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The applications of semiconductor power electronic devices, including power

and RF devices, in industry have stringent requirements on their reliability. Power

devices are subject to various types of failure mechanisms under various stressors.

Prognostics and health management (PHM) allows detecting signs of failures, pro-

viding warnings of failures in advance, and performing condition-based maintenance.

There is a pressing need to develop a robust prognostic model to detect anomalous

behavior and predict the lifetime of devices that can be applicable to different types

of power transistors. In the present dissertation, a comprehensive prognostic model

for remaining useful life (RUL) prediction of semiconductor power electronic devices

is developed. The model consists of an anomaly detection module and a RUL predic-

tion module including a non-linear system process model describing the evolution of

parametric degradation, and a measurement model. The anomaly detection module

uses principal component analysis (PCA) for dimensionality reduction and feature

extraction, as well as k-means clustering to establish baseline clusters in the feature



space. The novel singular-value-weighted distance (SVWD) is developed as the

distance measure in the feature space, based on which Fisher criterion (FC) is used

for anomaly probability calculation. The system process model incorporates variables

concerning loading conditions and physics-of-failure of devices, and uses particle filter

(PF) approach for process model training and RUL prediction. For PF methodology,

a novel resampling technique, called MHA-replacement resampling, is developed to

solve the particle degeneracy in classic PF techniques and sample impoverishment in

traditional resampling techniques. The developed prognostic model is first imple-

mented on IGBT modules for validation. It was reported that the module package

of power transistors was susceptible to various types of fatigue-related failure modes

due to coefficient of thermal expansion (CTE) mismatches under temperature/power

cycles introducing thermomechanical stresses. The physics-of-failure “driving vari-

able” is derived from Paris equation. The model is validated on several time-series

IGBT module degradation data under power cycles from literature sources, based on

SIR particle filter for RUL prediction with good accuracy. Then the model is im-

plemented on GaN HEMTs, a representative of wide-bandgap semiconductor power

devices. GaN HEMTs are susceptible to degradation mechanisms such as ohmic

contact inter-diffusion that leads to voiding in the field plate at high temperature

under RF accelerated life tests (ALTs). The time-series data of the physics-of-failure

“driving variable” is obtained from diffusion computation in Mathematica with the

temperature profile coming from COMSOL thermal simulation. The RUL prediction

results based on SIR filter are also satisfactory for GaN HEMTs. For each type of

device, the new resampling technique is validated through performance benchmarking



against state-of-the-art resampling techniques. Another reliability threat for GaN

HEMTs, especially in aerospace and nuclear applications, is the degradation due

to radiation effect on the device performance. Gamma radiation has been found to

lead to generation of defects in AlGaN/GaN layers, which form complexes acting

as carrier traps, thus reducing carrier density and current. EPC GaN HEMTs are

irradiated under a wide range of Gamma ray doses and critical DC characteristics

are recorded before and after radiation to quantify their shifts during the irradiation.

Future work needed to allow implementation of the developed prognostic model for

RUL estimation is proposed.
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Chapter 1: Introduction

1.1 Problem Statement

This dissertation presents a new prognostic model for remaining useful life

(RUL) prediction of semiconductor power electronic devices using the particle filter

(PF) approach. The necessity of such models was outlined in the reports of the U.S.

Department of Energy concerning power electronics [13], [14].

A robust prognostic model not only provides forecasting of maintenance through

accurate RUL prediction, but also allows early detection and warnings of degradation

during field operations. This requires a method to detect the anomalous behavior

of the monitored system or component. The first important contribution of this

dissertation is a novel anomaly detection technique, which is an integral part of the

prognostic model. This method uses a novel singular-value-weighted distance (SVWD)

in the feature space, in conjunction with the Fisher criterion between distributions

of the feature space distances to detect anomalies in the failure precursor time-series

degradation data of power electronic devices.

The contribution of the present work in particle filter methodology is the devel-

opment and validation of a novel resampling technique, called IMHA-Replacement

resampling, for the particle filter. Resampling is a critical step in many particle filters

1



and is required to avoid the particle degeneracy problem. An optimal resampling

technique should refrain from particle degeneracy, as well as sample impoverishment,

which is an issue in traditional resampling algorithms. The novel IMHA-replacement

resampling was demonstrated to maintain a high level of effectiveness of particles,

while maintaining a low level of sample impoverishment throughout the particle

filtering process on time-series degradation data. It outperformed the state-of-the-art

resampling techniques used for benchmarking, including “the classic four”: multi-

nomial, systematic, residual, stratified resampling, as well as standalone IMHA

resampling, and roughening resampling. All the techniques were implemented in the

framework of a classic sampling importance resampling (SIR) particle filter.

Earlier investigations on prognostics of power electronic devices mainly focused

on power devices most commonly used in industry: insulated gate bipolar transistors

(IGBTs) and metal-oxide-semiconductor field-effect transistors (MOSFETs) [15].

Lacking however were investigations centered around the reliability of wide-bandgap

power devices, based on GaN and related compound semiconductors. The third

important contribution in the present dissertation is the first implementation of

particle-filter-based RUL prediction on GaN HEMTs, which is designed for high

voltage (VDS = 50V ) and high frequency (up to 6 GHz) applications. The proposed

prognostic model, first validated on IGBT modules, was also validated on high

voltage high frequency (HVHF) GaN HEMTs. The failure mode of GaN HEMTs

studied was voiding in the source-connected field plate induced by ohmic contact

inter-diffusion under HVHF accelerated tests. The applicability of the model to

devices designed to operate at high voltages and high frequency conditions, was

2



demonstrated.

Finally, this dissertation is the first to investigate the effect of gamma radiation

on the reliability of enhancement-mode (E-mode) GaN HEMTs. Radiation is a

significant driving force of degradation for GaN HEMTs in the harsh environment of

Radiofrequency (RF) and microwave applications. A wide span of doses from 5 krads

up to 60 Mrads (Si) was performed on commercially available E-mode GaN HEMTs.

The devices were characterized pre- and post-irradiation to gauge the variations

in the critical DC parameters. The wide coverage of irradiation doses facilitates

observation of the complete degradation behavior of the E-mode GaN HEMTs in

hard radiation applications.

In summary, the scholarly contributions of this dissertation are:

� Development of a robust particle-filter-based prognostic model integrating

both anomaly detection and life prediction with a novel anomaly detection

technique.

� Validation of particle-filter-based prognostics on GaN HEMTs for high voltage

and high frequency applications, as well as proposed validation on radiation

hardness of GaN HEMTs (discussed in Appendix A).

� Development and validation of a novel IMHA-Replacement resampling tech-

nique for the particle filter approach.

3



1.2 Overview of Prognostics and Health Management

To minimize the human lives and economic impact of unexpected catastrophic

failures, advanced warning of potential malfunctioning and accurate predictions of

the RUL of the investigated system are essential. A survey on the power electronics

industry a few years ago [4] presented only 50% satisfaction rate with currently

available reliability monitoring methods, showing the necessity of further research

efforts in health management. State-of-the-art reliability prediction is switching from

traditional techniques relying on historical field data to more advanced techniques

relying on in-situ operational and environmental data. A discipline establishing the

framework for these techniques is PHM [16]. The basic purpose of PHM is to detect

signs of failures, provide warnings in advance, and forecast maintenance as needed.

Therefore, the most important benefits of PHM includes avoiding unexpected failures

and saving life-cycle cost [2].

PHM can be described as an integral cycle of five layers, as is shown in Figure

1.1. The five layers could be partitioned into three stages: observe, analyze, and

act. The observe stage performs in-situ data monitoring and acquisition on the

investigated system, to obtain raw data using various types of metrology equipment

and sensors. In the analyze stage, the health condition of the system is assessed

from the acquired raw data to determine if deviations from the normal responses

and conditions has appeared. Once such deviations are detected, diagnostics are

implemented to isolate the source of the issue, identify the possible failure mechanisms

and evaluate the severity of damage. Based on the results of diagnostics, prognostics
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is implemented to project and estimate the RUL of the degrading system. This will

provide decision support to create the maintenance or replacement plan based on the

actual condition of the system, i.e. condition-based maintenance (CBM) [17], [18].

Figure 1.1: A complete PHM cycle [2]

Prognostic approaches are either physics-model-based or data-driven [16].

Model-based approaches require that explicit mathematical and physical degra-

dation models can be derived from first principles [19]. Examples of such models for

prognostics include the non-linear stochastic fatigue cracking model [20], [21] and

the creep growth model based on the Norton law [22]. Based on these models, life

cycle loading conditions, geometry, and material properties can be utilized to identify

potential failure mechanisms and estimate the remaining useful life [23]. Given that

the relevant first principles are available, model-based approaches allow estimation

of damage accumulations and RUL for specific failure mechanisms, with likely much

higher accuracy than data-driven approaches [24]. Data-driven approaches use sta-
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tistical and probabilistic techniques based on historical information and routinely

monitored data obtained from the systems to estimate the RUL [25], [26]. Gener-

ally, these approaches use statistical models that capture trends of variation from

historical data for RUL predictions [27]. They assume that unless a fault shows up

in the monitored system, the statistical characteristics of the monitored data remain

relatively stable [16]. Faulty points, trends or patterns are detected in data collected

by in situ monitoring to determine the state of health. Data-driven approaches are

advantageous over model-based approaches for complex systems and where accurate

modeling from first principles becomes infeasible.

1.3 Fault Detection

1.3.1 Introduction

As a critical layer in the PHM cycle, diagnostics is the process of detection,

isolation of deviations from the expected behavioral patterns, which can be termed

a fault, as well as identification of the cause and severity of the fault [28]. This

process involves assessment of the current state of the system, and the causes of

fault based on the information extracted from raw observations (measurements) [29].

Fault Detection and Isolation (FDI) techniques have been developed to provide early

warnings of failure in advance and avoid catastrophic failures [30].
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1.3.2 Model-based and Data-driven Fault Detection

Generally, these techniques can also be classified into model-based techniques

and data-driven techniques [31]. Like the classification of prognostic approaches in

the previous section, model-based techniques use a model based on first principles

(mathematical models, physical laws, etc.) to describe the system and determine

the current status of the system [16]. They can estimate the incipient development

of faults even if faulty behavior has not explicitly shown up in the behavioral

pattern of the system based on knowledge of the system architecture, the operating

environment, and the governing first principles. Deviations in the behavioral patterns

enable updates in the model parameters to accurately match the latest evolutions of

system states. Therefore, combination of the first-principal models and the in-situ

raw measurements allows model-based techniques to foresee the future evolution

trajectories of key variables, and facilitate robust assessments of the health status.

Model-based FDI techniques could be classified into observer-based methods, parity-

space methods, and parameter-identification-based methods [32].

Data-driven techniques, on the other hand, require comparing the current

behavioral patterns assessed from the latest in-situ data with the known nominal or

historical data instances and operating states [33]. In FDI techniques, behavioral

patterns extracted from known healthy data are often taken as a benchmark. Once

deviations in behavioral patterns from the benchmark is confirmed to a high enough

confidence level, a fault is considered to be detected. The deviated behavioral

patterns could be further processed and compared with known faulty patterns to
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isolate and identify faults, which requires a classification technique to distinguish

faults occurring on different parts of the system and with different root causes [34].

Examples of common data-driven FDI techniques include Fuzzy logic, Artificial

Neural Network (ANN) and Support Vector Machine (SVM).

The problem of model-based techniques is that establishing an accurate first-

principle-based model would require significant amounts of expertise and efforts,

especially for complex systems. In reality, assumptions have to be made from time to

time to simplify the problem. Nevertheless, simplifications deteriorate the accuracy

and applicability of the model to the actual situation [16]. On the other hand,

the problem of data-driven techniques is the complete reliance on the historical

data instances to assess the health status. In fact, misinterpretation of the system

operating status could happen if the information extracted from the monitored data

does not agree with either the healthy baseline or the known classified faulty patterns.

Also, sensitivity to outliers may also lead to misjudgments of the status. [33] Overall,

a fusion of both types of FDI techniques is often necessary for complex systems as a

compromise of their respective pros and cons.

1.3.3 Supervised, Unsupervised and Semi-supervised Fault Detection

Machine learning techniques are often utilized to solve FDI problems. They

can generally be categorized into supervised learning, unsupervised learning and

semi-supervised learning techniques. Supervised learning is based on a fully-labeled

training dataset, including nominal or healthy data and all types of anomalous data.
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For all the training data, an input has a corresponding output, so the primary task

of supervised learning is to learn a mapping function between inputs and outputs

of training data. On the other hand, unsupervised learning does not require any

labeled training data. None of inputs has a corresponding output, so inference of the

underlying structure or distributions of the training data is the fundamental task

of unsupervised learning [35]. Semi-supervised learning, used in the present work,

stands between supervised and unsupervised learning using a mixed set of labeled

and unlabeled training data [36]. It can help avoid the expertise and costs required

for a fully-labeled training dataset, while improving learning accuracy considerably

compared with unsupervised learning. It has been considered in the machine learning

literature to reach a compromise between the availability of fully-labeled training

data and the learning accuracy [37].

Recent investigations in a variety of domains have utilized semi-supervised

learning techniques for anomaly detection. Ashfaq et al. [38] proposed a fuzziness

based semi-supervised learning approach with the supervised learning approach of

single hidden layer feed-forward neural network (SLFN) assisted by unlabeled samples

to improve the classifier’s performance for the intrusion detection systems in cyber

security. The experimental results of intrusion detection on an evaluation dataset

based on this approach showed that unlabeled samples contributed enormously

to improve the classifier’s performance compared to existing classifiers like naive

bayes, support vector machine, etc. Zhao et al. [39] proposed a graph-based semi-

supervised learning model utilizing a few labeled training data for fault detection in

solar photovoltaic (PV) arrays. The model learned PV systems autonomously over
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time as weather changes based on normalized voltage and current measurements,

and also further identifies the possible fault type to promote system recovery. It

was demonstrated experimentally that the proposed model could correctly detect

and classify specific normal conditions, line–line faults, and open-circuit faults in

real-working conditions. Sillito et al. [40] proposed and demonstrated an incremental

semi-supervised one-class learning procedure for anomalous behavior detection in

a video surveillance scenario, in which unlabeled trajectories were combined with

occasional examples of normal behavior labeled by a human operator. Although the

author believed that the new procedure at least as effective as existent unsupervised

learning techniques, not enough demonstration of superiority using large real-world

datasets was provided.

1.3.4 Anomaly Detection

Faults are deviations from expected behavioral patterns, with various natures

and formats of manifestation. Anomaly detection is the process of finding patterns in

data that do not conform to the expected behavioral patterns, and the data instances

corresponding to the non-conforming patterns are called anomalies or outliers. Data

anomalies are one important form of manifestation of faults. They provide useful and

often critical information for fault isolation and identification. For anomaly detection

based on semi-supervised learning techniques, labeled training data encompassing

the normal behavioral patterns are used to train the model to recognize normal

behavioral patterns. Applications of anomaly detection vary from fault detection
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in space shuttles, aircrafts, gas turbines, etc., to fraud detection for credit cards, to

cyber security monitoring [41].

There are various causes of anomalies in data, including malicious activities,

system malfunctioning, or simply a random stimulus in the surrounding environment

[41]. It is crucial and often difficult to identify sources of anomalies. Different

anomalies have different real-life relevance. Such identification typically requires

supervised techniques to perform classification to assist in recognizing different types

of anomalous behavioral patterns using fully-labeled training data, which in reality

could be difficult to obtain. Other difficulties encountered in anomaly detection

include determination of a normal operating range covering all the possible normal

behavioral patterns of the system [42], determination of a clear and precise boundary

between normal and anomalous behavior [43], unpredictable variations of normal

behavior in some application domains, as well as noisy data that challenges data

analysis.

Data anomalies could be classified into three categories: point anomalies,

contextual anomalies and collective anomalies. Point anomalies are those with an

individual data instance showing anomalous behavior compared with the rest of data.

This is the simplest type of anomalies. Contextual anomalies are data instances that

exhibits anomalous behavior only in a particular context. The anomalous behavior

is identified based on the expected values for the behavioral attributes within a

specific context [41]. Collective anomalies are a collection of related data instances

showing anomalous behavior with respect to the entire data set. A data instance in

a collective anomaly may not seem anomalous when viewed individually, but their
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occurrence together as a collection shows anomalousness.

1.4 Dynamic State Estimation and Particle Filters

1.4.1 Bayesian Filters for Dynamic State Estimation

To provide warnings of failure in advance, model-based prognostic approaches

require future state estimation of variables indicating the health status of the system

based on first-principle models. The evolution of these variables over time could be

tracked through a sequence of noisy measurements taken at discrete time steps and

modeled through difference equations [44]. In this sense, prognostics is essentially

a dynamic state estimation process based on sequential modeling at discrete time

steps. Dynamic state estimation tracks and makes inference about a dynamic system,

based on a system process model and a measurement model. A system process

model in state estimation for prognostics describes the sequential evolution of the

state variables over time, to help identify any degradation of the system and make

prediction of future states and time-to-failure. A measurement model, on the other

hand, describes the noises of raw measurements and restores expected actual values

of measurement. In other words, a system process model makes inferences of the

future states while tracking the actual measurements, while the measurement model

outputs measurements of the state variables that update the inference results. This

essentially becomes a recursive Bayesian procedure in dynamic state estimation, in

which the state inference results (prior) is updated with the latest measurements

(likelihood) to obtain the updated estimation (posterior). The current state estimate
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is only based on the most recent state available due to the condition of Markov

property that given the current state, the future state is independent of all the

previous states of the system. A recursive Bayesian filter consisting of an inference

step and an update step is formed following this procedure for solving dynamic state

estimation problems. Among the common Bayesian filters, particle filters are capable

to handle the problems with non-linear process models and non-Gaussian state

estimation probability density functions (PDFs) compared with standard/extended

Kalman filters [44].

1.4.2 Particle Filters

Particle filtering (PF) is a state-of-the-art model-based Bayesian inference

approach solving nonlinear and non-Gaussian state estimation problems. It is based

on sequential Monte Carlo simulations utilizing Bayes theorem and Markov property

[45]. The basic idea of a PF is to represent the posterior PDF with a large number

of particles and their associated weights, which are updated iteratively at every time

step. In this sense, the posterior PDF representation is not restricted to Gaussian

distributions. Another significant advantage of the sample-based representation of

PFs is that it can model non-linear evolutions of state variables without relying

on any local linearization technique or coarse functional approximation [46]. PFs

have been used in various sectors of field applications including robotics, automation,

computer vision artificial intelligence and even chemical engineering.

A PF performs dynamic state estimation following the recursive inference and

13



update procedure described earlier. The current state is inferred using the posterior

PDF of the previous state, obtaining a prior PDF. Then the latest measurements at

the current step are used to update the prior PDF, obtaining a posterior PDF using

Bayes theorem. In the PF approach, both prior and posterior PDFs are represented

by a set of particles sampled from the distributions with associated weights denoting

discrete probability masses. The particles are initiated at the beginning of state

estimation processes and their positions and weights are recursively updated using

the system model, measurement model and the actual measurements [47].

1.4.3 Literature Review of Particle-Filter-Based Prognostics

In prognostics, RUL predictions are essentially long-term predictions of future

states made at a specific point upon a triggering event such as detection of a

fault, or a designated checkpoint is reached. For particle filters, this is realized

through repetitive propagation of the particles without updating their weights at

each time step. The propagation continues until a specified number of particles

reach the predefined failure threshold. Many previous studies have reported PF-

based prognostics of electronic devices and components, including IGBTs, power

MOSFETs and electrolytic capacitors. The following is a detailed review of the past

investigations on PF-based prognostics, focusing mainly on semiconductor power

electronic devices.

Orchard et al. [29] presented an online PF-based model framework for fault

diagnosis and failure prognosis in the blades of a turbine engine. The model framework

14



consisted of two autonomous modules, a fault detection and identification (FDI)

module using a nonlinear dynamic state model and a PF algorithm to calculate the

probability of fault condition (crack appearance). A feature called the tangential blade

position (TBP) was generated to map the crack length in the turbine blades. The

state PDF estimates were also computed as initial conditions in the prognosis module.

The failure prognosis module calculated the p-step ahead long-term prediction and

estimated the RUL PDF of the faulty turbine blades using a PF-based algorithm

based on a nonlinear state-space model with unknown time-dependent parameters.

The prognosis module could predict the evolution of the PDF of the crack length.

The proposal of this model framework was novel and ground-breaking, especially for

the implementation of PF in both diagnosis and prognosis. However, the reliance

of diagnosis on just one feature may be questionable. Also, it was unclear how the

nonlinear mathematical model in the FDI module was derived.

Celeya et al. [48] implemented and compared three different approaches for

prognostics of power MOSFETs including data-driven Gaussian process regression

(GPR), and model-based extended Kalman filter and particle filter. Die-attach degra-

dation under thermal overstress was identified as the primary failure mechanism, and

on-state resistance RDS(ON) was selected as the precursor. In the aging experiments,

the increase in junction temperature was observed with the increase of RDS(ON)

showing the deterioration of thermal dissipation as the die attach degrades. An

exponential degradation model was proposed for power MOSFETs. The results of

accelerated aging tests for six power MOSFETs were used for prognostics. The RUL

predictions were made at a number of different time points. The α-λ performance
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metric was used to evaluate the RUL prediction results. It turned out that the

GPR approach could only make predictions at a much later time compared with

model-based Bayesian filters, due to the lack of degradation model incorporation.

Between the two Bayesian filters, the particle filter provided steadier and overall

more accurate prediction results than the extend Kalman filter, although their results

were mostly close. However, no fault detection technique was utilized to make a

methodic selection of the RUL prediction triggering point.

Saha et al. [49] implemented the PF method on the prognostics of IGBTs

in avionics systems. The devices were aged under thermal overstress by turning

the gate on/off to keep the temperature cycling between 270°C and 305°C, until

the occurrence of thermal runaway and latch-up failures. The shifts of the tail

collector-emitter current ICE while turning off the devices, were used as the failure

precursor. The prediction algorithm conducted regression of the tail ICE using an

exponential degradation model to obtain the polynomial model parameters of each

cycle. These parameters were fed into the PF-based degradation model to form

the state vector. The system importance resampling algorithm was adopted on

particles to make RUL predictions. The author proposed a framework of extracting

features from raw data and using them to monitor the system behavior by learning

the model parameters. As soon as a diagnostic trigger shows up, the RUL estimation

is triggered. However, the diagnostic trigger was not specifically addressed and the

RUL estimation was chosen to be made at an arbitrary time.

Patil et al. [50] developed a PF-based prognostic approach that could detect

anomalies and predict the RUL of non-punch through (NPT) and field stop (FS)
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IGBTs. The devices underwent power cycling stresses until failure. X-ray analysis

before and after the power cycling tests showed the failure mode of die attach

degradation. The on-state collector–emitter voltage VCE(ON) and the on-state col-

lector–emitter current ICE(ON) were used as failure precursors and were monitored

in-situ throughout the test. The failure threshold was defined as a 20% increase in

VCE(ON). The anomaly detection was performed using Mahalanobis distance (MD)

computed from VCE(ON) and ICE(ON) parameters. Once an anomaly was detected,

the RUL prediction was triggered using the PF algorithm. The system model for PF

implementation was obtained using a least squares regression of the VCE(ON) data.

The mean time to failure (MTTF) estimates of the RUL revealed an error of around

20% at the time of anomaly detection. The contribution of this work was MD-based

anomaly detection. However, the prediction error of 20% was significant. A better

system model was needed to reduce the error.

Haque et al. [51] proposed an approach for the RUL estimation based on

auxiliary particle filter (APF). APF was supposed to reduce sample impoverishment

while maintaining the diversity in samples by introducing the index of particles in

the previous step as an additional variable for resampling. The simple slope-based

method was used to identify and divide the entire degradation curve into three

regions: healthy region, constant increase region, and exponential increase region.

For each region, different state transition equations were applied considering the

different variation patterns and degradation severity of VCE(ON). The proposed

method was shown to reduce estimation variance through introduction of the sample

index in resampling. Power cycling tests were conducted on seven IGBT modules
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and the observed failure mode was wire bond life-off. A 20% increase in VCE(ON) was

used as a failure threshold. The results of RUL estimation on the obtained IGBT

degradation curves were compared between APF and SIR PF algorithms based on a

variety of particle numbers and different regions, and APF was shown to outperform

SIR PF overall in root mean square error (RMSE). While using APF for the RUL

estimation of IGBTs was a solid contribution, dividing the degradation curve into

three different regions seems too generic and whether it can be applied universally

to all the IGBT degradation curves under power cycles is questionable. Also, there

was no diagnosis process and no point was specified at which the RUL estimation

was initiated.

Rigamonti et al. [52] developed a particle filter-based prognostic model for

the RUL estimation of aluminum electrolytic capacitors in electrical automotive

drives. The author focused on gradual failures of capacitors in which equivalent

series resistance (ESR) was commonly used as a degradation indicator. The failure

mechanism of the capacitor was considered to be the vaporization of electrolyte,

which is strongly affected by the capacitor operating conditions, especially the

working temperature. The vaporization led to an increase in ESR, and when its

value doubles based on the initial value, the capacitor was considered failed. To take

into account the influence of temperature, the author introduced a novel degradation

indicator, the ratio between the ESR of the degraded capacitor and the ESR value

on a new capacitor at the same temperature. This ratio was independent from the

measurement temperature. A standard prognostic model was used on both simulated

and experimental degradation test results for the RUL estimation. The author
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first performed measurements to obtain the parameters of the relationship between

ESR and working temperature for new capacitors. Then a simulation of realistic

capacitor degradation was conducted, and the prognostic model was implemented.

The performance of the RUL estimation was evaluated with five metrics: precision,

accuracy, steadiness, coverage, and risk level. The accelerated degradation tests were

performed on commercial capacitors. The temperature was kept constant at 418

K, and due to limited test time, a threshold of 130% ESR was used, and the PF

algorithm was implemented in the same way. The novelty of the work was on a new

degradation indicator and the first PF implementation on capacitors. Nevertheless,

no anomaly detection technique was used and the test suffered from lack of sufficient

measurements (only seven measurements were available).

Wu et al. [53] presented an improved particle filter (IPF) method for the

RUL estimation of MOSFETs. The on-resistance Ron was used as the degradation

indicator. The approach first used strong tracking Kalman filter (STKF) as the

importance function to update the particles in the sampling process with the latest

observation. At the resampling step, the Metropolis–Hastings algorithm was used

to replace the regular resampling algorithm. The proposed approach was validated

on two data sets in the “MOSFET thermal overstress aging data set”. A failure

threshold of 0.045Ω increase in Ron was defined, and several different points was

chosen for the RUL observation. The results showed lower RMSE for the improved

particle filter algorithm than that of the conventional particle filter. Although the

contributions of the work seemed clear, there was not a clear justification of how

the STKF worked and why it was superior to the conventional importance function.

19



Also, the author acknowledged influence of linearization by introducing STKF into

the PF algorithm.

Chen et al. [54], [55] focused on the selection of dynamic time features as health

precursors for prognostics of power MOSFETs in DC-DC converters. The author

reviewed the common MOSFET failure modes and the degradation process, in which

time-dependent dielectric breakdown (TDDB) was determined to be the failure mode

studied in the work. When it came to the selection of healthy precursors, besides the

accepted precursors including threshold voltage, on-resistance and transconductance

that could indicate the degradation of MOSFETs, the turn-on time was identified

as a new online health precursor of MOSFET. It was derived that as gate oxide

traps accumulated, the equivalent MOS capacitance Cgd would increase, thereby

increasing the gate charging and discharging time and therefore the turn-on time

when power MOSFET was applied as a switch. The accelerated degradation test

(ADT) was used to obtain the evolution curves of the four health precursors, in

which the stress type was a high gate bias (gate-source voltage) of 53 V at a constant

25 °C temperature. To reduce the effect of thermal stress, no drain-source bias was

applied. A RUL estimation based on the particle filter was performed on the turn-on

time degradation curve. The RUL prediction was triggered at 960 minutes. Since

significant distortion in the turn-on time evolution over 116 ns was observed, the

failure threshold was set to be 116 ns. While identifying the turn-on time as a new

failure precursor for MOSFETs under TDDB failure mode was a contribution, the

implementation of PF in the RUL estimation was coarse. The prediction point was

selected randomly. The biggest problem is that the turn-on time evolution before
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116 ns seems linear, which means even linear extrapolation may be enough to make

accurate prediction in this case. Also, the author did not specify the process model

used.

Kwon et al. [56] utilized a model-based approach to detect and track the

initiation and propagation of cracking in interconnects and predict the time-to-failure

of interconnects using particle filtering. RF impedance had been found to be sensitive

to incipient changes in interconnects and could provide early warnings of interconnect

failures. Therefore, the author used impedance analysis, in which the time domain

reflectometry (TDR) reflection coefficient was selected to measure RF impedance.

An analytical model proposed in the previous work to simulate the progression

of TDR coefficient with crack size was used, in which for cracks under 1 mm, the

relationship between TDR coefficient and crack size was assumed to be linear. The

Paris’ Law was used to model the fatigue crack growth. Mechanical fatigue tests

were conducted applying a cyclic shear stress condition on solder interconnects

with in-situ monitoring of RF impedance. The test results confirmed consistent

increase and advanced warning of the RF impedance with the degradation of solder

joints. Particle filtering approach was used to predict the time-to-failure of the

solder interconnects when the TDR reflection coefficient increased by 5%. This study

presented the impedance analysis method of monitoring the fatigue-induced cracking

in interconnects. However, the prediction point was also chosen empirically, and

there was also an assumption that the crack size would always remain under 1 mm,

in order for the assumption of linear relationship between the TDR coefficient and

the crack size to hold. However, this may not always be true in reality.
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It can be concluded from the above review that most of the available works

on PF-based prognostics of electronics selected the triggering point of the RUL

prediction empirically. No methodical approach for fault detection and identification

was implemented. PHM is not complete without a diagnostic process identifying

faults before triggering the RUL prediction. Although the framework of a compre-

hensive prognostic model integrating both anomaly detection and RUL prediction of

electronics has been proposed, as is in Orchard et al. [29] and Patil et al. [50], they

either were unclear in the fault detection model or lacked a robust system process

model that led to large prediction errors. The present investigation contributes

by introducing a novel anomaly detection technique and a system process model

integrating both the test loading conditions and the physics of failure related to the

failure mechanism.

1.5 Power Electronics and IGBTs

1.5.1 Power Converters and Power Electronics

Power electronics concerns the processing of electrical power using electronic

devices, the key of which is a switching converter [57]. The applications of power

converters in industry include aerospace, automotive, marine equipment, utility power

supplies, etc. One of the most reliability-demanding applications of power converters

is offshore wind turbines (OWTs). Figure 1.2 shows the topology of a doubly-fed

induction generators (DFIG) system, which is the most common configuration in

wind turbine power converters [3]. This configuration includes a generator-side and
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a grid-side converter with a DC-link in connection. Each side converter consists of

stacks of half-bridge power electronic modules (usually IGBT modules) connected

in parallel, as is shown in Figure 1.3. The semiconductor power electronic devices

(transistors, thyristors, etc.) inside these modules, performing power conversion, are

the kernel components of power converters.

Figure 1.2: Generator topology and control of a DFIG system [3]

Figure 1.3: Back-to-back converter of a wind turbine with paralleled half-bridges in

each phase module to provide the required current capacity [4]
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Many of the power converter applications are safety-critical because of the

catastrophic consequences of failure, and the zero-defect concept has been proposed

placing rigorous reliability requirements on the entire system [58]. Power converters,

particularly power electronic devices, are of great reliability concerns in the field oper-

ation. Various types of stressors, such as temperature cycling, mechanical vibration,

and humidity, could impose stresses on the power devices in field applications [59].

A general survey based on over 200 products from 80 companies [60] showed that

the semiconductor die and soldering failures in power electronic device modules were

responsible for 34% of converter system failures. A reliability survey on OWTs [61]

showed that the power converter assembly reported the second highest failure rate

and downtime among all the subsystems.

1.5.2 IGBT Devices and Modules

An IGBT is a three-terminal semiconductor power device with four alternating

layers (P-N-P-N), widely used as power electronic switching devices in systems requir-

ing medium-to-high power (10 kW-3 MW) and medium frequency (20-200 kHz) [62]. It

was first experimentally demonstrated in 1979 by Baliga [63]. The first commercially-

available IGBT device came from General Electric in 1983 [64]. Common applications

of IGBTs include power converters, electric vehicles, locomotives, refrigerators, air-

conditioners, etc. IGBT combines the gate-driving characteristics of MOSFETs with

the high-current and low-saturation-voltage attributes of bipolar junction transistors

(BJTs) in a single device. It is a monolithic integration of power MOSFETs and BJT
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devices combining the best characteristics of both devices to achieve optimal device

characteristics [62]. The main advantages of IGBTs include low on-state voltage drop

with high on-state current density, low gate-driving power with simple gate-driving

circuit thanks to the metal-oxide-semiconductor (MOS) gate structure, as well as

wide safe operating area (SOA) [65]. Due to these significant advantages, IGBT has

been the most popular type of power electronic devices in industry. Power converters,

vehicles, refrigerators, air-conditioners, etc. are all among common applications of

IGBTs. A survey on industrial power electronics showed that IGBT took up 42% of

all the power devices in power converters in the industry [15].

Figure 1.4: Circuit diagram of Infineon FS20R06W1E3 IGBT module [5]

As was mentioned earlier, power converters for high power applications consist

of stacks of half-bridge or single-switch modules, to meet the required power level. In

wind turbine applications, for example, 4-fold generator-side and the 3-fold grid-side

modules are commonly used [6]. Figure 1.4 shows the circuit diagram of an Infineon

FS20R06W1E3 IGBT module. In the diagram, G1, G2, · · · , G6 denote the gates
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of the IGBTs on the six pieces of die. U , V , W denote the AC output pins of the

three phases of AC. EU , EV , EW denote the emitter output pins, while E,U , E,V ,

E,W denote the spare emitter output pins of the three phases, respectively. P is

the collector pin shared by the six IGBT dies. T1 and T2 are the pins of a negative

temperature coefficient (NTC) thermistor, which is integrated as a temperature

sensor inside the module to enable accurate measurement of chip temperature.

1.5.3 IGBT Module Package

The package of power electronics refers to the package of multiple chips of

power electronic devices and their interconnections for signal, power transmission and

heat dissipation [66]. The package also provides electromagnetic interference (EMI)

shielding, electrical conducting/insulating, housing protection from environmental

contaminants and structure support. The package components are the supporting

components of power device chips. For IGBTs, there are generally two different

packaging types: press-pack technology and module technology. Press-pack technol-

ogy is characterized by high reliability due to the elimination of bond wires, and

double-sided cooling [67]. However, limited power handling capability as well as

costs hindered it from widespread applications. Module technology, illustrated in

Figure 1.5, remains the common packaging technology in commercial devices. Herein,

the dies (IGBTs, diodes) are electrically connected by aluminum or copper bond

wires. The dies are soldered to an insulating ceramic substrate called direct copper

bonded (DCB) substrate. The substrate is soldered to a copper base plate, which
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is in turn attached to the heat sink with a layer of thermal grease. The presence

of bond wires and solders introduces a significant source of reliability issues to the

package of IGBT modules, which is discussed next.

Figure 1.5: Module Package Structure for IGBTs [5]

1.5.4 Package-related Failure Mechanisms

Failure mechanisms of power electronics can generally be categorized into

two types: on-chip failure mechanisms and package failure mechanisms. On-chip

mechanisms are those occurring on active devices and on-chip interconnections, such

as electrical static discharge (ESD) and electromigration. These mechanisms are

associated with the power device chips. Package failure mechanisms, on the other

hand, are the more frequent type encountered in power electronics [6]. There are a

number of stressors resulting in package failures, including temperature, humidity,

vibration, contamination, etc. However, according to a study of different stressors

in power electronic systems [68], the temperature cycling and the steady-state
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temperature are the most critical stressors influencing the failure of power devices.

For example, the electrical traction drive for an urban tram may experience 106—108

power cycles, with temperature swings up to 80°C, during its lifetime [69]. The

criticality of temperature cycling results from coefficients of thermal expansion

(CTE) mismatches between adjacent package materials [59]. Both on-chip and

package failure mechanisms can destroy the devices and the ones of IGBTs have

been extensively investigated and well understood. As the more common type of

mechanisms, package failure mechanisms of IGBT modules are of greater concerns

and was selected for prognostic modeling in the present dissertation.

As was discussed in the previous section, package components can be regarded

as ‘accessories’ of IGBT chips. In long-term power/temperature cycling conditions,

components such as bond wires and solder interconnects lead to several thermo-

mechanical reliability issues. The module package consists of stacking layers of

different materials with different CTEs. The combination of CTE mismatches and

temperature swings leads to stress concentration near the interfaces of different layers

or in nearby weak spots. Consequently, voids and microcracks start to grow and

expand, and eventually, partial or even complete detachment of bond wires may

occur. Hence, significant degradation or interruption current and heat dissipation

would occur, resulting in malfunctioning of the IGBT module or even catastrophic

failures. The most common failure modes under such circumstances include bond

wire lift-off, bond wire heel cracking and solder joint fatigue.

The fatigue of bond wires has been discussed in earlier studies as a common

failure mechanism in power modules [70], [71]. Many of the bond wires in power
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modules are bonded onto the active area of power devices (IGBT and freewheeling

diodes), which is the heat source in the device operation. The high magnitude of

temperature swings and the self-heating of wires due to current flow, combined

with the significant CTE mismatch between bond wire metals and Si, result in high

susceptibility of bond wires to fatigue damage. Typically, cracks grow near the bond

wire/chip interface, leading to bond-wire lift-off.

Figure 1.6: Crack growing closely above the bond wire/chip interface, leading to

bond wire lift-off [6]

Another common failure mechanism of IGBT modules is fatigue of solder

interconnects, which is also associated with the thermo-mechanical stress caused by

temperature swings. The most susceptible components of this failure mechanism

are the solder joints between ceramic substrates and copper base plate [72]. The

crack typically starts from the edges of solder joints and propagates towards the

center portion, finally leading to total delaminations. The consequence of solder

interconnect delamination is the deterioration of heat dissipation capability and risks

of device failure due to overheating. Overheating may also accelerate the occurrence

29



of bond wire failures discussed earlier. The significant mismatches in the CTEs

between ceramics and copper, again combined with high temperature swings since

the solder joints lie on the major pathway of thermal flow, contribute to the criticality

of this failure mechanism.

1.5.5 Accelerated Life Testing and Power Cycling Test

In reliability evaluations, it is often necessary to acquire reliability information

in a much shorter time frame than the anticipated time-to-failure of the studied

component or system under normal operating conditions. Consequently, reliability

assessment methods that shorten the test time while exhibiting the same wear-out

degradation and failure process, such as accelerated life testing (ALT), emerge and

gain widespread popularity. ALT allows reliability models to be structured for the

most relevant type of stresses in a controlled manner across a wide range of stress

levels [73]. Accelerated testing (AT) methods could be divided into qualitative

and quantitative methods. Quantitative ALT stresses the component or system to

degrade and fail in a same manner as the normal use conditions, to estimate the

lifetime distribution [74].

For power devices, it has been discussed previously that power cycling critically

affects the reliability of the package. In this sense, validation tests of high temperature

and temperature cycling have been a key driver in improving the reliability of power

modules. The accelerated power cycling test is an important test to assess the

reliability of power modules under the temperature cycling stressor [75], [76]. It runs
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the device under tests (DUTs) under power cycles with short cycle periods and high

temperature swings to drastically accelerate package component degradations and

intrinsic failures.

The establishment of a power cycling test apparatus can be referred in the

relevant Joint Electron Device Engineering Council (JEDEC) standard [77]. In power

cycling tests, the DUT are generally run under load pulses with constant DC input

power. At the on state, the DUTs are actively heated by the conduction losses

and the temperature of the DUT increases rapidly. As soon as the temperature

rises to the desired maximum value, the applied input power is paused and the

temperature decreases under the influence of an external cooling system, until the

desired minimum value is reached. The heating and cooling time combined is

defined as a cycle period and it is repeated until the DUT fails. During each period,

data collection is performed at points of interest. To obtain the desired junction

temperature swing ∆Tj and mean junction temperature Tj,mean, the duration and

amplitude of load pulses can be adjusted accordingly [78].

1.6 HF GaN HEMTs

1.6.1 GaN Devices

Despite the current popularity of Si power devices including IGBTs, with

miniaturization and high power requirements, the fundamental limits of Si technol-

ogy have become more and more pronounced [79]. Table 1.1 shows the physical

properties of traditional semiconductor materials including Si, GaAs and some
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Table 1.1: Physical properties of important semiconductors for power devices [1]

Material Bandgap

Eg (eV)

Electron/Hole Mobility

(cm2/V · s)

Maximum Electric

Field Ec (MV/cm)

Thermal Conductivity

kthermal (W/cm ·K)

Si 1.1 1350 (n) 0.3 1.5

GaAs 1.4 8500 (n) 0.4 0.5

SiC 3.26 900 (n) 2.0 4.5

GaN 3.39 1000 (n) 3.3 1.3

Diamond 5.45 3800 (n)/4500 (p) 2.0 4.5

wide-bandgap semiconductor materials, including silicon carbide (SiC), GaN and

diamond. Wider bandgaps allow materials to operate at higher temperature, making

them attractive for high power applications [80]. Moreover, wide-bandgap materials

show significantly higher maximum electric field, which makes them preferable in

high-voltage applications because it allows the devices to be biased at higher drain

voltages [81]. Diamond has the best theoretical properties, but the high cost and the

underdeveloped device technology have prevented it from commercialization in the

near future.

GaN-based devices, on the other hand, have emerged as a strong candidate

for the next generation high-efficiency semiconductor electronic switching devices

due to the inherent advantages of the GaN material, as well as the piezoelectric

and spontaneous polarization effects in AlGaN/GaN heterojunction that result

in 2-dimensional electron gas (2DEG) channel with electron mobility in excess of

2000 cm2/V · s [82]. This is much higher than the electron mobility of Si, accounting
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for the higher frequency and the superior performance of the devices. In addition,

high-electron saturation velocity of around 3× 107 cm/s and excellent potential of

thermal conductivity are also desirable properties [83].

1.6.2 HEMTs

A High-electron-mobility transistor (HEMT), also known as heterostructure

FET (HFET) or modulation-doped FET (MODFET), is a field-effect transistor

incorporating a junction between two materials with different bandgaps, named

heterojunction [84]. In a MOSFET or metal–semiconductor field-effect transistor

(MESFET), the channel is contained within the n-type channel that forms the

Schottky barrier and is a doped region. However, in a HEMT, the channel lies in an

undoped layer near the heterojunction of two different semiconductor materials [85].

Combining the inherent advantages of wide-bandgap semiconductor materials, and

the high electron mobility, high carrier density of 2DEG in the Aluminium Gallium

Nitride (AlGaN)/GaN heterostructure, GaN HEMTs have shown significant promise

as the next high-power and high-frequency power electronic devices.

The polarization effect of the AlGaN layer on the GaN layer results in positive

polarization charges at the AlGaN/GaN interface and negative polarization charges

at the top of the AlGaN layer, leading to formation of an electric field in the AlGaN

layer [7]. Since the AlGaN layer is n-doped, and the fermi-level of GaN is lower than

that of AlGaN, electrons conducting in AlGaN move across the heterojunction into

GaN barrier layer, closing up the fermi-level difference until the Fermi level becomes
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Figure 1.7: The Schematic of an AlGaN/GaN heterojunction showing the formation

of 2DEG layer [7]

flat again. The resultant bending of conduction band in the GaN layer near the

interface and the discontinuity of conduction band at the interface form a potential

well confining free electrons. The electrons in the well are only free to move around

in the plane in parallel with the heterojunction, so a very high sheet carrier density

can be achieved. Since there is no doping in the channel layer, there is no ionized

impurity scattering, which contributes to the high mobility of the channel layer.

1.6.3 High Frequency Operation of GaN HEMTs

The ”high frequency (HF)” regime referred in the present dissertation (up

to 6 GHz) constitutes part of the electromagnetic spectrum with frequency in the

range from 20 kHz to 300 GHz [86], which is typically referred in the literature as

”radiofrequency (RF)”. The pulsed HF operation of GaN HEMTs is realized by

switching the gate bias of the transistor on and completely off to ensure that the

device would go through full transients for every pulse [87]. The fixture generally
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consists of a DC pulse supply and a GaN HEMT HF operation circuit. The pulse

supply outputs the gate and drain bias, and it controls precisely the alternation of

on and off-state voltage. The HF operation circuit consists of the GaN HEMT, HF

input and output matching units, gate and drain bias transmission lines and other

associated components.

The high-power, high-frequency and high-temperature capability makes GaN

HEMTs an outstanding candidate for radio wave and microwave applications like

satellite communication, radar, etc., which often require working reliably in harsh

aerospace, military and nuclear environments. GaN HEMTs have demonstrated

power densities of 6-9 W/mm, nearly one order of magnitude higher than those of

Si devices and GaAs HEMTs [88]. Also, nowadays commercial GaN HEMTs with

drain voltages of 50 V are available, thanks to the use of field plates that reduces the

peak electric field in devices [87].

1.6.4 Failure Mechanisms of HVHF GaN HEMTs

In terms of reliability, superior lifetime has been reported from ALTs on GaN

HEMTs, and multiple failure mechanisms have been reported as well [89]. For

example, a common issue associated with HF operations of GaN HEMTs is the drain

current reduction and gain compression, which is considered to result from surface

state traps. This problem can be relieved from SiN passivation [90]. Although largely

reduced, surface traps still exist in these devices. In fact, a common root cause of

GaN HEMT degradation is defect generation in the AlGaN layer under high vertical
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electric field near the gate. These defects trap electrons, reducing the sheet carrier

concentration and the drain current [91].

Further investigations and characterizations of the failure mechanisms under

HF operations have been conducted. Chen et al. [92] studied the catastrophic

failure mechanisms limiting the survivability of a T-gate GaN HEMT under HF

overdrive. Simulations were performed using a 4-finger 200µm GaN HEMT device

model, with two catastrophic failure mechanisms identified: sudden failure due to the

forward turn-on exceeding the burn-out limit at low quiescent drain-source voltages

(< 10V ) and gate-drain reverse breakdown at higher quiescent drain-source voltage

due to high peak drain-gate voltage. For wear-out mechanisms, Coffie et al. [93]

investigated the temperature and drain-to-source voltage dependency of the lifetime

of GaN HEMTs under HF stresses. It was discovered that the lifetime decreased

with increasing VDS but increased with increasing temperature. The degradation

process was not diffusion limited, and hot-carrier-induced degradation was believed

to be the dominant mechanism. Valizadeh et al. [94] also believed that hot carriers

trapped in the surface or barrier layer led to the degradation based on DC and HF

stress tests, in which no evident differences in degradation mechanisms between DC

and HF stresses were found.

In more recent papers, Sasikumar et al. [95] conducted HF-ALTs on low gate

leakage operational S-band GaN HEMTs, and discovered a 1.2 dB degradation in HF

output power. The degradation was attributed to an increase of on-state resistance

resulted from an increase in the concentration of various deep states between EC

of 1.6 and 3.0 eV. A later paper from the same group related the degradation of
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GaN HEMTs under HF-ALTs to defects with EC = 0.57eV [96]. Gajewski et al. [69]

reported the results of the DC-ALT on 28 V and 40 V GaN HEMTs monolithic

microwave integrated circuits (MMICs) developed by Cree, with the observed failure

mechanism to be ohmic contact inter-diffusion. The degradation results of 50 V

devices under HF-ALT was also reported, with the degradation and failure mechanism

of voiding in the field plate also due to ohmic contact inter-diffusion in the source-

connected field plate. The introduction of field plate structure in the vicinity of gate

helped reduce the peak electric field in the channel caused by gate contact at the drain

side of the gate edge [97], improving the power performance and breakdown voltage of

devices. Nevertheless, source-connected field plates have been discovered to degrade

with void growth and coalescence inside caused by ohmic contact inter-diffusion

between the field plate and the source contact under HF-ALTs. Consequently, there

was a gradual loss of function for the field plates, exacerbating defect generation in

the active layers and degradation of power output.

In summary, there has been no clear concensus on the exact degradation and

failure mechanism that leads to HF output power degradations. More investigations

on the mechanisms under HF-ALT are still needed to enhance the understanding. In

the present work, the failure mechanism adopted was the actual mechanism observed

and reported corresponding to the degradation data used for prognostic modeling.
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1.6.5 HF-ALT

Currently, many GaN device manufacturers have implemented JEDEC and

Automotive Electronics Council (AEC) qualification on their products to qualify the

developed devices, eliminate early failure modes and enhance their understanding

of the device reliability. The most common tests include high temperature reverse

bias (HTRB), high temperature gate bias (HTGB), high temperature high humidity

reverse bias (H3TRB), etc. As qualification tests, they are typically run for only

1,000 hours. Intrinsic reliability tests, like DC and HF ALTs, have also been developed

and conducted to discover the wear-out failure mechanisms of GaN HEMTs. Similar

to the power cycling tests of IGBT modules, HF-ALT is an intrinsic reliability test

that runs until parametric failure or catastrophic failure or end of the test. HF-ALTs

are usually performed using a commercial HF reliability test system under HF drive

conditions, with each DUT individually mounted and soldered to a metal carrier,

which is in turn attached to a test fixture. Each test fixture has an independent

heater block to control and maintain its temperature constant, in order to achieve a

constant target junction temperature throughout the test. There are also interfaces

for DC and HF stimulus and HF input/output matching units [98]. A semiconductor

parameter analyzer (SPA) is usually embedded in the system to supply DC signals

and perform DC characterization before and after the test. Computer controls the

on/off state of the heater block, performs data acquisition and commands the SPA

for in-situ device characterization. The DUTs are stressed at the nominal drain

operating voltage and the HF input unit supplies a high-frequency continuous wave
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(CW) signal. The selection of HF input drive level is such that a high HF compression

level of around 3-6 dB and the desired junction temperature can be achieved, which

can be encountered in some field applications [69].

1.7 Dissertation Scope and Outline

In this dissertation, a comprehensive prognostic model, which integrates

anomaly detection and RUL prediction, is developed for lifetime estimation of

power electronic devices. Unsupervised machine learning techniques are utilized

for baseline establishment, and then semi-supervised learning is used for anomaly

detection. The Particle filter approach is used for RUL estimation bring in stochas-

ticity for the prediction. A novel resampling technique is developed that outperforms

the state-of-the-art resampling techniques. The developed model is validated on

time-series degradation data of IGBT modules with fatigue-related failure mecha-

nisms under power cycles, as well as degradtion data of GaN HEMTs with ohmic

contact inter-diffusion as the failure mechanism. The appendix of this dissertation

addresses the stability of DC parameters of enhancement-mode GaN HEMTs under

gamma irradiation. Commercial E-mode GaN HEMTs were irradiated with a wide

span of total doses from 5 krads up to 60 Mrads, and DC parameter degradations

are reported. The degradation evolutions of the critical DC parameters will enable

another potential application scheme of the prognostic model.

Chapter 2 introduces the idea and formulations of non-linear Bayesian tracking

problem, as well as the particle filter approach in general. The sequential importance
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resampling (SIR) particle filter used in the present work is introduced thereafter.

Chapter 3 presents in detail the introduction of the prognostic model. The

general model framework is discussed first, and then the anomaly detection technique

is introduced, including feature construction, feature extraction based on principal

component analysis (PCA) and k-means clustering, the novel distance measure

of singular-value-weighted distance (SVWD) in the feature space, and the outlier

probabilities determination based on Fisher criterion. The development of the system

process model and the measurement model is then discussed.

Chapter 4 discusses resampling techniques in the particle filter approach. State-

of-the-art resampling techniques are reviewed, and their limitations are discussed. A

novel resampling technique that could keep the PF implementation free of degeneracy

while maintaining low level of sample impoverishment is introduced.

Chapter 5 shows the implementation and validation of the developed prognostic

model for RUL estimation of IGBT modules under power cycling conditions, which

are susceptible to fatigue-induced failures of bond wire lift-off in the package. The

results of the novel IMHA-replacement resampling benchmarking other resampling

techniques are also presented.

Chapter 6 shows the implementation and validation of the developed prognostic

model and resampling techniques for future degradation state estimation of GaN

HEMTs under HF-ALT conditions, with the corresponding degradation mechanism

of ohmic contact inter-diffusion.

Chapter 7 summarizes the present work and emphasizes again the contributions

of this dissertation. Suggestions on the future work are pointed out in this chapter.
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Appendix A discusses the investigation on the effect of Gamma irradiation on

the DC characteristics of commercial E-mode GaN HEMTs. The DUTs, irradiation

procedure and the electrical characterization method are discussed. The DC charac-

teristics of the devices pre- and post-irradiation are compared to gauge the variations

of the critical electrical parameters in the irradiations. Potential implementation of

the prognostic model developed in the present work is discussed.
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Chapter 2: Particle Filter Approach

2.1 Non-linear Bayesian Filtering

The recursive inference and update procedure in dynamic state estimation forms

the Bayesian filtering approaches. Generally, dynamic state estimation problems can

be expressed in the following equations [99]:

xk = fk(xk−1, wk−1) (SystemProcessModel) (2.1)

zk = hk(xk, vk) (MeasurementModel) (2.2)

where xk is the state variable at time step k, yk is the observation of xk at time step

k. f() is a nonlinear function of the state variable of the previous state xk−1 and

system process noise wk, while h() is a nonlinear function of xk and measurement

noise vk. wk and vk are independent and identically distributed (i.i.d) noise sequences

at each time step. They are all random variables following Gaussian distributions.

State estimation based on recursive Bayesian procedure (Bayesian filtering)

consists of creating the PDF of the state at each time step k, using the available

measurements for the time: p(xk|y1:k), where y1:k = yi:i=1,··· ,k. This PDF is created

through inference from the previous step and updated with the measurement at

the current step. In the Bayesian context, given PDF p(xk−1|y1:k−1) at the previous
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time step k − 1, the prior PDF p(xk|y1:k−1) could be predicted using the Chapman-

Kolmogorov equation:

p(xk | y1:k−1) =

∫
p(xk | xk−1)p(xk−1 | y1:k−1) dxk−1 (2.3)

where p(xk | xk−1) is based on the system process model (Equation 2.1), taking into

account the Markov property of xk. Once a latest measurement yk becomes available,

Bayes theorem can be used to update the prior PDF p(xk | y1:k−1) with yk, and

obtain the posterior PDF p(xk | y1:k):

p(xk | y1:k) =
p(yk | xk)p(xk | y1:k−1)

p(yk | y1:k−1)
(2.4)

where the normalizing constant p(yk | y1:k−1) is obtained from:

p(yk | y1:k−1) =

∫
p(yk | xk)p(xk | y1:k−1) dxk (2.5)

2.2 Particle Filters

Particle filters are based on Monte Carlo (MC) simulations. Suppose the PDF

of the state variable is xk: p(xk | y1:k), which is assumed to be Gaussian. MC samples

could be generated from the distribution, and a discrete approximation of the PDF

could be made using the following equation:

p(xk | y1:k) ≈
Ns∑
i=1

wiδ(xk − xik) (2.6)

where i denotes the particle number, wi is the weight of the ith particle, and xik is the

state value of the ith particle, and δ is the Dirac delta function. However, in reality,

p(xk | y1:k) may be non-Gaussian which introduces sampling problems. This problem
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could be addressed through the method of importance sampling. Suppose that apart

from p(xk | y1:k), there exists another PDF q(xk | y1:k) called the importance density,

where samples could be easily drawn (e.g. Gaussian PDF). The PDFs p(xk | y1:k)

and q(xk | y1:k) would have the following relationship:

p(xk | y1:k) ∝ q(xk | y1:k) (2.7)

There is a scaling factor, or a weight between p and q, which varies with xk:

w(xk) =
p(xk | y1:k)

q(xk | y1:k)
(2.8)

The following equation updates the importance weights stepwise and expand

p(xk|y1:k−1) using Equation 2.3:

ω(xk) =
p(yk | xk)p(xk | y1:k−1)

p(yk | y1:k−1)q(yk | y1:k)

=
p(yk | xk)

∫
p(xk | xk−1, y1:k−1)p(xk−1 | y1:k−1) dxk−1

p(yk | y1:k−1)
∫
p(xk | xk−1, y1:k−1)p(xk−1 | y1:k−1) dxk−1

(2.9)

Assume there is a set of particle state value and weight pairs
{
xik−1|k−1, w

i
k−1

}Ns

i=1

at time step k− 1, and the particles are drawn from the importance density q(xk−1 |

y1:k−1), then the posterior PDF at k − 1 can be approximated by:

p(xk−1 | y1:k−1) ≈
Ns∑
i=1

wik−1δ(xk−1 − xik−1|k−1) (2.10)

where wik−1 is defined as:

w(xik−1) =
p(xik−1|k−1)

q(xik−1|k−1)
(2.11)

At the next time step k, a new set of state value and weight pairs is to be

drawn to approximate p(xk | y1:k), the weight update equation could be attained by
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substituting Equation 2.10 into Equation 2.9:

w(xik) = w(xik−1)
p(yk | xik|k−1)p(xik|k−1|xik−1|k−1)

q(xik|k−1|xik−1|k−1)
(2.12)

The posterior PDF can then be approximated by:

p(xk | y1:k) =
Ns∑
i=1

wikδ(xk − xik|k) (2.13)

The recurrence of the above procedure at each time step produces the most

basic type of particle filter, which is sequential importance sampling (SIS). The

problem of SIS is the particle degeneracy, which will be discussed in the next section.

2.3 SIR Filter

Particle degeneracy refers to that as time step k proceeds, the cumulative effect

of process noises results in dispersion of particles xk, i.e. increasing variance between

particles. After a number of steps, all but very few weights tend to be zero, causing

the predicted PDF to be predominantly influenced by one or few particles, bringing

about significant wastes of computing time and power, as well as loss of generality in

the PDF representation [44]. The two general solutions to degeneracy are choosing

the proper proposed distribution, and performing resampling [44]. Therefore, some

variants of SIS have been developed including the SIR filter [100], the auxiliary

sampling importance resampling (ASIR) filter [101] and the regularized particle filter

(RPF) [102], developed to solve the issue of degeneracy in SIS filter [44]. A classic

example of using resampling to solve the degeneracy issue is the SIR filter, which is

the most prevalent filter used in prognostics [103]. The steps of the SIR filter are as

follows [104]:
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� Initialization:

Let k be the number of time steps in sequence. To initialize, set k = 0 and

generate a set of N particles xi0, i = 1, 2, . . . , N from the prior distribution of

the state variable x at t = 0, denoted p(x0).

� Importance Sampling and Calculation of Weights:

At each time step k, generate a set of particles xik from the proposal distribution

q(xik|xi0:k−1, z0:k), where z0:k are the series of measurements of the state. In

the SIR filter, define q(xik|xi0:k−1, z0:k) = p(xik|xik−1), which is the conditional

distribution of xik given the set of particles in the previous step xik−1. Assign

each particle a weight based on Equation 2.12, and normalize the weights.

� Resampling:

If the effective sample size Neff computed using Equation 2.14 is below the

given threshold Nth, then resampling is performed. Commonly, Nth = 2/3N

is taken as the threshold.

Neff =
1∑Ns

i=1(wik)
2

(2.14)

Generate N new particles x̃ik from the current particle set xik, and replace

xik with the new set. The weights of the new set are assumed to be equally

distributed:

ω̃ik =
1

N
(2.15)

� State Prediction:

Calculate the estimated state x̂k using Equation 2.13.
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2.4 Summary

This chapter has given an overview of dynamic state estimation problems and

expounds on the applicability of non-linear Bayesian filters in solving these problems.

The theoretical background of particle filters in general, and the SIR filter has been

presented. The present dissertation uses the SIR filter method to perform RUL

prediction of power electronic devices, which will be presented in the next chapter.
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Chapter 3: Prognostic Model Development

3.1 Failure Precursors and Failure Thresholds

Bayesian tracking problems require a variable whose time-series evolution

can indicate the real-time health status of the system under a specific type of

stressor, which eventually results in specific failure modes. This variable, called

failure precursor in the context of reliability engineering, is the basis of condition

monitoring and RUL prediction, and therefore requires careful selection as the

first step of prognostic model formulations [78]. Ideal failure precursors should be

directly gaugeable using metrology methods in order to minimize the modeling and

measurement errors introduced in the conversion process. Failure threshold is another

important parameter to be defined. In many cases, even if the systems have not

lost its function completely, the degradations of performance may have been beyond

an acceptable minimum level. This level can be identified as the failure threshold,

beyond which the system would be considered failed even though still functional.

In other words, parametric failure is introduced as the failure criterion in place of

functional or catastrophic failure.

As an IGBT is turned on, current flows from the collector to the emitter,

denoted IC . In an IGBT module, the current flows not only through multiple
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semiconductor die but also through passive components as well as interconnects

between components connected via on-chip bond wires. The net result is an on-state

forward voltage drop Vforward between the collector-side and emitter-side terminals

of the module. In power cycling tests, the current from collector to emitter is kept

constant, and hence as cracks develop near the interface of bond wires and bond

pads, the on-state resistance Ron of the module increases, resulting in an increase in

Vforward. Therefore, Vforward has commonly been used to as a failure precursor of

IGBT modules and it was selected as the failure precursor in the present work as

well. The threshold of device failure was a 5% increase in Vforward as was defined

in Lutz et al. [78]. This is an empirically defined threshold that is considered an

appropriate point for immediate actions to be taken on devices. Large increases

in Vforward can be anticipated after this threshold since the number of bond wires

detaching increases. The functional failure of devices under test (DUTs) occurs

when enough bond wires detach to completely cut off the electrical connection in the

module.

For many target applications, GaN HEMTs under high-frequency (HF) drive

conditions operate at a nominal drain voltage (most typically 28 V, 40 V and 50 V)

and a high gain compression level (decrease in gain due to nonlinearity of transfer

function in amplifying devices [105]) due to high input power [106]. It was discussed

in Section 1.6 that HF GaN HEMTs were susceptible to drain current reduction

and power output degradation due to defects in the active device layers trapping

electrons under high vertical electric field near the gate. Therefore, power output

Pout was taken as the failure precursor for the degradation of GaN HEMTs and was
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due to ohmic contact inter-diffusion investigated and identified in this dissertation.

As for the failure threshold, a parametric criterion of -1 dB in power output was

defined in the original paper [69]. However, by the end of test, the degradation still

did not reach this threshold. i.e. The pre-defined failure did not occur. Therefore,

the actual Pout level at the end of test was used as a reference for the future state

prediction accuracy of GaN HEMTs in the present dissertation.

3.2 Model Framework

It was mentioned in Section 2.1 that dynamic state estimation problems involved

a system process model and a measurement model. They were essential elements

in the particle-filter-based RUL prediction model. The prognostic model proposed

in the present work integrated an anomaly detection module and a RUL prediction

module. The RUL prediction module consisted of a non-linear process model and a

measurement model. The implementation of prognostic model included three stages:

a nominal stage, a training stage and a RUL prediction stage. The nominal stage was

an initial stage that establish a ”nominal region” in the raw failure precursor data

series, including all the healthy data to establish the baseline for anomaly detection

via feature construction, feature extraction and clustering on the data instances in

the moving window. After the baseline was established, the training stage worked

on the subsequent failure precursor data instances beyond the upper bound of the

“nominal region”. As a new measurement of the failure precursor became available

at each time step, the moving window was shifted to include this new measurement
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and drop the oldest one. Then feature construction and feature extraction were

implemented on the data instances in the moving window. The affiliations of the

obtained data instance in the feature space to the established baseline clusters

were determined, by assessing the outlier probability of this data instance for each

cluster. Simultaneously, the recursive Bayesian process was applied to the process

model, updating the model parameters as well as the particle weights and weights

with sequential new de-noised measurements. The measurement model performed

pre-processing of the raw measurement, supplying the de-noised measurement to the

process model. Overall, the anomaly detection module and the Bayesian filter in

the RUL prediction module examined test data instances for anomaly and updated

the process model in parallel throughout the training stage. Once an anomaly

was detected, the training stage terminated and the RUL prediction stage began.

Updates of the process model and particles ceased, and RUL prediction was triggered,

performing unremitting stepwise future state estimation based on the process model

and the particle positions/weights at the anomaly signaling point (ASP).

3.3 Anomaly Detection Technique

3.3.1 Feature Space

In machine learning, a feature is an individual measurable property or charac-

teristic of an observed phenomenon [107]. In data analytics, it is a attribute that

describes the inherent characteristics of raw data instances [108]. The attribute

can be of various types including binary, categorical, continuous, and so on [41].
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Selecting a set of informative, discriminating and independent features is crucial for

the effectiveness of many machine learning techniques including regression, classi-

fication and clustering. A feature vector is a multi-dimensional vector of typically

numerical features representing an object, and the corresponding multi-dimensional

space where objects represented by feature vectors reside in is the feature space.

A high-dimensional feature vector feature space could consist of redundant and

correlated features. Therefore, dimensionality reduction needs to be implemented

to obtain a smaller set of features that are independent and enlarge data variance,

constituting an optimized feature space.

3.3.2 Nominal Region

The benefits of semi-supervised machine learning have been discussed in Section

1.3, and these benefits were adopted in the present work for anomaly detection. Semi-

supervised anomaly detection requires establishing a set of healthy or nominal data

representing the expected behavioral patterns of the failure precursor, as the baseline

for anomaly detection. In the present work, the available raw data were time-series

degradation data of power electronic devices without any labelled healthy data.

Nevertheless, a complete data series recorded the entire degradation process of the

devices from initial healthy status to eventual failure. It is possible to select an initial

part of the data series and define it as a “nominal region”. All the data instances

within this region were considered healthy data to establish the baseline for anomaly

detection.
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Figure 3.1: Example of I-V output characteristics curves of an IGBT in Infineon

FS20R06W1E3, given a gate voltage VGE of 9 V and 11 V, respectively

The “nominal region” in the raw data was determined experimentally through

evaluating the variations of the I-V output curves of 60 IGBTs in 10 IGBT modules,

characterized using an Agilent B1505A curve tracer. The characterized IGBT

modules were Infineon FS20R06W1E3 with a rated collector-emitter voltage (VCE)

of 600 V [5], and each module consisted of 6 IGBTs. The measured output curves

with a gate voltage VGE of 9 V and 11 V for one of the IGBTs, is shown in Figure 3.1.

The point on these I-V curves selected for distribution analysis was IC = 30 A, VGE

= 11 V. By collecting the corresponding VCE values of all the 60 IGBTs, a sample

set with a size of 60 was established and imported into MINITAB for parametric

normal distribution analysis. The normal distribution was selected to fit this data

set since it outperformed the Weibull distribution in goodness-of-fit for the dataset.

The 95% confidence interval (CI) of the mean of the fitted normal distribution was

considered an acceptable variation interval for healthy data. This was because the

mean of the distribution, calculated based on a relatively large population, could be
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taken as the estimated Vforward output of a single “nominal device”. The 95% CI of

the mean could thus be considered the acceptable variation interval of this “nominal

device”. MINITAB calculations showed that the 95% CI of the mean of VCE at the

specified point was [2.496 2.529]. Therefore, it was assumed that the data instances

whose values stayed within ± 0.6546% of the nominal value were considered within

the “nominal region”. This range was applied to both of the power devices studied

in the present work.

3.3.3 Feature Construction and Extraction

The semi-supervised anomaly detection module in the present dissertation

utilized unsupervised machine learning techniques to establish baseline clusters

for the healthy data within the “nominal region”, including principal component

analysis (PCA) for dimensionality reduction and k-means clustering. The first step

was feature construction by selecting and calculating a number of features that

possibly contain useful information to discriminate between normal and anomalous

data instances. Nine common time-domain statistical features, given below, were

selected and calculated at each time step t by setting a moving window that included

the 10 latest Vforward data instances. Note that s denotes the failure precursor, or

Vforward.

� Mean ds/dt

� Maximum (ds/dt)max

� Root mean square (ds/dt)rms
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� Standard deviation σds/dt

� Crest factor CF ds/dt

� Impulse factor IF ds/dt

� Shape factor SF ds/dt

� Energy of the domain EDds/dt

� Clearance factor CLF ds/dt

Dimensionality reduction was then performed using PCA. Dimensionality

reduction is an important task in unsupervised machine learning involving either

feature extraction to compute some new features or feature selection to select the

best original features. Feature extraction was adopted in the present work to obtain

a small set of new features that captured most of the variance in the raw data, which

were called principal components (PCs). In this way, the redundancies or correlations

in the preliminarily constructed statistical features were removed. In fact, the essence

of PCA is maximizing the variances of the features along the axis of the PCs in

the feature space to retain and intensify useful information, while removing the

correlations between pertinent features to dislodge the redundant information.

Mathematically, PCA is described as an orthogonal linear transformation that

converts the data to a new coordinate system (PC-based feature space) such that

the greatest variance by any projection of the data could lie on the first coordinate,

called the first PC, while the second greatest variance on the second coordinate, or

the second PC, and so on [109]. The original data matrix X, which is a collection
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of vectors representing random variables, is multiplied by a matrix V consisting of

orthonormal basis vectors, or eigenvectors, to get the extracted data matrix called

the score matrix Y :

Y = XV (3.1)

The orthonormal basis matrix V can be obtained using singular value decomposition

(SVD). SVD is a matrix factorization step decomposing the original data matrix into

three new matrices:

X = UΛV T (3.2)

where U is a unitary matrix, Λ is a diagonal matrix with non-negative real numbers

on the diagonal line, which are the singular values. In the present work, PCA was

implemented on the healthy data instances in the “nominal region”, which served as

the training data. The number of PCs was determined using the criterion that the

cumulative percentage of variance that all the PCs captured just exceeded 80%. For

the time-series degradation data studied in the present work, the number of PCs

varied from 2 to 4. The PC-based feature space could hereby be established, and the

converted raw data instances could be located in the feature space.

3.3.4 Singular-Value-Weighted Distance

In anomaly detection, particularly classification and clustering, an appropriate

proximity measure between data instances, typically a distance or similarity matrix,

is required to differentiate between healthy and anomalous data instances in the

feature space. The choice of the proximity measure is critical to the performance
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of the technique. The most commonly used distance measures are the Euclidean

distance (ED) and the Mahalanobis distance (MD). The advantage of MD over ED

is that it is based on the covariance among variables in the feature vectors, utilizing

the mean and variance of variables. Therefore, the scale and correlation issues

in the Euclidean distance are eliminated [110]. Nevertheless, in the present work,

PCA already conducted normalization and correlation elimination on the raw data

instances, so there was no clear advantage of using MD in this case. ED is easier

to compute and interpret than MD [111], so it was adopted and further improved,

creating a singular-value-weighted distance (SVWD) measure used in the present

work. The conventional ED, di(k), in the PC-based feature space is given in Equation

3.3:

di(k) =

√
(PC1(k)− PC1m

j)
2

+ (PC2(k)− PC2m
j)

2
+ . . .+ (PCn(k)− PCnm

j)
2 (3.3)

where PC1, PC2, . . . , PCn denote the coordinates of the test data instance in the

n-dimensional feature space, given that the number of PCs is n; PCj
1m, PCj

2m, . . . ,

PCj
nm denote the coordinates of the mean of the baseline cluster in the feature space.

The variance each PC accounts for is indicated by their corresponding singular values.

Conventional ED considers all the PCs as equally weighted. The idea of creating

SVWD is that even though the variance has been accounted for in the PC variables

themselves, further attenuating the PCs capturing more pronounced variances may

help differentiate normal and anomalous data even more clearly. Therefore, the

conventional Euclidean distance was revised by assigning the corresponding singular

values as weights to the PCs, to further intensify the “more important” PCs, as is
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shown in Equation 3.4:

di(k) =

√
(
SV 1(PC1(k)−PC1m

j)

SV 1+SV 2+...+SV n
)
2

+ (
SV 2(PC2(k)−PC2m

j)

SV 1+SV 2+...+SV n
)2 + . . .+ (

SV n(PCn(k)−PCnm
j)

SV 1+SV 2+...+SV n
)2 (3.4)

where SVi(i = 1, 2, . . . , n) are the singular values corresponding to each PC.

3.3.5 K-means Clustering

Clustering is the process of partitioning a set of data (or objects) into a set of

groups called clusters based on some similar characteristics [112]. It is an important

technique of exploratory data analysis, aimed at investigating the internal structure

of complex data sets that could not be sufficiently exploited by basic statistics such

as the mean and the covariance [113]. Typical applications of clustering include

pattern recognition, image processing, spatial data analysis, fault detection, etc.

Partitioning-based clustering is one type of clustering dividing the data set into a

desired number of clusters randomly, and iteratively relocating data points between

clusters based on a specific criterion until an optimal partition or a stopping criterion

is met [113]. K-means clustering is the most typical partitioning-based clustering

technique, partitioning the original data set into k clusters based on the features and

the specified proximity measure.

The clustering process is implemented by the following three steps:

1. Randomly select k data points as centroids, where k is the desired number of

clusters.

2. For the rest of data instances, each of them is assigned to the nearest centroid,

based on the selected distance measure (SVWD in the present work).
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3. As the assignments are complete for all instances, the k centroids are recom-

puted. This is done by taking the mean of all data instances assigned to the

cluster.

The clustering process kept iterating steps 2 and 3 until a stopping criterion is met.

This criterion could be no data points changing clusters anymore, or the sum of

the distances being minimized, or the maximum allowed number of iterations being

reached.

In the present work, an optimal number of baseline clusters were established

for the healthy data instances in the “nominal region” using k-means clustering,

based on the SVWD measure developed. The number of clusters, or the value of k,

was selected using the average silhouette method, which was introduced by Kaufman

and Rousseeuw in 1990 as an effective and direct method for determining an optimal

number of clusters based on comparison of the tightness and separation of the clusters

in each case [114].

3.3.6 Anomaly Probability Calculation

With the baseline clusters established, test data instances, which were all the

data instances not included in the “nominal region”, were examined by computing

their outlier probability for each of the baseline clusters. The same moving window

containing the 10 latest data instances was also implemented to compute the statistical

features. Then the test data instances were multiplied by the eigenvectors, locating
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them in the PC-based feature space:

Yi = XtestVi (3.5)

where Yi denotes the ith PC, Xtest denotes the vector of test data instance (computed

statistical features), and Vi denotes the ith eigenvector.

Conventional K-means clustering approach determines the affiliation of a test

data instance to a baseline cluster by computing the distance between the test

data point and the centroid of the cluster [115]. The advantages of this method

are simplicity and fast computation speed. However, a significant issue with the

conventional approach is its sensitivity to outliers. A conspicuous outlier in a cluster

could cause remarkable shift in the position of the centroid, therefore providing a

distance between the test data point and the centroid deflected compared with the

majority of points in the cluster. A new improved approach more robust to outliers

is necessary, offering a statistics-based estimate of the distance between the test data

instance and the “nominal region” to detect anomalies. Besides using SVWD as

distance measure, another novelty of the anomaly detection module in the present

work lies in using Fisher criterion (FC), which is the gauge of the relative separation

between the distributions of two classes commonly used in Fisher’s linear discriminant

analysis. An anomaly was considered detected when a test data instance failed to

conform to any baseline cluster. For each baseline cluster, the set of distances

between different healthy data instances within the cluster can be computed. Then

for each test data instance examined, the set of distances between the test data

instance and the healthy data instances in the baseline cluster can also be computed.
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Consequently, two distributions of distances were obtained corresponding to each

baseline cluster and each test data instance. The idea of determining the outlier

probability arose from justifying whether these two distributions, representing two

sets of observations, could be considered belonging to the same distribution to a

certain degree of confidence, to assess whether the examined test data instance

belongs to the corresponding cluster. This is exactly how FC functions. In reliability

engineering, FC is identified as the safety margin (SM), indicating the degree of

relative separation between the means of two distributions (commonly load and

strength) [116]. Unless it belonged to any baseline cluster, the test data point was

considered an outlier. Therefore, FC values for each data instance corresponding

to all the baseline clusters were calculated, assuming Gaussian distributions. The

equation of FC is as follows:

FCx =
µtest − µhealthy,x√
σtest2 + σhealthy,x2

(3.6)

where µtest, σtest are the mean and the standard deviation of the distribution of

dt between the test data instance and healthy baseline cluster x (x = 1, 2, . . . , k,

where k is the number of baseline clusters), respectively, and µhealthy, σhealthy are the

mean and the standard deviation of the distribution of distances within cluster x,

respectively. The attained FC value could be converted to the probability of the

test data instance not belonging to the baseline cluster x, i.e. the outlier probability,

denoted by Rx:

Rx = Φ(SMx) (3.7)

A critical reliability threshold of Rx = 0.995 was defined. Once the Rx values for
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all the baseline clusters exceeded 0.995, i.e. the test data instance did not belong

to any healthy cluster with at least 99.5% confidence level, the examined test data

instance would be announced an anomaly.

3.3.7 Validation of Anomaly Detection Technique

This section presents the validation of the proposed anomaly detection tech-

nique discussed in the preceding sections. It is difficult to evaluate the outcome of

unsupervised/semi-supervised machine learning without a benchmark example whose

actual outcome is explicitly given [117]. Therefore, to evaluate the robustness of the

proposed technique, a benchmark dataset with binary outputs of 0 or “inlier” and 1

or “outlier” is required. One renowned dataset for evaluating clustering algorithms

is the Wine dataset from UCI machine learning repository [118]. The dataset is a

multiclass classification dataset with 13 attributes and 3 classes, containing the chem-

ical analysis results of wines from three different cultivars in a region of Italy [119].

The quantities of 13 constituents in the three types of wines were recorded. The

instances from two of the classes were used as inliers and the ones from the third

class containing 10 instances were taken as outliers.

The validation of the proposed technique also required performance comparison

with state-of-the-art techniques, such as the Mahalanobis Distance (MD) approach.

The MD approach has been extensively used in prognostics. For example, in

electronics, it has been implemented for detecting anomalies in IGBTs [50] and

multilayer ceramic capacitors [120]. The MD-based technique as was introduced
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in [50] followed a similar procedure as the proposed technique, but with a different

criterion of anomaly determination:

� Perform k-means clustering based on MD for each baseline cluster and obtain

a distribution of MDs between healthy data instances within the cluster.

Compute the mean and standard deviation of the distribution.

� Compute the MD between the current test data instance and the centroid of

each baseline cluster.

� Compute the Z-score of the MD value for the test data instance corresponding

to each baseline cluster. If Z − score > 3 or Z − score < −3 (other thresholds

may apply), then the test data instance is considered not belonging to the

cluster. If this criterion holds for all the healthy clusters, then the test data

instance is considered an anomaly.

For each anomaly detection technique, the implementation results on the Wine

dataset were compared with the true classification results using Rand Index (RI),

proposed by William M. Rand in 1971 [121], has been widely used in statistics as

a measure of similarity between two data clusters. Assuming there are a set of

n objects S for partitioning, and two partitioning results, X = X1, · · · , Xi, and

Y = X1, · · · , Xj, are available which partition the n objects into i and j subsets,

respectively. Suppose that:

� a is the number of pairs of elements in S that are in the same subset in both

X and Y .
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� b is the number of pairs of elements in S that are in different subsets in both

X and Y .

� c is the number of pairs of elements in S that are in the same subset in X but

in different subsets in Y .

� d is the number of pairs of elements in S that are in different subsets in X but

in the same subset in Y .

Then obviously a+ b gives the total number of element pairs that yields the same

clustering results in both methods. The Rand index R is given as the proportion of

these pairs in all the pairs, as is shown below:

R =
a+ b

a+ b+ c+ d
(3.8)

The denominator is the total number of element pairs, so for n total elements:

a+ b+ c+ d =

n
2

 =
n(n− 1)

2
(3.9)

Therefore, the Rand index R is a measure of agreement between the two clustering

results that lies between 0 and 1, with 0 being total disagreement, and 1 being total

agreement.

The problem of the conventional Rand index is that the expected value of two

random clustering results is not a constant one [122]. To address the problem, the

adjusted Rand index (ARI) was proposed by Hubert and Arabie in 1985 [123], by

using the generalized hypergeometric distribution as the random model. Specifically,

the clustering results X and Y are randomly selected so that the number of objects

64



in the clustering results is fixed. A baseline is established by using the expected level

of agreement of all element pairs between clustering results [124]. Therefore, ARI

has become a more robust measure of similarity than the conventional RI. Equation

3.10 shows the equation for computing ARI based on the expected index (level of

agreement). In the present work, the ARI values of the proposed anomaly detection

technique and the MD-based technique shown above were compared across a variety

of thresholds for the outlier probability for each baseline cluster.

ARI = Index−Expected Index
Max Index−Expected Index =

∑
ij


nij

2

−

∑

i


ai

2


∑

j


bj

2
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/

n

2
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1
2
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∑
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+
∑

j


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2
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−

∑
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
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
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j
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

(3.10)

Table 3.1 summarizes the results of ARI values of two techniques across

thresholds varying from 90% to 99.73% (upper bound 6σ). It turned out that the

proposed technique in the present work demonstrated higher ARI values than the

MD-based technique for all the thresholds from 90% to 99.5%, with the maximum

value incurred at 99.5%. This also explained why 99.5% was selected as the critical

reliability threshold in the previous subsection.
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Table 3.1: Results of adjusted Rand index (ARI) Comparison for the proposed

anomaly detection technique

Probability Adjusted Rand Index

Threshold Proposed Technique MD-based Technique

90% 0.3234 0.2586

95% 0.3402 0.2586

99% 0.3303 0.303

99.5% 0.35 0.303

99.73% 0.2096 0.303

3.4 Bayesian Filter Model

3.4.1 Physics-of-Failure-Based Model Variables for IGBT Modules

As was presented earlier, the RUL prediction model consisted of a system

process model and a measurement model. The process model is the basis of future

state and RUL prediction, so its development is critical to the performance of the

prediction model. Generally, a non-linear mathematical model is required to describe

the evolution behavior of the failure precursor, because of the non-linearity of failure

precursor evolutions. The failure precursor of IGBT modules, Vforward, evolves slowly

at first and then gradually accelerates due to increasing pace of fatigue-induced crack

propagation in the bond wires. The time-series evolution of at least one variable

composing the process model should be able to effectively capture this nonlinearity
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of degradation, to correctly “drive” the evolution of the failure precursor. The

most straightforward choice of this “driving variable” is t, the elapsed test time or

on-power cycles, as was used in [125], [126]. Obviously, the problem of using t is lack

of non-linearity, so additional variables are required to make up for it.

An alternative approach is to use the physics-of-failure model associated with

the relevant failure mechanism, given that a strong correlation exists between the

failure precursor and the magnitude of degradation or damage in the system due

to the mechanism. The selected “driving variable” should be correlated to the

damage magnitude while calculable at each time step. Hereby, the failure precursor

parametric degradation could be related to the physical degradation evolution of the

devices. For IGBT modules under the power cycle loading condition with fatigue-

induced bond wire lift-off as the dominant failure mechanism, the direct damage

scale is the crack size near the bond wire-bond pad interface. The first principle

of this failure mechanism is the well-known Paris equation. In fact, the complete

failure physics behind bond wire lift-off is fatigue-induced void and crack initiation,

which is a much more complex procedure than that of Paris-Equation-based crack

propagation. However, a complete three step fatigue model is much more difficult to

set up for the fault detection process since the crack initiation is based on knowledge

of pre-existing material defects in the bond wire or bond pad. Therefore, only crack

propagation part was considered in the present work.

Besides the “driving variable” addressing the nonlinearity of failure precursor

evolution, variables accounting for other factors influencing the speed of degradation,

such as the effect of loads or stresses on the tested devices, should also be included
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in the process model. Orchard et al. [29] used a hypothetical loading parameter

incorporating in-situ loading conditions, which is a useful point because load or

stress level is a critical factor influencing the speed of degradation. In the present

dissertation, a hypothetic loading variable is also created, but it is more clearly

defined by being analytically associated with critical loading parameters of the stress

test.

Specifically, for IGBT modules, two time-dependent variables l(k) and ∆K(k)

were developed and accommodated in the process model, in which k denotes the

present time step of cumulative power cycles. l(k) is a hypothetic variable associated

with the power cycle loading parameters, the load current Iload, and the junction

temperature variation ∆Tj, as is shown in Equation 3.11. The values of ∆Tj were

derived from the directly measurable base plate temperature, which was monitored

in-situ throughout the power cycling tests in parallel with Vforward. In this sense,

l(k) tracks the real-time loading condition in the test.

l (k) = fl (Iload,∆Tj (k)) (3.11)

∆K (k) is the stress intensity factor governing crack propagation under fatigue loads.

The reason of choosing this variable is that in the theory of fatigue, ∆K (k) is

correlated to the crack length a and the stress amplitude ∆σ, as Equation 3.12

indicates. Through some derivations, it could become an explicit function of the

elapsed power cycle N .

∆K (k) = α∆σ
√
πa (3.12)

where α is a constant. ∆σ is related to ∆Tj, while the crack length is not directly
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calculable. The Paris Equation for fatigue crack extension is:

da

dN
= A (∆K)n (3.13)

where A, n are material-related constants. Combining Equation 3.12 with 3.13 and

performing an integral over ∂a and ∂N , respectively, yielded the relationship between

∆K (k) and N , the elapsed power cycles, given in Equation 3.14. The bond wire

material was specified to be aluminum. The NASGRO database [127] gave the n

value of around 3.2 for aluminum and aluminum alloys.

∆K (k) ∝ B
[
A
(

1− n

2

)
BnN + a

1−n
2

i

] 1
2−n

(3.14)

where B = 1.12π∆σ, in which ∆σ is the stress amplitude at the crack location, and

in turn associated with the junction temperature variation ∆Tj with the following

relationship:

∆σ = CE (αAl − αSi) ∆Tj (3.15)

where C < 1 is a constant, E is the young’s modulus of aluminum, and αAl and αSi

are the CTEs of the aluminum and silicon, respectively. An example of the resultant

time-series data of ∆K(k) for degradation data series in [8] is shown in Figure 3.2.
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Figure 3.2: Time-series data of ∆K(k) for degradation data series in [8]

3.4.2 Physics-of-Failure-Based Model Variables for GaN HEMTs

For HF GaN HEMTs, the device structure, operating condition and failure

mechanisms are completely different from those of IGBT modules. The output power

Pout, as the failure precursor of GaN HEMTs under RF-ALT, decreases more rapidly

at the beginning stage of the test, as the ohmic contact diffusion rate is the fastest

at the beginning stage, and the defect generation rate in the active layers is also the

fastest, trapping a large number of electrons. As tests go on, the concentration of

Au atoms in the source contact increases, and as a result the diffusion rate becomes

slower. All in all, the evolution of Pout is also nonlinear. Similar to IGBT modules,

the system process model of GaN HEMTs also consists of a hypothetic loading

parameter, and a physics-of-failure related variable.
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Figure 3.3: Source contact stacked layers and source-connected field plate of Wolf-

speed GaN HEMTs

The “driving variable” for GaN HEMTs is associated with ohmic contact

diffusion that leads to voiding in the Au field plate, which in turn leads to loss of

function of the field plate. Figure 3.3 illustrates the structure of the source contact

and the field plate physically connected to the source. It was assumed that the

ohmic contact had a stacking layer structure of Ti/Al/Ni/Au (200/1000/450/550

Å) [128]. The length of the source contact was 3µm, while the width of the device

was 3.6mm [129]. As the inter-diffusion occurred, Au atoms diffused into the source

contact consisting of Ti/Al/Ti stacking layers, while the Ti and Al atoms were

believed to diffuse to the top of the Au layer in the source contact. Therefore, this

problem was becoming an interdiffusion problem between Au, Ti and Al. The void

size, denoted lv (t), in the field plate was the right candidate for the ”driving variable”

established on a well understood and formulated first-principle model, Fick’s Second

Law of diffusion:

∂C (x, t)

∂t
=

∂

∂x

(
D̃ (C) ∂C (x, t)

∂x

)
(3.16)
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where C (x, t) denotes the concentration of the diffusing species (in this case Au) at

position x and time t. D̃ (C) denotes the inter-diffusivity between diffusing species

and host material, which is a function of elapsed test time as well. The void size

can be microscopically interpreted as the total number of Au atoms from the field

plate diffusing into the Ti/Al/Ti layers, which is computable from the concentration

profile. The rate of diffusion and void size are related to the geometry of the GaN

HEMT, particularly the dimensions of source contact and field plate.

To solve Equation 3.16, D̃ (C) had to be determined. Diffusivity is dependent

on temperature. Therefore, a thermal simulation of the investigated Wolfspeed GaN

HEMT was necessary to identify the local temperature at the source contact. A 2D

CAD model of the device was created using COMSOL Multiphysics, simplified over

the device cross-section plot provided in [130], taking the device width perpendicular

to the cross section into account. The material of each layer provided in [129], [130]

was defined and assigned. The electrical loads Vd = 50V as specified in [69] were

applied to the device. Then Electrical Current (EC), Electrostatics (ES) and Heat

Transfer in Solids (HT) analysis modules were invoked to simulate the thermal profile

of the device during the RF-ALT. Figure 3.4 shows the temperature profile of the

device under steady state during the test. The local temperature can be extracted

from the profile for any point of interest. The diffusion temperature extraction point,

which was located inside the source contact, is marked in the figure as well. It turned

out that the temperature at this point was around 302 ◦C, and had little variation

along the length of the source contact. Therefore, this temperature was used in the

diffusivity computation to be discussed subsequently.
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Figure 3.4: Temperature profile simulation of Wolfspeed GaN HEMT under RF-ALT

In addition, the inter-diffusivity in each layer in the source contact differed

with the material of each layer. To derive a solution to the diffusion equation, the

inter-diffusivities between Au, Ti and Al needs to be determined. The Darken-

Manning Equation, which links the interdiffusion coefficient, the tracer diffusion

coefficients and the thermodynamic factor, was used [131]. Equation 3.17-3.19 shows

the Darken-Manning Equation the three lower source contact layers (upper Ti layer,

Al layer and lower Ti layer):

D̃1 = {cT i@T i1DAu + cAu@T i1DT i}Sϕ (3.17)

D̃2 = {cAl@AlDAu + cAu@AlDAl}Sϕ (3.18)

D̃3 = {cT i@T i2DAu + cAu@T i2DT i}Sϕ (3.19)

where D̃n(n = 1, 2, 3) denote the interdiffusion coefficients in the three layers, cT i@T i1 ,

cAu@T i1 , . . . , etc. are the size fractions of each component in the corresponding layer,

in which Ti1, Ti2 denote the upper and lower Ti layer, DAu, DT i and DAl denote
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the tracer diffusion coefficient of Au, Ti and Al, respectively, S denotes the Manning

factor and ϕ denotes the thermodynamic factor. The Manning factor can be ignored

generally because the Manning kinetics theory puts a fairly narrow range on S, which

is very close to 1 [132]. ϕ is defined as

ϕ =
cAu
kT

∂µAu
∂cAu

(3.20)

where µAu is the chemical potential of Au. ϕ can be expressed in terms of the activity

as

ϕ = 1 +
dlog fAu
dlog cAu

(3.21)

where fAu is the activity coefficient of Au. The activity vanishes for ideal fluid

mixtures, and the thermodynamic factor is equal to unity in this case. Therefore,

in the present work, it is assumed that the enthalpy of mixing is negligible, so the

mixture of Au and Al can be considered almost ideal, and ϕ ≈ 1 [133]. Hence, the

inter-diffusivities in Equation 3.22-3.24 can be approximated as

D̃1 = cT i@T i1DAu + cAu@T i1DT i (3.22)

D̃2 = cAl@AlDAu + cAu@AlDAl (3.23)

D̃3 = cT i@T i2DAu + cAu@T i2DT i (3.24)

At the beginning of diffusion (t = 0), for Al and Ti layers, cAu = 0, cAl = cT i = 1.

Thus D̃1 = D̃2 = D̃3 = DAu. The tracer diffusion is usually assumed to be identical

to self-diffusion (assuming no significant isotopic effect) [134]. The temperature

dependence of the self-diffusion coefficients is

D = D0exp(−
Qd

RT
) (3.25)
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where D0 is a pre-exponential coefficient, Qd is the activation energy for diffusion, R

is the gas constant, and T is the temperature. The D0 and Qd of Au, Ti and Al can

be found in [135]. Based on Equation 3.25, the corresponding coefficient, and the

temperature T = 302 ◦C, DAu, DT i and DAl can be obtained. Table 3.2 summarizes

their values:

Table 3.2: Summary of self-diffusion coefficients of interdiffusion components

Material Diffusion Coefficient (m2/s)

Au 1.44× 10−21

Ti 2.928× 10−24

Al 3.148× 10−17

Then the inter-diffusivities can be considered a function of the size fractions of

the components in each layer. So far the Fick’s Second Law (FSL) could be used to

model each of the three layers: Upper Ti, Al and Lower Ti.

Upper Ti Layer:

In the upper Ti layer right next to the Au layer, the partial differential equation

(PDE) describing the behavior of the diffusing species governed by the concentration

gradient was:

∂CAu@T i1 (x, t)

∂t
=

∂

∂x

(
D̃1 (CAu@T i1) ∂CAu@T i1 (x, t)

∂x

)

= D̃1 (CAu@Ti1)
∂2CAu@T i1 (x, t)

∂x2

(3.26)

where CAu@T i1 (x, t) is the concentration of Au atoms in the upper Ti layer. To

solve the equation, the initial conditions and the boundary conditions needed to be
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specified. Suppose there was an x axis pointing down into the device, with the origin

at the top of the Au layer. Since the thickness of the top Au layer was 55 nm, and

the thickness of the upper Ti layer was 45 nm, the initial conditions were:

CAu@T i1 (x, t = 0) =


50at.%Au, x = 55nm

0, 55nm < x ≤ 100nm

(3.27)

It was assumed that at the boundary between the Au and the upper Ti layer,

the concentration of Au atoms was 50 at.% at t = 0, a perfect boundary. Also, there

were no Au atoms inside the Ti layer. For the boundary conditions, the boundary

between the Au and the upper Ti layer might as well be assumed to maintain

a dynamic equilibrium at 50at.%Au = 50at.%Ti, considering the interdiffusion

behavior. On the other hand, suppose that the Ti layer was infinitely thick, at

x =∞, the concentration would always be 0. Therefore, the boundary conditions

were

CAu@T i1(x = 55nm, t) = 50 at.%Au (3.28)

CAu@T i1(x =∞, t) = 0 (3.29)

To make the PDE solvable in Mathematica, transformation needed to be made by

taking y = 1
x

so that x =∞ can be transformed to y = 0. Therefore, the equation

then became

∂CAu@T i1

(
1
y
, t
)

∂t
=

∂

∂ 1
y

D̃1 (CAu@T i1) ∂CAu@T i1

(
1
y
, t
)

∂ 1
y


=
dy

d 1
y

∂

∂y

(
dy

d 1
y

D̃1 (CAu@T i1) ∂CAu@T i1 (y, t)

∂y

)

= y2 ∂

∂y

(
y2 D̃1 (CAu@T i1) ∂CAu@T i1 (y, t)

∂y

)
(3.30)
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The initial condition became

CAu@T i1 (y, t = 0) = 50 at.%Au, y = 1.818× 107m−1,

1× 105m−1 ≤ y < 1.818× 107m−1

(3.31)

The boundary conditions became

CAu@T i1(y = 1.818× 107m−1, t) = 50 at.%Au (3.32)

CAu@T i1(y = 0, t) = 0 (3.33)

Al Layer:

Similarly, the PDE of the 100 nm-thick-Al layer was:

∂CAu@Al (x, t)

∂t
=

∂

∂x

(
D̃2 (CAu@Al) ∂CAu@Al (x, t)

∂x

)
(3.34)

where CAu@Al (x, t) is the concentration of Au atoms in the Al layer. Assuming there

were no Au atoms throughout the Al layer at t = 0. The initial condition was

CAu@Al (x, t = 0) = 0 (3.35)

The boundary concentration at x = 100nm, the upper Ti-Al interface, was dependent

on the solutions of the upper Ti layer. Hence, the boundary condition of the Al layer

was

CAu@Al(x = 100nm, t) = CAu@T i1(x = 100nm, t) (3.36)

CAu@Al(x =∞, t) = 0 (3.37)

By taking y = 1
x
, the equation became

∂CAu@Al (y, t)

∂t
= −y2 ∂

∂y

(
−y2 D̃2 (CAu@Al) ∂CAu@Al (y, t)

∂y

)
(3.38)
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The initial condition became

CAu@Al (y, t = 0) = 0 (3.39)

The boundary conditions became

CAu@Al(y = 1× 105m−1, t) = CAu@T i1(y = 1× 105m−1, t) (3.40)

CAu@Al(y = 0, t) = 0 (3.41)

Lower Ti Layer:

The PDE of the lower Ti layer, which was 20 nm thick, was:

∂CAu@T i2 (x, t)

∂t
=

∂

∂x

(
D̃3 (CAu@T i2) ∂CAu@T i2 (x, t)

∂x

)
(3.42)

where CAu@T i2 (x, t) was the concentration of Au atoms in the lower Ti layer. The

initial condition was

CAu@T i2 (x, t = 0) = 0 (3.43)

The boundary concentration at x = 200nm, the Al-lower Ti interface, was dependent

on the solutions of the Al layer. Therefore, the boundary condition of the lower Ti

layer was

CAu@T i2(x = 200nm, t) = CAu@Al(x = 200nm, t) (3.44)

CAu@T i2(x =∞, t) = 0 (3.45)

By taking y = 1
x
, the equation became

∂CAu@T i2 (y, t)

∂t
= −y2 ∂

∂y

(
−y2 D̃3 (CAu@T i2) ∂CAu@T i2 (y, t)

∂y

)
(3.46)

78



The initial condition became

CAu@T i2 (y, t = 0) = 0 (3.47)

The boundary conditions became

CAu@T i2(y = 5× 104m−1, t) = CAu@Al(y = 5× 104m−1, t) (3.48)

CAu@T i2(y = 0, t) = 0 (3.49)

The established equations and the initial/boundary conditions were solved

in Mathematica. The outcome of the computation, the concentration profile of

Au atoms for all the three layers, was shown in Figure 3.5. The profile was then

integrated over the Ti/Al/Ti layers to compute the total number of Au atoms in

these layers of the source contact, NAu, as a function of the elapsed test time t:

NAu = fd(t) (3.50)

Figure 3.5: Au concentration profile in the Ti/Al/Ti layers of the GaN HEMT source

contact vs. time
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Consequently, the data series of NAu in the Ti/Al/Ti layers were obtained and

taken as the “driving variable” in the system process model of GaN HEMTs. Figure

3.6 shows the plot of NAu over the elapsed test time. The data series of the numbers

of Au atoms were converted to the volume (size) of field plate void through the

following equation:

lv(t) =
MAuNAu

ρAuNA

(3.51)

where MAu is the molar mass of Au, ρAu is the density of Au and NA is the Avogadro’s

constant.

Figure 3.6: The total number of Au atoms in the Ti/Al/Ti layers of the GaN HEMT

source contact vs. the elapsed test time

On the other hand, the hypothetic parameter in GaN HEMTs was simply de-

noted load. The associated loading parameters under high-frequency drive conditions

were the input power Pin, and the junction temperature Tj, as is shown in Equation
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3.52. It should be noted that both the loading parameters were kept constant in the

HF-ALT, so the load was also constant throughout the test.

load = fl (Pin, Tj) (3.52)

3.4.3 Model Specification

Once the loading parameter and the “driving variable” were selected and

computed, the process model and the measurement model could then be specified.

For IGBT modules, the process model took the following form:

s (k + 1) = fIGBT (s (k) , l (k) ,∆K (k) , ω (k)) (3.53)

where s (k) denotes the failure precursor value (Vforward for IGBTs) at time step

k, and ω (k) denotes the process noise. Specifying the process model, including

s (k) as a function of l (k) and ∆K (k), as well as l (k) as a function of the loading

parameters Iload and ∆Tj, required selection of a proper nonlinear mathematical

model. The power law polynomial model was selected among a number of common

nonlinear mathematical models, including the power law model, the exponential

model, multiplicative model, etc., because it had been demonstrated to provide

greater flexibility in shape [136], [137]. Corbetta et al. [138] compared and discussed

the choice of process noise, with the optimal noise being a multiplicative noise where

a lognormal random noise eω, ω ∼ N (0, σ2
ω) was multiplied by the increments to

represent the uncertainties. The ω in the noise followed the normal distribution and

was constrained by the principle below, as was validated in [138]:

µω = −σω
2

2
(3.54)
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Therefore, the process model of IGBT modules related to the initial value of the

failure precursor s0 is shown in Equation 3.55:

s (k) = s0 + (l (k)− l0 +m1∆K(k)n1) eω(k) (3.55)

The load variable l (k) was also assumed to follow the power law polynomial model:

l (k) = m2Iload
n2 +m3∆Tj (k)n3 (3.56)

Taking the derivative of Equation 3.55 and combining Equation 3.56 leads to:

ds (k)

dt
=

(
m3n3∆Tj (k)n3−1 ∆Tj (k)

∂t
+m1n1∆K (k)n1−1 ∆K (k)

∂t

)
eω(k) (3.57)

By assuming that dt can be discretized into small steps, Equation 3.57 was converted

to the following canonical form:

s (k + 1) = s (k) +
(
m3n3∆Tj (k)n3−1 (∆Tj (k + 1)−∆Tj (k))

)
eω (k)

+
(
m1n1∆K (k)n1−1 (∆K (k + 1)−∆K (k))

)
eω (k)

(3.58)

whereas

s (1) = s0 + (l (1)− l0 +m1∆K (1)n1) eω(1) (3.59)

The measurement model described the functional relationship between the

measured values and the failure precursor. In the present work, since the failure

precursor was directly measurable, the measurement model only accounted for the

differences between the actual measurement and the actual failure precursor value, i.e.

the measurement error. The measurement model can be depicted as a de-noising step.

For IGBT modules, the two variables measured in-situ and monitored throughout the

test are Vforward and ∆Tj, and they were de-noised respectively. The measurement
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error was assumed to be Gaussian, and therefore the measurement model is as

follows:

y (k) = s (k) + v1 (k) (3.60)

∆Ty (k) = ∆Tj (k) + v2 (k) (3.61)

where y (k) and ∆Ty (k) are the raw measurements of s (k) and ∆Tj (k), and v1 (k)

and v2 (k) denote the measurement noises of s (k) and ∆Tj (k), respectively. In

summary, the complete prognostic model for IGBT modules under power cycling

conditions can be assembled and shown below:

(PCi, SV i) = fPCA

(
d̄s

dt
, σ dxv

dt
, CF dxv

dt
,
ds

dtmax
,
ds

dt rms
, IF ds

dt
, SF ds

dt
, ED ds

dt
, CLF ds

dt

)

dj,m(k) =

(SV 1

(
PC1 (k)− PC1,m

j
)

SV 1 + SV 2 + . . .+ SV n

)2

+

(
SV 2

(
PC2 (k)− PC2,m

j
)

SV 1 + SV 2 + . . .+ SV n

)2

+ . . .+

(
SV n

(
PCn (k)− PCn,m

j
)

SV 1 + SV 2 + . . .+ SV n

)2
1/2

Pdet,j (k) = fdet(dj,m (k) , dj,m1,m2 (k)) (3.62)

s(k) =s(k − 1) + (m3n3∆Tj(k − 1)n3−1 (∆Tj(k)−∆Tj(k − 1))

+m1n1∆K(k − 1)n1−1(∆K(k)−∆K(k − 1)))eω(k)

l(k) = m2Iload
n2 +m3∆Tj(k)n3

y(k) = s(k) + v1(k)

∆Ty(k) = ∆Tj(k) + v2(k)

[s(0) ∆Tj(0) Iload] = [s0 ∆Tj0 Iload]

where the first three equations constitute the anomaly detection model, fPCA()
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denotes the feature extraction process using PCA, while the 9 independent variables

inside denote the 9 time-domain statistical features constructed for feature extraction.

PCi and SV i denote the outcome of PCA, the ith principal component and the

corresponding singular value, respectively. i = 1, 2, · · · , n with n being the number of

PCs. In the second equation, dj,m denotes the SVWD between the current test data

instance and the mth healthy data instance in the jth baseline cluster. j = 1, 2, · · · , l

with l being the number of baseline clusters, and m = 1, 2, · · · , h with h being the

number of healthy data instances in the jth baseline cluster. PCi,m
j denotes the

coordinate in the ith dimension in the feature space constructed by PCs, of the mth

healthy data instance inside the jth cluster. fdet() denotes the outlier probability

computation process based on FC. Pdet,j denotes the outlier probability for the jth

baseline cluster, while dj,m1,m2 is the SVWD between the m1th and the m2th healthy

data instances within the jth healthy cluster. Next to the anomaly detection model

are the process model and the measurement model. The last row describes the initial

conditions of the failure precursor s, denoted by s0, and the loading parameters ∆Tj

and Iload, respectively.

For GaN HEMTs, on the other hand, the process model takes the following

form:

s (t+ ∆t) = fGaN (s (t) , load, lv (t) , ω (t)) (3.63)

where s (t) denotes the value of Pout, the failure precursor of GaN HEMTs at time t,

and ω (t) denotes the process noise at time t. The process model, including s (t) as

a function of load and lv (t), as well as load as a function of the loading parameters
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Iload and ∆Tj , is also specified using the power law polynomial model and the optimal

noise used for IGBT modules. Therefore, the process model of GaN HEMTs related

to the initial value of the failure precursor s0 is shown below:

s (t) = s0 + (m1 ∗ load ∗ lv (t)n1) eω(t) (3.64)

The hypothetic loading parameter as a function of Iload and Tj:

load = m2Pin
n2 +m3Tj

n3 (3.65)

Taking the derivative of Equation 3.64 gives the stepwise evolution model of s (t):

∂s (t)

∂t
= m1n1 ∗ load ∗ lv (t)n3−1∂lv (t)

∂t
eω(t) + (m1 ∗ load ∗ lv(t)n1)eω(t)∂ω (t)

∂t
(3.66)

Assuming that ∂t can be discretized into steps with a ∆t gap, Equation 3.66 was

converted to the following form:

s(t) =s (t−∆t) +m1n1 ∗ load ∗ lv (t−∆t)n1−1 (lv(t)− lv (t−∆t)) eω(t)

+ (m1 ∗ load ∗ lv (t−∆t)n1) eω(t−∆t) (ω(t)− ω (t−∆t))

(3.67)

whereas

s(∆t) = s0 + (load+m1lv (∆t)n1)eω(∆t) (3.68)

For GaN HEMTs, only one variable, Pout, was monitored in-situ throughout the

test. The measurement error was also assumed to be Gaussian, and the measurement

model becomes:

Pout,y (t) = Pout (t) + v (t) (3.69)

where Pout,y (t) denotes the raw measurement at t, and Pout (t) denotes the mea-

surement noise of Pout at t. In summary, the complete prognostic model for GaN
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HEMTs under RF-ALT conditions could be assembled and shown below:

(PCi, SV i) = fPCA

(
d̄s

dt
, σ dxv

dt
, CF dxv

dt
,
ds

dtmax
,
ds

dt rms
, IF ds

dt
, SF ds

dt
, ED ds

dt
, CLF ds

dt

)

dj,m(t) =

(SV 1

(
PC1(t)− PC1,m

j
)

SV 1 + SV 2 + . . .+ SV n

)2

+

(
SV 2

(
PC2(t)− PC2,m

j
)

SV 1 + SV 2 + . . .+ SV n

)2

+ . . .+

(
SV n

(
PCn(t)− PCn,m

j
)

SV 1 + SV 2 + . . .+ SV n

)2
1/2

Pdet,j(t) = fdet(dj,m(t), dj,m1,m2(t)) (3.70)

s(t) =s (t−∆t) +m1n1 ∗ load ∗ lv (t−∆t)n1−1 (lv(t)− lv (t−∆t)) eω(t)

+ (m1 ∗ load ∗ lv (t−∆t)n1) eω(t−∆t) (ω(t)− ω (t−∆t))

load = m2Pin
n2 +m3Tj

n3

Pout,y(t) = Pout(t) + v(t)

s(0) = s0

The framework of the model was kept the same as IGBT modules, with the last row

also concerning the initial conditions. Since the input loading conditions remained

the same throughout the test, only the initial value of failure precursor needed to be

specified.

3.5 Summary

This chapter presented in detail the development of the prognostic model

including a novel anomaly detection module and a RUL prediction module including

a non-linear process model and a measurement model. The anomaly detection model

utilized semi-supervised machine learning, with the healthy baseline established based
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on unsupervised machine learning techniques, including PCA for dimensionality

reduction and k-means clustering for partitioning the baseline healthy data in the

”nominal region”. The determination of the outlier probability of a test data

instance for each baseline cluster was based on calculating the Fisher criterion of the

distribution of distances between data instances within each baseline cluster, and the

distribution of distances between the test data instance and the healthy data instances

within the baseline cluster. The developed anomaly detection model was validated

on the famous wine dataset evaluating the performance of clustering algorithms

and outperformed the Mahalanobis-distance-based approach. The RUL prediction

module included a power-law polynomial process model and a measurement model.

The process model included a ”driving variable” and a hypothetic loading variable,

which were tailored to the physics-of-failure and the type of stress the specific power

devices were subject to. For IGBT modules, the ”driving variable” was the stress

intensity factor whose relationship with the elapsed power cycles was derived from

Paris equation. For GaN HEMTs, the ”driving variable” was the void size in the

field plate as a result of ohmic contact interdiffusion, which was obtained from a

diffusion equation computation based on temperature profile simulation in COMSOL

Multiphysics and equation solving in Mathematica. The SIR filter including 100

particles was implemented for RUL prediction 10 times for each IGBT module,

obtaining the average predicted mean CTF and the 95% confidence interval. For

GaN HEMTs, since the specified failure threshold was not reached, the average

predicted state and the 95% confidence interval at the end of test were also computed

10 times. Overall, the average errors for all the IGBT module and GaN HEMT
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degradation data series spanned from 0 to 7%, which were quite satisfactory.
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Chapter 4: Novel Resampling Technique Development

4.1 Introduction of Resampling

The prognostic model introduced in the previous chapter aims at providing a

timely warning of degradation and potential failure and a robust RUL prediction.

The robustness of RUL prediction is evaluated by two criteria. One is the accuracy

of prediction, determined by the mean error of prediction. The other is the efficiency

of prediction, which for PF is determined by the effectiveness of particles. In other

words, in an efficient particle filter, at least the majority of the particles should be

effective and play an infusive role in the final RUL distributions. The metric for

the efficiency of prediction is the effective number of particles. This effectiveness

is influenced by variances in particle distributions. Larger variances reduce the

effectiveness of particles, resulting in particle degeneracy, which can be improved by

resampling.

The key idea of the particle filter technique is to represent the posterior proba-

bility density function (PDF) with a large number of particles and their associated

weights. Resampling is an important method tackling the issue of particle degener-

acy. At each time step, an original set of particles and their weights are obtained

formulating a discretized description of the posterior distribution. Conventionally,
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the resampling step is triggered when Neff falls below a pre-defined threshold, com-

pulsively maintaining an acceptable Neff as time elapses. A new particle set the

same size as the original set is derived to replace the original set. In this process,

particles with low weights are removed and particles with high weights are intensified

(often through replication) to increase the effective particle size Neff [139]. More

new particles are generated in the region of particles with large weights [9], hereby

improving the quality of posterior distribution estimation.

Conventional resampling techniques, while solving the degeneracy issue, could

introduce new undesirable effects. The most notable issue is sample impoverishment,

i.e. loss of diversity in the newly sampled particles because those particles with

high weights in the original set will be duplicated many times in the resampling

process, replacing the low-weight particles [139], [140], [141]. Typically, under a

severe particle degeneracy where resampling is required, the weights are concentrated

on a small portion of all the particles. In such cases, these high-weight particles have

much higher probability of being selected in the resampling process, resulting in a

small number of unique particles in the new set. Other possibly undesirable effects,

such as slower speed of computation due to introduction of resampling, comes down

to parallelizing the PF, which is challenging to realize and is not within the scope of

the present dissertation.

To eliminate these undesired effects, advanced resampling techniques have been

investigated. Common ideas include varying the number of particles, removing the

low-weight particles, not resetting all the weights to uniformity, etc. [9]. Resampling

techniques can also be classified by the number of distributions particles are resampled
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from, single or multiple (compound sampling). For the latter, particles are partitioned

into groups before resampling is implemented. The following sections will discuss

the problem of traditional resampling techniques, and introduce the novel MHA-

replacement resampling technique developed in the present work.

4.2 Traditional Resampling Techniques

Traditional resampling techniques discussed here include multinomial resam-

pling, systematic resampling, residual resampling and stratified resampling. They are

jointly called “the classic four”. These four techniques are very similar in that they

all resample based on multinomial distribution of particle weights. Let N be the size

of the particle set, selecting N particles x̃j from the set following the multinomial

weight distribution to constitute a new particle set P (x̃j = xi) = wi, i, j = 1, · · · , N ,

and replace the original set. For the new particles, their weights are reset to 1/N ,

or uniform weights. The resampling step is triggered when the effective number

of particles drop below a threshold, often 2/3 of N . The differences between the

multinomial, systematic and stratified resampling lie in how the random numbers

between 0 and 1 corresponding to the cumulative sum of weight in the discretized

posterior distributions are generated.

4.2.1 Multinomial Resampling

Multinomial resampling independently generates N random numbers following

the uniform distribution between 0 and 1, U(0, 1). Then for each random number,
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the particle is selected where the cumulative sum of weights before counting in the

particle weight is less than the random number, while after counting in the particle

weight the cumulative sum of weights becomes larger than the random number. Since

the sampling of each particle is random, the number of times a given particle is

resampled ranges from 0 to N .

4.2.2 Systematic Resampling

Systematic resampling is another technique resampling from multinomial dis-

tributions. Unlike multinomial resampling, only one random number u1 is drawn

from the uniform distribution U(0, 1), and the other N − 1 u numbers are obtained

deterministically from ui = u1+(i−1)
N

, where i = 2, · · · , N . Then the same process of

particle selection as multinomial resampling is performed. Systematic resampling is

considered computationally efficient as it minimizes the number of sampling required.

4.2.3 Stratified Resampling

Stratified resampling divides the (0, 1) interval into N equal sub-intervals. In

each sub-interval, one sample is generated following uniform distribution within this

sub-interval and the same process of particle selection as multinomial resampling is

performed again. Figure 4.1 gives the pseudo-code of multinomial, systematic and

stratified resampling.
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4.2.4 Residual Resampling

Residual resampling is slightly different from the three techniques introduced

above. However, the idea is still resampling following the multinomial distribution

of weights. There are two stages in residual resampling. First, the majority of N

particles are resampled deterministically by capturing ni = bNwic copies of the ith

particle in the original set. Obviously, for those particles with weights below 1/N ,

no copy is captured in the first stage. ri = Nwi − ni is called the residual of the ith

particle. At the second stage, the remaining particles to be selected, which is the

difference between N and total number of samples already generated, are sampled

based on multinomial sampling proportional to the weights of residuals. Figure 4.2

gives the pseudo-code of residual resampling.

Figure 4.1: Pseudo-code of multinomial, systematic and stratified resampling [9]
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Figure 4.2: Pseudo-code of residual resampling [9]

The four traditional resampling techniques introduced above are well-known

and extensively used. There are a few variants of these traditional techniques, such

as the residual systematic resampling (RSR) [142], branching [143], and rounding-

copy resampling [144], all of which are not essentially different from “the classic

four”. Overall, these techniques do alleviate the degeneracy problem by performing

resampling whenever the effective sample size Neff drops below a threshold, and

resetting all the weights in the new particle set to uniformity (1/N). Nevertheless,

the drawbacks of these traditional techniques, other than sample impoverishment

are rarely reviewed and discussed in the literature. On the other hand, sample

impoverishment can be severe in these techniques, and the severity actually depends

on the threshold set for Neff . If a very low Neff threshold is set, severe degeneracy

occurs, so the weights concentrate on a small number of particles, leading to repeated

selection of these particles in traditional resampling techniques. This results in severe

sample impoverishment. If the Neff threshold is not set too low, then resampling
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will occur more frequently, raising another problem as will be discussed next.

(a) Tounsi

(b) Schmidt 1E

(c) Schmidt 2E

Figure 4.3: Effective sample size Neff vs. cycles for ”the classic four” techniques in

long-term dynamic state estimation showing increasingly frequent resampling and

weight reset

The real problem of “the classic four” techniques is the increasing frequency

of resampling as time elapses in Bayesian tracking problems. Figure 4.3 shows the
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variation of the effective sample size Neff with time when implementing “the classic

four” techniques on three sets of IGBT module degradation data studied in the

present dissertation. It is obvious that as time (number of power cycles) elapsed,

the gap between adjacent resampling became shorter and shorter. i.e. The decrease

in Neff speeded up over time, hitting the threshold in a shorter time period. The

reason behind this phenomenon is increased scattering of particles after accumulated

recursions of Bayesian filtering process due to its Markov property, even with the

resampling step. This increasing frequency of resampling can be a significant issue

for long-term dynamic tracking and estimation. Every time resampling is executed,

the weights of the resampled particle set is reset to uniformity, which means loss

of previous weight information. Since weight update is only based on the weight

information at the previous time step, with weight resetting the previous weight

information cannot be recovered. Therefore, as an anomaly is detected, it becomes

increasingly likely that the weights are just set to uniformity, making the RUL

prediction utilize uniform or close to uniform weights. This makes no sense for

particle filters because the essence of particle filters is utilizing discriminated set of

weights to estimate the most likely future states. Uniform weights create barriers for

inference of the most likely estimates of the state. It may also increase the sensitivity

of the posterior state estimation to outliers. All in all, traditional resampling allows

high-weight particles to be more pronounced in the particle set, but at the price of

sample impoverishment. The accompanying frequent reset of weights to uniformity

is likely deteriorating the quality of posterior state distribution estimation.
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4.3 Other Resampling Techniques

In addition to the aforementioned traditional techniques, more advanced re-

sampling techniques have been developed. For examples, in contrast to traditional

techniques sampling from a single distribution for all particles, some advanced tech-

niques feature partitioning the particles into groups before resampling. To speed

up the computation, parallel resampling has been developed for complex problems

conducting resampling tasks for multiple particles simultaneously, and grouping of

particles is necessary under these circumstances. In the present work, Gaussian

process noise was assumed for the process model in the propagation (future state

estimation) of particles. At each time step the distribution of particle positions is

expected to follow Gaussian distribution. There is no need of grouping particles

or resampling from multiple distributions. Therefore, the techniques discussed in

the present work still focus on single-distribution resampling. Detailed review of

compound resampling can be found in [9].

There have been several other resampling techniques proposed. Modified

resampling [145] provides a more generalized and flexible framework based on

conventional multinomial resampling through introducing a power law parameter

α to the weights. i.e. The distribution of weights from which particles are drawn

becomes the distribution of a power-law function:

pit ∝ (wit)
α

(4.1)

where pit is the probability of the ith particle being resampled, wit denotes the weight
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of the ith particle. When 0 < α < 1, the influences of lower weight particles get

intensified, while those of higher weight particles get attenuated, and vice versa

for α > 1. The challenge of implementing modified resampling is the choice of

α. Practically, it adds significant complexity to the algorithm entailing analytical

assessment of a proper value of α based on the set of weights at each time step.

Also, modified resampling is still resampling from the original set of weights,

subject to either severe sample impoverishment with larger α or perturbance of

low-weight particles in posterior distribution formulation with smaller α. Variable-

size resampling [146] is another technique introducing flexibility into multinomial

resampling featuring determination of the required sample size at every time step.

The optimal number of particles is determined so that the Kullback–Leibler divergence

(KLD) between the sample-based maximum likelihood estimate (MLE) of a desired

distribution and the actual distribution is less than a predefined error bound ε, with

the probability of 1− ρ:

N =
1

2ε
q (4.2)

where

q = F−1(1− ρ) (4.3)

where F−1() is the inverse of the cumulative chi-squared distribution with k−1 degrees

of freedom, k being the number of non-overlapping multidimensional intervals to sort

the particles. The problem of this technique is also the complexity of computation

and again, reliance on multinomial resampling as the basis. Both of the techniques

are essentially tweaking the traditional techniques, while inheriting their potential
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problems.

A resampling technique distinct from all the previously discussed resampling

techniques is independent Metropolis-Hastings algorithm (IMHA) [9], [10], [147]. In

Metropolis-Hastings algorithm (MHA), particles are generated from the proposal

distribution q(x̃t
i|xit), which is the probability of returning a resampled particle of x̃t

i

given a particle xit in the original set. Then an acceptance probability is computed

based on the conditional density function and independent proposal distributions for

both x̃t
i and xit. IMHA is a special case of MHA replacing the conditional density

functions with independent density functions. The pseudo-code of IMHA is shown

in Figure 4.4 below:

Figure 4.4: Pseudo-code of IMHA resampling [10]

IMHA resampling, unlike the traditional resampling techniques and their

variants discussed earlier, does not produce the new particle set based on the

multinomial weight distribution of the original particle set. It is generating a new

candidate particle at each iteration from the proposal distribution straightly and let
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it compete with the available particle based on the acceptance probability. There

are different versions of IMHA resampling in dealing with weight computation. One

version involves resetting the weights to 1/N [9], while the other version performs

weight normalization given that upon acceptance, both the new particle and its

associated weight replace the original particle and its associated weight [10], [147].

The latter version gets around the sample impoverishment issue as there is little

chance of selecting identical particles multiple times. To avoid the drawback of

resetting weights to uniformity discussed earlier, the present work uses the version

with weight normalization for benchmarking purposes. Degeneracy is probably still

an issue in IMHA due to elimination of weight reset to uniformity. The severity is

expected not as great as the SIS particle filter without resampling, but it is still

going to be a concern.

Another resampling technique that essentially introduces an additional step to

the conventional resampling techniques to counteract the sample impoverishment

issue is called roughening resampling [100]. The basic idea of this technique is

quite simple: since in conventional techniques like multinomial resampling, sample

impoverishment occurs due to repeatedly selecting particles with high weights,

addition of a random noise called roughening noise to the resampled particles could

help decentralize or roughen their values and therefore rejuvenate the diversity of

particles. A Gaussian noise with zero mean and constant variance is commonly

selected for the roughening noise. The variance can be selected using the following

equation [100]:

σ = KDN−
1
dx (4.4)
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where K is a user-selected positive constant, D is the difference between the maximum

and minimum values of the state variable,N is the number of particles, and dx denotes

the number of dimensions of the state variable. One technique with the similar idea

is called the resample-move algorithm. This technique adds a move step after the

resampling step based on Markov chain Monte Carlo (MCMC) sampling method to

rejuvenate the diversity of particles. The move step performs one or more iterations

on each of the resampled particles to sample its position at the next time step, and

then “move” the resampled particle to the sampled position. The sampling guiding

the “move” is based on a transition kernel with the posterior PDF at the next step

as the invariant distribution [148]. All in all, roughening resampling can theoretically

both resolve degeneracy issue and alleviate sample impoverishment through the

roughening step. Therefore, it was considered a promising candidate of a robust

resampling technique and selected for benchmarking in the present dissertation.

4.4 Novel Resampling Technique: IMHA-Replacement Resampling

Review of the state-of-the-art resampling techniques showed that the majority

of them perform reset of weights to uniformity, given the effective sample size Neff

reaches a threshold. Despite instant recovery of Neff , there are severe limitations

of this approach for long-term Bayesian tracking problems. Therefore, a novel

resampling technique was developed in the present dissertation avoiding resetting

the weights to uniformity. The technique also resolves the degeneracy issue by

intentionally and selectively replacing the low-weight particles (weight < 1/N) with
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new particles sampled from the high-weight region, where particle weight is greater

than 1/N . This new resampling technique is called IMHA-replacement resampling.

In the present dissertation, the resampling step was implemented at every time step

in the particle-filter-based MCMC sampling process, without setting a threshold of

Neff to trigger resampling. Despite likely increase in computation time, drastically

eliminating degeneracy while avoiding severe sample impoverishment is the major

concern in the present work.

IMHA-Replacement resampling consists of two steps. The first step is the

conventional IMHA resampling, which improves the effective sample size slightly

without introducing sample impoverishment. The second step is called replacement

step, which captures all the particles with below-average weights (weight < 1/N)

at time step k, assuming the number is Nsub and substitute for them using new

high-weight particles. The set of new particles used for substitution are selected

from a pool of samples twice its size, 2Nsub. Each sample in this pool is resampled

from a high-weight particle at the last time step k − 1, whose propagation based

on the transition probability p(i, j) = Pr(xk = j|xk−1 = i) generates a new particle

with higher weight at k, in the importance sampling process before resampling. i.e.

The set of particles with above-average weights in the importance sampling are

traced one step back for their positions at k − 1. Then an invariant distribution is

formed with the high-weight set at k − 1 to perform importance sampling, selecting

a particle and propagate it from k − 1 to k. A new particle is therefore attained and

used to substitute an original low-weight particle. This resampling process occurs

recursively until all the low-weight particles have been substituted. Finally, the
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weights of the resampled particle set are normalized. Propagation from the prior

positions of high-weight particles at the current step can significantly increase the

chance the resampled particles is located in the high-weight region. Simultaneously,

this process detours sampling original high-weight particles multiple times as in

traditional resampling techniques, keeping the sample impoverishment at a very

low level. Selecting half of the particles with higher weights further suppresses the

occurrence of particle degeneracy. Figure 4.5 shows the flow chart of the IMHA-

replacement resampling technique. Validation of this novel resampling method will

be shown in the subsequent chapters.
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Figure 4.5: Flow chart of the IMHA-replacement resampling technique
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4.5 Summary

This chapter reviewed the state-of-the-art resampling techniques, including

traditional techniques “the classic four”: multinomial, systematic, stratified and resid-

ual resampling, and their variants, including modified and variable-size resampling.

All these resampling techniques have an essential problem of resampling multiple

copies of high-weight particles in the original particle set. Also, the resampling

step is implemented only if the effective sample size Neff decrease below a critical

threshold, and the weights are reset to uniformity in resampling. Such process pro-

duces negative consequences in long-term prediction of dynamic Bayesian estimation

problems. Therefore, weight reset to uniformity and resampling based on Neff should

be avoided. Some more advanced techniques developed by researchers that detour

the problems above are also discussed and selected for benchmarking, including

IMHA resampling and roughening resampling. A novel resampling technique, called

IMHA-replacement resampling, is developed. The idea is to replace the low-weight

particles with high-weight particles resampled and selected based on the positions of

high-weight particles at the previous time step.
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Chapter 5: Validation of Prognostic Model for IGBT Modules

5.1 Degradation Data Sources

Chapter 3 discussed the development of the prognostic model integrating

anomaly detection and RUL prediction, while Chapter 4 discussed the development

of the novel IMHA-replacement resampling technique. This chapter will present

the validation of prognostic model and the resampling technique on multiple sets of

time-series degradation data of IGBT modules. These degradation data series were

collected from three different open literature sources reporting IGBT power cycling

test results [8], [11], [12]. Power cycling tests were conducted in these sources on

commercial 1200 V IGBT modules from different manufacturers with current ratings

varying from 15 A to 313 A, under junction temperature swings ∆Tj varying from

70 K to 108 K and different levels of junction temperature extremes Tj,min and Tj,max

as well. Table 5.1 summarizes the power ratings and important test parameters of the

IGBT module power cycling degradation data series used in the present dissertation.
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Table 5.1: Optimal number of clusters and maximum silhouette values of IGBT

module degradation data series

Literature

Source

Voltage Ratings

VCES (V )

Current Ratings

IC (25 ◦C)

Junction Temperature

Swing ∆Tj (K)

Minimum/Maximum Junction

Temperature Tj,min/Tj,max ( ◦C)

Tounsi (2010) 1200 313 70 80/150

Scheuermann

(2011)

1200 15 70 90/160

Schmidt (2013) 1200 300 108 -20/88

5.2 Results of Anomaly Detection

The failure precursor of IGBT modules is the on-state forward voltage drop

Vforward, while the failure threshold is 5% increase in Vforward. The “nominal region”

containing healthy data was defined using the range discussed in Section 3.3. A

moving window containing 10 most recent data instances within the “nominal region”

was established to compute the statistical features. Then feature extraction based on

PCA was performed to get a set of PCs and establish feature space based on these

PCs, and the healthy data instances were located inside the space. Figure 5.1 shows

the 3D and 2D plots of the healthy Vforward data instances from [12] in the PC-based

feature space, whose coordinate spaces are formed by the three most important PCs

(PC1 to PC3) and the two most important PCs (PC1 and PC2) corresponding to

the largest singular values, respectively.
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(a)

(b)

Figure 5.1: Plots of healthy data instances in the PC-based feature space including

(a) 3D plot involving PC1 to PC3; (b) 2D plot involving PC1 and PC2 only

Then the conventional k-means clustering was implemented to establish the
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baseline clusters for these healthy data. The silhouette values with k ranging from 2

to 6 were observed. For the selection of k, Figure 5.2 shows the plot of silhouette

value vs. k for the time-series IGBT module degradation data from [8]. Table 5.2

summarizes the values of k for all the degradation data series of IGBT modules

studied in the present work. It can be seen that k varied from 2 to 4. Figure 5.3

shows the 3D and 2D plots of the healthy data instances from [12] partitioned into

k clusters in the feature space. The points in the same shape and the same color

belong to the same cluster. Since the PCs were weighed in the SVWD, the clustering

process heavily relied on variance of the healthy data along the axis of PC1, as is

evident in the figure. This is because PC1 often takes up the majority (over 80-90%)

of the weights because it accounts for most of the variance in the data.

Figure 5.2: Variation of silhouette value with the number of clusters for IGBT

module degradation data series in [8]
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(a)

(b)

Figure 5.3: Plots of baseline clusters for healthy data instances including (a) 3D plot

involving PC1 to PC3; (b) 2D plot involving PC1 and PC2 only
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Table 5.2: Optimal number of clusters and maximum silhouette values of IGBT

module degradation data series

Data Source Max. Silhouette Value Optimal Number of Clusters

Tounsi (2010) 0.838 4

Scheuermann (2011) 0.927 2

Schmidt (2013) 1E 0.908 2

Schmidt (2013) 2E 0.62 3

Now that the baseline clusters were established, the outlier probabilities associ-

ated with each test data instance were computed using SVWD and Fisher criterion

(FC), as was discussed in Section 3.3. FC requires establishing two classes and

determines their relative separation. In the present work, for each test data instance

and each baseline cluster, one class consisted of distances between two healthy data

instances within the cluster, while the other consisted of distances between the test

data instance and all the healthy data instances in the cluster. The distances in

each class were assumed to be normally distributed with the mean and the standard

deviation calculated. Then Equation 3.4 was used to obtain the FC value for the

cluster and Equation 3.5 was used to compute the probability that the test data

instance did not belong to the cluster. Once the probability threshold of 0.995 was

reached, the test data instance was considered not belonging to the cluster. If the

threshold was reached by all the baseline clusters, the current test data instance

was considered an anomaly. Table 5.3 shows the anomaly detection results of all
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the IGBT module degradation data series. The anomaly signaling point (ASP)

represents the first test data instance that is considered an anomaly. For all the

data instances between the onset of test data and the ASP, there was not enough

confidence (¡99.5%) that the test data instance is an outlier to at least one of the

baseline clusters. Validation of the technique has been presented in Subsection 3.3.7,

so there is strong confidence that the announced anomaly is actually an anomaly.

Table 5.3: Points for onset of test data and anomaly signaling point (ASP) of IGBT

module degradation data series

Data Source Onset of test Data (Cycles) Anomaly Signaling Point (ASP) (Cycles)

Tounsi (2010) 111,200 129,700

Scheuermann (2011) 3,200 5,700

Schmidt (2013) 1E 21,900 56,900

Schmidt (2013) 2E 31,200 53,900

5.3 Results of RUL Estimation Based on SIR Filter

After an anomaly was detected and signaled, the RUL estimation of the device

under test (DUT) was triggered. As was discussed in Section 3.3, l (k) was the

hypothetic loading variable associated with loading parameters Iload and ∆Tj(k),

while ∆K(k) was the stress intensity factor, as the “driving variable” of the Vforward

increased. The time-series data of l(k) and ∆K(k) were derived following Equation

3.22 and 3.14, respectively. Then the SIR filter was implemented for RUL prediction

of the devices. The particles were initiated at the 4th sampling point where online
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estimation of the system process model parameters was initiated. The noise applied

to the process model followed Equation 3.20, in which the magnitude of σω was

empirically selected as 0.05. Before an anomaly was detected, the recursive Bayesian

procedure including prediction of the particles values at the next time step and update

of the particle weights was implemented at each time step, with the resampling step

applied to retain the effective particle size. At the anomaly signaling point (ASP),

the update of the particle weights was terminated, and the particles were propagated

to make unremitting prediction of future states until the failure threshold is reached.

Once all the particles reached the failure threshold or the end-of-test point, the

estimated RULs presented by the particles were recorded and the distribution of

RULs was formed, taking both the RUL values and particle weights into account.
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(a)

(b)

Figure 5.4: (a) RUL prediction results based on SIR filter; (b) Predicted cycles-to-

failure (CTF) distribution of particles for the IGBT module degradation data series

in [8]
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Figure 5.4 shows the RUL prediction results using the SIR filter for the Vforward

data in [8], including the histogram showing the distribution of cycles-to-failure (CTF)

as a result of variations in particle trajectories. In Figure 5.2 (a), the trajectories of

particles before ASP, called the training stage, are marked in black. As an anomaly

was detected and signaled at 129,700 cycles, the RUL prediction was triggered, and

the particles were propagated until the 5% Vforward increase failure threshold was

reached, whose trajectories are marked in blue at this stage in the plot, called the

prediction stage. The predicted mean CTF calculated from the CTF values and

the particle weights was found to be 156,900 cycles, reporting a +3.42% error from

the actual CTF of 151,700 cycles, where the raw Vforward data reached the failure

threshold. To achieve statistical significance of the results given the randomness of

noises, the 95% two-sided confidence interval (CI) was also calculated and recorded.

Also, to ensure the typicality of the prediction results, 10 individual and independent

runs of the prognostic model for each series of degradation data were made to get

an average predicted mean CTF and 95% CI. For the degradation data in [8], the

average error of the predicted mean CTF was +2.62%.
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(a)

(b)

Figure 5.5: (a) RUL prediction results based on the SIR filter; (b) Predicted CTF

distribution of particles; for the IGBT module degradation data series in [11]
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(a)

(b)

Figure 5.6: (a) RUL prediction results based on the SIR filter; (b) Predicted CTF

distribution of particles; for the IGBT module degradation data series 1E in [12]
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(a)

(b)

Figure 5.7: (a) RUL prediction results based on the SIR filter; (b) Predicted CTF

distribution of particles; for the IGBT module degradation data series 2E in [12]

Similarly, the prognostic model was implemented for RUL estimation of the
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other IGBT degradation data series, whose results are shown in Figure 5.5-5.7. The

average predicted mean errors ranged from -1.71% to +3.53%. Table 5.4 summarizes

the results of the average predicted mean CTFs, the raw data CTFs, the average

prediction errors and 95% two-sided confidence intervals of all the IGBT module

degradation data series studied.

Table 5.4: Summary of RUL prediction results for IGBT modules

Data Source Average Predicted

Mean CTF (Cycles)

Actual CTF

(Cycles)

Average Predic-

tion Error (%)

95% Confidence In-

terval (Cycles)

Tounsi (2010) 157,060 151,700 +3.53 [148,990; 162,110]

Scheuermann (2011) 17,790 18,100 -1.71 [15,830; 19,870]

Schmidt (2013) 1E 66,620 65,500 +1.71 [61,480; 73,370]

Schmidt (2013) 2E 62,350 62,400 -0.08 [57,520; 66,140]

To sum up, the average prediction errors of all the degradation data series

were within 4%, which was quite satisfactory, successfully validating the proposed

prognostic model for different IGBT modules under various power cycling conditions.

A significant advantage of this model is the incorporation of the physics-of-failure

knowledge in the system process model which was often empirical in the previous

works on PF-based prognostics. The “driving variable” incorporating physics-of-

failure knowledge enables more accurate tracking and estimation of the degradation

process, combining the merits of both first-principal approaches and real-time moni-

toring approaches given that a dominant failure mechanism exists, and the physics

of this failure mechanism is well understood. Further validation of the prognostic
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model will be conducted on GaN HEMTs in the next chapter.

5.4 Resampling Techniques Implementation and Validation

As is discussed in Chapter 4, the conventional resampling techniques, the

“classic four”, have severe limitations in that they introduce severe sample impover-

ishment in the process. Also, resetting the weights to uniformity leads to loss of prior

weight information which is undesired. Other resampling methods, including IMHA

resampling and roughening resampling, were discussed as well. A novel resampling

technique, called IMHA-replacement resampling, was introduced. In this section, this

novel resampling technique will be implemented and validated on the same IGBT

module degradation data series used for prognostic model validation in the previous

chapter. Multinomial resampling, as a representative of the conventional “classic

four” techniques, as well as standalone IMHA and roughening resampling, will be

used for benchmarking IMHA-replacement resampling with the effective number of

particles Neff , the measure of degeneracy, as well as the number of identical particles

Niden, which is the difference between the total number of particles and the number

of unique particles in the particle set, as a metric of sample impoverishment.

The four resampling techniques in the comparison were fitted in the resampling

step of the SIR filter, respectively, with the other parts of the prognostic model being

identical. Therefore, variations in the levels of degeneracy and sample impoverishment

were purely the effect of resampling. The time-series data of Neff and Niden from the

initiation of particles to the anomaly signaling point (ASP) were recorded. Figure
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5.8-5.10 show the time-series Neff data from four schemes (no resampling, IMHA

resampling, roughening resampling and IMHA-replacement resampling) for the sets

of IGBT degradation data in [8], [12]. The comparison based on the degradation data

series in [11] is not shown because the number of data instances between particle

initiation and ASP is too small to show any evident differences in Neff between

the techniques. As can be seen, the Neff values without resampling dropped to

a very low level (around 20%) at the ASP, exhibiting a severe level of degeneracy.

Standalone IMHA resampling improved the Neff values noticeably, with around

30-40% effectiveness retained at the ASP, but the amount of improvement was far

from satisfactory. Both roughening and IMHA-replacement resampling posted a very

high effectiveness level of around 90-100%, with the roughening resampling seemingly

more perfect (almost 100%). However, this slight edge over Neff does not make a

pregnant difference as both are high enough.

Figure 5.8: Time-series data of Neff for the IGBT module degradation data series

in [8]
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Figure 5.9: Time-series data of Neff for the IGBT module degradation data series

1E in [12]

Figure 5.10: Time-series data of Neff for the IGBT module degradation data series

2E in [12]

As for the identical sample size Niden, Figure 5.8-5.10 show the time-series data

of Niden for the degradation data using multinomial resampling, IMHA resampling,

roughening resampling and IMHA-replacement resampling, respectively. It can be

seen that the Niden data for multinomial resampling remained around 40-50% or even

higher throughout the process, given that the process noise magnitude (σ=0.05 V) was

quite high compared with the total magnitude of Vforward increase (0.11 V to 0.22 V)

for the degradation data series. This revealed severe impoverishment of traditional

resampling techniques as the number of unique particles was only around half of
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all the particles. Standalone IMHA resampling, on the other hand, led to dramatic

improvements in the Niden values, with only around 10-20% identical particles most

of the time. However, the severe degeneracy of standalone IMHA denied it from

being a robust resampling technique. Depending on the cases, roughening resampling

offered about 25-50% identical particles in the process which are all lower Niden levels

than the corresponding multinomial resampling. Another obvious feature in the

Niden data series of roughening resampling was the significant fluctuations of the

Niden values. This can be attributed to the additive noise applied in the roughening

step, creating greater randomness in the distribution of particles and thus the Niden

values. Finally, IMHA-replacement resampling exhibited a much lower (around

10-20% lower), and more stable levels of Niden than roughening resampling. The

lower Niden level and the stability of the data gave IMHA-replacement technique a

considerable edge over roughening resampling in sample impoverishment. Although

the Niden values of IMHA-replacement were slightly higher than that of standalone

IMHA, usually less than 5% at ASP, the replacement step was very effective in

helping the SIR filter regain high Neff values from 30-40% to 90%. Therefore, it

can be concluded that IMHA-replacement is the most robust technique of all the

techniques studied for IGBT module degradation data series.
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Figure 5.11: Time-series data of Niden for the IGBT module degradation data series

in [8]

Figure 5.12: Time-series data of Niden for the IGBT module degradation data series

1E in [12]
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Figure 5.13: Time-series data of Niden for the IGBT module degradation data series

2E in [12]

To reveal the impact of different resampling techniques on the RUL distri-

bution, the RUL distributions obtained from the classic multinomial resampling

and the IMHA-replacement resampling for the degradation data series 1E in [12]

were compared in Figure 5.14. It can be seen that the ranges and the shapes of

the distributions are similar to each other. The IMHA-replacement resampling

technique may have produced a tighter and more densely populated particle set, but

the impact on RUL distribution seems very limited. Therefore, the scattering of

particle trajectories, or the range of RUL distribution, is not correlated to variations

in resampling techniques. The determinant factor is the magnitude of the process

noise.
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(a)

(b)

Figure 5.14: (a) RUL distribution based on the multinomial resampling; (b) RUL

distribution based on the IMHA-replacement resampling; for the IGBT module

degradation data series 1E in [12]
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5.5 Summary

This chapter has presented the validation results of the prognostic model

introduced in Chapter 3, as well as the novel IMHA-replacement resampling technique

introduced in Chapter 4 on IGBT module degradation data series. The RUL

predictions made at the ASP reported an average predicted mean error of below 4%,

which was pretty satisfactory. The incorporation of the first-principal model (stress

intensity factor and Paris Equation) corresponding to the dominant failure mechanism

did provide an accurate estimation of the future evolution trajectories. The proposed

IMHA-replacement resampling technique was validated, providing a high level of

effective sample size of around 90%, as well as a low sample impoverishment level,

with only around 15% identical particles at the ASP. In summary, the robustness

of the prognostic model, together with the IMHA-replacement resampling has been

completely validated on IGBT module degradation data series.
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Chapter 6: Validation of Prognostic Model for GaN HEMTs

6.1 Degradation Data Source

The previous chapter presented the validation of the prognostic model, including

the proposed IMHA-resampling technique on IGBT module degradation data series

under power cycling conditions. An important contribution of the present dissertation

is developing and validating a prognostic model that can be used on different types

of power electronic devices with distinct device structures, operating conditions

and failure mechanisms. Therefore, this chapter will focus on the validation of the

prognostic model and the IMHA-replacement resampling technique on several sets

of GaN HEMT time-series degradation data.

Section 1.6 has discussed the degradation mechanism of ohmic contact inter-

diffusion of HF GaN HEMTs under HF-ALTs, which was reported in [69]. The

tests were conducted on some Wolfspeed G50V3 GaN HEMTs with a nominal drain

operating voltage of 50 V. The devices were subject to 200 mA quiescent current and a

constant input power of 29 dBm, leading to a nominal output power of approximately

43 dBm and RF gain compression of about 3–5 dB. The junction temperature was

maintained constant throughout the test. Several sets of degradation data related

to ohmic contact inter-diffusion were presented in this dissertation. Four of them,
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whose corresponding devices were named Device 1 to Device 4, were selected as the

raw data for prognostic model validation on HF GaN HEMTs. It should be noted

that for these degradation data, the pre-defined failure threshold of -1 dB was never

actually reached before the end of test. Therefore, instead of computing the RULs

of the devices before the failure threshold was reached, the future state, which was

the estimated ∆Pout value at the end of test (t = 800hours) was predicted and

compared with the actual ∆Pout value at the end of test.

6.2 Results of Anomaly Detection

The failure precursor of GaN HEMTs is the HF output power degradation

∆Pout, while the failure threshold is 1 dB decrease in Pout. The “nominal region”

was defined using the same method as that of IGBT modules. The same moving

window containing 10 latest data instances within the “nominal region” was used to

compute the statistical features. PCA was then performed for feature extraction and

establishing the feature space. Figure 6.1 shows the 3D and 2D plots of the healthy

∆Pout data instances of Device 4 in the feature spacebased on the first three PCs

(PC1 to PC3) and the first two PCs (PC1 and PC2), respectively.
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(a)

(b)

Figure 6.1: Plots of healthy data instances in the PC-based feature space including

(a) 3D plot involving PC1 to PC3; (b) 2D plot involving PC1 and PC2 only

After feature extraction, k-means clustering was implemented to establish
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the baseline clusters for the GaN HEMT healthy data. The silhouette values were

observed with k ranging from 2 to 6, just like for IGBT modules. For the selection of

k, Figure 6.2 shows the plot of silhouette value variation with k for the degradation

data series of Device 4. Table 6.1 summarizes the values of k for the degradation

data series of Wolfspeed GaN HEMTs. It can be seen that k still varied from 2 to 4.

Figure 6.3 shows the 3D and 2D plots of the healthy data instances from Device 4

partitioned into k = 4 clusters, where the points in the same shape and the same

color belong to the same cluster. Even though there seemed to be an outlier in the

3D plot with significantly higher PC3 value, it was still partitioned into a baseline

cluster with other points having low PC3 value. This is because of the relatively

low weight of PC3 in SVWD, leading to the differences in PC3 being attenuated

compared with PC1 and PC2.
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Figure 6.2: Variation of silhouette value with the number of clusters for Device 4

degradation data series
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(a)

(b)

Figure 6.3: Plots of baseline clusters for healthy data instances including (a) 3D plot

involving PC1 to PC3; (b) 2D plot involving PC1 and PC2 only

As the baseline clusters were established, computation of the outlier probability
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Table 6.1: Optimal number of clusters and maximum silhouette values of Wolfspeed

GaN HEMT degradation data series

Device Name Max. Silhouette Value Optimal Number of Clusters

Device 1 0.723 2

Device 2 0.912 2

Device 3 0.848 2

Device 4 0.72 4

for each test data instance was performed using Fisher criterion (FC). The two

distributions corresponding to each test data instance and each baseline cluster were

established. Then the FC value was obtained using Equation 3.4 for the cluster and

Equation 3.5 was used to compute the probability that the test data instance does

not belong to the cluster. The same criterion for determination of whether a test

data instance is an anomaly was used for GaN HEMTs as well. Table 6.2 summarizes

the anomaly detection results of all the four Wolfspeed GaN HEMT degradation

data series.
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Table 6.2: Optimal number of clusters and maximum silhouette values of Wolfspeed

GaN HEMT degradation data

Device Name Onset of test Data (Hours) Anomaly Signaling Point (ASP) (Hours)

Device 1 252 400

Device 2 104 128

Device 3 78 110

Device 4 120 300

6.3 Results of RUL Estimation Based on SIR Filter

The RUL estimation of the devices under test (DUTs) can now be performed.

For Wolfspeed GaN HEMTs, however, since the pre-defined threshold was not reached

before the test ended, predictions of the ∆Pout values at the end-of-test point at

t = 800hours were made to compare with the actual ∆Pout value. For GaN HEMTs,

load was the hypothetic loading parameter as a function of HF input power Pin

and Tj, while the field plate void size lv(t) was the “driving variable” of the ∆Pout

degradation. load was a constant in these cases since Pin and Tj were kept constant

throughout the tests. The time-series data of lv(t) were obtained from diffusion

simulation discussed in the previous section. Then the SIR filter was implemented

for prediction of ∆Pout at 800 hours. The standard deviation σω of process model

noise following Equation 3.20 was empirically selected as 0.01. Otherwise, follow the

same procedure of RUL prediction for IGBT modules was followed.
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(a)

(b)

Figure 6.4: (a) Future state prediction results based on SIR filter; (b) Predicted

state distribution of particles at t=800hrs for the degradation data series of Device 1

Figure 6.4 shows the future state prediction results for the degradation data
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series of Device 1, including the histogram showing the distribution of predictd states

at 800 hours for the particles. As the first anomaly was detected and signaled at

400 hours into the test, prediction of the state at the end of the test was triggered,

propagating the particles to t = 800 hours. The predicted mean ∆Pout based on the

values and the weights of all the particles at 800 hours was found to be -0.4292 dB,

reporting a +3.88% error from the actual ∆Pout value of -0.4465 dB. The 95% two-

sided confidence interval (CI) of predicted ∆Pout was also calculated and recorded.

10 individual and independent runs of the prognostic model were made for each

series of degradation data for an average predicted mean ∆Pout and 95% CI. For

the degradation data series in [8], the average error of the predicted mean CTF was

+3.98%.
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(a)

(b)

Figure 6.5: (a) Future state prediction results based on SIR filter; (b) Predicted

state distribution of particles at t=800hrs for the degradation data series of Device 2
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(a)

(b)

Figure 6.6: (a) Future state prediction results based on SIR filter; (b) Predicted

state distribution of particles at t=800hrs for the degradation data series of Device 3
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(a)

(b)

Figure 6.7: (a) Future state prediction results based on SIR filter; (b) Predicted

state distribution of particles at t=800hrs for the degradation data series of Device 4

Figure 6.5-6.7 show the result of end-of-test ∆Pout prediction of the other
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Wolfspeed GaN HEMT degradation data series. The average predicted mean errors

ranged from -0.26% to +6.66%. Table 6.3 summarizes the results the average

predicted mean ∆Pout, the actual ∆Pout in the raw data, the average prediction

errors and 95% two-sided confidence intervals of all the four GaN HEMT degradation

data series. The average prediction errors of GaN HEMT degradation data series

were still satisfactory, all within 7%. So far, the developed prognostic model has

been validated on different types of power electronic devices with distinct device

structures, under different types of stressors and wear-out failure mechanisms.

Table 6.3: Summary of Future State prediction results for GaN HEMTs

Device Name Average Predicted

Mean ∆Pout (dB)

Actual ∆Pout

(dB)

Average Prediction

Error (%)

95% Confidence

Interval (dB)

Device 1 -0.4287 -0.4465 +3.98 [-0.5547; -0.2997]

Device 2 -0.4874 -0.5222 +6.66 [-0.6534; -0.3124]

Device 3 -0.5057 -0.5329 +5.10 [-0.7087; -0.2827]

Device 4 -0.4867 -0.4857 -0.26 [-0.6144; -0.3514]

6.4 Resampling Techniques Implementation and Validation

In this section, the IMHA-replacement resampling technique will be validated

on the GaN HEMT degradation data series with the effective number of particles

Neff , and the number of identical particles Niden.

The resampling techniques compared for IGBT module degradation data series

in Section 5.4 were also implemented for GaN HEMT degradation data series,
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respectively. The time-series data of Neff and Niden from the initiation of particles to

the ASP were recorded. Figure 6.8-6.11 show the time-series Neff data based on four

resampling techniques (no resampling, IMHA resampling, roughening resampling

and IMHA-replacement resampling) for the degradation data series of Device 1-4. It

can be seen that the Neff values without resampling dropped to only around 10-20%

at the ASP, which exhibited severe degeneracy. The Neff data of the standalone

IMHA resampling dropped even more quickly than the case without resampling,

but improved very slightly at the ASP, with around 15-30% effectiveness at the

ASP. Both roughening and IMHA-replacement resampling showed a very high level

of effectiveness of almost 100%, indicating that both techniques were more than

sufficient in maintaining a high level of particle effectiveness.

Figure 6.8: Time-series data of Neff for the degradation data series of Device 1

Figure 6.9: Time-series data of Neff for the degradation data series of Device 2
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Figure 6.10: Time-series data of Neff for the degradation data series of Device 3

Figure 6.11: Time-series data of Neff for the degradation data series of Device 4

Figure 6.8-6.11 show the time-series identical sample size Niden data of the

same degradation data series from the same four techniques as IGBT modules:

multinomial, IMHA, roughening and IMHA-replacement. As expected, the Niden

data for multinomial resampling remained 40-50% throughout the course, indicating

severe impoverishment. Standalone IMHA resampling, like the cases of IGBT

modules, also resulted in the lowest Niden values of around 15-25% identical particles

most of the time. Meanwhile, roughening resampling posted about 30-40% identical

particles in the process lower than multinomial resampling. IMHA-replacement

resampling showed about 20-30% identical particles, higher than standalone IMHA

but lower than the other two techniques. The relative positions of the Niden values

for the four techniques were exactly the same as those of IGBT module data series.

143



Therefore, the same conclusion in IGBT module data seriess can be applied, and the

robustness of IMHA-replacement resampling was validated on both types of power

electronic devices.

Figure 6.12: Time-series data of Niden for the degradation data series of Device 1
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Figure 6.13: Time-series data of Niden for the degradation data series of Device 2

Figure 6.14: Time-series data of Niden for the degradation data series of Device 3

145



Figure 6.15: Time-series data of Niden for the degradation data series of Device 4

Similarly, the RUL distributions from the classic multinomial resampling and

the IMHA-replacement resampling for the degradation data series of Device were

compared in Figure 6.16. It turns out that the ranges and the shapes of the

distributions are similar as well. The negligible impact of different resampling

techniques on RUL distribution was demonstrated again.
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(a)

(b)

Figure 6.16: (a) RUL distribution based on the multinomial resampling; (b) RUL

distribution based on the IMHA-replacement resampling; for the degradation data

series of Device 4
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6.5 Summary

This chapter has presented the validation results of the prognostic model and

the novel IMHA-replacement resampling technique applied to the Wolfspeed GaN

HEMT degradation data series. The dominant failure mechanism was ohmic contact

inter-diffusion. The time-series data of void size lv(t) driven by diffusion of Au

atoms into the source contact were computed using Mathematica. The future state

predictions made at the ASP gave an average predicted mean error of below 7% at

t = 800 hours, which was also pretty satisfactory. The proposed IMHA-replacement

resampling technique was also validated, providing an almost 100% level of effective

sample size and a reasonable sample impoverishment level (20-30%). So far, the

robustness of the prognostic model and the IMHA-replacement resampling have been

demonstrated on IGBT module degradation data series.
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Chapter 7: Conclusions and Future Work

7.1 Conclusions and Contributions of The Dissertation

The present dissertation has introduced and validated a novel prognostic model

for different types of power electronic devices undergoing a specific type of stressor.

Particularly, the present dissertation implemented particle-filter-based prognostics

for the first time on GaN HEMT, a representative wide-bandgap semiconductor

power device under high-voltage and high-frequency operations. The prognostic

model integrated anomaly detection based on semi-supervised machine learning for

anomaly detection and remaining useful life (RUL) prediction based on the particle

filter (PF) approach. It consisted of two modules: an anomaly detection module and

a RUL prediction module including a non-linear process model and a measurement

model.

For anomaly detection, semi-supervised machine-learning stood out being a

great compromise between the availability of labeled training data and the availability

of reference data to enhance prediction accuracy. The establishment of healthy

baseline clusters utilized unsupervised machine learning techniques, including PCA

for dimensionality reduction and k-means clustering. The “nominal region” of

healthy data was determined by measuring the I-V characteristics of a group of
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new IGBTs and analyze the fluctuations in their VCE values. The computation of

the outlier probability of a test data instance for a baseline cluster was based on

Fisher criterion, concerning the distribution of distances between data instances

within each baseline cluster, and the distribution of distances between the test data

instance and the healthy data instances within each baseline cluster. Finally, this

anomaly detection model was validated on the wine dataset, a benchmark dataset for

evaluating the performance of clustering algorithms. The new approach outperformed

the Mahalanobis-distance-based approach.

The RUL/future state prediction was based on a system process model incor-

porating a power-law polynomial process model and a measurement model. The

key variables of the process model for predicting the future evolution trends were a

hypothetic loading variable and a ”driving variable”. This driving variable depended

on the specific type of semiconductor electronic devices, the stressor they were subject

to and the resultant dominant failure mechanism. In the present dissertation, the

”driving variable” for IGBT modules was the stress intensity factor whose time-series

evolution data were derived from Paris equation. For GaN HEMTs, the ”driving

variable” was the void size in the field plate under high temperature operation of

RF-ALT. The time-series evolution data were obtained from solving the interdiffusion

equation in Mathematica with the temperature extracted from a temperature profile

simulation in COMSOL Multiphysics. The SIR particle filter employing 100 particles

were implemented for RUL/future state prediction 10 times for each IGBT module

and GaN HEMT degradation data. The prediction results were quite satisfactory,

with average errors within 4% for IGBT modules and 7% for GaN HEMTs. The
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applicability of the model to different types of power electronic devices, including

conventional Si power electronic devices and high voltage high frequency (HVHF)

wide-bandgap power devices, was validated.

In terms of particle filter methodology, a novel resampling technique, named

IMHA-replacement resampling, was developed and validated in SIR filter. State-of-

the-art resampling techniques were reviewed, including the traditional techniques

“the classic four”: multinomial, systematic, stratified and residual resampling. The

limitations of these resampling techniques were discussed. Taking multiple copies

of high-weight particles in these techniques from the original particle set leads to

severe sample impoverishment. Besides, increasingly frequent weight-resetting causes

undesired loss of prior weight information, and in long-term Bayesian filtering process,

this will increase the chance of getting a uniform weight pattern. Some alternative

resampling techniques that avoided the limitations in traditional techniques were also

reviewed and used for benchmarking, including standalone IMHA resampling and

roughening resampling. IMHA-replacement resampling was then introduced, adding

a second step after IMHA resampling by replacing the particles having below-average

weights with new high-weight particles resampled from the positions of high-weight

particles at the previous time step. The IMHA-replacement resampling was vali-

dated by outperforming standalone IMHA, roughening and traditional multinomial

resampling in the evaluations using the effective sample size and the identical sample

number.

Finally, this dissertation also investigated the effect of gamma radiation on the

reliability of enhancement-mode (E-mode) GaN HEMTs. A number of commercial
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E-mode GaN HEMTs underwent a two-stage gamma irradiation with a wide span of

doses from 5 krads (Si) to 60 Mrads (Si). The irradiated devices were characterized

using the probe station and semiconductor parametric analyzer to measure shifts

in the critical DC characteristics during irradiation, including I-V characteristics,

transfer characteristics and gate leakage characteristics. Pronounced degradations

were discovered for the transfer characteristics within the first couple of Megarads,

while much smaller amounts of degradation were observed for further doses. The

gate leakage, on the other hand, almost deteriorated steadily with accumulated total

dose. The wide span of irradiation doses helped reveal the complete DC parameter

degradation behavior in hard radiation applications of the E-mode GaN HEMTs.

From the above, the scholarly contributions of this dissertation can be summa-

rized as follows:

� Development and validation of a robust prognostic model integrating a novel

machine-learning-based anomaly detection technique and particle-filter-based

remaining useful life (RUL) prediction.

� Implementation of particle filter for prognostics of high voltage and high

frequency GaN HEMTs under HF-ALT, with investigation of radiation hardness

under Gamma irradiation (presented in detail in Appendix A).

� Development and validation of the novel IMHA-Replacement resampling tech-

nique for the particle filter approach.
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7.2 Discussions and Future Work

The prognostic model developed in the present dissertation was validated on

two types of power devices with each under one type of stressor (power cycling

ALT for IGBT modules, RF-ALT for GaN HEMTs). However, there were a few

things defined empirically or with assumptions that may not apply to all the field

application circumstances. The first is the process noise magnitude, which was

defined empirically in the present work. For field applications, the selection of

the noise magnitude depends on the desired RUL distribution. To achieve more

conservative RUL predictions, the lower bound of the 95% confidence interval of

the distribution has to have a smaller value. i.e. The distribution has to be more

scattered, induced by a larger process noise magnitude. If a tighter distribution is

required, then a smaller noise magnitude will help. In addition, the failure thresholds

of IGBT modules and GaN HEMTs were defined based on empirical assessments.

There were, however, no quantitative validations showing that this threshold is the

most appropriate. The definition of failure threshold could directly influence the

accuracy of RUL prediction and validity of the model. Therefore, in future works,

scrutinies of the failure threshold definition based on sensitivity analysis would be

very useful. Collection of the degradation data of a large number of relevant devices

under the stressor may be necessary to determine if a universal threshold can be

identified, and if so, what is the optimal threshold.

Further work can also be done on validating the prognostic model for alternative

stressors that the devices may be susceptible to in field applications, such as humidity,
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salt spray, vibration or a combination of multiple stressors. The dominant failure

mechanism should be identified first, and then an appropriate failure precursor for

the failure mechanism needs to be determined in order to implement the prognostic

model.

The anomaly detection technique is the present work was based on PCA,

k-means clustering and Fisher criterion for two distributions. There are alternative

machine learning techniques that could be used for anomaly detection on time-

series degradation data, such as Fisher’s linear discriminant analysis (LDA). This

technique can serve as a tool for dimensionality reduction or a classifier of objects.

Benchmarking of the technique with the one developed in the present work, will

enable further validation or optimizations of machine learning technique for anomaly

detection of time-series data.

In the present work, a single variable was used as the failure precursor. More

complex problems may contain multi-variable inputs that require fusion of time-

series data from multiple sensors to identify a failure precursor that is not directly

measurable. Under multiple stressors, multiple failure precursors may need to be

observed individually at the same time as the degradations that lead to different failure

mechanisms may develop in parallel. Under these circumstances, the prognostic

model may need to be transformed to adapt the specific problems. This is a very

meaningful area for further investigation to enhance the applicability of the model.

The radiation effect study of E-mode GaN HEMTs discussed in the appendix

can be continued by taking more measuring points at lower doses, so that a larger

number of data instances will be available for implementation of the prognostic model.
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Future works on radiation effect of semiconductor power devices should focus on

low-dose radiation (a few rads to several krads) to stick closer to the actual radiation

conditions in field applications. In this sense, the PF-based prognostic model in

the present work can be implemented to predict when the parametric degradation

will reach the maximum allowed degradation level. Furthermore, the degradation

mechanism has to be well understood in order to select a proper “driving variable”

for the model.

The prognostic modeling introduced in the present dissertation focused on

power electronic devices. However, the application domain of this prognostic model

is not confined in power devices. Other electronic components such as electrolytic

capacitors, mechanical components such as the rotor blades of wind turbines, as well

as other applications such as real-time monitoring of the quality of lubricants may also

use this prognostic model for RUL prediction. In fact, the failure of IGBT modules

package studied in the present work was mechanical failure (cracking) induced by

fatigue. As long as the dominant failure mechanism can be identified and belongs to

wear-out failure mechanisms, the model should be able to provide a robust lifetime

prediction. In one word, a broader application domain of the prognostic model can

be anticipated in the future work.
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Appendix A: Gamma Radiation on Enhancement-mode GaN HEMTs

A.1 Introduction

A.1.1 Gamma Radiation

Gamma radiation is a type of penetrating electromagnetic radiation. It is one

of the three types of radioactivity, with the other two being alpha and beta radiation.

Gamma rays have the smallest wavelengths (< 0.1nm) and the highest energy in all

waves in the electromagnetic spectrum [149]. On earth, gamma rays are generated

from the hottest and most energetic matters or events, such as nuclear explosions,

lightning, and the less spectacular activity of radioactive decay of atomic nuclei [150].

An atom is considered unstable if the binding energy is not strong enough to bond

its nucleus together, causing imbalanced energy inside the nucleus. As a result, the

unstable nucleus spontaneously disintegrates, emitting electromagnetic rays. This

process is called radioactive decay.

60Co is a common example of gamma radiation, which first decays to excited

60Ni through emission of an electron. Then the excited 60Ni decays further to the

ground state by emitting gamma rays [151]. Another example is 241Am, which

mainly decays to 237Np emitting alpha rays. However, gamma rays are emitted as a
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byproduct as well. 192Ir is also an example, decaying by emitting beta and gamma

rays producing 192Pt [152].

A.1.2 Enhancement-mode Devices

Enhancement mode (E-mode) GaN HEMTs are devices with a positive threshold

voltage (Vth > 0), or normally-off characteristic, which is realized by raising the

conduction band level underneath the gate. E-mode devices are valuable for RF and

microwave applications because they allow elimination of negative-polarity power

supply, simplifying the circuit design [153]. In power electronics, E-mode devices

facilitate safe mode of operation which is highly desirable. Other advantages include

higher energy and power efficiency, and higher reliability [154]. There are many

technologies proposed to realize E-mode operation of GaN HEMTs, including recessed

gate structures [155], [156], [157], fluorine treatment [158], [159], high k dielectrics and

multi-cap layers [160], p-type layer underneath gate [161], [162], piezoneutralization

layer [163] and nonpolar a-plane channel [164]. The fundamental difficulties in the

realization of E-mode operation are the technical issues of wet etching in GaN due to

the material’s strong chemical inertness, as well as the strong polarization effects in

AlGaN/GaN heterostructure causing increasing negativity in threshold voltages [153].

The most common technology, recessed gate structure, suffers from mobility and

transconductance deterioration of the devices due to the severe dispersion effect in

etch-exposed channel [156], [165].
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A.1.3 Radiation-induced Degradation of GaN HEMTs

GaN HEMTs have shown great promises in space, defense and nuclear ap-

plications, which often involve radiation-abundant environments that require high

radiation tolerance to fluxes of neutrons or gamma ray of devices. To turn the

promising potential of GaN HEMTs into reality, investigations on the influence of

irradiation on the device performance and reliability are essential. Many studies have

investigated the radiation hardness of group III–nitride compound semiconductor de-

vices under various irradiation types, such as electron [166], proton [167], [168], [169],

neutron [170], and X-ray [171], and various total irradiation doses. They generally

showed higher radiation tolerance compared with Si because of high displacement

energy of GaN [172], [173], demonstrating the favorability of GaN devices in hard

radiation environments.

Many studies have investigated the influence of 60Co gamma radiation on

device electrical characteristics. Aktas et al. [174] examined the variations in the

characteristics of SiN passivated GaN HEMTs under 60Co-induced gamma radiation

up to 600 Mrads. Limited responses to the high radiation doses, including monotonic

variations in the DC characteristics with increasing doses, as well as shifts in threshold

voltage and maximum transconductance were observed. There were no significant

changes in the high-frequency characteristics, the sheet carrier density, the mobility

or the contact/sheet resistance of the samples. Belyaev et al. [175] irradiated lab-

fabricated GaN HEMTs under a total dose of 109 rads. It was discovered that

noticeable changes in DC characteristics occurred at lower total doses and depended
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on HEMT topology. All the parameter variations at the highest dose were within

20%. Kim et al. [176] irradiated InAlN HEMTs with up to 500 Mrads doses of

gamma rays. Significant degradations in electrical properties were discovered after

the radiation, and the magnitudes were much larger compared with AlGaN HEMTs.

Anderson et al. [177] attempted to induce defects through electrical and radiation

stress with gamma radiation of up to 2 Mrads. However, less than 5% degradation in

drain-source saturation current IDS was found. Smith et al. [178] reported the results

of putting InAlN and AlGaN HEMTs under 9.1 Mrads of 60Co gamma radiation. For

devices without surface capping, InAlN HEMTs exhibited greater stability under

off-state bias stressing and gamma irradiation in DC characteristics. However, InAlN

HEMTs capped with plasma-enhanced chemical vapor deposition (PECVD) SiNx

surface passivation were more susceptible to trap-related degradations in radiation

hardness compared with AlGaN HEMTs with the same passivation layer, because of

increasing carrier captured in traps at the InAlN/SiNx interface.

A.2 Devices Under Test (DUTs)

The irradiated devices in the present work were EPC2035 eGaN FETs from

EPC Corporation. The devices were supplied in the form of 0.9 mm square passivated

dies with round solder bumps for contacts. They have a rated continuous drain-to-

source voltage VDS of 60 V, and a rated continuous drain current ID of 1 A [179].

The devices were designed for applications including high speed DC-DC conversion,

wireless power transfer, LiDAR, etc. These GaN-on-Si devices were fabricated on Si
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wafers considering process compatibility and cost. An aluminum nitride (AlN) thin

layer was grown on the Si wafer to be a seed layer for the AlGaN/GaN heterostructure.

Subsequently, the AlGaN/GaN heterostructure was grown on the AlN layer, with

a thin AlGaN layer grown above the highly resistive GaN serving as a strained

interface between the GaN and AlGaN crystal layers, allowing the creation of a two-

dimensional electron gas (2DEG) filled with abundant free electrons with ultra-high

mobility [180]. The gate electrode was processed subsequently forming a depletion

region under the gate. As an E-mode transistor, the device is turned on by applying

a positive bias to the gate. To lead the electrons to the gate, drain and source

contacts, multiple layers of metal were placed through the insulating layer with

passage interconnections.

A.3 Condition and Procedure of Gamma Radiation

All the irradiations were conducted at room temperature by 60Co gamma-rays

with a flux of 318.5 Rads (Si)/s, at the dry-cell panoramic gamma irradiator in

the University of Maryland Radiation Facilities. The entire irradiation procedure

consisted of two parts. The first part was higher-dose irradiation with total doses of

up to 60 Mrads based on two stages. At the first stage, 9 devices were irradiated for

10 Mrads, while at the second stage, the devices were irradiated for another 50 Mrads,

with three of them taken out after 25 Mrads during the second stage. Therefore,

three out of the nine devices, #1, #5 and #6, received a total dose of 35 Mrads, and

the other six, #2−#4 and #7−#9, got 60 Mrads. The second part was lower-dose
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irradiations with total doses of up to 2 Mrads. Two groups of devices, each of which

had 3, were subject to different doses, with one group, #10−#12, irradiated for

600 krads, and the other group, #13−#15, irradiated sequentially for cumulative

doses of 5 krads, 20 krads, 100 krads and 2 Mrads, respectively. The temperature

throughout the irradiation process was maintained below 30 ◦C. All contacts were

grounded during the irradiation.

A.4 Electrical Characterization

The DC characteristics of the tested devices were measured at a Microma-

nipulator probe station with adjustable needle probes, coupled with an HP 4155C

semiconductor parameter analyzer. Three critical DC parameters were extracted

from the measurements, including threshold voltage Vth, maximum transconductance

gm,max, and gate leakage current Ig,leak. To minimize the errors induced by contact

between needle probes and device solder bumps, multiple independent measurements

were taken for each parameter to clear off the possibility of outliers.

A.5 Results of Device Characteristics Pre- and Post-Irradiation

The DC characteristics measured pre- and post-irradiation were plotted for

comparison. The shifts of transfer characteristic curves for device #7 and #13,

which were irradiated for 60 Mrads and 600 krads, respectively, are shown in Figure

A.1. For the high-dose-irradiated device #7, there was a conspicuous negative shift

after the first 10 Mrads of radiation. Very little degradation, if any, occurred at
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the second stage. In the case of lower-dose device #13 (600 krads), the negative

shift in transfer characteristics was slighter but still noticeable. Figure A.2 shows

the leakage current variations of device #5 and #13 with a total dose of 35 Mrads

and 600 krads, respectively. Conspicuous increases in Ig,leak were observed for both

stages in high-dose irradiation, showing an increasingly severe gate leakage as the

cumulative dose increased. On the other hand, low dose irradiation of 600 krads only

led to a bit increase in Ig,leak.
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(a)

(b)

Figure A.1: Transfer Characteristics of (a) Device #7 and (b) Device #13 Pre- and

Post-irradiation
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(a)

(b)

Figure A.2: Gate Leakage Current of (a) Device #5 and (b) Device #13 Pre- and

Post-irradiation

The values of Vth, gm,max and Ig,leak were then extracted from the raw data
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for comparison. The values of Ig,leak were extracted at Vg = 3V . For Vth, the pre-

and post-irradiation comparisons were made based on the absolute magnitude of

shift ∆Vth from the pre-irradiation values. Meanwhile, the post-irradiation values

of gm,max and Ig,leak were normalized to the pre-irradiation values to gauge the

amount of variations. Parametric variations within each group of devices receiving

the same total dose were compared, for all the device groups in the present work.

Figure A.3-Figure A.8 show the device-to-device variations of Vth, gm,max and Ig,leak,

respectively for the group of devices receiving 60 Mrads in total (#3, #4, #7−#9)

and the group receiving sequential doses of up to 2 Mrads (#13−#15), with the

results only shown up to 100 krads for the illustration purpose. For the higher-dose

group, the results of #2 are not shown because the device failed to exhibit valid

transfer characteristics after the irradiation and was considered to have failed during

the irradiation. From the plots, it is evident that the trends of variation agreed well

between devices, but the device-to-device variations were quite large. The principal

reason was believed to be the variation of the device DC characteristics themselves.

Other reasons may include measurement errors incurred mainly due to the instability

of contact resistance between the needle probes and the solder bump contacts on

devices.

First, the degradation behavior of the 60 Mrads group was observed. For Vth,

in agreement with the observations in Figure A.1, most of the devices exhibited a

relatively significant decrease ranging from 0.1-0.5 V at the first stage of 10 Mrads,

and then at the second stage it decreased much less or even increased slightly. If

excluding device #3, which showed an anomalous increase in Vth after 10 Mrads, the
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average decrease after 10 Mrads was 0.2771 V. After 60 Mrads, the average decrease

was 0.2744 V, which was even a bit less than that after 10 Mrads. For gm,max, a

similar pattern was shown with relatively significant average decrease of 36.49%

observed in the first 10 Mrads and only slight decrease or even increase (averaged

6.14% further decrease) in the next 50 Mrads. For Ig,leak, nevertheless, all the devices

exhibited persistent increases throughout the radiation with total magnitude between

10 and 40 times (averaged 27.66 times increase), while the increases occurred at

the first stage averaged 6.88 times, accounting for 24.89% of total increase after

60 Mrads. Generally, the degradations of the DC parameters were more significant

in the beginning part of high-dose irradiations.
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(a)

(b)

Figure A.3: Device-to-Device Variations of Threshold Voltage in (a) the 60 Mrads

Group and (b) the sequential 2 Mrads Group

As for the sequential 2 Mrads group, similar variation behavior was observed.
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For Vth, the average decreases at 5 krads, 20 krads, 100 krads and 2 Mrads were

0.0824 V, 0.128 V, 0.115 V and 0.1655 V, respectively. The increase from 20 krads

to 100 krads was due to the increase from device #18. For gm,max, the average

degradations at 5 krads, 20 krads, 100 krads and 2 Mrads were 27.73%, 34.88%, 37.78%

and 46.09%, respectively. The average degradation at 2 Mrads was even higher that

after 10 Mrads in the 60 Mrads group, which was understandable considering the

large variability between devices. For Ig,leak, the average normalized increases at

5 krads, 20 krads, 100 krads and 2 Mrads were 53.94%, 69.92%, 86.8% and 115.44%,

respectively. Compared with the 60 Mrads group results, the increase in Ig,leak

was more consistent from low to high doses. Overall, the average magnitudes

degradation of all the three parameters increased steadily in the 2 Mrads total dose,

with surprisingly considerable degradation observed for the first 5 krads.
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(a)

(b)

Figure A.4: Device-to-Device Variations of Maximum Transconductance in (a) the

60 Mrads Group and (b) the sequential 2 Mrads Group
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(a)

(b)

Figure A.5: Device-to-Device Variations of Gate Leakage Current in (a) the 60 Mrads

Group and (b) the sequential 2 Mrads Group

To evaluate the general degradation evolution behavior of these EPC E-mode
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GaN HEMTs, the mean variations of the DC parameters under all the characterized

total doses, were calculated for all the irradiated devices, regardless of their group

affiliations. The results of the calculations are plotted in Figure A.6-Figure A.8,

and quantitatively summarized in Table A.1. The general variation trends of the

DC parameters were consistent, with Vth, gm,max decreasing and Ig,leak increasing.

In agreement with the previous observations for devices in a group, for Vth, gm,max,

the beginning part of irradiation seemed to account for the majority of parametric

variations, while at high doses (beyond a couple of Megarads) the degradations were

much slower or even came to a halt. On the other hand, there was a more consistent

increase for Ig,leak throughout the 60 Mrads total dose. Nevertheless, for all the

parameters there were some fluctuations between the adjacent characterization doses

that countered the general variations trends. There was a clear influence of the

device-to-device variations and possibly measurement errors, which may have a more

significant impact given the small number of devices that were irradiated overall.

Summarizing all the results from the irradiation test in the present work, it could

be temporally concluded that a general behavior of device transfer characteristics

degradation was the smaller the cumulative total doses the devices have sustained

were, the higher the degradation rates were. On the other hand, for the gate leakage,

the degradations were more consistent over a large range of irradiation doses.
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Table A.1: Summary of mean variations of DC parameters for all groups of devices

Characterized Doses Pre-rad 5 krads 20 krads 100 krads 600 krads 2 Mrads 10 Mrads 35 Mrads 60 Mrads

∆Vth 0 -0.0824 -0.1280 -0.1150 -0.0753 -0.1655 -0.1436 -0.0919 -0.2209

Normalized gm,max 1 0.7227 0.6512 0.6222 0.7206 0.5391 0.6896 0.5168 0.5737

Normalized Ig,leak 1 1.5394 1.6992 1.8680 1.1686 2.1544 5.0649 5.6499 27.6570

Figure A.6: Evolution of Mean ∆Vth Values for All Devices Irradiated and Charac-

terized at All Doses
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Figure A.7: Evolution of Mean Normalized gm,max Values for All Devices Irradiated

and Characterized at All Doses

Figure A.8: Evolution of Mean Normalized Ig,leak Values for All Devices Irradiated

and Characterized at All Doses
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A.6 Hypothesis of Degradation Mechanisms and Potential for Prog-

nostic Model Implementation

The variations of Vth and gm,max could be attributed to defect generation

throughout the AlGaN and GaN layers and at the semiconductor/dielectric interfaces.

In gamma radiation, high-energy photons produce 0.6 MeV Compton electrons,

generating electron traps in the nitride layers, which are either shallow donor-like

defects like nitrogen vacancies or the photo-generated holes [181]. As the irradiation

dose increases, the created traps reduce the effective channel doping and carrier

density, and the activation energies decrease thereby [182]. In the lower cumulative

doses, many new positively-charged shallow electron traps are introduced, so an

increasing number of electrons in the nitride layers are trapped, resulting in a decrease

in the carrier concentration. However, since shallow traps also release the trapped

electrons more easily, as the irradiation goes on, an increasing number of the trapped

electrons are released, although new traps are introduced simultaneously trapping

electrons. Therefore, at higher doses, the trapping rate and release rate of electrons

in the nitride layers are not significantly different, almost leading to a ‘dynamic

equilibrium’. In this case, even a high total dose of 50 Mrads would not greatly

increase the total number of trapped electrons, explaining the minor degradation of

the transfer characteristics at the second stage of the higher-dose irradiation.

As for the increase in Ig,leak, it was suggested in [183] that radiation damage

of the barrier layer under the gate could account for the phenomenon. The crys-
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talline imperfections in the AlGaN layer increase significantly after the radiation,

causing local variations in strain that result in charge redistribution around defects.

With irradiation doses increasing, the number of imperfections continue to increase,

accounting for the consistent increases in Ig,leak at higher doses. Saturation of imper-

fections might show up at very high doses, but it may not be significant enough to

put forward assessments based on the results in the present work.

Overall, the degradation mechanism of the electrical parameter variations still

requires further investigations. It is hoped that the prognostic model developed in the

present dissertation can be used in the radiation effect analysis. The determination

of the exact mechanism will help find out an appropriate ”driving variable” for

the prognostic model. Also, more data instances are needed at lower radiation

doses to enable densely sampled time-series degradation data of the DC parameters

for anomaly detection and RUL prediction. It was discovered that during a 9.8-

day space shuttle mission, the effective Gamma dose equivalent to the astronauts

based on in-flight measurements was 4.1 mSv [184]. In 10 years, the total dose

would be around 1500 mSv, or 150 rads. For electronic devices, given a smaller

area of exposure compared with human bodies, the accumulated dose will be even

smaller. Therefore, it is important to take more measurements at low doses of

a few rads to a few krads to increase the fidelity of the parametric degradation

procedure and enhance understanding of the degradation behavior at the low-dose

range.After taking these steps, it will be possible to implement the prognostic model

for Gamma-radiation-induced degradation at low doses.
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A.7 Summary

This appendix is reporting on gamma radiation on some commercially available

EPC2035 E-mode GaN HEMTs with a variety of total doses ranging from 5 krads

to 60 Mrads, to investigate their DC parameter degradations in hard radiation

environments. A higher-dose irradiation with two stages of up to 60 Mrads in total

was conducted on 8 devices. A lower-dose irradiation was performed on another 6

devices with a total dose of up to 2 Mrads the devices. For the transfer characteristics,

significant degradations were gauged within the first couple of Megarads, while much

smaller amount of degradation was observed for further doses. The gate leakage,

however, continuously intensified with accumulated total dose. These results indicated

that the devices were not radiation resistant and degradations were already significant

within several kilorads of gamma radiation. The degradation mechanism is believed

to be clustering of the radiation-induced shallow electron traps that under higher

cumulative dose, exhibits a dynamic equilibrium of trapping and release of electrons.
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[113] Sami Äyrämö and Tommi Kärkkäinen. Introduction to partitioning-based
clustering methods with a robust example. Reports of the Department of
Mathematical Information Technology. Series C, Software engineering and
computational intelligence, (1/2006), 2006.

[114] Leonard Kaufman and Peter J Rousseeuw. Finding groups in data: an intro-
duction to cluster analysis, volume 344. John Wiley & Sons, 2009.

[115] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means
clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied
Statistics), 28(1):100–108, 1979.

[116] Patrick O’Connor and Andre Kleyner. Practical reliability engineering. John
Wiley & Sons, 2012.

[117] T. T. T. Nguyen and G. Armitage. A survey of techniques for internet traffic
classification using machine learning. IEEE Communications Surveys Tutorials,
10(4):56–76, Fourth 2008.

[118] Yuhui Zhao, Suxia Yu, Bingbing Chu, Nan Zhang, and Xin Hu. Classification
of three wine varieties based on elm and pca. In International Conference on
Intelligent Science and Intelligent Data Engineering, pages 647–654. Springer,
2012.

[119] Saket Sathe and Charu Aggarwal. Lodes: local density meets spectral outlier
detection. In Proceedings of the 2016 SIAM International Conference on Data
Mining, pages 171–179. SIAM, 2016.

[120] Lei Nie, Michael H Azarian, Mohammadreza Keimasi, and Michael Pecht.
Prognostics of ceramic capacitor temperature-humidity-bias reliability using
mahalanobis distance analysis. Circuit World, 33(3):21–28, 2007.

[121] William M Rand. Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical association, 66(336):846–850, 1971.

[122] Ka Yee Yeung and Walter L Ruzzo. Details of the adjusted rand index and
clustering algorithms, supplement to the paper an empirical study on principal
component analysis for clustering gene expression data. 2001.

186



[123] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of
Classification, 2(1):193–218, Dec 1985.

[124] Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic
measures for clusterings comparison: Variants, properties, normalization and
correction for chance. Journal of Machine Learning Research, 11(Oct):2837–
2854, 2010.

[125] Bhaskar Saha and Kai Goebel. Uncertainty management for diagnostics and
prognostics of batteries using bayesian techniques. In Aerospace Conference,
2008 IEEE, pages 1–8. IEEE, 2008.

[126] Chaochao Chen and Michael Pecht. Prognostics of lithium-ion batteries using
model-based and data-driven methods. In Prognostics and System Health
Management (PHM), 2012 IEEE Conference on, pages 1–6. IEEE, 2012.

[127] Royce G Forman, V Shivakumar, and James C Newman Jr. Fatigue-crack-
growth computer program. 1991.

[128] Chunyan Jiang, Ting Liu, Chunhua du, Xin Huang, Mengmeng Liu, Zhao
Zhenfu, Linxuan Li, Xiong Pu, Junyi Zhai, Weiguo Hu, and Zhong Wang.
Piezotronic effect tuned algan/gan high electron mobility transistor. Nanotech-
nology, 28, 09 2017.

[129] Donald A Gajewski, Scott Sheppard, Tina McNulty, Jeff B Barner, Jim Milligan,
and John Palmour. Reliability of gan/algan hemt mmic technology on 100-mm
4h-sic. In Reliability of Compound Semiconductors Workshop, 2011.

[130] Raymond S Pengelly, Simon M Wood, James W Milligan, Scott T Sheppard,
and William L Pribble. A review of gan on sic high electron-mobility power tran-
sistors and mmics. IEEE Transactions on Microwave Theory and Techniques,
60(6):1764–1783, 2012.

[131] N. Komai, M. Watanabe, and Z. Horita. Interdiffusivity measurements and
interface observations using ni/ni3ge diffusion couples. Acta Metallurgica et
Materialia, 43(8):2967 – 2974, 1995.

[132] TR Paul, IV Belova, EV Levchenko, AV Evteev, and GE Murch. Determining
a tracer diffusivity by way of the darken-manning equation for interdiffusion in
binary alloy systems. In Diffusion Foundations, volume 4, pages 25–54. Trans
Tech Publ, 2015.

[133] Ursula R Kattner and Carelyn E Campbell. Invited review: Modelling of
thermodynamics and diffusion in multicomponent systems. Materials Science
and Technology, 25(4):443–459, 2009.

[134] Richard JD Tilley. Principles and applications of chemical defects. CRC Press,
1998.

187



[135] Devendra Gupta. Diffusion processes in advanced technological materials.
Springer Science & Business Media, 2010.

[136] William J Reed. Power-law adjusted survival models. Communications in
Statistics-Theory and Methods, 41(20):3692–3703, 2012.

[137] David E Rupp and Ross A Woods. Increased flexibility in base flow mod-
elling using a power law transmissivity profile. Hydrological Processes: An
International Journal, 22(14):2667–2671, 2008.

[138] Matteo Corbetta, S Sbarufatti, and Marco Giglio. Optimal tuning of particle
filtering random noise for monotonic degradation processes. In Proceedings
of the third European Conference of the Prognostics and Health Management
Society, 2016.

[139] Jeroen D Hol. Resampling in particle filters, 2004.

[140] Edward R Beadle and Petar M Djuric. A fast-weighted bayesian bootstrap
filter for nonlinear model state estimation. IEEE Transactions on Aerospace
and Electronic Systems, 33(1):338–343, 1997.
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