, Marmoset provides us with an excellent plat-

form for evaluating tools, such as debuggers or static bug finders, aimed at shifting

students’ cognitive load away from tricky language features and towards problem

solving.

5.2 The Course Project Manager Plugin

In order to collect regular snapshots of student code cheaply and easily, we have built

a plugin called the Course Project Manager (CPM) [46] for the popular Eclipse [11]

37

Integrated Development Environment (IDE). The CPM transparently commits a

student’s files to a central repository every time a file is added, removed or saved.

This mechanism provides the image of a wide-area file system for students in that

they can access their files from their laptop, desktop, cluster or any other networked

computer. The CPM also provides students with a detailed backup history of their

files in case they delete an important file or their laptop hard drive crashes; these

are extremely frustrating experiences that we can hopefully prevent with the CPM

plugin. Finally, Eclipse performs compilation in the background and underlines

syntax errors in red, meaning that students do not need to save to find their syntax

errors. One effect is that about 70 % of these snapshots are compilable.

Data captured at the granularity of every save operation is fine-grained but

reveals little information about why the student is saving: A student may save their

files because they’ve just completed a major intellectual chunk of work, because

they just fixed a difficult bug, or because their laptop battery is almost dead and

they don’t want to lose their work. Furthermore, different students save at different

intervals—some students may achieve a perfect score on a project with 600 snapshots

while other students may also achieve a perfect score with only 15 snapshots. In

addition, it is also somewhat problematic to cluster students’ snapshots into “work

sessions” based on snapshots because we don’t know where to break the clusters

(i.e. Should two snapshots 15 minutes apart be in the same cluster? How about 25

minutes?), nor how long students were working before the first save operation of a

fresh session. All of these factors combine to make it difficult to use snapshots to

38

#
semester students projects submissions snapshots test outcomes
Fall 2004 84 8 3,919 44,771 627,320

Spring 2005 103 8 3,932 45,558 451,727
Fall 2005 69 7 1,505 14,214 152,359

Spring 2006 101 6 2,680 43,052 940,406
Total 29 12,036 147,595 2,171,812

Table 5.1: Overall data collected by Marmoset for 4 consecutive semesters of CS-2
at the University of Maryland

measure programming effort or time spent programming1.

Despite these complications, capturing data at the granularity of each snapshot

has a number of advantages over other approaches, such as capturing snapshots at

certain time intervals, for example by forcing a save operation every 5 minutes. Such

an approach may improve the quality of the data harvested, but would suffer from

other complications that could reduce the quality of data; for example, snapshots

grabbed at regular time intervals might be less likely to compile, would force the

student to wait for the synthetic save operations to complete, and may alter the

“undo” history of the students’ edit actions in unpredictable or surprising ways.

Marmoset at its core is a pedagogical tool that should not make learning to program

more difficult for students in any way. Our approach is simple and unambiguous,

and produces high-quality datasets for study.

39

lines % % % % %
added/ so so so so so
changed F04 far S05 far F05 far S06 far total far

1 15,106 40 14,429 38 4,472 38 14,904 40 48,911 39
2 6,876 58 6,398 55 2,73 56 5,944 56 21,291 56

3-4 5,990 74 5,825 70 1,730 72 5,140 70 18,685 71
5-8 4,380 85 4,524 82 1,419 84 4,387 82 14,710 83
9-16 2,863 93 3,86 90 815 91 3,329 92 10,93 91
17-32 1,400 97 1,866 95 490 95 1,630 96 5,386 96
33-64 699 99 1,33 98 244 97 678 98 2,654 98
65+ 359 100 662 100 245 100 593 100 1,859 100

Table 5.2: Number of lines changed between snapshots collected by the Course
Project Manager plugin over four semesters of CS-2 at the University of Maryland.

5.3 CS-2 Data Collected with Marmoset

Figure 5.1 shows a breakdown of the number of snapshots collected over four semesters

of CS-2 at the University of Maryland. The Fall 2005 data had fewer snapshots,

submissions and test outcomes than the other semesters, even though the average

number of unit tests (public, release and secret) per project was on par with other

semesters. The only major difference was that there were more public tests (and

therefore fewer release and secret tests), although it is unclear what effect, if any,

this has on the frequency of student saves and the proportion of snapshots that are

compilable.

In general, the data collected by the CPM is extremely fine-grained, as is

shown in Table 5.2: Just under 40% of the compilable snapshots add or change only

a single line, while over 70% of compilable snapshots add or change 4 lines or fewer.

This fine-grained dataset contains a wealth of information that can be used for a

1In the future, we hope to collect additional data that will better help us measure programmer

effort.

40

Exception # student projects # snapshots
NullPointer 1,172 31,454

ClassCast 512 8,122
IndexOOB 400 5,453

ArrayIndexOOB 359 4,996
StackOverflow 281 3,754

NoSuchElement 238 3,289
IllegalState 228 3,956

StringIndexOOB 195 3,960
IllegalArgument 195 3,698
OutOfMemory 158 1,311

Total 2,371 147,597

Table 5.3: Most common exceptions over four semesters of CS-2 at the University
of Maryland. Course taught in Java, 29 total projects represented in this data, data
sorted by number of projects in which the exception occurred.

variety of purposes, such as mining new bug patterns or studying the development

process for novices in more detail.

5.4 Examining Runtime Exceptions in CS-2

Figure 5.3 shows the top 10 run-time exceptions plaguing students over 4 consecu-

tive semesters of CS-2 at the University of Maryland. That almost half of all student

projects and over one in five snapshots had at least one NullPointerException did

not surprise us. It was similarly expected that the various bounds-check exceptions,

such as ArrayIndexOutOfBoundsException and StringIndexOutOfBoundsException,

would be in the top ten, which they were. However, we were mildly surprised that

ClassCastException was the second most common run-time exception (about 22%)

and StackOverflowError the sixth most common run-time exception (about 12%)

based on the number of projects in which they occurred.

41

/**

* Create a new Web Spider

*

*/

public Spider(boolean isDFS, int limit, String root) {

Spider spider= new Spider(isDFS,limit,root);

}

Figure 5.1: Example of CS-2 infinite recursive loop bug pattern.

public WebPage(URL u) {

this.webpage = (WebPage)((Object)u);

}

Figure 5.2: Example of CS-2 bad cast bug pattern.

We first noticed the large number of StackOverflowErrors in Fall 2004 during

the inaugural semester of Marmoset. To figure out why, we examined submissions

with test cases failures due to StackOverflowError; a pattern quickly emerged.

Students were causing StackOverflowErrors by writing infinite recursive loops

in a very specific way, as show in Figure 5.1. Students had recently learned con-

structors in lecture; the Javadoc explained that the method needed to create a new

WebSpider object, so the student called the constructor. Of course the method

described by the Javadoc was the constructor, which lead to an infinite recursive

loop.

Similarly, the pattern shown in Figure 5.2 shows a sample bug students made

that caused ClassCastExceptions in their code. Students had learned typecasts in

lecture that week, and were trying to apply them in inappropriate places. This error

pattern is an example of students’ “fragile knowledge” of a concept as described by

Lister et al [33]. Fragile knowledge can lead students to mis-apply concepts, or apply

42

them in the wrong situations, as the student has clearly done in this example.

We implemented new bug detectors for these patterns in the open-source static

bug finder FindBugs [16]. The infinite loop detector (IL) simply looked for methods

that unconditionally call themselves, while the bad-cast detector (BC) looked for

casts that were statically doomed to fail. Running these checker over some stu-

dent code revealed a number of both types of bugs, alerting us to the fact that

many students were making a similar mistakes and suggesting that typecasting and

constructors were proving more difficult to the students than the instructors had

expected.

After writing a new bug detector for FindBugs, we typically run the new

detector over a large production codebase, such as the core Java runtime libraries,

Eclipse, or JBoss [27], manually evaluate the false positive rate of a small sampling

of the warnings, and if possible tune the detector to eliminate some of the false

positives.

We followed this procedure after writing these new detectors; interestingly, the

detectors uncovered infinite loops and statically-doomed casts in production code as

well as student code. This is not to say that professional programmers writing pro-

duction quality software make the same mistakes as novices programmers; instead,

it suggests that bugs in production code can be taught using techniques similar to

those that effectively find bugs in novice programs. For a detailed discussion of these

bug patterns in production code, see David Hovemeyer’s 2005 PhD thesis [23].

43

5.5 Evaluating and Tuning FindBugs

We evaluated the precision and recall of three FindBugs detectors: the infinite-

loop and bad-cast detectors discussed in the previous section and the suite of

null-pointer dereference detectors, which can effectively be grouped into one cat-

egory because they all warn about null-pointer dereferences that will lead to a

NullPointerException. We did this study by matching up bug warnings and their

corresponding runtime exceptions in the Marmoset dataset: infinite-loop warnings

are paired with StackOverflowError, bad-cast warnings with ClassCastException,

and null-pointer dereference warnings with NullPointerException. This is possi-

ble for these particular warning categories because any bugs other than the ones our

detectors check for are very unlikely to cause these runtime exceptions.

In this context, precision, also known as the false positive rate, means deter-

mining the percentage of warnings that correspond to actual bugs. For example, if

snapshot N contains a warning of type W ; does snapshot N also contain a runtime

exception E that corresponds to warning W?

Recall, also known as the false negative rate, means determining the percentage

of runtime exceptions for which FindBugs issues a warning. For example, if a snap-

shot contains a runtime exception of type E, does it also contain the corresponding

warning W?

Measuring the precision for a static checker can always be done by brute

force; if a checker issues 500 warnings, someone can always manually examine each

warning and the source code to determine whether or not the warning indicates

44

a bug. Recall, however, is more difficult to measure because it requires a priori

knowledge of the location of bugs in the code, and for most software, we don’t know

where the bugs are (and if we did, we would have already solved the problem of

finding the bugs and would not need to write and tune a bug-finder). Because the

Marmoset dataset contains a large number of test case failures—essentially known

bugs—we can measure the recall of bug checkers, something that has proved difficult

for the static analysis community.

When counting code features such as warnings and exceptions in the Marmoset

dataset, the question naturally arises: What are we counting? We cannot simply

count the warnings or exceptions in every snapshot: Warnings may persist across

many snapshots, leading to over-counting; and exceptions may mask each other,

leading to under-counting. For example, students have no incentive to fix a bug

warning that is a false positive (since it does not lead to an error); thus that warning

is likely to persist across multiple snapshots, making the warning’s precision appear

worse. Similarly, if several test cases may fail with the same exception, at the same

line number, for a given snapshot, then these exceptions are likely the result of the

same error and should be matched together with a single warning. On the other

hand, two test cases may fail with the same runtime exception at different lines of

the same method; should we also group these exceptions together? What about if

two test cases fail at different lines but have the same calling context earlier in their

stack traces? Also, because each test case can only throw a single runtime exception,

one exception may “mask” another, making it more difficult to match exceptions

with warnings. Finally, it is difficult to evaluate the accuracy of warnings that are

45

With Observed
Detector Warnings Exception Precision
InfinteLoop (IL) 83 73 88%
BadCast (BC) 7 7 100%
NullPointer (NP) 1343 579 43%

Table 5.4: Observed false positive rates for selected FindBugs detectors.

With With Observed
Detector Exception Warning Recall
InfinteLoop (IL) 386 73 19%
BadCast (BC) 724 6 < 1%
NullPointer (NP) 2269 475 21%

Table 5.5: Observed false negative rates for selected FindBugs detectors.

issued by a detector but are never executed by any test case.

We used a series of simple heuristics to prune the number of warnings and

exceptions under consideration to better reflect the true precision and recall of our

detectors. First, we computed the code coverage for each test case in order to

eliminate uncovered warnings from consideration. Next, when computing the false

positive rate, we only consider warnings that are either present in the final snapshot

or present in one snapshot then removed in the subsequent snapshot. We compute

warning-removal information using FindBugs functionality that tracks bug warnings

across versions of software. We describe this work in more detail in [47]. Finally,

when computing false negatives, we group exceptions together if they happen at the

same line number or in the same method.

Table 5.4 shows the false positive rates for selected FindBugs detectors, while

Table 5.5 shows the false negative rates for those same detectors. The detectors

are quite precise when issuing warnings; however, the recall we have observed is

46

very poor, especially for the bad-cast detector. While there were too many false

negatives to examine each one individually, a spot-check of a sample of the false

negatives reveals that many of the ClassCastExceptions for which FindBugs is

not issuing a warning are improper casts of objects coming out of a collection, and

would be eliminated with the use of generics.

47

Chapter 6

Helping Students Appreciate Test-Driven Development (TDD)

In this chapter, we report on our initial experiences teaching and motivating students

to write test cases and then evaluating student-written test suites, with an emphasis

on our observation that, without proper incentive to write test cases early, many

students will complete the programming assignment first and then add the bulk of

their test cases afterward. Based on these experiences, we propose new mechanisms

to provide better incentives for students to write their test cases early.

6.1 Motivation for Test-Driven Development

We agree with other educators [32, 30, 21, 12, 9] that learning to understand, appre-

ciate and construct tests is an important part of learning to develop software, and

a topic that needs to be better addressed in our undergraduate Computer Science

curriculum. The question is, how do you teach testing? We can lecture on topics

such as unit tests, integration tests, testing frameworks (such as JUnit) and code

coverage. But testing can’t really be adequately covered or evaluated in lecture.

Instead, we need to find ways to encourage and/or require students to practice it in

programming projects, and to assess their mastery of the topic.

We believe that simply mandating testing as part of programming assignments

(e.g., “you will write test cases, and 30% of your grade will be based on your test

48

cases”) can be counter-productive. We want to help students understand and ap-

preciate the value of devising their own test cases without making the requirement

that students write their own test suites seem like an artificial hurdle.

We also agree with previous work [30, 12] that to demonstrate its importance,

testing needs to be part of the curriculum throughout the major, rather than taught

in an upper-level testing course. We have used a number of different techniques

across several courses to help students learn to appreciate, understand and perform

testing. Several of these techniques are stand alone techniques that can be easily

incorporated into any curriculum, while other are implemented within Marmoset.

We were also concerned as to whether some of the features of Marmoset—namely,

release testing—might have the perverse effect of reducing the incentive for students

to write their own tests cases, and discuss steps we have taken to mitigate that

possibility.

6.1.1 Marmoset’s support for TDD

Marmoset supports student-written test suites and computes code coverage metrics

using the Clover [7] code coverage tool. Instructors can evaluate how many test

cases students are writing, and how well their test suites cover all of the statements,

branches or methods in a programming assignment.

49

6.2 Getting students to write tests

We need to provide students with incentives to write test cases. In CS1/CS2 courses,

students have not yet learned to appreciate the value of TDD, and we believe that

even if students have been told that they will help themselves by writing their own

test cases, all too often students work on only the things that they are graded on.

Although we believe the Marmoset system has a number of advantages, we

are also concerned that it may reduce the incentive for students to write their own

test cases. Since students are provided (limited) opportunities to test their imple-

mentations against the instructor test cases, they may feel that they do not need to

develop their own test cases.

In some projects, we have blunted some of the feedback provided by Marmoset

to further encourage students to write their own test cases, rather than depending

upon release testing. One CS2 project is a binary search tree project where rather

than the typical descriptive names used for release tests, we simply number the tests

(test1, test2, ...). We then inform the students that the release tests will provide

them very little information about why their program fails, and that their best hope

of figuring out why is to write their own comprehensive test suite.

We can also use a blunter instrument of encouragement: make writing tests

part of their project grade. The easiest way to do this is to measure code coverage.

On several of the projects we assign, we tell students that part of their grade will

be based on the code coverage they achieve. Since we provide students with some

test cases (the public tests), we measure the code coverage from the combination of

50

public and student-written test cases and base part of their project grade on this.

We can scale this as

(coverage from public and student tests) − (coverage from public tests)
(coverage from public and instructor tests)

We have used a combination of these techniques to encourage students to write

test cases, and most students responded to this incentive by submitting test cases as

part of their final submission. However, upon further exploration, we found that a

significant number of students did substantial work to improve their test cases after

they had submitted and release tested a submission that passed all of the release

tests. Obviously, these students aren’t learning that writing their own test cases can

help them develop reliable and correct software; instead, they are simply responding

to the carrot/stick of being graded based on their code coverage. We worry that as

a result, these students likely to view testing as a hurdle to jump rather than an

important part of the development process.

To report on this phenomena, we studied the submissions by each student

for two CS2 projects in the Spring 2006 semester: a binary search tree project

and a MediaPlayer project (in which students stored a database of songs, playlists,

podcasts and podcast entries). In both projects, students were told that part of their

grade would be based on code coverage of their own test cases. The MediaPlayer

project provided descriptive release test names as is normal for Marmoset; for the

binary search tree project, we used meaningless names for release tests to reduce

the ability of students to depend upon release testing for all of their testing needs.

We looked at all the students who completed the project (turned in a solution

that passed all of the instructor test cases). For each such student, we looked at

51

whether they continued to work on their test cases after having performed a release

test and found that they passed all of the instructor test cases.

On the binary search tree project, 16 of 34 students extended their test cases

after they had completed an implementation that passed all instructor tests. Of

those 16, 11 students made significant improvements to their tests (significant is

defined as a change that increased the number of covered statements and methods

by more than 1/3 the total number of statements and methods, or a reduction of

more than 25 % in the number of uncovered methods and statements). In the Medi-

aPlayer project, 24 of 40 students extended their test cases after having completed

an implementation that passed all instructor tests. Of those 22, 17 made significant

improvements to their tests. Figure 6.1 shows the changes in code coverage after

reaching functional correctness (for the MediaPlayer project, the number given is

the amount of code coverage over baseline of the coverage provided by the public

test cases that were provided to students).

Ideally, we would like to see most students clustered in the top right portion

of the graph, i.e. when they achieve full functional correctness, they also have good

test coverage from the test suites they’ve developed.

Our hypothesis was that students would write more test cases before achieving

functional correctness for the binary search tree project than for the media player

project because the names of the release tests used in the binary search tree project

were generic (test1, test2, etc) and therefore students could not rely as heavily on

release testing to find their errors without writing their own test cases.

Table 6.2 shows the breakdown of when, if at all, students who achieved perfect

52

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage over baseline when functional correctness achieved

C
ov

er
ag

e
ov

er
 b

as
el

in
e

in
 fi

na
l s

ub
m

is
si

on

Binary Search Tree MediaPlayer

Figure 6.1: Code coverage added after reaching functional correctness. Values along
the diagonal represent students who did not improve their test suites after achiev-
ing functional correctness; values along the top represent students who eventually
achieved 100% code coverage.

53

never achieved 80% achieved 80%
achieved coverage after coverage before

80% functional functional
project coverage correctness correctness
Media
Player 10 12 16
Binary
Search
Tree 0 6 28

Figure 6.2: Breakdown of when students achieved at least 80% coverage.

functional correctness (i.e. passed all public and release tests) achieved at least 80%

coverage of their code. Our results indicate that there was a statistically significant

difference between the number of students achieving at least 80% coverage before

achieving functional correctness on the binary search tree project as there was for

the media player. While we believe that the difference can be accounted for by

the lack of descriptive release test names, we cannot draw such a strong conclusion

from the data. The binary search tree project was assigned later in the semester, so

students may have simply learned to write better test cases.

Finally, some of the results of this study are not comforting. A substantial

number of students are writing many of their test cases after having completed the

non-test code, and as a result are less likely to appreciate or understand the value

of test driven development.

6.3 When coverage is not enough

One interesting issue related to teaching testing is that there are many scenarios

where code coverage is not sufficient to expose a bug. For example, we expect that

54

the majority of failing test cases in student assignments will uniquely cover lines of

code that are not covered by any passing tests. However, there will also be failing

tests that are redundant in that they only cover lines of code that are also covered

by a passing test case, and if we were to remove these redundant tests from the

coverage set, the percentage of covered statements, methods and branches would

remain unchanged.

A failing test that does not cover any “new” code is interesting because it may

expose a “fault of omission” [20] or a bug that is control-dependent on a particular

set of conditions.

One question is, what is the proportion of failed tests that uniquely cover code

versus the proportion of failed tests that are redundant? We hypothesize that the

majority of failing tests will execute code that is uncovered by any passing test, and

that the bug will be located in the code that is uniquely covered by the failing test.

We also expect that redundant failing tests (i.e. failing tests that cover only code

also covered by passing tests) will represent the more difficult test cases, because

these tests exercise more difficult or subtle interactions in the code.

Figure 6.3 shows the breakdown of test case outcomes for all submissions for

the first two projects assigned in CS2 in the Spring 2006 semester. In this chart,

“passed” is the portion of test cases that passed, “redundant” represents the portion

of test cases that failed but only covered code that was also covered by a passing test,

“statement” describes test cases that failed but covered at least one statement that

was not covered by any passing test, and finally “method” represents the portion

of failed test cases that covered at least one method that was not covered by any

55

Unique and Redundant Coverage

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
Test case

statement: failed, uniquely covers at least one statement
method: failed, uniquely covers method
redundant: failed, covers no new code
passed

`

Figure 6.3: Unique and redundant coverage by failing test cases

56

passing test.

If our hypothesis is true, we would expect the most difficult test cases to have

both low rates of passing tests and also high rates of redundant failures, or failures

that don’t cover any new code.

The chart is sorted along the x-axis in ascending order by the passing rate.

The first 4 test cases have the lowest passing rates and the highest rates of redundant

coverage. This is not surprising since these four test cases were challenge problems

assigned to the honors section but not required of the other sections of the course.

Test case #5 tested a difficult method that was not exercised by any other test.

Test case #6 checks whether a student’s code performs a deep copy of an important

data structure that is specified in the project description. This is a prime example

of code that will pass many test cases even when not implemented according to the

specification because a shallow copy will work in some—but not all—places where

a deep copy is expected.

Our data suggests that difficult test cases do indeed exercise code that is also

covered by passing test cases elsewhere. However, our dataset is far too small to

draw any sort of wider conclusions.

The lesson to learn from redundant failing tests is that, as educators, we

need to understand the limits and weaknesses of code coverage (namely, that high

coverage does not necessarily imply adequate testing), and to reiterate to students

that code coverage is a useful tool but that, like any other tool, it needs to be

understood and utilized properly to be effective.

57

6.4 Future Work: Enchancing Marmoset

Given our observations reported in section 6.2, namely that students will write test

cases when required to do so, but often only after completing the project, we want

to create incentives that reward students for writing their test cases early in the

development cycle.

To achieve this goal, we have provided “knobs” so that the feedback provided

by Marmoset can be adjusted depending on the quality of test cases that students

have written. For example, if students have written few or no test cases, Marmoset

can be configured to provide less information when students perform a release test.

Thus, students will be motivated to write test cases early in their development, so

that their early release tests will return as much information as possible. If students

write tests earlier, we hope that they will gain more value from the tests and learn to

appreciate them more than if they wait until finishing their implementation before

writing test cases.

6.4.1 Code coverage information

Although UMD has obtained a license to use the Clover code coverage tool in courses,

students sometimes find the tool difficult to install and use. Thus, we also provide

code coverage results to students through the SubmitServer’s web interface. We also

provide a summary view, showing the coverage from the combination of all public

and student tests. For each of these views, we give a list of all the source files, and

for each source file report the number of covered and uncovered methods, statements

58

and branches. For each source file, students can see a view of the source of that file

which each line labeled by the coverage.

While this detailed summary information is useful, it can also be a little over-

whelming and confusing, particularly to students just starting an intro programming

sequence. So in addition, we provide a high level summary that just lists methods

that are not covered by any public or student test case.

Instructional staff is provided with additional coverage views, such as a view

of all the methods, statements and branches covered by a release or secret test but

not by any public or student test case.

6.4.2 Tests that cover uncovered methods

For each release test, we also record the coarsest granularity covered by the release

test but not by any public or student test case. This information is provided as a

high level summary/feedback to both instructors and students.

A project can also be configured to provide an additional incentive for writing

test cases. The instructor can specify that for a particular project, if a failing release

test covers too much code that is not covered by a public or student test, then the

student will not be told the name of the release test even if the rules for release

tests would otherwise allow the student to be told the name of the release test.

For example, the instructor might specify that students are never told the name of

failing release tests that covers a method not covered by some student or public test

case.

In this way, we provide students with an incentive to test their own methods

59

and prevent them from depending too heavily on release testing as their only testing

framework.

6.4.3 Covering the source of exceptions

When a release test fails, we reveal the kind of failure: a test failure (when a

condition asserted by the test case does not hold), an error (when execution of the

test results in an uncaught exception being thrown), or a timeout (when execution

does not terminate in a timely matter).

Normally, that is all the information we provide; we don’t tell students whether

an error arose from an null pointer exception or an index out of bounds exception.

Instructors can now enable a feature that works as follows: if a release test

terminates with an error occurring on a line that is covered by a public or student

test, we tell students the kind of exception and the line number where the exception

occurred.

In addition to providing students with yet another incentive to write their

own test case, this will be helpful in the situation where some core component

consistently fails across multiple test cases. If students see that several of their

release tests generate the same error at the same line, this suggests that a common

error might be at fault and students will look for one common fault, rather than for

a series of disconnected faults.

We have also considered, although not yet implemented, providing feedback

whenever several release tests all terminate with the same exception at the same

line number. Here, we would not require that the place where the exception occurs

60

be covered by student code. Instead, we should simply identify that several release

tests all failed with the same exception at the same line number. Whether the name

of the release test, the kind of exception and the line number where the exception

occurred are revealed is determined by the other rules of the Marmoset system.

These new features were first introduced during the Spring 2006 semester; we

do not have any data about their effectiveness at this time.

61

Chapter 7

Survey

In July 2006, we administered a multi-institution survey of educators about grading

practices for programming assignments in computer science courses. A copy of the

text of the survey is available in Appendix A. We sent the survey to the Special

Interest Group on Computer Science Education (SIGCSE) mailing list, as well as

educators at larger institutions that we know personally. This last step was necessary

because SIGCSE members tend to come from smaller colleges and other teaching-

oriented institutions, and their practices do not necessarily reflect the practices at

larger state schools or research-focused institutions (“R1” schools).

7.1 Survey Goals

Our main goal in administering the survey was to determine what features of pro-

grams instructors evaluate, how long faculty spend grading student programs, how

much time spent grading could be saved through automation, and what the per-

ceived impediments to effective grading are. In addition, we measured other general

trends related to teaching programming courses, such as the programming language

used, as well as the use of online course management systems, Integrated Develop-

ment Environments (IDEs), and automated testing frameworks.

Of particular interest to us was the weighting of style vs. functional correct-

62

School size number average size
less than 3,000 17 1,700
3,000 to 10,000 20 4,900

over 10,000 17 20,900
Total 54 8930

Table 7.1: Breakdown of the sizes of schools where survey respondents taught.

ness. Ultimately, we would like to know to what extent faculty “grade what they

can see”. In other words, do faculty weight style more heavily because they lack an

efficient way of running student code against test cases and feel that it’s easier to

grade style than correctness simply by looking at code? Furthermore, would faculty

weight functional correctness more heavily, or even assign different types of projects,

if they could measure functional correctness cheaply and easily?

7.2 Overview of Survey Results

A total of 56 people responded to the survey, including one high school teacher

and one community college professor. While several respondents were from larger

institutions, most were from smaller schools or teaching-oriented larger institutions.

The relatively small sample size and the bias towards the SIGCSE members mailing

list and personal contacts makes it difficult to draw overly-broad conclusions based

on the survey data. However, the respondents provided a wealth of interesting and

instructive quantitative and qualitative responses from which we can learn quite a

bit.

Table 7.1 outlines the breakdown of the sizes of schools where the survey

respondents taught. The cutoff points are somewhat arbitrary, but give a rough

63

Course (56 responses) # %
CS-1 31 55%
CS-2 12 31%
Software Engineering 3 0.5%
Other 3 0.5%
Computer Graphics 2 <1%
Operating Systems 2 <1%
Compilers 1 <1%
Databases 1 <1%
CS-0 1 <1%

Table 7.2: Breakdown of the courses taught by survey respondents.

estimate as to the types of schools responding to the survey. The data includes

one high school and one community college, as well as several schools outside of the

United States.

Table 7.2 shows the breakdown of the courses taught by survey respondents;

45 of 56 respondents taught CS-0, CS-1 or CS-2, with over 87% of CS-1 courses

taught in Java. Drawing any conclusions about grading practices for upper-level

courses based on our survey results is difficult because there are so few data points.

Full results of the survey will be made available online after this work is ac-

cepted for publication.

7.3 Evaluating Student Programs

One major question is to what extent faculty are evaluating things that they can

measure easily, such as programming style, because they lack the infrastructure re-

quired to efficiently measure functional correctness, versus to what extent faculty

have made a conscious choice to emphasize programming style, regardless of their

64

Minutes spent grading correctness
< 5 5-10 10-15 15-30 > 30

Min. < 5 7 12 5 4 0
spent 5-10 4 3 6 4 1
grading 10-15 2 0 1 2 0
style 15-30 0 0 1 0 0

> 30 0 0 1 0 0

Table 7.3: Grid showing number of minutes spent on each submision evaluating
style concerns and functional correctness.

ability to evaluate functional correctness. In other words, if instructors who cur-

rently weight style more than functional correctness had access to an automated

testing technology that measured functional correctness cheaply, would they be-

gin to weight functional correctness more highly, or even assign different types of

projects? The results of this survey certainly do not resolve the issue, but rather

take the necessary first step of measuring the current practice.

7.3.1 Time Spent Grading per Submission

Table 7.3 shows the amount of time spent grading submissions for style as well as

functional correctness. These results show that on average respondents spent 10

minutes grading submissions for correctness and 5 minutes grading submissions for

style.

Spending 10 minutes per submission grading the correctness of a program does

not sound daunting, especially if the enrollment in the course is small. However,

the 20 respondents who used some kind of framework to automatically run student

code against intstructor-supplied test cases showed a statisticlly significant difference

in the amount of time they spent grading student-written programs for correctness,

65

with the amount of time being on average 5 minutes less than their counterparts who

did not use any automation. These results suggest that recent work on large-scale

systems capable of automated testing, such as Marmoset [48] and Web-CAT [14],

could save instructors a substantial amount of time when grading programs for

correctness.

A mere 5 minutes per submission may seem like a meager amount of time saved

for investing effort into adopting an automated testing framework; however, those

5 minutes add up quickly if we consider the larger context. For example, according

to the annual Taulbee Survey [50], in 2005 about 15,000 students were awarded

bachelors’ degrees in Computer Science at PhD-granting institutions in the United

States. Assuming that total nationwide enrollment in Computer Science is about

four times higher, or 60,000 students, and that each student does 15 programming

assignments per year... that’s over 35 years worth of labor (split into 40 hour weeks,

50 week-years) that goes into grading all those submissions every year. The exta time

sunk into grading work that could be partially or completely automated takes time

away from the more creative aspects of being faculty: developing innovative teaching

methods or curricula, performing cutting-edge research, or otherwise growing the

knowledge base of computer science—in short, tasks that could help reverse the

recent trend of declining enrollments in undergraduate Computer Science programs

throughout the United States.

66

Code features evaluated # %
Functional Correctness 55 100%
Programming Style 53 96%
Comments 49 89%
Student-Written Test Cases 25 45%
Other 20 36%

Table 7.4: Factors that contribute to the final score of a programming assignment
(55 responses). Note that the totals will sum to more than the number of responses
because respondents could select more than one answer.

7.3.2 What Contributes to the Final Score of an Assignment?

Table 7.4 shows a breakdown of code features that contribute to the final score

of a programming assignment. Note that respondents could select more than one

response to this survey item.

We were not surprised that every respondent evaluates functional correctness,

or that all but two respondents evaluate programming style. We were surprised that

so many respondents evaluate comments and documentation in addition to style.

Finally, as advocates of Test-Driven Development, we were pleasantly surprised that

student-written test cases are evaluated by 45% of respondents.

Some of the other factors evaluated that respondents listed included non-

functional issues such as “elegance” and “readability”, which arguably could be

lumped in with style, as well as other non-functional issues such as “using a for

loop instead of a while loop”, which aren’t necessarily stylistic but would not affect

the functional correctness of the program. No single feature garnered more than a

couple of write-in votes (“design” was mentioned three times), suggesting that the

four major categories in the survey encompass the vast majority of what is graded

67

Correctness vs Style Points
per assignment (50 responses)

that # where
execute code not

code executed
Correctness against against Style
Points test cases test cases Points
30 1 1 70
40 1 0 60
50 7 1 50
60 4 3 40
70 14 2 30
80 8 3 20
90 4 1 10
Totals 39 11

Table 7.5: Weighting of style and functional correctness in grades.

in a programming assignment.

7.3.3 Style vs. Functional Correctness

Table 7.5 shows a breakdown of the style and functional correctness weights for the

50 survey respondents who supplied this information. The average for all responses

was 67 points for functional correctness and 33 points for style. We further break

down each category by whether the respondents compile and execute the student

code against instructor-written tests, or not. For example, the first line of this table

means that of the 2 survey respondents who assigned 30% of the points to functional

correctness and 70% of points to style, one compiles and executes the student code,

while the other does not. However, because this question was framed as “functional

correctness” vs. “style”, it is not clear to which category respondents have assigned

other non-functional factors mentioned in Table 7.4, such as student-written test

68

inputs.

Our hypothesis was that instructors who did not compile and execute the code

would give more weight to style than to functional correctness. The data does not

appear to support this hypothesis, however, as the distribution of respondents who

do not execute code is not skewed towards more style points. The sample size in

this case is only 11, which is too small to draw any broad conclusions.

One threat to validity for this particular question is that of the 11 respondents

who did not execute student code, 9 taught CS-1, where programs are likely small

enough to evaluate without executing the code, and where the primary focus of each

assignment may be algorithmic or stylistic rather than functional.

Interestingly, 6 of the 11 courses where student code was not executed had

enrollments of at least 50 students, with an average enrollment of 132 students and

an average of 10 minutes required to evaluate the functional correctness of each

submission. That’s over 22 hours of grading per assignment that could be reduced

through automation, freeing the instructor or TAs to focus more time and energy

on higher-level cognitive functions, such as innovative project or curriculum design

or additional office hours.

The opposite of our hypothesis does appear to be true, i.e. that instructors

who do execute code against their test cases tend to weight functional correctness

more highly than style. This suggests that at least to some extent instructors give

more weight to factors that they can measure more easily.

A final threat to the validity of these conclusions is that the names of the

categories used—functional correctness and style—are too coarse. While the term

69

Submission Mechanism (55 responses) # %
Electronic submission system only 29 53%
Email only 9 16%
Printout and electronic system 9 16%
Email and printout 4 7%
Source code printout only 2 2%
Email and electronic system 1 <1%
Email, printout and electronic system 1 <1%

Table 7.6: Submission mechanisms used by survey respondents.

Course Management System (44 responses) # %
In-house system 16 36%
Blackboard 11 25%
WebCT 7 16%
Moodle 6 14%
Other commercial product 4 1%

Table 7.7: Electronic submission systems other than emailed used by survey respon-
dents.

“functional correctness” unambiguously identifies whether a program obeys its spec-

ification, “style” does not adequately represent all types of non-functional correct-

ness. For example, in a course that stresses object oriented design, non-functional

code features such as modularity are far more important than the style features

typically evaluated. Similarly, in a senior-level software engineering course, quality

of documentation and design specifications are non-functional requirements that are

substantially more important than either the style or correctness or the actual code.

7.4 Course Management Systems

Table 7.6 shows a breakdown of the submission mechanisms used by survey re-

spondents to collect students’ work. Over half of all respondents use some kind of

70

electronic submission system other than email, while about 16% rely on email alone.

Only two respondents rely on paper printouts alone as the sole means of collecting

students’ work, which is encouraging as this method is not easily maintainable or

scalable.

Table 7.7 shows the systems used by the 44 respondents who mentioned an elec-

tronic submission mechanism other than email. Blackboard proved to be the most

popular product, although one respondent switched from blackboard to a Unix-

based command line program because “Blackboard proved to be inadequate”. The

16 in-house systems varied widely, ranging in complexity from electronic drop-boxes

and Unix-based command-line submit scripts to a “Custom web-based submission

application”. That more than a third of faculty (or the support staff at their institu-

tions) use an electronic submission system built and maintained in-house represents

a lot of effort going into multiple systems that serve similar purposes. However,

it is still encouraging that over 80% (44 out of 56) of respondents use some kind

of electronic submission system rather than email and paper printouts, which are

generally messy, time-consuming systems of course management.

7.5 Automated Style Checkers

Of the 56 respondents, 52 differentiate between style elements (indentation, variable

naming scheme, comments, and so on) and functional correctness of code when grad-

ing student programs. Of the 52 respondents who differentiate between style and

correctness, 50 answered that some of the features contributing to the style grade

71

include coding conventions like “following an indentation scheme, naming conven-

tions, etc”. Many of these simple coding conventions can be checked quickly, easily,

consistently, and accurately for many programming language using an automated

style checker, such as cxxchecker for C++ [10], FxCop for C# [18], and PMD [43]

or Checkstyle [8] for Java.

Because the quality, maturity, licensing and availability of style checkers varies

greatly between languages (i.e. C++ in general is difficult to parse and therefore

can be difficult to evaluate stylistically), a suitable automated style checker may not

be available for the language taught by each survey respondent. However, Java was

taught by 35 of 50 the respondents who graded coding conventions, while only four

of these 35 instructors used one of the freely available open-source products such

as PMD or Checkstyle. Why are automated tools not being used to evaluate these

aspects of style?

Course enrollment is likely one factor, as 12 of the 35 Java teachers who

evaluate style have fewer than 20 students to grade, and while evaluating the stylistic

conventions of twenty submissions is tedious, it is feasible in a reasonable amount

of time. Of the remaining 23 survey respondents, 7 had course enrollments of more

than 50 students—a substantial time commitment at 5 minutes per submission.

This type of work can always be parceled out to be done by TAs; however,

having multiple TAs evaluate style is tricky, as TAs often have different interpreta-

tions of style, and maintaining and using an accurate, standardized rubric of style

conventions can prove challenging. This is one area where a style checker can con-

sistently and accurate handle the mundane details of style evaluation and free the

72

IDE (56 responses) # %
Eclipse 16 29%
BlueJ 9 16%
jGrasp 4 7%
Visual Studio Team System 3 5%
Dr Scheme 2 3%
Dr Java 1 2%
Netbeans 1 2%
Bordland 1 2%
None 19 34%

Table 7.8: IDEs used by survey respondents.

instructor or TA to focus on more complex stylistic issues, such as program design,

choice of algorithms, and so on.

We are not advocating style checkers as a silver bullet that will completely

eliminate humans from the evaluation of style. Some code features, such as the use

of a for-loop rather than a while loop, algorithmic efficiency, or the modularity of an

object-oriented design, still require a human to look at the code. However, we feel

that a human can more effectively evaluate these higher-level stylistic concerns once

freed from the drudgery of checking things like variable names and indentation.

7.6 Integrated Development Environments (IDEs)

Table 7.8 shows the breakdown of IDEs survey respondents used in their course.

Eclipse [11] tops the list at 29% of respondents, with BlueJ coming in second at

16%. Of the 19 respondents who do not use an IDE in their classes, almost half of

them (9 out of 19) teach in Java, for which several well-supported educational IDEs

are available [1, 4], as well as powerful and freely available commercial IDEs [11, 42].

73

The other 10 respondents who don’t use an IDE taught courses in languages for

which an IDE is not as readily available (Tcl, C/C++, OCaml, Python) as for Java.

The most interesting result of this survey item is that about two-thirds of re-

spondents (37 out of 56) use some kind of IDE, implying that for many the world has

changed from the days of Unix-based text editors like vi and emacs and command-

line compilation.

7.7 Perceived Impediments to Effective Grading

Table 7.9 presents the results of a section of our survey that asked respondents

to evaluate to what extent something is “a significant impediment to providing

effective feedback on student programming assignments”. This section of the survey

uses a four-point Likert scale of “Not at All”, “Very Little”, “Somewhat”, or “To

a Great Extent”. These responses were assigned values from 1 to 4, respectively,

when computing statistical rankings for each impediment. The text of these survey

questions was taken directly from a similar survey conducated in 2004 by Hussein

Vastani at Virginia Tech as part of his thesis [51]

The last two columns of Table 7.9 contain the mean of the Likert ranks for each

impediment on this survey and for Vastani’s survey in 2004. We applied the Mann-

Whitney-Wilcoxon test to the observed responses for each potential impediment

for both surveys; those marked with a * (star) on the table showed a statistically

significant (p < 0.05) difference in the distribution of their responses.

It is difficult to evaluate why the results differ between Vastani’s survey in

74

Not To a Vastani
Impediment at Very Some- Great Avg Avg

All Little what Extent
Too many assign-
ments to assess

16% 29% 39% 14% 2.53* 3.10*

Not enough time or re-
sources to do a thor-
ough job

11% 20% 41% 29% 2.88 3.19

Technical knowledge,
capabilities, or experi-
ence of the grader(s)

52% 27% 20% 2% 1.71 1.94

Lack of a consistent
rubric (grading crite-
ria) for grader(s) to
follow

46% 30% 21% 2% 1.79 1.90

Poor code readability
of student code

18% 39% 38% 4% 2.27* 2.76*

Poor layout and in-
dentation of student
code

23% 46% 25% 5% 2.12* 2.45*

Little or no comment-
ing within the student
code

16% 30% 50% 2% 2.38 2.56

The density of defects
(bugs) in the student
code

11% 54% 30% 5% 2.30* 2.86*

Poor testing of work
by the student before
submission

12% 27% 43% 18% 2.66* 3.15*

The logistics of exe-
cuting code against
instructor-provided
tests to see if it works

25% 34% 21% 18% 2.33 2.85

Managing the submis-
sion of assignments
and the return of re-
sults

30% 39% 21% 9% 2.09 2.26

Table 7.9: Survey results of respondents’ evaluation of perceived impediments to
effective grading, from the survey administered for this thesis. Impediments marked
with a * showed statistically different (with p < 0.05) distributions of responses
between Vastani’s 2004 survey and this survey.

75

April 2004 and our survey in July 2006. One hypothesis as to why respondents of

this survey rated “poor layout of student code” and “poor readability of student

code” as less of an impediment than respondnets to Vastani’s survey is that the use

of IDEs (which generally handle layout and indentation automatically) has increased

in the last two years. There is no way to test this hypothesis across the two surveys

because Vastani’s survey did not collect information about the use of IDEs in the

classroom.

In our own survey, to our surprise we did not find a statistically significant

difference between respondents who used an IDE and those who did not regarding

either poor layout or poor readability of student code as a perceived impediment

to effective grading. Similarly, we did not find a statistically significant difference

between respondents who used course management software and those who did not

regarding the management of student submissions as a perceived impediment.

Our results suggest that, while technologies such as IDEs and course manage-

ment software are being adopted, they have no measurable effect on the perceived

impediments to grading. One possible reason for this is that a four-point Likert scale

is not fine-grained enough; many psychometricians recommend a seven or nine-point

scale.

Finally, instructors rated “Poor testing of work by the student before submis-

sion” as one of the strongest impediments to grading, in both this survey and in

Vastani’ 2004 survey. This suggests that we should take a careful look at recent

work geared towards introducing Test-Driven Development (TDD) to the curricu-

lum [32, 29, 14].

76

7.8 Conclusions

We found statistically significant evidence that using an automated testing system

takes about a third less time when evaluating correctness of student programs; this

result is not unexpected, but is nonetheless an important data point supporting the

use of automation in the grading process when possible.

We found that static style checkers have not penetrated very deeply into the

grading process, that electronic course management systems and IDEs have achieved

fairly deep penetration into academia, and that Java is taught in 87% of CS-1 courses

taught by our survey respondents.

We also found evidence that instructors find the lack of testing by students

to be a significant impediment to effective grading, lending additional support for

testing in the undergraduate curriculum.

77

Chapter 8

Related Work

In this chapter, we discuss related work.

8.1 Automated Grading Systems

Hollingsworth [22] describes a very early automated grading system used at Rens-

selaer Polytechnic Institute in the early 1960s. This system is primarily of interest

for historical purposes since it is the first published example of an automated as-

sessment system we have found. Some of the major issues the system deals with,

such as students who use the system not being “as skilled in machine operation”,

the fact that “[s]tudent programs can modify the grader itself”, and the limitation

to programs written in machine language, are no longer obstacles.

Isaacson and Scott [24] describe a Unix-based command-line system for au-

tomating the execution of student programs against test input. Their system reads

test data from standard-in and writes outputs to standard-out; without a precise

specification of the format for outputs, determining if an output is correct is difficult

to automate.

Jackson et al. [25] describe the ASSYST, a semi-automated assessment sys-

tem for evaluating programming assignments. Their system evaluates correctness,

efficiency, style, complexity and test data adequacy. Their pre-dates the explosion

78

of unit testing by several years, and therefore only works with programs that read

test inputs from standard-in and write output to standard-out. Such an approach

is limited in that students must have all of the code for reading inputs and writing

outputs working precisely according to specification before they can begin writing

their own test cases. Furthermore, ASSYST does not assume that instructors will

provide (nor that students will implement) a precise format for the output files, but

rather employs a heuristic pattern-matching algorithm to determine if an output is

correct. The extra level of complexity required to determine the correctness of an

output could be reduced or eliminated using unit testing; however, as mentioned

previously, their system pre-dates unit testing by several years. The interest that

the ASSYST system designers showed in measuring the adequacy of students’ test

cases is an example of the recent swelling of interest in test-driven development.

Zeller describes Praktomat [54], an automated testing and code review system

for introductory students. Praktomat allows students to submit multiple versions

of their code which will be automatically tested. The automated testing system

used public and secret test cases so the information revealed to the students upon

submission was only part of a correct solution. Upon submission, students can see

other students’ solutions to the project, and can comment on the other student’s

code while also receiving comments for their own code. To prevent plagiarism,

the requirements for each project were different. The comments from the students

about the utility of sharing commentary about code were positive. Their results

imply that students who sent more code commentaries tended to write clearer code

than students who did not, though this conclusion is not strongly backed up in the

79

paper.

Ellsworth et al describe Quiver [15], an automated QUIz VERification tool.

Quiver provides a closed-lab environment where students have a limited amount

of time to complete a small programming assignment, such as sorting an array or

building a binary adder with GUI tools. Quiver works with C++ and Java and

allows quizzes to be built automatically from descriptions of the required test cases

that should be passed. Students are required to write the code in a specific editor

running on the client machine. They discovered anecdotal evidence that students

who were able to pass the course with a C by perform well enough on exams and

pouring many hours into out-of-class programming assignments struggled to perform

adequately on quizzes given through the Quiver system.

Stephen Edwards describes Web-CAT [12], an automated testing system devel-

oped at Virginia Tech. Web-CAT automatically tests students’ submissions against

instructor-written test-suites and evaluates the adequacy of student-written test

suites by evaluating their code-coverage. Web-CAT is stable and mature enough

to be used at other institutions. Web-CAT does not address the issue of giving

limited feedback to students before the submission deadline, nor does it collect the

fine-grained research data collected by Marmoset.

8.2 Data Collection with BlueJ

Jadud’s work [26] attempts to discover particular patterns of syntax errors by novice

users. He instruments BlueJ to capture a variety of information about when students

80

compile and what errors are made in order to characterize the typical errors that

novices make. All capturing is done in a laboratory setting during weekly lab sections

and there is no comparison of novice and expert behavior. This study reveals that

a small number of frequent errors account for the majority of the total errors and

that students tend to make small changes quickly when their code does not compile

and tend to make larger changes after a successful compilation. This is not at all

surprising, and suggests that students program in a different way when they are

fixing syntax errors than when they are adding new functionality.

8.3 Hackystat

Hackystat [28] is a data-collection framework developed by Philip Johnson’s research

group at the University of Hawaii. Hackystat is the collective name for a suite of

tools that plug in to various software development components, such as emacs, vi,

Eclipse, or make, tracks detailed information about when and how developers use

these tools. Hackystat is a pioneering technology for studying the software develop-

ment “microprocess”, where instead of studying hundreds of developers working on

millions of lines of code for several years, we instead study the interactions between

a single developer and her development tools over the course of days or even hours.

The Eclipse plugin for Hackystat is similar to the Course Project Manager

plugin used by Marmoset, but with the notable difference that Hackystat does not

capture snapshots of the full state of students’ files. The data collected by Hackystat

is orthogonal to the data collected by Marmoset, but would be extremely useful for

81

future studies of the Marmoset data.

There were two reasons why we did not use Hackystat to collect additional

data: First, installing and configuring Hackystat requires more effort on the part

of the user than installing Marmoset’s Course Project Manager plugin, and we did

not want to burden novices in CS-1 and CS-2 with the extra overhead; and second,

the data collected by the Course Project Manager plugin is of direct benefit to the

students (since it essentially records automatic backups), while Hackystat collects

a lot of data that is not directly beneficial to students and would likely require a

separate Institutional Review Board (IRB) authorization.

8.4 Software Repository Mining

Much of the interest in CVS repository mining was spurred by Ball et al’s seminal

paper [3] that encouraged analysis of source code repositories. This initial paper,

while sparse, lays the groundwork for further exploration of source code repository

mining.

Liu and Stroulia [34] talk about JReflex, the name for their system consisting

of plugins built into Eclipse and a set of web-accessible wiki services. JReflex is

designed to help students plan collaborative software development projects online.

They use the same data in later work [35] for a case study using JReflex. Their

work is still preliminary and their sample size thus far is only 5 teams of student-

programmers. One interesting conclusion of their work is that many students use

CVS in ways other than what was intended, for example primarily as a place to

82

store data. Their work primarily focuses on studying and improving the interactions

between many students working on a group project. Our work differs in that we focus

on individual students all working on the same large project, and we capture CVS

commit information transparently, without the students’ needing to do anything.

Zimmerman and Weisgerber [55] outline some of the issues involved in pre-

processing CVS repositories for fine-grained analysis, making the observation that

the quality of the data is directly proportional to the quality of the pre-processing.

They are concerned with processing the repositories for large projects with multiple

developers, and are interested in four major issues: data extraction to a database,

recovery of transactions (i.e. commits of multiple files at the same time), mapping

changes to fine-grained program entities such as functions rather than simple source

lines, and special handling of certain transactions such as merge changes or large

changes resulting from major infrastructure modifications. They present techniques

for each of these issues.

Mierle et al [39] examine CVS logs for a second-year computer science course.

They do not mention anything out-of-the ordinary regarding the collection of this

data, so we assume that the CVS data was collected in the usual fashion (i.e. the

students manually perform CVS operations). They focus on trying to find source-

code artifacts in the CVS repositories that are co-related with whether a student

finishes in the top or bottom third of the class. They examine many artifacts and

apply data-mining techniques, and found that the only two factors that showed a

weak correlation with a student’s placement were the number of lines of code written

by the student and the number of commas with spaces after them. It is unclear form

83

the paper if they controlled for the fact that the number of commas with spaces after

them is related to the size of the file. Interestingly, they found no correlation between

the amount or type of CVS repository activity and the student’s performance in the

course. Based on their inquiries, they have concluded that mining information from

a source code repository is perhaps not as easy as expected, or else they feel they

would have found better predictors of a student’s success in the course.

Purushothaman and Perry [44] have conducted an interesting study of the

types of changes made to a source code repository and their effects on the codebase.

Specifically, they study the effects of one-line changes to source code over time. For

the codebase they studied, one-line changes made up over 10% of all changes during

maintenance and one-line changes had a 4% chance of introducing a bug. They

also found that all one-line changes were not equal, in that additions, deletions

and modifications had different properties. Based on their findings they conclude

that one-line changes can cause bugs but did not find any so-called disastrous one-

line changes. Future work for this project is to study similar properties of one-line

changes in other software projects.

German [19] describes mining source code repositories with the softChange

tool. SoftChange [45] is a tool designed to automatically extract software change

“trails” from open-source projects by looking principally at mailing list archives,

bugzilla databases, and the CVS repository. This work describes preliminary ex-

periences using softChange on the Evolution codebase. German concludes that the

amount of data is overwhelming and that more work is needed to find useful infor-

mation in the source code repository.

84

Williams and Hollingsworth [53] analyze bug database and source code repos-

itories to develop bug finders useful for that software project. They also have a

novel false-positive filtering mechanism based on identifying patterns that triggered

previous bug fixes.

8.5 Test-Driven Development in the Curriculum

Recent literature on introducing testing into the computer science curriculum focuses

on several key issues:

• Testing cannot only be taught in an upper-division course. In order to truly

learn the value of testing, students need to be exposed to software testing

throughout the curriculum.

• Instructors need to design testable programming assignments. This requires

additional overhead for instructors who have already developed project de-

scriptions that are not easily amenable to any type of automated testing

framework.

• Students need to directly experience benefits from writing test suites. Requir-

ing students to write test cases simply because test suite quality will be graded

does not help students learn the value of testing.

• Teaching testing well requires additional infrastructure over-and-above what

would be required in a more traditional programming course. For example,

students must be taught to use a testing framework (such as JUnit), and

85

instructors need a way to evaluate the quality of student-written test suites

(such as a code coverage tool). This requires more automation than is typically

required of grading scripts, and can be a barrier to entry for some instructors.

• Software testing is large subject area that could include many activities, such

as using a unit test framework, reading code, using a debugger, learning to

identify faults based on error logs, and writing and testing specifications. Thus

introducing testing into the curriculum can mean introducing any or all of

these activities. However, most of the literature focuses on the much simpler

task of introducing test-driven development, primarily through unit testing,

into the curriculum.

These issues imply one other issues not explicitly stated in the literature:

• Test-Driven Development relies on rapid feedback. For programming assign-

ments that perform all the grading after the deadline, students are not re-

ceiving feedback quickly enough to learn from their mistakes. Students need

feedback about the quality of their code as well as about the quality of their

test suites while they are working in order to fully appreciate the value of

test-first coding practices.

A more detailed survey of the literature follows.

Christensen [9] argues that software testing cannot be an isolated topic taught

in an upper-division course; it needs to permeate the curriculum so that students

learn the value of testing, and have that knowledge constantly reinforced throughout

their education.

86

Christensen observes that “it is vital that teachers ensure that the students

benefit from their tests.” In other words, instructors need to create assignments

that allow students to directly experience the value of testing.

Christensen teaches testing by having each project consist of a progression of

steps such that step N requires step N-1. In this way students need to use code from

previous steps and cannot implement each project from scratch. This approach

means that students are constantly modifying code they’ve already written and will

directly experience the benefit their test suites provide through regression testing.

The Web-CAT system [12], built by Stephen Edwards at Virginia Tech, has a

very rich set of features designed to support TDD and is stable and mature enough

to be used at other universities. Web-CAT allows students to submit their own

test suites, which are evaluated for code coverage. In addition, Edwards takes the

novel approach of basing a students grade on the product of the percent of their test

own cases passed, the percent of instructor’s tests passed, and the percent of code

coverage achieved. Web-CAT also provides style feedback from style checkers such

as PMD and CheckStyle, as well as the ability for TAs or instructors to enter style

comments of their own. Students can then access a web page that incorporates their

code coverage, style warnings, and instructor or TA style comments into a single

marked-up view of their source code.

Web-CAT solves several practical problems that Marmoset also solves: It au-

tomates the execution of student code against the instructor’s test cases to be used

for grading and collects detailed code coverage information on student-written test

suites. However, Web-CAT does not address some key issues, such as the situation

87

where a test case fails but covers only code also covered by passing test cases, how

to create additional incentives for students to write their own test cases, or how

to provide feedback to students about their progress on a programming assignment

without giving away all of the instructor’s test cases (and inadvertently encouraging

students to code to the test cases).

Jones[30] calls for the integration of a variety software testing and debugging

experiences into the curriculum by exposing students to as much of the SPRAE

(Specification, Premeditation, Repeatability, Accountability, Economy) framework

as possible. This paper is somewhat broader in scope than much of the literature:

Jones recommends that students learn not only to debug a program given test

cases and a test log, but also to develop test logs given test results and test cases

(presumably with sufficient detail so that someone else could perform the debugging)

and to write test cases based only on a specification. This is in contrast with much

of the literature, which is more narrowly focused on getting students to write unit

tests as they develop their own code.

The framework built by Jones includes an automated program grading system

(APGS) which can compile and execute both student and instructor-written test

cases automatically. The APGS rigidly specifies the format for input and output

and performs deductions based on incorrect lines of output. Based on the paper,

the APGS seems to require more overhead for instructors than a lightweight unit

testing framework, such as JUnit of cxxUnit.

This work touches on two important issues: First, to teach students how to

write their own test cases, instructors need to design testable assignments—this may

88

seem an obvious point, but it is nonetheless important; and second, the results of

test cases need to be repeatable. This notion of repeatability of test outcomes does

not show up in the literature; it is somewhat disconcerting to imagine the number

of buggy grading scripts that have assigned students a low grade one or two weeks

after the project deadline, at which point the student was so busy working on the

next project that they never noticed the error.

Goldwasser[21] proposes a novel, innovative system where students submit

their test suites in addition to their implementations and receive points for exposing

bugs in other students’ programs (or even in the instructor’s reference implemen-

tation) with their test suites. The projects used rely on reading and writing from

the standard input and therefore typically require the instructor to write a reliable

front-end parser. Furthermore, because these projects rely on standard-in, they are

not as easily amenable to unit or API testing. Furthermore, the quadratic growth

of running all students’ test suites against all other students’ submissions requires

automation, which they provide in the form of a perl script. Finally, since all sub-

missions are needed to start the all-to-all testing process, this means students do

not receive feedback until after the deadline.

This work suggests two things: First, providing students with appropriate

incentive to write test cases is an important issue (presumably because students

don’t write test cases otherwise), and second, innovative ways to motivate testing

require additional infrastructure over what would be requires to teach a traditional

programming course.

89

Leska incorporated testing into a CS1 course taught in Java with an ”objects

first” flavor [32]. He broke testing down into three related ”quality assurance” ac-

tivities: system-level (black-box) testing, unit or API testing (though they didn’t

use JUnit), and code reading exercises. This approach was influenced by recom-

mendations by Jones [30] that students be exposed to a variety of software quality

assurance methods throughout the curriculum.

The paper makes no mention of how the students’ test suites were evaluated,

nor whether student programs were graded using the instructor’s test suite. The

author mentions that he wanted to introduce JUnit but didn’t want to overburden

himself or the students. This suggests that infrastructure required to focus on testing

in introductory courses is greater than what is required to teach the same course

without the emphasis on testing.

Jones performed a survey of eight different efforts towards introducing Test-

Driven Development (TDD) into the curriculum [29]. Three of the papers, by Ed-

wards [13], Muller [40], and Kaufmann [31], that were studied contained controlled

studies of the effectiveness of teaching test-first coding.

Edwards [13] provided some students instruction on how to use the Test-

Driven Development features of Web-CAT [12], a rich framework for executing and

evaluation student-written test cases. These students were then compared with

students who had taken the course prior to the existence of Web-CAT, and found

that the students who used TDD wrote code that was statistically better along

several axes, including defects per thousand lines of code and adherence of the code

to the specification. In addition, around two thirds of students who used TDD

90

reported in an anonymous survey that TDD increased their confidence in both the

correctness of their code as well as in the ability to make changes to their code

without introducing new bugs.

Muller [40] conducted a controlled study with graduate students who had

taken a course on Extreme Programming methodology. The students were split into

a TDD group and a control group. They found that there was not a statistically

significant difference in productivity or quality between the TDD group and the

control group; however, the TDD group did a better job of reusing methods at a

statistically significant level.

Kaufman and Janzen [31] performed a controlled study of test-first versus test-

last coding in an upper-level “Software Studio” course. They found that students

who employed test-first coding practices produced more total code, but that their

code exhibited a weaker coupling between classes.

Jones points out in his survey that while the results of these three controlled

studies are mixed and the sample sizes were not large enough, nor the methodolo-

gies rigorous enough, to draw any major conclusions, TDD nonetheless has shown

promise as a valuable part of the computer science curriculum.

Jones also wisely cautions that TDD is not free, in that it requires more infras-

tructure, expertise, and effort by instructors than is required to teach a CS course

that does not focus on TDD.

Marrero and Settle [37] introduced testing to two introductory Java program-

ming courses by requiring students to write test cases for a binary implementation be-

fore submitting their own implementation. To further motivate testing, they staged

91

a competition similar to that recommended by Goldwasser [21] in one of courses

that had few students. This work mentions that the ”goal is to have students place a

greater emphasis on testing with minimal added work for the instructor”, suggesting

that they lacked appropriate infrastructural support to fully embrace the approach.

This was a very small study, and the results of this work from a quantitative

perspective were inconclusive. However, the anecdotal evidence presented—that

students who were required to test code began asking more detailed questions about

project specifications in order to clarify the type of test cases they should write—was

very promising for this approach.

Marick [36] details how an organization can easily misuse or misinterpret code

coverage results. Although the paper is geared towards industry, the main lessons

are directly applicable to the classroom (where code coverage will most likely be

used to evaluate student-written test suites).

The primary lesson is that a high code coverage number does not mean that a

program is adequately tested. Marick illustrates this point by highlighting the subtle

difference between a programmer who “expects” a high level of coverage when they

write a test suite and a manager who “requires” a high level of coverage before a

product can ship. The manager in this example is analogous to an instructor who

requires students to achieve a certain level of code coverage—say 80% of statements

and 90% of branches— in order to achieve a certain grade. The problem is that

achieving high code coverage does not necessarily imply adequate testing because

it is often easy to write trivial test cases simply to improve the reported coverage

numbers. Poor code coverage should be interpreted as a hint that part of the test

92

suite is weak and requires some additional thought to strengthen. Marick observes:

“If a part of your test suite is weak in a way coverage can detect, it’s likely also

weak in a way coverage can’t detect”.

93

Chapter 9

Conclusions and Future Work

In this chapter we conclude and discuss directions for future work.

9.1 Conclusions

In this work, we have successfully built and deployed Marmoset, an automated test-

ing system that provides advanced feedback to both students and instructors, and

collects fine-grained data for researchers to study the novice programming process.

We have demonstrated the richness and usefulness of the Marmoset dataset

by mining new bug patterns from student mistakes, and by evaluating the precision

and recall of the open-source static checker FindBugs. The Marmoset dataset allows

us to evaluate not only precision (false positive rates) but also recall (false negative

rates), something that had proved extremely difficult to the static error checking

community.

We have also conducted a multi-institution study of grading practices for pro-

gramming assignments; this survey shed light on the current grading practices for

programming assignments as well as the relative weights of style vs. functional

correctness as proportions of the final grade. Our survey revealed a number of in-

teresting trends, such as the penetration of industrial-strength IDEs such as Eclipse

and educational IDEs such as BlueJ, into the classroom, and the lack of penetration

94

of automated style checkers such as PMD and Checkstyle into the classroom.

We also examined projects designed at encouraging students to adopt a Test-

Driven Development methodology; these projects caused students to write more test

cases, but did not always encourage students to write test cases while development

their software, as many test cases were written after students had already passed

all the test cases. This suggests that without proper motivation, many students fail

to see the importance of writing good cases, but rather view testing as an artificial

hurdle. This line of research has inspired us to make changes to Marmoset that

reward students for writing better test suites; these changes will be evaluated in

future work.

9.2 Future Work

This research has been wildly successful at opening up avenues of future work and

setting up future collaborations.

The Marmoset dataset was one of the datasets used by Chadd Williams in his

thesis [52]. He used the submission history of the CS-3 data to detect source code

properties and then find violations of those properties.

The dataset has also been used in the context of educational data mining [49]

to evaluate the accuracy of clustering algorithms for figuring out related unit tests

based on the unit test outcomes for a large number of students.

In the Fall 2006 semester, Marmoset will be used at other institutions.

All of the studies we’ve performed using Marmoset data, such as mining new

95

bug patterns and evaluating the precision and recall of FindBugs, were done using

the four semesters of CS-2 data that are available. We have not had a chance to

look at the CS-1 data, or at the data available for other classes that have adopted

Marmoset; one future avenue of research is to examine the CS-1 data.

Our dataset swells with every semester that passes. At Maryland, CS-1, CS-2

and CS-3 reliably use Marmoset every semester. Furthermore, each semester new

courses at all levels adopt their programming project sequence to use Marmoset. We

have two semesters of projects for a senior-level course on advanced Java technologies

that we haven’t analyzed; some of these projects use threads, XML, and RMI, and

may contain interesting bug patterns to be analyzed.

We also have not performed a controlled study of release testing. This will

probably happen in the next year because two courses at Maryland adopted Mar-

moset purely to automate grading by making all the test cases secret. In future

semesters, these two courses will use the same project sequence and will make some

of these test cases public and release tests, allowing us to study release testing as

an independent variable between semesters.

96

Appendix A

Text of the Survey

This appendix contains the text of each of the survey questions.

97

Survey about grading programming assignments for
computer science courses
This survey should take you only a few minutes to fill out. Please answer from the point of view of the most recent course you
taught that involved programming assignments.

In the following questions the term "grader" refers to any instructional staff responsible for marking up or making comments on
students programming assignments for the purpose of grading or reviewing.

If you are the grader, please answer the questions for yourself. If you have appointed someone to do part or all of the grading (e.g.,
a TA), then answer the questions with respect to the expectations you have with your grader.

Please use the "Additional Details" box to the right of each question to provide any additional information you feel would be
useful, for example if the question does not pertain to your situation or if the answer you would like to provide is not listed.

Note that the text of some of these questions is taken directly from a survey administered in 2004 by Hussein Vastani and Stephen
Edwards from Virginia Tech University.

Background on you and your institution:

Additional Details

What is the name of your college or
university?
About how many total
undergraduates at your institution
(in all fields, not just Computer
Science)?

Does your institution have graduate
students and Teaching Assistants?

 No
 Yes

Are you a Professor, Instructor or
Teaching Assistant?

 Professor
 Instructor
 Teaching Assistant

About how many Computer Science
majors graduate per year at your
institution?

Background for the course on which you will base the rest of your
answers on this survey:

Additional Details:

What level best describes this
course?

 Freshman
 Sophomore
 Junior
 Senior
 Graduate

What best describes the title of the
course?

 CS-0
 CS-1
 CS-2
 Programming Languages
 Compilers
 Networks
 Operating Systems

 Artificial Intelligence
 Computer Organization / Architecture
 Databases
 Software Engineering
 Computer Graphics
 Other:

About how many students were
enrolled in the sections of the
course that you taught?

What was the primary programming
language that students used to
implement programming
assignments?

 Java
 C
 C++ (choose C++ if students can use either

C or C++)
 Scheme
 Lisp
 C#
 Haskell
 Prolog
 Python
 Ruby
 Perl
 Objective Caml
 Pascal
 Fortran
 Other:

Did this course use an Integrated
Development Environment (IDE)?

 Eclipse
 BlueJ
 Dr Java
 Net Beans
 Visual Studio
 Other:

 No, this course did not use an IDE.

Please rate the degree to which you believe that each of the following is a significant impediment to
providing effective feedback on student programming assignments:

I s sue To a Great
Extent Somewhat Very

Little

Not
At
All

Additional Details:

Too many assignments to assess

Not enough time or resources to do a
thorough job

Technical knowledge, capabilities, or
experience of the grader(s)

Lack of a consistent rubric (grading
criteria) for grader(s) to follow

Poor code readability of student code

Poor layout and indentation of
student code

Little or no commenting within the
student code

The density of defects (bugs) in the
student code

Poor testing of work by the student
before submission

The logistics of executing code
against instructor-provided tests to
see if it works

Managing the submission of
assignments and the return of results

General background on grading criteria and submission mechanisms

Additional Details:

When grading, do
you evaluate
style
(indentation
scheme, variable
naming
conventions,
comments, etc)
separately from
functional
correctness (does
the code do what
the specification
says that it is
supposed to do)?

Note: If you do
not distinguish
between style and
functional
correctness when
grading, answer
the rest of the
survey as best
you can.

 Yes
 No

Average # of
points (out of
100) for
functional
correctness.

Relative weights
of functional

0

100

10

90

20

80

30

70

40

60

50

50

60

40

70

30

80

20

90

10

100

0

correctness vs.
style when
grading a
programming
assignment.

Average # of
points (out of
100) for other
considerations
(style,
comments,
documentation,
etc).
How do students
submit their
programming
assignments for
assessment?

Check all that
apply.

 They turn in a source code printout
 They email their submission
 They submit their code electronically using a mechanism other

than email. (Please describe in the "additional details" box).

 Other

When grading
programming
assignments,
what contributes
to the final score
for an
assignment?

Check all that
apply.

 Programing Style (Are students following an indentation
scheme, naming conventions, etc?)

 Comments (Is the code adequately commented, is there
documentation, etc?)

 Student-Written Test Cases (Have students written test cases for
their code?)

 Functional Correctness (Does the program do what it is
supposed to do?)

 Other:
Evaluating the style of student submissions.

Additional Details:

On average, how
many minutes
does the grader
spend on each
student's
assignment for
style?

 < 5
 5-10
 10-15
 15-30
 > 30

How does the
grader read
student
submissions
while evaluating
style?

Check all that
apply.

 Using a paper printout
 Directly accessing the source code files at a computer
 Using an interface provided by an electronic submission and/or

grading system

 Other

Do you use any
automated tools
to evaluate the
style of student
source code?

 FindBugs
 PMD
 Checkstyle
 FxCop

 Other:

 No, we do not use any automated tools to evaluate style.
Evaluating the functional correctness of student submissions

Additional Details:

On average, how
many minutes
does the grader
spend on each
student's
assignment
evaluating
functional
correctness?

 < 5
 5-10
 10-15
 15-30
 > 30

How is the
student work
assessed for
functional
correctness?

Check all that
apply.

 By reading the source code
 The student provides a printout of test results
 The student provides a live demonstration for the grader
 The grader hand-executes the student program against

instructor-provided data
 An automated tool compiles and executes the student code

against instructor-provided data

 Other
Are student
submissions
executed against
instructor-written
test cases or
test-data?

 No.
 Yes.

If student
submissions are
executed against
instructor-written
test cases, what
testing
framework (if
any) do you use?

 JUnit
 CppUnit
 CxxTest
 MbUnit
 NUnit
 Visual Studio Team System

 Other:
 We do not execute student submissions against

instructor-written tests
If student
submissions are
executed against
instructor-written
test data, please
describe the
infrastructure
used in more
detail.

-OR-

If student
submissions are
not executed
against
instructor-written
test data, what do

you see as the
biggest
impediment
towards doing
so?
If you run
students'
programs against
test inputs or test
cases to
determine
functional
correctness, do
you give students
any of the test
cases ahead of
time?

 We give students all the test cases that will be used for grading
before the deadline

 We give students some test cases before the deadline, but keep
some test cases private until after the deadline.

 We do not give students any of the test cases before the
deadline.

 Other:

Is there any
incentive for
students to
submit before the
deadline? For
example, if
students submit
early, do they
receive any
additional
feedback, such as
the results of
running their
submission
against some or
all of the
instructor's
private test
inputs?

 No.
 Yes. Please describe:

Please describe
any other
automated tools
or technologies
that were used in
this course (i.e.
memory checkers
such as Purify or
Valgrind, code
coverage tools
such as Clover or
Emma, etc)

Archiving submissions, course management software

Additional Details:

Do you maintain
an archive of
electronic copies
of student
program
submissions for

 No
 Yes, for all assignments in this course this semester/term
 Yes, for all assignments in this course over multiple

semesters/terms
 Yes, for all assignments in multiple courses over multiple

semesters/terms

your course?
If you maintain
an archive of
electronic copies
of student
program
submissions,
what are the
archived
programs used
for?

Check all that
apply.

 Resolving grade disputes
 Providing a backup of student work
 Detecting plagiarism/cheating
 Learning outcomes assessment for my course
 Longitudinal curricular assessment over multiple courses
 Computer Science Education (CSEd) research

 Other:

Do you use any
course
management
software?

 No, we don't use course management software
 Blackboard
 WebCT
 Moodle

 Other

Free response section:

Given a choice,
what part of the
grading process
would you
automate and
why?

What is the most
time consuming
or difficult part of
the grading
process and why?

What is the
biggest
disadvantage of
the grading
method used by
you or your
grader and why?

Submit!

BIBLIOGRAPHY

[1] E. Allen, R. Cartwright, and B. Stoler. Drjava: A lightweight pedagogic envi-

ronment for java sigcse, 2002.

[2] Apache Tomcat. http://tomcat.apache.org/, 2006.

[3] Ball, T. and Kim, J. and Porter, A. and Siy, H. If your version control sys-

tem could talk. In Proceedings of the International Workshop on Principles of

Sofware Evolution (IWPSE), May 1997.

[4] David J. Barnes and Michael Klling. Objects First with Java - A Practical

Introduction using BlueJ. Prentice-Hall, September 2002.

[5] Kim B. Bruce. Controversy on how to teach cs 1: a discussion on the sigcse-

members mailing list. In ITiCSE-WGR ’04: Working group reports from

ITiCSE on Innovation and technology in computer science education, pages

29–34, New York, NY, USA, 2004. ACM Press.

[6] Caucho Resin : Fast, Open-Source Application Server. http://www.caucho.

com/, 2006.

[7] Cenqua Clover Code Coverage for Java. http://www.cenqua.com/clover/,

2006.

[8] Checkstyle. http://checkstyle.sourceforge.net/, 2006.

[9] Henrik Bærbak Christensen. Systematic testing should not be a topic in

the computer science curriculum! In ITiCSE ’03: Proceedings of the 8th annual

105

conference on Innovation and technology in computer science education, pages

7–10, New York, NY, USA, 2003. ACM Press.

[10] C++ source-code style check. url=https://gna.org/projects/cxxchecker, 2006.

[11] Eclipse.org main page. http://www.eclipse.org, 2004.

[12] Stephen H. Edwards. Rethinking computer science education from a test-first

perspective. In OOPSLA ’03: Companion of the 18th annual ACM SIGPLAN

conference on Object-oriented programming, systems, languages, and applica-

tions, pages 148–155, New York, NY, USA, 2003. ACM Press.

[13] Stephen H. Edwards. Using test-driven development in the classroom: Provid-

ing students with automatic, concrete feedback on perfomance. 2003.

[14] Stephen H. Edwards. Using software testing to move students from trial-and-

error to reflection-in-action. In SIGCSE ’04: Proceedings of the 35th SIGCSE

technical symposium on Computer science education, pages 26–30, New York,

NY, USA, 2004. ACM Press.

[15] Christopher C. Ellsworth, Jr. James B. Fenwick, and Barry L. Kurtz. The

quiver system. SIGCSE Bull., 36(1):205–209, 2004.

[16] FindBugs—Find Bugs in Java Programs. http://findbugs.sourceforge.

net, 2006.

[17] Fortify Software. http://www.fortifysoftware.com, 2006.

[18] Fxcop team page. url=http://www.gotdotnet.com/team/fxcop/, 2006.

106

[19] Daniel German. Mining CVS repositories, the softChange experience. In Pro-

ceedings of the International Workshop on Mining Software Repositories, Ed-

inburgh, Scotland, May 2004.

[20] Robert L. Glass. Persistent software errors. IEEE Trans. Software Eng.,

7(2):162–168, 1981.

[21] Michael H. Goldwasser. A gimmick to integrate software testing throughout

the curriculum. In SIGCSE ’02: Proceedings of the 33rd SIGCSE technical

symposium on Computer science education, pages 271–275, New York, NY,

USA, 2002. ACM Press.

[22] Jack Hollingsworth. Automatic graders for programming classes. Commun.

ACM, 3(10):528–529, 1960.

[23] David Hovemeyer. Simple and Effective Static Analysis to Find Bugs. PhD in

Computer Science, University of Maryland, College Park, College Park, MD,

2005.

[24] Peter C. Isaacson and Terry A. Scott. Automating the execution of student

programs. SIGCSE Bull., 21(2):15–22, 1989.

[25] David Jackson and Michelle Usher. Grading student programs using assyst.

In Proceedings of the twenty-eighth SIGCSE technical symposium on Computer

science education, pages 335–339. ACM Press, 1997.

107

[26] Matthew C Jadud. A first look at novice compilation behavior using bluej.

In Proceedings of the 16th Workshop on Psychology of Programming Interest

Group, Carlow, Ireland, April 2004.

[27] JBoss. http://www.jboss.org, 2005.

[28] Philip M. Johnson, Hongbing Kou, Joy Agustin, Qin Zhang, Aaron Kagawa,

and Takuya Yamashita. Practical automated process and product metric col-

lection and analysis in a classroom setting: Lessons learned from hackystat-uh.

In ISESE, pages 136–144. IEEE Computer Society, 2004.

[29] Christopher G. Jones. Test-driven development goes to school. J. Comput.

Small Coll., 20(1):220–231, 2004.

[30] Edward L. Jones. Software testing in the computer science curriculum – a

holistic approach. In ACSE ’00: Proceedings of the Australasian conference on

Computing education, pages 153–157, New York, NY, USA, 2000. ACM Press.

[31] Reid Kaufmann and David Janzen. Implications of test-driven development: a

pilot study. In OOPSLA ’03: Companion of the 18th annual ACM SIGPLAN

conference on Object-oriented programming, systems, languages, and applica-

tions, pages 298–299. ACM Press, 2003.

[32] Chuck Leska. Testing across the curriculum: square one! J. Comput. Small

Coll., 19(5):163–169, 2004.

[33] Raymond Lister, Elizabeth S. Adams, Sue Fitzgerald, William Fone, John

Hamer, Morten Lindholm, Robert McCartney, Jan Erik Moström, Kate

108

Sanders, Otto Seppälä, Beth Simon, and Lynda Thomas. A multi-

national study of reading and tracing skills in novice programmers. In ITiCSE-

WGR ’04: Working group reports from ITiCSE on Innovation and technology

in computer science education, pages 119–150, New York, NY, USA, 2004. ACM

Press.

[34] Ying Liu and Eleni Stroulia. Reverse engineering the process of small novice

software teams. In Proceedings of the 10th Working Conference on Reverse

Engineering, page 102. IEEE Computer Society, 2003.

[35] Ying Liu, Eleni Stroulia, Ken Wong, and Daniel German. Using CVS historical

information to understand how students develop software. In Proceedings of the

International Workshop on Mining Software Repositories, Edinburgh, Scotland,

May 2004.

[36] Brian Marick. How to misuse code coverage. In International Conference and

Exposition on Testing Computer Software, June 1999.

[37] Will Marrero and Amber Settle. Testing first: emphasizing testing in early

programming courses. In ITiCSE ’05: Proceedings of the 10th annual SIGCSE

conference on Innovation and technology in computer science education, pages

4–8, New York, NY, USA, 2005. ACM Press.

[38] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Ha-

gan, Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and

Tadeusz Wilusz. A multi-national, multi-institutional study of assessment of

109

programming skills of first-year cs students. In ITiCSE-WGR ’01: Working

group reports from ITiCSE on Innovation and technology in computer science

education, pages 125–180, New York, NY, USA, 2001. ACM Press.

[39] Keir B. Mierle, Kevin Laven, Sam T. Roweis, and Greg V. Wilson. CVS Data

Extraction and Analysis: A Case Study. Technical Report 2004-002, University

of Toronto, September 2004.

[40] M. Muller and O. Hagner. Experiment about test-first programming. Software,

IEE Proceedings- [see also Software Engineering, IEE Proceedings], 149(5):131–

136, 2002.

[41] MySQL AB :: The world’s most popular open source database. http://www.

mysql.com/, 2006.

[42] Netbeans. http://www.netbeans.org/, 2006.

[43] PMD. http://pmd.sourceforge.net, 2005.

[44] Ranjith Purushothaman and Dewayne Perry. Towards Understanding the

Rhetoric of Small Changes. In Proceedings of the International Workshop on

Mining Software Repositories, Edinburgh, Scotland, May 2004.

[45] softChange, software change analysis tool.

http://sourceforge.net/projects/sourcechange, 2004.

110

[46] Jaime Spacco, David Hovemeyer, and Bill Pugh. An eclipse-based course

project snapshot and submission system. In 3rd Eclipse Technology Exchange

Workshop (eTX), Vancouver, BC, October 24, 2004.

[47] Jaime Spacco, David Hovemeyer, and Bill Pugh. Tracking defect warnings

across versions. In MSR 2006: Proceedings of the 3rd annual workshop on

Mining Software Repositories, 2006.

[48] Jaime Spacco, David Hovemeyer, William Pugh, Jeff Hollingsworth, Nelson

Padua-Perez, and Fawzi Emad. Experiences with marmoset: Designing and

using an advanced submission and testing system for programming courses.

In ITiCSE ’06: Proceedings of the 11th annual conference on Innovation and

technology in computer science education. ACM Press, 2006.

[49] Jaime Spacco, Titus Winters, and Tom Payne. Inferring use cases from unit

testing. In AAAI Workshop on Educational Data Mining, New York, NY, USA,

July 2006. ACM Press.

[50] 2004-2005 taublee survey. http://www.cra.org/CRN/articles/may06/taulbee.html,

2006.

[51] Hussein K. Vastani. Supporting Direct Markup and Evaluation of Students

Projects On-line. Master’s thesis, Virginia Tech University, Blacksburg, VA,

June 2004.

111

[52] Chadd Williams. Using Historical Data From Source Code Revision Histories

to Detect Source Code Properties. PhD in Computer Science, University of

Maryland, College Park, College Park, MD, 2006.

[53] Chadd Williams and Jeff Hollingsworth. Bug-Driven Bug Finders. In Pro-

ceedings of the International Workshop on Mining Software Repositories, Ed-

inburgh, Scotland, May 2004.

[54] Andreas Zeller. Making students read and review code. In ITiCSE ’00: Pro-

ceedings of the 5th annual SIGCSE/SIGCUE ITiCSEconference on Innovation

and technology in computer science education, pages 89–92, New York, NY,

USA, 2000. ACM Press.

[55] Thomas Zimmerman and Peter Weisgerber. Preprocessing CVS Data for Fine-

Grained Analysis. In Proceedings of the International Workshop on Mining

Software Repositories, Edinburgh, Scotland, May 2004.

112

