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In this dissertation, I introduce a novel method for measuring individual

nanoscale two-level systems (TLSs) in amorphous solids based on strong direct cou-

pling between a TLS and a cavity. I describe power- and temperature-dependent

analysis of individual TLSs using a theoretical model based on cavity quantum

electrodynamics (CQED). This method allows for measuring individual TLSs in

different insulators and over a wide range of film thicknesses. For a silicon nitride

film at 25 mK and a lumped-element cavity resonance at 6.9 GHz, I find TLSs

with coherence times on the order of microseconds which can potentially be used as

coherent resources.

Furthermore, I introduce a device which enables spectroscopy of TLSs in in-

sulating films by DC-tuning the TLSs. I present measurement results on 60 TLSs

accompanied by theoretical analysis and extraction of distribution statistics of the

TLS parameters. I find evidence for at least two TLS dipole sizes.



I also investigate the role of RF-induced DC bias voltage on the growth of ti-

tanium nitride films on silicon (100) substrates deposited by DC magnetron reactive

sputtering. I present hybrid designs of TiN coplanar resonators which were fabri-

cated with an aluminum transmission line to avoid impedance mismatches due to

large kinetic inductance of TiN films. I observe remarkably large kinetic inductance

at certain substrate DC bias voltages.

Finally, I describe several trilayer resonators designed to measure TLS ensem-

bles within atomic layer deposition (ALD) grown aluminum oxide. Each resonator

is unique in trilayer capacitor perimeter and hence the alumina air-exposed cross

section. I compare the measured loss tangents of the resonators and investigate the

effect of the capacitor perimeter on TLS defect density at different temperatures.
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Chapter 1: Introduction

1.1 Quantum computing

1.1.1 Ideas in classical and quantum superconducting logic

Digital CMOS-based computers use irreversible logic, meaning that energy

is dissipated as information is being processed. Thanks to continuous progress

in fabrication technology, such computers today can run with more and smaller

logic elements at lower drive powers than was possible a decade ago. But there

is a limit to which these circuits can be scaled down. At the nanometer scale,

statistical fluctuations in the number of carriers and quantum mechanical effects

such as tunneling start to influence the circuit behavior. Although CMOS technology

has great advantages and is very well established, the apparent physical limitations

have motivated the research community to propose new hardware schemes.

The theoretical prediction of tunneling supercurrents in superconductor-insulator-

superconductor (SIS) junctions, known as the Josephson effect [1], and the subse-

quent verification [2,3], marked the advent of new technologies with the potential to

improve computational capabilities. Among these, I should emphasize rapid single

flux quantum (RSFQ) logic, which was developed in early 1990’s [4]. RSFQ circuits
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have been operated at clock frequencies of 30-40 GHz, and have the potential to op-

erate at hundreds of GHz [5]. An RSFQ-based circuit can consume approximately

5 orders of magnitude less power than a typical CMOS-based circuit (excluding the

cooling power) to do the same operations. This is mostly due to propagation of

the signals in non-dissipative (superconducting) lines and the relatively small power

requirement for switching Josephson junctions (JJs), which are the active elements

in RSFQ circuits. RSFQ is a fairly well-developed scheme allowing to construct

a wide variety of circuits. However, for sizable RSFQ circuits, signal timing is a

difficult problem at high clock frequencies [6]. In order to compensate for jitter and

clock skew in RSFQ circuits, in 2009 I designed and successfully measured a FIFO

register using this technology, in collaboration with Hypres Inc. [7, 8].

Although RSFQ remains an excellent candidate for some applications (e.g.

digital signal processing), complications arise when the circuits are scaled up. Large

number of resistors for current biasing the JJs result in a significant dc parasitic heat

load which was not always included in comparisons between RSFQ and CMOS. This

problem can be solved by removing the bias resistors and inductively coupling the

bias lines to an AC transmission line. This is the basis for reciprocal quantum logic

(RQL) which was developed in 2011 by Q. Herr et al. [9]. Also, by modifying gate

biasing using junction-based current distribution techniques, ERSFQ/eSFQ logics

have been developed which, in a sense, update RSFQ logic by removing the major

component of the resistive energy loss [10].

I note that all of the above mentioned technologies (CMOS, RSFQ, RQL,

ERSFQ and eSFQ) are examples of binary (classical) computing, despite the fact
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that the latter two take advantage of quantum phenomenon of supercurrent (Joseph-

son) tunneling. Furthermore, the energy consumption for a single computational

step is a few orders of magnitude larger than the Landauer limit as they oper-

ate irreversibly. Basically, irreversible computing results in an unavoidable (and

relatively large) minimum for power dissipation which includes switching events.

These switchings which are included in the design, can act as a noise source causing

computational errors since there is some random aspect of the switching which is

generally damped [11]. Some very interesting studies have been performed on binary

reversible gates [12–14], but even these gates will not perform quantum information

processing by definition because of the necessarily binary states of their bits.

Quantum information theory emerged in the 1970’s [15] and the idea of a

quantum computer was suggested in the early 1980’s [16, 17]. Quantum comput-

ers potentially have the ability to perform certain tasks exponentially faster than

classical computers, making them a hot topic of research. A quantum computer is

distinguished by two fundamental properties: it contains reversible gates and quan-

tum coherent states. This follows because quantum computers would apply unitary

operations on entangled quantum states of their fundamental building blocks - the

qubits [18].

A qubit is a quantum two-level system which can be in state |0〉 or |1〉 (like

a classical bit), or a superposition of |0〉 and |1〉 (in contrast to a classical bit).

A state of a single qubit can be mathematically represented by a vector |ψ〉 in a

3



two-dimensional Hilbert space, with basis vectors |0〉 and |1〉, namely,

|ψ〉 = α |0〉+ β |1〉 , (1.1)

where α and β are, in general, complex numbers and |α|2 + |β|2 = 1. A qubit state

can always be rewritten as

|ψ〉 = eiγ
(

cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉
)
, (1.2)

where θ, φ and γ are (real) angles determining the state |ψ〉. Since the factor of eiγ

has no observable effect, Eq. 1.2 can be simplified to

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 . (1.3)

With this choice, the state |ψ〉 can be represented as a point on the surface of the

Bloch sphere, as shown in Fig. 1.1. In particular, there is a one-to-one mapping

between possible states |ψ〉 and the angles θ and φ, or the points on the surface of

the sphere.

Since there are infinitely many points on the surface of a sphere, in theory

infinite information can be stored in a qubit. However, according to a fundamental

postulate of quantum mechanics, the measured state of a qubit along the z axis

of the Bloch sphere can can only be either |0〉 or |1〉, meaning that only one bit

of information can be extracted by measurement of the qubit state. Although not

measurable in one measurement on a single qubit, this hidden information does

exist, and in a real sense nature “knows” the continuous variables (e.g. θ and φ)

that describe the qubit state. Furthermore, the amount of information that can be

stored in multiple qubits grows superexponentially with the number of qubits, i.e.

4



Figure 1.1: Bloch sphere representation of the qubit state.

the effective number of classical bits grows exponentially with the number of qubits.

This is a result of quantum entanglement of qubits - a unique capability of quantum

systems to exist in entangled states.

In principle, any quantum system with two isolated states can potentially be

operated as a qubit. A few examples of such systems are: (i) an electronic spin [19]

or nuclear spin [20] where eigenstates correspond to spin-up and spin-down, (ii)

photon polarization [21] where the vertical- and horizontal polarizations form the

eigenstates and finally (iii) superconducting qubits [22–24] where the eigenvectors

are represented by the charge, current or energy states depending on the qubit type.

1.1.2 Requirements and criteria

A natural question is, aside from a collection of two-level quantum systems,

what else would be needed to build a quantum computer? Five requirements for im-
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plementing quantum computation have been described by DiVincenzo [25–27]. Di-

Vincenzo also gave two additional requirements for quantum communication, which

are not discussed here. According to DiVincenzo, the conditions to be fulfilled in

order for quantum computation to become possible are:

(a) A scalable physical system containing a collection of well characterized qubits.

Characterization of the qubit means that the internal and external properties

of the qubit are well-determined. These properties include the internal Hamil-

tonian, interaction parameters with other qubits and coupling conditions to

external fields for manipulating the qubit.

(b) The ability to initialize the state of the qubits to a known well-defined state,

such as |000...〉. This is equivalent to initialization of registers, CPUs and

other building blocks of a conventional computer.

(c) Sufficiently long coherence times of the qubits. I highlight this requirement

as it is the most relevant to this thesis and is considered to be a particularly

challenging requirement for superconducting qubits [28]. A long coherence

time is crucial for quantum computing as computation can only take place

while all the qubits are in a coherent state. As DiVincenzo states, decoherence

is “the principal mechanism for the emergence of classical behavior” [29], and

fast decoherence means only classical operations can be performed. We will

see in section 1.3 that the basic source of decoherence is the qubit’s coupling

to the environment. Ideally, a qubit would only be coupled to other qubits

and manipulation/readout circuitry while being isolated from the rest of the
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universe.

(d) Accurate operation of a complete set of quantum gates. Since quantum algo-

rithms consist of sequences of unitary transformations, for universal compu-

tation it must be possible to apply a set of gate operations to reach any point

in the multi-qubit Hilbert space, or at least get arbitrarily close to any point.

(e) The ability to perform “strong” quantum measurements. Once a computation

is completed by the system, the results must be measurable with high accuracy

(in quantum computing language: high fidelity). Also, ideally, reading out the

state of each qubit should not disturb the state of the rest of the system.

1.1.3 Quantum algorithms

The first efficiency comparison between quantum algorithms versus their clas-

sical counterpart dates back to 1985, when Deutsch [30] demonstrated that to solve

the “black-box problem” on a quantum computer, only one query is needed, whereas

classical algorithms require two queries. This idea was later developed into the

Deutsch-Jozsa algorithm [31]. Simon’s algorithm [32] for solving the black-box equa-

tion was shown to be exponentially faster than a classical algorithm, and became

a motivation for Shor’s algorithm [33]. Shor’s algorithm calculates the prime fac-

tors of an integer in polynomial time, making it exponentially faster than the fastest

known classical algorithm. This quantum speedup is a result of using a unitary alge-

braic operation called the quantum fourier transform (QFT) [34]. Other operations

have been used to developed a number of different quantum algorithms, such as

7



algorithms based on quantum walks [35] and quantum amplitude amplification [36].

Detailed description of quantum algorithms is beyond the scope of this thesis, but

can be found in the above citations.

1.2 Cavity quantum electrodynamics

The theory of quantum electrodynamics (QED) involves the combination of

special relativity and quantum mechanics. Many interesting effects occur. For exam-

ple, it was predicted in 1946 that the spontaneous emission probability (and hence

the emission rate Γ0) of an atom changes when it is placed in an electromagnetic

cavity that is resonant with the atomic transition [37]. In such a system, a very long

atomic relaxation time will be divided by a factor of

ν =
3Qλ3

4π2V
, (1.4)

where Q is the cavity’s quality factor, λ is the free-space wavelength of the emit-

ted light and V is the cavity volume. At optical frequencies, Fabry-Pérot cavities

typically have V � λ3 and observation of such effects are challenging even with

high-Q cavities. At microwave RF frequencies, cavities with V ∼ λ3 are easily real-

ized, however, the atomic transition rate Γ0 is usually very small in this frequency

range, making it difficult to detect changes in Γ0. Given the physical constraints

it is perhaps not surprising that the experimental verification of this effect did not

happen until 1983, when an enhanced atomic spontaneous emission was observed

from Rydberg states of Na atoms excited in a niobium superconducting cavity reso-

nant at 340 GHz [38]. When an atom is in a Rydberg state, the outermost electron
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is bound very weakly. Therefore, transitions can happen between closely-spaced

energy states resulting in emission of a range of relatively long wavelengths, from

less than a millimeter up to a few centimeters [39].

Understanding the dynamics of a two-level atom in a small volume (cavity)

that confines the electric field requires a fully quantum mechanical treatment of the

light-matter interaction. The atomic dynamics is affected by the number of photons

in the cavity (even at zero photons) and is the subject of the field of cavity quantum

electrodynamics (CQED). Aside from many interesting physical effects that occur

in CQED, it plays an important role in superconducting qubit readout and analysis.

Also, as I discuss in full detail in Chapter 5, measurement of CQED effects can be

used to characterize a (nanoscale) atomic tunneling two-level system. For the rest of

this section, I briefly review field quantization and the Jaynes-Cummings model for

the light-matter interaction. For this review I found Refs. [40–49] to be extremely

helpful for understanding CQED analysis.

1.2.1 Quantization of the electromagnetic field

To investigate the dynamics of a two-level atom coupled to a cavity, I begin

with Maxwell’s equations and show how the electromagnetic field in a cavity is

quantized.

In the absence of charge or current sources, Maxwell’s equations simplify to

∇× E = −1

c

∂B

∂t
, (1.5a)

∇×B =
1

c

∂E

∂t
, (1.5b)
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∇ ·B = 0, (1.5c)

∇ · E = 0, (1.5d)

in CGS units. The electric field E and magnetic field B can be written in terms of

scalar and vector potentials Φ and A, respectively, i.e.

E = −∇Φ− 1

c

∂A

∂t
, (1.6a)

B = ∇×A. (1.6b)

From the Lagrangian density of a free electromagnetic field,

Lem =
1

8π

[
E2 −B2

]
, (1.7)

one can show the canonical momenta pi for the coordinates q = (Φ, Ax, Ay, Az) are

pi =
∂Lem
∂Ȧi

=
1

4πc

(
∂Φ

∂xi
+

1

c

∂Ai
∂t

)
= − 1

4πc
Ei, i = 1, 2, 3. (1.8)

Note that the Lagrangian density is independent of Φ̇, eliminating one of the four

momentum coordinates. The Hamiltonian density Hem = piq̇
i − L becomes

Hem = p · ∂A
∂t
− Lem = 2πc2p2 +

1

8π
(∇×A)2 − cp · ∇Φ. (1.9)

As a result of Eq. 1.5d, we get

∫
d3r [p.∇Φ] = − 1

4πc

∫
d3r [E · ∇Φ] = 0. (1.10)

Therefore, the Hamiltonian is

Hem =

∫
d3r

[
1

8π

(
E2 + B2

)]
=

∫
d3r

[
2πc2p2 +

1

8π
(∇×A)2

]
. (1.11)
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From

q̇i =
δHem

δpi
, ṗi = −δHem

δqi
, (1.12)

for each coordinate we obtain

∂Ai
∂t

= 4πc2pi,
∂pi
∂t

=
1

4π
∇2Ai, (1.13)

which results in the wave equation

∇2A− 1

c2

∂2A

∂t2
= 0. (1.14)

Equation 1.14 has planar wave solutions of the form eik·r−ωkt with angular

frequency ωk and wave vector k and a linear dispersion relation ωk = c|k|. Assuming

periodic boundary conditions for the total field in volume V , we can Fourier-expand

the modes as

A (r, t) =
1√
V

∑
k

Ak (t) eik·r (1.15)

with the normalization condition

∫
d3r
[
eik·re−ik

′·r
]

= V δkk′ . (1.16)

Assuming the gauge ∇ · A = 0, we get k · Ak = 0 which gives two transverse

polarization directions identified by transverse unit vectors ekα, where α = 1, 2.

Therefore,

Ak =
2∑

α=1

ekαAkα. (1.17)

Also from the wave equation, the time dependence of each mode (and also

each polarization) is an oscillatory one,

Ak (t) = Ake
−iωkt. (1.18)
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In order to have a real field rather than a complex one, Eq. 1.15 can be equivalently

written in the form

A (r, t) =
1

2
√
V

∑
k

[
Ak (t) eik·r + A∗k (t) e−ik·r

]
. (1.19)

From Eq. 1.19 the fields can now be simply obtained as

E (r, t) =
i

2c
√
V

∑
k

ωk

[
Ak (t) eik·r −A∗k (t) e−ik·r

]
, (1.20a)

B (r, t) =
i

2
√
V

∑
k

k×
[
Ak (t) eik·r −A∗k (t) e−ik·r

]
. (1.20b)

According to Eq. 1.11 and using k2 = ω2
k/c

2, the total energy of the field is then

Hem =
1

8π

∫
d3r (E · E∗ + B ·B∗) =

1

8π

∑
k

k2|Ak|2 =
1

8π

∑
kα

k2|Akα|2. (1.21)

In order to quantize the modes, we note that each mode is analogous to a

harmonic oscillator and introduce real canonical variables Qk (t) and Pk (t)

Qk (t) =
1

2c
√

4π
[Ak (t) + A∗k (t)] , (1.22a)

Pk (t) =
−ik

2
√

4π
[Ak (t)−A∗k (t)] , (1.22b)

so that

Ak (t) = 2c
√
π

[
Qk (t) +

i

ωk
Pk (t)

]
(1.23)

and

Hem =
1

2

∑
kα

(
P 2
kα + ω2

kQ
2
kα

)
. (1.24)

The standard quantization procedure includes the commutation relations

[Pkα, Pk′α′ ] = 0, [Qkα, Qk′α′ ] = 0, [Qkα, Pk′α′ ] = i~δkk′δαα′ . (1.25)
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It is also useful to identify akα and a∗kα

akα =
ωkQkα + iPkα√

2~ωk

, (1.26a)

a∗kα =
ωkQkα − iPkα√

2~ωk

. (1.26b)

Obviously,

Qkα =

√
~

2ωk

(akα + a∗kα) , (1.27a)

Pkα = −i
√

~ωk

2
(akα − a∗kα) , (1.27b)

which we will refer to later.

We now replace akα and a∗kα with the annihilation and creation operators âkα

and â†kα

akα → âkα, (1.28a)

a∗kα → â†kα, (1.28b)

which satisfy the commutation relations

[âkα, âk′α′ ] = 0, [â†kα, â
†
k′α′ ] = 0, [âkα, â

†
k′α′ ] = δkk′δαα′ . (1.29)

The operator n̂kα = â†kαâkα is the number operator and counts the number of

excitations (quanta) in mode k, α. The total energy of the electromagnetic field

becomes

Ĥem =
∑
kα

~ωk

(
â†kαâkα +

1

2

)
=
∑
kα

~ωk

(
n̂kα +

1

2

)
. (1.30)

From Eq. 1.27a, 1.27b and 1.19 and including the oscillatory time dependence,

we can write the vector potential operator as

Â (r, t) =

√
2π~c2

V

∑
kα

1
√
ωk

[
âkαekαe

i(k·r−ωkt) + â†kαekαe
−i(k·r−ωkt)

]
. (1.31)
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The electric field and magnetic field operators are then

Ê (r, t) = i

√
2π~
V

∑
kα

√
ωk

[
âkαekαe

i(k·r−ωkt) − â†kαekαe
−i(k·r−ωkt)

]
, (1.32a)

B̂ (r, t) = i

√
2π~c2

V

∑
kα

k× ekα√
ωk

[
âkαe

i(k·r−ωkt) − â†kαe
−i(k·r−ωkt)

]
. (1.32b)

For a single-mode field with one polarization direction, Eq. 1.30 simplifies to

Ĥem = ~ω
(
â†â+

1

2

)
. (1.33)

Analogous to a harmonic oscillator, photon number states |n〉 become eigenstates

of the Hamiltonian and

Ĥem |n〉 = ~ω
(
n+

1

2

)
|n〉 . (1.34)

The operators â and â† cause destruction or addition of a photon to the field mode,

as described by

â |n〉 =
√
n |n− 1〉 , (1.35a)

and

â† |n〉 =
√
n+ 1 |n+ 1〉 . (1.35b)

1.2.2 Jaynes-Cummings model

To understand the interaction of an atom with an electromagnetic field, I first

consider an isolated two-level atom with no fields present. This situation is exactly

analogous to a spin-1
2

system in an applied static field. The two atomic energy

eigenstates can be written as

|e〉 =

 1

0

 , |g〉 =

 0

1

 . (1.36)

14



The Hamiltonian is the sum over all accessible energies, i.e.

Ĥatom = Ee |e〉 〈e|+ Eg |g〉 〈g|

=

 Ee 0

0 Eg

 =
1

2

 Ee + Eg 0

0 Ee + Eg

+
1

2

 Ee − Eg 0

0 Eg − Ee


=

1

2
(Ee + Eg) Î +

1

2
(Ee − Eg) σ̂z,

(1.37)

where Î is the identity operator and σ̂z is the Pauli z-operator. By defining Ee−Eg ≡

~ω0 and setting (Ee + Eg)/2 = 0, we can write

Ĥatom =
1

2
~ω0σ̂z. (1.38)

Typically we can assume that the electric field is uniform across an atom, as

the atomic dipole length is much smaller than the wavelengths of interest. This

allows us to use the dipole approximation to describe the interaction between the

atom and the electric field (Ê) and write the coupling (interaction) Hamiltonian as

Ĥint = −p̂ · Ê, (1.39)

where the electric dipole operator p̂ (not to be confused with the momentum) is

responsible for atomic transitions. The diagonal dipole matrix elements vanish as a

result of parity, i.e.

〈e| p̂ |e〉 = 〈g| p̂ |g〉 = 0, (1.40)

and p̂, which is a real vector, can be written as

p̂ = p∗σ̂+ + pσ̂− = p (σ̂+ + σ̂−) , (1.41)
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where σ̂+ and σ̂− are the raising and lowering operators and

σ̂+ =

 0 1

0 0

 = |e〉 〈g| , σ̂+ |g〉 = |e〉 , σ̂+ |e〉 = 0, (1.42a)

σ̂− =

 0 0

1 0

 = |g〉 〈e| , σ̂− |e〉 = |g〉 , σ̂− |g〉 = 0. (1.42b)

From Eq. 1.32a, a single-mode electric field polarized in direction u can be

described by

Ê = iu (r)

√
2π~ω
V

(
â− â†

)
. (1.43)

We can now rewrite Eq. 1.39 as

Ĥint = −p (σ̂+ + σ̂−) · iu (r)

√
2π~ω
V

(â− â†)

= −i~p · u (r)

√
2π~ω
V

(σ̂+ + σ̂−) (â− â†).
(1.44)

By defining

g = p · u (r)

√
2π~ω
V

(1.45)

as a measure of the atom-field coupling strength (see Fig. 1.2), the interaction

Hamiltonian becomes

Ĥint = −i~g(σ̂+ + σ̂−)(â− â†) = −i~g(σ̂+â+ σ̂−â+ σ̂+â
† + σ̂−â

†). (1.46)

In the interaction picture, the operators gain time dependence such that

â†(t) = â†eiωt, â(t) = âe−iωt, σ̂+(t) = σ̂+e
iω0t, σ̂−(t) = σ̂−e

−iω0t, (1.47)

and

Ĥint = −i~g
(
σ̂+âe

−i(ω−ω0)t + σ̂−âe
−i(ω+ω0)t + σ̂+â

†ei(ω+ω0)t + σ̂−â
†ei(ω−ω0)t

)
.

(1.48)
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Figure 1.2: Cavity field interacting with a two-level atom. The atom-field coupling
strength is determined by g.

Near resonance (ω ' ω0), the e±i(ω−ω0)t terms in Eq. 1.48 vary slowly, thus

allowing these terms to accumulate effects from the atom-cavity interaction. On

the other hand, the effects of the rapidly varying terms e±i(ω+ω0)t tend to cancel

out since they are far from resonance. By using this rotating wave approximation

(RWA), the interaction Hamiltonian in the Schrödinger picture reduces to

Ĥint = −i~g(σ̂+â+ σ̂−â
†). (1.49)

Clearly, Ĥint describes the conversion of atomic excitations to photonic excitations

and vice versa. The Jaynes-Cummings Hamiltonian [40], describing the full atom-

field system, is obtained by adding up the field, atom and the interaction terms,

i.e.

ĤJC = ~ωâ†â+
1

2
~ω0σ̂z − i~g(σ̂+â+ σ̂−â

†). (1.50)

Equation 1.50 is one of the few exactly solvable Hamiltonians in quantum

optics. I start by introducing the combined occupation number

n̂com = n̂+ n̂atom = â†â+ σ̂+σ̂−. (1.51)

Performing simple algebra, one can show that [n̂com, σ̂+σ̂−] =
[
n̂com, â

†â
]

= 0 and
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hence

[n̂com, ĤJC ] = −i~g
(
[n̂com, âσ̂+] +

[
n̂com, â

†σ̂−
])
. (1.52)

Also, since [
â†â, â†σ̂−

]
= â†σ̂−,[

â†σ̂−, σ̂+σ̂−
]

= σ̂−â
†,

[σ̂+σ̂−, âσ̂+] = âσ̂+,[
âσ̂+, â

†â
]

= σ̂+â,

(1.53)

we obtain

[n̂com, ĤJC ] = 0. (1.54)

This means that n̂com and ĤJC share the same set of eigenstates.

In order to find the eigenstates of ĤJC , we first note that [n̂, n̂atom] = 0 as

they operate on different subspaces. Therefore, n̂ and n̂atom also share a common

set of eigenstates, but they have distinct sets of eigenvalues. This suggests that an

interesting set of basis states for the total Hamiltonian is

|n, s〉 = |n〉 ⊗ |s〉 = {|n, g〉 , |n, e〉 , n = 0, 1, 2, ...}, (1.55)

These are called the bare states. Also, the eigenvalue equation

n̂com |n, s〉 = (n+ natom) |n, s〉 (1.56)

holds, but since natom ∈ {0, 1}, there are two states that contribute to a fixed

n + natom except for the special case ncom = 0. We can now write the Hamiltonian

of Eq. 1.50 in the bare-state basis as

ĤJC =
∞∑

n,n′=0

∑
s,s′=e,g

|n, s〉 〈n, s| ĤJC |n′, s′〉 〈n′, s′| . (1.57)
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Using Eqs. 1.35a, 1.35b, 1.42a and 1.42b we find

σ̂+σ̂− |n+ 1, g〉 = âσ̂+ |n, e〉 = â†σ̂− |n+ 1, g〉 = 0,

â†â |n+ 1, g〉 = (n+ 1) |n+ 1, g〉 , â†â |n, e〉 = n |n, e〉 ,

σ̂+σ̂− |n, e〉 = |n, e〉 , âσ̂+ |n+ 1, g〉 =
√
n+ 1 |n, e〉 ,

â†σ̂− |n, e〉 =
√
n+ 1 |n+ 1, g〉 .

(1.58)

Since the interaction Hamiltonian only couples pairs of bare states, for n > 0

the Jaynes-Cummings Hamiltonian decouples into an infinite direct product of 2×2-

matrix Hamiltonians with the elements

Hn,11 = ~ωn+
1

2
~ω0,

Hn,22 = ~ω (n+ 1)− 1

2
~ω0,

Hn,12 = Hn,21 = ~g
√
n+ 1.

(1.59)

Thus the form of the n-th 2× 2-matrix is

Ĥn =

 ~ωn+ 1
2
~ω0 ~g

√
n+ 1

~g
√
n+ 1 ~ω (n+ 1)− 1

2
~ω0

 . (1.60)

Upon diagonalization, the eigenenergies are obtained as

E± (n) = ~ω
(
n+

1

2

)
± 1

2
~ωR,n (1.61)

and the eigenfrequencies are ω± = E±/~, where

ωR,n =
√

∆2
ω + 4g2 (n+ 1) (1.62)

is the Rabi frequency and ∆ω = ω − ω0 is the detuning. The Rabi frequency is the

energy (photon) exchange rate between the atom and the field, and obviously, an
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Figure 1.3: Plot of E± −
(
n+ 1

2

)
~ω as a function of detuning ∆ω for n = 0− 4.

indication of the atom-field coupling strength. Figure 1.3 shows a few of the lowest

eigenenergies as a function of detuning. The eigenstates (the dressed states) are

|n+ 1,+〉 =

(
ωR,n + ∆ω

2ωR,n

)1/2

|n+ 1, e〉+

(
ωR,n −∆ω

2ωR,n

)1/2

|n+ 2, g〉 ,

|n+ 1,−〉 = −
(
ωR,n −∆ω

2ωR,n

)1/2

|n+ 1, e〉+

(
ωR,n + ∆ω

2ωR,n

)1/2

|n+ 2, g〉 .
(1.63)

For the special case of |0,+〉 and |0,−〉, |0,+〉 = |0,−〉 = |0, g〉.

From Eqs. 1.61-1.63 we can understand how the unperturbed atomic eigen-

states (|g〉 and |e〉) are modified. For zero detuning (∆ω = 0), the interaction with
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Figure 1.4: Diagram showing how the degeneracy of the unperturbed states is lifted
as a result of atom-field coupling (∆ω = 0).

the field causes excited state eigenfrequencies to shift by an amount proportional to

the coupling strength g. Thus in the case of zero detuning, the eigenfrequencies of

the states |n+ 1, g〉 and |n, e〉 which are (n+1/2)ω (degenerate) when unperturbed,

get split by ωR,n = 2g
√
n+ 1 as a result of interaction. I emphasize here that the

uncoupled |0, e〉 and |1, g〉 are split by ωR,0 = 2g (called the vacuum Rabi splitting)

in the coupled atom-field system (Fig. 1.4). This is a purely quantum-mechanical

phenomenon that is not predicted by classical physics.

It is also useful to consider the time evolution of the state of the combined

system. If an atom in the excited state interacts with a single-mode field that was

produced by an external drive under the Jaynes-Cummings Hamiltonian the state

of the system can be written as [43]

|ψ(t)〉 =
∞∑
n=0

Ce(t)
e−|α|

2/2αn√
n!

|n, e〉+
∞∑
n=0

Cg(t)
e−|α|

2/2αn√
n!

|n+ 1, g〉 , (1.64)

where α is the coherent state amplitude and the factor of e−|α|
2/2αn/

√
n! comes
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Figure 1.5: Plot of the probability of the atomic excited state occupancy Pe(t) as
a function of the scaled time gt for |α|2 = n̄ = 10 with Pe(0) = 1. The oscillations
start to damp out (collapse) immediately after t = 0, but they reappear after a
few Rabi cycles (revival), although not with the full amplitude. These sequential
collapses and revivals continue, but the revivals generally show smaller amplitudes
as time increases.

from the Poissonian distribution of photon numbers. Also, |α|2 = n̄, where n̄ is the

average number of photons in the volume (cavity). From Schrödinger’s equation,

i~
d

dt
|ψ(t)〉 = ĤJC |ψ(t)〉 . (1.65)

Using Ce(0) = 1 and Cg(0) = 0, at resonance (ω = ω0) we find

Ce(t) = cos(g
√
n+ 1t),

Cg(t) = i sin(g
√
n+ 1t).

(1.66)

The probability of finding the atom in the excited state is

Pe(t) =
∞∑
m=0

| 〈m, e|ψ(t)〉 |2 = e−|α|
2
∞∑
n=0

|α|2n

n!
cos2(g

√
n+ 1t). (1.67)
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Figure 1.5 shows Pe(t) as a function of the scaled time gt for n̄ = 10. We note

that in this fully-quantum-mechanical approach, Pe(t) has a general oscillatory form

with the Rabi frequency, as in the semiclassical approach [50]. But there is a clear

and significant difference in the results of the two approaches. In the fully-quantum

model, the oscillations undergo a series of collapses and revivals [51], as opposed to

the semiclassical model where the Rabi oscillations have a constant amplitude.

1.3 Superconducting qubits and resonators

As I noted earlier, any quantum system with two isolated states can potentially

serve as a qubit. Ideally, it should only be coupled to the read, write and control

lines, and completely decoupled from everything else. Isolation from the environ-

ment can be done relatively easily when the qubit is an atom or ion, or an electronic

or nuclear spin. However, the qubit-qubit coupling in these systems is challenging,

making it hard to realize efficient multi-qubit circuits [52]. Superconducting qubits,

which are circuit-based quantum systems, have a potential advantage in that they

can be efficiently and relatively easily coupled to each other and/or other circuits via

microwave cavities, inductors, capacitors, etc. However, they also tend to couple to

nanoscale defects, parasitic microwave resonances and environmental noise, which

cause decoherence. Since qubits need to operate coherently to be useful for quan-

tum computation, decoherence is a serious short-coming. This is why this thesis is

focused on understanding sources of decoherence in superconducting qubits.
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1.3.1 Basic qubit types

All superconducting qubits take advantage of the nonlinear inductance of the

Josephson junctions (JJs). Superconducting qubits are designed so that the two

lowest energy levels have an energy difference that is distinct from all others, in

contrast to a harmonic oscillator. One of the qubit types, named the phase qubit,

can be represented by a current-biased JJ [53,54] where the phase difference across

the junction can be represented by a particle in a single anharmonic well of the

tilted washboard potential [55–57]. The tunneling of the particle from one well to

an adjacent well can be significant if there is a tilt and the tunneling probability

is never zero. However, by operating the qubit at relatively low tilts and choosing

the circuit parameters appropriately, the particle can be made to stay close to the

bottom of the well with negligible tunneling probability and the two lowest levels

can be used as qubit states.

A phase qubit can be realized by current biasing a JJ which is operated at

zero voltage [58]. In contrast, a charge qubit or a Cooper pair box uses the charge

states of a small superconducting island. The two qubit states correspond to the

existence or absence of an excess Cooper pair on the island [59, 60]. The island is

connected to a relatively large superconducting reservoir via an ultra-small JJ. By

controlling the voltage on a gate capacitor, Cooper pairs can be transferred to and

from the island [61]. A major complication with conventional charge qubits is that

charge noise from nanoscale defects limits the coherence time even when the device

is operated at millikelvin temperatures and biased at the charge sweet spot [62].

24



The coherence time of charge qubit can be significantly improved by shunting

the JJ with a large capacitor, which increases the ratio of the Josephson energy EJ

and the charging energy EC , leading to a device called the transmon [63]. For a

transmon or a phase qubit EJ � EC , while for a typical charge qubit EJ ' EC [64].

Flux qubits are another type of superconducting qubit [65]. They are essen-

tially a type of RF-SQUID - a loop interrupted by one or more ultra-small JJs.

The flux qubit is coupled to an auxiliary coil which enables flux biasing of the loop.

With careful selection of the parameters and by flux biasing the loop at half a flux

quantum, the system has a double-well potential with two degenerate states (one

in each well) that are separated by a shallow barrier. Ideally, the tunneling energy

between these two states is not too small, but much smaller than the level spacing

of each well, allowing two well-isolated quantum levels.

1.3.2 Qubit decoherence and superconducting resonators

Superconducting microwave resonators have been playing increasingly impor-

tant roles in superconducting qubit circuits. An important early example was the

use of resonators for a CQED readout of a Cooper pair box [22]. This technique

is based on the CQED model discussed in section 1.2. In this dispersive readout

scheme, a high-quality superconducting resonator is coupled to the charge qubit

such that the qubit-resonator coupling rate is much larger than the relaxation rate

of the Cooper pair box. If the transition frequency of the charge qubit is detuned

from the resonator’s frequency, the coupling gives rise to a resonator frequency that
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Figure 1.6: From Ref. [66] (a) Measured loss tangent versus the RMS microwave
voltage across SiO2 and SiNx dielectric in a thin film capacitor. (b) Measured Rabi
oscillations in a phase qubit showing a faster decay when a lossier dielectric is used.

depends on the qubit state. Superconducting resonators can also be used to con-

trol qubit-qubit interactions, to couple two remote qubits, or to connect several

qubits [18].

Another application of superconducting resonators is as a tool to measure loss

in materials used in superconducting qubit circuitry (see Fig. 1.6). Qubit deco-

herence is due to unwanted coupling to the environment, which causes loss and
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dephasing. It is now well known that dielectrics are a major source of loss in super-

conducting qubits [66,67]. This includes dielectrics that are used deliberately in the

qubit (e.g. the substrate, insulating layers, JJ barriers) or present unintentionally

(e.g. native oxide on the superconductor or adsorbed surface layers).

Dielectrics contain nanoscale tunneling two-level systems (sometimes known

as two-level system defects) which couple to the electric fields of the qubit circuit,

thus absorbing energy and causing qubit decoherence. The precise identity of these

two-level systems (TLSs) is generally unknown, but significant progress has been

made in recent years to understand their ensemble-averaged and individual behav-

ior. I discuss the physics of nanoscale TLSs in detail in Chapter 2. In 2005, the

Martinis group showed that longer qubit coherence times can be obtained by using

higher quality dielectrics [66] (see Fig. 1.6). Another key result from this work

was the realization that one does not necessarily need to measure a qubit to study

dielectric loss - dielectric loss can be measured using a superconducting microwave

resonator instead. If a known fraction of the electric field energy (the filling factor)

at resonance penetrates into the dielectric under study, the resulting measurements

can be analyzed quantitatively to find dielectric loss. If the dielectric is used as

the insulator inside a parallel-plate capacitor, the filling factor is approximately 1,

meaning almost all of the electric energy density is confined within the dielectric. In

contrast to typical room-temperature circuit resonators where the capacitor is often

the least lossy element of the circuit, it is often the most dissipative element in a su-

perconducting resonator because resistive loss is negligible. Therefore, by measuring

the resonator’s internal quality factor (Qi), the dielectric loss can be determined.
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Superconducting microwave resonators also have applications in astronomical

radiation detection. Microwave kinetic inductance detectors (MKIDs) are super-

conducting resonators specially designed for detection of photons from far-infrared

frequencies up to X-ray frequencies [68]. When a photon hits the MKID, it can break

Cooper pairs and thus create excess quasi-particles. This changes the kinetic induc-

tance of the MKID which in turn causes a detectable shift in its resonance frequency.

Although I will not be examining MKIDs in this thesis, these detectors also are af-

fected by two-level systems and my results will be of interest to researchers from

that community as well as the superconducting quantum computing community.

1.4 Overview of thesis

The main aim of my thesis is to increase the understanding of nanoscale TLSs

and search for materials with reduced loss or long TLS coherence time. The thesis

can be divided into two main parts:

(a) Characterization and analysis of individual nanoscale TLSs in amorphous

solids, including the extraction of some of their distribution statistics and the

introduction of a new method to measure individual TLSs (based on CQED).

(b) Measurement and analysis of the averaged response of many TLSs in silicon

nitride (SiNx), aluminum oxide (Al2O3) and surfaces of titanium nitride (TiN).

All of this work involved measurements on superconducting resonators.

In Chapter 2, I describe the standard model of TLS loss together with some

background work on ensemble-averaged TLS measurements and individual TLS
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characterization. In Chapter 3, I describe the methods I used to analyze my loss

measurements and introduce a novel model for ensemble-averaged TLS analysis us-

ing superconducting microwave resonators. The experimental setup is described in

detail in Chapter 4, along with the equipment that I have used to fabricate my

devices. In Chapter 5, I discuss the CQED measurement, analysis and character-

ization of individual TLSs. A theoretical model for a strongly-coupled TLS in a

cavity is also introduced in this chapter. In Chapter 6, I introduce a device that

I designed for spectroscopy of individual TLSs in insulating amorphous solids. In

addition to the measurement and analysis of this device, I describe a simulation for

CQED spectroscopy of TLSs. Chapter 7 describes the low-temperature and room-

temperature characterization of titanium nitride films grown using different recipes.

I report measurements of the film quality factor, kinetic inductance, stress, critical

temperature Tc, film composition and stoichiometry, etc. In Chapter 8, I describe

my loss measurements on Al2O3 grown by atomic layer deposition (ALD) using tri-

layer superconducting microwave resonators. Finally, I summarize and conclude the

thesis in Chapter 9.

29



Chapter 2: Nanoscale two-level systems

2.1 Low-temperature properties of amorphous solids

In 1959, measurements of the specific heat in silica at temperatures T from 2.3

K to 19 K showed a significant difference compared to that of single crystals [69].

In the early 1970’s, Zeller and Pohl [70] reported measurements of the thermal con-

ductivity of several amorphous solids (SiO2, Se, silica- and germania-based glasses)

in the 50 mK to 1 K temperature range and noticed that it was significantly smaller

than that of crystalline solids. Other experiments showed that the heat capacity of

amorphous solids varied approximately linearly with T and the thermal conductivity

was proportional to T 2 [71]. This was surprising as it was believed that Debye’s the-

ory for specific heat [72] was applicable to both crystalline and amorphous materials

at low temperatures. Debye predicted that the specific heat and thermal conduc-

tivity should be proportional to T 3 at low temperatures. Finally, experiments also

showed that acoustic attenuation in amorphous silica at millikelvin temperatures

depended on the acoustic intensity and saturated at sufficiently high intensities [73].

Several models were proposed to explain these discrepancies. Among them,

a microscopic model proposed independently by Phillips [74] and Anderson et al.

[75], was the most successful. According to this model, Debye-like phonons are in-
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elastically scattered by defects that behave as tunneling two-level systems (TLSs).

These low-energy defect states are present in amorphous solids and strongly affect

their thermal, acoustic and dielectric properties at very low temperatures.

As mentioned in section 1.3.2, charged nanoscale tunneling TLSs will also

couple to electric fields in a superconducting qubit or microwave resonator circuit.

In 2005, Martinis et al. [66] reported that TLSs in the dielectrics were the dominant

loss mechanism in their superconducting phase qubits, and showed that by using

higher quality dielectrics and/or JJs with smaller areas (hence fewer TLSs in the

tunneling barrier) one can increase the coherence time of a qubit. More specifically,

it was shown that using low-loss SiNx rather than SiO2 as the crossover wiring

dielectric, significantly improved the coherence time. Finally, the group also showed

that when the same dielectrics were used to fabricate superconducting resonator

circuits, the former resulted in a higher resonator quality factor (Q).

2.2 The tunneling TLS model

In this section, I review the standard model of microwave dielectric loss due to

nanoscale TLS defects. Note that any anharmonic oscillator with sufficiently sharp

levels at sufficiently low temperatures and low powers acts effectively as a two-level

system as the levels are spaced unequally. The standard TLS model assumes that in

disordered solids, certain atoms or a group of atoms have available two (or possibly

more) accessible potential minima [76]. For simplicity, we assume a double-well

potential V for the TLS, as shown in Fig. 2.1. At millikelvin temperatures, we
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Figure 2.1: (a) Double well potential of a nanoscale TLS. V0 is the barrier height
separating the two wells, ∆ is the asymmetry energy, ∆0 is the tunneling energy
and d is the spatial separation of the potential minima. (b) A nanoscale TLS,
represented by the dipole moment p = qd/2, in an amorphous dielectric exposed to
an external AC electric field E.

assume that the particle is restricted to the ground states of the two wells (|L〉 and

|R〉), and only the two lowest energy levels are important. If there is no applied field,

the energy difference of these two states is set by the tunneling energy through the

barrier (∆0) and the asymmetry energy of the wells (∆). For simplicity, the wells

may be considered to be quasi-harmonic with potentials VL and VR and Hamiltonians

ĤL and ĤR. When a potential V (x) is applied in addition to the potentials VL and

VR, the Hamiltonian for the particle is

Ĥ0 = ĤL + ĤR + qV (x), (2.1)

where we have assumed the particle has charge q. This is equivalent to

Ĥ0 =

 EL + 〈L|V |L〉 〈L| Ĥ0 |R〉

〈R| Ĥ0 |L〉 ER + 〈R|V |R〉

 (2.2)
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in the {|L〉 , |R〉} basis. Ignoring the two terms 〈L|V |L〉 and 〈R|V |R〉 for now, I

choose the zero of energy as the mean of EL and ER, and define ∆0 = −2 〈L| Ĥ0 |R〉

and ∆ = EL − ER. The Hamiltonian then becomes

Ĥ0 =
1

2

 ∆ −∆0

−∆0 −∆

 . (2.3)

By diagonalizing the Hamiltonian, we obtain

Ĥ0 =
1

2

 E 0

0 −E

 , (2.4)

where E =
√

∆2 + ∆2
0. Clearly, the energy eigenvalues are ±E/2 and the energy

difference between the two energy eigenstates is E . The energy eigenstates are

|ψ1〉 = cos θ |L〉 − sin θ |R〉 ,

|ψ2〉 = sin θ |L〉+ cos θ |R〉 ,
(2.5)

where tan 2θ = ∆0/∆.

One can evaluate ∆0 for specific potentials. For two identical truncated 3-

dimensional harmonic wells with ∆ = 0 and barrier height V0 (see Fig. 2.1a)

∆0 = ~ω0

[
3−

√
8V0

π~ω0

]
e−2V0/~ω0 , (2.6)

where ~ω0 = 2EL = 2ER [76]. Assuming that the tunneling particle has a mass m

and V0 � ~ω0, which is valid for our purposes, Eq. 2.6 becomes

∆0 ' −4

(
2~2V 3

0

md2

)1/4

e−(2mV0/~2)
1/2

d/2, (2.7)

where d is the distance between the two minima. Needless to say, the actual micro-

scopic form of the potential for the TLSs in amorphous solids is not well understood.
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For simplicity, we assume an expression of the form

∆0 = ~Ωe−d(2mV0/~2)
1/2

, (2.8)

where Ω ∼ ω0 is a reasonable approximation for the case of amorphous solids.

The TLSs are believed to have a uniform spatial distribution in the bulk of

an amorphous dielectric. Also, in the standard model, the TLS distributions in the

asymmetry energy ∆ and the barrier height V0 are assumed to be uniform, and the

latter gives rise to a logarithmic distribution in the tunneling energy ∆0 as a result

of Eq. 2.8. Therefore, the energy and space distribution of TLSs (the standard TLS

distribution) can be written as

d2n = (P0/∆0) d∆d∆0, (2.9)

where P0 is a material-related constant denoting the TLS spectral and spatial den-

sity. For a typical amorphous dielectric, P0 ∼ 1044 J−1m−3 [74]. Since the total

number of TLSs in a sample is finite, the distribution must be restricted to a range

∆min < ∆ < ∆max and ∆0,min < ∆0 < ∆0,max.

2.3 TLS-field interaction

When a TLS couples to electric or strain fields, the Hamiltonian of Eq. 2.3 is

perturbed and the parameters ∆ and ∆0 are changed. I can write:

Ĥ = Ĥ0 + Ĥ′, (2.10)
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where

Ĥ′ = 1

2

 δ∆ −δ∆0

−δ∆0 −δ∆

 . (2.11)

For simplicity, I will assume that under the influence of external fields, the separation

d between the wells and the barrier hight V0 remain unchanged, i.e. |δ∆| � |δ∆0| '

0 [77]. For an external electric field E and a charged TLS with electric dipole

p = qd/2 (see Fig. 2.1b) and for sufficiently small perturbations, we have

δ∆ = 2p · E. (2.12a)

For a strain field
↔
e I assign the deformation potential

↔
D to the TLS, and I can write

δ∆ = 2
↔
D ·

↔
e . (2.12b)

If we transfer Ĥ′ into the basis of Ĥ0, we get [77]

Ĥ′ = 1

E

 ∆ −∆0

−∆0 −∆

 (p · E +Dẽ) , (2.13)

where we have ignored the tensorial character of
↔
D and

↔
e and used D and ẽ instead.

According to Eq. 2.13, the change in the level splitting is

δE =
2∆

E
p · E (2.14)

if it is caused by E, and

δE =
2∆

E
Dẽ (2.15)

if it is caused by
↔
e .
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For the rest of this section, I will describe the acoustic wave interaction first,

and then discuss the analogous electric field interaction, as it was worked out his-

torically. Needless to say, the focus of the rest of this thesis is on effects due to

external electric fields.

The dynamics of a TLS in an external electric field or in the presence of an

acoustic waves is equivalent to that of a spin-1
2

particle in a magnetic field. Consider

a static magnetic field B0 in the z direction and an oscillatory perturbing field B′.

The Hamiltonian of a spin-1
2

particle in a magnetic field B = B0 + B′ is given

by [71,78]

Ĥ = −~γ (B · S) = −~γ (B0 · S)− ~γ (B′ · S) = Ĥ0 + Ĥ ′, (2.16)

where γ is the gyromagnetic ratio and S is the spin.

In the analogous case of a TLS in the presence of an acoustic wave, let E be

the energy splitting of the two levels in the unperturbed case and D and M be the

deformation potentials and the coupling constants in the perturbation. We then

have

Ĥ0 =
1

2

 E 0

0 −E

 , Ĥ ′ =
e

2

 D 2M

2M −D

 (2.17)

Basically, D expresses the energy shift of the relaxing states in a strain field of unit

strength, and the elements 2M describe the TLS-phonon coupling strength for the

resonant interaction. Using the Pauli matrices

σx =

 0 1

1 0

 , σy =

 0 −i

i 0

 , σz =

 1 0

0 −1

 , (2.18)
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one can write the effective fields S, B0 and B′ as

S =
1

2
σσσ, −~γB0 = (0, 0, E) , −~γB′ = e (2M, 0, D) . (2.19)

This is equivalent to

−~γB0 = (0, 0, E) , −~γB′ =
(

2∆0

E
p · E, 0, 2∆

E
p · E

)
(2.20)

for a TLS exposed to an external electric field (see Eq. 2.13).

If we assume zero loss/noise and hence infinite TLS (spin) lifetime, the dy-

namics is described by the well known equation

d

dt
S (t) = γS×B. (2.21)

For a finite TLS (spin) lifetime, the situation is more complex. In 1946, Felix

Bloch developed a set of differential equations in the context of nuclear magnetic

resonance (NMR), which described the dynamics of a TLS (spin) ensemble including

relaxation [79]. These equations, known as the Bloch equations, are

d

dt
〈Sx(t)〉 = γ (〈Sy〉Bz − 〈Sz〉By)− T−1

2 〈Sx〉 , (2.22a)

d

dt
〈Sy(t)〉 = γ (〈Sz〉Bx − 〈Sx〉Bz)− T−1

2 〈Sy〉 , (2.22b)

d

dt
〈Sz(t)〉 = γ (〈Sx〉By − 〈Sy〉Bx)− T−1

1 〈Sz〉+ T−1
1 Slz [Bz(t)] , (2.22c)

where T1 and T2 are the longitudinal and transverse relaxation times respectively,

and

Slz [Bz(t)] =
1

2
tanh

(
~γBz(t)

2kBT

)
(2.23)

is the difference in the population of the two levels due to thermal excitations.
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The relaxation rate T−1
1 denotes the rate at which a non-equilibrium popula-

tion relaxes into equilibrium through absorption or emission of phonons or photons.

The emission/absorption rates are always such that they pull the system into equi-

librium. Obviously, in equilibrium, the emission rate equals the absorption rate.

For a tunneling TLS, it can be shown that phonon emission yields [71,80]

T−1
1 =

(
∆0

E

)2

T−1
1,min, (2.24)

where

T−1
1,min =

[
M2

L

v5
L

+
2M2

T

v5
T

]
E3

2πρ~4
coth

(
E

2kBT

)
. (2.25)

Here T1,min is the minimum T1 time for a TLS with energy E , ML and MT are

the longitudinal and transverse phonon deformation potentials, vL and vT are the

longitudinal and transverse sound velocity, and ρ is the mass density of the material.

T2 is the coherence time and the quantity 2T−1
2 in the Bloch equations is the

intrinsic spectral linewidth of an ensemble of homogeneous TLSs that take part

in the resonant absorption process at a given frequency. Several phenomena can

limit the coherence time. The most important ones are the relaxation of each TLS

and any interaction between TLSs, which causes the broadening of the spectral

linewidth. In general, one can divide the sources of this homogeneous broadening

into two categories: some arise from longitudinal relaxation processes (set by T1),

and some arise from phenomena that affect the phase of the precessing TLSs (set

by the dephasing time Tφ). T2 is related to T1 and Tφ by [76]

T−1
2 =

1

2
T−1

1 + T−1
φ . (2.26)

38



Using the Bloch equations and the spin-TLS analogy, it can be shown that the

TLS-induced acoustic attenuation length lres in an amorphous solid at frequency ω

and acoustic intensity J obeys [71]

l−1
res = l−1

0

tanh(~ω/2kBT )√
1 + J/Jc

, (2.27)

where

l−1
0 = πn0M

2ω/ρv3 (2.28)

is the low-intensity limit of the attenuation length at zero temperature in terms of

the constant density of states (n0) of TLS energy splitting, and

Jc = ~2ρv3/2M2T1T2 (2.29)

is the critical intensity.

In analogy to the acoustic attenuation, the loss tangent of an amorphous dielec-

tric, caused by the standard distribution of randomly oriented TLS dipoles coupled

to an AC electric field with frequency ω, is found to be [81]

tan δ = tan δ0
tanh(~ω/2kBT )√

1 + ω̄2
RT1,minT2

, (2.30)

where

tan δ0 =
πP0p

2

3ε
(2.31)

is the low-power limit of the loss tangent, and ω̄R is the characteristic Rabi frequency

of the TLS ensemble:

ω̄R =
2pE√

3~
. (2.32)
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Here E is the electric field amplitude. ω̄R can be viewed as an effective Rabi fre-

quency for a distribution of TLSs in energy (as described by Eq. 2.9) and space

(uniformly). It is derived from the Rabi frequency of an individual TLS, i.e.

ωR =
∆0

E
2p · E

~
. (2.33)

One can also define a characteristic electric field amplitude Ec (also called the critical

field) as

Ec =

√
3~

2p
√

T1,minT2

. (2.34)

Equation 2.30 can now be written in terms of the electric field amplitude as

tan δ = tan δ0
tanh(~ω/2kBT )√

1 + (E/Ec)
2
. (2.35)

The physical interpretation of the Eq. 2.35 is straight forward. At zero temper-

ature and low drive powers (low field amplitudes, E � Ec) the TLSs are generally in

the ground state and actively participate in photon absorption/emission processes,

hence causing maximum dielectric loss (tan δ = tan δ0). For increasing drive power,

the TLSs with E ' ~ω interact most strongly with the field and become more likely

to be in the excited state. This reduces the number of TLSs in the ground state

available for additional photon absorption, and the loss tangent decreases. In the

high-power limit, E � Ec, loss tangent decreases as E−1 due to saturation of the

TLSs. I use Eq. 2.35 throughout this thesis to characterize ensembles of weakly-

coupled TLSs in different materials and structures.
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2.4 Measurement of TLSs: ensemble-averaged and individual

While significant theoretical and experimental effort has been made to study

nanoscale TLSs, their precise microscopic nature in a given material remains gener-

ally unknown. Studying TLS ensembles has been performed using superconducting

resonators in many previous studies [66, 82, 83]. The dependence of loss tangent on

the microwave drive power and temperature has been measured for several amor-

phous solids, and in some cases, have lead to clues about the nature of the TLSs.

For example, in 1976, it was shown that the loss tangent of amorphous silica is

correlated with the density of OH− ions [84], whereas this density had nearly no

influence in acoustic measurements. In a more recent experiment, Paik and Osborn

showed that the loss tangent in different types of SiNx, deposited using PECVD,

was correlated with the nitrogen flow during film deposition [82]. In the same study,

FT-IR measurements of the SiNx films revealed that lossier films had a higher den-

sity of N-H bonds, suggesting that this impurity plays an important role in the

TLS-induced dielectric loss.

Although ensemble measurements can provide useful data about TLSs, they

lack the ability to provide accurate information on individual TLS properties. These

properties include the individual TLS coherence times, asymmetry energy, dipole

size, dipole orientation, tunneling energy, etc. as well as the distribution of these

properties. As mentioned in Chapter 1, TLSs can couple to a superconducting qubit

and limit its coherence time. Using superconducting qubits, one can reach the strong

TLS-qubit coupling regime with the TLSs in the tunneling barrier and measure them
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Figure 2.2: Figures from Refs. [66, 67] (a) Measured probability of phase qubit
state “1” versus microwave excitation frequency ω/2π and bias current I for a fixed
microwave power. (b) Spectroscopy of the 0 → 1 qubit transition as a function
of junction bias for two phase qubits with junction areas 13 µm2 and 70 µm2. S
represents the splitting size. Larger number of TLSs were found in the JJ with
larger area.
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individually. It was shown in 2004 by Martinis group at NIST that level splittings

can occur as a result of strong TLS-qubit interaction (see Fig. 2.2a), causing loss

in the qubit [67]. Each splitting is caused by the quantum entanglement of the

qubit and a TLS within its JJ barrier, resulting in a so-called “avoided crossing”.

In other individual TLS measurements, the qubit coherence times were improved by

using junctions of smaller areas (smaller tunneling barrier volumes) to reduce TLS

spectral density [66] (see Figs. 1.6 and 2.2b). More recently, measurements of the

lifetimes of individual TLSs in an alumina tunnel barrier have revealed that these

TLSs can have substantially different coherence times [85]. Also, a JJ has been used

to make a nearly-harmonic resonator, which can operate as a defect spectrometer

to study the TLSs within its tunneling barrier [86].

As mentioned in Chapter 1, any quantum system with two isolated states can

potentially be operated as a qubit [87]. This suggests the possibility of using the

nanoscale TLSs as qubits or quantum memory bits. Obviously, the inherent ran-

domness of the TLS distribution in energy and space and the difficulties in achieving

strong coupling to the TLSs are serious challenges. In an interesting example of this

approach, Neeley et al. used a TLS within the tunnel barrier of a Josephson-phase

qubit as a quantum memory bit [88]. In their study, an arbitrary quantum state

was transferred to the TLS, stored there for some time, and retrieved.

I should note that the above experiments on individual TLSs, and other similar

experiments, have a few common limitations, i.e.

(a) they monitor individual TLSs only through coupling to a qubit or JJ,
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(b) the volume of the dielectric under study is extremely small (� 1µm3), as only

TLSs in tunneling barriers are individually measured,

(c) all the individually measured TLSs were in alumina, and no other material

was investigated as a result of limitations in material choice for JJ barrier

fabrication.

In Chapters 5 and 6 I show how these limitations can be removed, thereby allowing

the measurement of individual TLSs to be achieved in different materials without

using JJs.
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Chapter 3: Resonance lineshape analysis

Thin-film superconducting microwave resonators have been widely used in su-

perconducting qubit circuits, microwave kinetic inductance detectors and in studies

of TLS-induced loss in dielectrics. In my thesis research, I used superconducting

resonators as a tool for looking at the behavior of both ensembles of TLSs and

individual TLSs. In this Chapter, I describe the analysis methods I used for TLS

ensemble measurements. The analysis of the devices that I used for individual TLS

measurements (micro-V devices) is covered in Chapter 5.

In all my experiments, the resonators were coupled to a coplanar waveguide

(CPW) both capacitively and inductively, in general. The CPW’s transmission S-

parameter (S21) was measured and fit to theoretical expressions described in this

Chapter and Chapter 5.

3.1 Symmetric resonance lineshape

The derivation I give below for S21 = Vout/Vin for superconducting coplanar

resonators follows on analysis that was originally performed by Dr. K. Osborn and

described by Dr. M. Khalil [89]. I review this result and provide a slightly different

derivation.
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Fig. 3.1a shows a schematic of a linear superconducting resonator coupled

to a CPW. The resonator is composed of a lossless (superconducting) inductor L,

and a lossy capacitor C̃ which is considered to be complex to account for the TLS-

induced loss. All other elements in the circuit are assumed to be ideal. Assuming

a negligible coupling impedance (
√
L1/Cc � Z0 = 50 Ω), an equivalent circuit can

be constructed, as shown in Fig. 3.1b. For the equivalent circuit I can write

2Vin − Vout = I1(Z0 + iωL1)− iωMIL, (3.1a)

VC̃ − Vout =
I2

iωCc
, (3.1b)

iωMI1 − iωLIL = (I2 + IL)
1

iωC̃
, (3.1c)

Vout = Z0(I1 + I2). (3.1d)

Using the approximations ωRe(C̃)� 1/Z0, ωL1 � Z0 and ωM2/L� Z0, we

get [89]

S21 =
Vout
Vin

= 1 +
VC̃

2Vin

(
M

L
+ iωCcZ0

)
. (3.2)

Also, from Eqs. 3.1 we can obtain a Norton equivalent current described by

IN = VC̃GN , (3.3)

where

IN = −Vin
Z0

(
M

L
− iωCcZ0

iωCcZ0 + 1

)
, (3.4a)

and

GN =
1

iωL
+ iωC̃ +GT , (3.4b)
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Figure 3.1: From Ref. [90] (a) Superconducting LC resonator coupled to a microwave
transmission line. Vin and Vout are the voltage amplitude of the input and output
waves, respectively. The resonator has inductance L and complex capacitance C̃,
and is coupled to the CPW center by the coupling capacitor Cc and mutual induc-
tance M . Ideally, the input and output impedance of the CPW is Z0 = 50 Ω. (b)
An equivalent circuit. (c) The Norton equivalent circuit.
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with

GT = Z−1
T ≡

iωCc
iωCcZ0 + 1

+
1

2Z0

(
M

L
− iωCcZ0

iωCcZ0 + 1

)
. (3.4c)

I note that this definition of GN is different from that of Refs. [89] and [90]. The

Norton equivalent circuit is shown in Fig. 3.1c.

Assuming relatively low loss, Im(C̃) � Re(C̃), the lossy capacitance can be

split into an ideal capacitance C ≡ Re(C̃) and a parallel resistance R ≡ 1/ωIm(C̃).

Also, we define

R−1
T ≡ Re(GT ), CT ≡

1

ω
Im(GT ), (3.5a)

R−1
eff ≡ R−1 +R−1

T , (3.5b)

and the total quality factor

Q ≡ Reffω0(C + CT ), (3.5c)

and

ω0 ≡
1√

L(C + CT )
. (3.5d)

Expanding Eq. 3.4c in terms of M/L and ωCcZ0, which are much smaller than

unity, gives

CT = Cc, (3.6a)

and

R−1
T '

1

2Z0

[(
M

L

)2

+ ω2C2
cZ

2
0

]
. (3.6b)

Near resonance (ω ' ω0), Eq. 3.2 can be written as

S21 = 1− Reff/RT

1 + 2iQ(ω − ω0)/ω0

. (3.7)
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The external quality factor Qe is inversely related to the resonator’s photon

decay rate due to coupling to the CPW, and can be written as

Qe = ω0RT (C + CT ). (3.8)

Equation 3.7 can be written as [89]

S21 = 1− Q/Qe

1 + 2iQ(ω − ω0)/ω0

. (3.9)

This equation describes a Lorentzian resonance determined by the three parameters

ω0, Q and Qe. Fitting Eq. 3.9 to a measured S21(ω) lets us extract these parameters.

The total quality factor Q depends on the external quality factor Qe and the internal

quality factor Qi. From Eqs. 3.5b, 3.5c and 3.8 we can write

1

Q
=

1

Qi

+
1

Qe

, (3.10)

where Qi = Rω0C. After extracting Q and Qe from the Lorentzian fit, Qi can be

found from Eq. 3.10.

While Qe is determined by the energy loss due to coupling to the transmission

line, Qi is due to all other loss mechanisms, including resistive loss, radiative loss,

dielectric loss, etc. For superconducting resonators operating at millikelvin tempera-

tures and relatively low powers with well-filtered leads, the number of quasiparticles

and hence the resistive loss is expected to be negligible. Also, resonators can be

designed and packaged so that there is negligible radiative loss at the frequencies of

interest. Typically, the interaction of the resonator with TLSs is the dominant loss

mechanism at low temperatures and powers. In this case, Qi is inversely related to
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the dielectric loss tangent by

tan δ =
1

FQi

, (3.11)

where F is the filling factor - the fraction of the total electric energy stored within

the lossy dielectric under study. For a resonator with a parallel plate capacitor we

have F ' 1, as, ideally, all the electric field energy is confined within the dielectric

between the plates. However, for coplanar resonators, F < 1 and one typically

would need to obtain F from calculation or simulation.

3.2 Asymmetric resonance lineshape

Equation 3.9 was derived assuming that the CPW was impedance-matched to

the input and output leads. However, asymmetric resonance lineshapes can occur

from impedance mismatches, e.g. between the cables and the PCB of the sam-

ple box or the PCB and the on-chip CPW. One can reduce this asymmetry to a

great extent by optimizing the experimental setup and the resonator design so that

the impedances are matched. However, as I will describe in Chapter 7, using su-

perconducting materials with an unknown kinetic inductance can cause significant

impedance mismatches. In general, to obtain a good fit to a measured S21(ω) and

extract accurate values for Qi and Qe, one needs to account for impedance mismatch.

The next sections describe two methods for handling this situation.
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3.2.1 Diameter Correction Method

I used the Diameter Correction Method (DCM) in some of the analysis in this

thesis. A full description of this method can be found in Ref. [90], and I briefly

describe it here. Assuming generally-mismatched input- and output impedances for

the transmission line (Zin and Zout), and non-negligible coupling impedance, Khalil

et al. showed that

S21 = (1 + ε̂)

[
1 +

VC̃
2Vin

(
M

L
+ iωCcZ

′
in

)]
, (3.12)

where

1 + ε̂ ≡ 2

1 +
(
iωCc + 1

Zout

)
+ Z ′in

(3.13)

and

Z ′in ≡ Zin + iωL1 − iω
M2

L
, (3.14)

assuming |ε̂| � 1. Subsequently, the Norton equivalent current becomes (see Fig.

3.1c)

IN = −2Vin

[
M
L
− iωCcZout

iωCcZout+1

Z ′out + Zin + iω
(
L1 − M2

L

)] , (3.15)

where

Z ′out ≡
Zout

iωCcZout + 1
, (3.16)

and we have

GT =
iωCc

iωCcZout + 1
+

(
M
L
− iωCcZout

iωCcZout+1

)2

Z ′out + Zin + iω
(
L1 − M2

L

) . (3.17)

While the definitions in Eqs. 3.5a,3.5b and 3.5c still hold, we introduce

G′ ≡ − IN
2Vin

(
M

L
+ iωCcZ

′
in

)
. (3.18)
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Equation 3.12 can now be rewritten as

S21 = (1 + ε̂)

[
1− G′Reff

1 + 2iQω−ω0
ω0

]
. (3.19)

Expanding in the small parameters M/L and ωCcZout to second-order gives G′ =

R−1
T , and hence higher orders are required to see effects from impedance mismatch.

Taking GD ≡ G′ − R−1
T , gives a purely imaginary term “creating” the asymmetry,

and Eq. 3.19 becomes

S21 = (1 + ε̂)

[
1−

(
GD +R−1

T

)
Reff

1 + 2iQω−ω0
ω0

]
. (3.20)

By expanding to third order in GD we find [90]

S21 = 1− QQ̂−1
e

1 + 2iQω−ω0
ω0

, (3.21)

where

Q̂e ≡
ω0 (C + CT )

R−1
T +GD

, (3.22)

and

Q−1
i = Q−1 −Q−1

e = Q−1 − Re(Q̂−1
e ), (3.23)

and we have used Qe ≡ Re(Q̂−1
e ) and the approximation CT � C. The prefactor

1 + ε̂ has been dropped in Eq. 3.21 as it only adds a constant phase and a constant

multiplicative factor to the amplitude of S21.

I should note that, for the fitting purposes, Eq. 3.21 requires one extra fitting

parameter compared to the symmetric transmission case (Eq. 3.9), as Q̂e is complex.

This parameter can be defined as phase φ or frequency δω, depending on the format

of Eq. 3.21, i.e.

S21 = 1− Q|Q̂−1
e |eiφ

1 + 2iQ(ω − ω0)/ω0

, (3.24)
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or

S21 = 1− Q

Qe

1 + 2iQ(δω/ω0)

1 + 2iQ(ω − ω0)/ω0

. (3.25)

These different representations are discussed in more detail in Refs. [89, 90].

3.2.2 Dual-Cavity Method

In this method, we consider two cavities coupled to each other. One of the

cavities (cavity c) represents the resonator, and the other (cavity d) models the

mismatched transmission line. The insertion of cavity d into the model provides

a degree of freedom to create asymmetric transmissions, and there is a one-to-one

mapping of the fitting parameters to those introduced in section 3.2.1. This model

follows from the technique of Collett and Gardiner [91].

Figure 3.2 depicts the model in a simple block diagram. Cavity d is a two-

sided cavity with photon decay rates γ1 and γ2, representing coupling to semi-infinite

input (1) and output (2) transmission lines allowing for transmission measurements.

Cavity d is assumed to be a low-Q cavity that represents one mode. Physically, this

mode would correspond to a standing wave on the chip and this has been found to

produce the same transmission lineshape as described in the previous section [92].

Even though a full description of the standing wave is generally not available in

practice, it is reasonable to assume that cavity d has a low-Q mode that represents

a standing wave on chip and can be used to match boundary conditions. With the

assumption that cavity d has one low-Q mode, I next show that the transmission

lineshape has the same form as that found in Section 3.2.1.
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Figure 3.2: The Dual-Cavity Model.

I proceed by assuming a low-Q mode in cavity d that is coupled to the trans-

mission line halves through γ1 and γ2. Cavities c and d are coupled to each other

with rate Ω. Ignoring γ1, γ2, and γc, the Hamiltonian for this system is

Hsys = ~ωccc† + ~ωddd† + ~Ω
(
cd† + dc†

)
, (3.26)

where c and d are the photon annihilation operators of the corresponding cavities.

Similar to Eq. 1.29,

[
d, d†

]
=
[
c, c†

]
= 1,[

c, d†d
]

=
[
d, c†c

]
= 0,

[c, d] =
[
c, d†

]
=
[
d, c†

]
= 0.

(3.27)

The Heisenberg equations give the solution for lossless coupled light modes as [93]

d

dt
c = −iωc = − i

~
[c,Hsys] , (3.28a)

d

dt
d = −iωd = − i

~
[d,Hsys] . (3.28b)
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Including loss, one can obtain the quantum-mechanical Langevin equations

[94] for the one-sided one-mode cavity c as

d

dt
c = −iωc = − i

~
[c,Hsys]−

γc
2
c+
√
γccin, (3.29)

and

d

dt
c = −iωc = − i

~
[c,Hsys] +

γc
2
c−√γccout, (3.30)

where γc, cin and cout are the decay rate, the input field and the output field of cavity

c, respectively, and
√
γc in the last term appears due to a quantum fluctuation-

dissipation theorem [91,95]. Similarly, considering d1,in, d1,out, d2,in and d2,out as the

input and output fields of the two-sided cavity d, we get

d

dt
d = −iωd = − i

~
[d,Hsys]−

γ1

2
d− γ2

2
d+
√
γ1d1,in +

√
γ2d2,in, (3.31)

and

d

dt
d = −iωd = − i

~
[d,Hsys] +

γ1

2
d+

γ2

2
d−√γ1d1,out −

√
γ2d2,out. (3.32)

The boundary conditions which relate the input and output fields to photon anni-

hilation in each cavity, can be written as

cin + cout =
√
γcc, (3.33)

d1,in + d1,out =
√
γ1d, (3.34)

and

d2,in + d2,out =
√
γ2d. (3.35)
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We assume only one input field (d1,in) and set d2,in = cin = 0. By using the above

boundary conditions, we obtain

c =
−2iΩd

γc − 2i (ω − ωc)
, (3.36)

c =
2γcc+ 2iΩd

γc + 2i (ω − ωc)
, (3.37)

d =
2
√
γ1d1,in − 2iΩc

γ1 + γ2 − 2i (ω − ωd)
, (3.38)

and thus

d =
2γ1d− 2

√
γ1d1,in + 2

√
γ2d2,out + 2iΩc

γ1 + γ2 + 2i (ω − ωd)
. (3.39)

Solving for d2,out we get

d2,out =
2
√
γ1γ2d1,in (γc − 2i (ω − ωc))

(γc − 2i (ω − ωc)) (γ1 + γ2 − 2i (ω − ωd)) + 4Ω2
. (3.40)

The classical S-parameter (transmission) for the wave amplitudes is then defined as

the ratio of the output field to the input field, i.e.

S21 =
〈d2,out〉
〈d1,in〉

, (3.41)

and thus

S21 =

√
γ1γ2

γ1+γ2
2

+ i (ω − ωd) + Ω2

γc/2+i(ω−ωc)

. (3.42)

I note that in going from Eq. 3.40 to Eq. 3.42, I have conjugated the final expression

to better match the experimental data, and note that the sign of ω can be chosen

according to the convention used.

We can now see that there is a one-to-one mapping between the fit parameters

in Eqs. 3.42 and 3.21 if certain assumptions are made. This correspondence was

first pointed out to me by Dr. Osborn. As mentioned before, Eq. 3.21 has four
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fit parameters. On the other hand, Eq. 3.42 has six. However, without loss of

generality, I assume

γ1 = γ2 =
γd
2
, (3.43)

which eliminates one of the extra fit parameters. Also, analysis of Eq. 3.42 near ωc

shows that we can take Qd ≡ ωd/γd to be a constant as long as it is much smaller

than Qc ≡ ωc/γc. In order to check this, I fit a transmission curve with Qd ∈

{20, 10, 1, 0.1} and found that the extracted parameters are indeed independent of

Qd to better than 0.1%. These assumptions reduce the number of fitting parameters

in Eq. 3.42 to four.

In order to find the parameters ω0, Qi and Qe in terms of the Dual-Cavity

parameters, I can write Eq. 3.42 in the same form as Eq. 3.21. In this procedure,

I found Eqs. 23 and 26 of Ref. [92] very helpful. The relationships between the

parameters are

ω0 = ωc, (3.44)

Qi = Qc =
ωc
γc
, (3.45)

Qe =
γ1 + γ2

4Ω2
ωc =

γdωc
4Ω2

. (3.46)

I skip the relations for the fourth parameter which can be defined differently de-

pending on the S21 format used.

Equation 3.42 can be used to analyze the response of a resonator that is

coupled to TLSs in an ensemble-averaged manner. I wrote a fully-automated Matlab

code that used this equation to fit my experimental data and extract the resonance

parameters. In the code, a Least-Squares Monte Carlo (LSM) method is used to
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Figure 3.3: Sample fit (red) to a resonance lineshape using the combination of the
Dual-Cavity Model and the LSM method. The data was taken on Res1 of TiN-RF-
54 (see Chapter 7). The power at which this data (blue) was taken corresponds to
an average photon number of n̄ ' 9 in the cavity. The fit yielded ω0 = 4.596581985
GHz, Qi = (tan δ)−1 = 3.48×105 and Qe = 1.67×105. (a) |S21| versus frequency f ,
(b) Im(S21) versus Re(S21), (c) Re(S21) versus frequency f and (d) Im(S21) versus
frequency f .
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find the optimum fits to Re(S21) and Im(S21) separately but simultaneously (see Fig.

3.3). I usually start by assuming Qd = 1 and input initial guesses for γd, ωc, γc, Ω

and Θ. The Θ parameter accounts for a constant rotation angle of the experimental

S21 with respect to the theoretical S21, and appears as an extra multiplicative factor

eiΘ applied to the right hand side of Eq. 3.42. Next, a Monte Carlo guess in the form

x = x0e
ξζ is made for each fit parameter, where x0 is the previous (initial) guess for

the fit parameter x, ζ is a randomly generated number between -1 and 1, and ξ is

a parameter determining the guessing range. Usually, I take ξ = 0.1 for γd, γc, Ω

and Θ and ξ = 10−5 for ωc. After this randomly generated guess, the theoretical

S21 is calculated and subtracted from the experimental data, and then squared to

obtain the error. If this error is smaller than the previous (initial) error, the new

parameter values replace the previous (initial) ones. This procedure is repeated 104

times, and a reasonably good preliminary fit is obtained, from which the bandwidth

of the resonance is calculated as B = ωc/Q. Next, a span of 2B is considered around

ωc and the rest of the data is ignored for the fitting to increase parameter extraction

accuracy. Finally, the LSM method is used once again, this time with 105 (or more)

steps, to obtain the optimum fit.

Figure 3.3 shows an example of such a fit to an asymmetric resonance lineshape

I measured on a TiN resonator (see Chapter 7). In this example, the number of

iterations was 105.

In this thesis, I have mostly used the LSM fitting method with the Dual-

Cavity Model to analyze my data. In my experience, this combination had some

advantages over using Matlab’s Lorentzian fitting function combined with the DCM
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method. Although the two models are equivalent, when the values of Qi and Qe are

very different (Qi � Qe or Qi � Qe), the Dual-Cavity Model combined with the

LSM method was able to extract the fitting parameters more reliably and accurately

(see Fig. 8.3). Furthermore, the Dual-Cavity Model offers the ability to “weight”

arbitrary parts of the resonance lineshape. This is particularly useful if an ultra-

high-accuracy fit is needed to the bottom of the dip. This can be achieved by

assigning a larger weight to this fitting area and/or increasing the number of Monte

Carlo steps.
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Chapter 4: Experimental setup and fabrication equipment

In this Chapter, I describe the tools and equipment that I used to fabricate and

measure my devices. All the key measurements were performed at cryogenic tem-

peratures in a dilution refrigerator, and I begin with a description of these systems.

This is followed by a description of the device fabrication equipment. The device

fabrication required mastering several tools, including those used for DC sputtering,

plasma enhanced chemical vapor deposition (PECVD), reactive ion etching (RIE),

inductively coupled plasma etching (ICP) and photolithography (stepper).

4.1 Dilution refrigerator setup

In a dilution refrigerator (DR), cryogenic temperatures are reached by contin-

uously circulating a mixture of 3He and 4He isotopes [96]. At low temperatures, a

phase separation occurs to form a phase that is rich in 3He which floats on a phase

that is dilute in 3He and rich in 4He. These two phases form at a temperature below

approximately 0.6 K, and energy (latent heat) is required for 3He to go from the

3He-rich phase to the 4He-rich phase. By pumping on the 4He-rich phase (usually

with a turbo or roots pump) at about 0.7 K in the “still” mostly 3He is removed

and the concentration of 3He in the 4He-rich phase is reduced. The required 3He for
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reaching equilibrium comes from the 3He-rich phase, “evaporating” into the 4He-

rich phase in the mixing chamber, and this requires energy to do so. This energy

is absorbed as heat from the mixing chamber, cooling down whatever is thermally

anchored to it, including the device under test (DUT).

Most of the measurements I describe in this thesis were performed in a CF-

650 cryogen-free dilution refrigerator, manufactured by Leiden Cryogenics BV. I

helped with the installation, microwave wiring and maintenance of this refrigerator.

The rest of my measurements were performed in an Oxford Instrument Kelvinox

model 400 dilution refrigerator. I will only describe the Leiden CF-650 setup here,

since I used this refrigerator in most of my measurements and details of the Oxford

refrigerator can be found in Ref. [89].

The Leiden CF-650 has 5 cold plates with the nominal temperatures of 50 K,

3 K, 0.7 K, 50 mK and 10 mK (see Fig. 4.1a). The cooling power is 650 µW at 120

mK. The DR has a Joule-Thomson heat exchanger to condense the mix, followed by

a continuous sintered heat exchanger. It has two circuits for 3He condensation (one

is auxiliary). A two-stage Cryomech CP-1000 pulse-tube refrigerator is anchored to

the 50 K and 3 K plates and keeps them at their nominal temperatures in steady

operation. The DR can be controlled remotely using software provided by the

manufacturer.

A schematic of the microwave circuit in the refrigerator is shown in Fig. 4.1b.

I used an Agilent N3383A PNA Series network analyzer. In the input half of the

circuit, from the network analyzer to the DUT input, we have installed attenua-

tors (Midwest Microwave model ATT-0298-10-HEX-02) on each plate to reduce mi-
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Figure 4.1: (a) Photograph of the cold plates on the Leiden CF-650 dilution refrig-
erator (courtesy of Leiden Cryogenics BV). (b) Schematic of microwave wiring in
the refrigerator. Vin and Vout are the DUT input and output voltages, respectively.
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crowave power coming from higher temperatures. These attenuators are thermally

anchored to the plates using special copper anchors to allow the center conductor of

the coaxial cable to cool. In the output half of the circuit, from the DUT output to

the network analyzer, we have installed isolators (terminated circulators) to block

microwave power and reflected waves from higher temperature stages. There is also

a HEMT amplifier (LNA) model CIT-4254-077 on the 3 K plate. This LNA was

purchased from the Weinreb group in Caltech, and has very low noise in the range

4-8 GHz. On the output at room temperature there is a low-phase-noise Miteq am-

plifier (model: AMF-5F-04000800-07-10P-LPN) with maximum noise figure of 0.7

dB and minimum gain of 50 dB in the frequency span of 4-8 GHz. Solenoid mi-

crowave switches (Radiall R573423600) are installed at the input and output of the

devices under test, allowing us to connect up to six different cold samples without

needing to warm up the DR. The group has continuously upgraded the DR wiring

since purchase, and the current setup uses UT-85 copper-nickel coaxial cables, both

for the input- and output lines.

4.2 Calibration of the input circuit

For many of my experiments, it was essential to know the total microwave

attenuation on the input circuit (from the network analyzer to the DUT input). In

other words, I needed to know the power Pin at the DUT as a function of the source

frequency f and source power P1. For example Pin was needed for TLS analysis

while P1 was the controllable variable. This calibration was critical because the
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throughput for nonlinear systems depends on both the source frequency and the

source power.

The calibration was performed by measuring the S21 throughput from the

network analyzer to the device input in the frequency span of interest (f = 4 − 7

GHz) for three different source powers (P1 = −20,−10, 0 dBm) with the DR at room

temperature so that the connection to the DUT was accessible. For the calibrations,

the dependence of Pin on f and was assumed to be log-linear (to first order), and Pin

for an arbitrary f and P1 was interpolated/extrapolated. Obviously, the calibration

had to be redone each time the input circuit was modified.

Figure 4.2 shows the input calibration measurement of Pin versus f in the 4-7

GHz range for three applied powers P1 as of May 2014. Each measurement of Pin

versus f in Fig. 4.2a was fit to a log-linear expression to obtain the slopes αi and the

offsets βi, Pin = αif + βi, where all powers are expressed in the log10 form (dBm).

While the average of αis (which I call ᾱ) determines the frequency dependence of

Pin, the βis are used to find the dependence of the power at the DUT (Pin) on the

source power (P1) as shown in Fig. 4.2b. The entire data set for different powers

was then refit to the expression

Pin = ᾱf + α′P1 + P ′, (4.1)

and the slope α′ and the offset P ′ were extracted. For the data shown in Fig. 4.2,

I found ᾱ = −1.8944 dBm/GHz, α′ = 1.0016 and P ′ = −68.9662 dBm. Ideally, we

expect α′ = 1, and there appears to be a small deviation that could be due to a

small miscalibration of the network analyzer or nonlinearity of the circuit compo-
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Figure 4.2: (a) Points show measured net throughput Pin (dBm) from the source to
the DUT versus frequency f for different source powers P1. Black lines are log-linear
fits to data. The net throughput is obtained by subtracting the total throughput
from the throughput of the coaxial cable that connects the device input channel
to the network analyzer in the calibration setup. The data in cyan, green and red
correspond to the measured net throughput at source powers of −20, −10 and 0
dBm, respectively. The frequency f in the calibration expressions is in GHz. (b)
Power at DUT (Pin) and the linear fit versus source power (P1).
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nents. Although the attenuation from the input circuitry may depend weakly on

temperature (most of the coax is stainless steel), I will assume that this dependence

can be ignored and use Eq. 4.1 at cryogenic temperatures.

For the analysis of my TLS data, I needed to determine the DUT input voltage

Vin and the electric field E in the dielectric under study for a given level of power at

the source P1 or the power at the DUT Pin. Since the thin-film microwave resonators

I measured where all designed to have an input impedance of Z0 = 50 Ω, we have

Vin =
√
Z0Pin. (4.2)

Obviously, in order to use this, one must convert Pin from dBm to Watts.

To obtain the AC electric field E to which the TLSs are exposed, one needs

to find the voltage across the capacitor VC̃ (as introduced in Chapter 3) in terms of

Vin. This can be done by referring to the Norton equivalent circuit of section 3.1.

From Eqs. 3.3 and 3.4b and the definitions in that section, I can write

VC̃ =
IN

1

iωL
+ iωC̃ +GT

=
IN

1

iωL
+

1

R
+

1

RT

+ iω (C + CT )
. (4.3)

According to Eqs. 3.5d and 3.5b, at resonance this becomes

VC̃ |ω=ω0
= ReffIN . (4.4)

Substituting this into Eq. 3.4a yields

VC̃ |ω=ω0
= −VinReff

Z0

(
M

L
− iωCcZ0

iωCcZ0 + 1

)
. (4.5)

The RMS voltage across C̃ is thus

VC̃,RMS

∣∣
ω=ω0

=
Reff

Z0

∣∣∣∣ML − iωCcZ0

iωCcZ0 + 1

∣∣∣∣Vin,RMS. (4.6)
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By using [89]

RT =
ω2M2

2Z0

, (4.7)

and assuming Cc � C, we obtain

VC̃,RMS

∣∣
ω=ω0

= Reff

√
2

Z0RT

Vin,RMS. (4.8)

Equation 4.8 can be rewritten in terms of Q and Qe as

VC̃,RMS

∣∣
ω=ω0

=

√
2

Z0ω0CQe

QVin,RMS. (4.9)

From Eqs. 4.1, 4.2 and 4.9, I can find the RMS voltage across the capacitor VC̃,RMS

in terms of the source power P1. If C̃ is a parallel-plate capacitor, the RMS electric

field applied to the TLSs is simply ERMS = VC̃,RMS/d0, where d0 is the dielectric

thickness.

4.3 Fabrication apparatus

In this section, I briefly describe the tools that I used to fabricate devices.

The processes I used for each experiment, including deposition, patterning, etching

and characterization of metals and dielectrics, are described separately in the next

chapters.

Sputtering

Figure 4.3a shows the Kurt J. Lesker model CMS-18 DC-sputtering system

that I used for depositing aluminum and titanium nitride. It has a load lock with
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oxidization capability and the 18” diameter by 15” high processing chamber accom-

modates three 3” diameter DC-sputtering guns. One of the guns is loaded with an

aluminum target, and another with a titanium target (for reactive sputtering of tita-

nium nitride). The third gun is currently unused. The guns are connected through

a switch to a 1.5 kW/500 V DC power supply. The processing chamber is equipped

with a cryopump which can pump the chamber to approximately 1 × 10−8 Torr.

Three high-purity-gas inlets equipped with mass flow controllers are connected to

the chamber to provide argon (for plasma generation), nitrogen and oxygen. The

substrate is rotated by a speed-adjustable platen motor during deposition. The sub-

strate can be heated up to 800◦C, and temperature stabilization is automated using

a PID controller integrated into the sputtering tool software.

There are also filaments installed inside the sputtering chamber to allow Ar

ion-milling. These are connected to a separate power supply. The voltages used for

ion milling is either 300 V (for substrate cleaning) or 800 V (for sputter etching).

Also, an RF magnetron connected to a high-power RF source allows for RF-induced

DC biasing of the substrate during sputtering. As I discuss in Chapter 7, varying

the substrate DC bias (by changing the RF power) can significantly change the

properties of reactively-sputtered titanium nitride films.

Photolithography

I did the patterning required for device fabrication using a 5X GCA stepper

(see Fig. 4.3b) and 5”× 5”× 0.090” soda-lime reticles. Since most of the devices in
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Figure 4.3: (a) Kurt J. Lesker model CMS-18 DC-sputtering system, (b) 5X GCA
stepper, (c) Oxford Plasmalab System 100 PECVD and (d) Plasma-Therm SLR
Series ICP in the LPS clean-room.
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this thesis where formed from three layers, proper reticle alignment was crucial and

I needed to calibrate the alignment before starting on a new wafer. I mostly used

a positive photo resist (Fujifilm OiR 906-10), that I spun at 3000 rpm, pre-baked

at 90◦C, and post-baked at 120◦C, each for 60 seconds. I used an exposure time

of 0.25-0.35 seconds, depending on the type, age and performance of the UV lamp.

The photo resist (PR) was developed using OPD 4262 developer. The PR removal

followed my “standard organic cleaning” procedure: (i) acetone was sprayed onto

the sample, (ii) the sample was then immersed in acetone and agitated in a sonicator

for 1 minute, (iii) after removal from the acetone bath, the sample was rinsed with

acetone, methanol and isopropanol, respectively, (iv) finally, nitrogen was used to

blow-dry the sample.

Plasma-enhanced chemical vapor deposition

I used an Oxford Plasmalab System 100 (see Fig. 4.3c) for plasma-enhanced

chemical vapor deposition (PECVD) to deposit SiNx films using different recipes.

These recipes differed in the flow rate ratio of SiH4 to N2, and resulted in films with

different properties, most importantly the low-power microwave loss and the film

stress. This has been investigated in detail by Paik et al. in Ref. [82]. In my devices,

SiNx was used either as capacitor dielectric, or insulator supporting superconducting

bridges or spiral inductor cross-overs.
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Inductively coupled plasma etching

For inductively coupled plasma (ICP) etching, I used a Plasma-Therm SLR

Series machine (ICP/RIE) (see Fig. 4.3d). I used this system to etch titanium

nitride (TiN), Al and AlOx using chlorine based gases such as Cl2 and BCl3. The

system has a load lock and automatically transfers samples from the load lock into

the processing chamber.

Reactive ion etching

I also used a Plasma-Therm 790 Series reactive ion etching (RIE) system to

etch SiNx and TiN using SF6-based recipes. The tool, shown in Fig. 4.4a, does not

have a load lock, and the sample is directly loaded into the processing chamber.

Measurement of dielectric thickness and refractive index

Figure 4.4b shows the N&K 1500 Series spectrophotometer that I used for

measuring SiNx and AlOx films. The system simultaneously measures film thickness,

refractive index (N) and extinction coefficient (K) in the spectral wavelength range

of 190-1000 nm. A baseline scan was required before every film measurement, using

a reference bare Si wafer. The measurement spot size was 1 mm, and the tool was

equipped with an automated X-Y stage for full sample mapping.
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Profilometry

Figure 4.4c shows the Tencor P-10 profilometer. This highly-sensitive surface

profiler drags a sharp stylus across the sample’s surface while maintaining a constant

downward force on the stylus. It features a vertical range from under 5 nm - 130

µm with better than 0.1 Å - 1 Å vertical resolution. The sample stage movement

and rotation is controlled by software.

Film stress measurement

I used a Toho Technology FLX-2320-S stress measurement system (shown in

Fig. 4.4d) to characterize the stress in thin films of metal or dielectric. Aside from

characterization of TiN films, described in Chapter 7, this tool was very helpful for

developing low-stress low-loss PECVD recipes for SiNx. The tool determines the

film stress by measuring the curvature change of a wafer between pre- and post-

deposition measurements. The curvature difference of these two measurements is

used to calculate stress by from Stoney’s equation [97], which relates the stress to

the biaxial modulus of the substrate, the thicknesses of the film and the substrate,

and the radius of curvature of pre- and post-deposition wafers. Curvature was

measured by directing a laser at the wafer surface at a known angle. The reflected

beam was detected by a position-sensitive photodiode. The deflection was recorded

while scanning the surface of the wafer. The wafer needs to be rotated manually

by 180◦ using several smaller, but well-defined angle steps to map out the stress on

the wafer. The resulting stress and deflection measurements can be visualized as
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Figure 4.4: (a) Plasma-Therm 790 Series reactive ion etching (RIE) system, (b)
N&K 1500 Series dielectric characterization system, (c) Tencor P-10 surface profiler
and (d) Toho Technology FLX-2320-S stress measurement system.
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3D plots provided by the system’s software.

4.4 Integration and packaging

In this section I give brief descriptions of the device integration and sample

preparation steps I followed to go from a fully-fabricated wafer to a sample mounted

on the dilution refrigerator.

Integration

Figure 4.5 shows an example of a layout in which I integrate six resonators on

the 6.35 mm × 6.35 mm die. This picture is from the circuit layout design program

Cadence which I used for reticle design. This sample had a coplanar waveguide

(CPW) in the middle with launchers at each end. The CPW width and spacing

was designed for a 50 Ω impedance. I used two CPW geometries for my designs on

sapphire or high-resistivity silicon substrates: width of 20 µm with spacing of 10

µm, or width of 10 µm with spacing of 5 µm. In general, my devices were coupled

to the CPW both inductively and capacitively. When several resonators are coupled

to the CPW, this results in a multi-band band-stop transmission through the same

CPW, and I show examples of such devices in Chapters 5-8.

Dicing the wafer

For fabricating resonators, I used 2” (C-plane sapphire) and 3” (C-plain sap-

phire or high-resistivity silicon (100)) wafers and cut the final die size to 6.35 mm×
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6.35 mm

Devices

200 μm

Figure 4.5: Device integration using Cadence. This Cadence layout is used for reticle
fabrication. Only the first metal layer (blue) is shown here.

6.35 mm. Before dicing, wafers were coated with PR to protect the devices during

dicing. For this purpose, I used Fujifilm OiR 906-10 PR baked at 120 ◦C for 120

seconds. Before dicing a wafer, a special dicing tape (Semiconductor Equipment

Corp. Part Number: 18074) was carefully attached to the back of the wafer to hold

the dies during and after the dicing. I used a Disco DAD 321 automatic dicing saw

(see Fig. 4.6a) with the semi-automatic cut option. I used Dicing Blade Technology

model CX-010-325-080-H and CX-010-600-080-H diamond blades to cut sapphire

and high-resistivity Si wafers, respectively. This system requires a test cut on a

dummy wafer for blade alignment followed by the alignment of the fabricated wafer

and the saw. Finally, a number of cuts (depending on the die and wafer size) are
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Figure 4.6: (a) Disco DAD 321 automatic dicing saw and (b) West-Bond model
7476E wedge bonder.

made in two directions. I used a cut speed for sapphire and silicon wafers of 0.5

mm/s and 3 mm/s, respectively, and the spindle speed was 30,000 rpm for both.

For my measurements, I tried to choose a die from the central area of the wafer,

where the deposition/etch rates were well calibrated. The die was then cleaned using

the standard organic cleaning process and optically inspected for flaws. Finally, I

attached each test die to a sample box using GE low-temperature varnish. After

letting the varnish dry for at least 2 hours, I wire-bonded to the ground plane and

the CPW launchers.
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Figure 4.7: (a) Photograph of sample box type 1 and (b) sample box type 2 (designed
by A. N. Ramanayaka).
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Wire-bonding and sample boxes

Figure 4.6b shows the West-Bond model 7476E wedge bonder that I used to

wire-bond my samples. I used SPM 1% Si/Al (aluminum) bond wire (Size: SIAL

W-WI,.001).

I mainly used two types of sample boxes, shown in Fig. 4.7. Both sample

boxes are made of copper and have a printed circuit board (PCB) insert. The type

2 sample box was most recently designed. It uses non-magnetic SMP connectors and

has better infrared isolation than the type 1 sample box. The improved IR isolation

is achieved by a matching groove and bump in the sample box and its lid (see Fig.

4.7b). I used Al wire-bonds to electrically connect the Cu sample box launchers

(Cu) on the PCB to the sample’s launcher (Al or TiN) on the sample chip. The

sample chip sits in a well in the PCB (in the type 1 box) or in the copper (in the

type 2 box) and is directly glued to the sample box with GE varnish.
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Chapter 5: Cavity quantum electrodynamics of nanoscale TLSs

In this chapter, I describe my experiments that lead to the first CQED mea-

surement of nanoscale TLSs [98].

5.1 Motivation

As discussed previously, TLSs have been found to be a major source of loss

and noise in superconducting qubit circuits because of their coupling to the electric

field. In 2004, Simmonds et al. observed individual TLSs in the JJ barrier of a

phase qubit [67] (see Fig. 1.6) and later studied more TLSs in similar circuits [66].

Discrete TLSs in junction barriers were also seen in a Cooper-pair box [99]. Several

other experiments have been performed to characterize individual TLSs and extract

their coherence times [85,86,100].

Although these experiments and results from ensemble-averaged measurements

[83, 101, 102] have provided much information about TLSs, the precise microscopic

identity of TLSs remains unknown. This suggests the need for novel measurement

techniques that can characterize individual TLSs and help search for materials with

TLSs that have relatively long coherence times. In this chapter, I describe my

direct CQED-based measurement of TLSs using a device that I call a micro-V
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resonator. The micro-V resonator consists of a trilayer capacitor with SiNx dielectric

and a multi-turn (spiral) inductor. The capacitor (dielectric) volume is relatively

small compared to previous devices used for resonator-TLS ensemble measurements

[82,83]. However, this volume is still at least three orders of magnitude larger than

that of JJ barriers found in previous junction-based individual TLS measurements.

As we will see, this meso-scale dielectric volume allows for CQED measurements of

TLSs. This is due to the relatively small number of TLSs in the resonator bandwidth,

their relatively long lifetimes and a relatively large TLS-resonator coupling due to

the meso-scale SiNx dielectric volumes.

5.2 Fully quantum-mechanical TLS-cavity model

I first consider a resonator (represented by a two-sided cavity c) and several

TLSs, as shown in Fig. 5.1a. I assume that a coherent-state approximation can be

used for photons in cavity c coupled to input field â1, output field â2. I represent the

TLSs by the spin operator Ŝzi due to the analogy between TLS theory and the spin-1
2

problem, as discussed in Chapter 2. Similar to the discussion in Section 3.2.2, the

equation of motion for the cavity c photon annihilation operator ĉ can be written

as

d

dt
ĉ = − i

~
[ĉ, Ĥsys]−

1

2
(γ1 + γ2)ĉ+

√
γ1â1,in +

√
γ2â2,out. (5.1)

Here Ĥsys is the system Hamiltonian, γ1 and γ2 are the cavity mode decay rates in

input and output channels, and operators â1,in and â2,out represent the input and

output fields in those channels respectively. The system Hamiltonian Ĥsys can be
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……

Figure 5.1: (a) The TLS-cavity quantum model with many TLSs and single cavity.
(b) The Dual-Cavity Model with many TLSs coupled to cavity c.

written as

Ĥsys = ~ωcĉ†ĉ− i~
N∑
i=1

gi(Ŝ
−
i ĉ
† + Ŝ+

i ĉ) +
N∑
i=1

EiŜzi , (5.2)

similar to the Jaynes-Cummings Hamiltonian (Eq. 1.50), except that there are N

TLSs rather than just one. In Eq. 5.2, Ŝ+
i and Ŝ−i are the TLS raising and lowering

operators, respectively, ωc is the resonant frequency of the cavity c mode, and the

i-th TLS has energy Ei = ~ωTLS,i =
√

∆2
i + ∆2

0,i and resonant coupling gi to the

cavity field where

gi =
∆0,i

Ei
pi cos θi

√
ω

2εrε0~V
. (5.3)

Equation 5.3 can be obtained from Eq. 2.33 and the cavity c (resonator) ground-

state energy

Cv2
RMS =

1

2
~ω. (5.4)
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Here pi is the magnitude of the dipole moment pi associated with TLS i, θi is the

angle between pi and the applied electric field E, V is the dielectric volume, εr is

its relative permittivity, and vRMS is the RMS voltage across the capacitor C. Note

the resemblance of Eq. 5.3 to Eq. 1.45 which comes from the fact that the effective

cavity volume of the electric field for a resonator with a parallel-plate capacitor

is simply the volume of the capacitor’s insulator. If the input field is present in

channel 1 only and it is harmonic with frequency ω, then one can represent the time

evolution equation for the operator c as

iωĉ = −iωcĉ−
γc
2
ĉ+ i

N∑
i=1

giŜ
−
i +
√
γ1â1,in, (5.5)

where γc = γ1 + γ2.

Similarly, one can write the equation for the time evolution of S−i operator

using the Bloch equations approximation for relaxation and decoherence

−iωŜ−i = −iωTLS,iŜ−i −
γTLS,i

2
Ŝ−i − 2igiŜ

z
i ĉ, (5.6)

where

γTLS,i = k1,i + 2k2,i, k1,i = A∆2
0,i coth(

~ω
2kBT

), k2,i ≈ BT 2 (5.7)

and rates k1,i and k2,i describe TLS i relaxation and phase decoherence rates as-

sociated with TLS-phonon and TLS-TLS interactions, and A and B are material-

related constants. In the low temperature and low drive power limit (kBT � ~ω

and n̄� 1), cavity c will be in its ground state or, with a much smaller probability,

in its first excited state. This suggests we can replace the spin operator Sz in the

product Szc in Eq. 5.6 with the ground state value −1/2 since the TLS will have
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a high probability to be in its ground state when the cavity is excited [103]. With

these assumptions we obtain a closed system of linear equations which can be solved

for the TLS operators:

S−i =
igic

i(ωTLS,i − ω) +
γTLS,i

2

. (5.8)

In the high-temperature case (kBT ∼ ~ω), one can use a mean field approach

replacing the operator Sz in Eq. (5.6) with its thermodynamic average value, i.e.

〈Sz〉 = −1

2
tanh(

~ω
2kBT

) = −s. (5.9)

This approach is consistent with previous analysis of sound and microwave absorp-

tion by TLSs [104,105]. To proceed, I now substitute the solution for S−i (Eq. 5.8)

into Eq. 5.5 to obtain a solution for the cavity c field in the form

c =

√
γ1a1,in

i(ωc − ω) +
γc
2

+ 2s
N∑
i=1

g2
i

i(ωTLS,i − ω) +
γTLS,i

2

. (5.10)

Using this result one can find transmission and reflection coefficient using the bound-

ary condition

a1,in(+∞) = a1,in(−∞)−√γ1c. (5.11a)

a2,out(+∞) = a2,out(−∞)−√γ2c. (5.11b)

One can use a single-photon scattering function and the Møller operator to find the

transmission [106–108]

S21 = −
√
γ1γ2

i(ωc − ω) +
γ1 + γ2

2
+ 2s

N∑
i=1

g2
i

i(ωTLS,i − ω) +
γTLS,i

2

. (5.12)
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For a more comprehensive model that better approximates the real system,

I add a low-Q cavity (cavity d) which accounts for the coupling of cavity c to the

transmission line and adds the required degree of freedom for asymmetric trans-

missions, as discussed in section 3.2.2. This model is shown in Fig. 5.1b. The

above equations can be modified to include both cavities d and c and their mutual

interaction, and can be written as

Ĥsys = ~ωdd̂†d̂+ ~ωcĉ†ĉ+ ~Ω(d̂†ĉ+ ĉ†d̂)− i~
N∑
i=1

gi(Ŝ
−
i ĉ
† − Ŝ+

i ĉ) +
N∑
i=1

EiŜzi , (5.13)

Assuming only one input field a1,in (i.e. a2,in = a3,in = 0) and the cavity d to be

two-sided (with decay rates of γ1 and γ2) and using the mean field approach for Sz

operators, one finds the solution for the cavity mode d in the form

d =

√
γ1ain(0)

i(ωd − ω) +
γd
2

+
Ω2

i(ωc − ω) +
γc
2

+ 2s
N∑
i=1

g2
i

i(ωTLS,i − ω) +
γTLS,i

2

. (5.14)

Finally, the transmission coefficient is calculated as

S21 =

√
γ1γ2

i(ωd − ω) +
γd
2

+
Ω2

i(ωc − ω) +
γc
2

+ 2s
N∑
i=1

g2
i

i(ωTLS,i − ω) +
γTLS,i

2

. (5.15)

Using Eq. 5.9 for the high-temperature case, we can reexpress the transmission as

S21 =

√
γ1γ2

i(ω − ωd) +
γ1 + γ2

2
+

Ω2

i(ω − ωc) +
γc
2

+
N∑
i=1

g2
i tanh(~ω/2kBT )

i(ω − ωTLS,i) +
γTLS,i

2

, (5.16)

where I have flipped the sign of Im(S21) arbitrarily.
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Equation 5.16 can be understood as follows. The sum over i means there are

multiple resonance (“rotating”) terms of the form i∆ω representing the resonance

of cavity c, cavity d and the TLSs, with the TLS resonance terms having a hyper-

bolic temperature dependence. In this equation, γc accounts for all cavity decay

mechanisms except the TLS-induced loss, which is accounted for by the summation

term.

Alternatively, we can interpret Eq. 5.16 in terms of the TLS coupling strengths.

The idea is that one can divide TLSs into two categories: weakly-coupled TLSs and

strongly-coupled TLSs. Assuming an ideal inductor and parallel-plate capacitor,

only TLSs in the capacitor that lie in the resonator bandwidth can couple strongly

to the cavity resonance. In the micro-V devices presented in this chapter and the

next, the number of these strongly-coupled TLSs is on the order of unity. The rest of

the TLSs are only weakly coupled to the resonator, and their ensemble effect can be

represented by a constant cavity decay rate at a fixed drive power and temperature.

If the TLSs with nearly continuous spectral density produce the dominant

loss and all other losses are negligible (which is the case for the micro-V devices),

then the effect of the bath of weakly coupled TLSs can simply be represented by

γc. In particular, if there is just one strongly-coupled TLS, the system Hamiltonian

becomes

Ĥsys = ~ωdd̂†d̂+ ~ωcĉ†ĉ+ ~Ω(d̂†ĉ+ ĉ†d̂)− i~g(Ŝ−ĉ† − Ŝ+ĉ) + EŜz, (5.17)
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Figure 5.2: TLS-cavity quantum model with single strongly-coupled TLS and dual
cavities.

and the transmission simplifies to

S21 =

√
γ1γ2

i (ω − ωd) +
γ1 + γ2

2
+

Ω2

i (ω − ωc) + Γc/2

, (5.18)

where

Γc = γc +
2g2 tanh (~ω/2kBT )

i (ω − ωTLS) + γTLS/2
. (5.19)

We can consider Γc as a complex relaxation rate for cavity c which consists of a

real term (γc) representing the bath of weakly-coupled TLSs and a “rotating” term

due to the strongly-coupled TLS. Fig. 5.2 shows the corresponding model in a block

diagram. Also, the TLS-cavity coupling rate simplifies to

g =
∆0

E
p cos θ

√
ω0

2εrε0~V
, (5.20)

From Eq. 2.31 and the low-temperature limit of Eq. 5.16, one can obtain the
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average weakly-coupled TLS response

γc,weak =

〈 ∑
i,weak

g2
i

i(ω − ωTLS,i) + γTLS,i/2

〉
= ωc

πP0p
2

3ε
. (5.21)

Here I have used

tan δ =
1

Qc

=
γc
ωc
, (5.22)

where Qc is the internal quality factor of cavity c. I can argue that one can distin-

guish a single TLS at resonance if the maximum single TLS response exceeds the

average of Eq. 5.21, i.e.

χ ≡ πP0~V
6T1

< 1, (5.23)

where T1 = 1/γTLS is the relaxation time of the strongly-coupled TLS.

5.3 Feasibility study

To achieve the limit where CQED effects can be seen for individual TLSs,

two basic conditions must be fulfilled. First, the number of TLSs in the resonator

bandwidth must be small enough such that they can be individually distinguished

and measured. Second, the TLS-cavity coupling strength has to be large enough to

produce measurable CQED effects.

To find the average number N̄ of TLSs in the resonator bandwidth, I start

from the standard distribution of TLSs described in Eq. 2.9. We need to integrate

the standard distribution over energy and space, i.e.

N̄ =

∫
V

∫
E

P0

∆0

d∆d∆0dV. (5.24)
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Figure 5.3: ∆-∆0 energy diagram. Dashed curves show the integration area.

Assuming a uniform spatial distribution, since the relevant TLSs lie in the capacitor

dielectric only, the space integration simply yields a factor of V , the volume of the

capacitor. The energy integration must be performed over the TLSs’ asymmetry

energy ∆ and tunneling energy ∆0 such that the TLS energy E =
√

∆2 + ∆2
0 is

within energy hB (set by the resonator bandwidth B) around the resonance, shown

by the dashed curves in the ∆-∆0 energy diagram of Fig. 5.3. Switching to polar

variables E =
√

∆2 + ∆2
0 and η = arctan(∆/∆0), the integration yields

N̄ = P0hBV

∫ ηmax

0

sec ηdη = P0hBV ln[sec ηmax + tan ηmax] (5.25)

where ηmax is an angle taken slightly smaller than π/2 to prevent the integral from

diverging and to include only the strongest-coupled TLSs. In the discussion below,

I use ηmax = 0.9× π
2
.

Next, I can estimate P0 = 8 × 1042 J−1m−3 from Eq. 2.31 and prior work
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on Si-rich SiNx [82]. For this estimation, I used ε = 6.5ε0, p = 7.9 Debye and

tan δ0 = 10−4, which are obtained from previous ensemble-averaged measurements

[83]. Also, choosing Qe = 14000, ωc = 7 GHz and using Qi = 10000, I obtain

Q ' 6000 and hence B = 1.1 MHz. Inserting the above values into Eq. 5.25, one

finds that in order to get N̄ = 1, the dielectric volume must be V ' 80 µm3. This

value corresponds to a very small parallel-plate capacitor compared to our group’s

previous resonators [82, 83], but it is at least three orders of magnitude larger than

a typical JJ barrier volume in a qubit.

Regarding the coupling strength needed to see CQED effects from a TLS, one

can see from Eq. 5.20 that g ∝ V −1/2, which means that shrinking the electric field

volume not only reduces the number of TLSs, but it also increases the coupling.

From this equation, the maximum TLS-cavity coupling that we can expect from

TLSs in SiNx with p = 7.9 Debye, ωTLS = 7 GHz and V ' 80 µm3 is gmax = 5.6

Mrad/s. Note that this implies the maximum splitting size is (see Fig. 1.3)

fg,max =
2gmax

2π
= 1.8 MHz. (5.26)

This splitting size is more than enough to be distinguished in transmission data

provided that the TLS coherence time is long enough to create a sharp resonance.

5.4 Device design

I designed five resonators with different dielectric volumes using AWR Mi-

crowave Office (see Fig. 5.4). The purpose of designing five resonators rather than

one small-volume resonator was to see at what volume range the strong CQED
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coupling of a TLS to the cavity can be observed. The areas of the parallel-plate

capacitors were designed differently to accommodate dielectric volumes in the range

of 80-5000 µm3. I had to design the inductances differently too, as the resonance

frequencies had to be in the range 4-8 GHz where the HEMT LNA provided op-

timum signal-to-noise ratio (SNR). I used multiturn (spiral) inductors, which have

a larger inductance-per-length than a meandering inductor of the same line-width.

The downside is that small cross-over capacitors are required in a multiturn ge-

ometry, making the circuit analysis and the measurement analysis slightly more

complicated.

In addition to the five resonators shown in Figs. 5.4a-5.4e, I designed one

extra resonator on the same chip. This extra resonator had the same geometry as

the resonator shown in Fig. 5.4e, but it was placed closer to the transmission line to

achieve higher coupling for an experiment on pulse-measurements of TLSs (analysis

not included in this thesis). The resonators had resonance frequencies that differed

by at least 250 MHz from each other (see Fig. 5.5) to create negligible shifts in

frequency from resonator-resonator interactions and allow me to clearly identify a

given resonance being due to a specific design.

The resonators were designed to have 11, 000 < Qe < 28, 000 except for the

highly-coupled resonator, which was designed for Qe = 400. I note that the AWR

Microwave Office simulator does not directly give Qe for a resonator. However, one

can obtain the simulated value for the Qe of a resonator by changing the Qi in the

simulation and looking at the depth of the resonance. If the resonator is critically

coupled (Qe ' Qi), it will have a resonance lineshape with a depth of 6 dB, or S21 =
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Figure 5.4: (a)-(e) Layout of five resonators with different dielectric volumes. (f)
Capacitor cross section.
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Figure 5.5: Device simulation results for |S21| versus frequency f for different ca-
pacitor volumes from AWR Microwave Office.

1/2 where it is defined as the output-input voltage ratio, S21 ≡ 20 log10(|Vout/Vin|).

Thus, for my design of the resonators I chose a desired value for Qe, set the dielectric

loss tangent to tan δ = 1/Qe and adjusted the geometry of the resonator to get a ∼6

dB deep resonance lineshape. All of the resonances shown in Fig. 5.5 were simulated

with tan δ ' 1/Qe for every resonator. In the simulation, the substrate loss tangent

was set to zero.

5.5 Fabrication

I fabricated the resonators on a 3-inch sapphire wafer. The substrate was

first inserted into the sputtering chamber and ion-mill cleaned at an Ar flow rate
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of 6 sccm and beam voltage of 300 V for 30 s. Al was then DC-sputtered at 400

W (DC) with an Ar pressure of 5 mTorr. The sputtering lasted for 20 minutes

and 30 s for a 100 nm thick Al film. This base metal layer was then coated with

Fujifilm OiR 906-10 PR, exposed, developed and wet-etched to form the ground

plane, the CPW, the spirals of the multiturn inductors, and the bottom capacitor

plates. For wet-etching I used J.T.Baker Aluminum Etch 80-15-3-2. The PR was

then removed using the standard organic cleaning process (see section 4.3) and the

wafer was put inside the PECVD tool for dielectric deposition. A 250 nm thick film

of amorphous hydrogenated silicon nitride (a-SiNx:H) was then deposited using a

relatively low-loss SiNx recipe (PECVD) with SiH4 and N2 flow rates of 10 sccm

and 9 sccm, respectively, at 300 ◦C. This dielectric film was covered with PR and

photolithography was performed.

The film was etched to open the vias in the RIE tool using an SF6-based recipe.

For the RIE, the flow rates of SF6 and O2 were 20 sccm and 5 sccm respectively, and

the processing chamber pressure was kept at 75 mTorr. After PR removal, the wafer

was inserted back into the sputtering chamber, where the film was ion-milled using

an Ar flow rate of 6 sccm and beam voltage of 800 V for 1 minute. The purpose of

this step was to remove the native oxide formed on the base Al layer at the location

of the vias. This ensures a continuous metal (superconducting) path between the

via and the base metal layer. Next, without removing the wafer from vacuum, a 200

nm thick film of Al was DC-sputtered at a power of 400 W and the top metal layer

and the vias were formed. By patterning this metal layer, the top capacitor plates

were made.
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Next the wafer went through photolithography and an SF6-based etch to re-

move the SiNx everywhere on the wafer, except for the areas supporting the top

metal layer. This last step, performed using RIE, significantly reduces the stress

caused by the SiNx film and reduces stress-induced damage. For the same reason,

the fabrication process, once started, needs to be completed as quickly as possible,

typically within 8 hours. The sample was then diced and wire-bonded to the sample

box type 1, shown in Fig. 4.7a.

Optical images of two devices I fabricated are shown in Fig. 5.6. I fabricated

three sets (wafers) of these resonators. Each set was different in the SiNx recipe

used. The first set was made using N2:SiH4 flow rates of 9:10 sccm. This resulted

in a relatively low-loss, high-stress, Si-rich film [82]. The second set was fabricated

using N2:SiH4 flow rates of 12:10 sccm, resulting in a relatively high-loss, low-stress,

N-rich film. For the third set, N2:SiH4 flow rates of 11:10 sccm were used, and

resulted in a film with medium-loss, medium-stress and an intermediate stoichiom-

etry with respect to the first two samples. Obviously, the first sample was best for

CQED measurement of TLSs as it was made of a dielectric with the lowest TLS

spectral density, which not only resulted in a relatively long cavity lifetime, but also

facilitated individual TLS measurements. The high-loss sample was mostly used for

ensemble-averaged measurements. The medium-loss sample was measured to study

the feasibility of CQED with TLSs in lossier films.
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Figure 5.6: (a) Optical image of the smallest-volume and (b) the largest-volume
resonators.

5.6 Large-V resonator measurements

I start with the analysis of the two largest-volume resonators (V = 5000 µm3

and V = 2500µm3) on the low-loss sample. These resonators were first measured at
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Figure 5.7: (a) Sample transmission data |S21| versus frequency f for the V =
5000 µm3 resonator taken at an average photon occupancy of n̄ ∼ 0.1. Data is
shown in blue and the optimum fit is shown in red. (b) Black and blue points show
measured loss tangent of the two largest-V resonators versus the RMS electric field in
the capacitor. The solid blue line shows optimum fit to tan δ = tan δ0/

√
1 + (E/Ec)2

for the V = 5000 µm3 data.
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25 mK, and at microwave powers corresponding to average cavity photon numbers

(n̄) of ∼ 10−4 to ∼ 103. Due to the large dielectric volume, an average response

due to many TLSs was observed, resulting in an asymmetric Lorentzian resonance

lineshape throughout the entire measurement power span (see Fig. 5.7a). Figure

5.7b shows the loss tangent obtained from each resonator versus the RMS electric

field Erms inside the dielectric. Fitting these data to the standard power-dependent

TLS ensemble response tan δ = tan δ0/
√

1 + (E/Ec)2, I found that both resonators

showed tan δ0 ' 1 × 10−4 and Ec = 4.6 V/m which are similar to previous mea-

surements of SiNx [83]. The fact that both resonators show similar tan δ0 and Ec

indicates that these parameters are intensive in the corresponding volume range.

5.7 Micro-V device at low powers

The three smallest-volume resonators (V = 750, 230, 80 µm3) were measured

next. At T = 25 mK and low powers for which the average number of photons in the

cavity is n̄ � 1, one (or more) extra resonances were observed in the transmission

S21 (see Fig. 5.8). The number and the clarity of these resonances seemed to

be correlated with V , such that the smallest number of TLSs and the most clear

splittings were seen in the smallest volume device. However, in order to reach a

firm conclusion on this, a larger number of resonators with different volumes in the

range V < 750µm3 would be required. I note that when there are two or more clear

resonances in the transmission, each resonance will correspond to a hybridized state

which is, in general, a superposition of the cavity state and modes corresponding
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Figure 5.8: (a) Sample transmission data |S21| versus frequency f for the micro-V
device with V = 80 µm3 taken at 25 mK and n̄ ∼ 0.01 and (b) n̄ ∼ 0.1.

to one or more TLSs. Since the mesoscale volume devices enable measurement on

these hybridized states, we refer to them as micro-V devices. For the micro-V device

with V = 80 µm3, usually no more than two clear resonances appeared, and they

generally looked more clear than the resonances seen in the data of devices with

V = 750 µm3 and V = 230 µm3.

These two resonances in the V = 80µm3 device indicate that only one “domi-

nant” TLS is strongly coupled to the resonator and any other TLSs in the bandwidth

are only weakly coupled and result in a purely real cavity relaxation rate γc, as de-

scribed in section 5.2. Figs. 5.8 and 5.10 show sample transmissions of this device.

Since this micro-V device (V = 80 µm3) allowed for a simpler CQED analysis of a

TLS due to strong coupling to only one TLS, I focus on this device for the rest of
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this chapter.

One of the first measurements I performed on the micro-V device with V =

80 µm3 was a mode stability check. For this purpose, I swept the power back and

forth in the range 0.01 . n̄ . 0.1 for approximately 14 hours at 25 mK. The results,

shown in Fig. 5.9a, revealed that the splitting was generally observed at all times,

but there was a relatively slow TLS drift that caused occasional slight shifts in the

mode frequencies. For comparison, a stability check was also performed on a large-V

resonator (V = 5000 µm3) which exhibited one stable resonance (cavity mode) at

all times, as expected. This is shown in Fig. 5.9b.

5.7.1 Analysis of T = 25 mK data

Since only one TLS was strongly coupled to the micro-V device, I can compare

my data to the theoretical model shown in Fig. 5.2. The system Hamiltonian and

transmission are described by Eqs. 5.17 and 5.18, respectively. I used the low

temperature limit of the latter equation to fit the data taken at 25 mK shown in

Fig. 5.10a-5.10c. I used a Least Squares Monte Carlo (LSM) method, similar to the

fitting code described in section 3.2.2. For better accuracy, the fitting was performed

on Re(S21) and Im(S21) separately (see Figs. 5.10b and 5.10c) rather than to |S21|.

For these fits, I assumed Qd = 20 and γ1 = γ2 = γd/2. Also, the approximate values

of ωc, ωTLS and g can be readily obtained from the transmission data and I used

these for initial values in the Monte Carlo. Note that for a TLS that is strongly

coupled to the resonator compared to the detuning, 2g = 2πfg, where fg denotes
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Figure 5.9: False-color plot of |S21| versus frequency f and time t showing the mode
stability for (a) the V = 80 µm3 device at 25 mK, (b) the V = 5000 µm3 at 25 mK
and (c) the V = 80 µm3 at 200 mK.
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Figure 5.10: (a) Measured |S21| vs. frequency f (blue) and optimum fit (red) at
25 mK for the micro-V device with V = 80 µm3. (b) and (c) show corresponding
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102



the splitting width.

The fit yielded ωd/2π = 6.978419 GHz and γd = 2.19 GHz for cavity d, and

fc = ωc/2π = 6.901689 GHz and γc = 1.92 MHz for cavity c. The intercavity

coupling rate was Ω = 41.9 MHz, Qe ' 14000, and the coupling of cavity c to

the TLS under consideration was g = 1.15 Mrad/s. For the TLS I obtain fTLS =

ωTLS/2π = 6.901629 GHz, and hence a detuning of ∆ω = 60 kHz which is less than

g/2π.

The fit also revealed T2 = 2/γTLS = 3.2µs as the coherence time of the resonant

TLS including the decay at rate γTLS from spontaneous emission and neglecting

dephasing, i.e. T2 = 2T1. This value for T2 is at least 3 times larger than previously

found for individual TLSs in JJ alumina tunnel barriers [85,100]. In fact, it is similar

to the coherence time of the original transmon qubit [64].

This remarkably long coherence time is possibly caused by the properties of the

silicon nitride film. That is, the SiNx film may contain TLSs of a different physical

nature than those found in alumina. Also, it could be due to better isolation of

TLSs in the bulk from surface effects at the superconductor-dielectric interface.

TLSs in JJ barriers are in close proximity to the superconducting electrodes which

can potentially result in a faster decoherence due to a possible enhanced strain field

(phonon) coupling to the TLSs [109].

From g and Eq. 5.20, I can obtain a lower limit for the dipole size of the

strongly-coupled TLS. The minimum dipole size in this case satisfies pmin = (∆0/E)p cos θ =

1.6 Debye, which is consistent with previous work on SiNx [83].
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5.7.2 Analysis of T = 200 mK data

I also measured the micro-V device with V = 80 µm3 at T = 200 mK where

~ω/2kBT ' 0.8. The mode stability test result shown in Fig. 5.9c, revealed a

much more frequency-stable mode compared to the low-temperature case where two

modes where observed. The apparent stability is likely due to the strongly coupled

TLS being close to thermal saturation, which causes the splitting to become barely

visible. Therefore, the remaining stable mode is a “cavity-like” mode, or bare cavity

rather than the dressed cavity.

An individual 200 mK transmission curve is shown in Fig. 5.10d. I fit this

curve to Eq. 5.18 and extracted the parameters for the 200 mK case. For the fit,

I kept ωd, γd and Ω equal to their low-temperature values, while the rest of the

parameters where permitted to change. I extracted g = 1.13 Mrad/s which was

almost the same as at 25 mK. However, fTLS = 6.901318 GHz and fc = 6.901576

GHz show a small shift due to weak influence from TLSs, as expected. The detuning

∆ω = 258 kHz shows a considerable increase compared to the low temperature case,

and becomes comparable to the TLS-cavity coupling rate g. According to Eq. 1.63,

this would produce coupled modes with an uneven superposition of the bare states,

and causes the transition to the high-energy cavity-like state E+(n = 0) to have

a larger amplitude than E−(n = 0) (see Eq. 1.61). In the transmission data, this

shows up as a “deep” resonance on the higher frequency side and a shallow one on

the lower frequency side.

Using Eq. 5.20 with the remaining fit values, T1(200 mK) = 0.57 µs and γc,
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allows me to calculate the ratio of the TLS-like state signal on the background of

the cavity-like state as 4g2 tanh(~ωTLS/2kBT )T1/γc= 0.67, where tanh(~ω/2kBT ) =

0.68. The T1(200 mK) value reveals a faster TLS decay than expected from the in-

creased phonon emission which scales as tanh (~ω/2kBT ) and would give T1(200 mK) =

1.1µs. However, this is qualitatively consistent with spectral diffusion, which causes

TLS dephasing [110], and with the parabolic temperature dependence of TLS co-

herence times found in alumina tunneling barriers [100].

5.8 Micro-V device power sweep

After examining a TLS in the micro-V device with V = 80µm3 at low powers

(n̄ � 1) and two temperatures (25 mK and 200 mK), the next measurement I did

was a power sweep at low-temperature (25 mK). This enabled me to observe the

power saturation of an individual TLS (see Fig. 5.11a). The power measurement

was performed in a separate cooldown (approximately one year later) than the

measurements of section 5.7, and this resulted in a different TLSs strongly coupled

to the resonator. The input power at the device (Pin) was swept in the range

−170 < Pin < −100 dBm, which corresponded to average photon numbers in the

cavity of 10−4 . n̄ . 103.

Figure 5.11a shows a false-color plot of the measured |S21| as a function of

frequency f and input power Pin. At low powers, n̄ . 1, the splitting is clearly

observed, which is expected from a low-power probe of the n = 0 → 1 (single

photon) excitation of the system. At power levels corresponding to more than a
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Figure 5.11: (a) False-color plot showing measured transmission |S21| vs. input
power Pin and frequency f for the micro-V resonator with V = 80 µm3. (b) Sim-
ulated power dependence from theoretical fit to model. Dashed line at n̄max ' 7
indicates the photon number above which the simplified Dual-Cavity Model is used
and the arrow shows the break corresponding to n > 1 transitions.
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single photon in the cavity, the splitting merges into a single resonance, which is the

bare cavity mode. I note that at higher powers, we generally expect photon number

peaks due to the Poissonian distribution of the photon number n in cavity c (see

section 1.2.2) although these are not apparent in Fig. 5.11a. The Jaynes-Cummings

Hamiltonian gives transition energies

∆E±±(n > 0) = ~ωc ± ~
√
g2(n+ 1) + (∆ω/2)2 ∓ ~

√
g2n+ (∆ω/2)2, (5.27)

from the nth hybridized pair {|n, g〉 , |n− 1, e〉} to that of the next higher energy.

The high-power central dip corresponds to the ∆E++(n > 0) and ∆E−−(n > 0)

transitions, which asymptotically approach a single frequency (~ωc) for large n. In

contrast to the ∆E++(n > 0) and ∆E−−(n > 0) case, the ∆E+−(n > 0) and

∆E−+(n > 0) transitions do not converge, but diverge in energy as the power is

increased.

With the low power (n̄ � 1) and high-power (n̄ � 1) regimes understood, I

next focus on the crossover (n̄ ∼ 1). I note that Fig. 5.11a shows a clear break on

the left part of the “wishbone” in this regime. This break is marked in Fig. 5.11a

by an arrow. At low powers, there is a larger amplitude for the high frequency

transition, and once again this is caused by a cavity-like transition for ∆E+(n = 0).

This is similar to the case of Fig. 5.10d (see section 5.7). In addition, the high-

power transition ∆E++(n > 0) is closer to ∆E+(n = 0), than ∆E−−(n > 0) is to

∆E−(n = 0), for a given n > 0. The apparent break of the low frequency crossover

from low to high power is expected due to the more spectrally diffuse transition

energies than the other high frequency one.
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Similar to the analysis in section 5.7, I also characterized the strongly-coupled

TLS in the power sweep. This analysis was more comprehensive and included the

power dependence of the micro-V transmission. In the following, I will describe the

steps in the full analysis of this data for a wide range of input powers corresponding

to 10−4 . n̄ . 103.

Step 1: High-power analysis

For the full analysis of the data shown in Fig. 5.11a, I started with the high

power regime. In this regime, the strongly-coupled TLS is saturated and a classical-

field analysis is allowed, reducing the theoretical model to one without a dominant

TLS. This is depicted in Fig. 3.2 with the Hamiltonian given by Eq. 3.26 and the

transmission given by Eq. 3.42. In this regime, |S21| is given by Eq. 5.18 with

g = 0. However, I note that the TLSs are still the dominant loss mechanism and

result in the power-dependent photon decay rate γc in the cavity. The analysis of the

high-power regime allowed me to extract the cavity d parameters, the bare cavity c

resonance frequency, the photon decay rate (γc), and the intercavity coupling Ω.

Each horizontal slice of Fig. 5.11a corresponds to a small range of n̄, and

when I assign a n̄ value to a slice, it corresponds to the maximum of the average

photon number in the cavity within that particular horizontal slice. I chose n̄ &

n̄max = 7 as a high enough power to saturate the dominant TLS. n̄max was also close

to our computational limit for the low-power analysis (described later in section

5.8). This analysis was performed on separate transmission data (33 S21 curves)
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taken at n̄max < n̄ < 103. This data set corresponds to horizontal slices of Fig.

5.11a above n̄ = n̄max. As before, I assumed Qd = 20 and γ1 = γ2 = γd/2. The

parameters of the fit were γd = 2.17 GHz and Ω = 41.6 MHz, showing excellent

consistency with the values given in section 5.7.1. I also extracted γc, and found

that it decreases with power due to saturation of the weakly coupled TLSs. Also, I

obtained ωc/2π = 6.880434 GHz and ωd/2π = 6.899807 GHz. The small shift in ωc

with respect to that reported in section 5.7.1 could be explained by a 0.6% change

in the aluminum inductance relative to that found during the cooldown from that

section. This should have little effect except to make the micro-V device sensitive

to TLSs with slightly lower energy.

Figure 5.11b shows the simulation results of |S21| versus frequency and power

using the best fit values. Note that only the n̄ > n̄max part corresponds to the fit

obtained in this section.

Step 2: Low-power analysis

For photon numbers n̄ . n̄max = 7, the dominant TLS must be considered.

The theoretical model in this regime is shown in Fig. 5.2 and the Hamiltonian is

given by Eq. 5.17. However, we can not use the transmission of Eq. 5.18, as it was

derived assuming n̄� 1. To proceed, I consider the photon density matrix ρph. The

time evolution of ρph was obtained from the Lindblad equation [111] and Hsys. From

the photon density matrix, each transmission curve is calculated using an iterative

method with 105 iterations. The initial Lindblad equation code was developed by
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A. Burin at the Department of Chemistry, Tulane University.

Once again a separate fitting code was required to extract the parameters in

this regime. I used the LSM method, with 104 guesses. Note that this number of

Monte Carlo guesses is in addition to the density matrix iterations, making these

fits extremely time consuming. Therefore, I used parallel computing (Matlab) on a

12-core computer with dual-Xeon CPUs and 96 GB of RAM.

I started fitting an S21 curve at around n̄ ' 0.1 where the splitting is clear

yet the signal-to-noise ratio is large enough for a reasonably good fit. I used the

extracted values of γd, ωd, Ω and ωc from step 1, and this allowed for a fairly

accurate extraction of γc, ωTLS, γTLS and g. Next, I used the extracted ωTLS, γTLS

and g as initial Monte Carlo values to fit the rest of the low-power |S21| curves.

However, in order to increase the fitting accuracy, I used an expected functional

form of γc ∝ (1 + E/Ec)
−1/2 for γc as the initial guess, such that it depends on the

average cavity photon number at which the transmission data is taken. The 18 S21

curves I analyzed correspond to horizontal slices of the false-color plot of Fig. 5.11a

in the range 10−4 < n̄ < n̄max. The parameters γc, ωTLS, γTLS and g were extracted

for each curve, and the results for each parameter were almost identical at different

powers, except for γc which decreased with power due to saturation of TLSs.

Step 3: Low-power γc extraction

High- and low-power values of γc were extracted in steps 1 and 2, respectively.

However, since we are particularly interested in the cavity loss tangent tan δ = γc/ωc,
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I also tried a more accurate low-power extraction of γc. Once again I fixed the values

of γd, ωd, Ω and ωc to those obtained in step 1. The almost-identical values (for

different low-power curves) of the parameters ωTLS, γTLS and g obtained in step 2

were averaged, and then fixed at ωTLS/2π = 6.880106 GHz, γTLS = 3.08 MHz and

g = 3.14 MHz. The only remaining fitting parameter was γc, which I extracted using

a similar fitting code to that used in step 2. This step ended the fitting procedure.

Having extracted all the parameters (all are power-independent except γc),

Fig. 5.11b shows a simulated false-color plot of |S21| versus frequency and power. I

note that there is excellent correspondence with the data shown in Fig. 5.11a.

With γc extracted for the entire measurement power span, I can now obtain

tan δ as a function of n̄. This is plotted in red in Fig. 5.12. On the same plot, I

have included the loss tangent data for the largest volume resonator (V = 5000µm3)

for comparison. The solid curves show the optimum fit of Eq. 2.35 to the data. I

describe the details of this fitting code in more detail in Chapter 7. While both

devices showed a similar low-power loss tangent of tan δ0 ' 1×10−4, they exhibited

different critical electric fields (Ec). The micro-V resonator showed Ec = 13.6 V/m,

which is 3 times larger than that of the large-volume device. In terms of the average

cavity photon number on resonance n̄, an intrinsic Ec means that the critical average

cavity photon number n̄c is proportional to V . The ratio of device volumes in this

case is 62.5, whereas the ratio of the two values for n̄c is about 9. This suggests

that the micro-V device is in a regime in which Ec is not an intrinsic property of

the system.

Interestingly, for the micro-V device, the critical number of photons calculated
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Figure 5.12: Red squares show measured loss tangent versus average cavity photon
number n̄ for the micro-V device with V = 80 µm3 extracted from CQED power-
dependent analysis. Blue triangles show measured loss tangent of the largest volume
resonator with V = 5000µm3 obtained from the Dual-Cavity (conventional) fitting.
The solid curves are corresponding optimum fit to data.
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from Ec is n̄c = 0.2, such that the beginning of saturation for the TLS environment

is reached in a quantum regime. While quantum effects on the weakly-coupled TLSs

must be present, we expect inherent TLS-sampling variations to cause n̄c to vary

such that it may be desirable to try many TLS configurations using electric field bias

control in the future [83]. I note that quantum effects of loss saturation have been

theoretically analyzed previously only for a single TLS [112]. This may be interesting

because the saturation may depend on the details of a complex set of TLSs coupled

to the cavity, and these complex dynamics are related to famously-difficult coupled

spin problems [113,114].

5.9 Conclusion

In this Chapter I introduced a new TLS measurement technique that offers a

few advantages over previous techniques. My measurement is based on direct CQED

strong coupling of an individual TLS to a linear superconducting resonator cavity,

forming a micro-V device. I described a full temperature- and power-dependent

analysis of a TLS using a theoretical model developed for the micro-V devices. I

showed how to extract the coupling and relaxation parameters of the cavity and the

dominant TLS within a wide range of average cavity photon numbers (10−4 . n̄ .

103). A TLS measured at T = 25 mK in a SiNx micro-V device showed a coherence

time of T2 = 3.2 µs which is considerably longer than those of TLSs measured

previously in alumina tunnel barriers [85]. Possible reasons for this remarkably long

coherence time were discussed. In a photon-intensity study, the two low-energy
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transitions, which reveal the vacuum Rabi splitting, are observed to crossover to

the high-power cavity transitions, with a break between these regimes on the low-

frequency side resulting in a wishbone shape.

From these results it is clear that this CQED measurement technique can be

used to characterize individual TLSs in a wide range of materials and this could

lead to the discovery of materials with TLSs with even longer coherence times. This

approach offers a significant advantage compared to measuring individual TLSs in a

JJ tunnel barrier, where only the TLSs within the tunnel barrier could be measured

and one faces severe limitations on the materials that can be used as JJ barriers.

Before this study, to the best of my knowledge, only TLSs from alumina tunneling

barriers had been measured individually.

Finally, I note that the micro-V device opens up the possibility for the CQED

operation of long-lived nanoscale TLSs in quantum information circuits. In the next

Chapter, I describe a device that makes us one step closer to this ambitious goal.
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Chapter 6: Spectroscopy of nanoscale TLSs

6.1 Motivation

As I discussed in previous chapters, the precise identity of nanoscale TLSs

in amorphous solids is unknown, but this means there are opportunities for novel

measurement methods to reveal new information about TLSs. While TLSs cause

decoherence in superconducting qubits [66], there is a possibility that they could

serve as quantum memory bits [88]. Clearly, this would require finding long-lived,

well-characterized and strongly-coupled TLSs. In Chapter 5, I showed a new mea-

surement technique together with temperature and power dependent analyses for

characterizing individual TLSs in different amorphous solids. In the micro-V de-

vice that was measured, one TLS on average was strongly coupled to the cavity

(resonator), allowing CQED study of the TLS. Of course, this also meant that I

could only characterize an average of one TLS per cooldown. In order to study a

larger number of TLSs, I developed a tunable micro-V device which I discuss in this

Chapter.

In addition to allowing a search for TLSs with long coherence times, a tunable

micro-V device can enable characterization of TLSs in an insulating film by their

dipole sizes and yield a distribution of this parameter. The tunable device also
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raises the possibility of CQED operation of nanoscale TLSs in quantum information

circuits and quantum manipulation of TLSs [98]. A clear challenge however, is the

inherent randomness of the TLS distribution in energy and space, which complicates

the coupling to a TLS with the desired properties. However, this might also be

achieved with tunability.

In order to add tunability to a superconducting resonator, one could use the

nonlinear inductance of JJs. In fact, tunable JJ-based devices that measure indi-

vidual TLSs have been developed and used previously [66, 86]. However, in such

techniques, the cavity acquires nonlinearity which complicates measurements and

analysis.

In this chapter, I describe a device which adds TLS tunability to the micro-V

device, without destroying its harmonicity. In this tunable micro-V device, the TLSs

rather than the cavity are tuned. This is achieved by electric field biasing the TLSs,

which tilts the TLS potential. As discussed in Chapter 2, this potential is generally

believed to be a double-well. This type of tuning has been previously applied to

TLS ensembles by Khalil et al. in the context of Landau-Zener population control

of TLSs [83].

6.2 DC-tuning the TLSs

To understand the tunable micro-V device, I consider a parallel-plate capacitor

with an amorphous dielectric between its electrodes (see Fig. 6.1a). In addition to

the applied ac voltage Vac, an additional quasi-static voltage Vbias is applied. For
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Turn up 𝑉𝑏𝑖𝑎𝑠

Figure 6.1: (a) A TLS with dipole moment p exposed to external AC and DC
electric fields, Eac and Ebias. (b) The potential energy diagram of a TLS that is
brought into resonance with the cavity by applying Ebias. Further increasing Ebias

can take the TLS far out of resonance with the cavity, and possibly even change the
direction of the double-well asymmetry.
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now, I assume Vac = 0 and look into the effect of Vbias. According to Eq. 2.12a, upon

application of Vbias, the asymmetry energy of a TLS double-well potential changes

to

∆′ = ∆ + 2p · Ebias, (6.1)

where p = qa/2, Ebias = Vbias/d, q is the charge of the TLS, a is the charge hopping

distance, d is the separation between the capacitor plates, and ∆ is the asymmetry

energy for Vbias = 0. Then I can write the TLS energy as

E =
√

∆2
0 + ∆′2 =

√
∆2

0 + |∆ + 2p · Ebias|2. (6.2)

If we drive the TLSs by adding Vac at frequency ω with Vbias = 0, the TLSs with

E ' ~ω will be resonantly excited by Eac while the TLSs with energies sufficiently

smaller or larger than ~ω will not be excited. According to Eq. 6.2, one can tune

the TLS energies and bring TLSs in and out of resonance with the applied electric

field by changing Vbias (see Fig. 6.1b).

I note that the change of the asymmetry could be in either direction depending

on the direction of the TLS dipole and electric field. For the special case of θ = π/2,

the TLS can not be tuned using a bias field because p ·Ebias = 0. In contrast, TLSs

with θ = 0 or π have the highest bias sensitivity.

6.3 Device design

A simple way to isolate the applied AC voltage from the DC bias voltage is to

use a microwave bridge resonator [83]. Figure 6.2 shows a schematic of an “ideal”

tunable micro-V device with a capacitor bridge. If the device is designed such that
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Figure 6.2: Schematic of ideal tunable micro-V bias bridge resonator.

C1 = C2 = C3 = C4 = C, then the equivalent (total) capacitance of the bridge is

Ctot = C and the DC voltage across each capacitor, C1 through C4, is Vbias/2.

As discussed in Chapter 5, a sufficiently small dielectric volume is necessary for

CQED measurements of TLSs. I note though that by using a bias bridge with total

capacitance C, the dielectric volume is four times larger than for a single capacitor

of the same dielectric thickness. In order to compensate this four-fold increase in

volume, I used a dielectric thickness of d = 125 nm, which is half the dielectric

thickness of the micro-V device described in Chapter 5, and leads to a two-times

smaller volume. I also used a relatively large double-loop spiral inductor which

allowed me to use smaller capacitors, further decreasing the dielectric volume.

Figure 6.3a shows the layout for the device, rendered using AWR Microwave

Office. In order to increase the inductance-per-length, a spiral inductor with 2.5 µm

linewidth was used. This is half the linewidth I used for the inductors of the devices
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Figure 6.3: (a) Layout of the tunable micro-V device with V = 78 µm3 and Qe '
10000 from AWR Microwave Office. (b) Schematic of a tunable micro-V device
including cross-over capacitors.
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described in Chapter 5. For efficient isolation of DC and AC voltages, I designed

the circuit to be symmetric, such that, ideally, the DC bias line was attached to the

circuit at an AC voltage node (ground). I designed two tunable micro-V devices

with different external quality factors. I could achieve dielectric volumes V of 63

µm3 and 78 µm3 with d = 125 nm corresponding to total bridge capacitances of

Ctot = 58 fF and 72 fF, respectively. I used εr = 6.5 (SiNx) for the simulation.

A more complete schematic of a tunable micro-V device is shown in Fig.

6.3b. This schematic includes the crossover capacitors which are formed where the

multiturn inductor crosses itself. Obviously, there will be some coupling to the TLSs

in the crossover capacitors. However, this coupling is expected to be much weaker

than the coupling to TLSs in the bridge capacitors. More importantly, the schematic

shows that the crossover capacitors are DC shorted, so that the TLSs within are

not expected to be tuned by Vbias.

In addition to the two tunable micro-V devices mentioned above, I designed

two regular micro-V devices that had a single parallel-plate capacitor rather than

a capacitor bridge. Since the inductance was larger than the micro-V device of

Chapter 5, I could achieve dielectric volumes of 27 µm3 and 12 µm3. I have not

included the analysis of these two devices in this thesis, as it is similar to that

studied in detail in Chapter 5.

The simulated resonances for the four designs are shown in Fig. 6.4 and the

key device parameters are listed in Table 6.1.
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Figure 6.4: AWR Microwave office simulation results for four devices showing res-
onance lineshape of the devices on a die. In this simulation, a constant and real
loss tangent of tan δ = 1/Qe was assumed for SiNx to get a resonant depth of
approximately 6 dB.

6.4 Fabrication

To make tunable micro-V devices, I followed a fabrication procedure that

was similar to that described in Section 5.5. However, the fabrication was more

challenging in several ways. The most challenging part was that I needed to fabricate

a 125 nm thick low-loss SiNx film on top of the first (bottom) Al layer. The problem

was that low-loss SiNx tended to have a high tensile stress (1 − 2.8 GPa) and this

tends to cause the film to peel off within a few minutes after it is removed from the

PECVD chamber. This happened whether I used Si or sapphire substrates. I also
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Table 6.1: List of device parameters.

Device label V (µm3) Ctot (fF) Qe f0 (GHz)

Micro-V -1 12 43 5000 5.276

Tunable Micro-V -1 78 72 10000 6.087

Tunable Micro-V -2 63 58 5000 6.605

Micro-V -2 27 100 10000 7.175

tried techniques to improve SiNx-Al adhesion, such as ion-milling the Al layer prior

to PECVD. The alternative I used was to compromise and use a somewhat lossier

SiNx film with lower stress. In this case I used a film which was fabricated by a

different PECVD tool than I used for the micro-V samples described in Chapter

5. The tool was an Oxford Plasmalab System 100 in the Nanofab Lab in the Kim

Building (University of Maryland - College Park). This system has a 13.56 MHz

driven parallel plate reactor and offered frequency mixing (modulation) with a kHz-

range drive. The resulting film had a 263 MPa compressive stress.

Another challenge compared to the fabrication of devices in Chapter 5, was

that I needed to use a narrower inductor linewidth. This left only a small area for

the vias that required a much more accurate reticle alignment and careful etch rate

calibrations for the Al and SiNx patterning.

I fabricated the devices on a 3-inch C-plane sapphire wafer. After Ar ion-
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mill cleaning the substrate in the sputtering chamber, a 100 nm thick Al layer was

sputtered in the sputtering system described in section 4.3. I used a DC sputtering

power of 400 W (DC) and an Ar pressure of 5 mTorr for 20 minutes and 30 s. After

defining a photolithographic resist on the base metal layer, Al was wet-etched to form

the ground plane, the CPW center, bottom capacitor plates and the spiral inductor

(except the crossover bridge shown in Fig. 6.3a). For wet-etching I used J.T.Baker

Aluminum Etch 80-15-3-2. After removing the PR, the wafer was inserted in the

Oxford Plasmalab System 100 and a 125 nm thick SiNx film was deposited. After

completing photolithography, I performed an RIE process to remove SiNx at the

location of the vias using a Plasma-Therm 790 Series RIE system. For the RIE, the

flow rates of SF6 and O2 were 20 sccm and 5 sccm respectively, and the processing

chamber pressure was kept at 75 mTorr. The wafer was then transferred back to the

sputtering chamber, where it was exposed to a high-voltage Ar ion-milling process

(described in Section 5.5) with a beam voltage of 800 V for 1 minute. Without

removing the wafer from vacuum, I then sputtered a 200 nm thick Al layer. This was

then patterned to form the vias, crossover bridges, DC bias lines and top capacitor

plates. After PR removal, I executed a final photolithography step followed by an

RIE process to remove SiNx everywhere except for the areas covered by the top

metal plate and within approximately 1 µm from them. An optical image of a

tunable micro-V resonator is shown in Fig. 6.5.
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Figure 6.5: Optical image of the tunable micro-V resonator with Qe ' 10000.

6.5 Device measurement

In order to tune the TLSs in a controlled way, the DC bias circuit had to

provide a relatively stable Vbias. Ideally, the noise voltage amplitude Vnoise should

be much smaller than that required to shift the energy of a TLS by an amount

comparable to the resonator bandwidth B. Quantitatively, this translates into

Vnoise � hBd/p, (6.3)

where d is the separation between the capacitor plates and p is the dipole moment

of the TLS. For a device with a resonance frequency of ω0/2π = 6 GHz, Qe = 10000,

Qi = 1000, d = 125 nm and using p = 7.9 Debye (estimated in a previous study of
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Figure 6.6: Filtering of the DC bias line for the tunable micro-V measurement. The
DC voltage source is a Yokogawa GS200 and the preamplifier is a Stanford Research
Systems SR560.

SiNx [83]), I obtain Vnoise � 20 µV. This means that the noise voltage amplitude

from 0 to a few GHZ should not exceed a few microvolts. If the noise has a white

spectrum, this implies
√
SN(f) . 200 pV/

√
Hz.

In order to suppress noise on Vbias, I tried modifying the filtering on the DC

bias line. The final version of the setup I used is shown in Fig. 6.6. The DC voltage

source was connected to a SR560 preamplifier that had an integrated tunable low-
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pass filter (I used a cutoff frequency of 30 Hz) and operates on internal battery for

better isolation from 60-Hz noise. I did not use amplification, i.e. the gain was 1.

The output of the preamplifier goes to a low-pass RC filter with a cutoff frequency

of ∼30 Hz which is installed on the 3 K plate to reduce the Johnson noise. Next

the DC line goes through a 3 dB microwave attenuator installed on the 0.7 K plate

to thermalize the center conductor carrying the DC voltage and reduce Johnson

noise from higher temperature stages. The series and parallel resistances of the 3

dB attenuator at room temperature were 8.5 Ω and 142 Ω, respectively. Finally, a

copper powder low-pass filter with cutoff frequency of ∼100 kHz was installed at the

10 mK plate to filter noise from higher-temperature stages. The DC voltage was

carried by UT-85 coaxial cables from the DC source to the copper powder filter.

I used a Cu twisted pair cable from the copper powder filter to the device input

for better filtering of the high-temperature noise. With this arrangement, the DC

voltage Vbias across the capacitor is a fraction of the DC voltage at the source Vsource.

For the setup of Fig. 6.6 I found Vbias = 0.01507Vsource.

I note that if Vnoise & hBd/p, some TLS-induced features will not appear

clearly in an S21 measurement. I also note that because the coupling to a TLS

depends on the dipole angle θ with respect to the electric field, for a given TLS

dipole size, TLSs with θ . θmin where θmin is an angle depending on Vnoise, will not

clearly appear in the data. In other words, high Vnoise can hide some TLSs in the

spectroscopy.

Figure 6.7 shows some of my first spectroscopy results on the device Tunable

Micro-V -1 when I did not use a preamplifier, filter or attenuator and the DC voltage
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Figure 6.7: (a) False-color plot of measured |S21| of the Tunable Micro-V -1 versus
frequency f and DC bias voltage Vbias without filtering the DC line for −100 mV ≤
Vbias ≤ +100 mV. Light copper and black correspond to |S21| = 1.16 and |S21| =
0.77, respectively. (b) Dashed curve shows theoretical fit to a hyperbola highlighted
in (a).
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source was directly connected to the sample through coaxial cables. Most of the

TLS-like features appear as fairly straight tracks entering and exiting the relatively

broad cavity resonance (the black horizontal portion in the middle of the plot).

These straight tracks can be approximated as asymptotes of hyperbolas described

by Eq. 6.2 and are the direct result of the TLS energies changing with Vbias.

In addition to the straight tracks, several hyperbolas can also be seen (most

clearly, one on the top left in Fig. 6.7a). The hyperbolas correspond to TLSs with

∆0
∼= E ∼= ~ωc where ωc corresponds to the bare cavity mode. For these TLSs, one

can approximate ∆0 as the energy corresponding to the minimum frequency. By

fitting the hyperbolas to Eq. 6.2, I can extract the projection of the TLS dipole

moment on the electric field (p cos θ), and the asymmetry energy ∆′ at Vbias = 0. I

show a fit to a hyperbola in Fig. 6.7b. The parameters of the fit are ∆0/h = 6.029015

GHz, ∆′|Vbias=0 = 1.23 µeV and p cos θ = −0.113 Debye. If I assume p = 7.9 Debye

from Ref. [83], then θ = 1.009 × π/2. This dipole angle is remarkably close to π/2

suggesting that significant Vnoise may be suppressing the TLSs with a similar dipole

moment but a smaller dipole-field angle which are more sensitive to Vbias.

I note that a wide-range Vbias sweep performed using large Vbias step size can

also miss TLSs with dipole-field angles smaller than a certain angle as their frequen-

cies may sweep through the measurement bandwidth from one step to the next.

Figure 6.8 shows a different bias sweep on the device Tunable Micro-V -1 in a

smaller range than that of Fig. 6.7a but for the same wiring arrangement. There

are no clear hyperbolas or TLS features “crossing” the cavity resonance. The reason

is that Eq. 6.3 does not hold.
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Figure 6.8: False-color plot of measured |S21| of the Tunable Micro-V -1 versus fre-
quency f and DC bias voltage Vbias without filtering the DC line for −50 µV ≤
Vbias ≤ +50µV. Light copper and black correspond to |S21| = 0.59 and |S21| = 0.40,
respectively.

It is interesting to note that, however, several clear horizontal features can

be seen in the spectroscopy. Most likely, these are either induced by TLSs with

dipole-field angle extremely close to π/2, or they are due to TLSs in the crossover

capacitors. Given the quantitative unlikeliness of the former and the fact that such

TLSs would produce very weak spectroscopic features in S21, I suspect that most if

not all of these horizontal features are due to TLSs in the crossover capacitors. As

I described in Section 6.3, these TLSs can produce strong features in S21 but they

are insensitive to Vbias and as a result, Vnoise does not smear out their transitions or

hide them in the S21 measurement.

After I realized that Vnoise could be affecting the visibility of the TLSs, I
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Figure 6.9: (a) False-color plot of measured |S21| of device Tunable Micro-V -1 versus
frequency f and DC bias voltage Vbias after filtering the DC line for −30 mV ≤
Vbias ≤ +30 mV. Light copper and black correspond to |S21| = 0.62 and |S21| =
0.41, respectively. (b) Theoretical curves fit and superimposed on the measured
hyperbolas (15 total). The hyperbola in the highlighted box is shown in detail in
Fig. 6.14a.
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Figure 6.10: False-color plot of measured |S21| of device Tunable Micro-V -1 versus
frequency f , and DC bias voltage Vbias or time t, showing DC-tuning versus stability
test. The white dashed line shows the point at which Vbias was set to zero.

warmed up the system and installed the setup shown in Fig. 6.6 to improve the

filtering on the DC line. The Tunable Micro-V -1 was remeasured and Fig. 6.9a

shows the result of a wide-range DC sweep. Although the range was approximately

1/3 of that in Fig. 6.7a, a much larger number of TLS features as well as more

hyperbolas were observed. I note however that the features do not appear as clearly

as those in Fig. 6.7a, which could be because many weak TLSs were not visible in

the earlier sweep due to larger Vnoise in the earlier sweep.

In order to examine drift in the measurements I compared the DC tuning

results to results of a “stability” test, which involved measuring the transmission

while Vbias was fixed. This is shown in Fig. 6.10, where Vbias was initially swept, and
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then set to zero. The difference in the left and the right parts of this figure shows

how TLS-crossings can be distinguished from instability in the cavity resonance. I

also note that both Figs. 6.9a and 6.9b show a prominent horizontal feature which,

almost certainly, is due to a TLS in the crossovers.

6.6 Spectroscopy analysis

Figure 6.11a shows a high-resolution sweep of the device Tunable Micro-V -1

in a later cooldown than Fig. 6.9a. The hyperbolas are fit in Fig. 6.11b. Together

with the hyperbolas from Fig. 6.9b and a third set of spectroscopy data (shown

in Fig. 6.12), I was able to identify 60 TLSs with ∆0
∼= ~ωc. A histogram of the

number of observed hyperbolas Nw versus p| cos θ| corresponding to these TLSs is

plotted in Fig. 6.13a. Table 6.2 shows the fit parameters for all 60 TLSs I fit. I note

that this histogram shows a weighted TLS number Nw due to the fact that TLSs

with larger p| cos θ| will have a higher chance to appear in the spectroscopy data as

a result of Eqs. 6.1 and 6.2. In other words, the bias sweep range between Vbias,min

and Vbias,max corresponds to a larger asymmetry energy range for TLSs with larger

p| cos θ|, and I can take N = (p| cos θ|max/p| cos θ|)×Nw as the number distribution

of p| cos θ| by removing the energy-range dependence on p| cos θ|. The histogram of

N is shown in Fig. 6.13b.

If I assume that the electric dipole moment of the TLSs has no preferred

direction, the distribution of cos θ would be uniform and hence 〈| cos θ|〉 = 1/2.

Using this, from the histogram of Fig. 6.13b I can find an effective (mean) value for
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Figure 6.11: (a) False-color plot of measured |S21| of device Tunable Micro-V -1
versus frequency f and DC bias voltage Vbias after filtering the DC line for −30mV ≤
Vbias ≤ +30 mV. Light copper and black correspond to |S21| = 0.58 and |S21| =
0.40, respectively. (b) Theoretical curves fit and superimposed on the measured
hyperbolas (30 total).
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Figure 6.12: (a) False-color plot of measured |S21| of device Tunable Micro-V -1
versus frequency f and DC bias voltage Vbias after filtering the DC line for −30mV ≤
Vbias ≤ +30 mV. Light copper and black correspond to |S21| = 0.61 and |S21| =
0.36, respectively. (b) Theoretical curves fit and superimposed on the measured
hyperbolas (15 total).
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the dipole size as peff = 〈p〉 = 3.4 Debye.

However, examination of the histogram in Fig. 6.13b suggests that there are

more than one TLS dipole sizes: a distribution of large number of TLSs possibly with

a triangular distribution for p| cos θ| . p1 = 3.25 Debye, and a uniform distribution

of TLSs with a dipole size of p = p2 ' 8 Debye, as shown in Fig. 6.13b. In a

previous dipole size measurement using Landau-Zener population control of TLSs,

a dipole size of 7.9 Debye was extracted for SiNx [83], a value very close to p2.

I fit a combination of a triangular function and a Heaviside step function to

the histogram of Fig. 6.13b.I took p2 = 8.25 Debye corresponding to the central

value of the rightmost bin in the histogram, and I ignored the distribution of TLSs

with p| cos θ| ≤ 1 Debye for the fitting as these TLSs are hardly visible in the

spectroscopy because their coupling to the cavity is relatively small. I also weighted

the fit according to the contribution of each dipole size to the loss tangent (see Eq.

6.4). The optimum fit gave p1 = 3.32 Debye.

I also attempted to calculate the loss tangent based on the exact TLS distri-

bution data in Table 6.2. I used [108]

tan δ0 =
π

εrε0

~ω
hBV

2d

2(Vbias,max − Vbias,min)

60∑
i=1

(p| cos θ|)i, (6.4)

similar to Eq. 2.31 and considering the weighted style of the measurement discussed

above. Here V and d are the total dielectric volume and dielectric film thickness,

respectively, and the bandwidth B was calculated from the minimum and maximum

∆0 extracted from the spectroscopy data. Equation 6.4 yielded tan δ0 = 7.8× 10−4.

I also extracted a loss tangent from an average of 2001 resonance lineshapes
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Figure 6.13: (a) Histogram of the observed (weighted) distribution Nw of p| cos θ|
for 60 hyperbolic trajectories from three spectroscopy sweeps performed in sep-
arate cooldowns. (b) Histogram of the distribution N of p| cos θ| where N =
(p| cos θ|max/p| cos θ|) × Nw is proportional to the dipole distribution in the ma-
terial. Black dashed line shows optimum fit to data from a triangular distribution
of relatively small dipole sizes with p| cos θ| < p1 and a uniform distribution of a
dipole size p = p2. Inset shows an average over 2001 resonance lineshapes (blue)
and optimum fit (red dashed curve).
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in the spectroscopy of Fig. 6.11a (see the inset of Fig. 6.13b). I used the Dual-

Cavity Model (see Section 3.2.2) and extracted tan δ′0 = 3.8×10−4, which is slightly

smaller than tan δ0 obtained from the histogram of Fig. 6.13b. I note that since

the measurement is performed at an average photon number of n̄ ' 0.4 in the

cavity at not really at a low-power limit, tan δ′0 only represents a lower limit for

tan δ0, in agreement with tan δ0 obtained above. I also note that in the limit of

large number of TLS-induced hyperbolic trajectories detected in the spectroscopy,

the above-mentioned method using the p| cos θ| distribution gives an exact value for

tan δ0.

I also attempted to analyze one of the strongest-coupled TLSs that appeared

in my spectroscopy data, highlighted in Fig. 6.9b and re-plotted in Fig. 6.14a. I

used Eq. 5.18 combined with Eq. 6.2 where the former models the CQED strong

coupling to the TLS and weak coupling of the bath of TLSs to the cavity, and

the latter describes tuning of ωTLS due to Vbias. I wrote a LSM fitting code which

allowed for fitting the 3D data of Fig. 6.14a, with the fitting parameters g, p| cos θ|,

∆0, ∆ and the parameters shown in Fig. 5.2. I used the data for a fixed Vbias to

find the initial Monte Carlo values for some of the fitting parameters.

The optimum fit is shown in Fig. 6.14b. The key extracted parameters were

∆0/h = 6.024540 GHz, ∆′|Vbias=0 = 17.64 µeV, g/2π = 753 kHz, p| cos θ| = 5.977

Debye and T2 = 2/γTLS = 313 ns where the latter is the TLS coherence time

assuming negligible dephasing. From the extracted g and detuning, I was able to
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Table 6.2: Extracted key parameters for 60 TLSs.
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extract the low-power Jaynes-Cummings eigenenergies

E± =
1

2
~(ωc + ωTLS)± ~

√
g2 + (∆ω/2)2, (6.5)

which are shown by the white dashed curves in Fig. 6.14b.

From g = (∆0/E)p ·E/~ (see Eq. 2.33) and the extracted values for ∆0, ∆, g

and p| cos θ|, I estimated the RMS electric filed within the dielectric as Erms = 25

V/m. I estimated another value for the electric field within the dielectric from Eq.

5.4 as E ′rms = ~
√
ωc/(2εrε0~V ) = 21 V/m (see also Eq. 5.20), in reasonably close

agreement with Erms. The difference between Erms and E ′rms can well be due to

ignoring the cross-over capacitors and stray capacitances in estimating E ′rms.

I note that this TLS is listed as TLS number 3 in Table 6.2. The extracted

value for p| cos θ| using the fully-quantum-mechanical approach (Fig. 6.14b) versus

the naive hyperbola model which ignores the TLS-cavity coupling (Fig. 6.9b), differs

by less than 1%. One important implication of this agreement is that the DC dipole

moment that produces the hyperbola shape as I tune the DC bias voltage Vbias is

consistent with the ac coupling g between the cavity and the TLS. That is, the

cavity is coupled to the TLS through its electric dipole moment.

6.7 Simulation of the results

In order to better understand the spectroscopy results, I simulated the trans-

mission S21 of the tunable micro-V device in the presence of a distribution of TLSs.

As the first step in the simulation I generated a random distribution of TLSs in

asymmetry energy (∆), tunneling energy (∆0) and dipole-field angle (θ). I started
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Figure 6.14: (a) False-color plot of measured |S21| vs. frequency f and bias voltage
Vbias showing avoided crossings due to a TLS with ∆0

∼= ~ωc. Light copper and
black correspond to |S21| = 0.60 and |S21| = 0.43, respectively. (b) Optimum fit to
data. White dashed curves show the extracted low-power Eigenenergies E+ and E−
of the Jaynes-Cummings Hamiltonian.

by assuming the distribution of each property according to the standard model of

TLSs, as discussed in Chapter 2.

First, the spectral spatial density of TLSs needed to be estimated using Eq.

2.31. For simplicity, I assumed two distinct dominant dipole sizes of p1 = 3 Debye

and p2 = 8 Debye. I took εr = 6.5 for SiNx and used tan δ0 = 3.8 × 10−4 which

was measured for this dielectric, and assumed that TLSs with p1 and p2 contribute

equally to the loss tangent. The total number of TLSs within the crossover capacitors

(V = 78 µm3) and energy band of Emin < E < Emax was calculated from Eqs. 5.24
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Figure 6.15: ∆-∆0 diagram showing simulated energy distribution of ∼ 700, 000
TLSs with p1 = 3 Debye and p2 = 8 Debye in bridge capacitors for Vbias,max = 30 mV.
The green dots represent TLSs that are taken into account for CQED interaction in
the simulation, and the TLSs in blue are ignored. The black curve corresponds to
E = ~ωc.

and 5.25 to get

N = P0V (Emax − Emin)

∫ ηmax

0

sec ηdη. (6.6)

I note that this number corresponds to TLSs in one quarter of the ∆-∆0 energy

diagram with ∆ defined as the absolute value of the asymmetry energy, ∆ ≡ |EL −
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ER|. In this case, one should assume a uniform distribution of cos θ between -1 and

1 for the TLSs. I note that, assuming both the AC and DC fields to be along the

z-direction, only the projection of p on the z-axis matters and the dynamics are

independent of the azimuthal angle.

However, if instead one defines ∆ ≡ EL − ER, then the N TLSs must be

distributed in two quarters of the ∆-∆0 energy diagram (each quarter having N/2

TLSs). In this case, cos θ must be uniformly distributed between 0 and 1. The TLSs

with −1 < cos θ ≤ 0 are already accounted for by the TLSs with negative ∆. TLSs

with a specific physical double-well asymmetry direction map to a positive cos θ,

whereas TLSs with the inverse asymmetry direction map to a negative cos θ.

I note that, however, either choice is physically acceptable and when dealing

with many randomly-distributed TLSs, rather than one or few TLSs, taking ∆ ≡

EL − ER together with −1 < cos θ ≤ 0 does not change the resulting S21.

For these simulations, I chose ηmax = 99π/200 and Emin/h = 10 MHz. I choose

Emax = ~ω0 +2pVbias,max/d to cover the maximum shifting range of the TLSs, where

Vbias,max was the maximum applied bias voltage for the given data set being analyzed.

Next, I distributed N TLSs uniformly in ∆ and logarithmically in ∆0 according to

Eq. 2.9. This distribution is shown in Fig. 6.15.

I also chose T1,min = 70 ns and 120 ns for TLSs with dipole sizes of p1 and p2,

respectively. I assigned relaxation rates to the TLSs according to γTLS = 1/T1 and

Eq. 2.24, and I neglected dephasing. The TLS-cavity coupling rate g was assigned

according to Eq. 5.20. I also set the resonator decay rate to γc = tan δ0/ωc =

10−5/ωc which approximately corresponds to the loss tangent associated with an
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Figure 6.16: (a) False-color simulation of |S21| from Eq. 5.16 with T1,min = 70 ns and
120 ns for distribution of TLSs with dipole sizes of p1 = 3 Debye and p2 = 8 Debye,
respectively. White Gaussian noise is added to |S21| to allow a better comparison
with data. Light copper and black correspond to |S21| = 0.53 and |S21| = 0.36,
respectively. (b) Same simulation data as in (a) with the hyperbolas that have
∆0
∼= ~ωc marked with blue, and with no gaussian noise added to |S21|.

aluminum coplanar resonator on sapphire. In other words, I assumed a constant

background loss of tan δ = 10−5 from weakly-coupled TLSs, and that all TLSs in

SiNx interact with the cavity based on CQED. Given a large number of TLSs, we

expect the resonator’s average resonance lineshape to be Lorentzian. To find S21, I
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used Eq. 5.16.

For a simulation of the data shown in Fig. 6.9a, I set −30mV ≤ Vbias ≤ 30mV.

For better comparison of simulation with data, I added white Gaussian noise to the

simulated |S21|, to produce a SNR similar to the experimental data. I also included

TLSs within the crossover capacitors and assumed that they are not sensitive to

Vbias. Figure 6.16 shows results from the simulation.

Examination of Fig. 6.16 reveals some interesting points. Qualitatively, the

simulation is very similar to the data. Clearly, an average Lorentzian-like lineshape

can be achieved by the CQED interaction of many TLSs with the cavity (even if

γc = 0), just as if a constant loss tangent was assumed for the resonator. Second,

despite the similarities between Figs. 6.16 and Fig. 6.9a, some significant differences

are noticeable. One major difference is that the hyperbolas (TLSs) with E ' ∆0

appear more clearly in the data than in the simulation. The reason may be that

the number of TLSs in the simulation is too few, or some parameters (e.g. T1,min)

are not estimated correctly, or a different distribution (e.g. triangular distribution)

must be considered for the TLSs with small values of p cos θ.

6.8 Conclusion

In this chapter, I presented results on a micro-V device (Tunable Micro-V -1)

that in addition to measurements of individual TLSs, allows for DC-tuning of the

TLSs. A DC electric field changes the asymmetry energy of the TLS double-well

potential, allowing tuning of the TLS transition frequency. This device was realized
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by incorporating a capacitor bridge in the resonator and using a relatively large

spiral inductor to reduce the electric field volume. To suppress noise on the DC-bias

line, several filtering stages were used.

I found that the measured microwave spectrum showed clear tracks entering

and exiting the cavity’s bandwidth. Most of these tracks were straight asymptotes of

hyperbolas generated by the CQED coupling of TLSs to the resonator, as discussed

in Chapter 5. For TLSs with tunneling energy ∆0 close to the resonator resonance

frequency, the minimum frequency of the hyperbola appears in the spectroscopy.

For these TLSs, one can accurately extract the asymmetry energy ∆ in the absence

of the DC field, the tunneling energy ∆0, and p cos θ, the projection of the dipole

moment on the electric field direction.

Analysis of 60 fitted hyperbolas in spectroscopy results from three DC-bias

sweeps on the device Tunable Micro-V -1 suggested at least two dipole sizes for

TLSs. One of the dipole sizes was in agreement with a recent ensemble study of

SiNx [83]. My ability to distinguish a distribution of dipole sizes may be due to the

inherent advantages of being able to measure p| cos θ| of individual TLSs compared

to ensemble measurements or individual measurements of (∆0/E)× p| cos θ|. It can

also be due to different types of defects in SiNx deposited using different recipes.

I note that this type of study could be performed on other amorphous di-

electrics. The combination of direct TLS-cavity coupling and DC-tuning of the

TLSs, can give us a deeper and more complete understanding of TLSs in amor-

phous solids.

Finally, I note that the study in this Chapter tests the double-well potential
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model for the TLSs, and confirms it to good accuracy. However, the presence of other

potentials including soft anharmonic single wells has been suggested for nanoscale

TLSs [115]. Further measurements using this device type may well reveal additional

insight into the nature of TLSs in SiNx.
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Chapter 7: TiN film growth at different RF-induced DC biases

7.1 Motivation

In recent years, superconducting titanium nitride (TiN) has become an impor-

tant subject of research because of its unusual properties when used in superconduct-

ing microwave resonators [116], superconducting qubits [117] and microwave kinetic

inductance detectors (MKIDs) [118]. Thin-film TiN has several characteristic make

it an attractive material for superconducting microwave devices, including:

(a) TiN films can show remarkably low loss at microwave frequencies. TiN su-

perconducting resonators with single-photon internal quality factors of Qi =

5× 106 have been reported [119].

(b) The critical temperature of TiN films can be tuned in the range 0 . Tc . 5 K,

with composition controlled by partial N2 pressure (or mass flow rate) during

deposition. This is useful for MKIDs because, in general, lower-Tc materials

are needed for sensitive detectors [118].

(c) The normal-state resistivity is relatively high, on the order of ρn ∼ 100 µΩ

cm [118].

(d) Due to relatively large resistivity, the London penetration depth is large and
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sufficiently thin TiN films show remarkably high kinetic inductance. Other

potentially useful non-linear effects can also be observed [120].

(e) TiN films are very hard and mechanically robust [118].

(f) TiN has a high corrosion resistance and stoichiometric TiN does not grow a

native oxide at room temperature when it is exposed to air [121].

Although TiN appears to be a promising material for certain applications in

quantum computing and astrophysics, there are some challenges. For example, many

of these applications require tuning the structural and low-temperature microwave

properties of the reactively-sputtered films. Previous work has shown that some of

these properties can be tuned by nitrogen (N2) flow [122], substrate temperature

[123, 124], sputtering chamber pressure, or distance between the target and the

substrate [119].

The overall goal of the work I describe here was to develop a TiN process

that was suitable for incorporating TiN in some future devices at LPS. In the first

stage of the TiN process development, I attempted to obtain a film with the right

visual properties, e.g. color (orange / brown) and shininess, which were indicators

that nitrogen was being incorporated into the film. During this stage, I mainly

adjusted the N2 flow during reactive sputtering in Ar. I used a 3”-diameter titanium

(Ti) planar sputtering target and DC sputtering power of 400 W and substrate

temperature of 500 ◦C in the sputtering chamber described in section 4.3. I found

that a film with the right color could be obtained by using nitrogen and argon (Ar)

flows of 10 sccm and 15 sccm respectively into the sputtering chamber. My approach

149



was based on a similar recipe reported by Sandberg et al. [125].

To my surprise the first films I deposited did not look shiny. This could

have been an indication that the films were amorphous or had µm-scale surface

nonuniformity. To fix this, I tried adding an RF bias to the substrate using RF

forward powers of 0 < PRF < 55 W during DC sputtering. This RF power induced

a DC voltage on the substrate which depended on PRF . Also, a higher PRF resulted

in a brighter plasma inside the processing chamber. I found that for RF-induced DC

bias of Vsub & 250 V on the substrate, the films look shinier with a slightly lighter

color (more orange than brown), indicating a change in their physical properties.

This result motivated me to perform a more detailed investigation of the effect of

Vsub on the properties of TiN at room- and millikelvin-temperatures [126].

The short-term goal of this study was to investigate TiN film composition

(elements and phases), stress, critical temperature, uniformity, kinetic inductance,

etc. as a function of the RF-induced DC bias during deposition. The long-term goal,

however, was to obtain low-loss TiN films with the desired electrical properties, and

to reduce the TiN-Si interface loss in TiN resonator circuits by functionalizing the

Si surface prior to TiN film deposition.

7.2 Resonator design

For this study, I designed a chip with three resonators coupled to a single

transmission line. One of the resonators (Res 3) was a lumped-element LC circuit

with a meandering inductor and an interdigitated capacitor (IDC). The other two
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Table 7.1: Table of TiN resonators with designed values for line width LW, line
spacing LS and resonance frequency f0.

Device label Device type LW (µm) LS (µm) f0 (GHz)

Res 1 quarter-wave 3 3 6.932

Res 2 quarter-wave 20 15 7.516

Res 3 lumped-element 10 10 7.941

resonators (Res 1 and 2) were quarter-wave resonators with significantly different

line width (LW) and line spacing (LS). According to a previous study, for a similar

resonator design, using smaller LW and LS increases the impact of surface loss on a

resonator’s internal quality factor Qi [127].

Table 7.1 summarizes the design values for LW, LS and the resonance frequency

f0 for the three designs. For Res 3, the LW and LS correspond to the IDC fingers

only. The frequencies in Table 7.1 were based on just the geometrical inductance,

i.e. the London penetration depth is assumed to be zero. The operating bandwidth

of the HEMT LNA was 4-8 GHZ, therefore, in order to account for possible shifts

in resonance frequencies due to a large kinetic inductance (Lk) of the TiN films, I

designed the resonators to have resonance frequencies in the upper part of this span.

Also, the resonance frequencies were designed to be about 0.5 GHz apart in order

to conveniently distinguish the resonators in the experiments. All three resonators

were designed to have Qe ' 1× 105. The layout of the devices is shown in Fig. 7.1.
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Figure 7.1: Layout of (a) Res 1, (b) Res 2, and (c) Res 3 from AWR Microwave
Office.

7.3 Fabrication

Two sets of samples where fabricated, each set containing 6 samples deposited

at different Vsub (see Table 7.2). The first set (TiN-only set) was made of TiN

films only. For the second set (hybrid TiN-Al set), the coplanar transmission line

was made of aluminum while the devices where made of TiN. This reduced the

kinetic inductance of the transmission line and enabled these chips to operate with a

matched input/output line. I describe the fabrication steps in the next two sections.

7.3.1 TiN-only design

I used 3-inch diameter float-zone silicon substrates with high-resistivity (>

20000 µΩ-cm) manufactured by Topsil. First, the substrates where dipped in an

HF solution to remove the SiO2 layer formed on the surface due to exposure to
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Table 7.2: Table of the fabricated TiN samples.

Sample label Fabrication set Vsub (V)

TiN-RF-65 TiN-only 0
TiN-RF-66 TiN-only 110
TiN-RF-67 TiN-only 175
TiN-RF-54 TiN-only 250
TiN-RF-60 TiN-only 325
TiN-RF-64 TiN-only 400
TiN-RF-72 Hybrid TiN-Al 0
TiN-RF-68 Hybrid TiN-Al 110
TiN-RF-75 Hybrid TiN-Al 175
TiN-RF-73 Hybrid TiN-Al 250
TiN-RF-74 Hybrid TiN-Al 325
TiN-RF-70 Hybrid TiN-Al 400

the atmosphere. From my previous low-temperature measurements on resonators, I

found that dipping the substrate in 49% HF for 30 s removed the substrate native

oxide more effectively than using 1% HF for 3 minutes. After HF-dipping, the sub-

strate was rinsed with DI water for less than 10 s and transferred into the sputtering

load-lock as quickly as possible, which was pumped out immediately to prevent for-

mation of a thick and lossy SiO2 layer. The time interval between taking out the

substrate from the HF solution to the beginning of pumping on the load-lock was

approximately 2 minutes.

After transferring the wafer to the CMS-18 sputtering chamber (see section

4.3), the chamber was pumped to ∼ 10−8 Torr and the PID temperature controller

was set to 500 ◦C and allowed to stabilize in about 30 minutes. Constant flow rates

of N2 (10 sccm) and Ar (15 sccm) were used, which resulted in a chamber pressure of
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Table 7.3: Magnitude of the RF-induced DC biases on the substrate Vsub, and
deposition times tdep as a function of the applied forward RF power PRF to the
substrate. All films were about 62 nm thick.

PRF (W) 0 4 10 20 37 52

Vsub (V) 0 110 175 250 325 400

tdep (min.) 29 34 40.5 39 41 39

approximately 4.3 mTorr with the main gate valve to the cryo-pump throttled. The

DC magnetron sputtering power of 400 W was used to sputter the 3-inch diameter

Ti target (purity: 99.995%). Before opening the substrate shutter, pre-sputtering

was performed for 1 minute without the RF-bias, and an additional 30 s with the

RF power applied to the substrate. The substrate shutter was then opened and TiN

was deposited to obtain 62 nm thick films. The target-substrate distance was about

20 cm.

The deposition time and the substrate DC voltage depended on PRF (see Table

7.3). Six samples were deposited using RF-induced DC bias magnitudes (Vsub) of 0

V (nominal), 110 V, 175 V, 250 V, 325 V and 400 V. I note that the sample with

Vsub = 0 V has no DC voltage due to PRF since no RF power was applied, but there

was a relatively small DC voltage on it as a result of the chamber plasma and the

sputtering gun voltage.

Once the deposition was finished, the wafer was taken out of the chamber
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and cooled down close to room temperature in the load-lock (no exchange gas was

used). I then patterned the wafers using my standard photolithography procedure:

resist coating using Fujifilm OiR 906-10 photo resist, pre-baking at 90 ◦C for 60 s,

exposure for 0.35 s, post-backing at 120 ◦C for 1 minute and developing in OPD

4262 developer for 40 seconds. the samples were then transferred into the ICP

tool described in Chapter 4, and etched for 2 minutes using a chlorine-based recipe

with the following parameters: BCl3 flow: 12.5 sccm, Cl2 flow: 2.5 sccm, Chamber

pressure: 3.5 mTorr, RIE power: 50 W, ICP power: 500 W. This recipe also etched

the Si substrate. However, etching for 2 minutes did not cause noticeable narrowing

of the lines.

After taking out the samples from the ICP tool, they were dipped in phosphoric

acid for 1 minute to remove chlorine residue [128]. Finally, the samples were cleaned

using my standard organic cleaning process, described in Chapter 4. After this

process, energy-dispersive X-ray spectroscopy showed no trace of Cl.

The above procedure completed the fabrication of the first set of six TiN

samples at the wafer level, which I refer to as the TiN-only set.

7.3.2 Hybrid TiN-Al design

Another set of six samples were fabricated using the procedure described in

section 7.3.1, plus an additional photolithography and deposition step (described

below) to create the CPW out of aluminum. I refer to this set of six samples as the

hybrid TiN-Al set. The purpose of the Al CPW is to reduce possible impedance
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mismatch from the sample box PC board CPW to the on-chip TiN CPW due to a

large kinetic inductance in the TiN films.

To avoid contact between Al and the TiN in the resonators, a lift-off process

was used to deposit Al on the TiN CPW transmission line only. The prepared TiN

wafer was coated with MicroChem LOR-5A photoresist (spun at 4000 rpm for 1

minute), and pre-baked for 1 minute at 195 ◦C. Then another layer of photoresist

(Fujifilm OIR-906-10) was spun at 3000 rpm for 1 minute, and pre-baked at 90 ◦C

for 1 minute. The wafer was then exposed (for 0.35 seconds), post-baked (at 120 ◦C

for 1 minute) and developed in OPD4262 (for 60 seconds).

The wafer was then transferred to the E-beam evaporation tool to deposit

100 nm of Al. E-beam evaporation is more directional than sputtering and reduces

fencing at the edges compared to the case if sputtering is used with a lift-off. The

samples where then soaked in MicroChem Remover PG (at 70 ◦C) for > 75 minutes.

Next, the wafer was soaked in a second Remover PG (at 70 ◦C) for about 10 minutes

to ensure that all the resist and the Al above it was lifted off. The wafer was cleaned

using my standard organic cleaning process.

After the lift-off process, SEM imaging and profilometry confirmed that no

fencing occurred on the edges. Figure 7.2 shows optical images of the three finished

hybrid TiN-Al resonators.
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Figure 7.2: Optical images of the hybrid TiN-Al resonators: (a) Res 1 (b) Res 2 (c)
Res 3.

7.4 Structural and compositional properties

Several structural and compositional properties of the unpatterned TiN films

sputtered with different Vsub were investigated as part of the process development,

as I describe below.

Crystalline structure

C. Richardson from LPS used X-ray diffraction (XRD) to determine the crys-

talline structure and phases of the deposited films. A θ-2θ scan in the range 27◦-60◦

was performed on the unpatterned samples (see Fig. 7.3a). All six films showed a

Si peak at 33◦-34◦ due to the substrate. For the Vsub = 0 V film, XRD indicated

the presence of α-Ti, TiO2 and TiN with a texture of (111) and (200) orientations.
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For the Vsub = 110 V film, weak peaks from both (111) and (200) planes indicated

a lack of dominant crystal orientation and possibly an amorphous microstructure.

The presence of the (111) direction for Vsub ≤ 110 V could be due to lower strain

energy from this phase [129]. For films with Vsub ≥ 175 V, the (111) peak disappears

and the δ-TiN (200) peak becomes dominant as Vsub is increased. These samples

show only a small peak due to the tetragonal phase, Ti2N, which is a normal con-

ductor. Finally, for the Vsub = 400 V film, the (200) peak broadened and reduced

in intensity.

Film stress

The film stress was measured for the six TiN wafers before patterning. This

required making two measurements on each wafer: once before the film deposition to

measure the initial substrate deflection, and one after the deposition to measure the

combined substrate-film deflection. Details on the stress measurements are discussed

in Section 4.3.

The results of the stress measurements are shown in Fig. 7.3b where the film

stress S is plotted as a function of Vsub in blue. The green curve shows the δ-TiN

(200) peak height normalized to the background value from the XRD measurements.

The results indicate that stress is tunable in a wide range - from slightly tensile

(negative stress) to highly compressive (positive stress). Also, this data shows a

strong correlation between stress and the changes in crystal orientation.
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Figure 7.3: From Ref. [126] (a) XRD counts N versus angle 2-θ for films with
different Vsub. (b) Film stress S versus Vsub showing correlation with the δ-TiN
(200) phase.
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Table 7.4: Elemental concentrations, superconducting critical temperature Tc and
resistivity ρ for sputtered TiN films at different Vsub. The XPS elemental composi-
tion was obtained at 30 nm below the TiN film surfaces.

Vsub (V) Ti (at. %) N (at. %) O (at. %) C (at. %) Tc (K) ρ (µΩ-cm)

0 47.9 44.7 7.2 0.2 4.12 436

110 47.8 47.5 3.7 0 4.37 96

175 49.7 50.1 0.1 0 4.36 64

250 49.3 50.7 0 0 4.45 29

325 50 50 0 0 4.58 22

400 50 50 0 0 4.35 32

Elemental composition

E. Lock at the Naval Research Laboratory performed sputter elemental depth

profiles using a K-Alpha X-ray photoelectron spectroscopy (XPS) system. Figures

7.4 and 7.5 show the atomic percentage of titanium, nitrogen, oxygen, carbon and

silicon as a function of the sputter-etch time for all six samples. Table 7.4 gives the

elemental concentrations in 30 nm depth inside of the films.

Although significant carbon concentration was found on the surfaces of the

films, almost no carbon was found in the bulk. The carbon on the surfaces is

believed to be due to exposure to air. For the films with Vsub = 0 V and Vsub = 110

V, oxygen content generally decreases as a function of depth, suggesting diffusion
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Figure 7.4: XPS results for TiN films with (a) Vsub = 0 V (TiN-RF-65) (b) Vsub = 110
V (TiN-RF-66) (c) Vsub = 175 V (TiN-RF-67) (d) Vsub = 250 V (TiN-RF-54) (e)
Vsub = 325 V (TiN-RF-60) (f) Vsub = 400 V (TiN-RF-64). Courtesy of E. Lock,
Naval Research Laboratory.
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Figure 7.5: XPS depth profiles showing atomic-percent concentration of (a) carbon
(b) nitrogen (c) oxygen (d) silicon and (e) titanium for six sputtered samples (TiN-
RF-65, TiN-RF-66, TiN-RF-67, TiN-RF-54, TiN-RF-60 and TiN-RF-64). Courtesy
of E. Lock, Naval Research Laboratory.
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from the atmosphere into the film via grain boundaries. For the films with Vsub > 110

V, negligible oxygen was detected in the bulk, probably because the films were denser

with fewer voids and open structures for oxygen diffusion [130].

Resistivity

The room-temperature resistivity ρ was measured using a 4-point probe (cour-

tesy of H. M. I. Jaim and J. A. Aguilar). The variation in ρ was approximately 2%

across a single wafer for all measured wafers, and about 2% for different films sput-

tered at the same Vsub. There was a strong correlation between the resistivity at

room temperature and oxygen content as shown in Fig. 7.6. The highest resistivity

was 436 µΩ-cm observed in the 0 V bias film which had 7.2% oxygen at 30 nm

below the surface. As Vsub was increased, a gradual reduction in oxygen content

and resistivity was observed. When the oxygen concentration at 30 nm reached 0%,

the resistivity dropped to approximately 28 µΩ-cm, approximately 50% above the

bulk crystalline TiN value of 18 µΩ-cm [131]. I note that these observations are

consistent with previous reports [130].

Uniformity of thickness and index of refraction

The uniformity of the film thicknesses and the complex indices of refraction

ñ = n+ ik were measured (courtesy of Y. Rosen) by broadband spectrophotometry

using the N&K analyzer described in section 4.3. The thickness across a 3-inch

wafer showed a relative standard deviation of less than 2% indicating very uniform
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Figure 7.6: Correlation between resistivity and oxygen content for different films
(from Ref. [126])

films. Also, the relative standard deviation in n and k was less than 5% and 2%,

respectively.

7.5 Low-temperature properties

This section includes the measurement of critical temperature Tc of the films

sputtered with different Vsub, as well as some results from millikelvin microwave

measurements.
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Critical temperature

The critical temperatures Tc of the films were measured on small diced sections

of the wafer using a probe which was dipped in liquid 4He. By pumping on 4He, tem-

peratures of approximately 1 K could be reached. Similar to the room temperature

measurements, a 4-point measurement technique was used. The Tc was measured

using a 90%-resistance criteria. Table 7.4 includes the Tc for the films with different

Vsub. I note that increasing Vsub caused Tc to increase slightly, but Tc was generally

in the range 4 K < Tc < 4.5 K. By comparing Tc of the samples taken from the

centers and edges of the wafers, it was found that Tc varied by less than 2% across

the 3-inch wafers, independent of Vsub. I note that a previous experiment using a

different growth method showed a Tc variation of ±15% across a 3-inch wafer [132].

Quality factors

After cooling to ∼20 mK the resonance frequencies of all the resonators were

found to be significantly lower than the design values given in Table 7.1 due to a high

kinetic inductance. This caused some complications. In particular, it was difficult

to identify which resonator produced which resonance as there was a possibility of

shifts in the order of resonance frequencies.

Regardless of the resonator type, all resonators on films with different Vsub

were measured and analyzed. Each resonator transmissions S21 curve was fit to the

Dual-Cavity Model described in section 3.2.2, using the LSM method. All resonators

showed single-photon internal quality factors of 1 × 105 . Qi,0 . 3 × 105. As an
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example, Fig. 7.7a shows Qi versus the average photon number n̄ for resonators Res

1, Res 2 and Res 3 which were made from the Vsub = 250 V film (TiN-RF-54). The

curves are labeled according to the best guess as to which resonator was responsible.

I also fit the characteristic loss tangent tan δ = 1/Qi versus the electric field

amplitude for all resonators to theory to extracted the limiting low-power value.

The model that I used was a modified low-temperature version of Eq. 2.35, i.e.

1

Qi

=
1

Qi,0

1(√
1 + (E/Ec)

2

)1−β . (7.1)

Here β is a variable that allows for a weaker E-dependence than E−1 in the high-

power limit. While the standard TLS theory described in Chapter 2 predicts β = 0,

all the TiN resonators showed 0.7 . β . 1, indicating a shallower slope (than the

predicted slope of −1) on a logarithmic plot of loss tangent versus E. This could

be due to an unusual TLS distribution or a loss mechanism producing a significant

background loss, or possibly due to a TLS-related effect not included in the standard

TLS theory.

As an example, Fig. 7.7b shows 1/Qi versus the electric field amplitude E

for Res 2. This film had Vsub = 250 V from the TiN-only design. I performed the

fitting using the LSM method and the theory described by Eq. 7.1. The extracted

parameters were Qi,0 = 3.2 × 105 and β = 0.71. I note that this extracted Qi,0

represents all internal loss mechanisms including the TLS-induced loss.

In order to help me distinguish the resonators for the hybrid TiN-Al samples,

I shorted out the interdigitated capacitor of Res 3 by wire-bonding the capacitor

fingers. This allowed me to clearly distinguish Res 1 and Res 2 in the experiments.
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Figure 7.7: (a) Internal quality factors Qi versus the average number of photons
n̄ for three resonators made from the Vsub = 250 V film (TiN-RF-54). (b) Loss
tangent 1/Qi versus electric field amplitude E applied to the TLSs for Res 2, with
theoretical fit to data (red curve).
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The TLS-induced loss tangent was extracted using the temperature dependence of

the resonance frequencies. For this purpose, resonance frequencies of Res 1 and

Res 2 were measured in the range 0.03 < T < 1.3 K. The fractional frequency shift

versus temperature for the resonators made from the Vsub = 400 V film (TiN-RF-70)

are plotted in Fig. 7.8a. Both resonators were measured at the same input power,

which corresponded to less than about 50 photons in the resonator.

The increase in frequency in the low-temperature part of the data, T < 0.25

K, is believed to be a TLS-related effect. The TLS-induced fractional frequency

shift is given by [80]

∆f

f0

=
1

πQi,TLS

[
ReΨ

(
1

2
− ~ω

2iπkBT

)
− log

~ω
2πkBT

]
. (7.2)

The logarithmic term in Eq. 7.2 is dominant at low temperatures, and the term con-

taining the digamma function Ψ is negligible in this regime. The low-temperature

fits are shown more clearly in Fig. 7.8b. I note that the resulting internal quality fac-

tors in the fits are solely due to TLSs, and in this temperature regime the frequency

shift is believed to be a purely TLS-induced effect. The fits yielded Qi,TLS = 3×105

and Qi,TLS = 1 × 106 for Res 1 and Res 2. This is in qualitative agreement with

our expectations. Given the larger line-width and line-spacing of Res 2 compared to

those of Res 1, the fractional filling factor of the TLS-containing surfaces is smaller

in Res 2, resulting in a higher Qi,TLS. Of course, this only accounted for a portion

(approximately 50% to 90%) of the total loss seen in these devices. There might be

additional losses due to coupling to low-Q sample box modes which can be reduced

by improving the sample box design.
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Figure 7.8: From Ref. [126]. (a) The measured fractional frequency shift for Res 1
and Res 2 as a function of the temperature for the TiN-RF-70 sample with Vsub =
400 V (courtesy of A. Ramanayaka). Red dashed lines are fits to high and low
temperature theory. (b) Detailed view of low temperature frequency shift data
showing non-monotonic behavior of fractional frequency shift at low temperatures.
Red dashed curves are fits to the TLS-induced frequency shift.
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Kinetic inductance

The thickness of the TiN films in all fabricated samples was about 62 nm,

which is much smaller than the reported London penetration depth for TiN films

(λ = 250 nm - 700 nm) [116]. Therefore, as mentioned before, all films showed

significant kinetic inductance, and this made it hard for me to identify which of the

resonators was creating a given resonance.

The kinetic inductance fraction α = Lk/Ltot denotes the fraction of the total

inductance Ltot that is due to kinetic inductance Lk. In order to extract α, the

fractional frequency shift was fit to a model that combines the low-temperature

TLS-induced effects (mentioned above) and the Mattis-Bardeen formula [133],

λ(T )− λ(0)

λ(0)
=
Lk(T )− L(0)

L(0)
=

√
π∆s

2kBT
exp (−∆s/kBT ) . (7.3)

Here ∆s is the superconducting energy gap (not to be confused with the TLS asym-

metry energy). The fit was performed in the range 0.03 < T < 1.3 K (see Fig.

7.8a). In the fitting procedure, the TLS contribution was kept unchanged from

that described above. The fit yielded a kinetic inductance fraction of αMB = 47%

for Res 1 and 23% for Res 2. The fit also yielded a superconducting energy gap

2∆s/kBTc = 4.0 (with Tc = 4.32 K), which was a bit high compared to the weak-

coupling BCS values.

The simulated resonance frequencies of Res 1 and Res 2 (assuming λ = 0)

are listed in Table 7.1. An approximate value for α can also be found from the
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measured- and simulated resonance frequencies, fmeas and fλ=0, as [80]

αapprox = 1−
(
fmeas
fλ=0

)2

. (7.4)

Eq. 7.4 yielded αapprox = 70% and 29% for Res 1 and Res 2 respectively. However,

I note that αapprox is a good approximation of α only if the geometric inductance,

Lg = Ltot − Lk, is well-known and does not depend on the penetration depth. This

is consistent with some simulation data [80] but is not generally true [134]. Here we

assumed that the geometric inductance does not differ from the value obtained from

a simulation of the resonator treating the superconductor as a perfect conductor.

Res 2 has a significantly smaller α due to a significantly larger linewidth compared

to the 2D screening length [134]. Res 2 also has a smaller Lg, and therefore I expect

αapprox to be a better approximation for αMB compared to the case of Res 1.

Finally, I note that the film with Vsub = 110 V (TiN-RF-66) showed the largest

αapprox, with αapprox = 85%. This unusually large kinetic inductance might be due

to possible nonlinear effects other than the usual contribution from low superfluid

density, including for example grain boundaries which create weak links [120].

7.6 Conclusion

In this chapter, I discussed my work on TiN films, including effects on the film

properties produced by the RF-induced DC voltage (Vsub) on the substrate during

reactive sputtering. I showed that several structural properties (crystallography,

stress, resistivity, etc.) can be tuned with the substrate DC bias.

Most importantly, the film stress was related to the TiN (200) crystalline
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phase, which in turn could be tuned with Vsub. Also, a strong correlation between

resistivity and oxygen content was observed. The TiN films deposited with small

DC bias voltages showed large room-temperature resistivity and high kinetic induc-

tance, making them potentially attractive for detector applications. Furthermore,

the deposition conditions resulted in highly uniform films (across the wafer) in terms

of the thickness, resistivity, critical temperature and complex index of refraction.

Two sets of coplanar resonators were fabricated. One was made from TiN

films only, while the other was based on a hybrid TiN-Al design. Low-temperature

measurements of these resonators revealed relatively high internal quality factors

(Qi) and a large kinetic inductance fraction. These parameters where extracted by

measuring the resonator frequency shifts as a function of the temperature.
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Chapter 8: Perimeter effects in ALD-Al2O3 trilayer resonators

8.1 Motivation

Aluminum is currently the most commonly used superconductor in qubit cir-

cuits. This is mostly due to the prevalence of aluminum / aluminum oxide / alu-

minum Josephson junctions (JJs) as aluminum oxide can be formed in a controlled

way by thermal oxidization to create suitable tunnel barriers. Also, native oxide

forms very rapidly on surfaces of aluminum that are exposed to air. Although

aluminum oxide is a crucial dielectric for the superconducting quantum computing

community, regardless of whether aluminum oxide occurs in a JJ barrier or as a

surface native oxide, its presence can cause qubit decoherence because it contains

nanoscale two-level systems.

More than 30 years ago, it was suggested that OH groups in oxides act as

charged TLS defects [135–138]. Some of these experiments showed two distinct

dipole sizes in silica that contain OH groups, with dipole moments differing by a

factor of 6. The larger dipole size was associated with rotation of the proton in OH−,

while the smaller dipole size was assumed to be intrinsic to silica [138]. In another

study, it was suggested that hydrogenated cation vacancy defects form a significant

density of GHz frequency TLSs in alumina which create a dipole moment between
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adjacent potential energy minima of the hydrogen atom [139]. More recently, hydro-

gen concentration measured by secondary ion mass spectrometry (SIMS) was found

to correlate with low-temperature microwave oxide dielectric loss [101]. Currently,

hydrogen defects are commonly believed to be the dominant cause of microwave loss

in oxides at low temperatures.

Atomic layer deposition (ALD) [140] is a thin film deposition method that al-

lows for mono-layer thickness control and results in extremely uniform films. In this

method, gas precursors enter the deposition chamber in a sequential manner, caus-

ing alternative self-limiting chemical reactions that lead to layer-by-layer deposition

of a film.

The ability to achieve a controlled uniform thickness suggests that ALD-grown

alumina might be attractive for JJ barriers in qubit circuits. For this purpose, in-

situ trilayer fabrication must be employed, where the JJ electrodes and its tunnel

barrier are deposited without breaking the vacuum. This would be essential to

prevent atmospheric contaminants such as water from being incorporated into the

oxide layer.

In this Chapter, I introduce a set of trilayer resonators designed to study

atmospheric contamination effects in ALD-grown alumina. These devices can help

us better understand the formation of OH defects in this material by air-exposing

different cross-sectional areas of the dielectric.
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Figure 8.1: AWR Microwave Office layout for five resonators with different capacitor
perimeters. The perimeter lengths P are (a) P1, (b) 2P1, (c) 4P1, (d) 9P1 and (e)
12P1 where P1 = 240 µm. The bottom (base) metal layer is shown in light green,
while the top (capacitor) plate is shown in dark green. The transmission line is 10
µm wide with 5 µm spacing with the ground plane.

8.2 Resonator design

For this study I designed a set of five microwave resonators with parallel-plate

capacitors with somewhat unusual looking top capacitor plates (see Fig. 8.1). The

devices were designed to have approximately identical capacitances and dielectric

volumes. However, the “perimeter” of the trilayer capacitor was different for each

device. The different capacitor perimeters led to different dielectric cross-sectional

areas on each device being exposed to air. In some of the devices, the perimeter

lengths of the capacitors were effectively increased by punching holes or slots in the
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Table 8.1: Table of the designed values for capacitance C, inductance L and reso-
nance frequency f0 for the resonators with different perimeters P .

Device name P C (pF) L (pH) f0 (GHz)

R1 P1 5.12 308 5.027

R2 2P1 5.12 255 5.518

R3 4P1 5.12 214 6.026

R4 9P1 5.12 183 6.51

R5 12P1 5.12 159 6.991

capacitor top plate. One device had no holes or slots and had an effective perimeter

length P1 = 240 µm. The other devices had perimeter lengths of 2P1, 4P1, 9P1 and

12P1.

The resonator layouts from AWR Microwave Office are shown in Fig. 8.1 and

the key device parameters are given in Table 8.1. Figure 8.1a shows the resonator

with the smallest perimeter P1 (square capacitor), while resonators in Figs. 8.1b-d

have holes on the top capacitor plate through the ALD-Al2O3 layer to increase the

perimeter. The resonator shown in Fig. 8.1e had the largest perimeter due to the

fins (not to be confused with fingers of an interdigitated capacitor). The resonators

were designed to be built using a trilayer fabrication process. This process yields

devices that always have a bottom (base) metal layer (shown in light green) that is

under any structures made of the top metal layer (shown in dark green) with the
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top and bottom layers separated by ALD-grown aluminum oxide.

The internal quality factor for alumina grown with this ALD process was

measured in the single photon limit in a separate experiment [101]. That film,

which was exposed to air prior to measurement, showed 330 < Qi,0 < 500, slightly

dependent on the resonator geometry [89]. Based on this result, I designed the

resonators for the perimeter experiments to have a coupling quality factor of Qe ∼

1000. This was sufficiently close to the Qi,0 of the air-exposed film, but slightly

larger so as to allow measurements of Qi,0 in lower-loss in-situ grown films that the

group might build in the future. I note that the Qi extraction is most accurate if

Qi = Qe, and, in general, the uncertainty in Qi increases as Qi and Qe deviate.

8.3 Fabrication

The perimeter resonators were fabricated on a 3-inch C-plane sapphire wafer

in an ex-situ process. The sapphire substrate was first transferred into the CMS-18

sputtering chamber and ion-mill cleaned at a beam voltage of 300 V and an Ar flow

of 6 sccm for 30 seconds. 100 nm of Al was then sputtered using a DC gun power

of 400 W and an Ar pressure of 5 mTorr for 20 minutes and 30 seconds. Next, the

sample was transferred to the ALD processing chamber to deposit a 50 nm thick

layer of Al2O3. The ALD step was performed by A. Kozen in the Rubloff group’s

deposition system at the University of Maryland. Al2O3 is formed layer-by-layer by
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Figure 8.2: Optical image of the fabricated perimeter resonators. The capacitor
perimeters are (a) P1, (b) 2P1, (c) 4P1, (d) 9P1 and (e) 12P1. Both the top and
bottom metal layers appear light orange, and sapphire appears black.
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chemical exchange between Al(CH3)3 and H2O:

Step1 : Al−OH∗ + Al(CH3)3 → Al−O− Al(CH3)∗2 + CH4

Step2 : Al−O− Al(CH3)∗2 + H2O→ Al−O− Al(OH)2 + 2CH4

Each step was repeated approximately 500 times, and the deposition took

about 14 hours. After the ALD process, the sample was taken out of the vacuum

and transferred into the sputtering chamber described in Section 4.3. The ALD layer

was exposed to air for about 24 hours before it was placed in the sputtering chamber.

Another 100 nm thick layer of Al was deposited using the deposition conditions

described above. The Al/ALD-Al2O3/Al trilayer wafer was then processed using

five photolithography steps.

In the first photolithography step, the top Al layer (for the top capacitor plates)

was formed. After photolithography, this layer was wet-etched in a standard Al-etch

solution (J.T.Baker Aluminum Etch 80-15-3-2). The 50 nm thick Al2O3 acted as an

etch-stop for this solution, while the thin native oxide layer was not. After the wet

etch, the wafer was rinsed with DI water. Without removing the patterned photo

resist (PR), the wafer was transferred to the same sputtering chamber to dry-etch

Al2O3 using Ar ion-milling. Ion-milling was performed with an 800 V beam voltage

and an Ar flow of 6 sccm for 11 minutes to etch through the ALD layer. Due to

the high-power and relatively long ion-milling process, the PR was hard to remove

after the ion-mill step; I had to soak the wafer in an acetone bath in a sonicator for

12 minutes and 30 seconds (rather than the standard 1 minute) to remove the PR

completely.

After PR removal, the second photolithography step was performed followed

179



by wet-etching the bottom (base) Al layer. In this step, the bottom capacitor

plates, inductors, microwave transmission line and the ground plane were formed.

After etching, the PR was removed using the standard organic cleaning described

in Chapter 4.

In the next step, SiNx was deposited to support metal bridges (see Fig. 8.2)

that were deposited in a later step. I used a low-loss SiNx recipe (PECVD) with

SiH4 and N2 flow rates of 10 sccm and 9 sccm respectively, performed at 300 ◦C.

The measured thickness of the SiNx layer was 266 nm.

Next, the third photolithography step was performed followed by an SF6-based

RIE recipe to etch through the SiNx at the location of the vias. For the RIE, the

mass flow rates of SF6 and O2 were 20 sccm and 5 sccm, respectively, and the

processing chamber pressure was 75 mTorr.

After the RIE, the sample was transferred to the sputtering chamber, and I

used 1 minute of ion-milling at an 800 V beam voltage and 6 sccm Ar flow rate

to remove the native oxide on the top and bottom Al layers at the location of the

vias. 200 nm of Al was then deposited using a gun power of 400 W and a chamber

pressure of 5 mTorr. this deposition was done in the sputtering chamber described

in Section 4.3 and took 41 minutes.

After removing the sample from the sputtering chamber, a fourth photolithog-

raphy step was performed followed by wet-etching the last deposited Al layer to

create the bridges.

Finally, I removed the resist and did a final photolithography step and RIE

etch to remove SiNx from everywhere except under the bridges. The wafer was then
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diced and packaged in a type 2 sample box (see Fig. 4.7).

8.4 Measurements

The sample was stored at room temperature in a dry box with desiccant for

approximately 5 weeks after the fabrication was completed and then measured in

the Leiden CF-650 dilution refrigerator. A frequency sweep at 30 mK in the range

4-8 GHz showed only four resonances rather than five. The measured resonance

frequencies were 5.190 GHz, 5.764 GHz, 6.365 GHz, 7.354 GHz for R1, R2, R3

and R5, respectively. The missing resonance corresponded to R4 with perimeter

P = 9P1. This problem probably occurred because of a broken bridge connection

caused by the high-stress SiNx film underneath. But it could also be due to a bad

via connection to the base Al layer.

A power sweep at 30 mK was performed on the four functional resonators.

The transmission |S21| was fit using two different methods: the Diameter Correction

Method [90] and the Dual-Cavity Method described in detail in sections 3.2.1 and

3.2.2, respectively. In my analysis, all the electric energy was assumed to be within

the ALD layer due to the parallel-plate geometry and I took tan δ = Q−1
i .

Figure 8.3 shows a comparison of tan δ versus the RMS voltage Vrms across

the capacitor extracted using these two methods for the resonator R1 with P = P1.

While the results from both methods agree when Qi ∼ Qe, the Dual-Cavity Method

does a much better job, especially in the high-power region where Qi � Qe, as

mentioned in section 3.2.2. Therefore, I analyzed the rest of the data using the
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P = P1 - Dual-cavity method
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Figure 8.3: Measured loss tangent (extracted using two different methods) versus
the RMS voltage Vrms across the capacitor for device R1 with perimeter P1. The
data was taken at 30 mK and the measured external quality factor was Qe ' 900.
The Dual-Cavity Method combined with the Least-Squares Monte Carlo method
shows a better extraction than the Diameter Correction Method combined with
Matlab’s automated fitting, especially when Qi deviates from Qe.

Dual-Cavity Method.

The results for the loss versus power at T = 30 mK for the four working

resonators, devices R1, R2, R3 and R5, are shown in Fig. 8.4. Again, the loss

tangent was extracted using the Dual-Cavity Method. The resonators were also

measured at higher temperatures, i.e. T = 100 mK and T = 200 mK (see Fig. 8.5).

The power-dependent loss tangent was fit to a modified version of Eq. 2.35 or
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Figure 8.4: Measured loss tangent versus the RMS voltage Vrms across the capacitor
for devices R1 (black), R2 (blue), R3 (red) and R5 (green) at T = 30 mK. Loss
tangent was extracted using the Dual-Cavity Method. Solid curves show optimum
fit to data.

Eq. 7.1, i.e.

tan δ =
tan δ0(√

1 + 2 (Vrms/dEc)
2

)1−β + tan δbg, (8.1)

where d = 50 nm is the dielectric thickness and tan δbg denotes a constant “back-

ground loss” that appears most clearly at the high-power limit of the measurement

as a flattening of the loss tangent curve at high powers. Whatever its cause, this

background loss sets a lower limit for the loss tangent that I can measure, and it rep-

resents some type of non-TLS loss mechanism (e.g. quasi-particle loss or radiative

loss).

To fit the theory described by Eq. 8.1 to data, I wrote a fitting code using the
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Figure 8.5: Measured loss tangent versus the RMS voltage Vrms across the capacitor
at (a) T = 100 mK and (b) T = 200 mK for devices R1 (black), R2 (blue), R3 (red)
and R5 (green). Loss tangent was extracted using the Dual-Cavity Method. Solid
curves show optimum fit to data.
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Table 8.2: Extracted loss parameters for four devices at three temperatures.

least-squares Monte Carlo (LSM) method (see Section 3.2.2). The fitting parameters

were tan δ0, Ec, β and tan δbg. I used 106 Monte Carlo steps to obtain the optimum

fit shown by solid curves in Figs. 8.4 and 8.5. The fitting parameter values are listed

in Table 8.2 and plotted in Fig. 8.6.

From Fig. 8.6a it is clear that tan δ0 typically increases with the perimeter

length P , as expected. This effect is most clearly seen at T = 30 mK, where

kBT � ~ω and the TLSs are not saturated. At this temperature, the dependence

of tan δ0 on P is approximately linear with zero intercept. The same qualitative

behavior was observed at 100 mK and 200 mK, although with a much smaller

dependence on the perimeter length. This is consistent with lesser TLS participation

in coherent photon absorption/emission as a result of thermal saturation of the

TLSs.

Figure 8.6b shows a clear increase in Ec with temperature. This behavior was

also observed in a previous study of SiNx [102]. This increase in Ec is believed to

be due to a reduction in the coherence time T2 of the TLSs (see Eq. 2.34). T2

decreases when T1 is affected by stimulated emission and absorption of phonons.
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Figure 8.6: Loss parameters versus normalized capacitor perimeter length P/P1 for
T = 30 mK (black), T = 100 mK (blue) and T = 200 mK (red). (a) Single-photon
loss tangent tan δ0 versus normalized capacitor perimeter P/P1, (b) critical electric
field amplitude Ec versus normalized capacitor perimeter P/P1, (c) TLS power-
saturation factor β versus normalized capacitor perimeter P/P1 and (d) background
loss tangent tan δbg versus normalized capacitor perimeter P/P1.

Also, additional dephasing can occur due to spectral diffusion [110]. At a fixed

temperature, Ec shows a weak dependence on the perimeter length.

Figure 8.6c shows that the TLS power-saturation factor β does not show a

significant dependence on the perimeter. However, the TLS power-saturation slope
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tends to become steeper at higher temperature. This may be related to the temper-

ature contribution to TLS saturation, which causes the higher temperature TLSs to

saturate faster as power is increased. I note that β ' 0 at T = 30 mK, which agrees

better than many silicon nitride film types with the standard TLS model [108].

Finally, Figure 8.6d shows that the background loss does not correlate with

temperature or perimeter. This suggests that the background loss is not a TLS-

induced effect. It is most probably dependent on the resonator geometry.

8.5 Conclusion

In this Chapter, I introduced five trilayer resonators with parallel plate capac-

itors made from Al and ALD-grown Al2O3 using an ex-situ process. The capacitor

on each device had a unique perimeter length. This allowed different amounts of

atmospheric water vapor to diffuse into the oxide layer (after device fabrication) in

the devices, resulting in different effective TLS defect densities.

The devices were measured at 30 mK, 100 mK and 200 mK and I analyzed the

power dependence of the loss tangent. I found that the loss tangent in the low-power

limit increased with perimeter length, consistent with a larger defect density in the

larger perimeter devices. Also, the dependence of the critical electric field Ec on

the temperature showed qualitative agreement with the previous measurements of

other amorphous solids.

Finally, I note that the ALD layer had been exposed to air for about 24 hours

before it was covered with Al, and the measurement was performed about 5 weeks
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after the device fabrication was completed. Together with the measurement results,

this supports the idea that hydrogen defect formation in ALD-grown Al2O3 layer is

a continuous and relatively slow process, and can take place in a diffusion process

that is longer than 24 hours. The correlation of loss with the air-exposed area was

stronger at measurement temperatures T when kBT � ~ω.
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Chapter 9: Conclusion

9.1 Summary of key results

In Chapter 1, I discussed the motivation for studying nanoscale tunneling

two-level systems in amorphous solids. One aim was to determine their precise

identity as this would help the development of practical superconducting qubits

(small-footprint qubits with sufficiently long coherence times). Superconducting

qubits are microscale, artificial two-level systems that are promising candidates for

future quantum computers. This promise is based on their scalability and the fact

that they can be easily coupled to each other, and to the read, write and control

lines. However, they also couple relatively easily to the environment, which is a

source of loss, noise and dephasing.

In recent years, much research conducted by the superconducting quantum

computing community has been devoted to improving qubit coherence. It is now

known that amorphous dielectrics used in qubit circuits have been a major source of

loss and can cause significant qubit decoherence. Dielectrics contain nanoscale tun-

neling two-level systems (also referred to as two-level system defects or TLSs) that

couple to the electric field within the qubit circuit, absorb energy and cause qubit

decoherence. Despite progress made in recent years to understand the ensemble-
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averaged response of many TLSs and the behavior of individual TLSs, the precise

identification of TLSs in superconducting qubits is still unknown. Aside from the

interesting underlying physics of TLS phenomena, a deeper understanding of their

physical nature could help in the design and fabrication of superconducting qubits

to reduce dielectric loss and subsequently increase coherence. In Chapter 1, I dis-

cussed the Hamiltonian for a TLS-cavity system known as the Jaynes-Cummings

Hamiltonian. I also described the splittings that occur in the energy levels of this

hybrid system as a result of TLS-cavity coupling.

In Chapter 2, I discussed details of the standard theoretical model of TLS

dynamics as well as the TLS ensemble-averaged response. I started by introducing

the influence of TLSs on low-temperature properties of amorphous solids. I then

discussed the double-well potential of a tunneling TLS. By using the Bloch equations

and the analogy between a TLS and a spin-1
2

particle in a magnetic field, I derived the

dynamics of a TLS in an electric field. I also derived the response of an ensemble of

TLSs interacting with an external electric field, and explained how power-saturation

of TLSs reduces the TLS-induced dielectric loss at high applied microwave powers.

In Chapter 3, I described three models to analyze the resonance lineshape

of superconducting microwave resonators in my studies of TLSs. The first model

was a naive model which assumed perfectly symmetric transmissions. The second

model (Diameter Correction Method) included a correction to the first model to take

into account the asymmetric transmissions caused by the non-ideal experimental

setup [90]. The third model (Dual-Cavity Model) was based on two cavities, one

representing the resonator and the other modeling its coupling to the microwave
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transmission line [91]. A fitting code based on the least-squares Monte Carlo (LSM)

method was developed based on the Dual-Cavity Model. I found that the Dual-

Cavity Model with the LSM method allowed for, in general, more accurate parameter

extraction compared to the first two models.

In Chapter 4, I described the fabrication tools and some of the techniques that

I used to build the devices described in Chapters 5-8.

9.1.1 CQED of TLSs and the discovery of TLSs with long T2

In Chapter 5, I introduced a method that enables measurements of individual

TLSs based on direct TLS-cavity coupling. In this method, strong CQED coupling

between a TLS and a cavity is achieved by reducing the electric field volume in a thin-

film lumped element superconducting microwave resonator to a mesoscopic scale. I

showed experimental S21 data (taken at 25 mK and 200 mK) of the splitting in a

resonator’s transmission caused by strong coupling of a cavity to a single TLS. This

data was analyzed using a theoretical model that I described in detail. Furthermore,

I showed results of S21 from a power sweep of the hybrid TLS-cavity system. The

S21 results showed two distinct quantum states (dressed states) at single-photon

powers, which merged into the bare cavity mode at higher powers. The power-

dependent data were fit and analyzed using a photon density matrix combined with

the Lindblad equations to find the time evolution of the Hamiltonian for the TLS-

cavity system for the entire measurement power span. This allowed for extraction of

the hybrid system’s coupling and relaxation parameters, including the TLS-cavity
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coupling rate and the TLS coherence time, for a wide range of average photon

numbers in the cavity. These CQED measurements of individual TLSs within a

SiNx film revealed TLSs with coherence times on the order of microseconds, raising

the possibility of deliberately employing CQED information exchange with TLSs.

This study also opened up the possibility of making individual TLS measurements

in a wide range of amorphous solids, as the technique was not limited to materials

that were suitable for JJ barriers.

9.1.2 TLS spectroscopy results and distribution statistics

In Chapter 6, I introduced a method to perform individual TLS spectroscopy

in insulating films. In this method, in addition to the small volume CQED measure-

ment of TLSs, a DC electric field tunes the TLSs in and out of the cavity resonance.

This was realized using a thin-film resonator design with a capacitor bridge ar-

rangement that isolated the DC bias voltage from the AC (microwave) resonance

and the coupled AC transmission line. By combining this with a restively large

double-loop spiral inductor, I developed the tunable micro-V devices. Low-power

measurements of the device transmission versus frequency and bias voltage showed

clear TLS-induced modes crossing the cavity resonance. For the cases where the

TLS asymmetry energy was sufficiently close to zero and the tunneling energy was

close to the resonator’s resonance frequency, hyperbolic-shape (including the vertex)

double-well induced modes of the TLSs were measured and fit to theory. For these

TLSs, several parameters could be extracted, including the projection of the dipole
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moment on the electric field direction p| cos θ|. By performing three high-resolution

DC-bias sweeps (from three separate cool-downs), I found 60 TLS-induced hyper-

bolas in a SiNx film. The distribution statistics of p| cos θ| could be interpreted as

more than one dipole size: a distribution of large number of TLSs with p < 3.32

Debye possibly with a triangular distribution, and a uniform distribution of TLSs

with a dipole size of p ' 8.25 Debye.

I note that this study marked the first spectroscopy of individual TLSs in a

thin film with a thickness that was typically used for insulating layers. To the best of

my knowledge this was also the first individual spectroscopy measurement of TLSs in

a material other than thermally grown alumina. This TLS spectroscopy technique

could readily be extended to other materials. In Chapter 6, I also described the

theoretical model that I used to simulate the spectroscopy data. I found that the

simulations could explain some features in the data, but not everything I observed.

9.1.3 Process development for TiN film deposition

In Chapter 7, I described my approach for finding the reactive sputtering pa-

rameters to deposit superconducting TiN films with relatively high quality factors.

I showed that some of the structural and compositional properties of TiN thin films

can be tuned by using an RF-induced DC bias on the substrate during reactive sput-

tering. I reported on six films sputtered at different substrate DC biases. The films’

crystalline phases, elemental composition, stress, resistivity and superconducting

critical temperature were measured and compared. The room temperature resis-
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tivity was strongly correlated with the oxygen content. Also, stress was correlated

with the (200) peak height in the XRD results. The deposition process produced

highly-uniform films in terms of thickness and resistivity across 3-inch diameter Si

wafers.

In order to investigate the low-temperature properties of the TiN films, I

designed two sets of resonators. The first set was designed for a TiN-only fabrication

process, while the second set was designed for hybrid TiN-Al devices. I showed

some experimental results on Qi and resonance frequency shift with temperature. I

also showed an example where my colleague (A. Ramanayaka) and I extracted the

kinetic inductance fraction α from the data, and compared it with an approximative

method estimating α from the difference in the simulated- and measured resonance

frequencies. Generally, the measured TiN films showed high Qis and αs.

9.1.4 Hydrogen diffusion in ALD-Al2O3

In Chapter 8, I introduced a set of microwave resonators with different capac-

itor perimeter lengths that I used to investigate the correlation of the air-exposed

cross-sectional area (edges) of the parallel-plate capacitor with the low-temperature

microwave loss. The dielectric was ALD-grown Al2O3 and the trilayer wafer was

made in an ex-situ process.

Measurement and analysis of the resonators showed a higher (single-photon)

loss tangent in resonators with larger perimeters. Higher temperature measurements

showed the same qualitative behavior, but with a smaller dependence of tan δ0 on
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perimeter. The critical electric field Ec and the TLS power-saturation factor β

showed strong correlation with temperature, but relatively small dependence on

perimeter. Given the time interval between ALD and the deposition of the top

(protective) layer, and the interval between the completion of device fabrication

and the low-temperature measurements, I concluded that the TLS defect formation

in ALD-grown Al2O3 as a result of air-exposure, is a slow process, and has significant

effects on the low-temperature microwave properties of this material.

9.2 Future work

9.2.1 CQED of TLSs in different amorphous dielectrics

Individual TLSs within tunnel barriers have been measured in previous studies

using qubits, and several TLS properties such as TLS density and coherence times

have been extracted [66,85]. However, such studies of individual TLSs in dielectrics

were limited by the necessity of incorporating the material into JJ barriers. Due to

the limited choice of materials and processes that yield reliable JJs, all such studies

have previously been limited to TLSs in 1-2 nm thick aluminum oxide.

Over the past two decades, cavity quantum electrodynamics (CQED) phenom-

ena have proven to be extremely useful for studying coherent quantum phenomena

in atoms, ions and superconducting qubits. I showed in Chapter 5 that TLSs in

SiNx films can also display CQED effects in a so-called micro-V device. This sensi-

tivity is achieved by reducing the dielectric volume V in a high-Q lumped-element

superconducting microwave resonator. Under certain conditions, one TLS in the
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dielectric can strongly couple to the resonator (cavity). This direct TLS-cavity cou-

pling allows an individual TLS to be observed based on its effect on the resonator’s

transmission S21. The parameters of such a hybrid TLS-cavity system, including

the TLS lifetime and TLS-cavity coupling rate, can be extracted by fitting the S21

data to a theoretical model that has been developed based on this work [103].

It is clear that this type of study could be extended to other dielectrics, in-

cluding amorphous silicon (a-Si), low-loss silicon nitride (SiNx), and atomic-layer-

deposited aluminum oxide (ALD-Al2O3). Studying a-Si and low-loss SiNx is inter-

esting because these dielectrics have shown unexpected deviations in TLS density

compared to other solids [82, 141]. ALD-Al2O3 would be interesting because the

layer-by-layer controlled deposition allows for the growth of very thin insulating

layers (as thin as a few nanometers). This could enable the fabrication of cavities

with extremely small electric field volumes (∼ 1 µm3), further enhancing CQED

effects with individual TLSs.

I note that there will likely be some challenges when fabricating devices from

other materials. To achieve CQED with TLSs, the dielectric volume has to be suffi-

ciently small. This requires relatively thin dielectric layers and careful fabrication.

For example, in the case of low-loss SiNx where the film stress can be larger than

1 GPa [82], this may require special pre-deposition surface treatments for better

dielectric adhesion. On the other hand, this will probably not be an issue for ALD-

Al2O3. Clearly it would be best to use trilayer fabrication techniques. This will allow

for in-situ film growth, effectively preventing the dielectric from being exposed to

air, and reducing contaminants.
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9.2.2 Spectroscopy of TLSs in different insulating films

I note that Ustinov’s group in 2012 reported on strain-dependent TLS spec-

troscopy in alumina in JJ tunnel barriers [142]. They tuned the TLSs by varying the

strain field and read out a signal via coupling to a qubit, with obvious limitations in

materials, spectroscopy range, etc. In contrast, In Chapter 6 I introduced a device

which was tunable and was able to perform TLS spectroscopy in the CQED limit. I

note that if I had made the cavity (resonator) tunable, it might have imposed non-

linearity, destroying the possibility of CQED measurements. Instead, I tuned the

TLSs in- and out of the cavity resonance, rather than tuning the cavity itself [143].

This was accomplished by exposing the TLSs to an external DC electric field gen-

erated by a DC voltage Vbias across a capacitor bridge. The TLS-cavity coupling at

microwave drive frequencies was observed via S21, similar to the non-tunable devices

mentioned previously. By tuning Vbias, the “dressed” modes were tuned resulting

in “tracks” crossing the cavity resonance. These modes appeared as hyperbolas, as

expected from perturbation of TLS double-well potential due to Vbias.

The exacts shape of the TLS tracks as well as their width and brightness

depend on the TLSs’ dipole size, the dipole angle with respect to the external

electric field, the lifetime, the tunneling rate and the coupling strength to the cavity.

Therefore, this type of measurement can not only reveal specific information for a

single TLS, but also provide crucial information about the distribution and statistics

of the TLS parameters.

It would be interesting in the future to design, fabricate, measure and analyze
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tunable micro-V devices made using other dielectrics. Fabrication of such devices

could be more challenging than for the devices suggested in section 9.2.1 because of

the need for a capacitor bridge which results in a four-times larger electric field vol-

ume. To compensate for this, one could decrease the dielectric thickness compared

to a single-capacitor device. Due to the capability of ALD in reliable deposition of

thin layers, an experiment with ALD-Al2O3 trilayer devices would be interesting. Of

course the TLS-cavity coupling could be stronger or weaker in different materials,

and the density of TLSs could be higher or lower than in SiNx, so different dielectric

volumes may be needed to resolve individual TLSs.

As described in Chapter 6, I developed a comprehensive simulation code to

better understand the spectroscopy results. This program can potentially be applied

to any dielectric used in future devices. Also, in order to facilitate extracting the

distribution of TLS parameters mentioned above, a 2-dimensional Fourier transform

code has been developed [144] to analyze data similar to those of Figs. 6.7, 6.8,

6.9 and 6.11. Nevertheless, it is unclear how much of the analysis can be readily

automated.

9.2.3 CQED operation of TLSs

Despite the obvious differences between TLS defects and qubits, a TLS defect

with a long enough coherence time could in principle be used as a quantum coherent

resource. For example, it has been reported that TLSs within alumina tunnel barri-

ers can operate as quantum memory bits [88]. In this work, Neeley et al. transferred
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quantum information to a TLS, stored the information in it for a while, and then

retrieved it. F. Nori has made similar proposals [145,146].

As I mentioned in Chapter 5, the longest lived individual TLS that I measured

by CQED in SiNx showed a coherence time of T2 = 3.2 µs, probably limited by the

Purcell effect [98]. I note that this value is similar to that of the original transmon

coupled to a cavity [64]. The studies described in sections 9.2.1 and 9.2.2 have the

potential to discover materials that host TLSs with even longer coherence times.

With a long-lived tunable TLS, it would be interesting to perform a feasibility

study of coherent manipulation of individual TLSs via the TLS-cavity coupling.

Manipulation of an ensemble of TLSs has been recently performed [83]. As the first

step towards this study, one could try tuning a TLS with sufficiently large coherence

time to interact strongly with the cavity and prepare it with a desired detuning using

the TLS DC-tuning technique described in Chapter 6. Applying a second tone at

the TLS transition frequency ωTLS would allow measurement of the TLS spectrum

via its effect on the cavity resonance. Next, one can apply microwave pulses at

ω ' ωTLS to see if the quantum state can be manipulated. Relevant properties to

measure include Rabi oscillations, the TLS relaxation time T1, the Ramsey-fringes

and spin echo experiments [147].

9.2.4 TiN tunable resonators, and MKIDs

In Chapter 7, I described a method for controlling TiN film properties by

RF-induced DC biasing the substrate during reactive sputtering. I reported an un-
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usually high kinetic inductance fraction for some deposition conditions. The large

kinetic inductance could potentially be used to make DC magnetic field tunable

resonators. The field could be created by passing a DC current through the mi-

crowave transmission line, significantly changing the effective kinetic inductance of

the inductor and shifting the resonance frequency.

Moreover, it is interesting to investigate if the oxygen content in TiN corre-

lates with kinetic inductance. High kinetic inductance is attractive for constructing

MKIDs [118]. One could try adding oxygen to the sputtering chamber during reac-

tive sputtering to create higher kinetic inductance films.

9.2.5 In-situ ALD-Al2O3 trilayer resonators

The resonators described in Chapter 8 for investigating hydrogen diffusion into

ALD-grown Al2O3 were made using an ex-situ trilayer process, meaning that the

ALD layer was exposed to air before it was covered by a protective (top) metal

layer. The water/hydrogen diffusion process, although believed to be slow, starts

immediately after air exposure, and degrades the Qi of the film. Despite this effect,

the measured resonators showed significant dependence of loss to the air-exposed

cross-sectional area (edges) set by the capacitor perimeter.

It would be interesting to try to sort out some of the unknowns, including the

diffusion rates and the diffusing species. One could try to fabricate and measure

devices using an in-situ process, where the ALD layer is covered by the top metal

layer before it is taken out of the vacuum. It is expected that the loss tangent of
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such a device would be smaller than the same device made in an ex-situ process.

It has been shown that plasma O2 ALD process has a lower number of entrained

defects compared to the H2O ALD process which was used in Chapter 8 [148]. Also,

compared to the ex-situ case, the dependence of tan δ0 on the perimeter length

is expected to be stronger due to a lower TLS spectral density in areas far from

capacitor edges.
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