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Abstract

Fundamental to any fault tolerance research is the definition of correct program execution. Tradi-

tionally, correct program’s execution requires architectural state to be numerically perfect. However,

in many cases, even if program execution is not 100% numerically correct, it may be completely

acceptable if the answers can satisfy user’s requirement. Hence, faults which have caused such

numerically faulty execution are no longer intolerable.

The extent to which programs are more fault resilient at higher levels of abstraction is application

dependent. Programs that produce inexact and/or approximate outputs can be very resilient at

the application level. We call such programs soft computations, and we find they are common in

multimedia workloads, as well as artificial intelligence (AI) workloads. Programs that compute exact

numerical outputs offer less error resilience at the application level. However, we find all programs

studied in this paper exhibit some enhanced fault resilience at the application level, including those

that are traditionally considered exact computations–e.g., SPECInt CPU2000.

This report investigates definitions of program correctness that view correctness from the appli-

cation’s standpoint rather than the architecture’s standpoint. Under application-level correctness, a

program’s execution is deemed correct as long as the result it produces is acceptable to the user. To

quantify user satisfaction, we rely on application-level fidelity metrics that capture user-perceived

program solution quality. We conduct a detailed fault susceptibility study that measures how much

more fault resilient programs are when defining correctness at the application level compared to the

architecture level. Our results show for 6 multimedia and AI benchmarks that 45.8% of architec-

turally incorrect faults are correct at the application level. For 3 SPECInt CPU2000 benchmarks,
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17.6% of architecturally incorrect faults are correct at the application level. Based on our study on

algorithmic properties for fault tolerance, we also investigate a lightweight fault recovery mechanism

that exploits the relaxed requirements on numerical integrity provided by application-level correctness

to reduce checkpoint cost. Our lightweight fault recovery mechanism successfully recovers 66.3% of

program crashes in our multimedia and AI workloads, while incurring minimum runtime overhead.

Keywords: Fault Tolerance; Application-Level Correctness; Soft Computing; Fault Injection;

Recovery.

1 Introduction

Technology scaling–including feature size, voltage, and clock frequency scaling–has brought

tremendous improvements in performance over the past several decades. Unfortunately, these

same trends will make computer systems significantly more susceptible to hardware faults in the

future, resulting in reduced system reliability. Sources of hardware faults include soft errors [1],

wearout [2], and process variations. In anticipation of the reduced reliability that further technology

scaling will bring, computer architects have recently focused on several important fault tolerance

issues. Areas of focus include characterizing fault susceptibility [3], and developing low-cost fault

detection [4, 5, 6, 7, 8] and recovery [9] techniques.

Fundamental to all such reliability research is the definition of correct program execution. In

the past, researchers have made very strict assumptions about program correctness. Traditionally,

a program’s execution is said to be correct only if architectural state is numerically perfect on a

cycle-by-cycle basis. A similar (though slightly looser) notion of correctness requires a program’s

visible architectural state–i.e., its output state–to be numerically perfect. In both cases, correctness

requires precise numerical integrity at the architecture level, a fairly strict requirement.

An interesting question is: must we require strict numerical correctness for overall program

execution to be correct? In many programs, even if execution is not 100% numerically correct, the

program can still appear to execute correctly from the user’s perspective. Although such numerically

faulty executions do not pass the muster of architecture-level correctness, they may be completely

acceptable at the user or application level. Hence, whether a fault is intolerable or benign may

depend on the level of abstraction at which correctness is evaluated. In general, more faults are

acceptable at higher levels of abstraction, i.e. at the application level, compared to lower levels of
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abstraction, i.e. at the architecture level.

How much more fault resilient are programs at the application level? The answer to this ques-

tion is application dependent, and primarily depends on how numerically exact a program’s outputs

need to be. For instance, programs that process human sensory and perception information are

highly fault resilient at the application level. An important example is multimedia workloads.

Another example is artificial intelligence workloads (e.g., reasoning, inference, and machine learn-

ing), which have become increasingly important recently [10]. These programs belong to a class

of computations we call soft computations [11, 12].1 Soft computations compute on approximate

data values associated with qualitative results, making them highly fault resilient because errors in

numerical results seldomly change the user’s interpretation of those numerical results. In contrast,

programs whose correctness are tied directly to the numerical values they compute may offer little

error resilience at the application level. Certain lossless data compression algorithms are exam-

ples of such programs. While the degree of error resilience at the application level varies across

applications, we find all programs studied in this paper exhibit some enhanced fault resilience at

the application level, including those that are traditionally considered exact computations–e.g.,

SPECInt CPU2000.

This paper explores definitions of program correctness that view correctness from the applica-

tion’s standpoint rather than the architecture’s standpoint. Under application-level correctness, a

program’s execution is deemed correct as long as the result it produces is acceptable to the user.

In other words, correctness depends on the user’s interpretation of a program’s numerical result,

not the numerical result itself. To quantify user satisfaction, we rely on application-level fidelity

metrics that capture program solution quality as perceived by the user. Because the notion of solu-

tion quality is different across applications, our fidelity metrics are necessarily application specific,

though applications from the same domain may share common fidelity metrics.

Our goal is to understand how application-level correctness impacts a system’s susceptibility to

faults, especially transient faults or soft errors. The centerpiece of our work is a detailed fault in-

jection study that quantifies how much more resilient programs are to soft errors at the application

level compared to the architecture level. Our study injects 156,205 faults into a detailed architec-

tural simulator, and performs 27,067 separate runs to program completion. For soft computations,

1The term “soft computation” is normally used to describe artificial intelligence algorithms. In this paper, we use

the term to describe multimedia workloads as well because we find they exhibit similar inexact computing properties

as the A.I. algorithms. Note, however, this is not commonly accepted use of the terminology.
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we find 45.8% of fault injections that lead to architecturally incorrect execution produce acceptable

results under application-level correctness. For SPEC programs, a smaller portion of architecturally

incorrect faults, 17.6%, produce acceptable results at the application level. In addition to studying

fault susceptibility, we also present a lightweight fault recovery mechanism that exploits the relaxed

requirements on numerical integrity provided by application-level correctness to reduce checkpoint

cost. Our technique checkpoints some minimum state needed to recover after a crash, but omits

from checkpoints those data values for which the user can tolerate numerical imprecision. Although

our lightweight fault recovery mechanism is not fail-safe, it successfully recovers 66.3% of program

crashes in our multimedia and AI workloads, while incurring extremely low runtime overhead.

The remainder of this paper is organized as follows. Section 2 discusses our definitions of

application-level correctness. Then, Section 3 presents our experimental methodology and Sec-

tion 4 reports on our fault susceptibility study. Next, Section 5 describes our lightweight recovery

mechanism. Finally, Section 6 presents related work, and Section 7 concludes the paper.

2 Application-Level Correctness

This section presents our application-level correctness definitions. We begin by discussing soft

program outputs, an important property for application-level correctness (Section 2.1). Then, we

present fidelity metrics that quantify application-level correctness for the benchmarks studied in

this paper (Section 2.2). Finally, we discuss limitations of our approach (Section 2.3).

2.1 Soft Program Outputs

Programs can exhibit enhanced error resilience at the application level compared to the architec-

ture level for many reasons. However, the likelihood of this happening increases when a program

permits multiple valid outputs. In this paper, we say such programs have “soft outputs.” Soft

outputs commonly occur in programs computing results that are interpreted qualitatively by the

user. Different numerical results can lead to the same or similar qualitative interpretation. Hence,

multiple numerical outputs may be acceptable to the user. Another source of soft program outputs

is heuristic-based algorithms. Many programs solve complex problems for which optimal solutions

are unachievable. Instead of the optimal, they try to find the best solution possible given available

computational resources. In practice, many solutions are “good enough.” So, once again, multiple

numerical outputs are acceptable to the user.
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Benchmark Numerical Output Qualitative Output Fidelity Metric

Multimedia
G.721-D Decompressed Perceived audio Segmental Signal-to-Noise

audio datafile Ratio (SNRseg)
JPEG-D Decompressed Perceived image Peak Signal-to-Noise

image datafile Ratio (PSNR)
MPEG-D Decompressed Perceived video Peak Signal-to-Noise

video datafile Ratio (PSNR)
Artificial Intelligence

LBP Markov network Web Page Class Types % Classification Change
belief values

SVM-L Support Vector Model Test Data Class Types % Classification Change
GA Thread Schedule - % Schedule Length Change

SPECInt CPU2000
164.gzip Compressed file - Compression Ratio
256.bzip2 Compressed file - Compression Ratio
175.vpr Cell placement - Consistency Check

Table 1. Numerical and qualitative outputs computed by our benchm arks. The last column lists the fidelity

metrics used to quantify solution quality.

To illustrate the soft output property, Table 1 lists 9 benchmarks used in our study–three from

the multimedia domain, three from the artificial intelligence (AI) domain, and three from SPECInt

CPU2000. The multimedia workloads, G.721-D, JPEG-D, and MPEG-D are taken from the Me-

diabench suite [13], and perform audio, image, and video decompression, respectively. All three

decompression algorithms are lossy. The AI workloads are from various sources. LBP performs

Pearl’s Loopy Belief Propagation [14], a well-known message-passing algorithm for approximate

inference on large Markov networks. Our LBP implementation solves Taskar’s Relational Markov

Network applied to a web-page classification problem [15]. SVM-L is the learning portion of a

Support Vector Machine algorithm, called SVMlight [16]. SVM-L learns the parameters for a sup-

port vector (SV) model on a training dataset. GA is a genetic algorithm applied to multiprocessor

thread scheduling [17]. Given a thread dependence graph, GA searches for a thread schedule that

minimizes execution time. Finally, the SPECInt CPU2000 workloads are 164.gzip and 256.bzip2,

two lossless data compression algorithms, and 175.vpr, a place-and-route program. (The data

inputs we use for vpr only perform placement–see Table 3 in Section 3).

The second column of Table 1 reports the numerical outputs computed by each benchmark.

Many (in fact, as we will show, all) of these numerical outputs are soft, so multiple valid outputs

exist. In most cases, the soft outputs are due to the qualitative nature of the program results.

When appropriate, we indicate this in the third column, labeled “Qualitative Output.” Many of
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our benchmarks also achieve soft outputs because they are heuristic-based; some examples of this

are discussed below. As we will see in Section 4, the soft computations (multimedia and AI) exhibit

soft program outputs to a greater extent than the more traditionally exact computations (SPEC).

For the three multimedia programs, the numerical outputs are the decompressed datafiles, either

in audio, image, or video format. Once decompressed, these datafiles can be played back to the

user; hence, the qualitative output of these programs is the perceived playback, either aural or

visual, of the numerical outputs. Because the user’s playback experience is qualitative in nature,

it is possible for different numerical outputs to be acceptable (i.e., valid) to the user.

Like the multimedia workloads, the AI workloads also exhibit soft program outputs. In LBP,

nodes in the Markov network contain probability distribution functions (PDFs) over the possible

class types inferred for web pages. Each PDF encodes how strongly we “believe” a particular web

page belongs to each class type. The numerical output for LBP, hence, is the collective belief values

across the entire Markov network. In SVM-L, the numerical output is the SV model parameters

learned from the training dataset, as described earlier. Both LBP and SVM-L’s numerical outputs

are soft because they are used to derive classification answers, the qualitative output for these

programs. LBP selects a class type for each web page by choosing the most likely class indicated

by the corresponding PDF. For SVM-L, extracting class types is more involved because SVM-L itself

doesn’t perform classification. To obtain the class types we want, we run a separate SVM classifier

(not listed in Table 1) that uses the SV model computed by SVM-L to perform classification on a

test dataset. Computing the classification answers in both LBP and SVM-L is an extremely inexact

process. Multiple numerical outputs (belief values for LBP and SV model parameters for SVM-L)

can lead to the same (and hence, valid) classification answer. In GA, the numerical output is the

thread schedule it computes. GA’s numerical output does not have a qualitative interpretation;

however, users can still accept multiple numerical outputs because GA is a heuristic algorithm that

produces a “good enough answer.” Although it is infeasible to find the optimal thread schedule,

there are many thread schedules that are adequate. Any one of these good enough answers represent

a valid numerical output from the user’s perspective.

Somewhat surprisingly, the three SPEC program outputs are also soft, though we do not call

the SPEC benchmarks soft computations. As indicated in Table 1, none of the SPEC outputs

have qualitative interpretations; nonetheless, multiple numerical outputs are valid. For the data

compression algorithms, there is flexibility in how datafiles are compressed even though the com-
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pression algorithms themselves are exact. We will discuss the reasons for this in Section 4. The

vpr benchmark tries to find a cell block placement for a chip design. Like GA, vpr’s algorithm is

heuristic-based since finding an optimal placement (one that minimizes interconnect distance) is

intractable. Hence, multiple cell block placements are valid.

2.2 Solution Quality

Because the benchmarks in Table 1 permit multiple valid numerical outputs, their correctness

is not simply “black or white;” hence architecture-level correctness (where all architectural values

are either correct or wrong) is clearly too strict. An appropriate correctness definition should

accommodate all valid numerical outputs. At the same time, it is important to recognize not all

valid outputs are of equal value; instead, there are varying degrees of solution quality across our

programs’ outputs.

We use application-specific fidelity metrics to capture the quality of a program’s output as

perceived by the user. Our fidelity metrics quantify how different a particular output is relative

to a baseline output. (For our experiments in Sections 4 and 5, we define the baseline output to

be the result obtained from a fault-free execution of a given benchmark). Outputs that are very

similar to the baseline have high fidelity, whereas outputs that are very dissimilar have low fidelity.

Whenever possible, we compute fidelity in terms of a benchmark’s qualitative outputs instead of

its numerical outputs. This enables us to capture fidelity of the user’s qualitative experience, an

important correctness consideration for many of our benchmarks.

The last column in Table 1 lists the fidelity metrics we use for our 9 benchmarks. For the

multimedia workloads, we use signal-to-noise ratio (SNR), a well-accepted fidelity metric in signal

processing. Specifically, we use segmental SNR for G.271-D, and peak SNR for JPEG-D and

MPEG-D. For LBP and SVM-L, we use the percentage change in classification answers, and for

GA, we use the percentage change in thread schedule length (i.e., execution time). For the two data

compression algorithms, we use the compression ratio. Lastly, vpr’s fidelity metric is a consistency

check provided by the code itself. This consistency check first determines whether a given cell block

placement is valid (i.e., doesn’t violate any design rules), and second computes a cost metric that

reflects the degree to which interconnect distance is minimized.

Given the fidelity metrics in Table 1, users can set the minimum fidelity necessary for a program

output to be “acceptable,” thus allowing users to customize the strictness of output acceptability to
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their correctness needs. Notice, users can accept more program outputs as “correct” by sacrificing

fidelity. As we will see in Section 4, this provides users with the unique opportunity to tradeoff

solution quality for fault tolerance.

2.3 Limitations

A limitation of application-level correctness is it only considers program outputs visible to the

user. It does not account for other correctness issues unrelated to visible program outputs. For

example, we do not consider real-time issues. Certain errors may not degrade solution quality

appreciably, but they may alter when solutions become available. This is unacceptable for the cor-

rectness of real-time systems. In addition, we do not consider system-level issues. Errors that do

not defeat individual benchmarks may still propagate to other programs in a multiprogrammed en-

vironment, causing them to crash or execute incorrectly. Lastly, it may still be necessary to provide

architecture-level correctness in cases where architecture state is exposed to the user. For example,

this is necessary during program debugging. In all these cases, application-level correctness is not

strict enough and does not provide the desired correctness requirements.

3 Experimental Methodology

Having presented our definitions of application-level correctness, we now investigate their impact

on fault susceptibility. Our goal is to quantify how much more fault resilient programs are under

application-level correctness compared to architecture-level correctness. This section discusses the

experimental methodology used in our fault susceptibility study. Later, in Section 4, we will present

the study’s results.

To analyze fault susceptibility, we conduct fault injection experiments [18, 8, 19] to observe the

effects of faults on a CPU under different definitions of correctness. Each of our fault injection

experiments injects a single bit flip into the execution of one of our benchmarks–i.e., we assume a

single event upset, or SEU, fault model. Our approach closely follows the methodology introduced

by Reis et. al. [8] which uses an efficient two-phase simulation technique. We initially inject faults

into a detailed architectural simulator that models a modern out-of-order superscalar pipeline.

After each fault is injected, we simulate the microarchitecture until the effect of the fault completely

manifests itself in architectural state. Then, we checkpoint the simulator’s architectural state, and

resume simulation from the checkpoint using a simple functional simulator. We try to run the
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Processor Parameters
Bandwidth 8-Fetch, 8-Issue, 8-Commit
Queue size 64-IFQ, 40-Int IQ, 30-FP IQ, 128-LSQ

Rename register / ROB 128-Int, 128-FP / 256 entry
Functional unit 8-Int Add, 4-Int Mul/Div,

4-Mem Port, 4-FP Add, 2-FP Mul/Div

Branch Predictor Parameters
Branch Predictor Hybrid 8192-entry gshare/2048-entry Bimodal

Meta Table / BTB / RAS Size 8192 / 2048 4-way / 64

Memory Parameters
IL1 config 64kbyte, 64byte block size, 2 way, 1 cycle latency
DL1 config 64kbyte, 64byte block size, 2 way, 1 cycle latency
UL2 config 1Mkbyte, 64byte block size, 4 way, 20 cycle latency
Mem config 300 cycle first chunk, 6 cycle inter chunk

Table 2. Parameter settings for the detailed architectural model into which we inject faults.

benchmark to completion under the functional CPU model, and assuming the benchmark doesn’t

crash, we evaluate the program’s outputs under both architecture- and application-level correctness.

In the detailed simulation phase, we use a modified version of the out-of-order processor model

from Simplescalar 3.0 for the PISA instruction set [20], configured with the simulator settings

listed in Table 2. Compared to the original, our modified simulator models rename registers and

issue queues separately from the Reservation Update Unit (RUU). Using this processor model, we

inject faults into three hardware structures: the physical register file, the fetch queue, and the issue

queue (IQ).2 We assume faults injected into a physical register will appear in architectural state

unless the register is idle or belongs to a mispeculated instruction. For the fetch queue, we allow

faults to corrupt instruction bits, including opcodes, register addresses, and immediate specifiers.

These faults manifest in architectural state as long as the injected instruction is not mispeculated.

Lastly, for the IQ, we model 6 fields per entry: instruction opcode, 3 register tags (2 source and 1

destination), an immediate specifier, and a PC value. Like the fetch queue, faults in the IQ appear

in architectural state for instructions that are not mispeculated. Corruptions to the IQ opcode and

immediate fields behave similarly to corresponding corruptions in the fetch queue. Corruptions

to the register tags alter instruction dependences, and corruptions to the PC value affect branch

target addresses.

When simulating in detailed mode, two issues affect the collection of checkpoints for subsequent

2For both the physical register file and issue queue, our simulator models separate integer and floating point

versions of the structures. However, when injecting faults, we distribute the faults uniformly across both versions as

if they formed a unified structure.
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Benchmark Input Exec Time Inter-Arrival Injects Regfile Fetch Issue

G.721-D clinton.pcm 77643471 7000.0 10467 483 581 1183
JPEG-D lena.ppm 44520776 7000.0 5950 542 4341 1483
MPEG-D mei16v2.m2v 40457756 7000.0 5423 713 434 803
LBP WebKB [15] 2175526139 1000000.0 2198 1317 946 589
SVM-L LIBSVM(a1a) [21] 53981768 7000.0 7225 1138 2327 1564
GA r16-0.1.in [17] 127490411 15000.0 8491 479 626 1352
164.gzip test 93396309 15000.0 6693 467 829 861
256.bzip2 train 732651712 250000.0 2941 264 1559 722
175.vpr test 800450837 250000.0 3177 968 166 330

Table 3. Detailed fault injection statistics for benchmarks used in our study. “Exec Time” reports the

execution time in cycles for each benchmark. “Inter-Arrival” repor ts the average time between fault in-

jections. “Injects” reports the total number of faults injected into the physical register file. The last 3

columns report the number of functional simulation runs for the ph ysical register file, fetch queue, and

issue queue, respectively.

functional simulation. First, not all fault injections require functional simulation to program com-

pletion. Some faults are masked by the microarchitecture, and do not propagate to architectural

state. Other faults cause the microarchitecture simulation to incur an exception or lockup. (We

rely on a watchdog timer to detect lockups). In these cases, we simply record the outcome, and skip

the functional simulation phase. Second, faults in the out-of-order portion of the processor pipeline

(i.e., the physical register file and issue queue) can manifest in architectural state in an imprecise

manner. For example, a corrupted register value may propagate to some instructions (those that

haven’t issued yet) but not to others (those that have already issued). Our detailed simulator

captures these out-of-order effects, and records them in the checkpoint. Then, when simulating the

initial instructions in functional mode (i.e., those that were in-flight at the time of the fault), we

propagate the injected fault to exactly the same instructions that were affected during out-of-order

simulation.

Table 3 presents detailed fault injection information for each of our benchmarks described in

Section 2. The column labeled “Input” specifies the input dataset used for each benchmark, and

the column labeled “Exec Time” reports each benchmark’s measured execution time in cycles on

our detailed out-of-order simulator. We inject faults only after program initialization, so “Exec

Time” does not include the benchmarks’ initialization phase. After program initialization, we

run each benchmark to completion in our detailed simulator, performing all fault injections and

checkpoints for a single hardware structure in the same run. We perform 3 such injection runs on

each benchmark to inject faults into the 3 hardware structures (physical register file, fetch queue,
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and issue queue). In each run, faults are randomly injected into a single hardware structure one

after another using a uniformly distributed inter-fault arrival time.

It is crucial to limit the total number of fault injections since each fault potentially requires

functional simulation to program completion. Our methodology limits the number of injected

faults in two ways. First, we choose program inputs that do not result in exceedingly long execution

times. Second, we set the inter-fault arrival time based on each benchmark’s execution time. We

use larger arrival times for longer-running benchmarks, thus reducing the number of injected faults

for benchmarks with longer execution times. The column labeled “Inter-Arrival” in Table 3 reports

the inter-fault arrival time used for each benchmark, while the column labeled “Injects” reports the

total number of injected faults for the physical register file. (The number of injected faults for the

other two hardware structures is very similar since they use the same inter-fault arrival time. More

specifically, the total number of injected faults is 52,555 for physical register file, 52,229 for fetch

buffer, and 51,421 for issue queue). Across all 3 hardware structures, our fault injection campaign

performs 156,205 fault injections.

4 Fault Susceptibility

Our first result is only a portion of fault injections manifest themselves in architectural state

because many faults are masked at the microarchitecture level. Microarchitecture-level masking

arises due to faults that attack idle hardware resources, or hardware resources occupied by mispec-

ulated instructions. The last three columns in Table 3 report the number of faults injected into the

physical register file, fetch queue, and issue queue, respectively, that become architecturally visible.

The percentage of effective faults can be computed as a fraction of the total injected faults (i.e., the

column labeled “Injects”). As a result, we find that the degree of masking at the microarchitecture

level varies considerably across different benchmarks and hardware structures. But on average,

only 17.3% of injected faults (27,067 out of 156,205) become architecturally visible, with the fetch

queue exhibiting the most fault sensitivity (22.6% visible) and the register file and issue queue

exhibiting less sensitivity (12.1% and 17.3% visible, respectively). Faults that are masked by the

microarchitecture produce correct program outputs under both architecture- and application-level

correctness.

Next, we examine the architecturally visible faults in more detail. Figure 1 breaks down the

outcome of all architecturally visible fault injections when they are simulated to program comple-
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Figure 1. Breakdown of program outcomes for architecturally vis ible fault injections.

tion. For each benchmark, we report the fault injections into the physical register file, fetch queue,

and issue queue separately in a group of 3 bars labeled “R,” “F,” and “I,” respectively. Each bar

contains 6 categories. The first category, labeled “Architecture,” indicates the program outputs

that pass architecture-level correctness (these outputs are also correct at the application level).

The next two categories, labeled “Application-High” and “Application-Good,” indicate the addi-

tional program outputs that are acceptable under application-level correctness only. The category

labeled “Incorrect” indicate outcomes that are incorrect under both architecture- and application-

level correctness. Finally, the last two categories indicate experiments that fail to complete during

functional simulation due to an exception or a hardware lockup (labeled “Crash”) or early program

exit with an error (labeled “Terminate”). The last 3 groups of bars in Figure 1 report the average

breakdowns for the multimedia, AI, and SPEC benchmarks, respectively.

Recall from Section 2.2 that application-level correctness reflects a user’s willingness to accept

degraded solution quality (as measured by fidelity metrics) in return for error resilience; hence,

application-level correctness is user dependent. In our experiments, the “Application-High” cat-

egory reflects program outputs that maintain very high fidelity with the original (no noticeable

solution quality degradation), while the “Application-Good” category reflects outputs with good

fidelity with the original (only slightly degraded solution quality). Quantitatively, we distinguish
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these categories in the following manner. For all of the fidelity metrics in Table 1 except PSNR, the

“Application-High” and “Application-Good” outputs are within 1% and 5%, respectively, of the

program outputs obtained via fault-free execution. For the PSNR metric, the “Application-High”

and “Application-Good” outputs are greater than 90dB and between 50dB and 90dB, respectively,

when compared to outputs from fault-free execution.

Looking at Figure 1, we see a large portion of architecturally visible faults lead to correct pro-

gram outputs under architecture-level correctness (i.e., the “Architecture” components). The last

3 groups of bars in Figure 1 show architecture-level correctness is achieved in 50.4% to 60.0% of

program outputs on average across the 3 hardware structures for the multimedia and SPEC bench-

marks, and in 61.0% to 68.8% on average for the AI benchmarks. Similar to microarchitecture-level

masking, many fault injections attack architectural state unnecessary for maintaining numerical in-

tegrity in our computations, and hence, become architecturally masked. In our benchmarks, the

primary source of architecture-level masking is logical and inequality instructions. These instruc-

tions seldomly change their output despite data corruptions to their input operands; thus, they are

highly resilient to our fault injections. Other (less significant) sources of architecture-level masking

include dynamically dead code, NOP instructions, and Y-branches [22]. Both microarchitecture-

and architecture-level masking have been previously observed by other fault susceptibility stud-

ies [3, 9, 22].

The remaining fault injections that are not masked at the microarchitecture or architecture levels

do not produce numerically correct program outputs. These fault outcomes have traditionally been

considered incorrect under architecture-level correctness. Across all benchmarks and all hardware

structures, 41.2% of architecturally visible fault injections on average are architecturally incorrect.

However, we find a significant portion of architecturally incorrect outcomes produce high-quality

solutions. This is particularly true for the multimedia and AI benchmarks, our soft computations.

As the first group of average bars in Figure 1 show, 55.0%, 54.8%, and 56.8% of architecturally

incorrect faults for multimedia benchmarks occurring in the physical register file, fetch queue,

and issue queue, respectively, produce program outputs with either high or good fidelity (i.e., the

“Application-High” or “Application-Good” components). As the second group of average bars

show, 40.4%, 33.8%, and 34.0% of architecturally incorrect faults for AI benchmarks occurring in

the same three hardware structures, respectively, produce high or good fidelity program outputs as

well. While these program outputs are incorrect numerically, they are completely acceptable from
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the user’s standpoint–i.e., they are correct at the application level. Overall, 45.8% of architecturally

incorrect faults in our soft computations achieve application-level correctness.

Looking at the per-application breakdowns for soft computations in Figure 1, we see in many

cases one half or more of the architecturally incorrect faults are correct under application-level

correctness. This result is fairly consistent across all benchmarks and hardware structures, demon-

strating the ability of soft program outputs to mask additional faults. One notable exception is GA

where very few additional faults are correct at the application level. As described in Section 2.1,

the heuristic search for a good thread schedule performed in GA is quite fault resilient. However,

upon closer examination, we found GA spends most of its time evaluating an objective function

that reflects the cost of a given thread schedule. Unfortunately, this objective function is not a soft

computation, thus reducing the benefits of application-level correctness.

In addition to soft computations, we find our SPEC benchmarks exhibit enhanced fault resilience

at the application level as well. As the last group of bars in Figure 1 shows, 26.2%, 15.5%, and

11.1% of architecturally incorrect faults for the SPEC benchmarks occurring in the physical register

file, fetch queue, and issue queue, respectively, produce program outputs with either high or good

fidelity. As mentioned in Section 2.1, gzip and bzip2’s program outputs are soft due to flexibility

in how datafiles can be compressed. Upon closer examination, we found certain faults cause these

compression algorithms to emit different output tokens compared to a fault-free execution. While

these output tokens do not achieve as high a compression ratio, they still correctly encode their

corresponding input tokens. Hence, a numerically different (slightly larger) compressed file is

created, but the exact original file can still be recovered via decompression. In vpr, as already

discussed in Section 2.1, the source of soft program outputs is multiple valid cell block placements.

Some of our fault injections cause vpr to produce these different cell block placements. Overall,

Figure 1 shows the SPEC benchmarks offer less additional fault resilience at the application level

compared to soft computations. However, we believe the fact that application-level correctness

provides any additional fault resilience in SPEC is a positive result given these benchmarks are

traditionally considered to be exact computations.

5 Fault Recovery

Section 4 demonstrates many architecturally incorrect faults are acceptable when evaluated at

the application level. However, even after considering application-level correctness, a large number
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of faults still lead to incorrect program outcomes–i.e., the “Incorrect,” “Crash,” and “Terminate”

components in Figure 1. Of these, by far the most significant contributor is the “Crash” component.

In all but three bars (the “R” and “F” bars for gzip, and the “R” bar for bzip2), the “Crash” com-

ponent dominates. Across all benchmarks and all hardware structures, crashes account for 80.8%

of faults on average that are incorrect at both the architecture and application levels. Techniques

that can address crashes will have a large impact on fault tolerance as fault rates increase in the

future.

Addressing crashes requires detecting the corresponding faults, and recovering from them. Since

crashes consist of exceptions and program lockups, detection is straight-forward: exceptions are

intercepted by the operating system while lockups can be flagged by a CPU watchdog timer. No

significant hardware support nor runtime overhead need be incurred for detection. Recovery, on

the other hand, can be more costly. Normally, recovery is performed via checkpoints. However,

checkpoints incur runtime overhead for copying, either at pre-determined checkpoint locations, or

upon first writes (e.g., copy-on-write schemes).

5.1 Lightweight Recovery Mechanism

Soft program outputs, which are responsible for the fault resilience improvements demonstrated

in Section 4, can also help reduce the cost of checkpoint recovery. While recovering all modified data

is necessary for architecture-level correctness, it is overly conservative for application-level correct-

ness because program outputs no longer need to be numerically perfect. To achieve application-level

correctness after a crash, we only need to checkpoint enough state to restart program execution;

state that only affects soft program outputs need not be checkpointed, thus reducing both check-

point size and runtime overhead.

The key question is how do we identify the state that requires checkpointing to achieve application-

level correctness? We have examined several program crashes, and found in most cases that pro-

gram restart can occur simply with a valid program counter (PC) plus the correct stack state at

the associated program control point. Hence, we developed a lightweight recovery mechanism that

periodically checkpoints the PC, architected register file, and program stack. Upon a crash, we

restart the program at the nearest checkpoint, rolling back its PC, register file, and stack only–we

do not touch the program text, static data, or heap during rollback. To determine when checkpoints

are taken, we identify the main controlling loops in our benchmarks, and instrument checkpointing
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Benchmark # Check Interval Size

G.721-D 261 1003622 826 (0.0133)
JPEG-D 59 503137 3034 (0.0033)
MPEG-D 45 2901005 388 (0.0009)
LBP 50 47197236 960 (0.0001)
SVM-L 430 404591 2208 (0.0019)
GA 300 1108510 15642 (0.0003)
164.gzip 252 964376 1368 (0.0004)
256.bzip2 1532 2015753 3722 (0.0004)
175.vpr 2995 505182 3980 (0.0174)

Table 4. Checkpoint statistics. The last 3 columns report the total number of checkpoints, average check-

point interval size (in instructions), and average checkpoint size ( in bytes), respectively.

at the top of each loop iteration. (In our benchmarks, these are the outer loops associated with

major program phases; they are not the inner loops).

Notice our lightweight recovery mechanism cannot successfully recover all crashes because it does

not guarantee all the state necessary for program restart gets checkpointed. A fail-safe version of

our mechanism would need to precisely identify the state associated with soft program outputs,

and only omit these data from checkpoints. While our current lightweight recovery mechanism

is not fail-safe, as the next section will show, it is very inexpensive, and enables recovery from a

significant number of crashes in many cases.

5.2 Recovery Results

We evaluate our lightweight recovery mechanism using the functional simulator from our two-

phase simulation methodology (see Section 3). First, we run checkpoint-instrumented versions of

our benchmarks on the functional simulator once to acquire all the checkpoints. Table 4 reports

statistics from these checkpoint runs. The columns labeled “# Check,” “Interval,” and “Size”

report the total number of checkpoints, the average number of instructions between checkpoints

(excluding instrumentation code), and the average checkpoint size, respectively. In parenthesis, we

also report the average checkpoint size as a fraction of the total program size. Because we only

checkpoint the PC, register file, and stack, our checkpoints are extremely lightweight. On average,

our checkpoints are roughly 3 Kbytes in size, with consecutive checkpoints separated by 400,000

instructions or more. Since we acquire our checkpoints on the functional simulator, we have not

measured the actual runtime cost of our checkpoints; however, we estimate a 1% runtime overhead

at worst.
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Figure 2. Breakdown of program outcomes for lightweight recover y of crashes.

After acquiring all the checkpoints, we perform recovery experiments. For every crash outcome

in Figure 1, we rollback to the nearest checkpoint, as described in Section 5.1, and restart execution

in our functional simulator. Then, we try to run the benchmark to completion, and assuming the

benchmark doesn’t crash again, we evaluate the program’s outputs under both architecture- and

application-level correctness, just as we did in Section 4. Figure 2 breaks down the outcome of

our recovery experiments. For each benchmark, we report the recovery outcome for crashes from

the physical register file, fetch queue, and issue queue fault injections separately in a group of 3

bars labeled “R,” “F,” and “I,” respectively. Each bar is broken down into the same categories as

Figure 1 minus the “Terminate” category (none of our recovery experiments end in early program

exit). The last 3 groups of bars in Figure 2 report the average breakdowns for the multimedia, AI,

and SPEC benchmarks, respectively.

Looking at Figure 2, we see a number of recoveries lead to correct program outputs even under

architecture-level correctness (i.e., the “Architecture” components). The 3 groups of average bars

in Figure 2 show architecture-level correctness is achieved in 3.8% to 17.7% of recoveries on average

for the multimedia and AI benchmarks, and in 21.5% to 30.8% of recoveries on average for the

SPEC benchmarks. In these cases, there are no corruptions to uncheckpointed state between the

rollback checkpoint and the crash; hence, lightweight recovery allows program completion with
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numerically perfect outputs. This result shows lightweight recovery can address a modest number

of crashes even when strict numerical correctness is necessary.

However, Figure 2 also shows that under application-level correctness, a significant number of

additional crashes can be recovered (i.e., the “Application-High” and “Application-Good” com-

ponents), especially for soft computations. The first 2 groups of average bars in Figure 2 show

application-level correctness permits an additional 34.8% to 73.8% of recoveries on average to be

correct for the multimedia and AI benchmarks. Averaged across all hardware structures, an addi-

tional 52.6% of recoveries are correct under application-level correctness for the soft computations.

G.721-D, LBP, and GA respond particularly well to lightweight recovery, with as many as 90% of

crash recoveries achieving application-level correctness. In combination with numerically correct

recoveries, these additional application-level correct recoveries allow 66.3% of all crashes on average

to complete with acceptable results for soft computations. Furthermore, when combined with the

results from Figure 1, our lightweight recovery mechanism allows 92.4% of all architecturally visible

fault injections to complete with correct outputs at either the architecture or application level for

soft computations.

While lightweight recovery performs well for soft computations, the results are not as good for

the SPEC benchmarks. Looking at the last group of bars in Figure 2, we see application-level

correctness provides at most an additional 2.5% correct outputs on top of the numerically correct

recoveries. This lower rate of recovery is due to the fewer soft program outputs allowed by SPEC

programs compared to soft computations. Overall, however, Figure 2 illustrates the ability of soft

program outputs to enable a large number of user-acceptable recoveries even when checkpointing a

small amount of program state. The benefit is greatest for applications that permit a large number

of valid program outputs (i.e., soft computations).

6 Related Work

Our work is related to the significant body of prior research on characterizing soft error suscep-

tibility. Several researchers have injected faults into detailed CPU models to investigate soft error

effects. Saggese et al [23] inject faults into a DLX-like embedded processor; Wang et al. [19] inject

faults into a CPU similar to the Alpha 21264 or AMD Athlon; Kim and Somani [18] inject faults

into Sun’s picoJava-II; and Czeck and Siewiorek [24] inject faults into an IBM RT PC processor.

All of these fault susceptibility studies use gate- or RTL-level models, and inject faults into the

18



entire CPU. In contrast, our study uses a high-level architecture model, and focuses fault injections

on the register file, fetch queue, and issue queue only.

Full-CPU fault injection studies demonstrate many faults do not lead to incorrect program ex-

ecution; instead, they are masked and never become visible to software. Several researchers have

studied various sources of fault masking. Shivakumar et al [1] study masking at the circuit level.

They develop an electrical and latching-window masking model, and predict the impact these circuit

effects have on soft error rates. Kim et al [25] study logical masking. They propose “Susceptibility

Tables” for logic gates that model the probability a soft error will propagate through a combi-

national logic block. Mukherjee et al [3] identify microarchitecture-level masking (mispeculated

instructions, predictor structure bits, and microarchitecturally idle bits) as well as architecture-

level masking (NOP instructions, performance-enhancing instructions, dynamically dead code, and

logically masked instructions). Wang et al [22] observe certain conditional branch outcomes can be

wrong without affecting program correctness, another form of architecture-level masking.

The main difference between our work and all previous studies on soft error susceptibility is

the definition of correctness used to judge soft error impact. Previous work requires architectural

state to be numerically correct for program execution to be correct; in contrast, our work only

requires program outputs to be acceptable to the user. By evaluating correctness at a higher level

of abstraction, we measure the additional soft errors that can lead to acceptable program outputs.

Like fault masking, our notion of application-level correctness is a form of “fault derating” since

it permits certain faults to be tolerable. Instead of derating via fault masking which hides faults

from the user, we study the faults that are exposed to the user, but are derated nonetheless due to

the user’s willingness to accept some degraded solution quality.

In addition to soft error susceptibility, several researchers have also studied soft computations.

Breuer [26, 27] recognizes multimedia workloads can tolerate errors, and proposes exploiting this

error resilience to address manufacturing defects. Application-level correctness is similar to Breuer’s

notion of “error tolerance” (ET) [27], which allows chips that produce numerically incorrect results

to be correct as long as their results are acceptable to the user. The main difference is Breuer

exploits ET to tolerate hardware defects for higher chip yield, whereas we exploit application-level

correctness to tolerate soft errors on functionally correct hardware. Another difference is while

Breuer eludes to the importance of capturing “degree of acceptability,” we quantify this notion by

providing fidelity metrics to directly measure user satisfaction.
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Other soft computing research includes Liu et al [28] which observes certain image processing

and tracking algorithms are inexact, and exploits this to improve task schedulability in real-time

systems. Palem [29, 30] exploits probabilistic algorithms to build randomized circuits that are

extremely energy efficient. Lastly, Alvarez and Valero [31] exploit the resilience to precision loss

exhibited by multimedia applications to develop novel value reuse and energy reduction techniques

for floating point operations. Compared to these previous studies, we exploit soft computations for

reliability rather than real-time scheduling, energy, or performance.

7 Conclusion

In traditional fault tolerance research, program correctness requires execution to be numerically

perfect at the architecture level. However, many programs can appear to execute correctly from the

user or application’s standpoint, even though execution is not 100% numerically correct. This paper

explores definitions of program correctness that view correctness from the application’s standpoint

rather than the architecture’s standpoint. Under application-level correctness, a program’s execu-

tion is deemed correct as long as the result it produces is acceptable to the user. In other words,

correctness depends on the user’s interpretation of a program’s numerical result, not the numerical

result itself. To quantify user satisfaction, we rely on application-level fidelity metrics that capture

program solution quality as perceived by the user.

We conduct a detailed fault susceptibility study whose goal is to quantify how much more fault

resilient programs are at the application level compared to the architecture level. Our conclusion

from this study is that a significant number of faults that were previously thought to cause erro-

neous execution are in fact completely acceptable to the user, especially for programs that produce

qualitative results–e.g., soft computations. Across 6 multimedia and AI benchmarks, we find 45.8%

of fault injections that lead to architecturally incorrect execution are correct under application-level

correctness. For SPEC programs, the increased fault resilience at the application level is lower–only

17.6% of architecturally incorrect faults injected into 3 SPECInt CPU2000 benchmarks produce

acceptable results at the application level. This result demonstrates the degree to which programs

are more fault resilient under application-level correctness is application dependent; however, we

find many programs (including all the ones studied in this paper) exhibit some additional fault

resilience at the application level.

In addition to studying fault susceptibility, we also present a lightweight fault recovery mech-
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anism that exploits the relaxed requirements on numerical integrity provided by application-level

correctness to reduce checkpoint cost. After a program crash, our technique only recovers the PC,

architected register file, and program stack–we do not restore program text, static data, or heap

during recovery rollback–allowing our checkpoints to be very small (only 3 Kbytes on average). Al-

though our lightweight recovery mechanism is not guaranteed to be fail-safe, it successfully recovers

66.3% of program crashes in our multimedia and AI workloads. For SPECInt CPU2000, we can

only recover 23.3% to 34.3% of crashes, of which only 2.5% represent additional recoveries allowed

by application-level correctness. This lower recovery rate is due to the fewer soft program outputs

permitted by SPEC programs compared to soft computations.
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