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ABSTRACT

This paper considers a large symmetric star-shaped circuit-switched network where each route requires one
circuit from each of two links. Interarrival and holding times of calls are exponential. The process of the
number of free circuits in each link is analyzed. An ordinary differential equation limit is established along
with a diffusion approximation limit conjectured by Whitt [Wh].



1. Introduction '

Performance evaluation of dynamic routing strategies in circuit-switched networks has received a lot of
recent attention. Most of the existing literature is concerned with either simulation (see [Ak]) or Erlang-
type approximations (see [Ke]). The exact analysis of such models appears to be difficult in view of the
fact that Markovian descriptions of such models are cumbersome. An alternative is to take advantage of
simplifications that arise in large, symmetric models due to the law of lalrge numbers and the central limit
theorem. Such asymptotic analysis has appeared in [Wh] for a network with fixed routes (see [Ke] for
a different asymptotic regime). Although the stationary distribution of the network has a product form,
the results are interesting because the computational burden grows quickly with the size of the network.
Also, an asymptotic transient analysis is possible. Furthermore, it turns out that in the limit each link
behaves independently of the rest of the network as an M/M/C/C queue. The main result of this paper is a
proof of the conjectured diffusion limits in [Wh]. The approach utilizes recent results of [KLS] on the weak
convergence of non-Markov processes. It considerably simplifies the derivations in [Wh] and appears to be
promising for the analysis of dynamic schemes.

In Section 2 we describe the model and we derive an ordinary differential equation lirnit for the process
of the number of occupied circuits in each link. The infinite time behavior and asymptotic independence of
these processes is also discussed. In Section 3 we prove a diffusion limit theorem for the normalized difference
between the deterministic process and the actual process of occupied circuits in a link.

2.Deterministic imit

2.1. Model

Consider the following model of a circuit-switched network. It consists of a star-shaped undirected
graph with N + 1 nodes numbered {0,1,...,N}. The set of edges is {(#,0)]i=1,...,N}. Each edge is
a communication link comprising C circuits. Calls establishing communication between nodes i and j in
{1,...,N} via node 0 arrive as a Poisson process with rate A/(N — 1). Each such call requests one circuit
from each of the links (¢,0) and (j,0). A call is successful if the requested circuits are available, and is lost
otherwise. A successful call occupies its circuits for an exponentially distributed period with mean 1.- All
arrival and service processes are assumed independent. We investigate the asymptotic regime where N — oo
and all other quantities remain fixed. Note that the total traffic offered to any link has fixed rate A.

Definitions: Let xf}{ (t) be the number of calls in progress from node ¢ to node j via node 0 at time
1> 0. Let y/¥ (1) be the total number of occupied circuits in link (7,0}, i.e.,

y=S =N

J#i

By ¢l (t) denote the fraction of links that have exactly k circuits busy at time ¢, k =0,1,...,C. Note that

(o}
Yoat)=1, (2.1)
k=0

and set

(9
S =ges {qEIRciquO,kZI,...,C; qugl}. (2.2)
k=1

For I,m € {0,1,...,C} denote by A,’:’m(t) the counting process given by

N

dAN. (1) = Zl {(W¥Mty=m} 1 {yg¥(t-) =1},

i=1



i.e., the process counting transitions of edges from state { into state m,
Lastly, in what follows, (Y(-)) denotes a Poisson process of unit rate, and all stochastic integrals are
understood to be in the Lebesque-Stieltjes sense.

2.2. Evolution equations

For i,j € {1,..<,N}, i # j, processes (a: /(t)) and (yN(t)) are represented using independent Poisson
processes of unit rate (Y;3(-)), (Y:3(-)):

zli() =2 (0)+Y; < 1/ H{yl¥(s) < C} 1{ N(s)<C’}ds)—Y,-g (/ot:cf}((s)ds), (2.2)

Y ( /0 ‘ = (s)ds) . (2.3)

0 =0+ 278 (37 [ 106 < 0h (o (9 < Ohas) -

J# J#i
Similarly, one has for k = 1,...,C -1,

1/t 1/t
FO=dO+ 5 [ dalis+ 5 [ a4
0 0
t
/dAkk W(8) — /dA{:’kH(s), k=1,...,C~-1, (2.4)
0

=0+ [ aAo) - % [ a4 os(o)

By (A{:’m )) denote the compensators (see [LS]) of the processes (A{Ym()) with respect to the o-field

FN =4y 0 {g"(s); 0< s <t}, where ¢¥(s) = (¢¥(¢),...,q¥(t)). From equations (2.2), (2.3), and some
counting, one has _
dAY 1 1 (t) = N(k+ D)gf], (t)dt

AR, 40) = Sl (01 - o )
kk 1(t)-—Nkf1iV(t)dt
dAY 41 (0) = 3 Aal (1~ g¥ () de.

To study equations (2.4) one defines the martlngales,

(2.5)

M (8) Zaey Al (1) = Al (2).

Recall that < M >, denotes the quadratic variation of a locally square integrable martingale M(t) (see [LS]).
From the properties of Poisson processes,

1o N _ 1 aN _ 1 ‘N
< NMk+1,k >¢ = NQAH»l,k(t) = N(k + 1)/0 Gi+1(s)ds
1 1. 1. 1
< M o= A0 = 3 [ a6 - e @)de + o)
N N N 256)
1 1 . )
< ﬁle,qu > = 'mAiv,k-x(t) = / gi (s)ds
<IN si= LAv =) / N(s)(1— g (s))ds+o( ),
Rl NZOk k41 N c

By independence, all cross-variations are zero.



The next result shows that the right hand side of equations (2.4) is essentially deterministic for large
N.

Lemma 2.1: (Lenglart) For any locally square integrable martingale (M(t), ¥;), Fi-stopping time r,
6>0,and ¢ >0,

P{ sup |M(s)[26} < —15+P{<M>12 6}.
0<s<r €
Proof: See [JS]. Ol

Corollary 2.1: For martingales (M,”Vm()) as defined above, ¢ > 0, and t > 0,

lim P{ sup |M{Y.(s)| > e} = 0.
N—oo 0<s<t ’

Proof: Apply Lemma 2.1 to (M,’,Vm()) at time t and observe that S is compact. ]

2.3. Convergence
In view of the above lemma, one anticipates that, as N — oo, equations (2.4) assume the form

de(t) = (k + 1gr41(t) + Ae-1()(1 = ge(t)) — kge(t) = Aqe ()1 = gc(¥), k=1,2,...,C~

e (t) = Me-1(t)(1 — gc(t)) — Cqc(t)- (2.7)

Indeed, denoting by || - || the euclidean norm in IR one has,

Theorem 2.1: For any T > 0 and € > 0, if limp...oo ¢”V(0) = ¢(0) in probability, then,
lim P{ sup |l¢V(s) — q(s)|| > e} =0.
N—oo 0<s<T

Proof: Subtracting (2.7) from (2.4), and setting M (t) = MY, ,(0)+ M, ()+ MY, (O)+M], (1)
gives,

A (0) - 06t) = ¢ 0) — 0x(0) + 5 MY (1) + o)
+ ’\/; {(gl-1(5) = af' (5)) (1 = ¢¥(8)) — (gr—1(s) = qi()) (1 — gc(s)) } ds
+(k+ 1)/0 (g1(5) — qr41(s)) ds — k/o (g (s) — q(s)) ds, k=1,...,C—1,
A1) - o) = a¥(0) - ac(0) + ME (@) +o(3)
2 [ {ala(o) (1= a(9) —a0-1(6) (1 = ac() } s C (@8 () — ac(s)) ds.
0 [1}
In shorthand notation,
() ~a() = V() - @) + M¥O + [ {50 () - Flale) ds, (2.8)

where f() = (fi(-), .-, fc(-)). For each k, fi(-) can be seen to be a Lipschitz continuous function with

constant K. Taking norms in (2.8) gives
t
llg™ (&) — a(®)]] < lla™ (0) — g(O)| + 1M ™ (D)]| -+ K/O lla™ (s) = a(s)llds.

4



Setting My' = supgeicr ||MV (2| gives

g™ (®) = ¢l < 11" (0) - q(O)l| + MF + K /ot llg™ (s) ~ a(s)l|ds.

From Bellman-Gronwall,
g™ @) = gl < (llg™ (0) — q(O)]] + MPyeX?,

and thus,
P { sup {lg" (s) — g(s)l} > f} < P{ sup_[lg"(0) - q(0)]) + MF > ce“”} .
0<s<T 0<s<T

Corollary 2.1, equations (2.6), and the compactness of S, imply that limy_,cc M = 0, in probability. Then,
our assumption on the initial conditions establishes the result. |

2.4. Stability properties
In"this section we summarize from [Wh] qualitative properties of equations (2.7). They are used in
Sections 2.5 and 2.6. To obtain the stationary points of (2.7), set the left hand side equal to 0 and solve
the last of equations (2.7) for g¢—1. Substituting backward, (q;)f__';l can be expressed in terms of q¢ which,
because of (2.1), must satisfy
_ 20— ge)°/C!
RS VAYC RSOy

Equation (2.9) has a unique solutjon because its right hand side is a decreasing function of gc. Denote the
solution by £, which is shown in [Wh] to be a stable stationary point. These facts are summarized in

(2.9)

Theorem 2.2: The system of differential equations (2.7) has a unique, asymptotically stable stationary
point €.

Remark 2.1: The right hand side of (2.9) is the Erlang probability of loss function for an M/M /C/C
node with arrival rate A(1 — g¢) and service rate 1. Some insight for this fact can be gained by the results
in Section 2.6. Also, in connection with Conjecture 1 in [Wh] we remark that, from Theorem 5.1 in [Ke], £
is the unique solution of the Erlang fixed point approximation equations for this network.

2.5. Invariant measures

We now examine the infinite time behavior of the processes (¢ (-)) as N — co. For each N, denote by
#N () the invariant probability measure of (¢/V(-)), and by 6¢(-) denote the probability measure that assigns
unit mass on £. One anticipates

Theorem 2.3: 4™ (-) = Novoo 8¢ () (recall that = denotes weak convergence.)

Proof: Since S is compact, the sequence (u™(-)) is tight. By Pohorov’s theorem ([Bi], p. 37), there
exists a limit point () of (#N(-)), and write u/'(-) = Nv—oo ¥(-) along a subsequence. Following the scheme
of Theorem 9.10, p.244 in [EK], we prove that v(-) is invariant for (¢(-)), and Theorem 2.2 then implies that
v(-) = 6(-). To this end, assume that ¢{0) is distributed according to v(-), §(0) = ¢™(0) with common
distribution p¥(-) Assume also that (¢(-)), (§(-)) satisfy (2.7) (possibly with different initial conditions,) and
(g™ (-)) satisfies (2.4). Then, for any Borel subset A of IR®, and t > 0,

[P {a(t) € 4} = P{g(0) € A}| < Timsup|P {g(t) € A} - P{4(t) € A}]
+limsup|P{4(t) € A} - P {¢"(t) € A} |

+limsup |P {qV(0) € A} — P {g(0) € A} | N0 0.
N—co
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The first and third terms above converge to zero since u”¥ I() = N'—oo V('), the second term converges to
zero by Theorem 2.1 and we have used the invariance of (4" (-)). Therefore, pN'(-) T N'ewoo O¢(+). Our result
follows from [Bi], Theorem 2.3 on p.16, since the argument can be repeated for any subsequence of (u"(-)).

O
2.6. Asymptotic independence

In this section we focus attention on a fixed number of links, say {1,...,m}, as the size of the network
grows to infinity. Assume that the initial distribution of calls {mf}’ (0)}.,1. is invariant under index permutation
for all N. Then, if Theorem 2.1 is valid, the processes of occupied circuits in these links behave, for any
t > 0 and as N — o0, as m independent copies of the Markov process

(0) = 5(0) 4 Y* (»/ "H{u(s) < €} Priy(s) < C) as) = v¢ ([ wtspas), (2.10)

where y(0) is distributed according to ¢(0), and Y*(-), Y¥() are independent. Note that the process is
somewhat non-standard since the right hand side of (2.10) depends on the distribution of (y(t)). This gives
rise to non-linearities in the forward equations of the process. They can be seen to be equations (2.7).
Results of this type are known in stochastic analysis as “propagation of chaos”.

More precisely, asymptotic independence concerns the joint distribution of (y¥ (¢),...,yN (s)) , denoted
by £ (¥ (s),...,¥N(s)). Set E = {1,...,C} and for X(t) € E let 6x(s) be the distribution on E that assigns
unit mass on X(t). In this notation, Theorem 2.1 implies that

N

1

N D 8Ny o Noo 4()-
i=1

The following appears to be “folklore” in the literature of stochastic analysis. We omit the proof as it requires
additional notation.

Theorem 2.4: Assume that the distribution of { xf}’ (0)}',]. is invariant under permutation of the indices
and that Theorem 2.1 holds. Then, for any ¢ > 0,

LY@, um() — Voo £(y(1))%™ = (1)®.

(®m denotes the m-fold product).
Proof: See [Sz], Lemma 3.1, where a converse to this theorem is also established. O

To recover the results in [Wh] concerning infinite time behavior we can employ the scheme of Theorem
2.1 to get

Corollary 2.2: If the distribution of {xf;{(O)}‘,j is invariant under permutation of the indices and if
Theorem 2.1 holds, then
£ (vl (20), ., ym(20)) =m0 €87

(Recall that ¢(t) —¢—c0 £.)

Note that, in this functional form, asymptotic independence is similar to the product form results in
Jackson networks. However, functional versions of Theorem 2.4 as in [Sz] should be possible to establish.

3. Diffusion approximation
We now proceed to the main result of this paper, a diffusion limit for the difference

u (1) = VN (g (1) - o(0)) .
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The form of this limit can be guessed from standard results concerning diffusion limits of Markov processes
(see e.g. [Ku]). To describe the limit, define matrix OF(-) : IR® — IRC*C whose kth row consists of the
vector V fi(-) and matrix I(:) : IR® — IR®*C which is diagonal with Zxx(-) = fi(-). Then, the weak limit
of (uM(s)), ., will be identified as the unique solution (v(s)), <, of the Ito stochastic differential equation

du(t) = OF (¢(1)) u(t) dt + E2(q(2)) du(t), v(0) = vo,

where (w(s)),<, is a standard brownian motion in IRC. Denote the induced measure on D ([0,¢], IR) by
Q and the generated o-field by (G,),<,. The difficulty of proving such a weak limit appears, as pointed out
in [Wh], in the computation of the infinitesimal covariance matrix of the non-Markov process (uV (5)), <,
Instead we will appeal to a recent result of Kogan et al in [KLS] where it is shown that it suffices to verify
convergence of the quadratic variation of (uN(s))_’« to that of (u(s)),<,-

To this end we will need the following characterization of process (u(s)),<,: measure Q is the unique
solution to the martingale problem where -

22(w) = u(t) — u(0) - /0 OF (q(s))ds

is a square integrable martingale with respect to (G:), <, with quadratic variation

< z(u) >g=A T(q(s))ds,

From (2.8) one sees that (u® (s))‘ <; has a similar representation

t
1
ul () = ulY (0) + \/17/ (£ @V (5)) — fu (a(s))} ds + —=MP (1), k=1,...,C
0 vN _
where . . .
< ‘—\/——-ﬁMév >e= /0 fk (qN(s)) ds = [) Dkk (qN(s)) ds.
The main result can now be stated and proved.
Theorem 3.1: If uVV(0) -2+ ug, then, for all ¢ > 0,
(uN(s)),st N-—oo (u(s)):St

in the sense of weak convergence of measures on D ([0,1], IR®).

Proof: In view of Theorem 3 in [KLS] it suffices to check the following three conditions.

€  swp 2wV E)l Fonneo O
(Recall that AuN(s) = ul(s) —u¥(s-).)
©) s | [ {VE U (M6) = feal)] = VA (a(5) - w9} dsl T 0, k= 1,0, C

0<s<t

1 t
(C3) MY >,—”—»N_.m/ Tee (g(s))ds, k=1,...,C.
0

<N

Here 2+ denotes convergence in probability.



Condition (C1) is immediate since, with probability 1, Auf'(s) < 1/V/N for all 5 < t. Also, condition
(C3) easily follows from Theorem 2.1. It remains to check (C3). The proof follows closely the one in [KLS].
From the intermediate value theorem one obtains for k = 1,...,C,

VN £ (aV(5)) = i (a())] = Vi (a(8) + 0 (7 (5) = a(s))) - w (),

where 0 < i <1, and from the Lipschitz continuity of the second derivatives of fi,

[VN (£ (47(8)) = fie (a()] = Vi (a()) - u(s)] < L lg™(s) = gl [1u¥(s)]l.

It therefore suffices to show that, in probability,
sup |lg"(s) = g(s)ll sup [[u"(s)]| —Nwoo O.
0<s<t 0<s<t

For any a > 0, the result follows from Theorem 2.1 on the event {supgc,<,|lu™(s)|| < a}. It therefore
suffices to show that

['Endes]

lim limsupP{ sup |ju(s)|| > a} =0. 3.1
N 0<s<t

From (2.8) and Bellman Gronwall one has
1
N N N Kt
su u (s) < u” (O] 4+ —= su M*(s ) e,

Then, (3.1) can be seen to hold because of Lemma 2.1. 0
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