
LOAD BALANCING FACTOR (LBF): A WORKLOAD MIGRATION METRIC ✵

Hyeonsang Eom Jeffrey K. Hollingsworth

Institute for Advanced Computer Studies

Computer Science Department
University of Maryland

College Park, MD 20742
{hseom, hollings}@cs.umd.edu

CS-TR-4375

UMIACS-TR-2002-55

February 2, 1998

✵ This work was supported in part by NSF awards ASC-9703212 and ACI-9711364, and DOE Grant DE-FG02-93ER25176.

Abstract

We introduce a new performance metric, called Load
Balancing Factor (LBF), to evaluate different tuning
alternatives of workload migration within a distrib-
uted/parallel program. The metric is unique because it
shows the performance implications of a specific tuning
alternative rather than quantifying where time is spent
in the program. Previously we developed a variation of
the metric for coarse-grained process placement, and
demonstrated that it accurately predicts the placement
impact. In this paper we focus on a variation designed
for fine-grained function shipping in a client/server en-
vironment and present its online algorithm. We use a
synthetic application to show that LBF provides accu-
rate guidance about procedure-level migration.

1. Introduction

To improve the performance of a program, perform-

ance bottlenecks must be located, the causes identified,
and the solutions proposed and implemented. So far,
most performance debuggers have focused on the first
two components leaving the rest to the programmers.
Therefore, if there are several tuning options proposed,
which is often the case, programmers need to exhaus-
tively try each to choose the best. However, they would
be required to make significant efforts to implement
each of the options in most cases. In this paper, we fo-
cus on solution selection among given tuning alterna-
tives by answering “what-if” style questions and present
effective methods to evaluate each of the alternatives.

In distributed/parallel performance debugging, it is
especially important to figure out the performance of a
tuning alternative and compare it with others. Distrib-
uted/parallel computing is basically characterized by
workload and data distributed among multiple proces-
sors combined with their storage. Obviously, the distri-
bution needs to be balanced with data affinity for best
performance. A consumer process that needs a large
amount of data has data affinity if its performance is
improved by co-location of the data. It is natural to have
questions about the performance change due to a differ-
ent workload or data distribution of a distrib-
uted/parallel program.

To effectively provide the potential benefit of tuning
alternatives, online computation is used with well-
defined levels of distributed computation. For a tuning
option, the performance is computed online by combin-
ing the execution of the current version of the program
and dynamic prediction of the impact of the option us-
ing online measurements of the execution. The idea is
to execute the original program while simulating the
proposed changes to the program. In general, dynamic
prediction is better than static one with source-code
analysis or instrumentation because the analysis doesn’t
reveal the dynamic behavior and the instrumentation
might result in a large amount of trace data to be col-
lected and processed. It also requires distributed compu-
tation granularity to be well defined for their virtual
migration in order to be effectively supported; for ex-
ample, workload can be divided to processes, queries,
or procedures. Only with such well-supported computa-
tional units, their instrumentation and dynamic predic-

tion using them can be easily performed using cur-
rently-available dynamic instrumentation tools such as
Paradyn[8].

In this paper, we present a metric called Load Balanc-
ing Factor, LBF, that provides programmers with feed-
back about the performance implications of moving
computation between processors. Computation can be
shifted either at a fine-grained basis by migrating pro-
cedures or at a coarse-grained level by moving entire
processes. As a result, we have developed two variants
of the LBF metric: procedure LBF and process LBF.
Both variants can be effectively computed during the
execution of the current version of the program, and do
not require post-mortem processing.

We focus on procedure LBF in the rest of this paper.
Section 2 briefly describes the previous work on proc-
ess LBF. Section 3 introduces procedure LBF, explains
its online algorithm, and evaluates it using a synthetic
application. Section 4 describes related work. Finally,
Section 5 summarizes our work and outlines future di-
rections for this research.

2. Previous work

We previously developed process Load Balancing
Factor (LBF) that effectively predicts the performance
enhancement due to process-level workload migration.
It addresses the problem of assessing the impact of pro-
cess migration by predicting the effect of changing the
assignment of processes to processors in a distributed or
parallel execution environment. Our goal was to com-
pute the potential improvement in execution time if we
change the placement. Our technique can also be used
to predict the performance of a distributed or parallel
program when it is executed on a larger number of
nodes.

To assess the potential improvement, we predict the
execution time of a program with a virtual placement,
during an execution on a current one. Our approach is to
instrument application processes to forward data about
each message-passing event to a central monitoring sta-
tion that simulates the execution of these events under
the target configuration.

Since there could be multiple processes contending
for a CPU on a node in a target placement, we must se-
lect a realistic policy to schedule processes for an accu-
rate prediction. We assume a fair round-robin schedul-
ing policy, where the OS schedules each non-waiting
process onto a processor for a fixed quantum of time,
and then switches to the next non-waiting process. To

speed the computation of the LBF metric, we do not
simulate individual quanta. For each interval of time,
every non-blocked process gets an equal share of the
processor effectively making the quantum infinitely
small.

We implemented process LBF, and tested it by run-
ning a collection of application programs. We measured
the execution times of the programs and compared them
with the predicted times of LBF. The results show that
in all cases, the predicted values are within 6% of the
actual execution times. In most cases, the overhead to
compute the LBF metric is under 5%. The details are
explained in the preceding paper[3].

3. Procedure LBF

Procedure Load Balancing Factor (LBF) addresses
the problem of accessing the impact of fine- grained
computation migration by predicating the impact of
moving a procedure between one client and multiple
servers or one server and multiple clients in a distrib-
uted or parallel execution environment. Unlike process
LBF, procedure LBF is restricted to client-server style
computations with all communication via message pass-
ing. Our goal is to compute the potential improvement
in execution time if we move a selected procedure, F,
from the client to the server or visa-versa.

Before describing our prediction algorithm, we define
a few terms used to describe LBF:

Event: an observable operation performed by a process. A

process communicates with other processes via mes-
sages. Message passing results in send, startRecv,
and endRecv events being generated. Message
events can be “matched” between processes. For ex-
ample, a send event in one process matches exactly
one endRecv event in another process.

Process Time: a per-process clock that runs when the proc-
ess is executing on a processor and is not waiting for
a message.

Program Activity Graph (PAG): a graph of the events in a
single program execution. Nodes in the graph repre-
sent events in the program’s execution. Arcs repre-
sent the ordering of events within a process or the
communication dependencies between processes.
Each arc is labeled with the amount of process time
between events or communication time for inter-
process arcs.

Critical Path (CP): the longest process time weighted path
through a PAG. For an entire program’s execution,

the CP represents the execution time of the program
as if there were one process per processor.

In each process, we keep track of the original CP and
the new CP due to moving the selected procedure. We
compute procedure LBF at each message exchange. At
a send event, we subtract the accumulated time of the
selected procedure from the CP of the sending process,
and send the accumulated procedure time along with the
application message. At a receive event, we add the
passed procedure time to the CP value of the receiving
process before the receive event. The value of the pro-
cedure LBF metric is the total effective CP value at the
end of the program’s execution. Procedure LBF only
approximates the execution time with migration since
we ignore many subtle issues such as global data refer-
ences by the “moved” procedure. Our intent with this
metric is to supply initial feedback to the programmer
about the potential of a tuning alternative. A more re-
fined prediction that incorporates shared data analysis
could be run after our metric but before proceeding to a
full implementation.

3.1 Algorithm

We describe our algorithm in terms of operations on a
PAG. This is done to simplify our description. The ac-
tual computation of the metric does not require us to
build the graph. There are two basic elements used for
the computation of procedure LBF, the difference be-
tween the lengths of the CP in the sending and receiving
process, and the length of execution of the procedure F
to be moved from the sending process to the receiving
process. The computation of procedure LBF for a single
message send is shown in Figure 1.

When we consider moving a procedure F from one
process to another, LBF is the new CP value after mov-
ing the procedure. We “move” the execution of the por-
tion of F from between the send operation and the pre-
vious inter-process event of the sending process, to just
before the receive operation of the receiving process.
For each message sent, we allocate time for the selected
procedure to the waiting time for the message receive
(if any). Figure 1 illustrates how the critical path can
change after moving a procedure F. Originally Cs is
greater than Cr as seen in the left side of the figure.
However, after moving F from S to R we obtain the
shorter CP length shown in the right side of the figure,
because Cr + F is less than Cs. The difference between
the lengths of the two critical paths of both sides at en-
dRecv, is the performance benefit due to the movement

startRecv

send

endRecv

Cr

Cs

call(F)

Before "moving" F

R S

F startRecv

send

endRecv

Cr+ F

Cs-F
call(F)

R S

After "moving" F
Figure 1: Computing procedure LBF

The PAG before and after moving the procedure F. The
time for the procedure F is moved from the sending pro-
cess (which is on the application’s critical path) to the
receiving one (which is not).

of F. During application execution, we add the benefit
of procedure movement for each message exchange.
The overall value of the procedure LBF metric is the
predicted execution time due to the accumulation of
these benefits.

To compute the length of the new CP due to the
movement of a procedure F, we use the normal flow of
messages in the application to traverse the PAG. The
pseudo code for the algorithm is shown in Figure 2. On
each message send, we piggyback the length of the pro-
cedure execution between the previous inter-process
event and the send operation as well as the length of the
CP up to the send operation. After sending the data, we
subtract the length of the procedure execution from the
length of CP and use the result as the new CP in send-
ing process. For each message receive event, we com-
pute the length of the new CP due to the movement of
the procedure. Lines 16-26 of Figure 2 show this calcu-
lation. For each message passing operation, we reset the
execution time of the selected procedure to zero to en-
sure that we don’t double count the benefit of moving F
(shown in lines 10 and 16).

We could remove the restriction that procedure LBF
be used only with pure client-server style communica-
tion by incorporating Waiting Time Analysis[7]. This
limitation arises since we currently use a conservative
computation that resets the available procedure time for
LBF to zero after each inter-process event to prevent
double counting the benefit of migration. However, by
incorporating waiting time analysis, we could allow
server-to-server or client-to-client communication.

1. Send:
2. now <- CPUTime
3. longest += now - lastUpdate
4. lastUpdate <- now

5. IF (curFunc.active)
6. F += now - curFunc.lastTime
7. curFunc.lastTime <- now
8. send(toHost, longest, F)
9. longest -= F
10. F <- 0;

11. Recv(fromHost, Cs, rmtF):
12. now <- CPUTime()
13. longest += now - lastUpdate;
14. lastUpdate <- now
15. Cr <- longest

16. F <- 0
17. IF (Cs - Cr > 0)
18. IF (curFunc.active)
19. curFunc.lastTime <- now;
20. IF (rmtF)
21. IF (Cs - rmtF > Cr + rmtF)
22. longest <- Cs - rmtF
23. ELSE
24. longest <- Cr + rmtF
25. ELSE
26. longest += rmtFCP;

27. selected procedure entry
28. curFunc.active <- 1
29. curFunc.lastTime <- CPUTime()

30. selected procedure exit
31. curFunc.active <- 0
32. F += CPUTime() - curFunc.lastTime

Figure 2: Computing procedure LBF

3.2 Experiments

We implemented procedure LBF as an extension to
Paradyn Parallel Performance Measurement Tools[8].
Using Paradyn provided an easy way to implement the
algorithm since it already included support for instru-
mentation of a running program and periodic sampling
callbacks. We tested procedure LBF by running a sim-
ple synthetic parallel application. It is more difficult to
calibrate the accuracy of procedure LBF than process
LBF. In order to evaluate it, we need to change the ap-
plication to move the functionality from one place to
another. Since this is a tedious task and requires de-
tailed knowledge of the application, we only attempted
this for a synthetic parallel application.

We created a Synthetic Parallel Application (SPA)
that demonstrates a workload where a single server be-
comes the bottleneck responding to requests from three
clients. In the server, two classes of requests are proc-
essed: servBusy1 and servBusy2. ServBusy1 is the ser-

vice requested by the first client and servBusy2 is the
service requested by the other two clients.

The results of computing procedure LBF for the syn-
thetic parallel application are shown in Figure 3. We
then computed procedure LBF for each of these two
procedures. To validate these results, we created two
modified versions of the synthetic parallel application
(one with each of servBusy1 and servBusy2 moved from
the server the clients) and measured the resulting execu-
tion time. The results of the modified programs are
shown in the third column of Figure 3. In both cases,
the error is small indicating that our metric has provided
good guidance to the application programmer.

Procedure Proce-
dure
LBF

Meas-
ured
Time

Differ-
ence

Percent
Error

ServBusy1 25.3 25.4 0.1 0.4%
ServBusy2 23.0 23.1 0.1 0.6%

Figure 3: Validating procedure LBF accuracy
for SPA program

For comparison to an alternative tuning option, we

also show the value for the Critical Path Zeroing met-
ric[5]. It is a metric that predicts the improvement pos-
sible due to optimally tuning the selected procedure
(i.e., reducing its execution time to zero) by computing
the length of the critical path resulting from setting the
time of the selected procedure to zero. We compare
LBF with Critical Path Zeroing because it is natural to
consider improving the performance of a procedure it-
self as well as changing its execution place (processor)
as tuning strategies.

The length of the new CP due to the movement of
servBusy1 is 25.4 and the length due to servBusy2 is
16.1 while the length of the original CP is 30.7. With
the Critical Path Zeroing metric, we achieve almost the
same benefit as tuning the procedure ServBusy1 by
simply moving it from the server to the client. Likewise,
we achieve over one-half the benefit of tuning the Ser-
vBusy2 procedure by moving it to the client side. For
any of the tuning alternatives, we report the perform-
ance potential if the program were so tuned, it is left to
the user to decide which alternative is most feasible to
attempt.

Procedure proce-
dure
LBF

Improv Improv
ement

Critical
Path

Zeroing
ement

ServBusy1 25.3 17.8% 25.4 17.4%
ServBusy2 23.1 25.1% 16.1 47.5%

Figure 4: Procedure LBF and Critical Path for
SPA Program

4. Related Work

To track down performance change due to procedure

migration on a PAG while incrementally maintaining it,
we adapt the on-the-fly topological sort algorithm de-
veloped by Kimelman and Zernak[6]. Our algorithm
simulates the execution on processes with migrated pro-
cedures. To compute the predicted execution time after
procedure migration during program execution, we use
a variation of our online critical path algorithm[5].

Performance prediction is closely related to our online
“what-if” computation. Performance prediction uses a
model or simulation to predict the execution time of an
algorithm or program.

Performance predictions can be based either on ex-
trapolations of executions of the program in a controlled
environment, or on stochastic models derived from
static program analysis. Lost Cycles Analysis[2] pre-
dicts performance at different operating points by run-
ning a controlled set of experiments that vary an or-
thogonal set of parameters and record the resulting exe-
cution time. However, this technique requires imple-
mentations of the different tuning options to be avail-
able for execution. Static prediction[1, 4] uses modeling
languages or source code analysis to predict the execu-
tion time of a program. By necessity, this technique ig-
nores many details about the interactions between the
application, system software, and hardware.

5. Conclusions and Future directions

 We have presented a new online performance metric
called Load Balancing Factor, LBF, that provides in-
sights into how proposed tuning strategies will improve
an application’s execution time. We have developed
procedure LBF that predicts performance improvement
due to procedure migration in a client/server environ-
ment. We have shown for a synthetic application that
our metric is able to accurately predict the execution
time of a modified configuration.

Although LBF is useful for programmers in its cur-
rent form, there are many directions to expand this re-
search. First, LBF doesn’t provide any guidance about
what tuning options to evaluate. In most cases, there are
multiple tuning alternatives to consider. A future direc-
tion is to investigate automatic selection of candidate
tuning alternatives. Eventually, automated selection of
candidate configurations combined with LBF provides a
basis for dynamic program adaptation where we auto-
matically change programs during execution based on
observed behavior to enhance their performance.

References

1. V. Balasundaram, G. Fox, K. Kennedy, and U.
Kremer, "A Static Performance Estimator to Guide
Data Partitioning Decisions," 1991 ACM SIGPLAN
Symposium on Principals and Practice of Parallel
Programming. April 21-24 1991, Williamsburg, VA,
pp. 213-223.

2. M. E. Crovella and T. J. LeBlanc, "Parallel Perform-
ance Prediction Using Lost Cycles," Proceedings of
Supercomputing '94. Nov. 14-18, 1994, Washington,
DC, pp. 600-609.

3. H. Eom and J. K. Hollingsworth, "LBF: A Perform-
ance Metric for Program Reorganization," to appear,
18th Int'l Conf. Distributed Computing Systems. May
26-29 1998, Amsterdam, The Netherlands.

4. A. J. C. v. Gemund, "Performance Prediction of Par-
allel Processing Systems: The PAMELA Methodol-
ogy," International Conference on Supercomputing
(ICS). July 1993, Tokyo, Japan, pp. 318-327.

5. J. K. Hollingsworth, "An Online Computation of
Critical Path Profiling," SPDT'96: SIGMETRICS
Symposium on Parallel and Distributed Tools. May
22-23, 1996, Philadelphia, PA, pp. 11-20.

6. D. Kimelman and D. Zernik, "On-the-Fly Topological
Sort - A Basis for Interactive Debugging and Live
Visualization of Parallel Programs," ACM/ONR
Workshop on Parallel and Distributed Debugging.
May 17-18, 1996, San Diego, CA, vol.1, pp. 12-20.

7. W. Meira, T. J. LeBlanc, and A. Poulos, "Waiting
Time Analysis and Performance Visualization in Car-
nival," SPDT'96: SIGMETRICS Symposium on Par-
allel and Distributed Tools. May 22-23, 1996, Phila-
delphia, PA, pp. 1-10.

8. B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K.
Hollingsworth, R. B. Irvin, K. L. Karavanic, K.
Kunchithapadam, and T. Newhall, "The Paradyn Par-
allel Performance Measurement Tools," IEEE Com-
puter, 28(11), 1995, pp. 37-46.

	Introduction
	Previous work
	Procedure LBF
	Algorithm
	Experiments

	Related Work
	Conclusions and Future directions

