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Improving the performance and extending the service life of transportation infrastructure 

is a long standing goal of Federal Highway Administration (FHWA) and the transportation 

community. Accurate prediction of the mechanical properties of highway materials are 

indispensable for enhancing the sustainability and resilience of transportation 

infrastructure since it provides accurate inputs for pavement mechanistic-empirical (ME) 

design and prediction of pavement distresses, helping to optimally allocate the maintenance 

needs and reduce testing frequencies which account for costly expenditures. Accurate 

prediction of materials properties can also reduce the acceptance risks during quality 



assurance (QA) without conducting extensive testing. Concrete plays an important role in 

the construction of transportation infrastructure. Developing an empirical and/or statistical 

model for accurately predicting compressive strength remains challenging and requires 

extensive experimental work. Thus, the objective of the study was to improve the 

prediction of concrete compressive strength using ML algorithms. A ML pipeline was 

proposed in which a two-layer stacked model was developed by combining seven 

individual ML models. Feature engineering was implemented, and feature importance was 

evaluated to provide better interpretability of the data and the model. This study promotes 

a more thorough assessment of alternative ML algorithms for predicting material properties.  

In addition, the quality of highway materials and construction translate directly to 

performance. To develop a statistically sound QA specification, the risks to the agency and 

contractor must be well understood. In this study, a Monte Carlo simulation model was 

developed to systematically assess the acceptance risks and the implications on pay factors 

(PF). The simulation was conducted using typical acceptance quality characteristics 

(AQCs), such as strength, for Portland cement (PCC) pavements. The analysis indicated 

that specific combinations of contractor and agency sample sizes and population 

characteristics have a greater impact on acceptance risks and may provide inconsistent PF. 

The proposed methodology aids both agencies and producers to better understand and 

evaluate the impact of sample sizes and population characteristics on the acceptance risks 

and PF.  

Finally, the use of recycled materials is a key element in generating sustainable pavement 

designs to save natural resources, reduce energy, greenhouse gas (GHG) emissions and 



costs. This study proposed a methodological life cycle assessment (LCA) framework to 

quantify the environmental and economic impacts of using recycled materials in pavement 

construction and rehabilitation. The LCA was conducted on two roadway projects with 

innovative recycled materials, such as construction and demolition waste (CDW) and rock 

dust. The proposed LCA framework can be used elsewhere to quantify the environmental 

and economic benefits of using recycled materials in pavements. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



SUSTAINABILITY, ACCEPTANCE RISK ANALYSIS AND MACHINE 
LEARNING IN ASSESSING MECHANICAL PROPERTIES AND THE IMPACT OF 

HIGHWAY MATERIALS IN TRANSPORTION INFRASTRUCTURE 
 
 
 

By 
 
 

Yunpeng Zhao 
 
 
 
 

Dissertation submitted to the Faculty of the Graduate School of the 
University of Maryland, College Park, in partial fulfillment 

of the requirements of the degree of 
Doctor of Philosophy 

2023 
 
 
 
 

 
Advisory Committee: 
Professor Dimitrios G. Goulias, Chair 
Professor Sherif M. Aggour 
Professor Ahmet H. Aydilek 
Professor Miroslaw J. Skibniewski 
Professor Sung Lee, Dean’s Representative 
 



 
 
 

 
© Copyright by 
Yunpeng Zhao 

2023 
 
 
 
 
 
 
 
 
 
 
 

 
 



ii 

 

ACKNOWLEDGEMENTS 

 

There are no proper words to convey my deep gratitude and respect for supervisor, Professor 

Dimitrios G. Goulias. I appreciate your tremendous support, patience and inspiration during 

my challenging moments. Your immense knowledge and guidance helped me develop my 

research and write my dissertation. 

 

My sincere thanks must also go to the members of my dissertation committee: Professors 

Sherif M. Aggour, Ahmet H. Aydilek, Miroslaw J. Skibniewski and Sung Lee, for their time 

to be on my committee and to offer me valuable comments and advice towards improving 

my work. 

 

I am also grateful to my collaborators for lending me their expertise and intuition to my 

research: Professors Luca Tefa and Marco Bassani from Polytechnic University of Turin, 

Italy; Professor Magdalena Dobiszewska from Bydgoszcz University of Science, Poland.  

 

I am extremely grateful to my parents, Limin Zhang, Jianwei Zhao, and my beloved Shih-

Huai Cheng for their unconditional trust and support during all my ups and downs. Your 

love gives me strength and courage.  

 



iii 

 

TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS .................................................................................................ii 
TABLE OF CONTENTS ................................................................................................... iii 
LIST OF FIGURES ............................................................................................................ vi 
LIST OF TABLES ........................................................................................................... viii 
CHAPTER 1: INTRODUCTION ....................................................................................... 1 

1.1 Overview ..................................................................................................................... 1 

1.2 Research Objectives .................................................................................................... 6 

1.3 Organization of Dissertation ....................................................................................... 7 

CHAPTER 2: PREDICTION OF CONCRETE COMPRESSIVE STRENGTH 
USING MACHINE LEARNING ALGORITHMS ........................................................... 9 

2.1 Background ................................................................................................................. 9 

2.2 Machine Learning Algorithms .................................................................................. 11 

2.2.1 Multiple Linear Regression (MLR) .................................................................. 12 

2.2.2 Support Vector Machines (SVMs) .................................................................... 13 

2.2.3 Decision Tree (DT) ........................................................................................... 15 

2.2.4 Artificial Neural Networks (ANNs) .................................................................. 16 

2.2.5 Ensemble Learning (EL) .................................................................................. 17 

2.3 Methodology and Implementation ............................................................................ 19 

2.4 Data Preparation ........................................................................................................ 20 

2.5 Training Base Models ............................................................................................... 23 

2.6 Training Stacked Model and Generating Predictions................................................ 24 

2.7 Evaluation of Model Performances ........................................................................... 26 

2.7.1 Performance Measures .................................................................................... 26 

2.7.2 Performance of Base Models ........................................................................... 27 

2.7.3 Performance of Stacked Model ........................................................................ 30 

2.7.4 Feature Importance .......................................................................................... 33 

2.7 Comparison with Models from Previous Studies ...................................................... 39 

2.8 Summary and Conclusions ........................................................................................ 42 



iv 

 

CHAPTER 3: EVALUATION OF ACCEPTANCE RISK AND PAY FACTOR IN 
QUALITY ASSURANCE BY VERIFICATION TESTING ......................................... 44 

3.1 Background ............................................................................................................... 44 

3.2 Literature Review ...................................................................................................... 48 

3.3 Power of Hypothesis Testing and Acceptance Risks ................................................ 50 

3.4 Numerical Simulation ............................................................................................... 54 

3.2.1 Simulation of AASHTO Verification Procedure ............................................... 54 

3.2.2 Determination of Pay Factor (PF) ................................................................... 56 

3.2.3 Power of Statistical tests and PF Probability Curves ...................................... 57 

3.3 Alternative Population Characteristics and Sample Sizes ......................................... 60 

3.4 Results and Discussions ............................................................................................ 63 

3.5 Conclusions and Recommendations .......................................................................... 81 

CHAPTER 4: LIFE CYCLE ASSESSMENT OF USING RECYCLED MATERIALS 
IN PAVEMENT ................................................................................................................. 84 

4.1 Introduction ............................................................................................................... 84 

4.2 Methodology ............................................................................................................. 85 

4.3 Life-Cycle Economic and Environmental Impacts of CDW Recycled Aggregates in 
Roadway Construction and Rehabilitation ................................................................ 90 

4.3.1 Literature Review ............................................................................................. 90 

4.3.2 Alternative Pavement Design with CDW Aggregates ...................................... 93 

4.3.3 Life Cycle Assessment (LCA) ........................................................................... 97 

4.3.4 Life Cycle Cost Analysis ................................................................................... 99 

4.3.4 Life Cycle Environmental Impacts ................................................................. 100 

4.3.5 Sustainability Criteria and Rating ................................................................. 106 

4.3.6 Conclusions .................................................................................................... 110 

4.4 Life Cycle Sustainability Assessment of Using Rock Dust as a Partial Replacement 
of Fine Aggregate and Cement in Concrete Pavements .......................................... 112 

4.4.1 Background .................................................................................................... 112 

4.4.2 Materials and Methods ................................................................................... 115 

4.4.3 Feasible Sustainable Strategies with Rock Dust Addition in Concrete ......... 118 

4.4.3 Results and Discussions ................................................................................. 122 

4.4.4 Sustainability Rating ...................................................................................... 133 



v 

 

4.4.5 Summary and Conclusions ............................................................................. 135 

CHAPTER 5: SUMMARY AND RECOMMENDATIONS ........................................ 137 

APPENDIX ....................................................................................................................... 141 

BIBLIOGRAPHY ............................................................................................................ 142 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

LIST OF FIGURES 

 

Figure 2.1 Nonlinear transformation .................................................................................... 14 
Figure 2.2 Flow diagram of the proposed methodology ...................................................... 20 
Figure 2.3 Relationship between predicted and measured compressive strength: a) linear 

regression, b) support vector machine, c) decision tree, d) multiple layer 
perceptron, e) random forest, f) Xgboost, g) Adaboost ...................................... 30 

Figure 2.4 Predicted vs. measured strength for stacked model, a) on training dataset, b) on 
testing dataset ..................................................................................................... 33 

Figure 2.5 Relative importance of input variables for each model ...................................... 39 
Figure 3.1 Methodological framework of analysis .............................................................. 47 
Figure 3.2 Graphical illustration of level of significance, α, β and hypothesis testing power 

for two-sided case ............................................................................................... 52 
Figure 3.3 Monte Carlo based simulation for integrating risk and PF in verification 

procedures ........................................................................................................... 59 
Figure 3.4 Alternative distribution scenarios in numerical simulation for pavement 

thickness ............................................................................................................. 63 
Figure 3.5 F-test power for scenario 1 (equal sample and population characteristics) ........ 65 
Figure 3.6 PF probability curves for scenario 1 (equal populations means and standard 

deviations) with various combinations of sample sizes, n.................................. 68 
Figure 3.7 F-test power for scenario 2 for various combinations of contractor’s and 

agency’s sample sizes ......................................................................................... 71 
Figure 3.8 PF probability curves for scenario 2 for various combinations of contractor’s 

and agency’s sample sizes .................................................................................. 71 
Figure 3.9 F-test power for scenario 3 for various combinations of contractor’s and 

agency’s sample sizes ......................................................................................... 73 
Figure 3.10 PF probability curves for scenario 3 for various combinations of contractor’s 

and agency’s sample sizes ................................................................................ 73 
Figure 3.11 t-test power for scenario 4 for various combinations of contractor’s and 

agency’s sample sizes ....................................................................................... 76 
Figure 3.12 PF probability curves for scenario 4 for various combinations of contractor’s 

and agency’s sample sizes ................................................................................ 76 
Figure 3.13 F-test power for scenario 5 for various combinations of contractor’s and 

agency’s sample sizes ....................................................................................... 79 



vii 

 

Figure 3.14 T-test power for scenario 5 for various combinations of contractor’s and 
agency’s sample sizes ....................................................................................... 79 

Figure 3.15 Probability of detecting a difference in means and/or variances for scenario 5 
for various combinations of contractor’s and agency’s sample sizes ............... 81 

Figure 3.16 PF probability curves for scenario 5 for various combinations of contractor’s 
and agency’s sample sizes ................................................................................ 81 

Figure 4.1 Methodological framework for generating and evaluating alternative sustainable 
strategies ............................................................................................................. 87 

Figure 4.2 Inputs, outputs of the LCCA and LCA environmental impact analysis ............. 89 
Figure 4.3 Schematic representation of alternative strategies and materials; (A) reference 

design, (B) (C), (D) and (E): alternative strategies............................................. 96 
Figure 4.4 LCCA for alternative strategies. (A) reference design; (B) (C), (D) and (E): 

alternative strategies ......................................................................................... 100 
Figure 4.5 Life cycle greenhouse gas emissions (CO2); (A) reference design, (B) (C), (D) 

and (E): alternative strategies ........................................................................... 102 
Figure 4.6 Life cycle energy consumption; (A) reference design, (B) (C), (D) and (E): 

alternative strategies ......................................................................................... 103 
Figure 4.7 Life cycle water consumption; (A) reference design, (B) (C), (D) and (E): 

alternative strategies ......................................................................................... 104 
Figure 4.8 Environmental impacts of alternative strategies; (A) reference design, (B) (C), 

(D) and (E): alternative strategies ..................................................................... 106 
Figure 4.9 Relative weights for sustainability criteria ....................................................... 108 
Figure 4.10 Amoeba graphs for strategies C and E ........................................................... 110 
Figure 4.11 Comparison of life-cycle costs for alternative strategies ................................ 125 
Figure 4.12 NPV life-cycle cost broken down by materials and processes for sustainable 

strategy F ......................................................................................................... 126 
Figure 4.13 Life-cycle greenhouse gas emissions (CO2) for alternative strategies ........... 129 
Figure 4.14 Life-cycle energy consumption; reference design (A), alternative strategies (B–

G) .................................................................................................................... 130 
Figure 4.15 Life-cycle water consumption; reference design (A), alternative strategies (B–

G) .................................................................................................................... 131 
Figure 4.16 Sustainability rating for each alternative ........................................................ 134 

 

 



viii 

 

LIST OF TABLES 

 

Table 2.1 Statistics of concrete mixtures variables .............................................................. 22 
Table 2.2 ML models with optimized hyperparameters ...................................................... 24 

Table 2.3 Comparison of ML model performance on the HPC dataset ............................... 41 
Table 3.1 Means, standard deviations and specification limits (NCHRP 10-79) ................ 62 
Table 3.2 Power and average PF in the long run for various combinations of contractor and 

agency sample sizes ............................................................................................. 65 

Table 4.1 Design features of the paving construction project .............................................. 94 
Table 4.2 Alternative Materials and Properties.................................................................... 96 
Table 4.3 Materials costs...................................................................................................... 98 
Table 4.4 Labor, processing cost and overhead rates (PaLATE) ......................................... 98 

Table 4.5 Environmental factors related to materials production (PaLATE and OpenLCA)
 ............................................................................................................................................ 101 
Table 4.6 Environmental impacts for alternative strategies ............................................... 105 
Table 4.7 Criteria and sustainability targets ....................................................................... 108 

Table 4.8 Points obtained for each parameter and total rating score ................................. 110 
Table 4.9 Chemical composition of cement ....................................................................... 116 
Table 4.10 Chemical composition of rock dust (basalt origin) .......................................... 116 
Table 4.11 Concrete mix proportioning ............................................................................. 117 
Table 4.12 Conventional and alternative sustainable strategies......................................... 119 

Table 4.13 Pavement design input parameters for the roadway site .................................. 121 
Table 4.14 Cost of materials in the region ......................................................................... 122 
Table 4.15 Emission factors of materials production (after EPA 2022) ............................ 127 
Table 4.16 Environmental impacts broken down by material production, materials and 

transportation for strategy F ............................................................................. 131 
Table 4.17 Environmental impacts for alternative sustainable strategies .......................... 132 

 

 



1 

 

CHAPTER 1: INTRODUCTION  

 

1.1 Overview 

The nation's vast network of road transportation infrastructure is critical to sustain 

economic development, connect communities and improve the quality of life. Enhancing the 

durability and extending the life of transportation infrastructure is a strategic priority of the 

US Department of Transportation (DOT). Accurate estimation and/or prediction of the 

mechanical properties of transport infrastructure materials is one of the key elements in 

pavement management systems (PMS) and bridge management systems (BMS). Accurate 

predictions of materials’ properties also provide valuable inputs for pavement mechanistic-

empirical (ME) design and prediction of pavement service life. This leads in improving the 

optimal timing of maintenance and rehabilitation interventions, thus reducing testing 

frequencies of inspections which account for costly expenditures. Accurate predictions of 

material properties and strength during mix design and construction may also provide: (i) 

significant savings to producers by reducing testing during mixture design optimization, as 

well as during placement and construction for assessing material and construction uniformity;  

(ii) lower risks of acceptance during quality assurance (QA); (iii) fair and defensible pay 

factors leading to lower litigations during construction; and finally, (iv) more reliable and 

trustworthy sustainability assessment of roadway infrastructure construction in terms of 

economic and environmental impact assessment.  
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Concrete is the most widely used construction material, with an estimated 30 billion 

tonnes used each year worldwide, and with: a per capita basis that is 3 times as much as 40 

years ago (i.e., three tonnes per year used for every person in the world); as well as, a demand 

growing more steeply than any other construction material such as steel or wood, according 

to the Global Cement and Concrete Association (GCCA, 2022). Thus, concrete plays an 

important role in the construction of transport infrastructures such as highways, bridges, 

airports, and runways. Compressive strength is one of the most critical parameters to assess 

concrete quality in engineering applications (ACI 318-19); (Kosmatka & Panarese, 2002). 

To meet compressive strength requirements, concrete mixture proportioning is often based 

on empirical prescriptive and/or performance-related mixture design methodologies as 

recommended by the American Concrete Institute (ACI) (ACI 318-19). A concrete mixture 

consists of various ingredients including cement, water, coarse and fine aggregate, and in 

several cases additives and admixtures. Understanding the relationship between concrete 

ingredients and strength is essential for optimizing concrete mixture proportioning and 

predicting early and long-term compressive strength. 

Traditionally, empirical and statistical models, such as linear and nonlinear 

regression, were developed for predicting concrete compressive strength. However, these 

models require extensive experimental work and statistical analysis of the data. In addition, 

since the relationships between ingredients and compressive strength are often complex and 

highly nonlinear, the conventional models often provide inaccurate results. Therefore, 

developing a comprehensive model for accurately predicting compressive strength is 

challenging. In recent years, there has been growing interest in the application of machine 
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learning (ML) techniques for predicting materials properties. ML provides a data-driven 

approach that is capable of making predictions based on existing datasets and underlying 

patterns. ML-based predictions have a significant advantage over the traditional approaches 

especially for handling nonlinear problems (Harun, 2022); (Miladirad et al., 2021); (Farooq 

et al., 2021); (Chou et al., 2011); (Young et al., 2019); (Salehi & Burgueño, 2018); (Yeh, 

1998). ML algorithms consider the type and quantities of concrete ingredients as input 

variables to predict compressive strength (i.e., output/target variables). ML algorithms can 

learn the relationship between the target and input variables without constraints on 

presumption. This approach also further provides greater flexibility to capture hidden, non-

intuitive feature patterns directly from the input data. 

This study attempts to improve the prediction of concrete compressive strength using 

ML algorithms with feature engineering techniques, (Research Objective I). Seven ML 

models (i.e., base models) of increasing complexity are implemented and compared, 

including linear regression (LR), support vector machine (SVM), decision tree (DT), 

multiple layer perceptron (MLP), which is a class of feedforward ANN), and ensemble 

models (i.e., random forest (RF), Adaboost, and Xgboost). Feature (i.e., input variable) 

importance is computed to demonstrate the contribution of the synthetic features on 

prediction accuracy as compared to original features. To further improve the prediction 

accuracy, this study develops a two-layer stacked model where individually developed base 

ML models are combined, (Research Objective II). Finally, the model performances from 

this study are compared with previous studies from the literature to demonstrate the 

superiority of the proposed methodology. 
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Quality assurance (QA) plays an important role in delivering long-life pavements. 

The quality of highway construction and materials translate directly to performance. To 

develop a statistically sound QA specification, the risks to the agency and contractor must 

be well understood. The payment provisions and risks associated with sample sizes, 

specification limits, acceptance quality level (AQL), rejectable quality level (RQL) and pay 

equations must be fully assessed and understood by the producers and agencies. Modern QA 

specifications recognize the state highway agencies’ (SHAs) responsibility for monitoring 

the contractor’s quality control (QC) activities, conducting agency inspections, and 

conducting acceptance sampling and testing. However, because of the shortage of personnel 

at SHAs and intensive construction schedules, many SHAs use the contractor QC data for 

acceptance and pay decisions. This acceptance procedure is permitted by Federal regulation 

23 CFR 637 Subpart B as long as the quality of the material or construction is validated by 

verification testing using independent samples (FHWA, 1995).  

The F- and t- tests are the most used verification procedures in validating contractor 

test data to determine if the SHA and contractor data are from the same population. These 

tests are based on sample statistics, which may lead to inadequate verification and statistical 

validation, and subsequently impose significant acceptance and payment risks to SHAs. 

Thus, the third objective of this study (Research Objective III) is to develop a Monte Carlo 

based simulation process to systematically quantify the acceptance risks associated with the 

verification procedures and assess the implications on pay factor (PF). The simulation is 

implemented on selected acceptance quality characteristics (AQCs), such as strength, 

thickness, and roughness of Portland cement concrete (PCC) pavement. The statistical power 
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of the F-test and t-test is determined for various combinations of contractor and agency 

sample sizes. The acceptance risks and associated PF are quantified by defining the PF 

probability curves and calculating the average PFs in the long run. 

Finally, state department of transportation agencies (DOTs) are now focusing on the 

implementation of sustainable criteria and practices for “green infrastructure.” To improve 

the environmental quality and sustainable development of transportation infrastructure, it is 

important to implement sustainable strategies in pavement construction and rehabilitation. 

Recently, FHWA launched the Climate Challenge Initiative to quantify the impacts of 

sustainable pavements and to demonstrate ways to reduce greenhouse gas emissions in 

highway projects using sustainable construction materials (e.g., recycled materials and by-

products). The use of recycled materials is a key element in generating sustainable pavement 

designs to save natural resources, reduce energy, greenhouse gas emissions, and costs. The 

fourth objective of this study, (Research Objective IV), is to propose a methodology for 

systematically assessing the environmental and economic life-cycle benefits when using 

recycled materials in highway projects. The suggested approach could be potentially 

implemented and/or integrated in PMS so as to introduce sustainability principles in 

designing and optimizing alternative rehabilitation strategies. The methodology includes 

various steps for the analysis, starting with condition assessment of the existing highway, 

identifying alternative sustainable structural pavement designs, predicting service life, 

setting up alternative rehabilitation strategies, and conducting life cycle environmental and 

economic analysis. To demonstrate the value of the methodology worldwide, two case 

studies are conducted on roadway projects with innovative recycled materials, such as 
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construction and demolition waste (CDW) and rock dust filler, representing actual field 

conditions for primary roads in Italy and Poland, complementing thus the previous analysis 

in the US conducted during the master’s degree (Zhao et al., 2021). 

 

1.2 Research Objectives 

Thus, the objectives of this dissertation were to:  

• Explore the development of ML modeling and the implementation of feature 

engineering techniques using domain knowledge to improve the prediction of 

concrete compressive strength, (Research Objective I).  

• Enhance ML prediction accuracy by exploring model stacking where individual 

ML algorithms are combined, (Research Objective II).  

• Develop a systematic methodology for quantifying acceptance risks based on 

Monte Carlo simulation and relate risks to pay rewards for quality, (Research 

Objective III). 

• Propose a methodology for systematically assessing the environmental and 

economic life-cycle benefits when using recycled materials in highway projects, 

(Research Objective IV), and assessing response of the suggested approach to 

real case worldwide real case projects when innovative recycled construction 

materials are used. 
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1.3 Organization of Dissertation  

Chapter 1 provides an overview of the dissertation and outlines the research 

objectives. 

Chapter 2 presents the development of ML models for predicting concrete 

compressive strength (Research Objectives I and II). In this chapter, seven alternative ML 

models of increasing complexity are developed and compared, including linear regression 

(LR), support vector machine (SVM), decision tree (DT), multiple layer perceptron (MLP), 

which is a class of feedforward ANN, random forest (RF), Adaboost and Xgboost. To further 

improve the prediction accuracy, a ML pipeline is proposed in which the feature engineering 

technique is implemented, and a two-layer stacked model was developed. The 

implementation process of the proposed ML pipeline includes the following steps/sections: 

(1) data preparation; (2) training and optimizing individual models; (3) training the stacked 

model and generating predictions; (4) evaluation of model performance. 

Chapter 3 presents the Monte Carlo simulation model which is developed to 

systematically quantify acceptance risks and assess the implications on PF (Research 

Objective III). The model is implemented for five scenarios of contractor and agency 

population characteristics using pavement thickness data reported in a national study. The 

numerical simulation process and results are presented. For each scenario, the acceptance 

risks are assessed and the implications in terms of PF to the contractor and the agency are 

discussed.  
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Chapter 4 presents a life cycle assessment (LCA) framework for using recycled 

materials in pavement construction and rehabilitation (Research Objective IV). The LCA is 

conducted on two pavement projects representative of typical construction practices in Italy 

and Poland to quantify the environmental and economic impacts.  

Chapter 5 summaries the research findings, provides recommendations and discusses 

future research.  
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CHAPTER 2: PREDICTION OF CONCRETE COMPRESSIVE 

STRENGTH USING MACHINE LEARNING ALGORITHMS 

 

2.1 Background 

The most common ML models used for forecasting the compressive strength of 

concrete can be categorized into four types: SVM, DT, artificial neural networks (ANN), 

and ensemble learning algorithms (EL). Numerous studies demonstrated that ML techniques 

provide higher accuracy for concrete strength prediction than traditional statistical analysis 

(i.e., multivariate regression). For instance, a neural network with backpropagation was 

adapted to predict the compressive strength of high-performance concrete (HPC) (Yeh, 

1998). The model incorporated concrete mixture ingredients and age as input variables. 

Results demonstrated that ANN exhibited good prediction performance, outperforming 

regression models in terms of accuracy. Several other studies have also reported the use of 

ANN in predicting concrete strength. For example, Duan et al., (2013) proposed an ANN 

model to predict the compressive strength of recycled aggregate concrete (RAC). The 

performance assessment revealed that ANN offered a fairly high accuracy with a coefficient 

of determination (R2) of 0.995. However, this study is limited to an extremely small dataset 

(i.e., n=168) which may not sufficiently represent the predictor variable space. As such, the 

generalization ability of ANN needs to be validated. Siddique et al., (2011) compared the 

predictive performance of a simple backpropagation neural network on two concrete 

compressive strength databases. Their study also presented the relative importance of each 

input variable in prediction. Gupta, (2007) investigated the potential use of SVM for 
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predicting concrete compressive strength using two relatively small datasets (i.e., n=181 and 

190). The results showed that SVM with radial basis function (RBF) can effectively predict 

compressive strength and provide a correlation of coefficient of 0.994. Ling et al., (2019) 

proposed an SVM model combined with a k-fold cross-validation technique to predict the 

compressive strength of concrete in the marine environment. The results showed that the 

ANN model outperformed ANN and DT. Chou et al., (2011) attempted to optimize the 

prediction accuracy of compressive strength of HPC by comparing different ML models, 

including multiple additive regression trees (MART), SVM, bagging, and ANN. The 

performance comparison indicated MART that was superior in prediction accuracy, 

computational efficiency, and aversion to overfitting. Young et al., (2019) compared the 

performance of four ML models (i.e., linear regression, ANNs, SVM, and random forest) 

for predicting both field and laboratory concrete data. In their study, the random forest 

provided the best prediction for both field (R2=0.60) and laboratory data (R2=0.86). Feng 

et al., (2020) proposed an ensemble ML model (i.e., AdaBoost) that employed an adaptive 

boosting algorithm to establish a strong learner by integrating several weaker learners and 

reported promising accuracy. Zhang et al., (2019) developed a random forest (RF) to predict 

the compressive strength of self-compacting concrete. The model achieved high predictive 

accuracy indicated by a high correlation coefficient (R = 0.97). Farooq et al., (2021) 

compared ensemble approaches with individual machine learners for predicting the 

compressive strength of HPC. The results revealed that ensemble models with boosting and 

bagging showed robust performance as compared to the individual approach (i.e., DT, ANN, 

and SVM). 
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Since each ML technique has various advantages and drawbacks, the selection of the 

most suitable model is based on different criteria (i.e., the nature of the data, predictive 

accuracy, computational time). Model selection usually involves the process of choosing one 

among many candidate models for a predictive modeling problem. As such, a systemic 

comparison of all common ML techniques for predicting concrete compressive strength is 

needed. Additionally, the performance of the proposed ML models for predicting concrete 

strength from literature was often optimized by extensively tuning up the hyperparameters 

of each algorithm or developing a hybrid model based on conventional ML algorithms, 

which is considered time-consuming and computationally expensive as it requires testing 

numerous combinations before attaining the optimum values or models. Alternatively, this 

study presents the importance of exploratory data analytics and featuring engineering using 

domain knowledge to improve the prediction performance of concrete compressive strength. 

Feature (i.e., input variable) importance was computed to demonstrate the contribution of 

the synthetic features on prediction accuracy as compared to original features. Finally, the 

model performance from this study was compared with other previous from the literature to 

show the superiority of the proposed methodology. 

 

2.2 Machine Learning Algorithms  

This section briefly reviews the ML algorithms investigated and compared for 

optimizing the accuracy of concrete compressive strength. 
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2.2.1 Multiple Linear Regression (MLR) 

Multiple linear regression algorithm establishes a linear relationship between a 

response variable (quantitative) and several explanatory variables. For multidimensional 

inputs, this algorithm learns a mapping from D-dimensional inputs to scaler outputs: 

x ,D y∈ ∈   with the following equation:  

1
( ) w x

D
T

i i
i

f x b w x b
=

= + = +∑  (2.1) 

where iw is the D-dimensional coefficient of the input variable ix . In the proposed 

regression model, y  represents concrete compressive strength, and ix represents mixture 

components. The algorithm learns a vector of weights w by minimizing the least-squares 

cost function given by  

2

1
(w) ( w x)

N
T

i
i

E y
=

= −∑    (2.2) 

where 

1 1

w ,  x=

1
D D

w x

w x
b

   
   
   =
   
   
   

 

   

 

(2.3) 
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2.2.2 Support Vector Machines (SVMs) 

SVM is a supervised learning method that can be used for both nonlinear regression 

and classification analysis based on structural risk minimization (SRM). SVM was first 

proposed by Cortes & Vapnik (1995). The main concept of the SVM method is using an 

effective separation by a hyperplane, with the largest distance to the nearest training-data 

point and the lowest generalization error, to allow the SVM to minimize the error and obtain 

a better generalization. In support vector regression (SVR), the inputs from lower-

dimensional input space are firstly mapped to a higher-dimension feature space using a 

nonlinear kernel function (e.g., polynomial function, sigmoidal function and Gaussian radial 

basis kernel functions), Figure 2.1. In this feature space, the SVM attempts to construct a 

linear objective function so that its output has a maximum deviation of ε  from the actual 

targets, iy , in the training dataset. The linear objective function in the high-dimensional 

feature space is expressed as  

1
( , ) ( )

n

i i
i

f x w w g x b
=

= +∑  (2.4) 

Where ( )ig x is a set of n nonlinear transformations; iw  represents the weight vector, 

and b is a bias term. 
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Figure 2.1 Nonlinear transformation 

Compared to other machine learning algorithms, SVM has multiple advantages 

including a unique optimization approach and the effective utilization of high-dimensional 

feature spaces and computational learning theory. The kernel functions transform the data 

into a higher dimensional feature space to make it possible to perform linear separation. Thus, 

various kernel functions (Eq. 5) may generate different support vectors.  

The SVR employs the following ε-insensitive loss function that penalizes error only 

if it is greater than ε . 

0 if 
( )

otherwise
L

ξ ε
ξ

ξ ε
 ≤=  −

 (2.5) 

Linear regression is conducted in the high-dimensional feature space by minimizing 

2w and using ε insensitive loss. This can be achieved by introducing the nonnegative slack 
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variables ξ  and *ξ  to determine training samples that deviate from the ε-insensitive zone 

(Figure 2.1). The linear regression is formulated following the optimization problem: 

2 *

1

*

*

1min( ( ))
2

( , )
subject to ( , )

, 0 ( 1,..., )

N

i i
i

i i i
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 ≥ =
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(2.6) 

Compared to other machine learning algorithms, SVM has multiple advantages 

including a unique optimization approach and the effective utilization of high-dimensional 

feature spaces and computational learning theory. The kernel functions transform the data 

into a higher dimensional feature space to make it possible to perform linear separation. Thus, 

various kernel functions (Equation 2.7) may generate different support vectors.  
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(2.7) 

Where  

( , ) ( ) ( )i j i jK X X X Xφ φ=  . 

2.2.3 Decision Tree (DT) 

Decision tree algorithms build regression or classification models and represent the 

data in the form of a tree structure. The algorithm breaks down a dataset into smaller and 
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smaller subsets while at the same time an associated decision tree is incrementally developed. 

The condition, or test, is represented as the “leaf” (node) and the possible outcomes as 

“branches” (edges). This splitting process continues until no further gain can be made or a 

preset rule is met (i.e., the maximum depth of the tree is reached). The core algorithm, ID3, 

for building decision trees employs a top-down, greedy search through the space of possible 

branches with no backtracking. The algorithm creates a multi-way tree in which each node 

can have two or more edges to detect the categorical feature that will maximize the 

information gain using the impurity criterion-entropy. The ID3 algorithm can be used to 

construct a decision tree for regression by replacing information gain with standard deviation 

reduction. Classification and regression trees (CART) are another widely used decision tree 

algorithm developed by Breiman (1984). The algorithm creates a binary tree (each node has 

exactly two outgoing edges) finding the best numerical or categorical feature to split using 

an appropriate impurity criterion. For regression, CART introduced variance reduction using 

least mean square error (MSE). 

2.2.4 Artificial Neural Networks (ANNs) 

Artificial neural networks are models that attempt to determine the relationship 

between input and output variables by simulating the structure of the biological neural 

network (human brain). ANN models can efficiently solve multi-dimensional or multi-

variable problems. A neural network consists of an input layer, output layer, and hidden 

layer(s) of neurons. The input-output relationship is contained in the connections between 

neurons. Neurons in the hidden layers represent the features of input relevant to output. 

Backpropagation and gradient descent algorithms were employed to update the weights and 
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minimize the error. To train the neural network, first, the total error, which is the difference 

between NN output and target, is calculated. Then, the weight contributions (i.e., gradients) 

to the error are calculated at each connection. The error is calculated from the output, then 

moving back toward the inputs to calculate the gradient. Each weight keeps being updated 

and moves in the negative direction of the gradient to minimize the error, and until the 

desired error level is reached. The main challenge of ANN is that the selection of network 

size and parameters can be time-consuming. 

2.2.5 Ensemble Learning (EL) 

Ensemble learning is the approach by which multiple learners (e.g., SVM, linear 

regression, decision tree, and NN) are strategically generated and combined to one predictive 

model in order to improve predictive performance or reduce bias and variance (Feng et al., 

2020) (Breiman, 1996) (Bühlmann & Yu, 2002)). Bootstrap aggregating (Bagging) and 

boosting are the most widely used ensemble learners. Bagging was first defined by Breiman 

as a method to generate different versions of a predictor leading to a more robust prediction 

(Breiman, 1996). It is an ensemble algorithm that reduces the variance by applying bootstrap 

sampling to obtain data subsets and using these different versions of datasets to generate 

multiple models. The final prediction is obtained by averaging the outcomes of these models 

for regression and using plurality voting for classification. For example, N different trees are 

trained on different subsets of the data (chosen randomly with replacement) and the 

ensemble is computed as follows:  
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1

1( ) ( )
N

i
i

f x f x
N =

= ∑  (2.8) 

Random Forest is a typical bagging technique capable of performing both regression 

and classification with the use of decision trees as a base learner. The basic idea is to combine 

and train multiple decision trees using only a random subset of the input variables to 

determine the final output rather than relying on an individual decision tree.  

In boosting, the base learners are built sequentially such that each subsequent learner 

aims to reduce the errors of the previous learner. The main principle of boosting is to fit a 

sequence of weak learners to weighted versions of the data. More weight is given to 

examples that were misclassified by earlier rounds. The predictions are then combined 

through a weighted majority vote (i.e., classification) or a weighted sum (i.e., regression) to 

produce the final prediction. The most widely used form of boosting algorithms is adaptive 

boosting (Adaboost) proposed by Freund & Schapire (1996). In the Adaboost algorithm, the 

first base learner (i.e., decision tree) is trained using equal weighting coefficients on the 

original dataset. Then the weighting coefficients are adjusted according to the error of the 

current prediction in the subsequent boosting rounds. In this method, more weights are 

assigned to incorrectly classified or predicted samples. In the end, the weak learners are 

assembled with different weights to a strong and robust learner. 

Stacking generalization is an ensemble learning method that learns how to optimally 

combine multiple ML algorithms using a new algorithm (i.e., meta model). In this study the 

base models were trained on a complete training dataset, while the meta model was trained 
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on the final predictions of all the base-level models. The stacking approach considers 

heterogeneous weak learners whereas bagging and boosting consider mainly homogeneous 

weak learners. Stacking learns to combine the base models using a meta model while 

bagging and boosting combine weak learners following deterministic algorithms. As 

mentioned earlier, the stacking ensemble model approach used in this study learns how to 

optimally combine the predictions from the base models to improve predictions. It has the 

advantage that any base model that performs poorly does not harm the performance of the 

stacking ensemble, since the meta learner would assign a weight of zero to such base leaner. 

Thus, such stacking ensemble model uses combinations of predictions from other learners 

to produce a superior prediction. 

 

2.3 Methodology and Implementation  

Figure 2.2 illustrates the implementation process of the proposed methodology, 

which consists of three steps: (i) data preparation and feature engineering; (ii) training and 

optimizing individual models; (iii) training the stacked model and generating predictions. 

The modeling and analysis are implemented in Python programming. 
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Figure 2.2 Flow diagram of the proposed methodology 

 

2.4 Data Preparation 

The database employed in this study includes 1031 laboratory measured HPC 

compressive strength from various mixtures (Yeh, 1998). Even though this dataset has been 

used by several researchers for evaluating ML algorithms, a comparison of the model 

performances, included later in this paper, demonstrates the superiority of proposed models 

and feature engineering techniques. There are eight independent variables (e.g., cement, 

blast furnace slag, fly ash, water, superplastic, coarse and fine aggregate, age) and one 

dependent variable (i.e., compressive strength). All the records are numeric, and no missing 

values have been observed in the dataset (Table 2.1). Data preparation involves best 

exposing the unknown underlying structure of the problem to learning algorithms by 

implementing the following tasks: exploratory data analysis, data cleaning, data 

transformation and scaling, feature engineering, and selection. The inter-quartile range (IQR) 
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method was employed to perform outlier detection. Based on the results from IQR, a small 

number of data points (n=68) were considered as outliers. However, the study decided to 

keep these data since they may represent the variability inherent in the concrete mixture data. 

In addition to outlier detection, normalization and transformation are carried out to convert 

the input variables into the best structural representation for ML algorithms. Data is 

normalized through scale and center transformation to convert the initial variables to have a 

mean of 0 and a standard deviation of 1. The input variables are standardized using the 

following formula:  

( )i
i

x uz
σ
−

=  (2.9) 

Where is the standardized value of the original input variable; μ and σ are mean and 

standard deviations of the input variables 

Power transforms are techniques for transforming numerical input variables to have 

a Gaussian or more-Gaussian-like probability distribution, which is preferred by many ML 

algorithms. In this study, a Box-Cox transformation is implemented to transform non-normal 

dependent variables into normal shapes. The formulation and implementation of such 

transformation can be found elsewhere (Box & Cox, 1964).  

Feature engineering is the process of using domain knowledge to extract features that 

better represent the underlying problem to the predictive models, resulting in improved 

model accuracy on unseen data. Three synthetic features were created including water to 

cementitious materials ratio (W/C ratio), fresh density, and aggregate to cement ratio. Table 
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2.1 summarizes the general statistics of each variable. All the three new variables were 

extracted from the eight original dependent variables. For instance, the W/C ratio is obtained 

by dividing water by cementitious materials (i.e., cement, fly ash, and Blast furnace slag), 

while fresh density is calculated by the summation of seven ingredients in one cubic meter 

of the mixture. The correlation coefficients between the input and output variables were also 

presented in Table 2.1. These additional features show a relative strong correlation to the 

compressive strength and thus are anticipated to be useful for improving the predictive 

performance as they have been proven to have considerable influences on concrete 

compressive strength (Ni & Wang, 2000); (Popovics & Ujhelyi, 2008). The feature 

importance was calculated in the later section to demonstrate how useful they are at 

predicting the strength as compared to the original variables. 

Table 2.1 Statistics of concrete mixtures variables 

Features Mean Standard 

deviation 

Minimum Maximum Correlation 

coefficient 

(with 

strength) 

Cement (kg/m3) 281.17 104.51 102.00 540.00 0.48 

Fly ash (kg/m3) 54.19 64.00 0.00 200.10 -0.05 

Blast furnace slag (kg/m3) 73.90 86.28 0.00 359.40 0.14 

Water (kg/m3) 181.57 21.35 121.80 247.00 -0.37 

Superplasticizer (kg/m3) 6.02 5.97 0.00 32.20 0.40 

Coarse aggregate (kg/m3) 972.92 77.75 801.00 1145.00 -0.17 

Fine aggregate (kg/m3) 773.58 80.18 594.00 992.60 -0.16 

Age (days) 45.66 63.17 1.00 365.00 0.52 

Water to cementitious 

materials ratio 

0.46 0.12 0.25 0.90 -0.66 
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Aggregate to cement ratio  7.33 2.88 3.10 17.93 -0.47 

Fresh density (kg/m3) 2345.87 61.05 2194.60 2551.00 0.45 

Compressive strength 

(MPa) 

35.82 16.70 2.33 82.60 1.00 

 

2.5 Training Base Models 

As shown in Figure 2.2, seven base models were investigated including four 

conventional modes (i.e., LR, DT, and SVM) and three ensemble learners (RF, Xgboost, and 

Adaboost). Prior to model training and evaluation, the dataset was randomly portioned into 

training (85%) and testing (15%) sets. This ensures to examine the generalization ability of 

predictive models and avoid data leakage as the testing set does not involve model training 

in any way. The seven base ML models are separately trained and tuned using the training 

data. K-fold cross-validation (where k = 5) is carried out to train the models and avoid 

overfitting. The hyperparameters were tuned using randomized search with cross-validation 

to optimize the models’ predictions. Randomized search was used in which random 

combination of hyperparameters were selected to train each model. Firstly, the distribution 

for each hyperparameter was defined. The randomized search algorithm was then randomly 

selected sample values for each hyperparameter from the corresponding distribution to train 

each model using such values. This process was repeated for a specified number of iterations, 

and the optimal hyperparameters were chosen based on the performance of the models. The 

root means square error (RMSE) is selected as the primary performance metric during the 

training process. The optimized hyperparameters for each model are listed in Table 2.2.  
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Table 2.2 ML models with optimized hyperparameters 

Model Parameters Setting 

LR polynomial features 2 degrees 

DT max depth 20 

 min_samples_leaf 2 

 min_samples_split 6 

SVM kernel RBF 

 regularization (C) 100 

 gamma 2.0 

MLP hidden layers 2 

 neurons 32 

 activation Relu 

RF number of trees 400 

 min_samples_split 2 

 max features 6 

Xgboost number of trees 600 

 learning rate 0.1 

 max depth 4 

 subsample 0.8 

 colsample_bytree 0.8 

AdaBoost number of trees 200 

 loss Square 

 learning rate 0.3 

 

2.6 Training Stacked Model and Generating Predictions 

Stacked generalization or stacking is an ensemble technique that uses a new 

algorithm (i.e., metal model) to learn how to best combine the predictions from two or more 

models trained on the dataset. In this study, a two-layer staked model is implemented to 
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combine the base models and model configurations that were investigated. The first layer 

consists of the 7 base models (Figure 2.2), and the outputs of these base models are used to 

train the stacked model (i.e., the second layer or meta-model). Firstly, a list of L base models 

(i.e., L=7) with specific model parameters is specified (Table 2.2). To train the stacked model, 

we need to make a loop for k-fold cross-validation. In each iteration, the training data is 

randomly divided into k blocks. The k-fold cross-validation is performed on each of the base 

models where all models use the same k-fold of the data, and the cross-validated predictions 

are collected. The predicted values represent 1 2, Lp p p  (Equation 2.10). The n cross-

validated predicted values from each of the L algorithms can be combined to form a new 

n L×  feature matrix represented by Z in Equation 2.10. 

1 2

L

Ln p p p n Z y
          
          →          
                    



  

 

(2.10) 

Where n = number of rows in the training set. y = original response vector (i.e., target 

variable) 

Once the feature matrix is obtained, a meta-learning algorithm needs to be specified. 

The meta-learning algorithm can be any of the base models investigated, but it is often 

suggested to use some form of regularization regression (Grolemund, 2014). As such, lasso 

regression is selected as the meta-model. It should be noted that the cross-validated 

predictions from each of the base models became new features (i.e., feature matrix Z) for the 
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meta-model. The feature matrix, along with the original response vector y is used to train 

the meta-model. 

( )y f Z=  (2.11) 

To make ensemble predictions, the predictions from each base model on the testing 

set need to be generated. These predictions are fed into the meta-model to generate the final 

prediction from the meta-model. 

 

2.7 Evaluation of Model Performances 

2.7.1 Performance Measures 

The performance and accuracy of each ML model are evaluated by calculating 

performance measures including, root mean square error (RMSE), coefficient of 

determination (R2), and mean absolute error (MAE). RMSE quantifies the averaged 

Euclidean distance between predicted and true strength data in the test set, while R2 evaluates 

the accuracy of the predicted strength in terms of how close the data are from the fitted 

regression line (a perfect fit would provide an R2 =1). The performance measures are 

calculated based on the following equations: 

2
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(2.12) 
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(2.14) 

where predy and obsy are the predicted and observed values, respectively; obsy is the 

mean value of the observed data; n is the total number of samples in the data set. 

2.7.2 Performance of Base Models 

The prediction performance of the seven base models on the testing dataset is 

presented in Figure 2.3. The scatter plots show the relation between the predicted and 

measured strength for each model. A good model should have minimal discrepancies 

between the predicted and the measured values, or, in other words, all the data should be 

close to the regressed diagonal line. Linear regression is the first base model investigated in 

this analysis. The performance of linear regression is considered as a baseline for comparing 

the model performance of other ML models. For the linear regression model, a polynomial 

feature transform is implemented which raises the input variables to a polynomial power of 

two. This approach can help to better expose the complexity of interpreting the input 

variables and their relationships. The linear regression has a testing R2, RMSE and MAE of 

0.854, 6.197 MPa and 4.912 MPa, respectively, which is significantly better than linear 

models (i.e., R2 of 0.611 and 0.66) developed on the same dataset with the original features 

(Chou et al., 2011); (Young et al., 2019). This demonstrates that polynomial transformation 
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of the predictor variables improves the performance of the linear regression. Among the 

three individual ML models, the SVM made the best prediction (i.e., R2 = 0.953, RMSE = 

2.569) which outperformed DT and MLP with a R2 of 0.907 and 0.940 respectively. The 

performance of SVM with RBF kernels also demonstrates the importance of input variables 

transformation to linearly separate the patterns that exist among concrete ingredients.  

The ensemble learning models show a better performance than the single learning 

model proposed in this study, except that Adaboost generates a slightly lower accuracy (R2 

= 0.937, RMSE = 2.569) than SVM and MLP. This indicates the reliable prediction 

capabilities of generalization for these ML techniques. In particular, The Xgboost exhibits 

the best predictive capability, which explains more variance in the data (R2 = 0.975) and 

achieves higher accuracy (RMSE = 2.565, MAE = 1.835) in concrete strength prediction. 

The second-best predictive model is RF with an R2, RMSE, and MAE of 0.941, 3.946 MPa, 

and 2.880 MPa, respectively. The superior prediction performance of Xgboost and RF may 

be attributed to the ability of tree-based methods to learn inconsistent variable importance in 

the data. 
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Figure 2.3 Relationship between predicted and measured compressive strength: a) linear regression, 

b) support vector machine, c) decision tree, d) multiple layer perceptron, e) random forest, f) 

Xgboost, g) Adaboost 

2.7.3 Performance of Stacked Model  

The predictive performance of the stacked ensemble is presented in Figure 2.4. For 

both training and testing dataset, a strong linear relation (R2 of 0.993 and 0.985, respectively) 
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between the predicted and measured values is observed. The stacked model achieves a 

considerably high accuracy on the testing data with an RMSE of 1.941 MPa and MAE of 

1.135 MPa, which outperforms any of the base models. This indicates that the stacked model 

learns the optimal combination of the base learners, and thus improves the prediction 

performance. The theoretical detail on the optimality of stacking is explained by (Van der 

Laan et al., 2007). As shown in Figure 2.4, most of the points for testing data are either on 

or close to the diagonal line indicating high accuracy of prediction. However, for extremely 

large values (i.e., compressive strength >70 MPa), the model slightly underestimates the 

actual compressive strength. The reason could be that the base models steadily underestimate 

the actual strength for these data points as shown in Figure 2.3. Further residual or error 

analysis (i.e., residual normality and heteroscedasticity) could be conducted to check 

whether these data points are outliers.  

In order to assess which learning algorithm (i.e., “learner”) is more suitable for the 

particular dataset, different types of base algorithms are explored. When the underlying 

functional form, relating the various material properties to strength in this case, is simple 

each algorithm may be able to provide good predictions. However, in this case due to the 

complexity of such relationship, one type of algorithm may be more successful than another. 

For instance, unlike a main terms parametric model, a tree-based algorithm like random 

forest inherently considers interactions and is unaffected by monotone transformations of 

the data. Since the true functional form of the parameters is unknown, there is a need to 

explore alternative base learners. Therefore, in this study alternative models were considered, 

from the standard parametric models (e.g., linear regression) to the more complex data-
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adaptive models (e.g., SVM, tree-based algorithms, and multiple layer perceptron). 

Furthermore, in this effort when a base learner performs poorly it does not harm the 

performance of the stacking ensemble since the meta learner would assign a weight of zero 

to such leaner. The advantage of the stacking ensemble model is that considers a combination 

of predictions from other learners to produce a superior prediction. 

The meta-learning algorithm is often some sort of regularized linear model which 

provides a smooth interpretation prediction of the predictions generated from the base 

models (Phillips et al., 2022). Using a simple linear regression as the meta model may also 

reduce the chance of overfitting the predictions from the base models Moreover, predictions 

from the base models are usually strongly correlated, as they are trying to predict the same 

relationship. Therefore, a lasso regression with regularization parameters was used to deal 

with the correlations between the predictions of the base models. 

Although different combinations of base models may affect slightly the accuracy of 

the stacked model, the stacking is expected to perform better than or equal to any of the base 

models. Higher More performance gains are usually produced when stacking base learners 

have high variability and uncorrelated predicted values (Grolemund, 2014). The cross-

validated predictions for the base models represent the model’s generalization capability in 

making predictions on data not seen during training (i.e., cross-validation). A 5-fold cross-

validation was used to find the optimal weighted combination of predictions from the 

candidate algorithms (i.e., base models) By training a meta-model with out-of-sample (i.e., 

testing data) predictions of the base models, the meta-model learns how to both correct and 

best combine the out-of-sample predictions from multiple models. As such the stacked 
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model is unlikely to overfit the training data. When comparing to the performance of the 

base models (i.e., Xgboost), the stacked model increases 0.011 in terms of the R2 score. The 

dataset used in this study is relatively small and less complex, which means that it is not easy 

to capture any of the patterns that the base algorithms (i.e., RF, Xgboost) could capture 

already. However, the results still demonstrate the superiority of stacking which produces 

better prediction accuracy. The prediction performance is expected to be optimized to a 

higher degree for more complex concrete datasets (e.g., field concrete data). 

  
a 
 

b 

Figure 2.4 Predicted vs. measured strength for stacked model, a) on training dataset, b) on testing 

dataset 

2.7.4 Feature Importance 

Feature importance is used to describe how important the feature is at predicting the 

target variable. More precisely, it is referred to as a measure of the individual contribution 

of the corresponding feature for a particular model, regardless of the shape (e.g., linear or 

nonlinear relationship) or direction of the feature effect (Zhang et al., 2021); (Fisher et al., 
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2019). This means that the feature importance of the input data depends on the corresponding 

ML model. Feature importance provides better interpretability of the data and the model, 

and sometimes improves the performance of the model by implementing feature selection 

techniques.  

There are three main types of metrics for determining feature importance, including 

model coefficients, the mean decrease in impurity (MDI), and permutation feature 

importance. For parametric linear models (e.g., LR, logistic regression, lasso, and ridge), the 

input variables are evaluated against the absolute normalized values of regression 

coefficients. Tree-based models (e.g., DT, RF and Xgboost) provide an alternative measure 

of feature importance based on MDI, which is quantified by the splitting of the decision tree. 

For example, the input variables of RF are evaluated by the mean square error (MSE) on the 

out-of-bag data for each tree before and after permuting the variables. The variable 

importance is determined by the averages and normalized variations of MS. For Xgboost, in 

each boosting iteration, the decrease in the loss function (i.e., MSE) in association with each 

input variable at each split is noted and summed (Zhang et al., 2021). Permutation feature 

importance is a technique for determining a relative importance score that is dependent on 

the model employed.  As such it is used for models (e.g., SVM and MLP) that do not support 

native feature importance scores. The importance of a feature is measured by calculating the 

increase in the model’s prediction error after permuting the feature (Interpretable machine 

learning reference). A feature is considered as “important” if shuffling its values increases 

the model error because in this case, the model relied on the feature for the prediction. The 

employed algorithm for the permutation feature is based on (Fisher et al., 2019). 
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The relative importance of the input variables for each model is presented in Figure 

2.5. It can be observed that age, water, fresh density, cement, W/C ratio and aggregate to 

cement ratio play a more significant role than the rest of the variables for predicting 

compressive strength. This also demonstrates the value of synthetic features (i.e., fresh 

density, W/C ratio, and aggregate to cement ratio) and the importance of feature engineering 

for improving prediction performance. In particular, age is determined to be the most 

important variable in prediction for nonlinear models, while the W/C ratio made the biggest 

contribution for linear regression. This may be because there is a strong correlation (-0.66) 

between W/C and compressive strength, which can be easily captured by linear models. Even 

though no significant correlation of coefficient is observed between age and strength, the 

degree of hydration is synonymous with the age of concrete, which significantly increases 

the compressive strength by 28 days. ML models provide greater flexibility to capture such 

nonlinear patterns. The other two new features (i.e., aggregate to cement ratio and density) 

are also proven to be useful in predicting concrete strength as shown in Figure 2.5. These 

observations tend to be consistent with engineering practice and the physical properties of 

regular concrete mixtures. Therefore, the ML models and feature importance techniques may 

be useful and reliable to analyze the relation and interaction between the ingredients and 

strength of innovative mixtures (e.g., lightweight, self-healing and green concrete mixtures). 
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(a) Linear regression 

 
(b) SVM 
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(c) Decision tree 

 
(d) MLP 
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(e) Random forest 

 
(f) Xgboost 
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(f) Adaboost 

Figure 2.5 Relative importance of input variables for each model 

 

2.7 Comparison with Models from Previous Studies 

Several studies have proposed models to predict concrete compressive strength using 

the adapted HPC dataset. Table 2.3 Comparison of ML model performance on the HPC 

dataset provides a comparison of models’ performance. For the four individual models, this 

study significantly improves the prediction performance except for ANN, which may be 

largely attributed to the newly created variables. For instance, the linear regression achieves 

an R2 of 0.859 which is significantly higher than other developed linear models. There are 

two possible reasons for such an improvement. One is that the power transformation makes 

the input variables more normally distributed which is preferred in linear models. A second 

possible reason is that W/C ratio has a higher linear correlation with strength which improves 

the prediction performance. This is also demonstrated by Yeh’s results where an R2 of 0.779 
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is obtained using only the W/C ratio and age as input variables (Yeh, 1998). Additionally, 

this study improves the performance of the SVM model significantly with an R2 of 0.953 

compared to Chou et al. with an R2 of 0.953 (Chou et al., 2011). Even though the ANN 

generates slightly lower accuracy as compared to Nguyen et al. and Erdal et al. it should be 

noted that this study simply employs an MLP with 2 hidden layers while other studies 

developed much more complex hybrid models which could be time-consuming and 

computationally expensive (Nguyen-Sy et al., 2020); (Erdal et al., 2013).  

In terms of ensemble learning, the accuracy of the RF model in this study is slightly 

lower compared to (Han et al., 2019). It is worth mentioning that they also created a new 

variable (i.e., coarse aggregate to binder ratio) to train the RF model and conducted 

hyperparameter optimization. The XGBoost model developed in the present study provides 

similar performance in terms of R2, RMSE and MAE compared to Chakraborty et al. (2021). 

The AdaBoost of Feng et al. provided a better prediction performance than the present study 

by performing a hyperparameter optimization (Feng et al., 2020). Chou et al. (2011) 

implemented stacking of LR, DT, and SVM, however, resulted in much lower accuracy. 

Their results showed that the stacking outperformed any of the base learners, however, due 

to the poor performance of the base models, the stacking did not provide a competitive 

prediction ability. Notably, the stacked model proposed in this study outperforms other 

models reported from the literature. For the two-layer stacked model, assembling stronger 

regressors in the first layer is likely to improve the performance of the model, while a simple, 

explainable, parametric model (i.e., Lasso) serves better in the second layer. The mechanism 

behind the more efficient learning ability of the proposed model is related to the elements in 
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the proposed methodology (Figure 2.2), including data processing, feature engineering, base 

model development, hyperparameters tuning, and stacking. 

Table 2.3 Comparison of ML model performance on the HPC dataset 

ML 

algorithms 

R2 RMSE 

(MPa) 

MAE 

(MPa) 

Remarks Reference 

LR 0.854 6.197 4.912  * 

 0.779 N/A N/A Input variables: water to 

binder ratio and age 

Yeh (1998) 

 0.611 10.428 N/A  Chou et al. (2011) 

 0.660 8.800 N/A  Young et al. (2019) 

DT 0.909 4.895 3.296  * 

 0.911 4.948 N/A Employed MART (i.e., 

gradient boosting) 

Chou et al. (2011) 

 N/A 7.840 5.860  Chou et al. (2014) 

 N/A 7.37 4.62  Farooq et al. (2021) 

SVM 0.953 3.571 2.569 Radial kernel * 

 0.886 5.572 N/A  Chou et al. (2011) 

 N/A 5.590 3.750  Chou et al. (2014) 

 0.830 6.400 N/A  Young et al. (2019) 

ANN 0.940 3.971 3.132 Simple MLP with two hidden 

layers 

* 

 0.942 4.050 2.850 Proposed a high order deep 

neural network 

Nguyen et al. (2019) 

 0.953 5.750 4.830 Employed gradient boosted 

ANN 

Erdal et al. (2013) 

 0.914 N/A N/A Hand tuning for 

hyperparameters 

Yeh et al. (1998) 

RF 0.941 3.946 2.880  * 

 0.850 5.800 N/A  Young et al. (2019) 



42 

 

 0.965 4.433 3.105 new feature: coarse 

aggregate to binder ratio  

Han et al. (2019) 

 0.922 4.6 3.23  Farooq et al. (2021) 

Xgboost 0.975 2.565 1.835  * 

 0.930 4.640   * 

 0.980 2.650 1.890 With feature selection and 

hyperparameter optimization 

Chakraborty et al. 

(2021) 

 0.902 5.170 3.710  Farooq et al. (2021) 

Adaboost 0.937 4.070 3.059  Nguyen-Sy et al. 

(2020) 

 0.982 2.200 1.640 With hyperparameter 

optimization 

Feng et al. (2020) 

 0.919 5.220 3.690  Farooq et al. (2021) 

Stacked 

model 

0.985 1.94 1.135  * 

 N/A 5.08 3.520 Stacking of three learners: 

SVM, DT, and LR 

Chou et al. (2014) 

Note: * models developed in this study 

 

2.8 Summary and Conclusions   

The goal of this study was to explore alternative ML models for enhancing the 

prediction of compressive strength as a function of mixture ingredients and proportions. 

Seven individual ML techniques were considered and compared including LR, DT, SVM, 

MLP, RF, Xgboost, and Adaboost. To improve the prediction accuracy, a methodology was 

proposed in which the feature engineering technique was implemented, and a two-layer 

stacked model was proposed. The k-fold cross-validation approach was employed to 
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optimize model parameters and train the stacked model. The performance of these models 

was evaluated and compared with R2, RMSE, and MAE. Furthermore, the relative 

importance of the input variables in predicting compressive strength was assessed.   

The results showed that, among the seven individual models, the Xgboost exhibited 

the best predictive performance with an R2 of 0.975 followed by SVM which generated an 

R2 of 0.953. The results for feature importance showed that age, water, fresh density, cement, 

W/C ratio, and aggregate to cement ratio play a higher role in predicting compressive 

strength than the rest of the variables. The proposed stacked models in this study 

outperformed other models reported in the literature with a testing R2, RMSE, and MAE of 

0.985, 1.941 MPa, and 1.135 MPa. This approach encourages a more thorough consideration 

of alternative ML algorithms rather than focusing on a single machine learning approach. 

While the implementation process for the proposed methodology was presented, the study 

results indicated that the ML models (i.e., SVM, stacked model) can provide fairly high 

accuracy of concrete strength predictions. Thus, such ML models can be used to accurately 

predict compressive strength, minimizing the need for time-consuming and costly testing for 

mix design optimization and quality assurance during production. 
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CHAPTER 3: EVALUATION OF ACCEPTANCE RISK AND PAY 

FACTOR IN QUALITY ASSURANCE BY VERIFICATION TESTING 

 

3.1 Background  

The most recent quality assurance (QA) stewardship reviews show that over half of 

the state highway agencies (SHAs) are using contractor testing data for the acceptance and 

pay decisions of pavement construction and materials (Grogg, 2021). This practice is 

permissible under Federal regulation 23 CFR 637 Subpart B as long as the quality of the 

material or construction is validated by verification testing using independent samples 

((FHWA, 1995). Although verification procedures vary from agency to agency, the most 

used statistical verification tests are the F-test and t-test as recommended by AASHTO 

(AASHTO, 1996). The F-test is used to compare the variances of the contractor and agency 

test data, whereas the t-test is used to assess the degree of difference in means between the 

two data sets. These two hypothesis tests are used to statistically determine if the contractor 

and agency test data are from the same population (i.e., if contractor data from production 

and acceptance testing data by the owner represent the same population in statistical terms, 

and thus reflect the same level of quality). Over the years the various benefits and associated 

risks with the verification procedures have been pinpointed. On one hand, the use of 

contractor test results for acceptance can reduce inspection personnel and testing resources 

for SHAs (Schmitt et al., 2001); (Wani & Gharaibeh, 2013). Contractors could be 

encouraged to pay more attention to their sampling and testing procedures knowing that the 

test results will be used for payment decisions (Burati et al., 2010); (Carr et al., 2016). On 
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the other hand, the primary concern is the fact that contractor and SHA data do not always 

consistently compare well (Schmitt et al., 2001); (Wani & Gharaibeh, 2013); (Burati et al., 

2010); (Carr et al., 2016); (Killingsworth & Hughes, 2002). There is also a lack of 

understanding of the practical implications of the statistically significant differences in test 

results, which may limit the ability of the QA process to properly identify the risks of lower 

quality and/or erroneous rewards. It is therefore important to evaluate the acceptance risks 

and associated payments with the verification procedures and identify any possible 

improvements. 

Figure 3.1 shows a summary of the proposed methodological framework for 

conducting such analysis. In the first step the current specifications and pertinent QA 

standards and policies need to be reviewed. This review will identify the acceptance quality 

characteristics (AQCs), such as strength, density, thickness, the specification upper and 

lower limits, and the pay factor (PF) schedule. Next, the available contractor production 

quality data will provide the characteristics of the pertinent population distribution. Similarly, 

the agency acceptance data will lead to the distribution for such population. In the next step 

the numerical simulation will be conducted using the population distributions reflecting the 

contractor’s and agency’s data. The objective of the simulation is to generate lots and sublots 

for assessing the effects on acceptance risks, which are explained in greater detail in later 

sections, and pay factors at the long run of production. The lots are generated based on the 

distribution characteristics of the specific AQC. The simulated lots generated using the 

contractor and agency distributions are then compared. In this process alternative hypothesis 

scenarios between the contractor and agency lots are used in order to assess the impact of 
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sample size, dispersion values, and distance in central tendency. Based on these 

analyses, the power surface and PF probabilities curves are developed. Such results will thus 

provide the acceptance risks for each scenario, and the related rewards. Finally, based on 

these analyses and findings, recommendations on adjusting specifications may be identified. 

These may include modifications in sample size, specification tolerances, specification 

limits; pay schedules revisions to balance risks levels to rewards; and recommendations on 

improving construction quality, in relation to achievable levels by the industry and 

construction equipment. The methodology is described in detail in the following sections
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Figure 3.1 Methodological framework of analysis
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3.2 Literature Review 

A literature review was conducted to examine the various aspects of using contractor 

production quality data for acceptance, as well as identifying recommended procedures for 

validating contractor tests results. Killingsworth and Hughes (2002) pointed out that using 

contractor test data for acceptance and pay decisions has some inherent risks. It was 

suggested that when using contractor testing for acceptance, (i) the separation of agency 

quality verification and contractor testing should be maintained, and (ii) quality-based 

contractor prequalification procedures should be developed. Federal regulation 23 CFR 637 

Subpart B also requires the separation of contractor and agency testing data (FHWA, 1995). 

Schmitt et al. (2001) proposed a statistically based method to perform verification tests by 

recognizing the importance of sample size, variability, and pertinent risks. The study also 

identified that there is a lack of risk assessment in current QA practice. Mahboub et al. (2004) 

conducted paired t-tests to detect any differences between the contractor and agency testing 

data of key AQCs for hot mix asphalt (HMA) and Portland cement concrete (PCC). These 

AQCs included air void and asphalt content, volume in the mineral aggregate, VMA, slump 

and strength. For each AQC, more than 6000 independent samples were examined. It was 

concluded that there was no statistically significant difference between the two data sets (i.e., 

contractor production quality and agency acceptance data), yet potential acceptance risk for 

deviations between the two datasets were not considered.  

In another study comparing testing results of contractor and agency data from various 

states on asphalt mixtures mat density identified that such datasets are statistically different. 

Furthermore, the contractor data was less variable, producing thus higher values within the 
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specification limits, and thus providing higher level of acceptance and rewards. Turochy & 

Parker (2007); LaVassar et al., (2009) examined the contractor and agency test results from 

the states of California, Minnesota, Texas, using alternative statistical analyses and including 

F- and t-tests. The study concluded that F- and t-test were effective in validating contractor 

test results when adequate sample sizes were used. Karimi et al. (2012) analyzed the means 

and variability of a large set of Maryland contractor and agency testing data for hot mix 

asphalt (HMA). Through statistical analysis (i.e., F-test and t-test) it was concluded that the 

contractor and agency data represent different populations. Thus, research is needed to assess 

how these statistically significant differences in testing populations affect acceptance risks 

and payments.  

Wani et al. (2013) identified that F-test and t-test verification procedures can lead to 

erroneous pay decisions due to the potential manipulation of contractor tests results. Coenen 

et al. (2019) examined the implementation of statistical verification testing in percent within 

limits (PWL) specifications for HMA for the Wisconsin Department of Transportation 

(WisDOT). It was concluded that such approach has allowed WisDOT to adjust payments 

in conformity to material quality and consistency, and ultimately relate PF to the anticipated 

long-term performance. Recent studies evaluated the procedures for validating contractor 

test data when used for acceptance of construction and materials (National Academies of 

Sciences and Medicine, 2020); (Nimeri, 2019). The analysis assessed different aspects 

including sampling methods, sample size, retesting and associated risks.  

Despite the vast research on the validation of contractor test results in QA, none of 

the studies systematically evaluated the power of the statistical tests considering different 
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contractor and agency population characteristics. Equally important, the majority of SHAs 

are implementing PWL specifications with pay adjustment provisions. In this context, the 

combined contractor and agency testing data are used to determine PWL and pay factor (PF) 

of a lot. Therefore, it is vital to assess how this type of procedure affects the associated risks 

and PF in the long run of production. Thus, this study proposed the analysis process based 

on Monte Carlo simulation to: (i) determine the statistical power of the F-test and t-test (i.e., 

probability of detecting a difference between two populations versus the actual difference) 

for any combination of contractor and agency sample sizes; and, (ii) evaluate the PF and 

associated risks when validated contractor production quality testing data, in combination 

with agency acceptance data, are used for acceptance and pay decisions. To demonstrate the 

value of the proposed approach, the simulation was conducted on selected AQC (i.e., 

thickness) of PCC pavements. The testing data reported in a national study were used to 

define the contractor and agency testing distributions and develop the alternative scenarios 

(Hughes et al., 2011). An initial implementation of the proposed approach was presented 

recently (Zhao & Goulias, 2021b); (Zhao & Goulias, 2021a) and the value of such analysis 

led to this extended study. 

 

3.3 Power of Hypothesis Testing and Acceptance Risks  

When the contractor test results are used as part of the material quality acceptance 

decision, validation testing is required. Hypothesis tests (i.e., F and t-test) are commonly 
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used in this process. The power of hypothesis tests is introduced herein in order to identify 

the associated risks with verification testing in QA.  

The null (H0) and the alternative hypothesis (H1) need to be specified in the analysis. 

In statistics the assumption is that H0 is true, and then the sample data are used to determine 

if there is adequate evidence to reject H0. Thus, the null hypothesis can only be either 

accepted or rejected. Hypothesis testing is performed at a significance level (α). The value 

of α is typically selected at 0.10, 0.05, or 0.01 significance level. An α of 0.05 means that 

there is only a 5% chance that H0 is true and was erroneously rejected. This is the probability 

of type I error (or α risk). There is also a risk of failing to reject H0 when it is actually false. 

This is identified as type II error (or β risk). The statistical power is thus defined as the 

probability of rejecting H0 when it is false, and it is equal to 1-β. A graphical illustration of 

type I and II errors and associated power is shown in Figure 3.2. In terms of material quality 

for example, α risk means that while the agency and contractor populations are the same H0 

(i.e., equal means and standard deviations), the statistic tests on the averages (t-test) and/or 

variability (i.e., standard deviation, F-test) between the agency and contractor sample data 

conclude that they are not. Thus, the sample statistics are used to calculate the P-value. If 

the P-value is less than or equal to α, then H0 is rejected in favor of the alternative hypothesis. 

When the P-value is greater than α, then H0 is accepted. In validating contractor test data, H0 

is defined as the contractor and agency test data are from the same population. For the t-test, 

H0 is that the means of the contractor and agency data are statistically equal, while, for the 

F-test, H0 is that the variances for the two datasets are equal. 



52 

 

 
Figure 3.2 Graphical illustration of level of significance, α, β and hypothesis testing power for two-

sided case 

The power of the hypothesis tests is evaluated with the power curves. These represent 

the probability of detecting a difference (1-β) versus the actual difference between the two 

populations that are compared. There are 4 primary factors that affect the power of a 

statistical test, including: the α level, the difference in means, variability, and sample size. 

In reality, the actual difference between the two populations’ means and variability are 

unknown. However, this is reasonably assumed (i.e., statistically inferred) based on the 

statistical analysis of the agency and contactor data using historical data on actual highway 

projects that may be available to SHAs. Sample size affects the power by influencing the 

variability of the sample distribution of the means. Increasing sample size reduces the 
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variability of sample means and thus increases the power. The required samples to reach a 

specific power can then be determined through power analysis.  

In this study, the power of the F-test and t-test was determined for a wide 

combination of contractor and agency sample sizes at the significance level of 0.05. It should 

be noted that these hypothesis tests are conducted to determine if the contractor and agency 

test results are from the same population. This is an important step in QA since several 

highway agencies in their QA plans and specifications do consider the option of using 

contractor data for acceptance. Neither of the tests determine the accuracy of the test data, 

or whether the samples are representative of the material or construction population. Thus, 

the risk/power for the verification procedure does not reflect the risk for acceptance plans. 

The risks associated with verification testing are: the probability of incorrectly detecting a 

difference that does not exist (α), (i.e., statistically concluding that the contractor and agency 

test results are from different populations, when in reality they are not); and the probability 

of not detecting a difference that exists (β) (i.e., concluding that the contractor and agency 

test results are from the same population, when in reality they are not). On the other hand, 

the risks for acceptance plans are the probability of erroneously rejecting AQL material or 

construction (α); and the probability of incorrectly accepting RQL material or construction 

(β). The risk analysis for acceptance plans has been conducted by many studies (AASHTO, 

2010); (Burati et al., 2003); (Burati, Straub, et al., 2004); (Karimi et al., 2015); (Zhao and 

Goulias, 2021a); (Zhao and Goulias, 2021b). However, there is a lack of research on risk 

and PF analysis associated with the verification procedures which was the objective of this 

study.  
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3.4 Numerical Simulation 

This study proposed the necessary analysis process based on Monte Carlo simulation 

(Fig. 5) to: (i) determine the statistical power of the F-test and t-test for any combination of 

contractor and agency sample sizes, and (ii) evaluate the PF and associated risks when 

validated contractor testing data, in combination with agency testing data, are used for 

acceptance and pay decisions. To demonstrate the value of the proposed approach, the 

simulation was conducted on selected AQC (i.e., thickness) of PCC pavement. The 

simulation consists of three parts: (1) simulation of the AASHTO verification procedure; (2) 

determination of PF for each simulated lot; (3) evaluation of F-test and t-test power and PF. 

3.2.1 Simulation of AASHTO Verification Procedure 

In each simulation iteration, contractor and agency test results are randomly sampled 

from the populations, representing independent samples taken from a lot. The simulated 

contractor and agency test results are used to determine parameters such as mean and 

standard deviation (or variance). Once the means and variances are calculated for both 

agency and contractor testing data, the contractor data is validated against the agency data 

using the AASHTO’s verification process (AASHTO, 1996). In this process, F-test is firstly 

conducted to determine if the variances of the two datasets are statistically different. The F-

statistic is calculated as the ratio of the variances of the contractor and the agency test results 

from a pavement lot. 
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where 2
1s  is the larger variance from either contractor or agency, and 2

2s  is the 

smaller variance of the two.  

The P-value for F-test is determined using the built-in F cumulative distribution 

function, fcdf, in MATLAB. When the P-value is less than the significant level, α, the null 

hypothesis is not rejected meaning there is no reason to believe that the variances of the two 

test results are statistically different. In this case, the student’s t-test is used to compare the 

means of the two test results. Student’s t statistic is calculated as follows: 
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The P-value associated with t-statistic is calculated using the built-in t cumulative 

distribution function, tcdf. Similarly, when the P-value is less than the significant level, α, it 

is concluded that the means of contractor and agency test results are not statistically different. 

When the P-value for the F test is equal to or larger than the significant level, the null 

hypothesis is rejected, and it is concluded that the two test results have unequal variance.  In 

this scenario, Welch’s test is used for comparing the means of the two test results. Welch’s 

test defines the statistic t by the following formula: 
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If both the F-test and t-test indicate that the contractor and agency test results are not 

statistically different, the two sets of data are combined for acceptance and PF determination 

(Transportation Research Circular E-C235: Glossary of Transportation Construction Quality 

Assurance Terms, 2018); (MDSHA, Standard Specifications for Construction and Materials, 

2022). Combining the two data sets results in a larger sample size and thus reduces the risks 

of erroneous pay. However, it should be noted that the agency and contractor test results can 

be combined to estimate PF only if the F-test and t-test show that they are from the same 

population. Otherwise, only the agency test results are used for estimating the PF for a lot. 

3.2.2 Determination of Pay Factor (PF) 

After validating the contractor against the SHA data, the next step is to determine the 

PF for the lot based on the quality of the delivered construction or materials which is 

measured by PWL in AASHTO’s guide specification. The PWL is determined using the 

quality index, Q, which represents the distance, in standard deviation units, of the mean from 

the specification limits. Q can be calculated as follows: 
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The Q values are used in conjunction with the sample size (i.e., na or na+ nc) to 

estimate the corresponding UPWL  and LPWL  (one-sided upper and lower specification 

limits) value using reference tables or normal distribution functions in MATLAB. For two-

sided specification limits, the PWL is calculated as follows: 

10U LPWL PWL PWL= + −  (3.6) 

Once PWL is determined using Eq. 18-20, the corresponding PF is calculated. In this 

study, the following pay equation recommended by AASHTO (AASHTO) is used: 

55 0.5* ;  0 for 50PF PWL PF PWL= + = <  (3.7) 

 

3.2.3 Power of Statistical tests and PF Probability Curves 

PF probability curves are developed to evaluate the pay performance in the long term. 

Such PF is also compared with the PF that is calculated using agency or contractor test results 

no matter if a difference is detected. The probability of receiving less than a certain pay 

factor can be determined as follows: 

( )
( )

PF
PF

T

N
P

N
<

< =  (3.8) 

where ( )PFN <  = number of lots receiving less than certain PF,  TN  = the total number 

of simulated lots. The PF for each simulated lot is calculated, and the PF probability curve 
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is developed to evaluate the pay performance in the long term. Such PF is also compared 

with the PF that is calculated using QA or QC test results no matter if a difference is detected.  

The power of the statistical tests is estimated as follows: 

D

T

NP
N

=  (3.9) 

where  p  = probability of detecting a statistical difference, DN  = number of lots 

detected a difference,  TN  = total number of simulated lots.  

Through the simulation analysis illustrated in Figure 3.2, the percentage of the lots 

passing F-test, t-test, or both F- and t-test in the long term can also be estimated by dividing 

the number of the numbers of lots passing the statistical test (i.e., F-test, t-test, or both F- 

and t-test) by the total number of lots. The sample size was varied such that the power surface 

and PF probability curve was developed to evaluate the power and PF for different 

combinations of contractor’s and agency’s sample sizes. 
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Figure 3.3 Monte Carlo based simulation for integrating risk and PF in verification procedures 
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3.3 Alternative Population Characteristics and Sample Sizes 

To evaluate the impact of (i) sample size and (ii) differences in means and variances 

on the risk and associated PF the simulation was conducted with five different scenarios 

between the agency and contractor population distributions. In each scenario, the sample 

sizes varied from 3 to 20. These scenarios were based on the pavement data reported in 

NCHRP 10-79, Table 3.1 (Hughes et al., 2011). The data was collected from actual 

construction projects at a lot level, and with a lot size of two-lane miles and a sample size of 

10. Figure 3.4 illustrates the five scenarios of agency and contractor testing populations 

encountered.  

In the first scenario, the contractor and agency data have identical populations 

( ,c a c aµ µ σ σ= = ).  In this case verification testing should support the null hypothesis (i.e., 

confirming that the two data sets are not from different populations, and thus contractor data 

can be used for acceptance and thus pay decisions). Thus, the probability of detecting a 

difference equals the level of significance, α. In the second scenario, the means of contractor 

and agency distributions are equal, but the standard deviation of the agency data is smaller 

than that of the contractor ( ,c a c aµ µ σ σ= > ). The third scenario also considers equal means 

for the contractor and agency data; however, the agency population has a greater standard 

deviation than that of the contractor ( ,c a c aµ µ σ σ= < ). This corresponds to the findings of 

some studies from the literature reporting that lower contractor’s variability is often 

questionable, and thus will be affecting risks and PF.   
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Under the fourth scenario, the standard deviations are equal for both distributions, 

however, the mean of the agency distribution is larger than that of the contractor by 1.5 

standard deviation units ( ,c a c aµ µ σ σ≠ = ). In the last scenario, the mean of the agency 

population is less than that of the contractor by one time of contractor’s standard deviation, 

while the standard deviation of the agency is half of the contractor’s one ( ,c a c aµ µ σ σ≠ ≠ ). 

In this case verification testing will support the alternative hypothesis H1, and thus the 

contractor testing data cannot be used for acceptance. These five scenarios cover all possible 

situations between the contractor and agency distributions in the database (Hughes et al., 

2011).  

In this study, the range of sample sizes selected for the simulation were based on 

those reported for acceptance in the dataset collected from the national study, as well as 

those reported from additional SHAs quality assurance studies (Karimi et al., 2012); 

(Turochy and Parker, 2007); (Hughes et al., 2011). The review of these studies indicated that 

the sample sizes per lot used by the agencies can be grouped into three categories: (1) one 

sample per lot, (2) greater than two and less than twenty per lot, (3) greater than 20. However, 

statistical validation (i.e., F-test and t-test) against the contractor tests cannot be conducted 

when the agency performs only one test per lot. This puts significant risks on the agency of 

making erroneous acceptance and pay decisions. The minimum sample size for conducting 

a statistical test is three (Nimeri, 2019). It is also reported that large sample sizes, category 

(3) were achieved by pooling all the testing for a project as a single lot such that the statistical 

tests are too discriminating to be used for validation (Karimi et al., 2012). 
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Table 3.1 Means, standard deviations and specification limits (NCHRP 10-79) 

Quality characteristics  Strength (psi) Thickness (in.) Roughness (in./mile) 

Mean  4536.00 12.10 59.69 

Standard deviation  509.90 0.54 8.69 

Specification limits LSL = 3500 LSL = 11.5, USL = 12.7 USL = 75 

 

For each distribution the power was calculated for the sample sizes under 

consideration using equation 9, and the power surface was plotted. The USL and LSL 

illustrated in Figure 3.4 are used to calculate the quality index and PWL using Equations 3.4 

to 3.6. The PF was calculated subsequently for each simulated lot. The PF probability curves 

were then plotted for selected combinations of sample sizes. 
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Figure 3.4 Alternative distribution scenarios in numerical simulation for pavement thickness 

 

3.4 Results and Discussions 

The simulation was performed for the five alternative distributions at a significant 

level, α, of 0.05. For each scenario, the power surface was developed. The power surface 

presents the probability of detecting a difference (1-β) for various combinations of contractor 
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and agency samples sizes (i.e., n from 3 to 20). The PF probability curve was also plotted 

for each case, representing the probability of receiving a PF lower that the one indicated.  

Figure 3.5 and Figure 3.6 show the power surface for the F-test and PF probability 

curves, respectively, for scenario 1. It can be observed that the F statistical power remains 

almost constant at 0.05 when the agency and contractor population characteristic are the 

same, Figure 3.5. This is expected since there is no difference in population means and 

variances. In this case the two hypotheses shown in Figure 2 will overlap and thus the power 

is equal to the selected level of significance, α, of 0.05. However, the PF probability curves 

show that as the sample size increases the curves become steeper, Figure 6. For instance, as 

the contractor and agency sample size increase from 3 to 5, the probability of receiving a PF 

less than 100% increases from 80.0% to 89.4% approximately, while the probability of 

receiving a PF less than 85% drops from 17.8% to 10.0%. As the sample size increases, the 

variability of the sample data decreases and thus the change in PF is reduced. 

The power for the F-test and t-test, and average PFs in the long run, are summarized 

in Table 3.2. In this analysis, “in the long run” implies for all simulated lots. For a highway 

agency such analysis may be focused on all the data from projects in a construction season 

for which it is of interest to assess risks and PFs. In this scenario, increasing contractor or 

agency sample sizes increases the average PF associated with verification procedures. The 

PFs that are calculated using the agency or contractor test results, no matter if a difference 

is detected, are also reported in Table 3.2. The PFs calculated using the agency test results 

represent the cases where no contractor data are used in acceptance and pay decisions. In 

this situation, the contractor appears to be exposed to a greater payment risk than the agency. 
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For instance, when the contractor and agency have the same sample size of 3, the PF 

associated with verification procedure is 88.276% while the PF that is calculated using only 

the agency data is 79.710%. Combining agency and validated contractor test results for 

acceptance and payment determination, reduces the risk of incorrect decision and erroneous 

pay to both parties due to the resulting larger sample size. However, the contractor has 

always to take a 0.05 risk of incorrectly having the means or standard deviations declared 

different when in fact they are equal. One way to reduce the contractor’s risk is to use a 

smaller α value, for example, α = 0.01. 

 

 
Figure 3.5 F-test power for scenario 1 (equal sample and population characteristics) 



66 

 

Table 3.2 Power and average PF in the long run for various combinations of contractor and agency sample sizes 

 

Scenarios 

Sample size Probability of detecting a 

difference (1-β) 

Average 

PWL, % 

(verification) 

Average 

PF, % 

(verification) 

Average 

PF, % 

(agency) 

Average 

PF, % 

(contractor) Contractor 

( cn ) 

Agency 

( an ) 

F-test t-test F or t-test 

 

1 

a c

a c

u u
σ σ

= 
 = 

 

3 3 0.050 0.050 0.099 74.062 88.276 79.710 79.340 

3 6 0.050 0.049 0.101 74.147 88.900 89.206 79.538 

7 3 0.049 0.050 0.099 74.170 90.470 80.016 90.550 

5 5 0.048 0.049 0.100 74.201 91.309 87.403 87.753 

10 10 0.050 0.050 0.103 74.334 92.009 91.705 91.698 

 

2 

a c

a c

u u
σ σ

= 
 < 

 

3 3 0.290 0.050 0.352 94.500 102.219 105.000 79.340 

3 6 0.620 0.050 0.748 99.049 104.525 105.000 79.538 

7 3 0.319 0.049 0.368 89.465 99.719 105.000 90.550 

5 5 0.679 0.050 0.726 98.629 104.314 105.000 87.753 

10 10 0.974 0.051 0.990 99.976 104.988 105.000 91.698 

 

3 

a c

a c

u u
σ σ

= 
 > 

 

3 3 0.072 0.050 0.157 80.942 91.790 80.017 100.870 

3 6 0.067 0.050 0.128 79.056 93.954 90.310 100.965 

7 3 0.151 0.051 0.304 79.425 86.286 79.741 101.577 

5 5 0.115 0.050 0.225 79.826 92.411 87.203 101.314 

10 10 0.257 0.050 0.338 78.545 93.911 91.601 101.633 

 3 3 0.049 0.283 0.320 44.473 41.662 20.234 79.340 
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4 

a c

a c

u u
σ σ

> 
 = 

 

3 6 0.051 0.444 0.472 39.443 26.199 13.354 79.538 

7 3 0.050 0.437 0.489 45.505 43.248 20.438 90.550 

5 5 0.050 0.539 0.585 39.206 30.883 14.841 87.753 

10 10 0.050 0.886 0.895 35.439 13.313 8.565 91.698 

 

5 

a c

a c

u u
σ σ

> 
 < 

 

3 3 0.094 0.235 0.337 64.135 73.749 59.441 79.340 

3 6 0.224 0.403 0.612 61.672 68.999 62.203 79.538 

7 3 0.092 0.303 0.340 64.758 75.185 59.081 90.550 

5 5 0.215 0.410 0.573 62.300 69.330 61.285 87.753 

10 10 0.499 0.754 0.902 59.759 67.270 66.123 91.698 
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Figure 3.6 PF probability curves for scenario 1 (equal populations means and standard deviations) 

with various combinations of sample sizes, n 

In scenario 2, since the contractor and agency mean are equal, the t-test statistical 

power remains constant at 0.05 despite an increase in sample size. Figure 3.7 shows the F-

test power surface, while Figure 3.8 shows the PF probability curves for various 

combinations of contractor and agency sample sizes. The F-test power increases with 

increasing agency’s sample size. In this scenario it can be observed that the limiting factor 

in how well the F-test can identify differences depends on the number of agency tests, Figure 

3.7. For example, when the contractor sample size increases from 3 to 7, the F-test power 

increases from 0.290 to 0.319 with an agency sample size of 3. However, the F-test power 

increases significantly from 0.290 to 0.62 as the agency samples increase from 3 to 6 with a 

contractor sample size of 3 (Table 3.2). The probability of detecting a difference for the F-
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test or t-test (i.e., the probability of detecting a difference in means or variances) is also 

reported in Table 3.2. Similarly, such probability increases as the sample size increases, and 

is more affected by the agency’s sample size. Since the agency usually has fewer tests than 

the number of contractor tests, the number of agency tests will determine the F-test power 

to identify variability differences when they do exist. Therefore, in this scenario, the 

agency’s risk of not detecting a difference that exists is significant when the agency sample 

size is small (e.g., an =3). For example, the β risks is 0.681 for an agency sample size of 3 

and a contractor sample size of 7.  

In terms of PF, Figure 3.8 shows that the probability of receiving a PF less than 100% 

decreases as the agency sample size increases, while such probability increases as the 

contractor sample size increases. The average PF increases as the agency sample size 

increases (Table 3.2). For instance, it can be observed that the average PF increases from 

102.219% to 104.525% as the agency sample size increases from 3 to 6 while the contractor 

sample size remains constant at 3. Such a relatively large increase in PF is caused by the 

reduction of variability in sample data due to an increase in sample size. As the sample size 

increases, the F-test power increases meaning more lots are detected with a difference in 

standard deviation. The PFs for these lots are calculated using agency data which produces 

a greater PWL, compared to contractor data, and thus resulting in a larger PF. This poses a 

financial risk to the agency because it seems to pay for more than the actual quality. Such 

risk is reduced slightly as the contractor sample size increases. For example, when the 

contractor sample size increases from 3 to 7, the PF associated with the verification 
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procedure decreases from 102.219% to 99.719%. Thus, in this scenario the agency would 

seem to be exposed to a greater payment risk than the contractor.  

 



71 

 

Figure 3.7 F-test power for scenario 2 for various combinations of contractor’s and agency’s 

sample sizes 

 
Figure 3.8 PF probability curves for scenario 2 for various combinations of contractor’s and 

agency’s sample sizes 

Figure 3.9 presents the F-test power surface for scenario 3 in which the agency’s 

testing data have greater variability (i.e., standard deviation) than that of the contractor. 

Typically, when contractor data is used as part of the acceptance, contractor testing would 

be more frequent than that of the agency. If the variability in agency’s data is larger (i.e., 

scenario 3), then the contractor sample size will determine how well the F-test will be able 

to identify differences. However, when the agency’s data variability is smaller than the 

contractor’s (i.e., scenario 2), the F-test power is limited by the agency sample size. 

Therefore, one of the potential weaknesses of the F-test is that the F-test power does not 
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improve much as the ratio of cn  and an  increases for the case when the agency’s variability 

is smaller than that of the contractor.  

Figure 3.10 presents the PF probability curves for scenario 3. In this case, the 

probability of receiving PF less than 100% increases as the agency sample size increases. 

However, as the contractor sample size increases from 3 to 7, the probability of receiving a 

PF less than 100% remains the same. It can be observed from Table 2 that the average PF 

increases from 91.790% to 93.954% as the agency sample size increases from 3 to 6 while 

the contractor sample size remains constant at 3. On the contrary, the average PF decreases 

from 91.790% to 86.286% when the contractor sample size increases from 3 to 7 with the 

same agency sample size of 3. This indicates that PFs are influenced to a greater extent by 

the test data (contractor or agency) that has a greater sample size.  
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Figure 3.9 F-test power for scenario 3 for various combinations of contractor’s and agency’s 

sample sizes 

 
Figure 3.10 PF probability curves for scenario 3 for various combinations of contractor’s and 

agency’s sample sizes 

When the variability of the contractor sample is smaller than that of the agency (i.e., 

scenario 3), the PF associated with the verification procedure tends to be favorable to the 

agency. For example, when the agency and contractor sample sizes are 3 and 7, respectively, 

the PF associated with the verification procedure is 86.286%. This is closer to the PF 

(79.741%) calculated using agency’s data than when using contractor data (with a PF of 

101.577%). This poses a great financial threat to the contractor because it could ultimately 

get paid for less than the actual quality. More importantly, in this case the contractor has a 

higher testing frequency which should more accurately reflect the actual population quality.  
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Figure 3.11 shows the t-test power surface for scenario 4. It can be observed that both 

agency and contractor sample sizes have a significant effect on the t-test power. The power 

of the F-test remains almost constant around 0.05 regardless of the contractor and agency 

sample size. It can be observed that the t-test power is limited to the larger sample size. For 

example, with a constant agency sample size of 3, the power test increases to 0.8016 when 

the contractor sample size increases to 20. Similarly, equal contractor and agency sample 

sizes will maximize the t-test power. For example, as shown in Table 3.2, the t-test power is 

estimated to be 0.489 with a contractor and an agency sample size of 7 and 3 respectively. 

The power increases to 0.585 when the contractor and agency have the same sample size of 

5.   

In scenario 4, the PWL based on the agency population is much smaller than that 

when the contractor population is considered. Thus, the calculated PFs are smaller than those 

in the other scenarios, Table 3.2. As shown in Figure 3.12, the probability of receiving less 

than a certain pay factor increases as the agency sample size increases. However, the 

probability of receiving less than a certain pay factor decreases slightly when the contractor 

sample size increases from 3 to 7 (i.e., nc =3, na=3 and nc =7, na=3). As the contractor sample 

size increases, the PF associated with the verification procedure increases. For instance, 

when the contractor sample size increases from 3 to 7, the average PF from the verification 

procedure increases from 41.662% to 43.248%, (Table 3.2), when the agency sample size 

remains equal to 3. On the other hand, the PF associated with the verification procedure 

decreases when the agency sample size increases. For example, the average PF decreases 

from 41.662% to 26.199% as the agency sample size increases from 3 to 6 while the 
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contractor sample size remains constant at 3. In this scenario, the contractor would seem to 

be exposed to a greater payment risk than would the agency because the PF associated with 

the verification procedure is always in favor of the agency despite sample sizes.  
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Figure 3.11 t-test power for scenario 4 for various combinations of contractor’s and agency’s 

sample sizes 

 
Figure 3.12  PF probability curves for scenario 4 for various combinations of contractor’s and 

agency’s sample sizes 

In many projects it may be possible that the contractor and agency populations have 

different means and standard deviations, which is represented in scenario 5. In this case, the 

standard deviation ratio between agency and contractor is 2, while the means’ difference is 

1 (i.e., in standard deviation units). Figure 3.13 and Figure 3.14 present the F-test and t-test 

power, respectively. Figure 3.13 indicates that the number of agency tests determines the 

effectiveness of the F-test regardless of the means difference. For a contractor sample size 

of 3, the F-test power is only 0.094 in relation to an agency sample size of 3. The power 

increases to 0.313, and 0.344 when the agency sample size increases from 10 to 20 
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respectively. The highest power observed is 0.838 when both contractor and agency sample 

sizes are equal to 20.  

As presented in Figure 3.14, the t-test power is influenced by both contractor and 

agency sample sizes. When the sample size for the contractor increases from 3 to 20, and for 

the agency’s sample size of 3, the power increases from 0.245 to 0.359. The power surfaces 

discussed above were focused to either F-test or t-test. However, SHAs usually combine 

both F and t tests in their verification procedure as shown in Figure 3.3. Thus, the probability 

of detecting a difference in means and/or variances was evaluated using simulation. This 

probability is estimated with Equation 3.9. In this case, DN  is the number of lots that a 

difference in means and/or variances is detected. Thus, such probabilities for scenario 5 are 

plotted in Figure 3.15 for various combinations of contractor and agency sample sizes. In 

this scenario the power of detecting a difference largely depends on the number of agency 

tests. The simulation results show that the power in this case is not simply the sum of the F-

test and t-test power. For example, the F-test and t-test power are 0.215 and 0.410 when the 

contractor and agency sample sizes are equal to 5, while the power of detecting a difference 

in means or variances is only about 0.573, Table 3.2.  Figure 3.15  can be used to evaluate 

the power of the verification procedure that includes both F-test and t-test.  

From the analyses of the five scenarios considered in this study, it can be observed 

how the statistical power is affected in relation to the contractor and agency population 

distributions (i.e., means and variability). For a specific combination of contractor and 

agency sample sizes, the further apart are the two populations from each other, in both means 

and standard deviations, the greater the power. In statistics such effect is identified as the 
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“effect size” when assessing how meaningful the relationship between two groups in this 

case is. Thus, when the two distributions representing the contractor and agency data are 

further apart fewer number of tests are needed to detect the statistical difference between 

them. Highway agencies need to conduct such analysis based on their population 

characteristics to make informed decisions regarding the verification testing frequency for a 

given power and level of significance. Such analysis could eventually identify the level of 

testing needed in each scenario, and thus reduce testing time and cost pertinent to acceptance. 
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Figure 3.13 F-test power for scenario 5 for various combinations of contractor’s and agency’s 

sample sizes 

 
Figure 3.14 T-test power for scenario 5 for various combinations of contractor’s and agency’s 

sample sizes 

 

The PF probability curves are plotted in Figure 3.16, while the average PFs for 

various combinations of sample sizes are summarized in Table 3.2 for scenario 5. As shown 

in Table 3.2, when contractor and agency have the same number of tests, equal to 3 for 

example, the average PWL is estimated to be about 64.135% and the average PF is 73.749%. 

However, in this case there is a 11.70% probability that the contractor receives a PF equal 

to or greater than 100% (i.e., 1- probability of receiving >100%). The PF probability curves 

and the average PFs in Table 2 clearly show how the contractor and agency sample sizes 

influence PF when validated contractor tests, in combination with the agency verification 

tests, are used for pay decisions. A small number of contractor and agency tests (i.e., n =3) 
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result in a greater difference between the PF associated with the verification procedure and 

the PF calculated using only the agency data. Such a difference decreases with increasing 

sample size of both agency and contractor. Since most of the highway agencies have fewer 

verification tests than the number of contractor tests, in these cases if the contractor test 

results are not verified and the agency data is used to determine payment, the risk of incorrect 

decision and erroneous pay is higher due to smaller sample sizes. For instance, for the case 

of nc =7, na=3 the PF associated with the verification procedure is 75.185% while the PFs 

calculated from the agency and/or the contractor data are 59.081% and 90.550%, 

respectively. If the agency uses its own data to determine PF, the contractor will be exposed 

to a significant risk because could ultimately be paid for less than the actual quality. 
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Figure 3.15 Probability of detecting a difference in means and/or variances for scenario 5 for 

various combinations of contractor’s and agency’s sample sizes 

 

Figure 3.16 PF probability curves for scenario 5 for various combinations of contractor’s and 

agency’s sample sizes 

 

3.5 Conclusions and Recommendations 

A Monte Carlo simulation process was developed to assess acceptance risks and 

associated PFs when contractor test results are used in combination with the agency data in 

acceptance of pavement materials and construction. Alternative scenarios of contractor and 

agency data populations were considered for evaluating such effects. In each scenario, the 

testing statistical power was determined, and the power surfaces were developed considering 

alternative sample sizes. The PF probability curves were developed as well and the average 

PFs were calculated. Since the proposed analysis quantifies risks and PF in relation to the 
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population characteristics of the quality acceptance data of interest, such approach could be 

eventually used in identifying (i) level of risks with current acceptance specifications, and 

(ii) level of testing needed in each scenario, and thus reduce testing time and cost pertinent 

to acceptance. 

The overall study results indicated that if the variability of the agency test data is 

larger than that of the contractor (i.e., scenario 3), the contractor sample size will determine 

how well the F-test will be able to identify differences between the samples. On the contrary, 

when the variability of the agency test results is smaller (i.e., scenario 2), the probability of 

detecting a difference in variance (F-test) depends on the number of agency verification tests. 

Both agency and contractor sample sizes have a significant effect on the t-test power. The 

limiting factor in how well the t-test can identify differences in means depends on the sample 

size difference between the contractor and the agency data. Thus, agencies will need to 

consider this fact when making the decision concerning the balance between acceptable risk 

levels and sample size.  

The PF analysis in this study reveals the impact of the verification procedure on risks 

and rewards. In scenario 1, combining agency and validated contractor test results for 

acceptance and payment determination reduces the risk of incorrect decision to both parties. 

However, as shown from the analysis, the impact of using larger sample size (i.e., combining 

contractor and agency data) produces a higher risk to the contractor (i.e., at a 5% level). This 

is associated with incorrectly concluding, in statistical terms, that the means and/or standard 

deviations between the agency and contractor data are different when in fact they are equal. 

One way to reduce the contractor’s risk is to use a smaller α value, for example, α = 0.01. 
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When the variability in agency data is smaller than that of the contractor (i.e., scenario 2), 

the agency would seem to be rewarding a greater payment than that calculated when the 

contractor quality data is used. Such effect is reduced as the contractor sample size increases 

since the calculated sample variance is decreasing. In the case where the variability of the 

agency data is greater than that of the contractor, the PF associated with the verification 

procedure tends to be lower. In this case the agency may question the level of reward since 

using contractor data will produce a higher PF. While in most cases the contractor has a 

higher testing frequency, such data may more accurately reflect the actual population 

characteristics of production, assuming there are no concerns in regards to testing data 

quality and integrity.   

The overall and specific findings of this study could provide useful input to SHAs in 

evaluating acceptance risks and associated PF. Therefore, it is suggested that SHAs currently 

implementing verification procedures in their QA program strongly consider performing 

similar analysis using the proposed simulation analysis approach in order to: (i) evaluate the 

PF and associated risks; and (ii) make necessary adjustments on sample size and pay 

equations to balance the risks and properly award pertinent payments. For contactors the 

analysis approach presented here in can be useful in identifying strategies on how to reduce 

risk pertinent to rejection of good quality material in terms of adjusting frequency of testing, 

sample size, production quality and uniformity; and how to adjust production quality for 

increasing PF. Finally, the methodology developed herein is transferable to agencies where 

contractor data are used in acceptance and pay decisions 
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CHAPTER 4: LIFE CYCLE ASSESSMENT OF USING RECYCLED 

MATERIALS IN PAVEMENT 

 

4.1 Introduction 

The United States’ national highway system requires new construction and extensive 

rehabilitation of highways to meet the growing traffic demand and guarantee the safety of 

drivers (Lee et al., 2013). The maintenance and rehabilitation of this extensive highway 

network system consumes large amounts of natural resources and energy, produces large 

quantities of waste and generate significant amounts of greenhouse gas emissions (Lee et al., 

2010). Thus, state Departments of Transportation (DOTs) have been aiming to adopt an ever-

increasing amount of recycled materials in pavement construction and rehabilitation. The 

benefits that can be achieved by using large amounts of recycled materials include reducing 

the use of natural resources; eliminating waste materials generated for disposal; reducing 

energy and water consumption; and reducing greenhouse gas emissions (National 

Academies of Sciences, Engineering, and Medicine, 2011).  

Recycled asphalt pavement (RAP) is the most common recycled material used in hot 

mixed asphalt (HMA) and to some degree as aggregate in base layers. The engineering 

properties of using RAP in highway construction applications have been explored by several 

studies (Chesner et al., 1998). However, its contributions to sustainability, in terms of 

greenhouse gas emissions reduction (GHG), energy and water demand reduction, and 

economic benefits using life-cycle cost analysis (LCCA), have been examined to a lesser 

degree. Furthermore, the potential widespread use and the sustainability benefits of RAP and 
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other recycled materials need to be considered within the pavement management system 

(PMS) analysis when identifying the best rehabilitation strategy for each project. Therefore, 

the objective of this chapter was to estimate the potential economic and environmental 

impacts of using recycled materials in pavement construction and rehabilitation through life-

cycle analysis (LCA). Firstly, we proposed a methodological framework for assess the life 

cycle economic and environmental benefits of using recycled materials/by-products. The 

proposed methodology considers all life cycle stages of pavements including material 

production, transportation, construction, maintenance, rehabilitation and end of life. To 

demonstrate the value of the suggested approach, this study conducted LCA of using two 

recycled materials in pavement. The first case study considered construction and demolition 

waste (CDW) recycled aggregates as an alternative to natural aggregates for roadway 

construction, while the second case conducted life cycle sustainability assessments of using 

rock dust as partial replacement of sand and cement in concrete pavements.  

 

4.2 Methodology  

The proposed methodology for assessing the life cycle environmental and eco-nomic 

impacts with the use of recycled materials/by-products in pavement construction and 

rehabilitation includes the steps of Figure 4.1. The primary objective of encouraging the use 

of recycled materials in the construction of highways is to reduce economic cost and 

minimize environmental impacts without comprising the performance. Thus, the mechanical 

properties, such as compressive strength and elastic modulus, as well durability of concrete 
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with recycled materials need to be examined. Once the engineering properties requirements 

are evaluated, the next step is to conduct a site-specific survey or condition assessment: for 

a new roadway construction project, the survey will require information on project traffic 

and climate inputs, construction materials and processes; while for a rehabilitation project, 

condition assessment of existing roadway needs to be performed. This step provides 

information for selecting the best materials and construction techniques and/or identifying 

what level of existing materials can be recycled along with the recycling method, e.g., cold 

in-place recycling (CIR), hot in-place recycling (HIR), full-depth reclamation, use of ex-situ 

recycling (Gschösser et al., 2012). 

The objective of step 3 is to identify the reference conventional and the alternative 

sustainable strategies. The reference strategy considers conventional (virgin) materials 

throughout the life cycle of the pavement structure, while alternative strategies use recycled 

materials or recycling techniques. The reference strategy is used for comparative analysis 

(step 7) in assessing and comparing against, and in between them, the alternative sustainable 

strategies in terms of cost and environmental impacts. The next step is related to pavement 

structural design for both reference and alternative strategies. The pavement structures 

(layers and thicknesses) are first determined. Since the concrete mix with recycled materials 

may have different mechanical properties com-pared to virgin materials, the equivalent layer 

thicknesses for the alternative strategies need to be determined using pavement analysis tools 

such as the 1993 AASHTO pavement design guide (AASHTO, 1993), the mechanical-

empirical pavement design guide (MEPDG) (AASHTO, 2020), or local agency design 

procedures. Furthermore, in order to identify appropriate rehabilitation strategies, the service 
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life needs to be estimated depending on the initial design quality and the minimum 

acceptable performance condition, considering (i) material properties, (ii) layer 

characteristics, (iii) traffic load, and (iv) climatic conditions (Zhao et al., 2021). In this study, 

the 1993 AASHTO pavement design guide was employed for the structural design and 

performance prediction of the pavements with different materials, considering a minimum 

present serviceability index (PSI) of 2.5 as the lower acceptable condition (Stroup-Gardiner, 

2011).  

 

Figure 4.1 Methodological framework for generating and evaluating alternative sustainable 

strategies 

The following step is to conduct the life cycle economic and environmental 

assessment. LCA models can be used as a sustainability tool given the flexibility of the 
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methodology in providing a holistic analysis of the environmental and economic im-pacts 

of different recycled materials and processes on pavement construction (Nathman et al., 

2009). While any LCA tool available may be used, in this study the pavement lifecycle 

assessment tool for environmental and economic analysis (PaLATE) was used to evaluate 

the economic and environmental impacts of construction materials and processes for the 

specific roadway project (PaLATE, 2022). PaLATE is a project-level LCA tool that 

considers all life cycle phases of pavements (e.g., materials processing, transportation, 

construction, maintenance and end of life). Three categories of data are used in PaLATE: 

environmental related data (e.g., emissions factors, energy and water consumption 

associated with material production, equipment and processes), cost data (materials and 

processes), design related data (e.g., layers, thicknesses, transport distances, etc.). Figure 4.2 

presents the data used in each stage of the life cycle analysis (materials production, 

transportation, initial construction and maintenance, and end life phases). The input data and 

calculations within this LCA tool are easily updated to reflect current emission models, local 

costs and site conditions. Thus, in this study updated emission parameters were used 

following the Environmental Protection Agency (EPA) in-put-output model, USEEIO, 

(2022). The design parameters represent typical roadway construction practices for average 

traffic volumes in Poland. The material costs, labor costs and overhead rates were collected 

from local contractors, while typical construction, maintenance and transportation costs were 

based on typical construction projects in the region. PaLATE outputs relate to the life cycle 

inventory (cost, energy, water consumption, emissions etc.) as shown in Figure 4.2. Such 

LCA analysis provides an understanding of where environmental impacts are created in the 



89 

 

life cycle of pavements, as well as how and to what extent various sustainability strategies reduce those environmental 

impacts and identifies potential unintended consequences that can result in increased environmental impacts. Once the LCA 

analysis is completed, a sustainability rating system should be used to evaluate each alternative in terms of its effectiveness to 

meet sustainability targets (BE2ST-in-Highways, 2012). 

 

Figure 4.2 Inputs, outputs of the LCCA and LCA environmental impact analysis
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4.3 Life-Cycle Economic and Environmental Impacts of CDW Recycled 

Aggregates in Roadway Construction and Rehabilitation 

4.3.1 Literature Review 

The construction and rehabilitation of road pavements involve large amounts of 

natural resources such as raw materials and energy (Amiril et al., 2014); (Gambatese & 

Rajendran, 2005); (Muench, 2010). However, when recycled materials are used in roadway 

constructions potential environmental and economic benefits can be assessed (Lee et al., 

2010); (Celauro et al., 2015); (Hasan et al., 2020); (Del Ponte et al., 2017); (Blankendaal et 

al., 2014). A remarkable variety of studies have investigated several recycled materials to be 

used in road pavements: recycled aggregates (from different sources), clayey materials, 

industrial by-products (slags, pulverized fuel ash, etc.), plastic and rubber wastes, etc. 

(Sherwood, 2001); (Abukhettala, 2016); (Kaseer et al., 2019); (Thives & Ghisi, 2017); 

(Siddique et al., 2008); (Tam et al., 2018); (Reis et al., 2021). Among these materials, 

aggregates recycled from debris of construction and demolition waste (CDW) play a key 

role in the sustainability of road infrastructures (del Río Merino et al., 2010); (Ossa et al., 

2016); (Kumbhar et al., 2013). CDW aggregates have been recognized as a valid alternative 

to natural aggregates (NA) for road pavement applications (Silva et al., 2019); (Jimenez et 

al., 2012). A great number of studies and practical applications recognize that recycled CDW 

materials can be employed in embankments (Cristelo et al., 2016); (Zhang et al., 2019) and 

trenches of roadworks (Rahman et al., 2014); (Vieira et al., 2017) as well as in the 

construction of subgrade layers  (Zhang et al., 2020); (Cabalar et al., 2019). However, when 

employed in base and subbase layers, CDW aggregates are usually stabilized to meet 
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mechanical and durability of specification and standard requirements (Esfahani, 2020); 

(Tefa et al., 2021). To reduce ecological footprint deriving from the use of ordinary Portland 

cement (OPC), some studies recommended to stabilize CDW materials with alternative 

binders (Arulrajah et al., 2017b) ; (Bassani et al., 2019). Blended cements with 

supplementary cementitious materials (Agrela et al., 2012), industrial by-products 

(Arulrajah et al., 2017a); (Camargo et al., 2013) and clinker-free cementitious binders (i.e., 

those deriving from the alkali-activation of by-products and/or waste) (Mohammadinia et 

al., 2018); (Bassani et al., 2019) are the current alternative binders for stabilization purposes. 

In this context, (Bassani et al., 2017) showed that CDW aggregate mixtures can be stabilized 

with cement kiln dust (CKD) in alternative to OPC, reaching comparable results of 

unconfined compressive strength (UCS) and resilient modulus (RM). 

In addition to the proven feasibility in using CDW aggregates in substitution of NA 

for road pavement formation, their implementation is strongly promoted by well-recognized 

environmental benefits (Dahlbo et al., 2015). Several life-cycle assessment (LCA) studies 

have demonstrated that the recycling of CDW (i) reduces emission of environmentally 

harmful substances, (ii) avoids the exploitation of natural resources, and (iii) decreases the 

consumption of energy in comparison with the production of virgin NA (Blengini & 

Garbarino, 2010); (Hossain et al., 2016); (Simion et al., 2013). Researchers agree that this 

advantage mainly derive from the landfilling avoidance (Carpenter et al., 2013); (Rosado et 

al., 2017); (Marzouk & Azab, 2014); (Ram et al., 2020). Economic savings deriving from 

the adequate management of CDW in the civil sector are estimated as well (Lee et al., 2010); 

(Yuan et al., 2011); (Rodríguez et al., 2015); (Coelho & De Brito, 2013). 
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LCA studies on CDW materials are mostly focused on the evaluation of 

environmental impacts of different recycling strategies in comparison to landfilling (Coelho 

& De Brito, 2013); (Bovea & Powell, 2016). These studies are limited to the analysis of 

recycling processes from the demolition stage to the production of the recycled (end-of-

waste) product (e.g., cradle-to-gate LCA approach). More work is effectively needed to 

extend the environmental impact assessment to real applications in which CDW material is 

included in substituting NA. Some LCA analyses have investigated the environmental 

benefits of using recycled CDW aggregate in concrete production (Borghi et al., 2018); 

(Dosho, 2007); (Ding et al., 2016a); (Serries et al., 2016). Almost all the road pavement 

LCA-related studies consider the inclusion of recycled and/or alternative materials in 

substitution of traditional ones for asphalt and concrete layers of flexible and rigid pavements 

respectively (Shi et al., 2019); (Chiu et al., 2008); (Anastasiou et al., 2015); (Celauro et al., 

2015); (Aurangzeb et al., 2014); (Vidal et al., 2013). Only a limited number of studies 

focused on the environmental assessment deriving from the use of CDW aggregate as 

granular material in base/subbase layers (Carpenter et al., 2013); (Farina et al., 2017); 

(Gschösser et al., 2012). Thus, there is a need to extend the LCA analyses to alternative 

granular materials including stabilized-CDW aggregates with traditional and alternative 

binders. The previous studies on the LCA analysis using CDW materials focused on the 

economics and/or environmental impacts during the material production process (Bassani et 

al., 2019); (Dahlbo et al., 2015); (Dosho, 2007); (Ding et al., 2016a); (Serres et al., 2016); 

(Gschösser et al., 2012); (Hoxha et al., 2020). Thus, there is a need to consider all stages in 

the roadway life-cycle performance phases (i.e., construction, maintenance, rehabilitation) 
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in order to address all potential impacts and benefits of using CDW aggregates in the LCA 

analysis of roadway projects. This study addresses this need with the proposed novel 

methodology that quantifies the LCA environmental benefits and economic savings 

throughout the entire performance period of alternative sustainable strategies considering 

both construction and rehabilitation stages. This study addresses this need through the 

analysis of a pavement project representative of typical construction practices for average 

traffic volumes in Northern Italy. The life cycle economic and environmental benefits of 

using both natural- and CDW-stabilized aggregates as road base layer material were assessed. 

CDW aggregates stabilized with different binder types (i.e., cement and CKD) and contents 

were considered in the comparative analysis of alternative sustainable strategies. For each 

strategy, the pavement structure was de-signed to meet the structural requirements in the 

function of the materials used. The LCA analysis quantitatively assessed the economic and 

environmental impacts during the materials production, transportation, construction and 

rehabilitation phases. 

4.3.2 Alternative Pavement Design with CDW Aggregates 

A pavement project representative of typical construction practices for average 

traffic volumes in Northern Italy was considered as a case study for the LCA. The project 

characteristics are presented in Table 4.1 and are for a two-lane pavement with a width of 

7.32 meters and a length of 1.6 kilometers (equivalent to one mile). The analysis period 

considered was 40 years with minor rehabilitation (i.e., overlay) every 10 years as estimated 

from the deterioration rate of the pavement structure. RAP material is considered for an 

onsite process and reuse. HMA, NA, CDW aggregates and cementitious materials were 
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supposed to be delivered from a plant 40 km away from the construction site. The distance 

between the construction site and landfill was 32 km. These distances are representative of 

paving projects in the region of the construction project. 

Table 4.1 Design features of the paving construction project 

Design Considerations Value 

Width (two travel lanes) 7.32 m 

Road length 1.6 km 

Wearing course depth 100 mm 

Asphalt content 4.5% 

Performance period of analysis 40 years 

Rehabilitation (50 mm mill and overlay) every 10 years 

Distance from plant to site 40 km 

Distance from site to landfill 32 km 

 

Figure 2.1 shows the different scenarios considered in this study. The reference 

strategy includes a conventional road pavement entirely made with virgin materials (design 

A), while the sustainable alternatives consider stabilized-CDW aggregates in lieu of NA for 

base layer formation (designs B, C, D, and E). The conventional design consisted of 100 mm 

HMA over a 200 mm NA base treated with ordinary Portland cement (3%). All the 

alternative design strategies maintained the 100 mm of HMA composed with new 

construction materials due to stringent requirements for the quality of the surface layer, with 

the exception of design C where a 20% RAP was permitted for comparative purposes with 

option B. The inclusion of such a low content of RAP did not produce changes in the HMA 

properties. For the base layer, alternative formulations of CDW aggregates were considered 
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stabilized with different cementitious binders (e.g., CEM-II and CKD). The properties of 

such stabilized CDW materials are reported in Table 4.2, together with the different 

structural layer coefficients determined in relation to the properties of the materials. The 

equivalent thickness for the base layer for each case was determined in order to provide the 

same structural capacity (i.e., structural number SN, Equation 4.2). The 7-day unconfined 

compressive strength was used for estimating the structural coefficient (i.e., 1 2 3,  , a a a ) of 

each material. 

18 0

5.19

log( ) 0.36 log( 1) 0.20
log[( ) / (4.2 1.5)]                + 2.32 log( ) 8.07
0.4 1094 / ( 1)

= ⋅ + ⋅ + − +
∆ −

+ ⋅ −
+ +

R

R

W Z S SN
PSI M

SN  

(4.1) 

where 

18W  = accumulated 18-kip equivalent single axle load for the design period 

RZ  = reliability factor 

0S  = standard deviation 

PSI∆  = initial PSI–terminal PSI 

RM  = subgrade resilient modulus 

RM  = structural number: 

1 1 2 2 2 3 3 3m mSN a D a D a D= + +   (4.2) 
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where 

1 2 3,  , a a a  = structural layer coefficients for surface, base and subgrade layers 

1 2 3,  ,  D D D  = thicknesses for surface, base and subgrade layers 

2 3m , m  = drainage coefficients for base and subgrade layers. 

 

Figure 4.3 Schematic representation of alternative strategies and materials; (A) reference design, 

(B) (C), (D) and (E): alternative strategies 

Table 4.2 Alternative Materials and Properties 

Design Aggregate Binder 

Binder 

Content 
Water Content Compacted Density  7-Day UCS* 

(%) (%) (kg/m3) (MPa) 

A NA CEM-I 3 6.5 2363 2.33 

B and C CDW CKD 10 12.3 2138 2.32 

D CDW CEM-II 4 11.7 2141 2.00 

E CDW CEM-II 2 11.2 2152 1.59 

Note: CDW = construction and demolition waste; CKD = cement kiln dust; CEM-I = ordinary 

Portland cement; CEM-II = cement type II; NA = natural aggregate. Note: * represents for 

Unconfined compressive strength 



97 

 

The equivalent thicknesses for the base layer of each alternative design are presented 

in Figure 4.3.  Comparatively, lower material strength corresponds to thicker base layer 

thickness, and vice versa. 

4.3.3 Life Cycle Assessment (LCA) 

The life cycle assessment for both environmental and economic impacts consider the 

entire supply chain (i.e., material production, construction, transportation, and maintenance 

activities) over the 40-year analysis period. Material resources, energy use, water 

consumption, emissions, costs, and other pertinent parameters were included in the analysis. 

Costs of material, transportation and construction operations, labor, overhead, and profit 

were included in the LCCA. Material costs were collected from local contractors (Table 4.3), 

while typical construction, maintenance (i.e., mill and overlay) cost were used. Similarly, 

labor costs and overhead rates were based on typical construction projects in the region and 

reported in Table 4.4. Consumption and emission generation in the production and 

transportation of materials during initial constructions and maintenance were considered to 

estimate the environmental effects. The environmental impact (energy consumption, water 

consumption, CO2, CO, PM10, NOx, SO2, and hazardous waste) due to CDW aggregate and 

CKD production were previously modeled using the software OpenLCA (Lee et al., 2013). 

The total environmental impacts were calculated as the sum of materials production, 

transportation and construction equipment. The LCA sustainability analysis was conducted 

over an analysis period of 40 years with scheduled 50 mm overlay every ten years for both 

conventional and alternative designs. The time intervals were determined based on the 

estimated traffic level and deterioration rates using the rehabilitation design principles of the 
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1993 AASHTO design guide (AASHTO, 1993). The CDW used in the alternative designs 

were tested for both short- and long-term performance assessment (Tefa et al., 2021). These 

materials show equal, or better, performance than conventional and alternative recycled 

materials. Thus, the long-term life of CDW materials is expected to match or exceed the 

performance of alternate materials, thus providing comparable or conservative values of 

performance life. 

Table 4.3 Materials costs 

Material Cost (USD/ton) 

HMA 80.0 

RAP 15.0 

CDW aggregate (0–40 mm) 2.4 

CDW aggregate (0–8 mm) 3.6 

NA (for base) 12.0 

CEM-I 92.4 

CEM-II B-P 96.0 

CKD 1.2 

 

Table 4.4 Labor, processing cost and overhead rates (PaLATE) 

Process Cost 

Mill and overlay USD 33/m2/50 mm 

Labor USD 16,000/1.6 km 

Equipment USD 12,000/1.6 km 

Overhead & profit USD 11,000/1.6 km 
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4.3.4 Life Cycle Cost Analysis  

The life cycle cost associated with each alternative is calculated and reported in terms 

of net present value (NPV) based on a discount rate of 4%. Figure 4.4 provides a comparison 

of the economic savings between the reference and the alternative strategies. Cost savings 

vary in relation to the type and percent of stabilizer used. Despite the relatively high 

percentage of CKD for stabilization of CDW aggregates in scenarios B and C, a higher level 

of cost saving is observed. Compared to the conventional case (scenario A), the use of CDW 

stabilized with 10% CKD (design B) in the base layer provides a cost reduction of up to 17%. 

This is related to the significantly lower price of CDW aggregates and CKD as compared to 

that of NA and ordinary cement respectively (Table 4.3). The use of RAP in the surface 

HMA (scenario C) led to additional savings with respect to references that are associated 

with the reduction in transportation and landfilling. Alternatives B and C have the same base 

layers (i.e., CDW aggregate with 10% CKD), however, alternative C presents a 5% lower 

cost, in relation to B, since 20% RAP is used in the surface HMA layer. The asphalt binder 

used in asphalt mixtures is the most expensive material in roadway projects. By using 20% 

RAP in HMA the new binder needed for HMA is reduced. For alternatives D and E, even 

though a higher amount of CDW aggregate and cement is needed to meet the structural 

requirements (i.e., thicker base layer according to the structural design) the associated costs 

were reduced by 11% and 13% respectively in relation to the reference strategy. Overall, the 

quantified cost savings for these strategies are attributed to the reduction of material costs. 

For alternative C additional cost savings are associated with the re-duction in transportation 

and landfilling since 20% RAP was used in HMA. 
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Figure 4.4 LCCA for alternative strategies. (A) reference design; (B) (C), (D) and (E): alternative 

strategies 

4.3.4 Life Cycle Environmental Impacts 

The environmental impacts were examined in relation to the resources and 

equipment used during all processing phases (i.e., production of materials, transportation 

and construction processes). Three major environmental impact components were reported 

including greenhouse gas emissions (CO2), water consumption and energy consumption. 

Five pollutants that have a direct impact on human health, as identified by the Environmental 

Protection Agency, EPA, were also considered and include (i) hazardous waste generation, 

(ii) SO2, (iii) CO, (iv) PM10, and (v) NOx (Lee et al., 2013). As shown in Figure 4, the life 

cycle CO2 emissions for both conventional and alternative designs are dominated by 

materials production. The emission factors related to each material production are shown in 
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Table 4.5. The processes (i.e., equipment for construction and maintenance) and 

transportation generated a similar amount of greenhouse gas emission for all strategies. This 

is because a similar level of activities and equipment are used during these construction 

operations. In terms of materials production, overall, the greenhouse gas emissions are 

reduced significantly by substituting NA with CDW aggregate in base layers formation. By 

comparing strategy D to the conventional option, the replacement of virgin aggregates with 

CDW aggregate decreases approximately 20% the CO2 emission despite the 1% increase in 

cement. The main sources of CO2 emissions during material production include heavy 

equipment operations and transportation. However, substantial environmental benefits are 

achieved by using CDW aggregate due to the reduction of virgin materials needed and 

landfill disposal. In the case of option E, an additional 15% reduction in CO2 was observed 

by limiting the amount of cement from 4% (option D) to 2% (option E) despite the higher 

amount of CDW aggregates needed to address the increased base layer thickness. This 

reflects the high amount of CO2 associated with cement production as compared to CDW 

aggregate production. In case of design B and C, which employ 10% CKD to replace 

Portland cement, CO2 emissions were reduced by 56% and 63%, respectively. Since CKD 

is a by-product of the cement manufacturing process, a significant reduction in CO2 

emissions is observed. In strategy C, CO2 emissions from material production and 

transportation were further reduced due to the use of RAP (20%) in HMA. 

Table 4.5 Environmental factors related to materials production (PaLATE and OpenLCA) 

Materials 
Energy 

MJ/ton 

Water 

g/ton 

Hazardous Waste 

g/ton  

CO2 

g/ton 

CO 

g/ton 

PM10 

g/ton 

SO2 

g/ton 
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HMA 1968 96 3560 183,016 42.0 48.0 27.0 

GAB 49 34,117 179 2718 6.6 2.0 9.2 

Cement 4342 2,725,606 1636 879,729 661.9 189.4 783.9 

CDW -123 31,677 0 -5864 -25.2 -7.6 -13.8 

CKD 19 12,632 0 4631 3.1 0.8 3.7 

Note: The negative environmental effects representing the avoidance of landfill 

 

Figure 4.5 Life cycle greenhouse gas emissions (CO2); (A) reference design, (B) (C), (D) and (E): 

alternative strategies 

Figure 4.6 presents the energy consumption results. The energy savings are 

analogous to the reductions in CO2 emissions associated with material production. It can be 

observed that construction processes consume the least amount of energy compared to 

material production and transportation. A maximum energy saving (equivalent to 44%) was 

achieved by using 20% RAP in HMA and considering a base layer with CDW with 10% 

CKD (scenario C). The substantial energy savings from options B and C reflect the fact that 
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cement production is an extremely high energy and emission intensive process. By 

comparing alternative D to the reference design, the energy consumption was reduced by 

21% by substituting virgin aggregates with CDW ones. This indicates that the manufacturing 

of CDW aggregates is more energy efficient than that of NA. 

 

Figure 4.6 Life cycle energy consumption; (A) reference design, (B) (C), (D) and (E): alternative 

strategies 

The life cycle water consumption is shown in Figure 4.7. Material production, 

especially cement, requires a large amount of water. Since cementitious materials were used 

in the mixture, water needs to be added to develop the hydration process. The optimum water 

content for each mixture is shown in Table 4.2. The water consumption is mainly from 

material production and processes. As higher water contents are needed for stabilized CDW, 

the water consumption increases for the alternative strategies. However, the total water 

consumption was reduced by about 15% for strategy C since a lower amount of water is 



104 

 

needed as compared to the reference case for material production of virgin aggregate and 

cement. In the case of option E, the total water consumption increased dramatically since a 

high water content is needed combined with the increased amount of material needed for the 

thicker base layer. 

 

Figure 4.7 Life cycle water consumption; (A) reference design, (B) (C), (D) and (E): alternative 

strategies 

Table 4.6 summarizes the quantities for each environmental parameter considered in 

this study, while Figure 4.8 presents the comparison between the reference and the 

alternative sustainable strategies (the latter expressed as relative results with respect to the 

reference). Hazardous waste generation primarily comes from producing materials such as 

asphalt emulsion, bitumen and concrete additives, and disposal of these materials to landfill. 

Aggregate and cement production generates very little hazardous waste compared to these 

materials. This reflects that only around 6% hazardous waste reduction was observed in 
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options B, D, and E. On the contrary, hazardous waste was further reduced by 17% when 

20% RAP was used in HMA (strategy C). SO2 emissions are analogous to hazardous waste 

generation associated with materials production. Additional pollutants (i.e., CO, PM10, and 

NOx) were also quantified (Table 4.6). According to the results of Table 4.6, considerable 

environmental savings for all alternative strategies can be deduced. Design C outperformed 

other alternatives in terms of all environmental impacts, particularly in energy and water 

consumption, and CO2 emissions. 

Table 4.6 Environmental impacts for alternative strategies 

Designs 

Energy 

Consumption 

(MJ) 

Water 

Consumption 

(kg) 

Hazardous 

Waste 

(kg) 

CO2 

(Mg) 

CO 

(kg) 

PM10 

(kg) 

NOx 

(kg) 
SO2 (kg) 

Reference A 5,018,259 818,330 35,514 388 804 1954 3040 52,288 

Alternatives 

B 3,207,405 725,435 33,287 170 466 1605 2483 49,012 

C 2,816,530 694,111 26,885 145 379 1416 2238 48,701 

D 3,956,628 767,996 33,664 311 575 1707 2761 49,109 

E 3,663,825 1,009,706 33,710 250 525 1773 2711 50,017 
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Figure 4.8 Environmental impacts of alternative strategies; (A) reference design, (B) (C), (D) and 

(E): alternative strategies 

 

4.3.5 Sustainability Criteria and Rating  

An overall assessment of each alternative strategy in regard to sustainability was 

conducted using BE2ST in-Highways (Lee et al., 2013). This sustainability metrics tool 

evaluates each alternative strategy using a comparative assessments method and rating based 

on the LCA results. Eight criteria are used in this assessment and include (i) energy use, (ii) 

global warming potential (GWP), (iii) recycling content, (iv) water consumption, (v) life 

cycle carbon costs, (vi) social carbon costs (SCC), (vii) traffic noise, and (viii) hazardous 

waste. Each alternative strategy is compared in relation to the reference one (strategy A). 

The SCC represents the cost needed to eliminate or address issues caused by carbon 
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emissions (i.e., USD/Mg of CO2 emissions) and is associated with the cost of reducing global 

warming issues (e.g., GWP). Highway agencies often incorporate SCC for evaluating 

sustainable pavement construction and rehabilitation. As mentioned, in this study the 

alternative strategies were compared with the reference (i.e., conventional) option where 

new virgin materials were used for all processes and pavement construction stages. As 

mentioned earlier, weighting factors are assigned for each criterion to reflect their relative 

importance based on local conditions and policies for the construction projects. For instance, 

in some regions greenhouse emission or energy reduction may be more critical than cost 

savings, and so on. Therefore, higher weights are assigned to such critical parameters. The 

sum of weights should be equal to 100 (Figure 4.9). For this study, the sustainability criteria 

and targets, and the relative weights assigned to these parameters are as follows: 15% for 

energy consumption, global warming potential (i.e., CO2 emission), recycling content and 

water consumption, 10% for hazardous waste and social carbon cost, and 5% for traffic noise. 

These parameters were selected to reflect current construction practice and policies with 

recycled materials for the specific region of the construction project. These parameters can 

be modified to reflect construction practices and policies elsewhere. Table 4.7 shows the 

sustainability target for each criterion. For instance, two points are rewarded if the energy 

consumption is reduced by more than 20%. While both targets and relative weights were 

selected for this region, such factors can be modified for roadway projects elsewhere. 
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Figure 4.9 Relative weights for sustainability criteria 

Table 4.7 Criteria and sustainability targets 

Criteria Unit Target 

Energy consumption MJ 
≥10% reduction 

≥20% reduction 

(1 pt) 

(2 pt) 
GWP Mg 

Life cycle cost USD 

Recycled content % 
≥10% recycling rate 

≥20% recycling rate 

(1 pt) 

(2 pt) 

Water consumption 
kg 

≥5% reduction 

≥10% reduction 

(1 pt) 

(2 pt) Hazardous waste 

Social carbon cost USD 
≥USD 12,344/km saving 

≥USD 24,688/km saving 

(1 pt) 

(2 pt) 
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Traffic noise no unit 
HMA 

SMA or OGFC 

(1 pt) 

(2 pt) 

Note: SMA = stone mastic asphalt, OGFC = open graded friction course 

The sustainability assessments for each strategy, both in terms of reward points 

pertinent to each criterion and total rating score, are summarized in Table 4.8. A weighted 

point (i.e., production of obtained point and weighting factor) was computed for each 

criterion. The total score was then calculated by dividing the total weighted point (i.e., sum 

of the weighted points for each criterion) into the target (i.e., 2). Strategy C represents the 

most sustainable option among the four proposed alternatives, with a total score of 92%. The 

total score is achieved by a 21% reduction in life cycle cost, a 15% reduction in water 

consumption, a 44% reduction in energy, and 63% reduction in CO2 emissions. The Amoeba 

graphs for strategies C (best) and E (worst) are shown in Figure 4.10 as an example. 

Alternative D achieved a total score of 67% which outperformed alternative E (i.e., total 

score of 47%) in terms of sustainability even though E used a higher amount of cement (i.e., 

4%). This is because strategy E requires 20 mm more layer thickness than D due to the low 

material strength, and thus more CDW aggregates, and water are needed. The impact of each 

strategy on such criteria is evident and could be used in further improving each strategy. 

Significant differences are observed between the two strategies in terms of water 

consumption, life cycle cost, social carbon cost and hazardous waste. The use of cement 

stabilization for CDW aggregate is attributed to good part to such effects. Thus, the results 

could eventually be used to further modify such alternatives for better sustainability scores. 
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Table 4.8 Points obtained for each parameter and total rating score 

Strategy 
Energy 

consumption 
GWP 

Recycled 

content 
Water 

consumption 

Life 

cycle 

cost 

Social 

carbon 

cost 

Traffic 

noise 
Hazardous 

waste 

Total  
weighted 

points 

Total 

score 

B 2.00 2.00 2.00 2.00 1.79 1.00 1.00 0.63 1.66 83% 
C 2.00 2.00 2.00 2.00 2.00 0.85 1.00 2.00 1.83 92% 
D 2.00 1.98 2.00 0.62 1.53 0.27 1.00 0.51 1.34 67% 
E 2.00 2.00 2.00 0.00 1.63 0.48 1.00 0.51 0.94 47% 

 

  

Strategy E Strategy C 

Figure 4.10 Amoeba graphs for strategies C and E 

 

4.3.6 Conclusions 

This study examined the life cycle cost savings and environmental benefits of using 

stabilized CDW recycled aggregates for base layers of roadway pavements. The proposed 

analysis approach for developing and accessing alternative sustainable strategies was 

presented in this process. The economic and environmental implications were quantified by 



111 

 

comparing the results of the alternative recycled materials (i.e., CDW, CKD, and RAP) 

strategies with those of the reference case where new construction materials are used. In the 

analysis resources and equipment used during the production of materials, construction 

processes (i.e., equipment used for construction and rehabilitation), and transportation were 

considered. The alternative strategies were developed based on the laboratory-obtained 

strength parameters of different stabilized CDW recycled aggregates. The analysis indicated 

that the alternative strategy employing CDW aggregates stabilized with 10% CKD in the 

base layer combined with a 20% RAP in the HMA surface layer provided the best sustainable 

option. This resulted in significant reductions in life cycle cost, energy consumption, water 

consumption and greenhouse gas emissions. The results also showed that the replacement of 

Port-land cement with CKD (i.e., alternatives B and D) stabilization of CDW aggregates 

further enhanced the environmental benefits. The LCCA indicated that cost savings were 

primarily attributed to the lower costs for CDW and CKD compared to conventional 

materials, while the LCA results indicated that the production of CDW and CKD requires 

less energy and generates lower emissions. The economic and environmental benefits 

quantified in this study could encourage the wider adoption of stabilized CDW aggregates 

in sustainable roadway construction. While the absolute values of the economic and 

environmental LCA are related to the inputs considered for this project, the relative benefits 

of using CDW in base and subbase layers are transferable, in scale, to any other projects 

where similar uses of these recycled materials are intended. Thus, the suggested approach 

for LCCA and LCA can be adopted elsewhere for quantifying the sustainability benefits 

CDW and other alternative recycled materials on roadways. 
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In conclusion, this study provided a tangible method for assessing the sustainability 

and contribution of CDW materials on roadways that can be expanded to other recycled 

materials. While the specific values of the economic and environmental LCA are related to 

the inputs considered in this project, the relative benefits of using CDW are transferable to 

other construction projects where similar uses and materials are used. Thus, the suggested 

approach for LCCA and LCA can be adopted elsewhere. Further research in this area should 

consider the potential adoption and implementation of sustainability criteria, and the 

proposed analysis in PMS. This will permit the generation of optimal sustainable alternative 

construction and rehabilitation strategies at the project and network level. 

 

4.4 Life Cycle Sustainability Assessment of Using Rock Dust as a Partial 

Replacement of Fine Aggregate and Cement in Concrete Pavements 

4.4.1 Background 

Over the last decade, there has been an increase in the use of recycled materials/by-

products as alternative materials in pavement construction such as RAP, recycled concrete 

materials (RCM), construction and demolition waste, fly ash, rock dust, glass and crumb 

rubber and others (Harvey et al., 2016); (Tam et al., 2018); (Williams et al., 2020); (Huang 

et al., n.d.). In recent years, the technical feasibility of using rock dust as a partial 

replacement for fine aggregate and/or cement in concrete has been extensively investigated. 

This stems from the fact that there is growing global concern about the depletion of sand 

deposits and the highly intensive energy consumption and CO2 emissions associated with 
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cement production (Meisuh et al., 2018b). Rock dust is a byproduct obtained from the 

production process of crushed stone aggregates. A large amount of waste material is 

produced in the form of rock dust during the quarrying and aggregate processing 

(Dobiszewska et al., 2022). Thus, the use of rock dust as a partial replacement for sand and/or 

cement in concrete may have promising potential environmental and economic benefits in 

terms of reducing construction costs, energy consumption, GHG emissions and saving 

natural resources.  

Rock dust has been found to produce concrete with equivalent or improved 

mechanical and durability properties when used as fine aggregate and/or cement (Meisuh et 

al., 2018a); (Kankam et al., 2017a); (Ilangovana et al., 2008); (Kankam et al., 2017b); (Zhao 

et al., 2022). The effect of rock dust on the mechanical properties of concrete significantly 

depends on the stone dust specific surface area and the percentage of replacement 

(Dobiszewska & Barnes, 2020). The use of rock powder as a partial replacement for fine 

aggregate generally leads to the improvement of mechanical properties and durability of 

cement composites (Dobiszewska et al., 2022; Dobiszewska & Barnes, 2020). Due to the 

fact that rock dust is an inert material, replacing cement with dust usually leads to the 

deterioration of the properties of cement composites. However, with a slight substitution of 

cement (i.e., in an amount of about 10–15%), a slight increase in strength and improvement 

in the durability of concretes and mortars is observed(Dobiszewska et al., 2022; 

Dobiszewska & Barnes, 2020). Beneficial rock dust interaction is attributed to the filler 

effect, which is the most important and dominant mechanism (Celik & Marar, 1996); 

(Kankam et al., 2017b); (Soroka & Setter, 1977). Very fine particles of rock powder fill the 
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space between the cement and the aggregate particles which leads to the reduction in cement 

matrix porosity. A decrease in the large capillary pores and an increase in small pores content 

is observed at the same time. This results in the densification of the hardened cement paste 

microstructure and less permeable structure. As a result, cement composites with a rock dust 

additive feature higher strength and durability (Dobiszewska & Barnes, 2020). Thus, there 

is a potential to use rock dust as a partial replacement of fine aggregate or/and cement in 

Portland concrete cement (PCC) pavement construction.  

While the mechanical performance of a concrete mix with rock dust can be met, the 

potential economic and environmental benefits associated with its implementation need to 

be assessed, especially in the context of PCC pavement construction which re-quires large 

quantities of concrete. Therefore, the objective of this study was to estimate the potential 

economic and environmental impacts related to the use of rock dust in rigid concrete 

pavements through life-cycle analysis (LCA). The analyses considered conducting a 

quantitative assessment of different sustainable PCC pavement designs with rock dust and 

identifying the best sustainable alternative(s). The existing studies on the LCA of recycled 

materials and/or industrial by-products mainly focused on the economics and/or 

environmental impacts during the material production process (Del Ponte et al., 2017); (Ding 

et al., 2016). Thus, there is a need to consider all stages in pavement life-cycle performance 

(i.e., roadway design, construction, maintenance, rehabilitation and end of life) in order to 

address all the potential impacts and benefits of using recycled materials and industrial by-

products in the LCA of roadway projects. This study addresses this need by pro-posing a 

holistic methodology that quantifies the life-cycle environmental benefits and economic 
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savings of using recycled materials/by-products in pavement construction and rehabilitation 

throughout the entire performance period of alternative sustainable strategies. To 

demonstrate the suggested approach and quantify the potential benefits, this study analyzed 

a roadway project representative of typical construction practices for average traffic volumes 

in Poland. The life-cycle economic assessment (LCCA) and life-cycle environmental 

analysis of using both conventional concrete and concrete with rock dust as a partial 

replacement of sand and/or cement in PCC pavements were conducted. The LCA considers 

all stages in the life cycle of pavements, including material production, construction, 

maintenance and rehabilitation, as well as the end-of-life phase (i.e., landfill or recycling). 

It is worth mentioning that while there are studies that have looked at LCA of concrete with 

fly ash (FA) and granulated blast furnace slag (GBFS), there are no studies that have 

examined the life-cycle economic and environmental impacts of concrete with the addition 

of rock dust. 

4.4.2 Materials and Methods 

4.4.2.1 Characteristics of Rock Dust and Cement 

Ordinary Portland cement, OPC, CEM I 42.5R was used in the concrete mixtures. 

The cement specific gravity is 3.13 while the specific surface determined by the Blaine 

method was 3500 cm2/g. The chemical and mineral composition of the OPC is presented in 

Table 4.9 The gravel of the group of fractions 2/16, and river sand of the group of fractions 

0/2 were used as a coarse aggregate and a fine aggregate, respectively.  
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Table 4.9 Chemical composition of cement 

Chemical Composition [%] 

SiO2 19.33 

Al2O3 5.15 

Fe2O3 2.90 

CaO 64.59 

MgO 1.25 

SO3 3.23 

K2O 0.47 

Na2O 0.21 

Cl− 0.05 

 

The chemical composition of the rock dust (basalt origin) used in this study is 

presented in Table 4.10. The rock dust particle diameters are in the range of 0.5–200 µm. 

The average particle size of rock dust is 20 µm in diameter. The specific surface area of rock 

dust determined by the Blaine method was 3500 cm2/g with a specific gravity of 2.99. 

Table 4.10 Chemical composition of rock dust (basalt origin) 

Chemical Composition [%] 

SiO2 42.61 

Al2O3 12.90 

Fe2O3 14.05 

CaO 13.00 

MgO 7.82 

Na2O 1.76 

K2O 1.15 

P2O5 1.80 

SO3 0.07 
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MnO 0.25 

Cl− 0.10 

 

4.4.2.2 Concrete Mix Design 

The mix proportioning for the concrete to be used when generating the feasible 

alternative strategies is presented in Table 3. These mixtures were developed during the 

experimental study for meeting the C30/37 class compressive strength value according to 

the European Standards (The Polish Committee for The Polish Committee for 

Standardization: PN-EN 206-1+A1:2016-12: Concrete—Requirements, Properties, 

Production and Compliance; The Polish Committee for Standardization, 2016). 

 

Table 4.11 Concrete mix proportioning 

Concrete 
Cement 

(kg/m3) 

Water 

(kg/m3) 

Rock dust 

(kg/m3) 

Fine  

Aggregate 

(kg/m3) 

Coarse  

Aggregate 

(kg/m3) 

A 350 

155 

0 533 

1400 

B 350 53.3 479.7 

C 350 106.6 426.4 

D 332.5 70.8 479.7 

E 315 88.3 479.7 

F 332.5 124.1 426.4 

G 315 141.6 426.4 

Six cube specimens of 150 mm × 150 mm × 150 mm were prepared for each concrete 

mix (i.e., the reference concrete and concretes with rock dust). All the specimens were cured 
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in water at a temperature of 20 ± 2 °C. Compressive strength test was conducted at 28 days 

according to European Standards EN 12390-3:2019-07 (EN 12390-3:2019-07; Testing 

Hardened Concrete -Part 3: Compressive Strength of Test Specimens. European Committee 

for Standardization, 2019). 

4.4.3 Feasible Sustainable Strategies with Rock Dust Addition in Concrete 

This study quantified the potential economic and environmental impacts related to 

the use of rock dust in rigid concrete pavements through the proposed methodology. For this 

purpose, a typical rural pavement section in Poland consisting of a 1.6 km (1 mi) length with 

two lanes, each lane 3.65 m (12 ft) wide, 40 km for the transport of materials to and from 

the plant to the project site and 32 km for the transport of waste materials to landfill/recycling 

plants. Embankment and shoulders were not considered in this case. 

The alternative sustainable strategies included different alternative PCC pavement 

designs with rock dust in concrete. Table 4.12 shows the various sustainable strategies 

considered in this study in relation to the concrete strength and stiffness properties when 

rock dust is added as a fine aggregate and/or cement replacement. As mentioned earlier, 

concrete strength values for each mixture were obtained from the concrete properties’ 

experimental study, while the corresponding modulus was estimated using Equation 4.3. The 

concrete slab and base layer thicknesses were obtained from the pavement design structural 

analysis. The reference strategy is a conventional PCC pavement entirely made with new 

materials (design A), while the sustainable alternatives consider the partial replacement of 

sand and/or cement by rock dust in the concrete layer (designs B, C, D, E, F and G). The 
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conventional design with new raw materials consisted of 203 mm (8 ft) PCC slab over a 150 

mm (6 ft) granular base to meet the traffic and climatic conditions of the project. The feasible 

sustainable alternatives considered a maximum of 20% sand and 10% cement replacement 

with rock dust since larger amounts result in significant concrete strength reduction 

(Dobiszewska et al., 2022). Since the impact of various contents of rock dust in concrete 

strength was kept to comparable levels, the concrete slab thickness did not change 

significantly according to the structural analysis. Thus, the 150 mm granular base layer was 

also used for the alternative design strategies, as seen in Table 4.12. The analysis period 

considered was 40 years with mi-nor rehabilitation (i.e., overlay of 75 mm) at the 20th year 

as estimated from the deterioration rate of the pavement structure and as identified by the 

AASHTO design equation (4.3). 

Table 4.12 Conventional and alternative sustainable strategies 

Strategies 
Reference Sustainable Alternatives 

A B C D E F G 

Concrete 

mixture 

Conventional 

concrete 

10% rock 

dust in FA 

20% rock 

dust in FA 

10% rock 

dust in 

FA + 5% 

in cement 

10% rock 

dust in 

FA + 10% 

in cement 

20% rock 

dust in 

FA + 5% 

in cement 

20% rock 

dust in 

FA + 10% 

in cement 

Strength 

[MPa] 
43.5 46.5 48 45 43 46 44 

E [GPa] 34 35 35 34.5 34 35 34 

Concrete slab 

thickness 

(mm) 

203 195 190 200 201 200 205 

Granular base 

(mm) 
150 150 150 150 150 150 150 
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The design parameters used for the conventional and alternative strategies are shown 

in Table 4.13. The equivalent single axle load ESAL was equal to 7000 kg (15,500 lb.) and 

an annual average daily traffic flow (AADT) of 5000 was considered with 4% trucks. The 

equivalent thickness for the PCC slab for each alternative was determined for the same 

performance period using the AASHTO 1993 rigid pavement design guide (AASHTO, 

1993). The concrete modulus of rupture and elastic modulus were obtained from the 

laboratory experimentation, as seen from Table 4.12, and Equations 4.4 and 4.5. 
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(4.3) 

18W  = design traffic (18-kip ESALs)  

RZ  = standard normal deviate 

oS  = combined standard error for reliability 

D  = thickness of concrete pavement slab 

PSI∆  = initial and difference between terminal serviceability indices 
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tp  = terminal serviceability value 

'
cS  = modulus of rupture for Portland cement concrete 

J  = load transfer coefficient 

dC  = drainage coefficient 

cE  = modulus of elasticity for Portland cement concrete 

k  = modulus of subgrade reaction 

Concrete properties based on compressive strength 

' '6.7c cS f=  (4.4) 

'57,000c cE f=  (4.5) 

 

Table 4.13 Pavement design input parameters for the roadway site 

Rigid Pavement Parameters Values 

Standard normal deviate, RZ  -1.645 

Overall standard deviation, oS  0.3 

Modulus of rupture, '
cS  As per Equation (4.4) 

Difference between initial and terminal serviceability 

indices, PSI∆  
2.0 

Terminal serviceability value, tp  2.5 
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Elastic modulus, cE  As per Table 4.12 

Modulus of subgrade reaction, k 5.5 kg/cm3 

Load transfer coefficient, J  2.8 

Drainage coefficient, dC  1.0 

 

4.4.3 Results and Discussions  

4.4.3.1 LCCA Results 

The life-cycle assessment for both environmental and economic impacts considered 

all life-cycle stages (i.e., material production, construction, transportation and 

maintenance/rehabilitation activities) over the 40-year analysis period. The LCCA 

disaggregates calculations over materials, transportation, landfill tipping fee, labor, process 

and equipment (including PCC demolition and paving) and overhead rates. Since recycling 

concrete pavement has been a common practice in recent years, this study considered that 

the existing PCC pavement was demolished and transported to a recycling plant instead of 

the landfill. Thus, there was no landfill tipping fee. The material costs were collected from 

local contractors (Table 4.14), while transportation, labor and equipment costs were based 

on typical construction projects in the region. The overhead rate was equal to 7% of the total 

cost, representing construction practice in the region. Since rock dust is a waste material 

from aggregate production, there was no production cost for this material. 

Table 4.14 Cost of materials in the region 

Materials Cost (USD/ton) 

Sand 6 
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Aggregates 26 

Cement 115 

Concrete additives 1918 

 

The life-cycle cost associated with each alternative was calculated and reported in 

terms of net present value (NPV, Equation 4.6) based on a discount rate of 4%, representative 

of the discount rate of transport infrastructure investment in the US and the EU (Lawrence 

et al., 2015); (Disa, 2018).  

As identified in the first two rows of Figure 4.2, all pertinent costs accounted for in 

LCCA include expenditures related to material production (such as labor, equipment, 

overhead), cost pertinent to material transportation to site, cost associated with initial 

construction and future maintenance and rehabilitation activities, costs pertinent to material 

transport from and to the plant and/or to the landfill and end-of-life recycling or landfill 

disposal. Equipment performance, energy cost, labor and overhead are all accounted for in 

each of these construction stages.  

Figure 4.11 provides a comparison of the economic savings between the reference 

and the alternative strategies. Compared to the conventional case (strategy A), 10% sand 

replacement by rock dust (alternative B) provides a life-cycle cost reduction of 1.6%. This 

is mainly contributed to the cost savings in materials (i.e., fine aggregate). Furthermore, the 

concrete mix with a lower rock dust content provides slightly higher compressive strength 

than the conventional strategy with new raw materials. Thus, the PCC thickness is reduced 

without compromising performance, which also leads to cost savings. Alternative C and D 
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have similar life-cycle cost reductions, equivalent to 3.3%. Despite the relatively small 

quantity of cement used in PCC in relation to sand, 5% cement replacement with rock dust 

produces the same economic benefits as the 20% sand replacement. This is related to the 

significantly higher prices of cement as compared to sand (Table 6). Alternative strategy E 

has a slightly higher cost reduction (i.e., 5.2%) than option F (i.e., 5.0%) also attributed to 

the higher cement replacement (i.e., 10%) with rock dust. As can be observed, sustainable 

strategy G provided the highest overall life-cycle cost reduction of 6.8%. It should be noted 

that the construction and rehabilitation of 1 km of roadway may cost millions of dollars, and 

thus, a 6.8% reduction in cost could contribute to significant economic benefits for the entire 

project. 

(1 )
t

t

RNPV
i

=
+  

(4.6) 

where  

NPV = net present value  

tR  = net cash flow at time t 

i  = discount rate  

t  = time of cash flow 
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Figure 4.11 Comparison of life-cycle costs for alternative strategies 

 

Figure 4.12 shows the NPV life-cycle cost broken down by materials and processes 

for alternative F, which is included here as an example in order to provide some insights on 

which components have the higher impact on the total LCCA. While the actual cost 

breakdown for each alternative sustainable strategy is different, the relative impact of these 

components on the total cost are comparable, yet not the same. 
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Figure 4.12 NPV life cycle cost broken down by materials and processes for sustainable strategy F 

 

As can be seen from this Figure, the total project cost per two-lane km was calculated 

to be USD 518,533 in which 57% was associated to the cost of materials and 32% to labor, 

equipment and processes. Such cost is equivalent to USD 38.5 per square meter of installed 

PCC pavement (for a 200 mm thick slab), USD 14.5 per square meter of in-place granular 

base (150 mm thick layer) in regard to the initial instruction and USD 10.8 per square meter 

of PCC overlay (75 mm thickness) for maintenance. These costs reflect the typical 

construction projects in the region. While this reflects the construction and cost data in the 

region of the project site, as mentioned earlier the cost data in PaLATE can be easily revised 

to reflect the practices for a project at any specific region of interest. It is also expected that 

since changes in material and processes unit costs proportionally affect the alternative 
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strategies, the relative economic benefits from their comparison will still be valid in regard 

to the findings presented herein. 

4.4.3.1 Life Cycle Environmental Impacts 

The environmental impacts were examined in relation to the resources and 

equipment used during all processing phases (i.e., production of materials, transportation, 

construction and maintenance/rehabilitation). Three major environmental impact 

components include greenhouse gas emissions (CO2), water consumption and energy 

consumption. Five pollutants that have a direct impact on human health, as identified by the 

Environmental Protection Agency (EPA), are also included: (i) hazardous waste generation, 

(ii) SO2, (iii) CO, (iv) PM10 and (v) NOx. The emission factors related to each material 

production are shown in Table 7. As mentioned earlier, these factors were obtained from the 

updated EPA emissions data (EPA 2022). Since rock dust is a byproduct/waste material that 

has already been processed, and since the emissions are accounted for during the aggregate 

production, no environmental loads were considered in this case so as to not double count 

such effects. The environmental impacts associated with transportation and processes (e.g., 

PCC paving, installing base and demolition of existing pavement) were obtained using the 

available equipment and data in PaLATE. 

Table 4.15 Emission factors of materials production (after EPA 2022) 

Materials and 

Processes 

Energy 

[g/ton] 

Water 

Consumption 

[g/ton] 

CO2 

[g/ton] 

GWP 

NOx 

[g/ton] 

PM10 

[g/ton] 

SO2 

[g/ton] 

CO 

[g/ton] 

Hg 

[g/ton] 

Pb 

[g/ton] 

RCRA 

Hazardous 

Waste 
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Generated 

[g/ton] 

Aggregates 309 43 21,884 44 189 21 29 0 0 359 

Cement 5168 2561 362,695 4362 817 4324 1550 0 0.4 2240 

Concrete 

additives 
23,784 22,190 1,423,609 5796 2084 4285 7299 0.1 3 354,745 

Concrete 

mixing 
536 932 37,099 551 172 484 337 0 0 169 

Note: Resource Conservation and Recovery Act (RCRA) 

As shown in Figure 4.13, the life-cycle CO2 emissions for both conventional and 

alternative designs are dominated by materials production. The processes (i.e., equipment 

for construction and maintenance) and transportation generated a similar amount of 

greenhouse gas emission for all strategies. This is because a similar level of activities and 

equipment are used during these construction operations. Comparing strategy D to the 

conventional option, the replacement of sand with rock dust produces a CO2 decrease of 

approximately 3%. The main sources of CO2 emissions during material production include 

heavy equipment operations and transportation. In the case of strategy D, an additional 4% 

reduction in CO2 was observed by replacing 5% of cement by rock dust. This reflects the 

high amount of CO2 associated with cement production as compared to sand production. In 

the case of designs E and F, a similar reduction (i.e., 7.5%) in CO2 emissions was observed. 

Alternative G produced approximately a 10% reduction (100 Mg) in CO2 emission. 
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Figure 4.13 Life cycle greenhouse gas emissions (CO2) for alternative strategies 

Figure 4.14 presents the life-cycle energy consumption for each alternative. The 

energy consumptions are analogous to the reduction in CO2 emissions associated with 

material production. It can be observed that the construction and maintenance processes 

consumed the least amount of energy compared to materials production and transportation. 

A maximum of 11% (1,488,033 MJ) reduction in energy consumption was achieved by 

replacing 20% of sand and 10% of cement with rock dust (alternative G). This reflects the 

fact that cement and aggregate productions are high-energy and emission-intensive 

processes. The life-cycle water consumption results are presented in Figure 8. Since water 

consumption is primarily affected by the production of the concrete mix, no significant 

changes were observed between the sustainable strategies. 
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Figure 4.14 Life cycle energy consumption; reference design (A), alternative strategies (B–

G) 
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Figure 4.15 Life cycle water consumption; reference design (A), alternative strategies (B-

G) 

Table 4.16 summarizes the environmental impacts broken down by materials 

production, transportation and processes for strategy F as an example. It can be observed 

that these environmental parameters are dominated by materials production, especially by 

cement, aggregate and concrete mix production. This reveals where the environmental 

impacts are generated in the life-cycle analysis, as well as how and to what extent various 

sustainability strategies do in fact reduce them. Table 4.17 provides further details on the 

comparative assessment of the environmental impacts for each strategy. Overall, the 

environmental impacts decrease with an increase in the percentage of rock dust in concrete. 

The energy consumption and CO2, SO2, CO, Hg and Pb emissions are dominated by 

materials production, while transportation significantly contributes to NOx (approximately 

17.2% associated with transportation), PM10 (about 9.2% from transportation) and hazardous 

waste generation (15.4% from transportation). 

 

Table 4.16 Environmental impacts broken down by material production, materials and 

transportation for strategy F 

Phases 
Energy 

[MJ] 

Water 

Consumption 

[kg] 

CO2 

GWP 

[Mg] 

NOx 

[kg] 
PM10 [kg] 

SO2 

[kg] 

CO 

[kg] 

Hg 

[g] 

Pb 

[g] 

RCRA 

Hazardous 

Waste 

Generated 

[kg] 

Material 

production 

Aggregates 2,692,434 368,398 200,386 458,881 1,625,638 189,268 246,631 0 56 3416 

Cement 5,299,818 2,626,233 371,960 4,473,129 837,777 4,434,189 1,589,180 5 433 2298 
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Additives 128,777 120,145 7708 31,383 11,286 23,201 39,522 0 18 1921 

Concrete 

mixing 
4,310,516 1,362,680 298,275 4,431,384 1,383,974 3,887,396 2,706,768 9 471 7493 

Transportation 

Concrete 

from 

plant to site 

246,521 41,972 18,430 981,871 191,393 58,912 81,823 0 8 1776 

Waste 

materials 

from site to 

landfill/ 

recycling 

plant 

280,395 47,739 20,962 1,116,787 217,795 67,007 93,066 0 9 2020 

Processes 

Base 

construction 
16,796 1633 1261 27,248 4295 1802 5872 0 1 121 

PCC 

paving 
24,865 2418 1866 38,473 13,790 2544 8290 0 1 179 

 

Table 4.17 Environmental impacts for alternative sustainable strategies 

Strategy NOx [kg] PM10 [kg] SO2 [kg] CO [kg] Hg [g] Pb [g] 
RCRA Hazardous Waste 

Generated [kg] 

A 12,368 4540 9271 5106 15 1096 24,879 

B 12,124 4421 9079 4982 15 1063 23,150 

C 11,996 4340 8980 4907 15 1041 21,665 

D 11,801 4369 8748 4846 14 1017 21,197 

E 11,671 4361 8598 4782 14 989 19,364 

F 11,703 4298 8674 4785 14 998 19,761 

G 11,462 4267 8417 4681 14 959 17,854 
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4.4.4 Sustainability Rating 

A sustainability rating system, in this case BE2ST in-Highways, can be used to assess 

each alternative strategy (BE2ST-in-Highways | Recycled Materials Resource Center). The 

selected sustainability rating system evaluates each alternative strategy using a comparative 

assessment and rating method based on the LCA results. Seven criteria are used in this 

assessment and include: (i) energy consumption, (ii) global warming potential (GWP), (iii) 

recycling, (iv) water consumption, (v) life-cycle carbon costs, (vi) social carbon costs (SCCs) 

and (vii) hazardous waste. Each alternative strategy is compared in relation to the reference 

one (strategy A). SCCs represent the costs needed to eliminate or address issues caused by 

carbon emissions (i.e., USD/Mg of CO2 emissions) and are associated with the cost of 

reducing global warming issues (e.g., GWP). Highway agencies often incorporate SCCs for 

evaluating sustainable pavement construction and rehabilitation. As mentioned earlier, in 

this study the alternative strategies were compared with the reference (i.e., conventional) 

option in which new raw materials are used for all processes and pavement construction 

stages. 

For each alternative, a normalized score was calculated based on the percentage 

reduction in emissions, cost, consumption or percentage of recycled materials (rock dust) 

used. If the percentage reduction equals to or is larger than 10%, a score of 1 is assigned. 

Such method of calculating scores can be modified to encourage more sustainable solutions 

(e.g., 20% reduction corresponding to a score of 1). A comparison of alternatives is shown 

in Figure 4.16. The score (i.e., 0–1) for each alternative strategy was calculated based on the 

percentage reduction in each sustainability criterion of Figure 4.16. A higher score represents 
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a higher reduction for that economic environmental impact parameter. It can be observed 

that alternative G outperformed other strategies in all sustainability criteria, except for water 

consumption. The impact of each strategy on such criteria is evident and could be used in 

further improving each specific strategy. As it can be observed as more sand and/or cement 

is replaced by rock dust, a higher reduction in energy consumption, hazardous waste, GWP, 

life-cycle cost and social carbon cost can be achieved. However, the alternative strategies do 

not have a significant impact on water consumption. Thus, the results could be eventually 

used to further modify such alternatives for better sustainable scores. 

 

Figure 4.16 Sustainability rating for each alternative 
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4.4.5 Summary and Conclusions 

This section examined the life-cycle economic savings and environmental benefits 

of using rock dust for the partial replacement of fine aggregate and/or cement in concrete for 

roadway pavement construction. The proposed methodological approach for developing and 

accessing alternative sustainable strategies was presented in this process. The life-cycle 

economic and environmental impacts were quantified by comparing the results of 

sustainable alternative strategies (i.e., with rock dust use in concrete) with the reference 

design where new raw construction materials are used. In the proposed holistic analysis 

approach, the LCCA and LCA environmental analysis considered all stages in the life cycle 

of pavements, rather than just the material production that past studies have focused on. Thus, 

the suggested methodology includes analyses and inputs pertinent to material production, 

construction, maintenance and rehabilitation and end of life (landfill or recycling). The 

feasible alternative strategies were developed based on the laboratory experimentation 

results on using rock dust in concrete and providing acceptable strength properties. The 

analysis indicated that the alternative strategy with 20% fine aggregate and 10% cement 

replacement with rock dust provided the best sustainable option. This sustainable alternative 

provides a reduction in life-cycle cost, energy consumption, greenhouse gas emissions, 

hazardous waste and other environmental parameters. The LCA analysis indicated that cost 

savings and environmental benefits were primarily attributed to materials production. The 

economic savings and environmental benefits quantified in this study may encourage the 

wider adoption of rock dust for sustainable PCC roadway construction. While the reported 

values of LCA analysis are related to the specific inputs considered for this project, the 



136 

 

relative comparison between such alternative strategies is expected to be maintained, since 

changes in unit costs and environmental parameters proportionally affect the various 

materials and construction phases in each option. The methodology and analysis presented 

in this study can be adopted elsewhere for quantifying the sustainability benefits of rock dust 

or other recycled materials in roadway construction. Furthermore, such analysis could be 

integrated into PMSs that agencies currently use for identifying optimal allocation of 

resources in maintaining their highway network. 
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CHAPTER 5: SUMMARY AND RECOMMENDATIONS 

 

While the specific findings and research contributions of this dissertation have been included 

and summarized in each of the previous chapters, this section outlines how the current research effort 

could be useful and/or transferable elsewhere and/or further expanded.  

Among the objectives of this study was to explore alternative ML models for enhancing the 

prediction of compressive strength as a function of mixture ingredients and proportions. Seven 

alternative ML models were considered (LR, DT, SVM, MLP, RF, Adaboost, and Xgboost) 

of increasing complexity for concrete compressive strength prediction. Three synthetic 

features were created using domain knowledge including water to cementitious materials 

ratio (W/C ratio), fresh density, and aggregate to cement ratio. The improved model 

performance demonstrated that these features better represent the underlying patterns, 

providing better interpretability of the data and the model. A two-layer stacked model was 

developed to further enhance the prediction accuracy. The proposed stacked model showed 

superior performance with an R2 of 0.985 which outperforms the models from literature.  

While the ML models proposed herein have shown to be very effective in predicting 

concrete strength, model generalization to a wider set of data and concrete mixtures will be 

beneficial for their widespread calibration and use. The superiority of the proposed 

methodology and stacking is expected to be further optimized with more complex concrete 

data. Thus, future model development and validation should consider datasets from field-

produced concrete where higher noise and variance caused by uncontrolled or unreported 
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production processing and construction variables may exist. Such datasets may eventually 

include concrete mixtures such as self-consolidated concrete, fiber-reinforced concrete, and 

others. In a similar direction, the proposed ML models, and/or modeling techniques, could 

be calibrated to other regions by using concrete datasets reflecting concrete materials and 

mixtures elsewhere. In terms of transferability, this study promotes applying and validating 

the proposed methodology in predicting other mechanical properties of concrete, such as 

tensile strength and elastic modulus, as well as performance of transportation infrastructures 

including pavement performance and bridge conditions. 

Another important contribution of this study was the development of a Monte Carlo 

simulation process to systematically quantify acceptance risks and assess the implications 

on pay factors (PF). The simulation was performed using typical AQCs, such as strength, 

thickness, and roughness for PCC pavements. The statistical power of the F-test and t-test 

was determined for various combinations of population characteristics and sample sizes of 

the contractor and agency data. The analysis indicated that specific combinations of 

contractor and agency sample sizes and population characteristics have a greater impact on 

acceptance risks and may provide inconsistent PF. Thus, the findings of this study and the 

proposed approach can assist both agencies and producers to better assess and understand 

the impact of sample sizes and population characteristics on the acceptance risks and rewards. 

Therefore, the proposed methodology can be adopted by highway agencies to develop 

statistically valid verification procedures and thus more rational and defensible quality 

assurance (QA) specifications. Producers may use such analysis to identify the level of risks 

and rewards associated with the current production and identify potential improvements in 
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quality. In future work, the proposed simulation model can be further applied to evaluate the 

acceptance risks of other highway materials and construction, such as HMA and bridges, 

and identity the appropriate sample sizes, PF equations, AQL, RQL and specification limits 

for QA based on desired risk levels for each SHA agency. Further research should also 

consider the feasibility of adopting the developed Monte Carlo simulation for reliability 

analysis in pavement design and performance prediction software.  

Finally, this study presented an approach for quantifying the life cycle economic and 

environmental impacts of using recycled materials in pavement construction. The selected 

case studies included, (i) CDW aggregates in pavement base layers and (ii) the use of rock 

dust as a partial replacement of fine aggregate and cement in PCC pavements. A LCA 

framework, which considers all life cycle stages such as material production, transportation, 

construction, maintenance, rehabilitation and end of life, was proposed to assess such 

impacts. This study also provides significant insights on the specific contribution of material 

production, construction processes and the transportation of materials to the overall 

environmental benefits and cost savings. The suggested approach for pavement LCA can be 

adopted elsewhere for quantifying the sustainability benefits of using alternative recycled 

materials in roadways. The proposed methodology is easily custom tailored to consider off-

the self-tools used in other regions, and flexible enough to accommodate economic and 

environmental impact analysis models of interest. Since LCA involves data, assumptions 

and predictive models, updated inputs should be used in such analysis. When the 

methodology is transferred to a different scenario, different sources of uncertainty may be 

introduced. Thus future research should integrate uncertainty assessment methods and 
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advance statistical considerations into LCA to enable perhaps a probabilistic approach to 

economic and environmental impacts. Eventually, the LCA should be integrated to PMS and 

multiple phases of decision-making in a manner that promotes economically efficient 

environmental impacts reduction. 
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APPENDIX 

The codes for this study are available at https://github.com/zyp1015/PhD-

Dissertation per request. 
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