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Magnetic levitation technology is rapidly evolving, yet its applications to mag-

netic stabilization, or using magnetic levitation to stabilize a floating object,

have not been fully explored. The goal of our research was to modify current

magnetic levitation technology and create a proof-of-concept that paves the

way for future research that more specifically explores the real-world applica-

tions of magnetic stabilization such as wind turbines. As such, our research was

primarily focused on developing a system that could stabilize a levitating mag-

net using inductors. We accomplished this using data we gathered on several

permanent magnets to ensure proper inductor calibration. We then developed

code for a microcontroller with a real-time operating system to interface with

the system’s circuit components. We formulated the microcontroller’s code by

adapting a general control algorithm to make micro-adjustments to the cur-

rent provided to our inductors. Our code used the real-time data gathered by

a PCB Hall-effect sensor array to make the necessary adjustments to achieve
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stabilization and levitation. Our findings and methods for code development

show encouraging results and suggest that further improvements to the de-

sign and calibration of our system should be explored in order to refine our

proof-of-concept for specific applications.
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Chapter 1

Introduction

Various systems, ranging in size from lab equipment to buildings, require crit-

ical components to remain static despite outside forces or moving internal

parts in order to ensure their safety and increase their lifespan. Most cur-

rent designs rely on strong foundations, springs, and dampers to achieve this

static stability. However, these common systems lack a feedback loop. This

omission prevents the systems from adapting to their respective environments,

rendering the designs ineffective or inadequate under dynamic conditions.

We hypothesized that magnets could prove a viable solution to this prob-

lem, as electromagnets can create magnetic fields of varying strength. In order

to assess the feasibility of this project, we reviewed current literature on mag-

netic levitation and stabilization technologies. Our initial research indicated

that, based on the success of several simple systems, a device with real-time

feedback from environmental factors could be used to create a stabilized mag-

netic levitation system by using permanent magnets and electromagnets in

conjunction with a microcontroller to counter the inherent properties of mag-

nets and gravity.
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From this hypothesis, we designed a system that can measure the interac-

tion between the base and the levitated magnet’s field using Hall effect sen-

sors and use that information to determine where in 3-D space the levitated

object is relative to the base. The signals from the Hall sensors are in the

form of a voltage measured in micorvolts, which correspond to the magnetic

field strengths in each of the three Cartesian directions, giving the location

in 3-D space of the levitating magnet. Using the measured location, the mi-

crocontroller then determines the necessary adjustments in position relative

to the center to force the object back to the stable, central location. The mi-

crocontroller will then output a voltage, which is converted to a current using

transistors, to one or more of the four individual inductors in order to stabilize

the levitated puck magnet. The four inductors output magnetic fields propor-

tional to the input current, meaning higher currents will result in stronger

forces acting on the stabilized object. This process operates in real time on a

40Hz update cycle, chosen based on the control algorithm and style of coding,

to continually adjust the magnetic field being output, assuring the stability of

the levitated magnet.

In order to understand the challenges we would face in the design of our

device, we analyzed the circuit of an existing simple, electric-powered, mag-

netic levitation system. The goal of this research was to understand how the

device, that levitated a small magnet above a base of electromagnets, worked

and potentially reverse engineer it, replacing hardware parts with a micro-

controller to implement user control. Afterdetermining that the information

we were collecting was not useful in generating a control algorithm, we de-
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cided to gather data on the puck and ring magnets used by the previously

mentioned existing system by scanning the magnets and mapping the fields in

order to understand how the shapes of these magnets affect the shape of their

respective magnetic fields. We then confirmed the scalability of our project by

replicating the magnetic fields of these magnets using Finite Element Meth-

ods Magnetic software. We were able to verify the data gathered from the

scans of our magnets through the computer modeling process, enabling us to

more fully understand the order of magnitude of the magnetic field that our

inductors have to be able to generate in order to do their job and assist with

levitation. In order to do achieve levitation, we built and calibrated inductors

to meet the required specifications of our chosen magnets. The inductors were

then tested in three different circuits, testing whether or not our circuits were

capable of outputting variable magnetic fields. We then developed a control

algorithm based on the interaction of our magnetic components to be able

to anticipate how the levitated magnet would act as well as how the system

had to respond to keep the magnet levitating. The control algorithm was then

used to write the code for the microcontroller to implement the control process

to our prototype. The code was designed to adjust the current output to all

four separate solenoids based on the magnetic field data from the Hall effect

sensors. For future experiments, the code we wrote can be adapted to more

complex mechanisms or scaled up for larger applications.

The research presented herein explores a novel method in developing a

stabilization system using both permanent magnets and electromagnets in

combination with a feedback loop to allow for real-time control of a levitating
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object in space. Our research goal was to gather information and further

calibrate and optimize the system in order to establish the limitations and

benefits of this method of stabilization.
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Chapter 2

Literature Review

2.1 Overview

Stabilization is an important aspect of structural and mechanical design. Sta-

bility is required for a table to remain standing or a car to function properly.

Levitation is a key component in near-frictionless systems. Friction is caused

by the contact between two surfaces, which can be eliminated through levi-

tation. We combined these concepts to create a machine capable of actively

levitating and stabilizing a magnetic object. The wealth of knowledge avail-

able in literature that pertains to control theory, circuits, and magnetic fields

was explored and consolidated to design a functioning prototype. The follow-

ing literature review provides the background information necessary for the

design and implementation of our magnetic levitation system.
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2.2 Magnets

2.2.1 Fundamental Concepts

Magnetic fields are produced by the movement of electric charges. In metals,

elements that readily form positive ions (cations) and have metallic bonds,

charges are unconstrained and may move freely in any direction. A random

motion of charges produces competing effects, and there is no macroscopic

magnetic field. Electrons in a permanent magnet, however, are aligned to a

common axis of rotation, producing a net magnetic field [62]. Atomic orbitals

are normally occupied by a pair of electrons having opposite quantum me-

chanical spins, but, in a permanent magnet, there are orbitals containing only

one electron. Unpaired electrons that spin in the same direction contribute to

an overall magnetic field.

A permanent magnet is a ferromagnetic material, like iron, that has been

exposed to a sufficiently strong external magnetic field. The material then

retains a constant field of its own even after the external field is removed.

Other classes of magnetism include paramagnetic materials, whose electrons

temporarily align themselves to form a magnetic field in the same direction

as an applied magnetic force, and diamagnetic materials, which temporarily

form a field in the opposite direction of an applied magnetic force [22].

When a ferromagnetic material is placed within an external magnetic field

of strength H, the electrons within the material align with that of the external

field, provided the material is below a certain temperature known as the Curie

point [69]. In turn, the magnetic moments of the electrons produce a new
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magnetic field, denoted by the magnetization M. As long as the external

field remains, the ferromagnet will remain at maximum strength and add to

the overall magnetic force. However, even after the external field is removed,

the ferromagnet retains some of its own magnetic field, denoted by the total

magnetic field, B [69].

This phenomenon is known as hysteresis (see Figure 2.1). The relationship

between B, H, and M of a permanent magnet is given by the equation

M =
B

µ0

−H (2.1)

where µ0 is the magnetic permeability of a vacuum [69]. The property where

a ferromagnet maintains its residual magnetic field after being removed from

an external field is called its retentivity. Up to a saturation point, a stronger

applied field yields a greater residual magnetic field. However, after surpassing

this saturation point, the residual field can no longer increase and the ferro-

magnet has reached its peak strength. Removing the ferromagnet’s residual

magnetic field requires that a secondary external field be applied in the op-

posite direction of the original field. The strength required to eliminate the

residual field depends on the ferromagnet’s coercivity [62]. Coercivity is a

magnetic material’s ability to resist changes in its magnetic properties, i.e.

the ferromagnet’s ability to retain a magnetic field without the original source

of magnetism.

The practical uses of a magnet depends on its coercivity [62]. For ex-

ample, magnetically “soft” materials (low coercivity) are often used in trans-
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Figure 2.1: A qualitative hysteresis plot for a ferromagnetic material. Points c
and f represent the same concept as well as points b and e; adapted from [60].

former cores and to amplify the field strength of electromagnets. On the other

hand, magnetically “hard” materials (high coercivity), such as neodymium-

iron-boron (NdFeB) magnets, are commonly used as permanent magnets.

2.2.2 Magnetic Dipoles

Most permanent magnets can be well approximated as magnetic dipoles as

long as the magnets are separated by a significant distance. Dipoles can be

envisioned as microscopic spheres with one side having a negative magnetic

charge and the other side having a positive magnetic charge. This makes them

relatively easy to describe mathematically [22]. The magnetic field of a dipole

is given as

Bdip =
µ0

4πr3
[3(m · r̂)r̂ −m] (2.2)
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or in spherical coordinates as

Bdip =
µ0m

4πr3
[2 cos θr̂ + sin θθ̂] (2.3)

where m is the magnetic dipole moment vector, µ0 is the magnetic perme-

ability constant, r is radial distance from the surface of the magnet, and θ

is the polar angle. This equation can be used in modeling magnetic systems

and approximating the interactions between magnets, which is important for

creating a control algorithm for a system using magnets.

The behavior of a magnetic dipole is well defined by a series of defining

equations other than the basic equation that defines the magnetic field. The

force on a magnetic dipole due to the field B [22] is given as

F = ∇(m ·B). (2.4)

The torque on a magnetic dipole [22] is given by

τ = m×B. (2.5)

Again, these equations are important in modeling the interactions between

magnets, which is useful when attepmting to rite a control algorithm for a

magnetic system. Permanent magnets can also be modeled as two plates

of magnetic charge, called poles. Similar to electric charges, opposite poles

attract one another and like poles repel one another[69]. However, the inter-

action between the magnetic poles is more mathematically complex than that
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of electric charges, which introduces more difficulties when attempting to use

magnetic forces for levitation or other applications. Approximating perma-

nent magnets as magnetic dipoles significantly simplifies calculations of the

dynamics of the magnets.

2.2.3 Earnshaw’s Theorem

Creating the phenomenon of magnetic levitation is possible, but difficult to

achieve due to the inherent properties of magnets. Simply positioning two

magnets so that the like poles repel and opposes the force of gravity is not

enough to keep the magnet afloat forever. In order to keep the magnet from

flipping over and attracting to the magnet below it, a secondary motion is

needed to keep the forces acting on the body in equilibrium. Different schemes

will have varying effectiveness in achieving this goal, but some methods can

be mathematically proven impossible. One such proof, formulated by Samuel

Earnshaw in the 19th century, illustrates the inability of electromagnetic forces

to stabilize a charged object [16].

Earnshaw’s Theorem, in its most general form, may be stated as “no

charged body can be in stable static equilibrium under the influence of electric

forces alone” [37]. This is demonstrated by considering a point, p, at which

the net electromagnetic force is zero, so that

∂V

∂x
=
∂V

∂y
=
∂V

∂z
= 0 (2.6)

where V is the electromagnetic potential [16]. However, the fact that electro-
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magnetic forces diminish by an inverse-square law requires that

∇2 V =
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= 0 (2.7)

hold at p as well [16, 37]. If p is a point of stability, all three second derivatives

above are positive, which contradicts Eq. 2.7. Instead, at least one derivative

must be negative, which makes p a saddle point and, therefore, unstable.

Although Earnshaw’s Theorem is commonly applied to electromagnetic

systems, the mathematical derivation is the same for any inverse-square force

field and can be generalized to any power law [11, 37]. Thus, it would seem

that equilibrium ought to be difficult to achieve. However, this result refers

only to static bodies so one may avoid the limitations described in Earnshaw’s

Theorem if the system in question is dynamic in some way. This is accom-

plished by introducing angular motion, or some other form of oscillation, which

allows for stable equilibrium at the price of introducing time dependence [11].

2.3 Spin-Stabilized Magnetic Levitation

In spite of Earnshaw’s conclusions, magnetic levitation is readily achieved by

circumventing the phenomena described in the theorem. Spin-stabilized mag-

netic levitation (SSML) is a phenomenon by which a ring magnet’s magnetic

field (called the base field) can suspend a spinning magnetic object in levita-

tion [18]. Although a statically levitated object would be prone to tip over

and fall from the desired levitation point, a rotating object resists changes to

its angular momentum and orientation. Thus, such an object can remain fixed
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at a critical point in the magnetic field because its resistance to changing its

orientation mitigates its tendency to become dislodged from the saddle point.

As it rotates, the levitated object’s spin axis, which is tilted, will precess

about the local magnetic field. For an angular velocity ω, the corresponding

precession frequency is

ωp = −µ ·B
||L||

= −µ ·B
Iω

(2.8)

where L is the angular momentum of the levitated object, µ is its magnetic

dipole moment, B is the local magnetic flux density, and I is levitated object’s

rotational inertia [83]. Higher precession frequencies allow the levitating ob-

ject to align its spin axis to that of the base field quickly. Thus, due to the

inverse relationship between ω and ωp, higher angular velocities prevent the

axis alignment. It can be shown that the maximum possible angular velocity

for an object with mass m and effective radius r is approximately

ωmax =
1

gr2

(
µ ·B
m

)3/2

(2.9)

where g is acceleration due to gravity [83]. If Itr is the transverse rotational

inertia of the levitated object, the minimum angular velocity required for sta-

bility is

ωmin =
2

r

√
Itr
I

µ ·B
m

(2.10)

The ratio of the levitated object’s two principle moments of inertia is an

important parameter for the system. Satisfying ωmin < ω < ωmax is a nontriv-
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ial task, since the prerequisite condition ωmin < ωmax is not trivial [83]. By

combining Eqs. 2.9 and 2.10, we see that stable levitation is possible only if

ωmax

ωmin

=
µ ·B
2mgr

√
I

Itr
≥ 1 (2.11)

or, equivalently,

I

Itr
≥
(2mgr

µ ·B

)2
(2.12)

Even when Eq. 2.12 is satisfied, however, only a specific range of angular

velocities results in system stability. In order to sustain SSML indefinitely, the

system must maintain the levitated object’s rotation between the lower and

upper limits of Eqs. 2.9 and 2.10, usually by applying a force to counteract

friction or drag.

2.4 Dynamic Magnetic Stabilization

Currently, several methods exist to stabilize a system utilizing levitating mag-

nets. Like any other object in three-dimensional space, such a system possesses

three translational and three rotational degrees of freedom [10]. According to

Earnshaw’s Theorem, a system comprised solely of static permanent magnets

cannot achieve stable levitation, therefore an external force is needed to pro-

vide stability [16]. Such a force may serve either to dampen vibrations caused

by the system or to return a displaced levitated object to equilibrium.

Many damping methods used for mechanical systems are also effective for

magnetic levitation. Dashpots can mitigate the effects of vibrations in various

13



systems by harnessing the friction within viscous fluids in order to displace

a system’s kinetic energy [67]. Consequently, dashpots in the form of tuned

mass dampers (TMDs) are widely used in various large structures to ensure

that earthquakes and other geological disturbances cause minimal damage [92].

The optimal damping coefficient, copt, for a TMD in a floor-damper model (see

Figure 2.2) is given by

copt =

√
2m1k2

1 +m1/m2

(2.13)

where m1 and m2 are the masses of the damper and floor, respectively, and k2

is the floor spring stiffness [73, 93]. Despite their effectiveness, the use of vis-

cous liquids is prone to leaks and expensive maintenance [92]. However, eddy

current damping can be used in tandem with tuned mass dampers, which offers

the advantage of lower maintenance costs without sacrificing performance.

Figure 2.2: A schematic of a floor-damper model TMD; adapted from [93].

In specific configurations, electromagnets can also be effective dampers

[68]. Circuits that incorporate electromagnets can be tuned to counteract
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vibratory motion, which, in turn, enables them to respond to translational and

rotational motion and return a levitating object to equilibrium. This makes it

possible with certain configurations of circuit components and electromagnets

to precisely control the movement of the stabilized object, leading to more

control over the system.

2.5 Existing Examples of Magnetic Levitation

2.5.1 Levitron

The Levitron™ is a magnetically levitating top, marketed as a toy, which

demonstrates that a rotating object can achieve equilibrium in a static mag-

netic field as long as the magnetic force between the top and its base can

counteract gravity and the top’s angular momentum maintains its axis of ro-

tation (see Figure 2.3).

This system depends solely on the interaction between a permanent ring

magnet and a small puck magnet, leading to certain drawbacks inherent to

the system. The top must be perfectly balanced in order to remain stably

levitating. Any imperfections in this balance can cause the top to wobble

and fail to maintain levitation [35]. Additionally, because the system is set in

motion by mechanically imparting angular momentum to the top, there is no

way to provide further energy to it after the initial spin, and air drag causes

it to fall within minutes. There is also a low limit to the weight of a top that

can be supported by the base magnet since the Levitron™ uses a weak magnet

in it’s base.

The Levitron Revolution™ is a more advanced system that relies on dy-
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Figure 2.3: A schematic of the Levitron™ system; adapted from [35]. The top
in this image is similar to the puck in the system discussed in this paper.

namic magnetic stabilization [11, 13]. It utilizes time varying electromagnetic

solenoids alongside a permanent ring magnet to circumvent the effects of Earn-

shaw’s theorem and levitate a permanent-magnet puck. This device depends

on a powered analog circuit that uses Hall effect sensors to create a feedback

loop, which keeps the puck levitating [13].

During operation of the Levitron Revolution™, magnetic field measure-

ments from an array of Hall effect sensors determine the location of the puck

magnet. Based on the puck’s location, the circuit directs an appropriate

amount of current through the solenoids to adjust the magnetic field of the

base and keep the puck centered and stable [13]. Operating the solenoids at a

duty cycle allows the system to impart force on the puck. At a high enough

frequency, this counteracts the puck magnet’s tendency to flip over and attract

to the magnet in the base [13].
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One benefit of this system is its greater weight capacity compared to SSML.

The added strength from the solenoids allows even a small system to support

approximately half of a kilogram, which is two orders of magnitude greater

than what the original Levitron™ can lift. Additionally, the puck can levitate

for as long as the system receives power, as the solenoids continually exert

force to counteract gravity and energy is not lost due to air resistance. Lastly,

the dynamic system does not require a precisely symmetrical orientation of

the puck magnet in order to function [8].

One drawback to a dynamic magnetic stabilization system is its external

power requirement. Furthermore, being purely analog, the system is self-

contained and does not permit external inputs to the controller. However,

this system is sufficiently reliable and a suitable basic design for dynamic mag-

netic levitation on a small scale. For this reason, we have chosen to base our

prototype design on improving the Levitron Revolution™ concept for further

applications by converting it to a digital system that allows external input.

2.5.2 Magnetic Bearings

Magnetic bearings are designed to stabilize machines that rotate at high veloc-

ities. They consist of a shell, set around a rotor, which uses repulsive magnetic

forces to restrict the freedom of the rotor to axial rotation with no pitch or

yaw [45]. In order to achieve an equilibrium of magnetic forces and suspend

the rotor without physical contact, most magnetic bearings implement ac-

tive electromagnetic systems that determine the distance between rotor and

bearing, adjusting the strength of the magnetic field accordingly [38]. Some
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magnetic bearings instead use passive systems of superconducting magnets,

which exhibit zero electrical resistance and divert magnetic field lines below

a material-dependent critical temperature [4, 61]. Since there is no contact

between moving parts, friction is eliminated from the system [38]. Magnetic

bearings can support rotational speeds on the order of 104 rpm.

2.5.3 Photolithography

Another potential application of magnetic stabilization is for ultra-precision

control of a specific stage or platform. This has immediate possibilities in

semiconductor fabrication, as precision is critical for forming such features as

channels only 14nm wide. Though this appears to be a viable technology

worth developing [5, 96, 97], there is little impetus to develop it because there

is only a niche area where a system this complex would be needed to replace

what already exists. Hypothetically, there would be gains over piezoelectric

actuation (the current method of precision movements of a stage), but the

current technology is pervasive and widely accepted with almost all of the

complications understood due to the amount of time that it has been in use.

Magnetic control of a stage could bring us closer to Ångström levels of

precision, but the unique part of a magnetically levitated system is that its

range would be on the order millimeters, as opposed to the current standard,

which is limited to tens of micrometers [96]. Further, with a magnetically

levitated system, the need for lubrication or mechanical linkage is entirely

eliminated [97]. This prevents cascading between degrees of freedom and in-

terdependent tolerance stack up [49]. Through the use of magnetic levitation,
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these processes can be improved until prototypes can be mass produced with

consistency, resulting in a means of achieving precise, six degree-of-freedom

control.

2.6 Possible Applications of Magnetic Stabilization

2.6.1 Shock Absorption and Earthquake Protection

The subject of vibration mitigation in mechanical structures has received con-

siderable interest due to its importance in engineering applications. There are

three major categories of vibration control systems: active, semi-active, and

passive. Passive systems achieve stabilization by means built into the system,

without consuming external energy. However, once implemented, the mechan-

ical properties of a passive system cannot be changed. Semi-active systems

require a small amount of external power (less than 1 kW) in order to func-

tion, and active systems require a significant amount of power to function (at

least 1 kW) [81, 86].

Linear tuned-mass dampers are a form of active control system that rely

on a mass, spring, and damping mechanism to dissipate vibrational energy as

heat [6]. The difficulty associated with using them is the amount of precision

required, which necessitates constant fine tuning for the system to properly

function. Another method, known as a nonlinear energy sink, adapts to the

primary frequency of the vibrating system and relies on vanishing linear stiff-

ness; a nonlinear restoring force works irreversibly to absorb the vibrational

energy [6]. However, it is only possible to transfer specific quantized amounts

of energy by this technique. Therefore, there is a limited achievable precision
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because sufficiently small deviations will be uncorrectable.

A passive magnetic vibration absorber (PMVA) is a more recent application

that uses only magnetic forces to mitigate vibrations. It can tune a vibrating

system’s linear and nonlinear stiffness via repulsive magnets and a series of

correcting magnets located off its main axis. Furthermore, the system can

be tuned to achieve different operational frequencies, which allows PMVAs to

function in a variety of vibratory environments and makes them particularly

desirable as an effective means of shock absorption [6].

Many theoretical and experimental research efforts have focused on imple-

menting semi-active systems [81, 86]. One such system involves the use of

a magnetorheological damper (MRD) installed with K-type braces, as seen

in Figure 2.4 [84]. Low-power electric circuits continuously vary the mag-

netic field intensity in an MRD, which allows for rapid and reliable operation.

Semi-active systems offer a balance between precision and energy requirements,

which we have chosen for our design.

2.6.2 Centrifuges

Centrifuges are one of the many possible applications of our project. These

common lab devices are used to rotate objects at high velocity. The friction

caused by extended periods of rotation causes rotors to deteriorate over time

and ultimately causes mechanical failure. Centrifuge failure from this damage

is often expensive and sometimes extremely dangerous [27]. If paired with an

effective method of imparting rotation, our magnetic levitation system has the

potential to remove friction entirely from the centrifuge mechanism. By mag-
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Figure 2.4: A diagram of a K-type brace, useful in dampening motion; adapted
from [9].

netically levitating the rotor, it could be made to spin as quickly as necessary,

as it would not be in physical contact with any surfaces. This would eliminate

the damage caused by friction and also improve overall efficiency.

2.6.3 Wind Turbines

Another application of our project is power generation by vertically oriented

electromagnetic generators, such as wind turbines. Electric generators with

magnetically levitating rotors have the advantage of performing all energy

transfer through a magnetic interaction between components rather than through

mechanical energy transfer. This allows them to circumvent energy losses due

to friction, mechanical wear, and material fatigue. Consequently, the rotors

are able to operate more efficiently, last longer, and run with a lower rotational

inertia and therefore take advantage of lower energy inputs. Wind turbines

have a slow and constant rate of rotation and can be oriented to take ad-
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vantage of magnetic levitation. More specifically, turbines can use a vertical

orientation to take advantage of magnetic levitation and transfer energy with-

out mechanical losses due to friction, or the wear of a mechanical rotor. These

new turbines also would be able to take advantage of lower wind speeds than

traditional wind turbines. In terms of their design, their levitating rotor would

have a magnet which is rotating inside of a coil of copper wires and in that

way generate electric power. There have already been many propositions for

“maglev” wind turbines that use magnetic levitation to replace traditional

ball bearings and gain the advantages described above. One proposition by

Abbascia et al. describes such a design [1]. Their idea is to replace bearings

with permanent magnets to levitate a rotor which can be spun by wind and

produce electricity. They also add the use of additional technology called a

single-ended primary inductor converter (SEPIC) that can regulate the vary-

ing voltage from the turbine to produce a steady DC output. Thus we can see

the applications of stabilized magnetic levitation to wind turbines.

2.7 Solenoids

2.7.1 Fundamental Concepts

The basis for control in a dynamically levitating system is the feedback loop

created by an electromagnet circuit in the base. An essential part of this dy-

namic levitation is the integration of solenoids into the base circuit. Solenoids

and other inductors are, by definition, passive two-terminal electrical compo-

nents that resist changes in current [15]. Solenoids create a magnetic field by

running an electric current in a circle around a core, usually made of a ferric
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material. This alters the magnetic alignment of the electrons within the core’s

atoms (see Figure 2.5).

Figure 2.5: The current in a solenoid induces a magnetic field; adapted from
[13].

Faraday’s law of induction describes this phenomenon. A change in the

magnetic flux, ΦB, passing through a solenoid creates an electromotive force

(EMF), ε, in the coil, and the magnitude of this force is equal to the rate at

which magnetic flux changes [44, 47]. Additionally, Lenz’s Law states that

any current induced in this manner will itself induce a magnetic field that

counteracts the original change in magnetic flux. In a coil of N loops, the

induced EMF is additive, and it is possible to summarize the above information

in a single equation:

ε = −N dΦB

dt
(2.14)

The behavior of a solenoid depends on multiple design factors, including

number of turns, length of coil, core material, and cross-sectional area. A
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solenoid’s inductance, L is defined as the ratio between the magnetic flux pro-

duced in the coil and the current that generates the flux [44]. In mathematical

terms, a solenoid with N turns of wire, length `, and cross-sectional area Ac

has an inductance of

Lsol =
ΦB

I
=
N2µAc

`
(2.15)

where µ is the magnetic permeability of the core material [47]. In paramagnetic

and diamagnetic materials, µ ≈ µ0, so the vacuum permeability is typically

used as an approximation when this is the case [62]. Ferromagnetic materials,

however, possess permeability values as high as 106 times greater than that of

vacuum, so they are usually represented by a relative permeability µr = µ/µ0

[63].

Solenoids are classified based on their length and uniformity. A solenoid is

called infinite if its length is sufficiently larger than its diameter; otherwise, it

is finite. Independently, a solenoid may be formed by individual coils (discrete)

or a cylindrical sheet of conductive metal (continuous) [15]. Solenoids may also

be designated by the material present within their core. In this project, we

are utilizing ferromagnetic core inductors.

2.7.2 Eddy Currents

Eddy currents, otherwise known as Foucault currents, are a byproduct of Fara-

day’s law that function in a similar manner to solenoids [19]. Eddy currents

flow in closed loops within conductors, perpendicular to the magnetic field

and can be induced within nearby stationary conductors by a time-varying

magnetic field created by a transformer or alternating current (AC) electro-
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magnet. Lenz’s law also applies to eddy currents [19]. By the properties of

this law, an eddy current creates a magnetic field that opposes the field that

created it, allowing it to react back onto the source of the external magnetic

field. This can be viewed as a sort of magnetic inertia, as the electrons resist

the movement by the magnetic field by imposing their own counteractive field.

This reaction can either interfere with the main purpose of the magnetic field

or be utilized as a stopping mechanism because eddy currents are a source of

energy loss. The loss of energy due to eddy currents is experienced through

the production of heat, which can damage circuit components if not monitored

properly.

2.7.3 Induction Motors

Induction motors consist of two primary components: an external stator and

an internal rotor [44]. Along the stator, several pairs of electromagnets are

placed opposite one another and spaced equidistantly surrounding the rotor.

These pairs of electromagnets are supplied with alternating currents in an out-

of-phase manner, which creates a rotating magnetic field dipole. The magnetic

fields induce current in wire coils attached to the rotor, which in turn create

their own magnetic field. Due to interactions between the rotating dipole and

the induced magnetic field, the rotor is forced to rotate. Because of this, the

device creates torque and acts as a motor [44]. We initially considered creating

a hybrid machine of an induction motor and our base levitation system to

create something analogous to a frictionless motor. However, we chose to

work first on the levitation aspect. Later, the team moved to do more work
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with levitation rather than braiding in the implementation of a system that

already exists and is fully functional.

2.8 Circuits

Hall effect sensors are circuit components that measure the voltage difference

across an electrical conductor in order to determine magnetic field strength.

Hall effect sensors are composed of a Hall effect transducer, which creates

a Hall voltage in the circuit, and other circuit parts that add a bias [70].

This bias is used to fine-tune the Hall voltage of the sensor to give a precise

measurement of the magnetic field. This is simply demonstrated in Figure 2.6

as obtaining a voltage difference from a plate that has become polarized by a

nearby magnetic field.

Figure 2.6: A simplified representation of Hall effect sensor operation; adapted
from [64].

In order to locate our object in three dimensional space we chose to use a
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three-dimensional triangulation system. By having three distinct fixed points

of references, which is where the Hall effect sensors would be located, the

team is able to collect magnetic field information in each of the three planes

of standard Cartesian space, i.e. the xy, xz, and yz planes. The information

gained will then be sent via our designed circuit to the microcontroller and

put through our control algorithm to precisely determine the location of the

magnet. This process is simplified when we assume that our system has not

yet failed because then the levitated object can only exist within a certain

area. This assumption that the object lies within the vertical projection of the

ring magnet and is above the base eliminates one of the two possible solutions

for our unbiased tri-axis sensors.

A microcontroller is a computer that has been scaled down to a single

integrated circuit [39]. This system is used in place of an ordinary computer for

convenience and easy access to input and output (I/O) ports. Microcontrollers

are capable of outputting various digital signals, which can be converted into

analog by an analog-to-digital converter (ADC). Implementing ADCs allows

a microcontroller to interact with analog circuits.

2.9 Finite Element Method

When describing physical systems in the language of mathematics, a wide

range of behaviors can be modeled by differential equations [85]. However, the

majority of differential equations are nonlinear, inhomogeneous, or otherwise

difficult to solve analytically. Various numerical schemes have been developed

in order to approximate solutions to particular classes of ordinary and partial
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differential equations. Finite Element Analysis (FEA) is one such numerical

approach that finds applications in stress analysis, heat transfer, and electro-

magnetics [50]. The Finite Element Method (FEM) is typically applied to

differential equations when the domain of interest possesses an irregular shape

[85].

2.9.1 Theory and Procedure

This section will give an explanation of various mathematical concepts and

tools that will be useful for the reader to better understand the approach to

theory our team worked with, particularly regarding mathematical represen-

tations of boundary interactions and solving differential equations.

Before solving a differential equation by FEA, it is necessary to choose

nodes based on an arbitrarily set standards by the team within the interior

and on the boundary of the domain of interest [50]. These nodes are connected

so as to partition the domain into “elements,” which Figure 2.7 demonstrates.

When analyzing a two-dimensional domain, elements are usually taken to be

triangular or quadrilateral; for functions of one variable, elements are intervals

of the form xi < x < xi+1 [50].

The premise of FEA is that, by dividing the domain of interest into small

pieces, one can approximate the solution to a differential equation by analyzing

a simpler version of the problem [85]. Consider, for example, an analogous
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Figure 2.7: Triangular finite element mesh of a region in the shape of Mas-
sachusetts; from [55].

boundary value problem given by

−u′′(x) = f(x)

u(a) = u(b) = 0

 (2.16)

where f is a known function [23]. It can be shown that a solution to Eq. 2.16,

u(x), also fulfills the condition

∫ b

a

u′(x) v′(x) dx =

∫ b

a

f(x) v(x) dx (2.17)

for all functions v(x) ∈ V [a,b]
D , that is, functions having a piecewise continuous

derivative and v(a) = v(b) = 0 [23].

V
[a,b]
D is an infinite set, which makes it impossible to individually verify Eq.

2.17 for every function that it contains. Therefore, the first set of equations

is simplified by considering only a subspace of V
[a,b]
D and approximating the
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solution as a linear combination of basis functions [23, 85]. That is, for a set of

N basis functions, {vi(x)}, there are constants {ξi} such that the approximate

solution is given [85] by

UN(x) = ξ1v1(x) + · · ·+ ξNvN(x) (2.18)

The form of these basis functions depends on the desired level of approx-

imation, but the simplest and most common choice is to use linear “tent”

functions, as seen in Figure 2.8 [2]. Each tent function corresponds to one

node and is defined such that it equals one on its respective node and zero at

all others [2, 85]. By this definition, it follows that UN(xj) = ξj if xj is the

coordinate of node j [23].

Figure 2.8: Three tent functions on the interval [0, 1] and the linear combina-
tion f(x) := 3φ1(x) + 4φ2(x) + 4φ3(x). Higher-dimensional tent functions are
constructed analogously.
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The goal of the FEM is thus to determine the values of the coefficients ξi.

Combining Eqs. (2.17) and (2.18) yields [85] the following linear system

∫ b

a

[
N∑
i=1

ξiv
′
i(x)

]
v′j(x) dx =

∫ b

a

f(x) vj(x) dx (2.19)

N∑
i=1

ξi

(∫ b

a

v′i(x) v′j(x) dx

)
=

∫ b

a

f(x) vj(x) dx (2.20)

N∑
i=1

mijξi = fj (2.21)

where Eq. 2.21 defines the terms mij and fj to equal the expressions in Eq.

2.20 that they replace. This may be expressed in matrix notation as

Mξ = f (2.22)

in which M , called the stiffness matrix, is sparse (or filled with mostly values

of zero) and tridiagonal (non zero elements are located on the main diagonal

of the matrix, and 1 diagonal above and below that previously stated set of

data) in the one-dimensional case [85].

Solving for the entries of ξ allows one to construct an approximation of

u(x). As Figure 2.9 demonstrates, even fairly coarse meshes yield qualitatively

accurate solutions, which improve further as the element size is reduced. The

procedure as a whole is the same for any number of independent variables:

integrate the differential equation, approximate the solution as a linear com-

bination of basis functions, and solve the resulting matrix equation for {ξi}

[50].
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Figure 2.9: A comparison of analytical and FEM solutions to Eq. 2.16. Even
with only N = 3 nodes, FEM produces a representation of the equations that
maps the curve to an arbitrarily significant degree.

2.9.2 Applications of FEM

Initially designed by engineers in the 1940s, FEA is a software solution to rep-

resent various physical systems [50]. Furthermore, the FEM’s utility is aug-

mented by its ability to handle irregularly shaped domains, which are more

difficult or less efficient when solved by a grid-based method [85]. FEA is typ-

ically used to solve problems in mechanical fields, such as stress and vibration,

though it is also common in transport phenomena and gaining prevalence in

bio-engineering settings [50].

In addition to those fields mentioned above, the FEM is suited for electro-

magnetic calculations. However, despite the fact that two-dimensional (2D)

FEA is commonly used for addressing electrical systems and has proved effec-

tive at representing them, more complicated three-dimensional (3D) problems
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have proven more difficult to produce with accuracy and are more computa-

tionally demanding [58, 59].

When modeling electromagnetic fields, one must take care to choose a

finite element model that is designed for the behavior of the phenomena it

describes. For example, certain modeling functions are incapable of predicting

continuous fluxes where material properties change [58]. As a result, these

models are inadequate for inhomogeneous media [58].

Further challenges are encountered when analyzing the behavior of electrically-

powered devices, especially those that generate motion of some kind [59, 78].

Even in the absence of macroscopic motion, 3D systems may be underspeci-

fied in some cases, such as the “magnetizing current” method, where one must

assume current density to be equal in all directions in order to eliminate ex-

tra degrees of freedom [59]. Although various methods exist to calculate the

displacement, forces, and torques in such systems, mesh size and time step

impose nontrivial effects on the stability and accuracy of solutions [78].

2.9.3 Software

Given the utility of FEA, there exists a plethora of software programs designed

to implement the FEM to solve various differential equations. Such programs

are usually specialized in order to handle a few specific types of problems.

“Finite Element Method Magnetics (FEMM),” for example, is designed for

two-dimensional and axisymmetric problems in electrostatics, magnetics, cur-

rent flow, and heat transfer [55, 56]. The software uses linear basis functions on

triangular elements and can handle a variety of common boundary conditions
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[55].

When finding solutions, FEMM uses an approach where the differential

equations are simplified by defining new quantities and applying known math-

ematical and physical laws [55]. For example, magnetostatic problems are

governed by the following relationships:

∇×H = J (2.23)

∇ ·B = 0 (2.24)

µH = B (2.25)

where H, B, and µ are magnetic field intensity, flux density, and permeability,

respectively, and J is current density [55]. If a magnetic vector potential, A is

defined such that ∇×A = B, then Eqs. 2.23 through 2.25 reduce to

∇×

(
1

µ
∇×A

)
= J (2.26)

which FEMM solves for A and computes B [55].

2.10 Summary

The existing literature on magnetic stabilization has shown this technology’s

potential utility in various applications. We determined that a proof-of-concept

that showcased applicability of this technology would be the best way to con-

tribute to the expansion of this field. The clearest way to accomplish this is

to create a machine with adjustable parameters involving the position of the
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levitating payload that could be fine-tuned to a variety of applications. The

user-specified parameters in our system would enable us to investigate the

applicability we believed the technology to have by implementing it in minor

versions of the systems we deemed it would be applicable to. The adjustable

parameters would benefit a variety of magnetic-stabilization systems, so we

aimed for a system design that would have the widest applicability. The best

way to implement modifiable parameters in a proof-of-concept was to have the

entire system controlled by a microcontroller. These parameters would change

constants in a control algorithm tailored to our system. The parameters could

be determined through the magnetic field analysis with FEMM software. We

theorized that we could use our analyses of a variety of magnets to show how

effectively our system and would work with other magnet configurations. This

would ensure that the system was adaptive enough to be used in large-scale ap-

plications like building stabilization, and smaller applications like centrifuges,

which are approximated by increasing the strength and the size of the magnets

and showing their interactions in a similar FEA model to the ones discussed

in this paper.
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Chapter 3

Methodology

3.1 Overview

Based on the information gathered from our literature review, we designed a

series of experiments to gather data on a microcontroller-based magnetic levi-

tation device and began designing and building components of our system. As

the first step, we defined our necessary parameters, such as what we levitation

and stability. Our initial approaches included investigating an established lev-

itating system and studying the circuit used by that system, in the hope that

we would be able to derive a system of equations that we could implement in

our code. We also studied and mapped magnetic fields for the ring and puck

magnets. We designed and created solenoids to fit our magnetic force require-

ments and our dimensional requirements. We then designed several circuits

incorporating the solenoids into our system. Lastly, we created a control algo-

rithm based on known constants such as ring magnet field strength, shape, and

ideal puck magnet position. The team also implemented this algorithm into

code. Our processes relating to each of these activities are described below.
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3.2 Research Questions and Planned Experimental Design

3.2.1 Properties of Levitation

Can we achieve stable levitation? In order to qualitatively evaluate our

prototype, levitation was defined as the ability of the system to counteract

the force of gravity on the puck magnet without physical contact. Whether

this can be achieved for a specific system depends solely on the puck and ring

magnet combination, not on the control algorithm. Failure to levitate would

imply that the magnets are too weak to counteract the force of gravity on the

puck.

In order to test if levitation can occur for a given puck and ring magnet

pair, we first placed the ring magnet on the table. Then, the tester held the

puck in the palm of their hand and slowly lowered the puck magnet towards

the ring magnet. If the puck magnet feels weightless, that indicates the puck

and ring magnet combination is capable of levitation. Although this point

seems trivial, it is important to ensure that our magnet pair can generate a

sufficient force in opposition to gravity before continuing experimentation.

Stable levitation is defined as the capability of the system to suspend the

puck magnet in the air for a significant period of time—as defined in the

subsequent section—without noticeable lateral movement. In other words,

does the puck magnet stay centered? To ensure that the puck magnet stays in

its optimal position, a test rig was designed, utilizing four lasers and four light

sensors. This test would be performed with the four lasers arranged in a 2x2

grid, where the center box of the grid represents the “zone of levitation.” The
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puck would be placed in the center of the grid, and if the puck magnet moved in

the xy-plane, it would break the laser beam, blocking the light from the sensor.

When the light is blocked, the senser will indicate the exact moment that the

puck magnet deviates from the zone and how many times this happens. A

small deviation in the position does not guarantee that the magnet will fall,

so those instances can be ignored or the dimensions of the zone of levitation

can be altered.

For how long can we sustain levitation? Our test for stable levitation

was meant to determine the effectiveness of the control system utilized in the

design. Before running this test, we needed to define what would be considered

a “significant period of time,” a “noticeable rotation,” and a “noticeable lateral

translation.” For our purposes, we set values of 10 seconds, 1◦ of rotation, and

0.5 cm from the axis of symmetry, respectively, subject to change after further

analysis and experimentation.

When running our test for stable levitation, we would start by assembling

the control system with the ring magnet in place and checking that the mi-

croprocessor was outputting to the data logging system. Then we would place

the puck over the ring magnet and release it to begin the levitation. Next,

we would record the amount of time the puck levitates and note any unusual

behavior for the puck. We would consider the puck to have stably levitated

if it remained levitating for more than 10 seconds. To ensure precise mea-

surements, when the puck is dropped, a stopwatch would be started. Force

sensors would be set on the surface of the magnetic base to detect when the
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puck moved towards the base and when it made contact with the base or

ground. Once the sensors detect contact being made, the timer would stop.

Due to the high probability of the puck making contact with the magnetic

base, most of the force sensors would be placed on the base itself. The ob-

jective was to make the puck levitate as long as the magnetic base is turned

on. After the experiment, we would analyze the angle and translation data to

ensure that those requirements were satisfied as well.

3.2.2 Additions to Basic System

Can we implement user-defined displacement? Currently-existing mag-

netic stabilization systems, while successful in maintaining an object in place,

do not offer any additional control mechanisms. A microcontroller-based sys-

tem offers the potential to allow user-specified translation and rotation of a

levitated object by overlaying a series of signals in addition to the base control

algorithm. Such signals could alter the magnetic force exerted on the levi-

tated object so as to cause it to move as desired. Knowing that we want to

impart a magnetic force to displace the puck magnet, we would determine how

much current needs to flow through the solenoids. Once we have established

that, we would calculate the corresponding signals that need to be sent to the

microcontroller to achieve that goal.

What is the maximum recoverable deviation in puck position or

angle? An ideally stable puck will levitate parallel to the ring magnet and

above its center. However, real systems must compensate for disturbances
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in puck position and orientation. These operations require knowledge of the

maximum angle with the base from which the puck can recover (see Figure 3.1).

Furthermore, the stability limit with respect to translational deviations must

also be considered. This experiment would be carried out by adjusting the

puck angle, tilting manually with respect to the base, and observing whether

or not it can recover, filming the entire process in the plane of the levitating

puck. By gradually increasing the magnitude, we would find the limits of

recoverable angles. The angles would be measured by recording the vertical

displacement of the puck’s edge and using trigonometry.

Figure 3.1: The puck magnet displaced at an angle θ from a horizontal orien-
tation.

Can a wall of stators be implemented? Manipulation of a levitated

object may be extended to further functionality. A ring of solenoids placed

around the device at levitation height can alter the local magnetic field and im-

part rotational inertia to the levitated object. Thus, such a stator wall around

the device causes the system to behave like an asynchronous motor, provided

that the additional forces do not interfere with levitation. If a levitated ob-

ject can be made to rotate by this method, the properties of such levitation
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(maximum angular velocity and torque ranges) are important in judging the

usefulness of the system.

3.2.3 Optimization

What is the most effective sensory system? There are a few ways to

measure the height of the puck. The first option involves using a capacitive

sensor that can measure the distance of conductive objects from it. The sen-

sor would be oriented at the base of our device pointing up toward the load.

We would then use a computer to gather data from the sensor. The second

method involves using a photoelectric (laser) sensor to measure the height.

Like the capacitive sensor, this sensor would be oriented so that it faces up-

wards towards the load. The data received from the sensor would be used

by a micro-controller to determine the height of the puck. The final possi-

ble method would be to use hall effect sensors. Hall effect sensors measure

the strength of the magnetic field surrounding them. We would measure the

change in field strength from adding the puck to the system to determine the

height of the puck. For our purposes, we decided to go with the photoelectric

sensor set up.

How much power is required to operate the system? An important

aspect of any powered electronic system is the energy required to keep the

system running. In order to test the various states at which our system will

exist, we must repeat our tests for 3 main states. These states are passive (no

puck present), natural corrective (stabilizing puck with no extraneous forces),
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and forced incorrect position (puck held at a point that is not inherently

stable). In addition to this information, if we intend to overlay other signals,

we must measure the power consumption in these states.

Power is defined as energy divided by time and is measured in Watts. In

our experiment, we would consider power in two ways: the power through the

inductors and the total power of the entire apparatus. Three distinct experi-

ments, each with two sets of data collection, are required with an additional

collection of data that is independent of what state the system is in for signal

overlay.

For each state, both a voltmeter and ammeter must be included in line

with the main power for the inductors and the power source from the wall in

order to capture total consumption. For each case, we would generate a graph

of both variables and multiply each point together, taking a 5-point weighted

average to smooth noise. For the offset case, we would need to construct an

apparatus to hold the puck in a set displaced position; an easy way to do this

is to modify our dropping system to an off centered point. For the other two

states, all that is required is a system that levitates. If these tests go smoothly,

we may be able to expand to a fourth set of tests for an input of a destabilizing

impulse and see the power spike associated with a specific force.

Will heating of components pose operational difficulties? Solenoids

are susceptible to temperature changes due to the currents traveling through

low resistance wiring. This necessitates investigation into both temperature

dependent properties (Ohmic resistance) and burnout. Burnout is defined
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to be an operating temperature at or above 100° C. All heat generated is

assumed to be Joule heating. Temperatures would be measured in degrees

Celsius and would be taken in each of the four states previously tested in power

consumption. We would compare data collected to the theoretical values of

heating found with current and the resistance of the coils.

In order to collect data, we would bond a thermistor to each coil and

excite the system to the four states listed above. The various temperatures

produced over time would be recorded and graphed, and we would cease the

experiment when the system reaches steady state. We would prematurely end

the experiment if it appears that the system is approaching burnout, as we

do not intend to test until failure. This test, in combination with our power

tests, can be used to observe the effect of temperature change vs. resistance.

The thermistors provide a plot of temperature at all points, and our power

measurements (voltage and current) would allow us to solve for resistance,

yielding a resistance vs. temperature plot characteristic curve.

What is the maximum supportable weight? Two possible techniques

were considered for this test. The first possible method is continuously adding

weight in small intervals before lowering the puck into its stable levitation

point. An alternative possibility involves writing an input in our algorithm

that calls the weight and modifies the starting field output in order to have

the puck levitate at the ideal height. In this experiment, ”weight” refers to

the gravitational force acting on the mass we would be levitating. Our goal

is to determine how much mass we can levitate before the gravitational force
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becomes stronger than the opposing magnetic force. If we use the physical

test, we would weigh the puck to get a baseline payload. Then we would stack

weights on top of the puck until the puck and payload is unable to levitate. If

we want to be more exact, we could mathematically characterize the repelling

forces of the puck, the ring magnet, and the solenoids in the vertical direction.

At that point, we would find the maximum and minimum restorable force as

well as the maximum downward force that can be counterbalanced.

For the computational test, we would write in a function that modifies

the magnetic field strength based on a weight input. This test would proceed

through trial and error until the desired levitation height could be achieved

with any given weight below the maximum. If a weight could not achieve the

desired levitation height regardless of the output from the electromagnets, it

would be considered above the maximum supportable weight. Additionally,

we could also run some computer simulations with the FEMM software in

order to simulate the interactions of the magnetic fields of the puck and ring

magnets. For practicality purposes, we decided upon the physical test.

3.2.4 Applicability

Does it work for any system of magnets? Reproducibility is a crucial

element of any research project. In order for researchers to further investigate

the product, a detailed record of the creation of the code, algorithms, and

physical mechanisms for the specific system must be kept. This will help with

the implementation of different magnets in the design, which is necessary for

the advancement of the product. This could be tested theoretically using a
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series of control algorithms and the specific data applying to different magnets.

The information could then be verified using physical experiments.

What safety concerns are important? Whenever a product is being

built, user safety is a major point of emphasis. The greatest risk faced with the

levitation of a magnet would be an extremity being caught in between the puck

and ring magnet in the event of instability. To measure the potential damage,

we could conduct a test utilizing a force sensor, then let the system fail by

allowing the puck magnet to fall onto the sensor. The sensor would calculate

how much force the magnet potentially imparts on a finger. If this force is

sufficient to cause notable harm, a warning should be printed on the device to

keep all appendages away from the base while the machine is in use. Another

risk is the effect that the large magnets have on pacemakers and other medical

devices [77]. These devices begin to falter in the presence of approximately

0.5 mT of magnetic field. Being in close proximity to our magnets can result

in experiencing magnetic fields greater than 0.5 mT. Therefore, knowledge of

the force as it decays over distance is needed in order to determine the level

of protection required when operating our product.

3.3 Magnet Mapping

Before constructing our device, we mapped the magnetic field of our magnets

in order to better understand the resulting system. We used a LakeShore

magnetic field sensor to sweep a Hall effect sensor within a 2D plane at a series

of fixed heights above the magnet to determine the magnetic field strength
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and shape (Figure 3.2). The exact heights were not chosen for the sake of

the values themselves, but rather with the intention of observing the shape

of the magnetic fields over a range of hieghts. We postulated that any series

of heights a sufficient distance apart (we used 0.25 in) would provide us with

enough data enough data to characterize field evoluion with disance from the

magnet. Thus, we obtained precise maps of the ring and puck magnets’ fields

(see Apendex) at multiple relative positions and insight into the decay of the

magnetic fields with distance. [76].

Figure 3.2: Experimental setup used to scan the magnetic field of the puck
magnet with a movable Hall effect sensor [76].

We scanned the background magnetic field at the levitation height of 0.7in

to characterize its effects on our measurements (Figure 3.3) and calibrated

the LakeShore equipment by measuring ten replicates at each of eight points

relative to the puck magnet. We applied a linear fit to these data, which we

used to convert dimensionless Hall effect sensor readings to measurements of
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magnetic field strength [76].

Figure 3.3: Surface plot of the background magnetic. The background is
slanting in the positive direction, indicating that the background magnetic is
systematically stronger in that direction. This asymmetry in the background
field may explain breakdowns of cylindrical symmetry in the data from the
scans of the puck and ring magnets.

We measured the ring magnet’s axial field at points 0.15, 0.56, 0.78, and

1.07 in. above its top face. Axial field scans for the puck magnet were taken

at 0.28, 0.52, 0.75, and 0.96 in. To obtain the radial field, the puck magnet

was placed on its side (see Figure 3.4). Then, we performed 2D scans of the
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magnetic field at constant height at a starting distance of approximately 0.25

in. These scans were performed at heights of 0.75, 0.93, 1.36, and 1.74 in.

We hoped that these scans would provide us with the decay of the puck’s ra-

dial field vs distance. However, the approximately 0.25 in. starting distance

from the puck was found to differ between scans, which meant we were un-

able to extract meaningful data from these scans. To have more consistent

radial magnetic field measurements, we would need a better means of securing

the puck and controlling the starting position of the scanner. All distance

measurements were obtained with an electronic calipers and are subject to an

uncertainty of ±0.05 in., and the uncertainty in the magnetic field strength

was found to be negligible by comparison. The ±0.05 in. uncertainty in the

distance measurements was obtained by attempting to measure the distance

between the magnet and the probe multiple times and taking the standard

deviation.

3.4 Circuit Mapping

3.4.1 Existing Analog Circuit Analysis

While researching current systems of levitation and stabilization, we identified

the Levitron Revolution as a simple example of what our system hoped to

accomplish. In order to better understand the example and possibly gain some

insight into what we wanted our system to emulate, we tried to reverse engineer

the system and study the circuit components of the Levitron and how they

interact with each other. However, we were not able to gain any significant

information while doing this exercise, and learned that a reverse-engineering
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Figure 3.4: Experimental setup used to scan the magnetic field of the puck
magnet with a movable Hall effect sensor [76].

or mapping effort is an ineffective way of translating a circuit to code. While

we were able to see the major circuit components, we were unable to see how

the circuit performed at a more precise level. However, we were successful in

grasping the big concepts and what the circuit needed to do, but not exactly

how to do it. These concepts were two analog op amps were controled by an

analog switch, amplification of signal with the banks of transistors, thermal

safety fuse, and the use of solenoids.

3.4.2 Design of Dynamic Circuit Prototype

We transitioned to a focusing on designing a circuit tailored to our needs.

Members of the team designed two circuits that could cause the inductors to

emit magnetic fields. The first circuit utilized a NPN Darlington pair. We

49



chose to use a Darlington pair because our selected microcontroller outputs

10-40 mA, but our solenoids require a current on the order of an Ampere. It

should be noted that there are two kinds of Darlington pairs, one with two

NPN bipolar junction transistors (BJT) and one with two PNP BJT’s. We

chose to use NPN because it requires a small positive bias current to flow

to the base. Whereas PNP requires negative current flowing from the base

to ground. Based on the equipment available to the team, it was easier to

utilize a NPN Darlington pair. The second circuit integrated a metal-oxide

semiconductor field-effect transistor (MOSFET). The MOSFET accomplishes

the same things as the Darlington pair circuit, but it is safer to use because

regulating voltages are safer than currents. The MOSFET also has a faster

response fate.

NPN Darlington Circuit

Below is the standard circuit diagram of the NPN Darlington circuit that the

team used.

Figure 3.5: Darlington pair circuit used to test the initial setup and read from
Hall sensors.

The team built this circuit and tested it by introducing another mag-
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netic object in the presence of the inductor and measuring the current flowing

through the inductor. The NPN Darlington pair that the team used was man-

ufactured by ON Semiconductor and is called a Darlington Transistor 10A,

80V Bipolar Power NPN [66]. The data sheet is provided in Appendix D.

Figure 3.6: The first physical iteration of our circuit design.

The team ran simple pulse width modulating code on the microcontroller,

which is depicted as the box labeled “TI” in Figure 3.6. This code results

in a varying voltage from the microcontroller. That varying voltage value

in turn results in a varying current flowing through the inductorp via pulse

width modulation. The team confirmed that the current flowing through the

inductor was varying using a constant voltage source. The team knew that

this circuit succeeded in emitting a magnetic field from the inductors because

the magnetic object was attracted to the inductor.
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MOSFET Circuit

The team designed and built the circuit shown in figure 3.7 to test the viability

of a MOSFET utilizing circuit. The MOSFET that the team implemented is

an N-channel power MOSFET. The specification sheet for this MOSFET is in

the bibliography [31, 66].

Figure 3.7: Diagram for an N -channel MOSFET circuit.

Once the circuit was built, the team ran a test identical to the one used

for the NPN Darlington pair circuit to see which circuit would result in a

higher magnetic force output. The results were also successful in this case, ie

the MOSFET circuit output . The current flowing through the inductor was

varying and the magnetic object was attracted to the inductor, confirming

that there is a magnetic field being emitted from the inductor.

3.5 Prototyping

3.5.1 Prototype Overview

The aluminum case was fabricated using three slabs of aluminum. The base

slab was left untouched while the other two slabs were cut with a hole saw and
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metal cutting circular saw. A Tungsten Inert Gas (TIG) welder was used to

combine the three pieces into one. Four small squares of aluminum were also

cut and welded to the bottom of the case in order to raise the magnet and

allow the passage of wires. Four small holes were also drilled into the center

of the case. The magnet was placed in the case and the four solenoids were

placed in the middle of the magnet. A section of the solenoids were fitted into

the small holes that were drilled in the center for stability purposes. The cross

was made using three pieces of printed circuit board (PCB) cut and arranged

as shown in Figure 3.9. Hall effect sensors were soldered on the PCB board

and the structure was placed in the middle of solenoids, so that each solenoid

was separated from the others.

Figure 3.8: A photo that displays the placement of the ring magnet, solenoids,
and PCB.
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3.5.2 Solenoid Fabrication

Required Materials

In order to have the electromagnets that we needed for levitation meet all of

the implied pre-requisite requirements for our research questions, we decided

that custom fabrication of the solenoids was required. Most of the materials

needed for this process are readily available in a typical machine shop. The

only unique items needed were the custom built Electromagnet Maker Machine

(created by Martin Nelson of Quince Orchard High School) and magnet wire.

Magnet wire is enameled wire is a copper or aluminum wire coated with a very

thin layer of insulation. The core sizes were selected to be 0.64 cm diameter

by 3.8 cm long, the maximum possible size for 4 cores to fit in the center of

the void of our ring magnet (4.45 cm in diameter). This size was selected

to maximize inductance, directly proportional to diameter of electromagnet,

while still allowing four solenoids to fit within the center of the ring magnet.

We chose to use 4 solenoids for the multifaceted symmetrical properties.

Table 3.1: A list of the materials used to fabricate each solenoid.

Item Quantity
Electromagnet Maker Machine (EMM) One (1)

Power Drill One (1)
24-Guage Magnet Wire Ten (10) meters per EM

Pliers One (1) Pair
Screw Cores (1/4” by 1.5”) One (1) per EM

Washers (1/2”) Two (2) per EM
Nuts (1/4”) Two (2) per EM

Lock-Washers (1/4”) One (1) per EM
Masking Tape 9 cm
Wire Cutters One (1) Pair
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Procedure

To fabricate the solenoids, we first took the screw that we needed to make

an electromagnet (EM) and tape was then wrapped around the screw until

the threads were entirely covered to prevent the threads from digging into

the magnet wire and potentially altering the wrapping process or breaking

through the insulating coating. We then slid a washer onto the screw until it

bumped up against the head of the screw. A nut was placed, then lock-washer,

then nut on the screw. The nuts were tightened against each other in order to

lock the lock-washer, preventing unexpected movements while wrapping. The

screw was loaded into the bit tip of the EM and the magnet wire extended an

excess of 6 in. (15.24 cm) past the screw.

Next, we tied a knot around one end of the taped area (between the wash-

ers) and attempted to wind the screw by hand. If the wire wasn’t wrapping,

we tightened the knot at the top with pliers, taking care not to scratch off the

protective coating. We trimmed all but 3-4 in. (7.62-10.16 cm) of the excess

wire off and then bent it along the axis of shaft rotation. The power drill was

loaded onto the machine and the bit tip fastened around the drive shaft. We

made sure the drill was in the forwards setting and then slowly eased the drill

on because the slower and with more care the rotations are done, the neater

and more powerful the EM will be. We assisted this feed with our hands, even

though the machine automatically guides the wire, for a higher quality.

At the end of pass down the length of the core, we paid extra attention

to the wrapping process when the magnet wire started to double back on

itself because the process was most likely to derail here. This process was
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repeated for each layer to achieve desired amount of wraps, 9 layers of 30

wraps. This desired amount was determined by the fact that the solenoid was

limited in size by the interior diameter of the ring magnet. For our purposes,

we could not exceed a diameter of 0.6 inches (1.52 cm), so we used the washer

to determine when the number of wraps reached the maximum diameter. We

then stopped the drill and pulled the magnet wire tight if it was not already

and then clipped the EM from the spool with at least 6 in. (15.24 cm) of

excess wire on the EM and knotted the two ends around each other as this

made it less likely that either lead fatigues and breaks off due to repeated

bending before installation. An optional step is to further insulate the EM’s

by placing shrink tubing around them and heating them in order to hold all

of the wiring in place, which we elected not to do for our prototype. This

procedure was derived from prior experience of a team member.

The finished product was a set of four solendoid all wrapped 1 inch (2.54

cm) high and 0.6 inches (1.52 cm) wide. Each layer of wrapping was approxi-

mately 29± 2 coils. There were nine layers laid on each electromagnet. There

is variation in thickness due to imperfect hand wrapping but overall they are

approximately the width of the washers.

3.5.3 Protective Case

In designing the protective case, measurements of the ring magnet were first

taken to determine the necessary size of the case. With the measurements,

a CAD file of the prototype (Appendix D) was created to visualize the pro-

tective case. The case was fabricated using aluminum because it is a durable
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non-ferromagnetic material and would have negligible impact on the magnetic

field of the ring magnet. In the fabrication process, three 12.7 cm square, 2.54

cm thick sections were cut from a bulk of aluminum. The bottom of the three

section was left as is and acted as the base of the case. The middle and top sec-

tions had a hole slightly larger than the ring magnet drilled through the center

of them to house the ring magnet. The middle section had a segment removed

on one of the sides leading into the hole to allow for the passage of wires. Four

1.25cm aluminum cubes were fabricated to attach to the bottom section and

raise the ring magnet to allow for the passage of wires from underneath. The

sections were tested to make sure that the magnet had no horizontal move-

ment within the case and that the aluminum was flush with the magnet. The

bottom and middle segments were welded together along with the four raisers

while the top section was left whole to allow for easy access to the magnet and

the components within. Four holes were drilled through the center of the case

to rigidly secure the solenoids. The case was topped off with a piece of foam

in order to protect the puck magnet from slamming into the base in the event

that accidents occurred.

3.5.4 Hall Effect Sensor Array

We started building the prototype by creating an array for the Hall effect

sensors from two pieces of printed circuit board (PCB), based off of a similar

model name the Levitron [35]. The array was assembled by cutting the PCB

into three pieces and arranging them so that they formed an XYZ coordinate

system. The PCB was then bonded together using standard Gorilla Glue
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and three Hall sensors attached using soldering paste, one in each direction of

measurement (Figure 3.9). We used a soldering iron to connect the three pins

of the Hall effect sensor to precut holes in the PCB. Wires were fed through

the holes in the board and soldered in place, creating permanent connections

for the pins.

Figure 3.9: The circuit board on which the Hall effect sensors were mounted
for measuring magnetic field strength.

We tested the Hall effect sensors by connecting them to an Arduino and

analyzing the output of the serial monitor. We ensured that the readings

varied in the presence of different magnetic fields by placing several different

magnets next to the Hall probes and observing the changes in readings from

the Arduino. In order to test the magnetic field strength of our electromagnets,

we powered the electromagnets using the external power source. The external

power source was set to output a constant 6 V to the electromagnet, with

an LED in parallel to indicate when the electromagnet was receiving power.

To determine the electromagnet’s effect on the magnetic field of the system
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(ring and puck already in place), we used the Hall effect sensor to measure

the magnetic field first with only the puck magnet, and then with the puck

magnet while the electromagnets were turned on.

After building this most basic prototype, it was clear that the PCB was

not the optimal way to meet our needs because the Hall sensor leads physically

did not line up with the standard spacing on the PCB. We therefore deter-

mined that we needed to etch our own circuit board instead. This method is

more complicated, but much more exacting because it is a customized, unique

design, generated explicitly for our project rather than a standard component.

We designed the circuit to be printed using a program called Eagle, then

planned to use that as the blueprint for our new array, but did not complete

this process. (The following is how we would have completed the process.) We

printed out the circuit and overlay it on a piece of copper-coated board and

coated the parts we needed to stay with a protective layer to adhere them.

Then, the whole board would be dipped into a solution to finalize the circuit

board. To finish the array, holes would be cut in the board to fit the circuit

components like the Hall sensors, and the components soldered in place.

3.6 Control Theory

3.6.1 Modeling the System

In order to develop our control algorithm we began by modling the movement

of the puck magnet using the following equation of motion (EOM)

d2r

dt2
=

FM + FS

m
(3.1)
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Where m is the mass of the puck magnet. This is a differential equation that

describes the radial acceleration r of the puck magnet as a result of the forces

imposed by the ring manget and the solenoids. These are shown as FM and

FS respectively. To use this EOM, our next next step was to create models

of textbfFM and ]textbfFS, that accurately described the radial forces on the

puck magnet. However to simplify these models, we neglected changes in puck

orientation or height. Our justification for this simplifcation was that changes

in the levitation height and orientation are actually the consequence of small

radial changes in position of the puck magnet. Thus controlling the radial

position should be effective for active control. [44]. However, we intended to

include the effect of levitation height and orientation if the simplified control

strategy was insufficient.

The data obtained from the puck magnet matched our FEMM simulation

well, so we were able to use the ring magnet’s simulation data at levitation

height in order to model the interaction between the two. At a levitation

height of approximately 0.70 in (18 mm), this field could be approximated as

a quadratic. This yielded the following expression for the ring magnet’s axial

field strength, Bring,z

Bring,z = B2r
2 +B0 (3.2)

where r is the radial distance from the center if the magnet, and B0 and B2

are constants. In order to convert magnetic field strength into force exerted
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on puck magnet, we modeled the puck as a magnetic dipole, such that

Fring = ∇(µpuck ·B) (3.3)

Fring,r = µpuck
∂Bring,z

∂r
(3.4)

Fring,r = 2µpuckar (3.5)

where µpuck is the magnetic dipole moment of the puck. We define the control

modifier, β, such that β2 := 2B2 µpuck/m and obtain the following ODE

r̈ − β2r = 0 (3.6)

where r, is still the radial distance from center.

In order to implement this model, we assumed that each solenoid in our

array behaves as magnetic dipoles as done in [22] and produces a magnetic

field of equal magnitude and opposite direction to that of the solenoid across

from it. Finally, we were assumed that the deviation of the puck from the

center of the ring magnet was sufficiently small to approximate the magnetic

field as a Taylor expansion centered about a point at distance δ away from the

solenoids. These simplifications enabled us to express the field of the solenoids

as

Bsol,z =
c

2

[
(r − δ)2 − (r + δ)2

]
(3.7)

where the solenoid constant is defined c := −12IAκ/z5, where I is the current

passing through the solenoid, A is area of the solenoid, z is height above the

solenoid, and κ is the ferromagnetic core gain.
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From Eq. 3.7, we obtain the following expression for the vertical component

of the magnetic force exerted by the solenoids

FS = −2cδµpuck (3.8)

Combining the above results, we conclude that

r̈ − β2r =
2cδµpuck

m
(3.9)

= γI(r) (3.10)

where

γ :=
2cδµpuck

Im
(3.11)

is called the gain modifier.

3.6.2 Initial Compensator Design

Using Laplace transforms, we derived the following transfer function for our

system:

G(s) =
1

(s− β)(s+ β)
(3.12)

We used MATLAB’s control toolbox to design a compensator from Bode plots

in Fig. 3.10, root-locus plots, and simulation step responses. We found that

the compensator characterized by

H(s) =
γκ(s+ β)(s+ 0.5β)

s(s+ 5β)
(3.13)
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stabilized the system while reducing the problem to solving for constants β

and γ.

Figure 3.10: The Bode diagram of our proposed compensator for the system
discussed above.

3.6.3 Determining the Constants

The Control Modifier β

To find β =
√

2µpucka/m, we needed to calculate a, m, and µpuck. Of these,

m was the simplest and merely determined by weighing the puck. We found

that

m = 0.086 kg (3.14)

Next, we needed to find a, the quadratic constant of the ring magnet. To
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Figure 3.11: Quadratic fit of ring magnet simulation data at a height of 0.7
in.

do this, we performed a least squares fit of the FEMM simulation of the axial

field of the ring magnet to a second order polynomial fit, restricting the linear

coefficient to be zero at the levitation height of 0.7 in (1.78 cm) (Fig. 3.11).

Linear fits were performed for each of these , and a was found to have the

following value

a = 0.017 T/in2 (3.15)

Finally, we needed to fit the µpuck to the data. We assumed the puck to be

a dipole, which has axial field at a constant height of approximately

Bz(r, z) =
−6r2µpuck

z5
+ C = b(z) · r2 + C (3.16)
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Figure 3.12: Quadratic fits of the puck magnet’s field strength at four heights:
(a) 0.28 in., (b) 0.52 in., (c) 0.75 in., (d) 0.96 in.

where C is a constant. We then found the constant in front of the r2 term for

as height of 0.28 in (7.11 mm), 0.52 in (13.21 mm), 0.75 in (19.05 mm), and

0.96 in (24.38 mm), each ±0.05 in, by performing a quadratic fit (Fig. 3.12.

Then we set

µpuck =
−bz5

6
(3.17)

We wanted to most closely resemble the dynamics of the puck, so we ap-

proximated

µpuck = 0.025 A · in2 (3.18)

Combining these expressions together, we find

β =

√
2µpucka

m
= 0.0313 s−1 (3.19)
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The Gain Modifier γ

In order to calculate γ = 2µpuckcδ/m, we first needed values of c and δ. Our

device design fixes the value of δ:

δ = 0.3 in (3.20)

In order to determine c, the proportionality constant between the magnetic

field strength at levitation height and the input current, we calibrated our

solenoids’ current vs magnetic field at levitation height curve. This was done

for each of our four solenoids by using the LakeShore magnetic field scanner

to measure the magnetic field at the center of the solenoids at the levitation

height of 0.7 in. Then a current source was run through the solenoid in series

with a ceramic resistor, and we measured magnetic field strength at currents

ranging from 0.00 to 1.00 A in increments of 0.10 A. Linear fits were performed

for each of these fits and c was the slope of the solenoid. We note that one

of the solenoids’ data was disregarded because it significantly diverged from

the rest indicating poor construction and has since been remade and will soon

be retested to make sure it is working properly. The slopes of the rest of the

solenoids were averaged together and the average value of c was found to be

c = −0.0034
T

A · in2 (3.21)
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Combining these results yields

γ = −5× 10−5
in

s2 · A
(3.22)

3.7 Code Development

We utilized the TI C2000 Launchpad microcontroller for our coding environ-

ment. This system was chosen after considering several microcontroller options

due to its advantages in real-time operating functionality. The team originally

used hardware and software interrupts, a prioritized signal that communicates

directly with the computer processor. These interrupts let the processor know

that there is a task that needs to be completed immediately, with more impor-

tant interrupts taking precedence over those with less urgency. We chose this

approach due to the need to be highly responsive to instantaneous changes in

magnetic field. However, this approach was difficult to implement.

Implementing a program that revolves around interrupts requires the use

of threads. A computer thread provides information to the computer CPU on

how to execute a certain set of instructions. The coding sub-team did not have

the requisite knowledge to use threads for the interrupts. After consulting with

an expert, the sub-team decided to implement the code using a new approach.

This new approach proved much simpler to implement since it involved using

a control loop that processed our sensor data at a rate of 40 Hz. After creating

the general framework for the code, we focused on more specific aspects of the

code.
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3.7.1 Sensor Readings

The first step in implementing a control mechanism is reading sensor measure-

ments for input to the algorithm. We wrote a program to convert magnetic

field strength readings from the Hall effect sensors into an estimate of the

puck magnet’s position. This required compensating for disturbances from

the solenoids and interpolating the puck’s position from data describing its

magnetic field.

We developed a quadratic approximation for the puck’s magnetic field by

least squares regression based on experimental data. At a levitation height of

0.07 in (1.8 mm), the field is given by

Bpuck = −0.042r2 + 0.061r − 0.0003 (3.23)

where Bpuck is in Teslas and r is in inches. Bmeas is the measured magnetic

field and is composed of two parts, Bsol, the magnetic field generated by the

solenoid, and Bpuck. The following expression gives us a way to find the posi-

tion of the puck magnet from a measurement of the magnetic field strength:

− 0.042r2 + 0.061r − 0.0003−Bmeas +Bsol(i) = 0 (3.24)

Solutions to Equation 3.24 can be calculated using the quadratic equation.

The correct solution for the radial position will be the lesser of the two so-

lutions, since we intellectually know the approximation we are using is the

concave down side of a negative parabola.
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However, as is shown, the magnetic field of the solenoids varies with cur-

rent, and this has to be accounted for. In order for the microcontroller to

accurately calculate the puck magnet’s position, it must always have accu-

rate knowledge of the magnetic field coming from the solenoids, so that this

effect can be filtered out. The calibration data could be used for this, but

this wouldn’t provide great resolution and would make it very difficult to get

accurate position measurements. Thus we decided that we would analytically

determine the magnetic field around the solenoids in order to have informed

knowledge of their magnetic output.

To begin modeling the magnetic field around the solenoids, we began using

the Biot-Savart Law:

~B =
µ0

4π

∫
I d~̀× r̂′

|r′ |2
(3.25)

where ~B is the magnetic field, d ~ell is an infinitesimal length of current, and

r
′

is the displacement vector from the current element to the point where

the field is being evaluated. This describes the magnetic field created by an

element of current while accounting for orientation, proximity, and magnitude

of the current. Using this law, an expression was created for the strength of

the magnetic field surrounding a circular current loop at an arbitrary point in

space. This expression is shown below, where each equation shows the axial

and radial components of the field respectively.

Bx =
iµ0

2π
√
R2 + 2Rr + r2 + x2

[
E[k](R2 − r2 − x2)

(R2 − 2Rr + r2 + x2)
−K[k]

]
(3.26)

Br =
iµ0x

2πr
√
R2 + 2Rr + r2 + x2

[
E[k](R2 + r2 + x2)

(R2 − 2Rr + r2 + x2)
−K[k]

]
(3.27)
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Where Bx and Br are the axial and radial components of the magnetic field

in Teslas, i is the current in amps, R is the radius of the current loop, r is the

radial position of the arbitrary point in space, x is the axial position of the

arbitrary point space, k is a grouping parameter defined as

k =

√
4r

R(1 + r
R

)2 + x2

R2

(3.28)

and K[k] and E[k] are the complete elliptical integrals of the first and sec-

ond kind, respectively. Now to model the field of the solenoids, we can treat

the solenoids as an infinite sum of infinitesimally small circular current loops.

Mathematically, this means we can make small adjustments to the above equa-

tions and then integrate them over the length of the solenoids to get equations

that describe the magnetic field of the solenoids at an arbitrary point in space.

We do this by replacing Bx and Br with infinitesimal components of the mag-

netic field dBx and dBr. We then replace i with infinitesimal components of

current along the length. We do this by replacing i with (Ni/L) dx, where

N is the number of loops, and L is the length of the solenoid. The resulting

equations are shown below

dBx =
µ0

2π
√
R2 + 2Rr + r2 + x2

[
E[k](R2 − r2 − x2)

(R2 − 2Rr + r2 + x2)
−K[k]

]
Ni

L
dx (3.29)

dBr =
µ0x

2πr
√
R2 + 2Rr + r2 + x2

[
E[k](R2 + r2 + x2)

(R2 − 2Rr + r2 + x2)
−K[k]

]
Ni

L
dx (3.30)

We can then integrate these equations along the length of the solenoids to

get an expression of the magnetic field of the solenoids at an arbitrary point
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in space. However, because our hall sensors will be fixed in space relative to

the solenoids, the only variable we will be left with is current i. Thus after

this integration, we will get linear equations with respect to current that have

constants that are the result of the integration of the above equations. The

above equations were integrated in matlab, and the resulting linear equations

are shown below

Bx(i) = 2.066i− 2.392× 10−7 (3.31)

Br(i) = 0.0011i+ 3.882× 10−19 (3.32)

These are the simple linear equations that describe the output of the magnetic

field, in Teslas, for a given input current in amps. With these equations, it

ispossible to accurately measure the position of the puck magnet, and this

paves theway for developing the implementation of the control algorithm

3.7.2 Control Algorithm

The first step in developing our code was implementing the control algorithm.

We used the derived values of the control theory constants to update our

algorithm and develop code that could be compiled and run. Most of this

can be seen in the main.c and control.c files located in Appendix C.

These files define a function to calculate the position of the puck and the

control function necessary to calculate the appropriate output to the pins. The

findPos function uses the readings taken from the hall probes and certain

constants in order to calculate the position, y. This value is later passed as a

parameter to the control function, which also takes parameters yd, x, A, B, C,
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and D in order to apply the standard control algorithm to both calculate the

output and modify the x vector for the next iteration of the algorithm.

3.7.3 The Input Code

The input code is displayed in Appendix C. The function ConfigureADC()

configures the ADC hardware by initializing one of the four ADCs present on

the team’s Launchpad and sets it to have 12 bit resolution. This function

also powers up the relevant ADC. The function SetUpADCSoftware() ini-

tializes which channel on the selected ADC the team will be using, as well

as configuring the interrupt related to that channel. Finally, the sample()

function reads in sensor data and stores it.

3.7.4 The Output Code

The output code initially set up the three DAC pins, specifically pins 25, 24,

and 29, to output 5V. The control algorithm was implemented with the code

and was ready for calibration. The pins were outputting in hexadecimal which

were then converted to base 10, which would allow us to know exactly what

voltage was being output, which ensures quick refinement of our formula.

3.7.5 Debugging

Code writing for any TI micro controller is done through their integrated

development environment (IDE), code composer studio (CCS). CCS is based

on a popular IDE called Eclipse, which has a powerful debugging system. The

system allows the user to create break points in the code and move through
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the code line by line, as well as see any expected output for each particular

line of code. This system thus allows the user to see which line specifically is

not working correctly and fix the problem.

3.8 Experimental Limitations

3.8.1 Practical Limitations

A common issue encountered with all prototyping is that the parts any team

wants to use are not inherently compatible, especially if these parts are being

using in a new fashion. This was the case for constructing the magnetic field

detection system. The set of three orthogonal Hall Sensors had to be mounted

to a substrate both mechanically and electrically compatible. This proved to

be a challenge because this is typically achieved with custom printed circuit

boards for a final product, but while we were in a fluid design phase this would

have been a waste of resources and time, because if the design deviates at all,

the entire custom board has to be scrapped. The other issue was that the Hall

Sensors needed to be as close to perfectly orthogonal as possible. This was

a structural challenge as well as an alignment challenge, and to complicate

matters further, in order to yield the best reading possible, the sensors had to

be as tightly grouped as possible. Our design used simple perforated circuitry

board that was first slotted so two pieces fit at a 90 degree angle and then

a shelf that was braced against the other two parts was made to give the

third dimension. Then came the imperfections associated with how tiny the

transducers are and the need to solder the leads by hand. This in and of

itself was difficult, but in order to use the board only two of the three leads
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naturally aligned while the solder had to be stretched in order to reach the next

lead. We acknowledge that this will degrade the readings that we take, but

believe it to be within a small enough bound to be negligible. There were also

concerns raised that with such short leads and the difficulties of hand soldering

that the heat exposure from the soldering iron would cause the sensors to lose

functionality, but again from the preliminary results our team believes that no

damage was caused.

The team could also have benefited from professionally made electromag-

nets. What we used for the prototyping were hand wound solenoids. This

inherently introduces more variability than a machine wound counterpart. As

explained earlier, there was variability in both the number of wraps per length

as well as variability in the number of wraps from the outside to the core

along the radial direction. This caused a variability in the inductance and by

extension in the fields that are produced when used as electromagnets as the

team intends. Corrections can be made by running every hand-made solenoid

through a series of controlled current settings and fluctuations, their results

can then be matched up to create individual scaling factors. This scaling term

introduced, if kept simple, would be linear but this makes the assumption that

over the range of use the output exhibits a linear response. Hypothetically we

could take enough data to fit a second order or greater function but in the

interest of simplicity and ability to implement, linear was the final choice.

Preliminary data show that of the best grouping of solenoids there was not

greater than a 50% divergence from average though this is a large range that

at a later date can be further refined. This can be then included in the sta-
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bilization code with a coefficient, at worst, between 0.75 and 1.25 in order to

calibrate the effectiveness of each solenoid against the average ideal value.

The largest difficulty that we faced in code development was with choos-

ing the device that we wanted to program. For several months, we believed

that our project was much more computationally demanding than it actually

was. For this reason, we were mostly experimenting with using different ver-

sions of Raspberry Pi computer modules. When we had a better grasp of

our control algorithm, we realized that programming a microprocessor to do

what was essentially a single procedure would not give us any major benefits

over a microcontroller, as long as the microcontroller was sufficiently powerful.

This ended up drastically delaying code development, as most of the low-level

aspects of our code were inherently system-specific.

The algorithm itself and the constants we calculated and applied in our

code all require further testing with a fully-implemented system before we can

truly report their limitations and areas for potential improvement.

3.8.2 Empirical Limitations

As previously mentioned in the design of experiments section, we intended

to use lasers and light sensors to determine whether the puck magnet was

levitating stably. While this method would be effective, it is not without its

limitations. First, the positions of the light sensors and lasers. The center

of the grid, or pound symbol, will be a rectangle and the dimensions of that

rectangle must be larger than the dimensions of the levitating puck magnet,

but not too large. The critical dimensions of this rectangle are completely
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dependent on the positioning of the light sensors and lasers. The rectangle

must be larger than the puck magnet because if the rectangle is smaller, then

the test will register that the puck magnet is constantly unstable. However, the

rectangle cannot be too large, otherwise the sensors may not detect when the

puck magnet is off-center, rendering the test useless. Second, the puck magnet

is bound to reverberate as the system works to keep the puck stably levitating.

These vibrations are difficult to predict. The vibrations may be relatively large,

which may result in the test registering the puck magnet as unstable, however

if the puck magnet is still levitating after that vibration, then it should be

considered stable. Depending on the frequency of the reverberations, this

issue may occur often. The team will need to use engineering judgment to

differentiate between what the test considers as unstable and what actually is

unstable.

The primary source of error in determining the maximum angular dis-

placement will arise from difficulty in applying the displacement consistently.

Without a mechanism to precisely alter the angle of the payload, the produced

data sets may lack the repetition of trials needed for rigorous analysis. This

is particularly significant in light of the possibility that there might not be

one maximum angular displacement, as the ability of the system to restore

itself may depend partially on environmental or chaotic factors. Furthermore,

uncertainty will be present in each measurement due to resolution limitations

of the digital protractor. However, it is unlikely that this uncertainty will be

notable in comparison to that caused by random environmental factors.
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3.9 Summary

With the information gained in the literature review, the team was able to

stake a direction and design a large variety of tests in order to define success

of our prototype. We first strove to understand what our exact set of mag-

netic field pairings looked like in a series of mappings, and make conjectures

as to what the field strength would be for magnets of similar geometries. After

mapping, we graphically represented this information, and the team found it

easier to define the fields that we need to produce. In an effort to have a more

accurate starting point we attempted to reverse engineer an existing levitation

device, this did not lead to the desired results. The knowledge that we did

gain from reverse engineering did not lead to a completed set of equations,

due to circuit analysis as we hoped, but rather a concrete idea of what com-

ponents and what exact type of component ordering was required. With a full

circuit diagram theoretically implemented, the team moved onto the control

algorithms where we found a way to mesh the expected field values, controlling

circuit components, and expected physical levitation location. Lastly, the im-

plementation of this control theory into code of a microcomputer would allow

for full real time control over the stabilization. The team was excited for where

our designs could take us and real-time manipulation of a levitating object.
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Chapter 4

Results and Analysis

Due to setbacks in our research, we did not complete as many tests and pro-

duce as much physical data as we expected. However, the tests we ran were

important steps toward our end goal. One of the large tests the team pursued

was mapping our ring magnet. The goal of this was to create a lookup table

for the puck position based on magnetic field readings from our Hall effect

sensors. The other major test was to calibrate the solenoids. Since the team

manufactured the solenoids by hand, rather than purchasing them commer-

cially, there were likely to be inconsistencies in the wrapping and, thus, the

magnetic fields produced, it was important to test the solenoids to determine

necessary scaling factors for each.

4.1 Magnet Mapping

4.1.1 FEMM Models

Finite Element Method Magnetics (FEMM) software allows for modeling of

2D magnetostatics problems including those with axial symmetry [56]. After

modeling the geometry and materials, and applying the desired boundary con-

78



ditions, the program numerically approximates the magnetic fields by dividing

the area into thousands of triangles referred to as nodes. Then, the program

numerically integrates Maxwell’s equations inside each node. Upon computing

the fields, the software generates a 2D model, which shows magnet fields at

any point in the region of interest.

(a) (b)

Figure 4.1: A half cross section of a FEMM simulation of (a) our ring magnet
and (b) our puck magnet. The black curves are magnetic field lines.

FEMM was used to model the geometry of the ring magnet (Figure 4.1a)

and the puck magnet (Figure 4.1b). For each magnet, a variety of magnetic

alloys were tested to see how well the material agrees with the data. The we

believed ring magnet to be a single magnetic alloy based on its appearance.

However, we thought that the puck magnet is composed of two separate alloys

stacked on top of each other due to its shape. To determine the material with

the closest resemblance to the measured fields, the FEMM models with various

different materials were plotted together with the data in a single plot for each

scan. This plot displayed the axial magnetic field of the ring magnets vs radial

distance from the axis of symmetry the geometry (Figs. 4.2 and 4.3).
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4.1.2 Ring Magnet

(a) (b)

(c) (d)

Figure 4.2: The images depict the decay of the axial magnetic field as the
distance from the axis of symmetry of the ring magnet increases. These plots
compare the experimental data to the the numerical models of the ring mag-
net’s geometry for various materials. These materials include ceramic 5, ce-
ramic 8, NdBFe10 (Bonded) MGOe, and NdBFe32 MGOe. The heights ploted
are 0.15 in. (a), 0.56 in. (b), 0.78 in. (c), and 1.07 in. (d). The blue line
representing the data had an uncertainty roughly equivalent to the thickness
of the line as can be treated as an error bar in the data.

When plotting the numerical models against the experimental data, the

data needed to be converted from a Cartesian grid into a single variable ex-

pressing field strength in terms of distance from the center. In effect, this

allows us to test the axial symmetry assumption that was built into the nu-

merical models by observing the thickness of the experimental data’s line. In
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turn, this thickness serves as the uncertainty in the magnetic field data. In

addition, a background magnetic field was noted during each measurement.

Moreover, the background magnetic field fluctuated noticeably from measure-

ment to measurement. Therefore, a different free offset parameter was added

to the magnetic field data measured at each height. In the case of Fig. 4.2

axial magnetic field, this offset was applied to match the ceramic 5 model as

best as possible.

We note that this data did not always line up with itself as in the case

of the ring magnet. This lack of symmetry is partially due to the asymmet-

ric background discussed previously. In addition, the ring magnet appeared

chipped at a portion on its upper face, which made the magnetic field notice-

ably weaker on that portion. This can be seen in Fig. 4.2 where the center of

the graph appears very thick.

From Fig. 4.2, it was determined that ceramic 5 model best matches the

data as it stays nearest to the experimental data. Although the ceramic 8

model also performs well, it slightly overshoots the maximum of the 0.56 in.

plot. We should note that when the offset was adjusted to better agree with

the ceramic 8 model, the 0.56 in. data would no longer have an overshoot at

the maximum of the field. However, this caused the model to diverge from

the data distances near the axis of symmetry. As for the two NdFeB alloys,

we note that they fail due to significantly overshooting the data. Thus, we

conclude that the ceramic 5 model best models the data.
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4.1.3 Puck Magnet

The experimental data were converted from a Cartesian grid into a 1D function

of radius in a similar matter as before. Although an offset was applied to this

data set, it was done to ensure that at long distances from the puck, the field

approaches zero. This was not possible with the ring magnet as it did not

go to zero at the furthest points away from the magnet at which data were

collected.

From looking at Figure 4.3, we note that there was no combination of

materials that agreed with the data. The closest material combination was

m1=Stainless Steel 430 and m2=NdBFe52 MGOe. However, the model’s mag-

netic field decays too quickly to match the data. This is most prominently

observed in the 0.28 in. measurement of the field. We note that the deviation

between this model and the data decreases as the height of the measurement

increases. However, none of the other tested combinations of materials even

came close to matching the data. These results seem to indicate that the

FEMM software may have difficulty modeling different materials that are in

close proximity to each other.

From this analysis, we determined the materials that most closely model

the ring and puck magnets. Moreover, it was noted that the FEMM sim-

ulations very accurately recreate the field of the puck magnet. Due to the

noisiness of the ring magnet data and the accuracy of the simulation, it was

recommended that future analysis of the field use the FEMM simulation as op-

posed to the magnetic field data. However, the puck magnet simulation failed

to accurately capture the field from the data. Therefore, it was concluded
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that future analysis of the puck magnet’s field only use the simulations in the

far field limit and require the use of data to compliment the use of FEMM

simulations to complement the data especially in the near field limit.

4.2 Solenoids

After the creation of the solenoids, we checked that they were capable of pro-

ducing similar magnetic forces given similar current, potentially modified with

a correction coefficient. We began by prepping the materials and equipment.

We created a circuit comprised of a power supply with a ceramic resistor (rated

at 6.2 Ω, 10 W load limit) to prevent overheating.

The voltage on the power source was set to 12 Volts and the solenoids were

labeled as S1, S2, S3, and S4. We zeroed a LakeShore gaussmeter and set it

to the kG range, which provides values with an uncertainty of ±1× 10−5 kG.

After prepping, we placed the solenoid on the LakeShore machine and used

duct tape to hold it at a constant position and orientation. We cleared the

area of magnetic objects and centered the device’s probe above solenoid S1 at

a height of 0.68 in. above the solenoid. The machine was turned on and we

measured the magnetic field of S1 for currents ranging from 0.00 A to 1.00 A

in increments of 0.10 A. We repeated this procedure for the other solenoids.

Figure 4.4 shows that solenoids S2, S3, and S4 are in agreement with each

other with only minimal deviations, but S1 produces a magnetic field approx-

imately 60% weaker in magnitude, compared to the others. This difference

suggests poor construction, possibly resulting from an internal stripping al-

lowing current to bypass parts of the solenoid (see Figure 4.4 and Table 4.1).
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Table 4.1: Calibration data for the first four manufactured solenoids.

Solenoid One Solenoid Two
I (A) B (G) V (V) I (A) B (G) V (V)

0.00 -5.60 0.01 0.00 -2.50 0.01
0.10 -2.40 0.78 0.10 -5.00 0.78
0.20 -3.63 1.55 0.20 -8.13 1.55
0.30 -4.50 2.31 0.30 -11.59 2.32
0.40 -6.13 3.09 0.40 -15.24 3.09
0.50 -7.79 3.87 0.50 -18.78 3.86
0.60 -9.47 4.65 0.60 -22.21 4.63
0.70 -11.15 5.42 0.70 -25.44 5.38
0.80 -12.77 6.19 0.80 -28.48 6.15
0.90 -14.31 6.96 0.90 -31.22 6.90
1.00 -15.74 7.75 1.00 -33.76 7.66

Solenoid Three Solenoid Four
I (A) B (G) V (V) I (A) B (G) V (V)

0.00 -2.90 0.01 0.00 -1.20 0.02
0.10 -5.69 0.81 0.10 -4.46 0.85
0.20 -9.22 1.61 0.20 -8.56 1.69
0.30 -13.19 2.42 0.30 -12.75 2.52
0.40 -17.30 3.22 0.40 -17.00 3.35
0.50 -21.22 4.02 0.50 -21.22 4.18
0.60 -24.85 4.87 0.60 -25.05 5.60
0.70 -28.04 5.65 0.70 -28.35 5.79
0.80 -30.87 6.43 0.80 -31.33 6.61
0.90 -33.20 7.21 0.90 -33.74 7.42
1.00 -35.46 8.01 1.00 -35.69 8.22
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(a) (b)

(c) (d)

Figure 4.3: The images depict the decay of the axial magnetic field as the
distance from the axis of symmetry of the puck magnet increases. These
plots compare the experimental data to the the numerical models of the puck
magnet’s geometry for various materials. The puck model was modelled as
a composite of two different cylindrical magnets. The material on the top
magnet was denoted by m1 and the bottom magnet was denoted by m2. The
heights ploted are 0.28 in. (a), 0.52 in. (b), 0.75 in. (c), and 0.96 in. (d). The
blue line representing the data had an uncertainty roughly equivalent to the
thickness of the line as can be treated as an error bar in the data.
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Figure 4.4: A plot of magnetic field strength as a function of current for the
four solenoids that we manufactured. Sol 1 shows noticeable deviation from
the other three.
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Chapter 5

Conclusions

5.1 Research Conclusions

The overall goal of our research was to create a device that could stably levitate

a puck magnet as an initial proof-of-concept that could be used to assess the

feasibility of multiple practical applications of similar magnetic stabilization

systems. With our research we determined that our device design is con-

ceptually sound. The considerations we made during its creation have left a

detailed record of the optimal research and development steps taken to create

a magnetic stabilization device. More specifically, our research shows that the

stabilization of a levitating magnet can be treated as an inverted pendulum

problem, which could greatly expand the accessibility of magnetic stabilization

research.

5.2 Future Research

The future research into magnetic stabilization devices will benefit heavily from

our methods. We have itemized the process of constructing the device, and
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have detailed a potential algorithm to use for the system. We have simplified

the research process of future teams by detailing our biggest successes and

roadblocks.

The magnet analysis software and hardware used in our research provide

valuable information for teams using the same research configuration, and

denote specific procedures to replicate this data collection for any pair of mag-

nets. While further testing and calibration would have to be done to implement

the code and design of our device, our research lays the groundwork for future

researchers to explore the limitations of this device. Future research should

be focused on the specific applications and scalability of the technology, with

more time devoted to testing now that the steps for prototyping are clearly

set out.
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Appendix A

Magnetic Field Maps

The following color maps represent data collected from the LakeShore mag-

netic field measurement device (see Section 3.3). Data were recorded in a grid

format, and the distance between adjacent measurements was 40 µm. In par-

ticular, the scans for ring axial, puck axial, and puck radial magnetics fields

were squares of side 102 mm, 51 mm, and 64 mm, respectively.

The results show that material imperfections or damage cause observable

deviations in a magnet’s magnetic field (see Figure A.1, where a chip in the

ring magnet locally reduces the field strength approximately six-fold). Further-

more, the spatial gradient is as steep as 160 kG/m at the physical boundaries

of the ring magnet, but only 20 kG/m for the puck magnet. Lastly, the decay

of the field strength with distance from the magnet is demonstrated by the

sharper apparant resolution of the maps taken at closer positions.
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A.1 Ring Magnet Axial Component

Figure A.1: Ring Magnet Axial Field at z = 3.8 mm.
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Figure A.2: Ring Magnet Axial Field at z = 14.2 mm.
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Figure A.3: Ring Magnet Axial Field at z = 19.8 mm.
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Figure A.4: Ring Magnet Axial Field at z = 27.2 mm.

93



A.2 Puck Magnet Axial Component

Figure A.5: Puck Magnet Axial Field at z = 6.3 mm.
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Figure A.6: Puck Magnet Axial Field at z = 13.2 mm.
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Figure A.7: Puck Magnet Axial Field at z = 19.1 mm.
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Figure A.8: Puck Magnet Axial Field at z = 24.4 mm.
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A.3 Puck Magnet Radial Component

Figure A.9: Puck Magnet Radial Field at z = 19.1 mm.

Figure A.10: Puck Magnet Radial Field at z = 23.6 mm.
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Figure A.11: Puck Magnet Radial Field at z = 34.5 mm.

Figure A.12: Puck Magnet Radial Field at z = 44.2 mm.
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Appendix B

Magnetic Field MATLAB Analysis Code

The LakeShore magnetic field sensor system provided us with large files of

tabulated data describing the magnetic fields of our ring and puck magnets.

We imported these data to MATLAB and wrote various scripts and functions

in order to process and analyze our results [54]. The following pages present

the code used for this MATLAB analysis.
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function [B] = femm_input(file) 

% Import data from text file: 

% Script for importing data from the following text file: 

%    C:\Users\Shawn\Documents\College\Maglev\Bzflipped_NdFe37.txt 

% To extend the code to different selected data or a different text file, 

% generate a function instead of a script. 

% Auto-generated by MATLAB on 2016/03/16 11:52:20 

 

% Initialize variables: 

filename = file; 

delimiter = '\t'; 

startRow = 3; 

 

% Format string for each line of text: 

formatSpec = '%f%f%[^\n\r]'; 

%   column1: double (%f) 

%   column2: double (%f) 

% For more information, see the TEXTSCAN documentation. 

 

% Open the text file: 

fileID = fopen(filename,'r'); 

 

% Read columns of data according to format string. 

% This call is based on the structure of the file used to generate this 

% code. If an error occurs for a different file, try regenerating the code 

% from the Import Tool. 

dataArray = textscan(fileID,formatSpec,'Delimiter',delimiter, ... 

   'HeaderLines',startRow-1,'ReturnOnError',false); 

 

% Close the text file: 

fclose(fileID); 

 

% Post processing for unimportable data: 

% No unimportable data rules were applied during the import, so no post 

% processing code is included. To generate code which works for unimport- 

% able data, select unimportable cells in a file and regenerate the script. 

 

% Create output variabl: 

B = [dataArray{1:end-1}]; 

 

% Clear temporary variables: 

clearvars filename delimiter startRow formatSpec fileID dataArray ans; 

end 

101



function [B] = flipdata(file) 

% Import data from text file: 

% Script for importing data from the following text file: 

%    C:\Users\Shawn\Documents\College\Maglev\Bzflipped_NdFe37.txt 

% To extend the code to different selected data or a different text file, 

% generate a function instead of a script. 

% Auto-generated by MATLAB on 2016/03/16 11:52:20 

 

% Initialize variables: 

filename = file; 

delimiter = '\t'; 

startRow = 3; 

 

% Format string for each line of text: 

formatSpec = '%f%f%[^\n\r]'; 

%   column1: double (%f) 

%   column2: double (%f) 

% For more information, see the TEXTSCAN documentation. 

 

% Open the text file: 

fileID = fopen(filename,'r'); 

 

% Read columns of data according to format string: 

% This call is based on the structure of the file used to generate this 

% code. If an error occurs for a different file, try regenerating the code 

% from the Import Tool. 

dataArray = textscan(fileID,formatSpec,'Delimiter',delimiter, ... 

    'HeaderLines',startRow-1,'ReturnOnError',false); 

 

% Close the text file: 

fclose(fileID); 

 

% Post processing for unimportable data: 

% No unimportable data rules were applied during the import, so no post 

% processing code is included. To generate code which works for unimport- 

% able data, select unimportable cells in a file and regenerate the script. 

 

% Create output variable: 

B = [dataArray{1:end-1}]; 

 

% Clear temporary variables: 

clearvars filename delimiter startRow formatSpec fileID dataArray ans; 

B(1:num_pt,2)=-B(num_pt:-1:1,2); 

end 
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function [m,b,P] = magnet_mapping_cal(varargin) 

% Get Matlab's Measured Field: 

len = length(varargin); 

 

for i = 1:len 

    avg(i) = mean(mean(varargin{i})); 

    stdvi(i) = std(std(varargin{i})); 

    stdv(i) = stdvi(i)/sqrt(len); 

end 

 

% Get Actual Field in kG: 

for i = 1:len 

    inputs{i}=inputname(i); 

end 

 

for i = 1:len 

    if (inputs{i}(16:18) == 'neg') 

        int = str2num(inputs{i}(19)); 

        dec = str2num(inputs{i}(21:25)); 

        act(i) = -(int+dec*10^-5); 

        int_unc = str2num(inputs{i}(31)); 

        dec_unc = str2num(inputs{i}(33:37)); 

        act_unc(i) = (int_unc+dec_unc*10^-5); 

    else 

        int = str2num(inputs{i}(16)); 

        dec = str2num(inputs{i}(18:22)); 

        act(i) = (int+dec*10^-5); 

        int_unc = str2num(inputs{i}(28)); 

        dec_unc = str2num(inputs{i}(30:34)); 

        act_unc(i) = (int_unc+dec_unc*10^-5); 

    end 

end 

 

% Create Fit: 

data = [act' avg' stdv']; 

Results = weightedfit(data); % 'weightedfit' coded by Ebo Ewusi-Annan, 

A = Results.slope;           % University of Florida, 2011. 

B = Results.Intercept; 

y = @(x) A.*x+B; 

for i = 1:len 

    chi2i(i)=y(act(i))/stdv(i); 

end 

chi2sum = sum(chi2i); 

v = len-2; 

P = 1-chi2cdf(chi2sum,v); 

m = 1/A; 

b = -B/A; 

field = @(counts) counts*m+b; 

end 
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function [xLoc, yLoc, maxB, list] = max_B_loc(B_vals) 

    highB = max(max(B_vals)); 

    area = size(B_vals); 

    Xlength = area(1); 

    Ylength = area(2); 

    list = zeros(10,3); 

    nextL = 1; 

    for i = 1:Xlength 

        for j = 1:Ylength 

            if B_vals(i,j) > highB - 2 

                if nextL <= 10 

                    list(nextL,1) = i; 

                    list(nextL,2) = j; 

                    list(nextL,3) = B_vals(i,j); 

                    nextL = nextL + 1; 

                else 

                    for k = 1:10 

                        if B_vals(i,j) > list(k,3) 

                            list(k,1) = i; 

                            list(k,2) = j; 

                            list(k,3) = B_vals(i,j); 

                            break; 

                        end 

                    end 

                end 

            end 

        end 

    end 

    maxB = max(list(:,3)); 

    for n = 1:10 

        if list(n,3) == maxB 

           xLoc = list(n,1); 

           yLoc = list(n,2); 

        end 

    end 

end 
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function [Br] = plot_horiz_Br(r1,z1,r2,filename) 

% Plots B_r along a line running from (r1,z1) to (r1,r2). Can be an array of r1, z1, and r2. 

% Br is a two-element array where the first column is z and the second column is Br. 

 

% Open File: 

if (exist('filename')) % Add ability to specifiy file name. 

    flen = length(filename); 

    if (strcmp(filename(flen-2:flen),'FEM') || strcmp(filename(flen-2:flen),'ans')) 

        filegood = 1; openfemm; 

        simdir = 'C:\Users\Shawn\Documents\College\Maglev\femm simulations\'; 

        opendocument([simdir,filename]); 

        if (strcmp(filename(flen-2:flen),'FEM')) 

            mi_createmesh; mi_showmesh; 

            mi_analyze; mi_loadsolution; 

        end 

    end 

end 

 

% Store Data: 

mo_clearcontour; 

 

% If only given one value for r1 or r2, use that value for all entries in the array: 

if (length(r1) == 1), r1 = r1*ones(1,length(z1)); end 

if (length(r2) == 1), r2 = r2*ones(1,length(z1)); end 

line_len = abs(r2-r1); 

num_pt = line_len*1000 + 1; % 1000 points per inch, include both end points. 

num_cell = length(z1); 

Br = cell(1,num_cell); 

dir = 'C:\Users\Shawn\Documents\College\Maglev\femm results\'; 

for i = 1:length(z1) 

    mo_addcontour(r1(i),z1(i)); 

    mo_addcontour(r2(i),z1(i)); 

    if (exist('filegood')) 

        name{i} = [filename(1:flen-4),' Br horiz data r1 = ',num2str(r1(i)), ... 

            ', z1 = ',num2str(z1(i)),', r2 = ',num2str(r2(i))]; 

    else 

        name{i} = ['Br horiz data r1 = ',num2str(r1(i)),', z1 = ', ... 

            num2str(z1(i)),', r2 = ',num2str(r2(i))]; 

    end 

    mo_makeplot(3,num_pt(i),[dir,name{i}],0); 

    Br{i} = femm_input([dir,name{i}],num_pt(i)); 

    Br_i = Br{i}; save([dir,name{i},'.mat'],'Br_i') 

    figure; plot(Br{i}(:,1),Br{i}(:,2),'b-'); 

    xlabel(['Horizontal Distance from r1 = ',num2str(r1(i))]); 

    ylabel('Br (T)'); title(name{i}); 

    mo_clearcontour; 

end 
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function [Bz] = plot_horiz_Bz(r1,z1,r2,filename) 

% Plots B_z along a line running from (r1,z1) to (r2,z1). Can be an array of r1, z1, and r2. 

% Bz is a two-element array where the first column is z and the second column is Bz. 

 

% Open File: 

if (exist('filename')) % Add ability to specifiy file name. 

    flen = length(filename); 

    if (strcmp(filename(flen-2:flen),'FEM') || strcmp(filename(flen-2:flen),'ans')) 

        filegood = 1; openfemm; 

        simdir = 'C:\Users\Shawn\Documents\College\Maglev\femm simulations\'; 

        opendocument([simdir,filename]); 

        if (strcmp(filename(flen-2:flen),'FEM')) 

            mi_createmesh; mi_showmesh; 

            mi_analyze; mi_loadsolution; 

        end 

    end 

end 

 

% Store Data: 

mo_clearcontour; 

 

% If only given one value for r1 or r2, use that value for all entries in the array: 

if (length(r1) == 1), r1 = r1*ones(1,length(z1)); end 

if (length(r2) == 1), r2 = r2*ones(1,length(z1)); end 

line_len = abs(r2-r1); 

num_pt = line_len*1000 + 1; % 1000 points per inch, include both end points. 

num_cell = length(z1); 

Bz = cell(1,num_cell); 

dir = 'C:\Users\Shawn\Documents\College\Maglev\femm results\'; 

for i = 1:length(z1) 

    mo_addcontour(r1(i),z1(i)); 

    mo_addcontour(r2(i),z1(i)); 

    if (exist('filegood')) 

        name{i} = [filename(1:flen-4),' Bz horiz data r1 = ',num2str(r1(i)), ... 

            ', z1 = ',num2str(z1(i)),', r2 = ',num2str(r2(i))]; 

    else 

        name{i} = ['Bz horiz data r1 = ',num2str(r1(i)),', z1 = ',num2str(z1(i)), ... 

            ', r2 = ',num2str(r2(i))]; 

    end 

    mo_makeplot(2,num_pt(i),[dir,name{i}],0); 

    Bz{i} = femm_input([dir,name{i}],num_pt(i)); 

    Bz_i = Bz{i}; 

    save([dir,name{i},'.mat'],'Bz_i') 

    figure; plot(Bz{i}(:,1),Bz{i}(:,2),'b-'); 

    xlabel(['Horizontal Distance from r1 = ',num2str(r1(i))]); 

    ylabel('Bz (T)'); title(name{i}); 

    mo_clearcontour; 

end 
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function [x,y,data_adj] = plot_surf(data) 

titsurf = 'Magnetic Field of Puck Magnet at Levitation Height'; 

titcont = 'Contour Plot of Puck Magnet Field at Levitation Height'; 

load('cal_data.mat'); % Adjust raw data to reflect calibrtion: 

[m, b] = magnet_mapping_cal(cal3o50000kGnom0o00105kGunc0o00001kGr10x10, ... 

    cal3o50000kGnom0o00387kGunc0o00001kGr10x10, ... 

    cal3o50000kGnom0o52371kGunc0o00001kGr10x10, ... 

    cal3o50000kGnom1o87496kGunc0o00001kGr10x10, ... 

    cal3o50000kGnomneg0o00116kGunc0o00001kGr10x10, ... 

    cal3o50000kGnomneg0o00120kGunc0o00001kGr10x10, ... 

    cal3o50000kGnomneg0o51963kGunc0o00001kGr10x10, ... 

    cal3o50000kGnomneg0o73362kGunc0o00001kGr10x10); 

data_adj = data.*m + b; 

 

% Generate a contour plot: 

x = 0:0.01:(length(data_adj(1,:))-1)/100; length(x); 

y = 0:0.01:(length(data_adj(:,1))-1)/100; length(y); 

size(data_adj); close('all'); figure; 

xlabel('x-axis (in)','Fontname','Times','Fontsize',12); 

ylabel('y-axis (in)','Fontname','Times','Fontsize',12); 

title(titcont,'Fontname','Times','Fontsize',12); 

contour(x,y,data_adj); axis('tight'); 

set(gcf,'color','white'); 

set(gcf,'PaperPosition',[0,0,4/4*3,3/4*3]); 

 

% Generate a 3D surface plot: 

figure; surf(x,y,data_adj); 

grid('on'); box('on'); axis('tight'); 

xlabel('x-axis (in)','Fontname','Times','Fontsize',12); 

ylabel('y-axis (in)','Fontname','Times','Fontsize',12); 

zlabel('Magnetic Field (kG)','Fontname','Times','Fontsize',12); 

title(titcont,'Fontname','Times','Fontsize',12); 

set(gcf,'color','white'); 

set(gca,'Fontname','Times','Fontsize',12); 

set(gcf,'PaperPosition',[0,0,4/4*3,3/4*3]); 

end 
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function [Br] = plot_vert_Br(r1,z1,z2,filename) 

% Plots B_r along a line running from (r1,z1) to (r1,z2). Can be an array of r1, z1, and z2. 

% Br is a two-element array where the first column is z and the second column is Br. 

 

% Open File: 

if (exist('filename')) % Add ability to specifiy file name. 

    flen = length(filename); 

    if (strcmp(filename(flen-2:flen),'FEM') || strcmp(filename(flen-2:flen),'ans')) 

        filegood = 1; openfemm; 

        simdir = 'C:\Users\Shawn\Documents\College\Maglev\femm simulations\'; 

        opendocument([simdir,filename]); 

        if (strcmp(filename(flen-2:flen),'FEM')) 

            mi_createmesh; mi_showmesh; 

            mi_analyze; mi_loadsolution; 

        end 

    end 

end 

 

% Store Data: 

mo_clearcontour; 

 

% If only given one value for z1 or z2, use that value for all entries in the array. 

if (length(r1) == 1 ), z1 = z1*ones(1,length(r1)); end 

if (length(z2) == 1), z2 = z2*ones(1,length(r1)); end 

line_len = abs(z2-z1); 

num_pt = line_len*1000 + 1; % 1000 points per inch, include both end points. 

num_cell = length(r1); 

Br = cell(1,num_cell); 

dir = 'C:\Users\Shawn\Documents\College\Maglev\femm results\'; 

for i = 1:length(r1) 

    mo_addcontour(r1(i),z2(i)); 

    mo_addcontour(r1(i),z1(i)); 

    if (exist('filegood')) 

        name{i} = [filename(1:flen-4),' Br vert data r1 = ',num2str(r1(i)), ... 

            ', z1 = ',num2str(z1(i)),', z2 = ',num2str(z2(i))]; 

    else 

        name{i} = ['Br vert data r1 = ',num2str(r1(i)),', z1=',num2str(z1(i)), ... 

            ', z2 = ',num2str(z2(i))]; 

    end 

    mo_makeplot(2,num_pt(i),[dir,name{i}],0); 

    Br{i} = flipdata([dir,name{i}],num_pt(i)); 

    Br_i = Br{i}; 

    save([dir,name{i},'.mat'],'Br_i'); 

    figure; plot(Br{i}(:,1),Br{i}(:,2),'b-'); 

    xlabel(['Vertical Distance from z1 = ',num2str(z1(i))]); 

    ylabel('Br (T)'); title(name{i}); 

    mo_clearcontour; 

end 
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function [Bz] = plot_vert_Bz(r1,z1,z2,filename) 

% Plots B_z along a line running from (r1,z1) to (r1,z2). Can be an array of r1, z1, and z2. 

% Bz is a two-element array where the first column is z and the second column is Bz. 

 

% Open File: 

if (exist('filename')) % Add ability to specifiy file name. 

    flen = length(filename); 

    if (strcmp(filename(flen-2:flen),'FEM') || strcmp(filename(flen-2:flen),'ans')) 

        filegood = 1; openfemm; 

        simdir = 'C:\Users\Shawn\Documents\College\Maglev\femm simulations\'; 

        opendocument([simdir,filename]); 

        if strcmp(filename(flen-2:flen),'FEM') 

            mi_createmesh; mi_showmesh; 

            mi_analyze; mi_loadsolution; 

        end 

    end 

end 

 

% Store Data: 

mo_clearcontour; 

 

% If only given one value for r1 or z2, use that value for all entries in the array. 

if (length(r1) == 1), z1 = z1*ones(1,length(r1)); end 

if (length(z2) == 1), z2 = z2*ones(1,length(r1)); end 

line_len = abs(z2-z1); 

num_pt = line_len*1000 + 1; % 1000 points per inch, include both end points. 

num_cell = length(r1); 

Br = cell(1,num_cell); 

dir = 'C:\Users\Shawn\Documents\College\Maglev\femm results\'; 

for i = 1:length(r1) 

    mo_addcontour(r1(i),z2(i)); 

    mo_addcontour(r1(i),z1(i)); 

    if (exist('filegood')) 

        name{i} = [filename(1:flen-4),' Bz vert data r1 = ',num2str(r1(i)), ... 

            ', z1 = ',num2str(z1(i)),', z2 = ',num2str(z2(i))]; 

    else 

        name{i} = ['Bz vert data r1 = ',num2str(r1(i)),', z1 = ', ... 

            num2str(z1(i)),', z2 = ',num2str(z2(i))]; 

    end 

    mo_makeplot(3,num_pt(i),[dir,name{i}],0); 

    Bz{i} = flipdata([dir,name{i}],num_pt(i)); 

    Bz_i = Bz{i}; 

    save([dir,name{i},'.mat'],'Bz_i'); 

    figure; plot(Bz{i}(:,1),Bz{i}(:,2),'b-'); 

    xlabel(['Vertical Distance from z1 = ',num2str(z1(i))]); 

    ylabel('Bz (T)'); title(name{i}); 

    mo_clearcontour; 

end  
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% Open Data File: 

load('C:\Users\Shawn\Documents\College\Maglev\matlab femm functions\magnet 

mapping\brz_puck.mat'); 

close all; % Note: The units of B are Tesla (T) 

 

for i = 1:length(brz_puck) 

    % Set-up fittype and Options: 

    ft = fittype('poly2'); 

    opts = fitoptions('Method','LinearLeastSquares'); 

    opts.Lower = [-Inf, 0, -Inf]; 

    opts.Upper = [Inf, 0, Inf]; 

 

    % Fit Model to Data: 

    [fr{i}, gf{i}] = fit( brz_puck{i}(1:762,2),brz_puck{i}(1:762,1),ft,opts); 

 

    % Plot Fit and Data: 

    figure; h = plot( fr{i},brz_puck{i}(1:762,2),brz_puck{i}(1:762,1)); 

    legend(h,'data','fit','Location','NorthEast' ); 

    ylabel('magnetic field (kg)'); xlabel('radial position (in)'); 

    title(['puck ',num2str(brz_puck{i}(1,3)),' in']); grid('on'); 

 

    mu{i} = fr{i}.p1*brz_puck{i}(1,3)^5/-6; % mu parameter 

    mu_unc{i} = mu{i}*5*0.05./brz_puck{i}(1,3)^4; % unc due to hight uncertainty 

    mu_unc_rel{i} = mu_unc{i}/mu{i}; % relative uncertainty 

    p1{i} = fr{i}.p1; 

end 
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load('puckrdata.mat'); % load variables 

pr = [puckrh1o36r250x250, puckrh1o74r250x250, puckrho75r200x200t1, ... 

            puckrho75r250x250t1, puckrho75r250x250t2, puckrho93r250x250]; 

% Part 1 

[data_adj,x,y] = plot_surf(puckrh1o74r250x250); 

FieldAlongYAxis = data_adj(:,1); 

YmaxIndex = find(FieldAlongYAxis == max(FieldAlongYAxis)); % Finds Index of min in the y vector. 

CenterOfField = y(YmaxIndex(1)); % Sometimes two indices contain minimum values. 

                                 % Arbitrarily choose the first one. 

 

% Part 2 

LevitationHeight = 1; 

LevitationHeightIndex = find(x == LevitationHeight); 

FieldAtLevitationHeight = data_adj(:,LevitationHeightIndex); 

figure; plot(y,FieldAtLevitationHeight); 

title('Field Strength vs Y coordinate, at levitation height'); 

xlabel('Y Coordinate'); ylabel('Field Strength'); 

 

%Part 3 

CentralPoint = data_adj(YmaxIndex(1),LevitationHeightIndex); 

 

%Part 4 

StrengthAtCenterOfField = data_adj(YmaxIndex(1),:); 

figure; plot(x,StrengthAtCenterOfField); 

title('Field Strength vs X Coordinate, at the center of the puck'); 

xlabel('X Coordinate'); 

ylabel('Field Strength'); 
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% Open Data File: 

load('C:\Users\Shawn\Documents\College\Maglev\matlab femm functions\Bring.mat'); 

close all % Note: The units of B are Tesla (T) 

 

% Set-up fittype and Options: 

ft = fittype('poly2'); 

opts = fitoptions('Method','LinearLeastSquares'); 

opts.Lower = [-Inf, 0, -Inf]; 

opts.Upper = [Inf, 0, Inf]; 

 

% Fit model to data. 

[fitresult,gof] = fit(Bring{1}(:,1),Bring{1}(:,2),ft,opts); 

 

% Plot Fit and Data: 

figure; h = plot(fitresult,Bring{1}(:,1),Bring{1}(:,2)); 

legend(h,'data','fit','Location','NorthEast'); 

ylabel('magnetic field (T)'); xlabel('radial position (in)'); 

title('ring 0.7 in'); grid('on'); 

a = fitresult.p1; 
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function [  ] = surf_w_contour(data) 

%SURF_W_CONTOUR takes magnet mapping data, makes a surf plot and contour 

% plot, and overlays them to make a new plot. 

 

    close all; 

    figure; hold('on'); 

    surf(data); 

    contour(data); 

    title(inputname(1)); 

    saveas(gcf,sprintf('%s_surf_w_contour.fig',get(get(gca,'title'),'string'))); 

end 
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% Puck Radial Field Tracking: 

% Starts at z = 0, goes to z = 2 in. 

% Radius goes from r = 0 to r = 0.5 in. 

% Resolution is 1000 pt/in. 3D Array Br_puck. 

% 1st index is radial distance from puck 

% 2nd index is axial distance from puck 

% 3rd index is for radial distance or magnetic field 

    % (1 for radial distance and 2 for magnetic field strength in tesla). 

z = 0:0.001:2; 

r1 = 0; r2 = 0.5; 

Br_puck_cell = plot_horiz_Br(r1,z,r2,'puck with high carbon steel NdFeB 52 MGOe.FEM'); 

 

% Convert From Cell Array to Array: 

for i = 1:length(Br_puck_cell) 

    Br = Br_puck_cell{i}; 

    Br_puck(:,i,:) = Br; 

end 

 

% Puck Axial Filed Height: 

% Starts at z = 0 goes to z = 2 in. 

% Radius at r = 0 in. 

% Resolution is 1000 pt/in. 2D Array Bz0_puck. 

% 1st index is axial distance from puck. 

% 2nd index is for axial distance or magnetic field 

    % (1 for radial distance and 2 for magnetic field strength in tesla). 

z1 = 0; z2 = 2; r = 0; 

Bz0_puck_cell = plot_vert_Bz(r,z1,z2,'puck with high carbon steel NdFeB 52 MGOe.FEM'); 

Bz0_puck = Bz0_puck_cell{1}; 

 

% Save Results: 

dir = 'C:\Users\Shawn\Documents\College\Maglev\matlab femm functions/'; 

name = 'tracking_puck.mat'; 

save([dir,name],'Br_puck','Bz0_puck') 
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Appendix C

Micro-controller Code

All code is written in C

C.1 Main Code ADC

/*

* main.c

*/

// Include files

#include "F28x_Project.h"

// Function Prototypes.

void ConfigureADC(void);

void SetUpADCSoftware(void);

void sample(void);

void controlCode(Uint16 data);

// Global Variables

Uint16 HPdata;

int main(void) {

// The following is standard set up code for any

// application on this TI Launchpad. This set up

// sequence can be found in most if not all the

// example programs in ControlSUITE
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InitSysCtrl();

InitGpio();

DINT;

InitPieCtrl();

IER = 0x0000;

IFR = 0x0000;

InitPieVectTable();

EINT;

ERTM;

// End Setup Code

// Set up ADC-A

ConfigureADC();

// Choose ADC channel and acquisition window

SetUpADCSoftware();

// Enter primary loop. This is an infinite loop

// that will handle all of the processing of our

// program.

while(1) {

sample();

controlCode();

DELAY_US(25000); // delay for 25ms

}

return 0;

}

void ConfigureADC(void) {

EALLOW;

AdcaRegs.ADCCTL2.bit.PRESCALE = 6; // Set ADCCLK divider to /4

// Set resolution of ADC-A

AdcSetMode(ADC_ADCA, ADC_RESOLUTION_12BIT, ADC_SIGNALMODE_SINGLE);

// Set Pulse Position to Late

AdcaRegs.ADCCTL1.bit.INTPULSEPOS = 1;

// Power up ADC

AdcaRegs.ADCCTL1.bit.ADCPWDNZ = 1;

// delay 1ms to allow enough time for power up

DELAY_US(1000);

}
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void SetUpADCSoftware(void) {

Uint16 acqps = 14; // time in which ADC can read data from

// input pin (75ns)

EALLOW;

AdcaRegs.ADCSOC1CTL.bit.CHSEL = 1; // Sets input channel to ADC-in1

AdcaRegs.ADCSOC1CTL.bit.ACQPS = acqps;

// configures HWI for channel 1 of the ADC

AdcaRegs.ADCINTSEL1N2.bit.INT1SEL = 1; // end of SOC1 will set INT1 flag

AdcaRegs.ADCINTSEL1N2.bit.INT1E = 1; // enable INT1 flag

AdcaRegs.ADCINTFLGCLR.bit.ADCINT1 = 1; // make sure INT1 flag is cleared

}

// Function that reads in data from ADC

void sample(void) {

// Forces SOC1 to alert ADC-A channel 1 to read in data

AdcaRegs.ADCSOCFRC1.all = 0x0002;

// This register is a hardware interrupt that will

// alert us as to when the ADC is finished reading in data.

// The value will be set to 1 automatically by the hardware

// when the data acquisition is complete

while(AdcaRegs.ADCINTFLG.bit.ADCINT1 == 0);

// This will clear the ADCINT1 value so that the ADC

// can read in more values at a later time

AdcaRegs.ADCINTFLGCLR.bit.ADCINT1 = 1;

// store the data we just collected

HPdata = AdcaResultRegs.ADCRESULT1;

}
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C.2 DAC-ADC Test Code

/*

* main.c

* Adds a DAC configuration and a DAC test

*/

// Include files

#include "F28x_Project.h"

#include "F2837xS_adc.h"

#include "F2837xS_dac.h"

// Function Prototypes.

void ConfigureADC(void);

void SetUpADCSoftware(void);

void sample(void);

//Global Variables

Uint16 HPdata;

void configureDAC(Uint16 dac_num)

{

EALLOW;

CpuSysRegs.PCLKCR16.bit.DAC_A = 1; // enable DAC_A clock

DacaRegs.DACCTL.bit.DACREFSEL = 1; // use ADC VREFHI, not external signal

DacaRegs.DACCTL.bit.LOADMODE = 0; // load on SysClk (PWM not yet enabled)

DacaRegs.DACOUTEN.bit.DACOUTEN = 1; // enable output

DacaRegs.DACVALS.all = 0; // output = 0

DELAY_US(10); // Delay for buffered DAC to power up

EDIS;

}

/*

* Sets the DAC’s analog voltage based on value

* Equation used:

* With DACVALS = DACVALA = value -->

* VDAC = (DACVALA * DACREF) / 4096

*
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* With VREFHI from ADC the DACREF value should be 3.3V.

* This gives a range for DACVALA of 0 to 1241

*/

void SetDAC(uint16_t DAC, uint16_t value)

{

DacaRegs.DACVALS.all = value;

DELAY_US(2);

}

void TestDAC()

{

uint16_t limit = 1024;

uint16_t v;

uint16_t DACA = 61;

// ramp up

for (v = 0; v < limit; v++)

SetDAC(DACA, v);

// ramp down

for (v = limit; v > 0; v--)

SetDAC(DACA, v);

}

int main(void) {

// The following is standard set up code for any

// application on this TI Launchpad. This set up

// sequence can be found in most if not all the

// example programs in ControlSUITE

InitSysCtrl();

InitGpio();

DINT;

InitPieCtrl();

IER = 0x0000;

IFR = 0x0000;

InitPieVectTable();

EINT;

ERTM;

// End Setup Code
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// Set up ADC-A

ConfigureADC();

// Set up DAC-A

ConfigureDAC();

// Choose ADC channel and acquisition window

SetUpADCSoftware();

// Enter primary loop. This is an infinite loop

// that will handle all of the processing of our

// program.

while(1) {

sample();

DELAY_US(25000);//delay for 25ms

}

}

void ConfigureADC(void) {

EALLOW;

AdcaRegs.ADCCTL2.bit.PRESCALE = 6; // Set ADCCLK divider to /4

// Set resolution of ADC-A

AdcSetMode(ADC_ADCA, ADC_RESOLUTION_12BIT, ADC_SIGNALMODE_SINGLE);

// Set Pulse Position to Late

AdcaRegs.ADCCTL1.bit.INTPULSEPOS = 1;

// Power up ADC

AdcaRegs.ADCCTL1.bit.ADCPWDNZ = 1;

// delay 1ms to allow enough time for power up

DELAY_US(1000);

}

void SetUpADCSoftware(void) {

Uint16 acqps = 14; // time in which ADC can read data from input pin (75ns)

EALLOW;

AdcaRegs.ADCSOC1CTL.bit.CHSEL = 1; // Sets input channel to ADC-in1

AdcaRegs.ADCSOC1CTL.bit.ACQPS = acqps;

// configures HWI for channel 1 of the ADC

AdcaRegs.ADCINTSEL1N2.bit.INT1SEL = 1; // end of SOC1 will set INT1 flag

AdcaRegs.ADCINTSEL1N2.bit.INT1E = 1; // enable INT1 flag
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AdcaRegs.ADCINTFLGCLR.bit.ADCINT1 = 1; // make sure INT1 flag is cleared

}

// Function that reads in data from ADC

void sample(void) {

// Forces SOC1 to alert ADC-A channel 1 to read in data

AdcaRegs.ADCSOCFRC1.all = 0x0002;

// This register is a hardware interrupt that will

// alert us as to when the ADC is finished reading in data.

// The value will be set to 1 automatically by the hardware

// when the data acquisition is complete

while(AdcaRegs.ADCINTFLG.bit.ADCINT1 == 0);

// This will clear the ADCINT1 value so that the ADC

// can read in more values at a later time

AdcaRegs.ADCINTFLGCLR.bit.ADCINT1 = 1;

// store the data we just collected

HPdata = AdcaResultRegs.ADCRESULT1;

}
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C.3 Control Code

/*

* control.c

*

*/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "control.h"

#include "dmat.h"

double findPos(double i, double u, double c, double c2) {

double Bpuck[] = {-0.0977, 0.1215, -0.0011};

double Bhall = i*c;

double Bs = u*c2;

double firstRoot;

double secondRoot;

double y = 0;

int hasImagRoots = solve_quadratic(Bpuck[0], Bpuck[1], Bpuck[2] -

Bhall - Bs, &firstRoot, &secondRoot);

if(!hasImagRoots) {

if (firstRoot < secondRoot) {

y = firstRoot;

} else {

y = secondRoot;

}

}

return y;

}

double control(double yd, double y, dmat *x, dmat *A, dmat *B, dmat *C,

double D, unsigned int size) {

double e = yd - y;

dmat cx_prod_matrix;

122



dmat ax_prod_matrix;

dmat be_prod_matrix;

dmat result_matrix;

int i;

dmat_mul(&cx_prod_matrix, C, x);

double cx_prod_num = cx_prod_matrix.data[0][0];

dmat_mul(&ax_prod_matrix, A, x);

dmat_mul_s(&be_prod_matrix, B, e);

dmat_add(&result_matrix, &be_prod_matrix, &ax_prod_matrix);

for (i = 0; i < size; i++) {

(x -> data)[i][0] = result_matrix.data[i][0];

}

return cx_prod_num + (D*e);

}

int solve_quadratic(double a, double b, double c, double *firstRoot,

double *secondRoot) {

int hasImagRoots = 0;

double discrim = (b*b) - (4*a*c);

if (discrim >= 0) {

*firstRoot = ((-1 * b) + sqrt(discrim)) / (2*a);

*secondRoot = ((-1 * b) - sqrt(discrim)) / (2*a);

} else {

hasImagRoots = 1;

}

return hasImagRoots;

}
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Appendix D

Schematics and Design Drawings

Figure D.1: A CAD drawing of the protective case we built and used to house
the base of our system.

See Section 3.5 for more details on the protective case design and fabrication.
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Figure D.2: A drawing that illustrates the placement of the ring magnet,
solenoids, and PCB.

The data sheet beginning on the following page details the Darlington pair

transistor the team used the circuit design [66]. A circuit diagram is provided

in Figure 3.5.
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2N6387/D

2N6387, 2N6388

Plastic Medium-Power
Silicon Transistors

These devices are designed for general−purpose amplifier and
low−speed switching applications.

Features
• High DC Current Gain − hFE = 2500 (Typ) @ IC = 4.0 Adc

• Collector−Emitter Sustaining Voltage − @ 100 mAdc
VCEO(sus) = 60 Vdc (Min) − 2N6387

= 80 Vdc (Min) − 2N6388
• Low Collector−Emitter Saturation Voltage −

VCE(sat) = 2.0 Vdc (Max) @ IC 
= 5.0 Adc − 2N6387, 2N6388

• Monolithic Construction with Built−In Base−Emitter Shunt Resistors

• TO−220AB Compact Package

• These Devices are Pb−Free and are RoHS Compliant*

MAXIMUM RATINGS (Note 1)

Rating Symbol Value Unit

Collector−Emitter Voltage 2N6387
2N6388

VCEO 60
80

Vdc

Collector−Base Voltage 2N6387
2N6388

VCB 60
80

Vdc

Emitter−Base Voltage VEB 5.0 Vdc

Collector Current − Continuous
− Peak

IC 10
15

Adc

Base Current IB 250 mAdc

Total Power Dissipation @ TC = 25�C
Derate above 25�C

PD 65
0.52

W
W/°C

Total Power Dissipation @ TA = 25�C
Derate above 25�C

PD 2.0
0.016

W
W/°C

Operating and Storage Junction,
Temperature Range

TJ, Tstg −65 to +150 °C

Stresses exceeding those listed in the Maximum Ratings table may damage the
device. If any of these limits are exceeded, device functionality should not be
assumed, damage may occur and reliability may be affected.
1. Indicates JEDEC Registered Data.

THERMAL CHARACTERISTICS

Characteristics Symbol Max Unit

Thermal Resistance, Junction−to−Case R�JC 1.92 �C/W

Thermal Resistance, Junction−to−Ambient R�JA 62.5 �C/W

*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.

DARLINGTON NPN SILICON
POWER TRANSISTORS

8 AND 10 AMPERES
65 WATTS, 60 − 80 VOLTS

TO−220
CASE 221A

STYLE 1

1
2

3

4

www.onsemi.com

2N638x = Device Code
x = 7 or 8

G = Pb−Free Package
A = Assembly Location
Y = Year
WW = Work Week

MARKING DIAGRAM

2N638xG
AYWW

2N6388G TO−220
(Pb−Free)

50 Units / Rail

Device Package Shipping

2N6387G TO−220
(Pb−Free)

50 Units / Rail
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ELECTRICAL CHARACTERISTICS (TC = 25�C unless otherwise noted) (Note 2)

Characteristic Symbol Min Max Unit

OFF CHARACTERISTICS

Collector−Emitter Sustaining Voltage (Note 3)
(IC = 200 mAdc, IB = 0) 2N6387

2N6388

VCEO(sus)
60
80

−
−

Vdc

Collector Cutoff Current
(VCE = 60 Vdc, IB = 0) 2N6387
(VCE = 80 Vdc, IB = 0) 2N6388

ICEO
−
−

1.0
1.0

mAdc

Collector Cutoff Current
(VCE = 60 Vdc, VEB(off) = 1.5 Vdc) 2N6387
(VCE − 80 Vdc, VEB(off) = 1.5 Vdc) 2N6388
(VCE = 60 Vdc, VEB(off) = 1.5 Vdc, TC = 125�C) 2N6387
(VCE = 80 Vdc, VEB(off) = 1.5 Vdc, TC = 125�C) 2N6388

ICEX
−
−
−
−

300
300
3.0
3.0

�Adc

mAdc

Emitter Cutoff Current (VBE = 5.0 Vdc, IC = 0) IEBO − 5.0 mAdc

ON CHARACTERISTICS (Note 3)

DC Current Gain
(IC = 5.0 Adc, VCE = 3.0 Vdc) 2N6387, 2N6388
(IC = 1 0 Adc, VCE = 3.0 Vdc) 2N6387, 2N6388

hFE
1000
100

20,000
−

−

Collector−Emitter Saturation Voltage
(IC = 5.0 Adc, IB = 0.01 Adc) 2N6387, 2N6388
(IC = 10 Adc, IB = 0.1 Adc) 2N6387, 2N6388

VCE(sat)
−
−

2.0
3.0

Vdc

Base−Emitter On Voltage
(IC = 5.0 Adc, VCE = 3.0 Vdc) 2N6387, 2N6388
(IC = 10 Adc, VCE = 3.0 Vdc) 2N6387, 2N6388

VBE(on)
−
−

2.8
4.5

Vdc

DYNAMIC CHARACTERISTICS

Small−Signal Current Gain (IC = 1.0 Adc, VCE = 5.0 Vdc, ftest = 1.0 MHz) |hfe| 20 − −

Output Capacitance (VCB = 10 Vdc, IE = 0, f = 1.0 MHz) Cob − 200 pF

Small−Signal Current Gain (IC = 1.0 Adc, VCE = 5.0 Vdc, f = 1.0 kHz) hfe 1000 − −

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. Indicates JEDEC Registered Data.
3. Pulse Test: Pulse Width ≤ 300 �s, Duty Cycle ≤ 2.0%.
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