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Abstract 
 

We introduce a new performance metric, called Load 
Balancing Factor (LBF), to evaluate different tuning 
alternatives of workload migration within a distrib-
uted/parallel program. The metric is unique because it 
shows the performance implications of a specific tuning 
alternative rather than quantifying where time is spent 
in the program. Previously we developed a variation of 
the metric for coarse-grained process placement, and 
demonstrated that it accurately predicts the placement 
impact. In this paper we focus on a variation designed 
for fine-grained function shipping in a client/server en-
vironment and present its online algorithm. We use a 
synthetic application to show that LBF provides accu-
rate guidance about procedure-level migration. 

 
1. Introduction 
 
To improve the performance of a program, perform-

ance bottlenecks must be located, the causes identified, 
and the solutions proposed and implemented. So far, 
most performance debuggers have focused on the first 
two components leaving the rest to the programmers. 
Therefore, if there are several tuning options proposed, 
which is often the case, programmers need to exhaus-
tively try each to choose the best. However, they would 
be required to make significant efforts to implement 
each of the options in most cases. In this paper, we fo-
cus on solution selection among given tuning alterna-
tives by answering “what-if” style questions and present 
effective methods to evaluate each of the alternatives. 

In distributed/parallel performance debugging, it is 
especially important to figure out the performance of a 
tuning alternative and compare it with others. Distrib-
uted/parallel computing is basically characterized by 
workload and data distributed among multiple proces-
sors combined with their storage. Obviously, the distri-
bution needs to be balanced with data affinity for best 
performance. A consumer process that needs a large 
amount of data has data affinity if its performance is 
improved by co-location of the data. It is natural to have 
questions about the performance change due to a differ-
ent workload or data distribution of a distrib-
uted/parallel program. 

To effectively provide the potential benefit of tuning 
alternatives, online computation is used with well-
defined levels of distributed computation. For a tuning 
option, the performance is computed online by combin-
ing the execution of the current version of the program 
and dynamic prediction of the impact of the option us-
ing online measurements of the execution. The idea is 
to execute the original program while simulating the 
proposed changes to the program. In general, dynamic 
prediction is better than static one with source-code 
analysis or instrumentation because the analysis doesn’t 
reveal the dynamic behavior and the instrumentation 
might result in a large amount of trace data to be col-
lected and processed. It also requires distributed compu-
tation granularity to be well defined for their virtual 
migration in order to be effectively supported; for ex-
ample, workload can be divided to processes, queries, 
or procedures. Only with such well-supported computa-
tional units, their instrumentation and dynamic predic-

  



 

tion using them can be easily performed using cur-
rently-available dynamic instrumentation tools such as 
Paradyn[8]. 

In this paper, we present a metric called Load Balanc-
ing Factor, LBF, that provides programmers with feed-
back about the performance implications of moving 
computation between processors.  Computation can be 
shifted either at a fine-grained basis by migrating pro-
cedures or at a coarse-grained level by moving entire 
processes. As a result, we have developed two variants 
of the LBF metric: procedure LBF and process LBF. 
Both variants can be effectively computed during the 
execution of the current version of the program, and do 
not require post-mortem processing. 

We focus on procedure LBF in the rest of this paper. 
Section 2 briefly describes the previous work on proc-
ess LBF. Section 3 introduces procedure LBF, explains 
its online algorithm, and evaluates it using a synthetic 
application. Section 4 describes related work. Finally, 
Section 5 summarizes our work and outlines future di-
rections for this research. 
  
2. Previous work 
 

We previously developed process Load Balancing 
Factor (LBF) that effectively predicts the performance 
enhancement due to process-level workload migration. 
It addresses the problem of assessing the impact of pro-
cess migration by predicting the effect of changing the 
assignment of processes to processors in a distributed or 
parallel execution environment. Our goal was to com-
pute the potential improvement in execution time if we 
change the placement. Our technique can also be used 
to predict the performance of a distributed or parallel 
program when it is executed on a larger number of 
nodes. 

To assess the potential improvement, we predict the 
execution time of a program with a virtual placement, 
during an execution on a current one. Our approach is to 
instrument application processes to forward data about 
each message-passing event to a central monitoring sta-
tion that simulates the execution of these events under 
the target configuration. 

Since there could be multiple processes contending 
for a CPU on a node in a target placement, we must se-
lect a realistic policy to schedule processes for an accu-
rate prediction. We assume a fair round-robin schedul-
ing policy, where the OS schedules each non-waiting 
process onto a processor for a fixed quantum of time, 
and then switches to the next non-waiting process. To 

speed the computation of the LBF metric, we do not 
simulate individual quanta. For each interval of time, 
every non-blocked process gets an equal share of the 
processor effectively making the quantum infinitely 
small. 

We implemented process LBF, and tested it by run-
ning a collection of application programs. We measured 
the execution times of the programs and compared them 
with the predicted times of LBF. The results show that 
in all cases, the predicted values are within 6% of the 
actual execution times. In most cases, the overhead to 
compute the LBF metric is under 5%. The details are 
explained in the preceding paper[3]. 
 
3. Procedure LBF 
 

Procedure Load Balancing Factor (LBF) addresses 
the problem of accessing the impact of fine- grained 
computation migration by predicating the impact of 
moving a procedure between one client and multiple 
servers or one server and multiple clients in a distrib-
uted or parallel execution environment. Unlike process 
LBF, procedure LBF is restricted to client-server style 
computations with all communication via message pass-
ing. Our goal is to compute the potential improvement 
in execution time if we move a selected procedure, F, 
from the client to the server or visa-versa. 

Before describing our prediction algorithm, we define 
a few terms used to describe LBF: 

 
Event: an observable operation performed by a process. A 

process communicates with other processes via mes-
sages. Message passing results in send, startRecv, 
and endRecv events being generated. Message 
events can be “matched” between processes. For ex-
ample, a send event in one process matches exactly 
one endRecv event in another process. 

Process Time: a per-process clock that runs when the proc-
ess is executing on a processor and is not waiting for 
a message. 

Program Activity Graph (PAG): a graph of the events in a 
single program execution. Nodes in the graph repre-
sent events in the program’s execution. Arcs repre-
sent the ordering of events within a process or the 
communication dependencies between processes. 
Each arc is labeled with the amount of process time 
between events or communication time for inter-
process arcs.  

Critical Path (CP): the longest process time weighted path 
through a PAG. For an entire program’s execution, 

    



 

the CP represents the execution time of the program 
as if there were one process per processor. 

In each process, we keep track of the original CP and 
the new CP due to moving the selected procedure. We 
compute procedure LBF at each message exchange. At 
a send event, we subtract the accumulated time of the 
selected procedure from the CP of the sending process, 
and send the accumulated procedure time along with the 
application message. At a receive event, we add the 
passed procedure time to the CP value of the receiving 
process before the receive event. The value of the pro-
cedure LBF metric is the total effective CP value at the 
end of the program’s execution. Procedure LBF only 
approximates the execution time with migration since 
we ignore many subtle issues such as global data refer-
ences by the “moved” procedure. Our intent with this 
metric is to supply initial feedback to the programmer 
about the potential of a tuning alternative. A more re-
fined prediction that incorporates shared data analysis 
could be run after our metric but before proceeding to a 
full implementation. 

3.1 Algorithm 
 

We describe our algorithm in terms of operations on a 
PAG. This is done to simplify our description. The ac-
tual computation of the metric does not require us to 
build the graph. There are two basic elements used for 
the computation of procedure LBF, the difference be-
tween the lengths of the CP in the sending and receiving 
process, and the length of execution of the procedure F 
to be moved from the sending process to the receiving 
process. The computation of procedure LBF for a single 
message send is shown in Figure 1.  

When we consider moving a procedure F from one 
process to another, LBF is the new CP value after mov-
ing the procedure. We “move” the execution of the por-
tion of F from between the send operation and the pre-
vious inter-process event of the sending process, to just 
before the receive operation of the receiving process. 
For each message sent, we allocate time for the selected 
procedure to the waiting time for the message receive 
(if any). Figure 1 illustrates how the critical path can 
change after moving a procedure F. Originally Cs is 
greater than Cr as seen in the left side of the figure. 
However, after moving F from S to R we obtain the 
shorter CP length shown in the right side of the figure, 
because Cr + F is less than Cs. The difference between 
the lengths of the two critical paths of both sides at en-
dRecv, is the performance benefit due to  the  movement 
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Figure 1: Computing procedure LBF 

The PAG before and after moving the procedure F. The 
time for the procedure F is moved from the sending pro-
cess (which is on the application’s critical path) to the 
receiving one (which is not). 
 

of F. During application execution, we add the benefit 
of procedure movement for each message exchange.  
The overall value of the procedure LBF metric is the 
predicted execution time due to the accumulation of 
these benefits. 

To compute the length of the new CP due to the 
movement of a procedure F, we use the normal flow of 
messages in the application to traverse the PAG. The 
pseudo code for the algorithm is shown in Figure 2. On 
each message send, we piggyback the length of the pro-
cedure execution between the previous inter-process 
event and the send operation as well as the length of the 
CP up to the send operation. After sending the data, we 
subtract the length of the procedure execution from the 
length of CP and use the result as the new CP in send-
ing process. For each message receive event, we com-
pute the length of the new CP due to the movement of 
the procedure. Lines 16-26 of Figure 2 show this calcu-
lation. For each message passing operation, we reset the 
execution time of the selected procedure to zero to en-
sure that we don’t double count the benefit of moving F 
(shown in lines 10 and 16). 

We could remove the restriction that procedure LBF 
be used only with pure client-server style communica-
tion by incorporating Waiting Time Analysis[7]. This 
limitation arises since we currently use a conservative 
computation that resets the available procedure time for 
LBF to zero after each inter-process event to prevent 
double counting the benefit of migration. However, by 
incorporating waiting time analysis, we could allow 
server-to-server or client-to-client communication. 

    



 

1. Send: 
2.    now <- CPUTime 
3.    longest += now - lastUpdate 
4.    lastUpdate <- now 
  
5.    IF (curFunc.active) 
6.        F += now - curFunc.lastTime 
7.        curFunc.lastTime <- now 
8.    send(toHost, longest, F) 
9.    longest -= F 
10.    F <- 0; 
   
11. Recv(fromHost, Cs, rmtF): 
12.   now <- CPUTime() 
13.   longest += now - lastUpdate; 
14.   lastUpdate <- now 
15.   Cr <- longest 
   
16.   F <- 0 
17.   IF (Cs - Cr > 0) 
18.       IF (curFunc.active) 
19.           curFunc.lastTime <- now; 
20.       IF (rmtF)  
21.           IF (Cs - rmtF > Cr + rmtF) 
22.               longest <- Cs - rmtF 
23.           ELSE 
24.               longest <- Cr + rmtF 
25.   ELSE 
26.       longest += rmtFCP; 
  
27.  selected procedure entry 
28.      curFunc.active <- 1 
29.      curFunc.lastTime <- CPUTime() 

  
30.  selected procedure exit 
31.      curFunc.active <- 0 
32.      F += CPUTime() - curFunc.lastTime 
 

Figure 2: Computing procedure LBF 

3.2 Experiments 
 
We implemented procedure LBF as an extension to 
Paradyn Parallel Performance Measurement Tools[8]. 
Using Paradyn provided an easy way to implement the 
algorithm since it already included support for instru-
mentation of a running program and periodic sampling 
callbacks. We tested procedure LBF by running a sim-
ple synthetic parallel application. It is more difficult to 
calibrate the accuracy of procedure LBF than process 
LBF. In order to evaluate it, we need to change the ap-
plication to move the functionality from one place to 
another. Since this is a tedious task and requires de-
tailed knowledge of the application, we only attempted 
this for a synthetic parallel application. 

We created a Synthetic Parallel Application (SPA) 
that demonstrates a workload where a single server be-
comes the bottleneck responding to requests from three 
clients. In the server, two classes of requests are proc-
essed: servBusy1 and servBusy2. ServBusy1 is the ser-

vice requested by the first client and servBusy2 is the 
service requested by the other two clients.  

The results of computing procedure LBF for the syn-
thetic parallel application are shown in Figure 3. We 
then computed procedure LBF for each of these two 
procedures. To validate these results, we created two 
modified versions of the synthetic parallel application 
(one with each of servBusy1 and servBusy2 moved from 
the server the clients) and measured the resulting execu-
tion time. The results of the modified programs are 
shown in the third column of Figure 3. In both cases, 
the error is small indicating that our metric has provided 
good guidance to the application programmer. 
 

Procedure Proce-
dure 
LBF  

Meas-
ured  
Time 

Differ-
ence 

Percent   
Error 

ServBusy1 25.3 25.4 0.1 0.4% 
ServBusy2 23.0 23.1 0.1 0.6% 

 

Figure 3: Validating procedure LBF accuracy 
for SPA program 

 
For comparison to an alternative tuning option, we 

also show the value for the Critical Path Zeroing met-
ric[5].  It is a metric that predicts the improvement pos-
sible due to optimally tuning the selected procedure 
(i.e., reducing its execution time to zero) by computing 
the length of the critical path resulting from setting the 
time of the selected procedure to zero. We compare 
LBF with Critical Path Zeroing because it is natural to 
consider improving the performance of a procedure it-
self as well as changing its execution place (processor) 
as tuning strategies.  

The length of the new CP due to the movement of 
servBusy1 is 25.4 and the length due to servBusy2 is 
16.1 while the length of the original CP is 30.7. With 
the Critical Path Zeroing metric, we achieve almost the 
same benefit as tuning the procedure ServBusy1 by 
simply moving it from the server to the client. Likewise, 
we achieve over one-half the benefit of tuning the Ser-
vBusy2 procedure by moving it to the client side. For 
any of the tuning alternatives, we report the perform-
ance potential if the program were so tuned, it is left to 
the user to decide which alternative is most feasible to 
attempt. 

 

    



 

Procedure proce-
dure 
LBF 

Improv Improv
ement 

Critical 
Path 

Zeroing 
ement 

ServBusy1 25.3 17.8% 25.4 17.4% 
ServBusy2 23.1 25.1% 16.1 47.5% 

 
Figure 4: Procedure LBF and Critical Path for 
SPA Program 

 

4. Related Work 
 
To track down performance change due to procedure 

migration on a PAG while incrementally maintaining it, 
we adapt the on-the-fly topological sort algorithm de-
veloped by Kimelman and Zernak[6]. Our algorithm 
simulates the execution on processes with migrated pro-
cedures. To compute the predicted execution time after 
procedure migration during program execution, we use 
a variation of our online critical path algorithm[5]. 

Performance prediction is closely related to our online 
“what-if” computation. Performance prediction uses a 
model or simulation to predict the execution time of an 
algorithm or program. 

Performance predictions can be based either on ex-
trapolations of executions of the program in a controlled 
environment, or on stochastic models derived from 
static program analysis. Lost Cycles Analysis[2] pre-
dicts performance at different operating points by run-
ning a controlled set of experiments that vary an or-
thogonal set of parameters and record the resulting exe-
cution time. However, this technique requires imple-
mentations of the different tuning options to be avail-
able for execution. Static prediction[1, 4] uses modeling 
languages or source code analysis to predict the execu-
tion time of a program. By necessity, this technique ig-
nores many details about the interactions between the 
application, system software, and hardware. 
 

5. Conclusions and Future directions 
 

 We have presented a new online performance metric 
called Load Balancing Factor, LBF, that provides in-
sights into how proposed tuning strategies will improve 
an application’s execution time. We have developed 
procedure LBF that predicts performance improvement 
due to procedure migration in a client/server environ-
ment. We have shown for a synthetic application that 
our metric is able to accurately predict the execution 
time of a modified configuration. 

Although LBF is useful for programmers in its cur-
rent form, there are many directions to expand this re-
search. First, LBF doesn’t provide any guidance about 
what tuning options to evaluate. In most cases, there are 
multiple tuning alternatives to consider. A future direc-
tion is to investigate automatic selection of candidate 
tuning alternatives. Eventually, automated selection of 
candidate configurations combined with LBF provides a 
basis for dynamic program adaptation where we auto-
matically change programs during execution based on 
observed behavior to enhance their performance. 
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