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Abstract

Two communication traffic streams with Poisson statistics arrive at a network node
on separate routes. These streams are to be forwarded to their destinations via a common
trunk. The two links leading to the common trunk have capacities Cy and Cy bandwidth
units, respectively, while the capacity of the common trunk is C bandwidth units, where
C < Cy + C,. Calls of either traffic type that are not admitted at the node are assumed to
be discarded. An admitted call of either type will occupy, for an exponentially distributed
random time, one bandwidth unit on its forwarding link as well as on the common trunk.
Our objective is to determine a scheme for the optimal dynamic allocation of available
bandwidth among the two traffic streams so as to minimize a weighted blocking cost. The
problem is formulated as a Markov decision process. By using dynamic programming prin-
ciples, the optimal admission policy is shown to be of the “bang-bang” type, characterized
by appropriate “switching curves.” The case of a general circuit-switched network, as well

as numerical examples, are also presented.
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1. Introduction

In modern telecommunication networks there is an increasing need to transmit simul-
taneously heterogeneous traffic types with diverse characteristics, performance require-
ments, and grades of service. This has resulted in a recent surge of interest in the study
of integrated systems capable of realizing an efficient sharing of facilities such as transmis-
sion and switching. Indeed, it is expected that in communication networks of the future,
large integrated service digital networks (ISDN’s) will be designed to accommodate random

demands for bandwidth usage from a population of heterogeneous users.

Various schemes have been proposed to date for multiplexing several types of traffic
on the same channel. Much of the work has concentrated on two types of traffic, namely
voice and data [5]. Furthermore, the techniques addressed thus far can be classified into

three broad categories:

1)Complete Sharing Scheme: In this scheme, a call of a particular traffic type is always

offered access to the network whenever sufficient bandwidth is available to accomodate it.

2)Complete Partitioning Scheme: In this technique, the available channel bandwidth

at each node is partitioned and a portion of the bandwidth is dedicated to each traffic
type.

3)Moving Boundary Scheme [6,8,9]: This scheme applies to two traffic types, namely
voice calls and data packets. The total bandwidth is partioned into two compartments.
One compartment is typically allocated to voice traffic, while data can use the remaining
compartment as well as any unused slots in the voice compartment. On the other hand,
voice traffic cannot use any unused data slots, and operates as a loss system, i.e., voice

calls that are not accepted upon arrival are assumed to be lost.

In the schemes mentioned above, the customary objective is to control the multiplexer
so as to maximize channel utilization or minimize blocking probability. Usually, the first
call type, viz., voice, operates as a loss system while the second call type, viz., data, is
queued. Also, much of the work to date involves static schemes for the control of the
multiplexer, i.e., the allocation policy is chosen a prior: for all time, and its performance
analyzed. Much less work is available on dynamic control schemes, where the best allocation
policy according to some criterion may vary in time; such a policy may be stationary

(deterministic) or nonstationary.



In this paper, we consider the problem of allocating channel bandwidth to two com-

munication traffic streams that arrive at a network node on two different routes and must
be forwarded to their destinations via a common trunk. Calls of either traffic type that are

not given admission at the node are assumed to be discarded. Our objective is to deter-
mine a scheme for the optimal dynamic allocation of available bandwidth among the two
traffic streams so as to minimize a weighted blocking cost. The problem is formulated as a
Markov decision process where the control actions consist of accepting or discarding a call
at the instant of its arrival into the system. By using dynamic programming principles, we
demonstrate that the optimal admission policy is of the “bang-bang” type characterized

by two “switching-curves” in the state space of the system.

The paper is organized as follows. The control problem is formulated in section 2.
Section 3 considers the discounted cost case and establishes key properties of the optimal
discounted cost function; the associated optimal policy for this case is characterized in
section 4. The average cost problem is addressed in section 5. Numerical results for a
given link are given in section 6. Finally, in section 7 we consider the optimal admission

control problem for a general circuit-switched network.

2. A Description of the Problem

We consider an integrated scheme for providing service to two types of non-queueing
traffic (e.g., voice and video) with different statistics and requiring different grades of
service. We shall direct our attention to two traffic streams, one of each type, arriving at
nodes 1 and 2, respectively (see Figure 1), for transmission to node 3 which subsequently

directs the traffic onto a trunk. We assume that nodes 1 and 2 are connected to node 3
by means of two links of capacities C; and C, frequency slots, respectively, and that the

trunk capacity is C slots. It is further supposed that each call (i.e., voice call or video
message) occupies exactly one frequency slot on one of the two links and on the trunk.
When a call arrives at node 1 or 2, a decision is made at the node on either accepting
it or blocking it. If accepted, the call is granted a slot simultaneously on the corresponding
forwarding link as well as on the common trunk; if blocked it is assumed to be lost. These
decisions are based on minimizing appropriate blocking costs associated with lost calls. We

remark that deliberate blocking of a call of one type may be advantageous for the following

reason: It may be worthwhile reserving an empty slot on the shared trunk for a call of the

other type since blocking the latter (at a later time) would incur a greater cost.
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The following statistical assumptions are made on the arrival and service times of the
incoming traffic. Calls of type-¢ arrive in a Poisson stream of rate A;; their corresponding
service times are i.i.d. exponential random variables with mean p;, i1 = 1,2. We shall
assume without any loss of generality that g3 < uo and that all arrival and service processes

are mutually independent. The state of the system describing the distribution of the load
at time ¢ > 0 is defined by the two-dimensional vector x; = (z},z?)T where z} and
z? denote the number of calls in service of type-1 and type-2, respectively, such that
z} < Cq, 22 < C; and z} +z? < C. We further assume that C < C; + C;. Then the state

space of the system (see Figure 2) is the set:
X ={x=(z},23): z},22€ 2,0<2} <C;, 0<22 < Cy, 2} +22 < C}.

Transitions among the states in X are described in terms of the operators A; and D;
representing, respectively, an arrival or a departure of a message of type ¢, ¢ = 1,2. Thus,
the operators 4; : X - X, D; : X — X,1 = 1,2, are defined by:

Ay(eh,2?) = (=" +1)",2%)
Ax(z!,2?) = (21, (22 + 1)*)
Dy(z',2%) = ((z! = 1)*,2?)

Do(z?,z%) = (acl,(ac2 - 1)’*’),

where
(@ 40ty = {1 L <O otret<C
and m* = max{0,m}.

At this point, we provide a heuristic motivation of the nature of the control actions
at nodes 1 and 2. Denoting by z} = zi(x;) the probability of blocking an incoming call
of type-i, 1 = 1,2, arriving in the time interval [t,t + dt), we must suitably select this
probability based on a knowledge of x;. We refer to z} as the control action taken at time
t. If a; > 0 is a blocking cost associated with the type-i traffic, the total cost incurred
during [t,t + dt) is Y2_; Aiaizi(x,)dt. We can then write the normalized cost per unit
time at time t with the system state being x¢, as ci(x¢) = z} (x¢) + az?(x;), where a > 0

(assuming, of course, that A\; > 0,7 = 1,2).



-t

Let § > 0 be the interest rate used for discounting future cost, i.e., the present value
of a cost a incurred at time t is ae™%. Let J/(x) be the minimum “expected” total
discounted-cost with respect to zi(-), ¢ = 1,2, when the time horizon is {t : t > 0} and
the initial state is x = (z?,2?). Then, dynamic programming considerations lead to the
following optimality conditions for J#(x):

Jo . (x)= min {z}dt+ azidt+
v at(X) ogzg,zggl{ 0 0

2
e84 (ST (ZNTE (%) + M1 — 2) T (Aix)+
i=1

+ 2t JE(Dix))dt

+ (1= (z'py + 2P pp)dt)J] (x)} + o(dt).
It readily follows that:

Térax) = min {z(1— e 5N (T (Arx) = TE(x))}+

0<z}<1

+ min {22(a — e N (I (Apx) — T (%))}

0<z22<1
+ terms not depending on zj, z2.
Consequently 2(1)(2) = 0 (i.e., a type-1(2) call is accepted) if J8(A;2)x) — J{(x) <

1(2)

e‘s‘“(a)/)\l(g); otherwise z; ~~ = 1. Thus, we can associate with every state x in X’ a set of

admissible actions D = {0,1}? with the understanding that an admissible action z,(x) at

state x and at time ¢ will have the form:
z24(x) = (2 (x), 27 (x))

where zi = 1 or 0 according to whether an arriving call of type-i is rejected or accepted
into the system. The action space is then defined as the product set D°, and we represent

an admissible control strategy (CS) as a D5-valued stochastic process (z;,¢ > 0) where
z¢ = (24(x),x € X'). Hereafter, we shall use the abbreviated notation z for the CS (2¢, t 2
0). We denote by P the set of all admissible control strategies. Further, for simplicity,
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we write z} instead of zi(x¢). Finally, observe that ((x¢, z;),t > 0) is a Markov decision

process with transition rates shown in Figure 2.
At this juncture, it is convenient to relate the continuous time Markov chain (x¢,t > 0)
to a “suitable” discrete time chain by following the method of “uniformization” [7,13]. To

this end, we first define the total event rate by:
p=)\1 +)\2+C’,u2.

Then, let 0 = #p < t; < ¢2... < t, < ... be the transition epochs (due to arrivals or
departures) of the state process (x¢,t > 0). By suitably introducing “dummy” transitions
asin [10,7], it follows that the interepoch intervals are i.i.d random variables with a common
distribution determined by P(tx41 —tx >t) = e %, t >0, k = 1,2... Then it can be easily
shown {10,13] that the é-discounted expected cost accrued up to time t, upon starting with

initial state x and following a policy z in P, viz.,

tn
EZ (/ e %2} + azf)dt),
0
1s equal to a cost of the form:
n—1
E; (Z B (21 + azi)) :
k=0

with 2} 2 2, and B = p/(6 + p) < 1. The last expectation is taken with respect to the

probability distribution associated with a discrete time Markov decision process (xx, k > 0)

with transition probabilities:

( Al if X1 =A1Xk,2i =0
/\1 if Xk41 = xk,zi =1
/\2 if Xk41 = Azxk,z,zc =0
P(xXk41|Xk,28) - p= { Ag if Xp41 = Xk, 28 =1 (2.1)
J 131 :L‘l if Xk41 = D1Xk
yzmz if Xg41 = Doxi
\Cug—-z‘lpl-—-zzyg ika+1 =Tk, Zk = 0.

Then for each initial state x in X, we can define,

n-1
1209 = g B2 (e 4 o). (220

k=0

6



as the n-step optimal 3-discounted expected cost. Further, we introduce the infinite horizon

optimal B-discounted expected cost:
oo
JA(x) = min Ex kzzjo B*(zL + azl) < +oo. (2.2b)

Since the underlying state space S is finite, it can be shown [11] that limp—co J8(x) =
JA(x); moreover for the infinite horizon problem an optimal policy exists and it is station-
ary, i.e., the minimizing CS 2 satisfies 2,(x;) = 2(x¢), X¢ in X, 1 2 0.

In terms of the discrete-time formulation, the Dynamic Programming equation can

be written as follows (assume for simplicity that p = 1):

B : 1 L2
T (¥) = (zgrégl’” {zk + azy

z(';=1 if z‘:Ci

or zl42z2=C, i=1,2}

+ B (1 — 2D)TE(Arx) + Bhzh JE (%) 03
+ Bl - )IE(AX) + Bhast () |
+ B TY(Dix) + Bz’ T (Do)
+B(Cpz — 7' 1 — 2 ) T{ (%)}
with x = (z*, £2) being the initial state and z{, 22 the corresponding actions at that state.

Rearranging terms in (2.3), we get the following optimality criteria:

While at state x such that z! < C (z* < C2), and 2’ +z? < C, an incoming type-1(2)
call is blocked, i.e., 22 =1, if
7 (M) = T{(x) 2 @)/ fhae (2.4)
Furthermore, if 13 = Cy(p) or z! + 2?2 = C, we set 23(2) = 1.

3. Properties of the Optimal Discounted Cost Function

We now derive a few properties of the optimal n-step B-discounted cost function JE()
which will be employed in the next section to characterize the optimal policy for call

acceptance or rejection.



Proposition 3.1: For each ! > 0, 22 >0, J?(,.) is an increasing function of z*, z2.

Proof: We will first show that
Ji(a +1,2%) 2 IRt 2%),

by using simple coupling arguments. We consider two identical systems starting with initial
conditions (z + 1,2?%) and (2!, 2?), respectively. We apply the same control strategy to
both systems, namely the one that is optimal for the n-step cost problem with initial
conditions (z! + 1,z?). Whenever the system with initial condition (¢! + 1,2?) admits a

new call then it is feasible for the system starting at (z!,z?) to do so. Let x; denote the

state trajectory of the first system, and let ¢ 2 min(k : z; = 0). For n > o, the states
of the two systems coincide. Since we follow the same control strategy for both systems,

elementary coupling arguments provide that
J8(z' +1,2%) ~ JE(2!,2%) > 0.

In a similar manner we show that J2(z!,22 +1) > JE(2*,2?).

Proposition 3.2: For each z2 > 0, J5(-,z?%) is a convex function, i.e.,
T2 +1,2%) = JB(z!,2?) > TP (2!, 2?) — JB(2? —1,2%). (3.1)

A similar statement is true of J#(z!,.) for each z! > 0.
Proposition 3.2 can be established using linear programming techniques and duality
theory in the manner of {10]. To this end, we shall need the following definitions:
A sample path w* (of arrivals and departures) is a sequence of k events, k = 1,2,.-,
defined by
wk = {wy,ws,...wi}, w; € {A1,42,D1,D2}

j=1,...,k,
with j representing the 5! arrival or departure epoch, and A;, D; denoting respectively an

arrival or a departure of a type-i call, 1 = 1,2. We define the basic sample space, Q¥ for

the MDP to be the set of all sequences wF.



A transition £ is specified by

(1,0) ifwp = A

ky _ (0,1) if Wi = Az
@) =13 (21,0) ifwy =D
(0,-1) if wg = Ds.

We can then express the evolution of the state trajectory corresponding to a policy z in

P, through the following recursive equation:

Xog =X

. (3.2)
Xk(wF) = Xpo1 (W) + €4 (WF) — diag £ (wF)zi (W),

where xo is the initial state and diag £, (w*) is a 2 x 2-diagonal matrix with diagonal

elements £, (wF). Solving the recursive state evolution equation (3.2), we obtain that

k k

xp(Wh) =x 4+ ) €i(w) - ) diag ¢;(w)z;(w?).
j=1

=1

The n-step B-discounted cost corresponding to a control policy z in P and with initial

condition x can be written as follows:

VA(x,2) = ES (Z B¥(eh1(wr = A1) + azkl(wp = Az))

k=1

=Y ) mlwh)m(wh),

k=1 wk er

where 1(-) denotes the indicator function, and 7;(w*) = F*(L(wr = 41),al(wx =
Az)) P(w*), with IP(w¥) being the probability of the sample path w*.

The optimal n-step discounted cost (2.2a) then becomes

JB(x) = ,,‘é?(if,ll}z Vh(x,2).

In an analogous manner, we define:

Bix)= min VA(x.2).
W (%) L Tin, Va (x,2)
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Then W#(x) is the (optimal) value function of a minimization problem of the form:

Wix) = min > > melwHzw"),

(o ()Y 4 e
such that
296 = (G whae P
wk e QF,
k=1,2,...n,

under the constraints

k k
0 x4 3 E) - 1 ding €5 < ()

j=1
and

k k
(LD + Y &) = 3 diag €5(w)zi(w) < €

This is a linear program in the finite array of variables {zr(wF),w* € OF,1 < k < n}
Since x, the initial condition, enters linearly in the constraint equation, it can be shown
[13] that W2(-) is a convex function of x. Note that, W#(x) cannot as yet be associated
with JA(x), since the variables zi(w*) in (LP) can take values in the interval [0,1). We
now proceed to prove that there exists a solution zp(w*),wf in QF1 < k < n, such
that zx(w®) belongs to {0,1}?. We first derive the necessary and sufficient conditions of
optimality for the solutions of the linear program (LP). By duality theory [13, p. 50],
z* = {z}(w*),w* € QF,1 <k <n}isan optimal solution of the (LP) above if and only if

there exist nonegative dual variables
*(w*) e RE, ph(w®) e R2, vi(w*) € Ry, 1 < k<, wk e QF

such that (we drop in our notation the dependence of certain variables on w® to make the

presentation simpler):
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1) z* is an optimal solution to the following unconstrained problem:

}: > (mz* =X x+Z§J Z diag £,2;)

{!k(w")EIO 11} k=1 wk ek
k=1,2
wkenk

k k
tur(x+ > €&~y diag £;z; — (C1,C2)T)

j=1 1=1

(3.3a)

k k
vi((LD(x+ Y g - ) diag £;25) — C)).
j=l J=1

2) If by {xi(w*,2*)}7_, we denote the state trajectory generated by z* through
(3.2), then

0 < xx(wF,2%) < (C1,C2)T, xi(wF,z*) + x}(w*,2) < C. (3.3b)

3) If Ai* > 0, then zi(wF,2*)=0, i=1,2.
If ui* > 0, then zi(w*,2*)=C;, i=1,2. (3.3¢)
If v} > 0, then z}(w*,2*) + zi(wk, z*) = C.
The term being minimized in (3.3a) can be written as:
n
> Y (nwh) — @)zt + K,
k=1 wk ek

where K does not depend on z, and

ca(wh) = (Z(A;(wf) i) — i, 1))) diag €x(w").

i=k
Hence, condition 1 above can be written more conveniently as

221(2)(wk) = 0 if wr = Az(1) or Do(1y;

otherwise,
_ 1 if vi(w*) = cr(w*) <0
2w =40 if i (wk) = ci(w?) >0 (3.4)
€[0,1] if vi(wF) —ci(wh) =0

11



for: =1,2.

Lemma 3.1: Let X = {x: x = p1£(41) + p26(42), p1 € (—5,3) ;2 € [-5, D)}
Then
X —{ diagf(w) z | z € [0,1]’} c X U{X - {(w)},

we {A13A23D17-D2}'

Proof. The proof of the lemma is straightforward (see Figure 3).

Lemma 3.2: There is an integer-valued policy z = {z¢(w*)|w* € Q%,1 < k < n} such

that zx(w’) = 2} (w*) whenever the latter is integer-valued, and

Ag 2 (xp(wF, 2*) — xix(wF, 2)) € X,

for all w* in Q%1 <k < n.

Proof. We use induction. Assume that Ay lies in X. Since:
A1 = Ag — diag € (0 )25y (W (M) 4+ diag Erga (W )zaga (W),

if Agy1 = Ax— diag €1 (wF)z) (W*H!) liesin X, we choose z} 1 (wFT1) =0, i =1,2.
If Ag — diag Expa (w125, (WFH) lies in X — €(wF?), and if w*t! = Aj() (or Dy(y)),

2(1)

we choose zzfz(wk“) =1and z;,;(w**?) = 0, and in either case Ajy4; belongs to X.

Remark: That z,lc(z)(wk) = 1 for wir = Dy(9) is not surprising. In this case we “disable”
dummy departures so that xx(w*) > 0 in order that the linear program (LP) may have a
“feasible” solution.

Proposition 3.3: The integer-valued policy {z;(w*)}?_, in Lemma 2 is an optimal solu-
tion for the linear program (LP).

Proof: We show that the necessary conditions for optimality in (LP) are satisfied by the
integer-valued policy {zx(w*)}?_, in Lemma 3.2. Since zi(w*) is integer-valued when

z}(w*) is, relation (3.4) and hence the minimization of (3.3a), automatically hold.

We now check the remaining two conditions of optimality, namely (3.3b) and (3.3c).
We first show that x(w*,z) > 0. Suppose the opposite, and let z}(w*,z) < 0. Since

12



z} (w*, 2) is integer-valued, z}(w*, k) € ~1 and from Lemma 3.2 we have z}(w*,2*) =
zy(w*,z) + p; for a suitable py in (—3,3]. Then, z}(wF,2*) < -1+ 1 = -3 <0, a fact
contradicting the feasibility of z}(wF, 2*), and hence the optimality of z*.

In a similar manner, we show that xi(w*,z) < (C1,C2)T. Assume that zl(wf, 2) >
Ci, whence zl(w¥,z) > C; + 1; we then get xi(wk,z*) >Ci+1- -;- = C -l-% > C,
which is again a contradiction. Further, zi(w*,2) + z%(w*,z) < C since in the opposite
case z}(w¥,2*) + r}(w*,2*) > C+1~1 —1 = C. Notice, however, that the last argument
relies heavily on the fact that p; lies in (-3, 3] and p; lies in [-1,2), ie, p1 and pq
cannot equal 7 (or —31) simultaneously. Finally, we check the conditions (3.3c). We prove
first that vf > 0 implies zl(w*,z) + 22(w/,2) = C. Since z* is an optimal solution of
the linear program (LP), it is enough to show that z}(w,z*) + z2(w*,2*) = C implies
zi(wk, 2) + 22 (w*, 2) = C. To this end, we observe by Lemma 3.2 that for a suitable choice

of p1, p2,
1 k 2/ .k 1/, k _x* 2/ &k _= 1 1.
‘rk(w az)+mk("‘" ,z)::ck(w ,z)+a:k(w ,z)—pl—pg=C—p1——p26(C—-2-,C+-2-),

and z}(wF, z) + 2 (w*, 2) = C, since the sum is integer-valued. Similarly it can be shown
that A\i* > 0 implies zi(w*,2) = 0, and pi* > 0 implies zi(w¥,z*) = C;,i = 1,2. Since
the necessary and sufficient conditions of optimality for (LP) are satisfied, the optimality
of z = {zx(w*),1 < k < n,w* € Q%} is now evident.
Proof of Proposition 3.2: Since there exists an integer-valued solution z = {z;(w¥),1 <
k < n,wF € QF} for (LP), if the initial condition x is integer-valued, it follows that
J2(-) = W8 (x). Therefore, the convexity of W2(-) with respect to x implies the same for
I3 ().

Further, since W#(.) is the value function of a linear program, it is a piecewise linear
function of x {13, page 56], so that the following corollary holds:

Corollary 3.1: J?(.) is a piecewise linear function of x.

Proposition 3.4: For every x > 0, J3(.) is a “supermodular” function of x, i.e.,

JB(z' 41,22 + 1) = JB(a! +1,22) > JB(2, 2% + 1) - JB(2?,2%).

13



Proof: The proposition is a direct consequence of Corrollary 3.1 and Proposition 3.1. The

proof is provided in the appendix.

4. Determination of the Optimal Strategy
We now show that the optimal policy for call allocation is of the “bang-bang” type.
Specifically we prove that for type-1 calls, there is a monotone switching curve which
partitions the state space into two regions. One of them is a blocking region (i.e., blocking

is optimal for all states belonging to the region) while the other is nonblocking. Analogous
results hold for type-2 calls also.
We begin by making the following assertions:

Assertion 1: Assuming that state (z!,2?) is a blocking state for type-1 calls, all states

(z',z?) with ! > z! are also blocking states for type-1 calls.

Since the state (z!,2?) is a blocking state for type-1 calls, from the switching condi-
tions (2.4) we have J&(z! +1,2%) — JB(z! +1,2%) > JA(z! +1,2%) — JB(z*,22) > 1/B)1,
and as a consequence the state (z! + 1,z?) is blocking thereby validating the assertion.

An analogous result for type-2 calls can be similarly proved.

Assertion 2: Assuming that state (z!,z?) is a blocking state for type-1 calls, all states
(21,%2) with Ty > z, are also blocking states for type-1 calls. The assertion is proved in a
similar manner as assertion 1 by using the supermolularity property (Proposition 2.4) of
JE().

By combining assertions 1 and 2, we conclude that the optimal strategy minimizing
the B-discounted n-step blocking cost (2.2a) is characterized by two monotone switching

curves, one for each traffic type. Furthermore, since all the previous arguments are valid

in the limit as n — oo, we can assert:

Proposition 4.1: The optimal policy for the blocking system under study with respect
to an infinite horizon f-discounted blocking cost is characterized by two monotone (de-

creasing) switching curves, one for each traffic type (Figure 4).

5. The Average Cost Case

In this section, we determine the structure of the optimal stationary policy with

respect to an average cost criterion. To this end, we define the long-run average cost
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associated with a policy z in P and starting with initial state x, as:

V(x,z) = limsup 1 E: Z(z,lc +azf), a>0.

n—oo k=0
The minimum long-run average cost then is:

Jav(X) = min V(x,z),

and the policy that achieves the minimum is an average cost optimal strategy.

From (11, Thm. 2.1 and 2.2] we conclude the following: Since the state space of our
problem is finite for all discount factors 0 < 3 < 1, the difference |J?(z?, z2) — J4(0,0)] is
bounded. It follows that the average cost J,,(x) is independent of the initial state x and
Jaw = limg—1(1 = 8)JA(0,0). Furthermore, there exists a bounded function h(z',z?) and
a sequence of discount factors 8, — 1 with h(z!,2?) = lim,—u(h?"(z!,2%) — h?(0,0)),
and satisfying the following DP-equation for the average cost:

Jav + h(x) = {z{reli{?’l} {z} + a2t

f—1 ¢ -
zk—l if ©8=C,
or zl4z2=C}

+ (1 = zD)h(A1x) + M zih(x)
+Xa(1 = 22)h(Az%) + Aoz2h(x)
+ p1z h(Dy,x) + paz*h(Dyx)
+ (Cpz — &' py — 2 ua)R(x)}.

Furthermore, there exists a stationary policy z that is average cost optimal and is the
minimizer of the right side of the equation above. Obviously, h(-) has the same properties
as J#(-) for 0 < B < 1,1i.e., it is increasing, convex and supermodular. Switching conditions
similar to (2.4) may be derived for h(-), and using the same arguments as for the discounted

cost case, it can be shown that the average cost optimal strategy has the form of two

monotone switching curves.
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6. The Case of a Single Link

Similar results as before hold true for the problem associated with the optimal ad-
mission of two traffic types arriving at a common link having capacity C frequency slots
(i.e., when C; > C and C; > C in the model studied previously). Figure 5a illustrates
the optimal admission policy for the S-discounted cost with Ay = 10, Ay = 100, p; =
5, p2 =95, C =10, 8 =0.99. In this example, the dynamic programming recursion (2.3)
was iterated 200 times till the #-discounted cost converged. Then the optimal policy was
evaluated through relations (2.4). In this particular case, and in many other similar ones,
we observed from the computations that the traffic with the highest cost was never blocked
(except on the boundaries of the state space). We were not able to provide a formal proof

of this rather intuitively evident fact through dynamic programming equations.

We can gain some insight into the optimal admission policy for the simple link problem
by examining the associated linear program (LP). Assuming that A; < alz, and by the
symmetry with respect to the variables z}(wg), 2%(wk) of the constraint associated with
the capacity C of the link, we conclude that if z}(4;) = 0 then 2z3(4;) = 0 since, in the
opposite case, i.e. if 22(A4,) = 0, we can interchange the values of 2!, z? while still satisfying
the constraint and simultaneously achieving a smaller increase in the cost function of the
linear program. In a similar manner we can show that z2(A;) = 1 (call type-2 is blocked)
implies z] (A1) = 1 (call type-1 is blocked) also. We have been yet unable to relate the
optimal policy derived from the switching conditions (2.4) to the solution of the linear
program (LP). Therefore, no valid conclusions about the the optimal policy can be derived
by simply examining the behavior of the solution of (LP).

Another case of interest is the optimal admission policy when the traffic streams have
different bandwidth requirements. Computations were performed for two streams arriving
at a common link. In this case it is computationally demonstrated that the optimal policy
for the (-discounted cost (Figure 5b) is not necessarilly characterized by two monotone

switching curves. As a consequence, the 5-discounted cost may not be convex.

7. The Optimal Admission Control Problem for a General
Circuit Switched Network

We consider a circuit-switched network providing service to different traffic (call)

types. The links between the nodes are labeled j = 1,2,... J, and each link j comprises C;
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circuits (channels). Each call upon admission to the network is forwarded to its destination
through a prespecified set of interconnected links which constitute a route. Let R be the
set of all routes in the network. We define the matrix 4 = (ajr,7 = 1,2,...J, r € R),

where

din = { 1 if a message on route r uses a circuit of link j
r = .
! 0 otherwise.

Assume that the calls requesting route r arrive according to a Poisson process with inten-
sity A.. Moreover, the service time of each call (i.e., the time during which it is forwarded
through route r) is exponentially distributed with parameter p,. A call requesting admis-
sion on route 7 is discarded if at least one link on the route r is saturated, i.e., has no
free slots. We denote by C the capacity vector, i.e., C = (Cy,...Cs)T. Observe that the

problem formulated in section 2 is a special case of the general problem with matrix A4 and

1 0 Ch
A:(O 1>,C=(CQ>.
1 1 C

We study the equivalent discrete-time problem. As before, we define the state of the system

capacity vector C of the form:

at time instant k to be x; = (z},r € R) where z}, denotes the number of calls forwarded
on route r at that time instant. Obviously, Ax; < C, and we define the state space of the
system to be X = {x: Ax < C,x > 0}. Recall that the time instants at which the system
is observed correspond to state transition epochs (i.e., arrivals or departures). Given that
a cost a, is incurred for each call that is not given access to the network on route r, we
seek an optimal admission strategy (in the same spirit as for the simple problem of section

2) minimizing an infinite horizon (n step) B-discounted cost of the form:
oo(n)

k
E; Z ﬂ azg |},
k=1

where a = (ar,r € R), ax > 0, zx = (2},r € R) and z = 1(0) if an incoming call on
route r is blocked (accepted).

We define the total event rate (i.e., the “uniformization” rate) out of a state to be:
PpP= Z }‘7‘ +X- K,
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where p = (p;,t € R) and X is a solution to the following Linear Program:

max ux,
z

such that:
Ax<C,x2>20.

After normalizing all rates with respect to p (equivalently assuming p = 1), we can write
the dynamic programming equation associated with the optimal n-step B-discounted cost
J8(x). To this end we denote by e, the column vector (e;,i € R), with e; = 0 for i # r

and e, = 1. Moreover, we define the arrival and departure operators A,,D, : X — X as

follows:

Ar(x) = (x+e)", Dr(x) = (x—er)",

where

«_[x+e ifA(x+e)<LC _ +__{x-—er ifz,>1
(x+e)" = {x otherwise » (x—ep)" = X otherwise ’

for r in R. Then we can write:

Ha()=  min - (azk+B) (1= 2DAT(AX) + A (x)
z] =1 ?f A'(x-,t-er)>C} r€R

-+ :II,-[Lerﬁ(DrX) + (—fr - xr)ﬂrjllcg(x)))a

and the following criterion for admission can be obtained:

If A(x + e;) < C then an incoming call to route r is blocked (2} = 1) if:

ar

B

TE(Arx) - T8(x) >

Unfortunately the convexity and supermodularity properties (cf. Propositions 2.2 and 2.4)
for J2(-) cannot be derived for an arbitrary network topology. This is due to the fact

that an integer-valued solution to an associated linear program similar to (LP) cannot

be found. For example, Proposition 3.3 fails to hold if we have a constraint of the form

z}(wF) + 22 (w¥) + £ (w*) < C for a system with 3 routes. As a consequence, the optimal
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strategy for the general problem cannot be shown to have a “switching” surface structure.

Nevertheless, for the case where the matrix A has the simple form,

([t )

11
11
11

\ 11}

it can be easily verified that all the proofs of convexity and supermodularity of the optimal

B-discounted cost hold true. In this case, the optimal admission strategy has a structure of
a “monotone” switching surface, i.e., if 27(x) = 1 then 2"(x +e;) = 1 for 7 in R and x + e;
in &'. Furthermore, similar results are also true for the long-run average cost problem.

A network with matrix A having the simplified form, as well as the associated switching

surface for type-1 calls is shown in Figure 6.
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Appendix

Proof of Proposition 8.4: In this section we prove that J2(.) is a “supermodular”

function. Specifically, we prove that a piecewise linear increasing function W(-) is super-

modular, i.e.,

W' +1,2% +1) = W(a! +1,2%) > W(z!,22 + 1) - W(z?,2?) (A.1)

for ! >0, z2 > 0.

The proof consists of the following cases:

Case 1: Refer to Figure 7. Since W(.) is piecewise linear, its graph consists of intersecting
planes. Assume that the points (z!,2%, W(z!,z?)) and (z!, 22 + 1, W(z?,2? + 1)) belong
to plane (1), while the other two points, i.e., (z! + 1,22, W(z! +1,2?)) and (2! +1,2% +
1,W(z! + 1,22 + 1)) belong to plane (2). We now make a projection on the (z!,z%)-
plane. The line [ is the projection of the intersection of the planes (1) and (2) (Figure 7).
Since W(-) is piecewise linear, we set W(z!,z?) = A1z + Biz? + C;, W(z! +1,2%) =
Ax(z' +1)+ Byz? + Cy, W(zl,22+1) = A12' + B1(2? +1)+Cy, and W(z! +1,2% +1) =
Az(z! +1) + Ba(z? + 1) + C2, where the subscript ¢ in the group of coefficients (4;, B;, C;)
refers to plane ¢ = 1,2. Direct substitution in (A.1) gives A2 > Ay, a valid fact due to the

increasing nature of W(-).

For all subsequent cases, the reader is refered to Figure 8.
Case 2: By direct substitution in (A.1) we get:
Alxl + B1$2 +C, > Ag.’l)l + Bz:l,‘2 + Cs.
This inequality is true due to the increasing property of W(-).
Case 3: By substitution in (A.1) we get :
Ax(z' + 1)+ Ba(z? + 1)+ Cy 2 Ay (2! + 1) + By(z* + 1) + Cy,

in a manner similar to case 2.

Case 4: Inequality (A.1) is established since B 2> B, similar to case 1.

In cases (5)-(9) we consider the intersection of 3 planes.
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Case 5: By direct substitution in (A.1) we get,
Ap(z' + 1)+ By(z® +1) + Co — Ag(a! + 1) — By(2® +1) — Cs + A3 > Ay,

since 4; > A; and A2(z' + 1)+ By(z? + 1) + C2 > Az(2! + 1) + B3(2? + 1) + Cs.

Cases (6) —(9) (see Figure 8) can be established in a similar manner. The case of four

intersecting hyperplanes can easily be reduced to any of the previous cases.

Remark: For the proof of “supermodularity ”, only the increasing nature and the

piecewise linearity of W{(-) are used; the convexity property is not needed.
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