INSTITUTE FOR SYSTEMS RESEARCHl

TECHNICAL RESEARCH REPORT

An Information Geometric Treatment of Maximum Likelihood
Criteria and Generalization in Hidden Markov Modeling

by W. Byrne

T.R. 93-50

The Institute for Systems Research is supported by the
National Science Foundation Engineering Research Center Program (NSFD CD 8803012),
the University of Maryland, Harvard University, and Industry



An Information Geometric Treatment of Maximum Likelihood
Criteria and Generalization in Hidden Markov Modeling

William Byrne
Institute for Systems Research and
Department of Electrical Engineering
University of Maryland

College Park, MD 20742
bbyrne@src.umd.edu

Abstract

It is shown here that several techniques for maximum likelihood training of Hidden Markov
Models are instances of the EM algorithm and have very similar descriptions when formulated
as instances of the Alternating Minimization procedure. The N-Best and Segmental K-Means
algorithms are derived under a minimum discrimination information criterion and are shown
to result from an additional restriction placed on the minimum discrimination information for-
mulation which yields the Baum Welch algorithm. This uniform formulation is employed in an
exploration of generalization by the EM algorithm.

It has been noted that the EM algorithm can introduce artifacts as training progresses. A
related phenomenon is that over-training can occur: although the performance as measured on
the training set continues to improve as the algorithm progresses, performance on related data
sets may eventually begin to deteriorate. This is inherent in the maximum likelihood criterion
and its cause can be seen when the training problem is stated in the Alternating Minimiza-
tion framework. A modification of the maximum likelihood training criterion is suggested to
counter this behavior and is applied to the broader problem of maximum likelihood training
of exponential models from incomplete data. It leads to a simple modification of the learning
algorithms which relates generalization to learning speed. Relationships to other techniques
which encourage generalization, particularly methods of incorporating prior information, are
discussed.






Contents

1 Introduction 3
2 Maximum Likelihood Training of Hidden Markov Models 3
2.1 Maximum Likelihood Criteria . . . . . . .. . ... ... ... ... 3
2.2 Alternating Minimization Procedure . . . . . .. ... ... ... ... . ..., 4
2.3 Desired Distributions . . . . . . . . . ... oL 5
2.3.1 Definitions . . . . . . . ... 5

2.3.2 The Baum Welch Algorithm. . . . . .. ... ... ... ... ... ... 5

2.3.3 The Segmental K-Means Algorithm . ... ... ... ... ..... ... 6

2.3.4 The N-Best Algorithm . . . . . ... ... .. ... .. ... ... ..... 6

2.4 A Uniform Formulation of the Algorithms . . . . . . .. ... ... .. .. .... 7
2.5 Restatement of the Likelihood Criteria . . . . . . ... ... ... .. ... .... 8

3 Generalization in Maximum Likelihood Training 9
3.1 A Modified Set of Desired Distributions . . . . . . ... ... ... ... ... ... 10
3.2 The Small Data Set Assumptions . . . . . . . .. .. ... ... ... 10

4 Imposing the Confidence Constraint 11
4.1 Continuous Hidden and Observed Variables . . . . . ... ... ... ... ... . 11
4.1.1 A Review of a Derivation of the EM Algorithm . . .. . ... ... ... . 12

4.1.2 TImposing the Confidence Constraint on Continuous Models . . . . . . . . 13

5 Model Reestimates Under the Modified Likelihood Criterion 15
5.1 EM as Gradient Descent in Moment Space . . . . . ... ... . ... ... .... 16
5.2 Reestimates of Hidden Markov Models . . . . . . . ... ... .. ... ... ... 17
5.2.1 Homogeneous State Transition Probabilities . . . . . . ... . ... .. .. 18

5.2.2 Continuous Observation Densities . . . . . .. . . ... ... ... ... .. 20

6 Relationship to Other Algorithms 20
6.1 Moment Decay and Weight Decay . . . . . . ... ... ... . ... ... ... .. 20
6.2 Complete Data . . ... ... . ... ... ... 21
6.3 Prior Information . . . . . . . . ... ... 22
6.4 Sequential Algorithms . . . . .. .. ... oo oo 23
6.5 Clamping in Boltzmann Machine Learning . . . . . . . . ... .. ... ... ... 23

7 Examples of HMM Training and Generalization 24
7.1 VDHMM . . . 24
7.1.1 Baum Welch Algorithm . . . . ... ... ... ... 0. 24

7.1.2 Out-of-Class Rejection . . . . . . . . ... ... ... ... ..... 24

7.2 Triphone Modeling with Gaussian Observation Densities . . . . . . . .. . .. .. 24

8 Conclusion 31
A I-Projection of Q? onto DY 34
B VDHMM Reestimation 35
B.1 HMM Reestimation with Constrained Duration Densities . . . . . . ... .. .. 36

C I-Projection onto DY N M, 37
D Sequential Algorithms 38
E Reestimation of HMM Gaussian Observation Distributions 40






1 Introduction

Many methods are available for training Hidden Markov Models from data under a maximum
likelihood criterion [1, 2, 3, 4]. It is shown here that several techniques for maximum likelihood
training are instances of the EM [5] algorithm and have very similar descriptions when formu-
lated as instances of the Alternating Minimization [6] technique. The value of this uniform
formulation is shown in an exploration of generalization by the EM algorithm.

Unless otherwise noted, the Hidden Markov Models considered here have discrete observation
densities. The observation symbols will be taken from the set {1,..., M}, and the hidden states
from the set {1,..., N}. Observable sequences will be denoted I, and assumed to be of variable,
finite, random length. The hidden state sequences will be denoted S. The set of observed
sequences 7 and the set of hidden sequences S are countable. The models will be denoted @
and form a family of models @, which is a subset of the general set of distributions P on 7 x §.

2 Maximum Likelihood Training of Hidden Markov Mod-
els

In Hidden Markov Modeling it is necessary in both recognition and training to evaluate the
likelihood of an observed sequence based on a model. Likelihood criteria differ in how an
observed sequence is “associated” with hidden state sequences.

2.1 Maximum Likelihood Criteria

One method of associating hidden variables with observations is through the marginal distribu-

tion
QD =) QUS). (1)
Ses
This criterion assumes that there is no particular underlying sequence that should be associated
with an observed sequence and that all are equally good.
Another association relies on finding the Most Likely State Sequence (MLSS) [7, 8] for any
observed sequence [:

S1: QU S) = maxQ(L, ). (2)

The choice of a MLSS is consistent with the use of HMMs as source models in which an un-
derlying process controls the production of the observed sequence. The MLSS might be a good
estimate of which underlying sequence produced the observed sequence.

A generalization of the MLSS approach is to find the best few hidden sequences for an
observation [9, 10]. For an observed sequence I, the N most likely hidden sequences Si,..., Sy
are found so that

QU,S:)>Q(,S) VS ¢{5,...,58} (3)

The likelihood of an observed sequence can be evaluated as

N
Y-, 5). (4)
i=1

The N-Best criterion acknowledges that there may be more than one underlying sequence which
might be associated with an observed sequence.

Training algorithms can be derived which attempt to find models which perform well under
these association criteria. The Baum-Welch (BW) algorithm [11] is based on the marginal
distributions, while the Segmental K-Means (SKM) [12, 13], or Viterbi, training algorithm is
based on the best sequence. The N-Best criterion has been used primarily to provide multiple
hypotheses during recognition but it can also be used in training.



These training algorithms can be derived using the Alternating Minimization technique [6],
which requires formulating HMM training as a problem in Minimum Discrimination Information
(MDI) modeling [14, 15].

Ephraim and Rabiner [16] described the Baum-Welch algorithm, the Maximum Mutual
Information criterion, and a general MDI algorithm as Minimum Discrimination Information
modeling approaches which differ in the source being modeled and the statistics attributed to
the source. In this work the MDI approach is extended to the likelihood criteria described above.
The Segmental K-Means and N-Best criteria are used to define MDI modeling problems and it
is shown that the algorithms which result exist on a continuum, with the BW and SKM at the
end points and the N-Best algorithms distributed between them.

2.2 Alternating Minimization Procedure

Once the likelihood criterion is established, the Maximum Likelihood training problem is defined
by the training data. The training set, T', consists of sequences of observations of a single source,
e.g. several utterances of a particular word. The goal of Maximum Likelihood training is to
construct a single HMM that describes the training set well. The number of hidden states and the
allowable state transitions are assumed to be fixed in advance. Competitive, or discriminative,
training in which sequences from different sources are used jointly to train multiple models is
not treated here, although it is considered as a problem in MDI modeling in [16].

The Alternating Minimization procedure can be used to describe a search between two sets
of distributions. One set, the model set Q, is described above. The second set, D, is called
the set of desirable distributions. 1t is defined by the training data and its members are those
distributions which satisfy the likelihood criterion.

The distributions in these sets will be compared using the information divergence as defined
on countable sets. The divergence compares two distributions U and V' according to

D I1V) = 3 Ue)los 3. )

TEX
The desirability of a specific model, @, is determined by its distance from the set of desirable
distributions as measured by the divergence. The divergence defines the I-Projection [17] of @
ontoD !

D | Q) = min D(P || Q)- (6)

Models closer to D are more desirable. Idea]ly, the goal of training would be to find the best of
all models by solving
D(D || Q) = min min D(P || Q). (7)

This is usually not practical, so suboptlmal, or locally optimal procedures are used.

The Alternating Minimization procedure can be used to describe many such searches. An
initial model Q! is chosen from the model family Q. First, the I-Projection of Q' on D is
computed

1. 1 1y — 1
P7: D(P||Q) = min D(P || Q). (8)
A new model Q? is then found by solving
. DP'|| Q%) =minD(P' || Q). 9
Q (PI1Q7) = min D(P || Q) (9)

It is shown in [6], that repeatedly applying this procedure produces a sequence of models which
approaches the set of desired distributions
D(D || Q**') < D(D || Q). (10)

and that these steps form the EM algorithm [5]. I-projection onto the set of desired distribufions
corresponds to the E-step while the M-step corresponds to solving Equation 9.

'In all the problems considered here, the I-projection will be shown to belong to D and so is defined by a minimum
rather than an infimum.



2.3 Desired Distributions
2.3.1 Definitions

The following definitions are used in describing the desired distributions for each algorithm and
also in describing the I-Projection onto each set.
In the algorithms discussed here, the desired distributions are defined using an empirical
distribution P on the observation set Z
5 #r(I)
P(I) =1 (11)
T
where #7(I) is the number of times I appears in the training set T'.
Define the support of P tobe T ={I: I €T}.
With QP fixed, for each training sequence I define BR (I) = {Si,...,Sn} to be the set of
N-Best hidden state sequences, as measured by QF:

QP(I1,S) > Q°(I,S') VS ¢ BR(I). (12)

The notation QP(I, BY,(I)) denotes ZSEB,’;,(I) Qr(I,S), the N-Best criterion defined in Equa-
tion 4.
Define the conditional distribution QP (S|B% (I),I) on § as

. OP(S|B? _ [ Qe 8)/Qr(1, BR(I)) S € By(I)
for LET: Q¥(S|By(I). 1) = { 0 otherwise (13)
This is a valid conditional distribution on § for I € 7.
For each observation I € 7 and each conditional probability P(S|I) of P € D, define
Pl |I)={SeS: P(S|I) > 0}. (14)

This random set is the support of the conditional distribution and is a valid event, i.e. P™*(-|I) €
o(S). For a given P € D, the notation Q(I, P~1(-|I)) denotes Ysep-r1oin QU S)

2.3.2 The Baum Welch Algorithm
The set of desirable distributions which defines the Baum Welch algorithm is

DEY ={PeP: ) P(I,S)=P()} (15)
S

Because P(I) =0 VI ¢ 7, it is sufficient to insist that the above be satisfied only for / € 7
DBW —{PeP.P(I)=P(I) VIeT} (16)
It is shown elsewhere (e.g. Appendix A) that the I-projection of QP onto DBW is
PP(I,S) = P(I) Q°(S|I). (17)

The I-Projection satisfies PP(I) = P(I) and also has the property that PP(S|I) = QP(S|I). The
updated models are improved by the Baum Welch algorithm in that

ST B(I) log QP (1) < Y P(I) log Q7 (D). (18)

IeT IeT



2.3.3 The Segmental K-Means Algorithm

The set of desirable distributions associated with the SKM algorithm is a subset of DEW . It
can be defined as

DKM —(peP:PI)=PI) and |P~!'(|I)|=1VIeT}. (19)

Because |P~(-|I)| = 1, every P in DSXM associates each training sequence with a single hidden
sequence. For a fixed P and I, call this sequence Sy and note that P(Sy|I) = 1. To see that this
set of desirable distributions leads to the SKM algorithm, consider D(P || Q?) for P € DSKM,

P(I1,S) )
ZP(I S) log S 9 (20)

Z > P(I)P(S|I) log P(I)P(S|I) - > P)P(S|I) log Q" (1, 5)
I S I S

D(P || Q%)

> P(I)log P(I) - P(I)log Q" (I, Sy). (21)

IeT IeT

To minimize this expression, PF should be chosen so that each observed sequence in the training
set 1s associated with its MLSS.

The projection from QP to DSKM is therefore found by performing a maximum likelihood
alignment of each training sequence with a hidden state sequence under Q?:

P(I) S =argmaxgQP(I1,S), 1€ T .
P - s
Pr(L,8) = { 0 otherwise (22)
For I € 7, PP(S|I) = 1pr(;)(S). The improvement guaranteed by the SKM algorithm is

> P(D) logmax QP (I, S) < > P(D) 1ongaxQP+1(1,5). (23)

IeT IeT

Although the Forward-Backward algorithm used to solve Equation 17 is very different from
the Viterbi search usually used to find the MLSS and Equation 22, the Baum Welch and SKM
algorithms are seen to be instances of the Alternating Minimization technique which are distin-
guished by constraints on the set of desirable distributions. This is touched upon in [7], where
it i1s shown that under certain conditions, these two techniques asymptotically yield identical
results; the additional restriction which defines DSXM is shown to be unimportant under some
conditions.

2.3.4 The N-Best Algorithm

The N-Best criterion associates an observed sequence with its N Most Likely State Sequences.
The likelihood that follows from this association is QP(I, B%,(I)). To obtain an algorithm based
on this criterion, define the set of desirable distributions as

N={(PeP:PI)=PI) and |P7Y(|)|<N VIET}. (24)
The I-Projection of QP onto DV is
PP(1,8) = P(I) Q"(S|BX (1), 1) (25)

To show this, it is sufficient first to find a lower bound on D(DY || Q7), and then to show that
D(P? || Q) achieves this bound.



Consider D(P || @*) for P € DV:
P(1,5)

DP| @) = P(1,S)log 26
P1Q) = 3 P81t g (26)
= > > P(USo &((II sg) (27)
I seP-1(I)
> > P(D)log PU) (28)
7 Ysep-1(in @71, 8)
— p P([) 9C
= ;P I)log TiEET) (29)
where the inequality follows by applying the log-sum inequality [18] % to the inner sum. Equality
holds if
PULS) _ _ @(,5$) (30)
P(LPoY(D))  QF(L, PTI())
or equivalently, using P(I, P~1(:|I)) = P(I),
Qr{1,S)
P(S|) = ——"— 31
D= Gt pcmy ey
By the definition of the By, (I) (Equation 12), for P € DV
QL P(D) < @, BY(I) VIeT. (32)
This and Equation 29 establishes a lower bound for D(DV || @Q*):
5 P(1) N :
DP| Q") > ) P(Dlog——"F—~< PE€D 33
(PUQ) 232 P log e (3)

where equality holds if Equation 31 is satisfied and P~*(-|I) = B (I).

PP as defined above belongs to DV and satisfies both the condmons for achieving the lower
bound. For I € T, PP(S|I) = Q"(SlB (D, D).

Projection of QP onto DV requires finding the N-Best sequences for each training sequence
and determining PP(S|I) in proportion to their likelihood under QF. The algorithm guarantees
improvement in that

Y P(D) log QP (1, BR (D) < 3 P(I) log Q"*'(1, BRF (1)) . (34)

IeT IeT

2.4 A Uniform Formulation of the Algorithms

This description of the Baum Welch, Segmental K-Means, and N-Best maximum likelihood
training algorithms can be summarized as searches over distributions which belong to a general
set of desirable distributions

D={PeP:Y P(I,S)=P() VIeT} (35)

This is DBW | the set of desired distributions associated with the BW algorithm. The other

desirable distributions are
DSEM DN{P:|P (D=1} (36)

DN = Dn{P:|P (|| < N}. (37)

il



Table 1: HMM Maximum Likelihood Criteria and Training Algorithms

Algorithm Likelihood Assigned Restrictions I-Projection
to Training Items on PeD of Q¥ onto D"
to Form DN Pr(I1,5)
Baum Welch log Q(I) - QP (S|I) P(I)

max

N-Best siSn o log QUL S:) | |P7'(ID| < N Qr(S|B%(I),1) P(I)

SKM " log Q(I, S) |[P=1CID| =1 | P() S = argmaxgs: Q(I,S)

The algorithms and their properties are given in Table 1.

These algorithms are similar in that the desired distributions satisfy P(I) = P(I). They
differ in a restriction on the size of the support of the desired a posteriori distributions. This
restriction is the requirement that all desired distributions satisfy |P~1(:|I)] < N for a fixed
N. For N = 1, the SKM algorithm results. For N = oo, i.e. for |P~1(-|I)| unrestricted, the
BW algorithm is obtained. The positive integers can therefore be used to specify the likelihood
criteria and determine the training algorithms.

The added restriction on D weakens with increasing N so that

DKM DN c DBV, (38)

This implies that
DM | Q) > DDV || Q) > DT || Q) . (39)

This describes the relationship among globally optimum solutions to the training problem as
defined in Equation 7. The locally optimum solutions found by the Alternating Minimization
procedures may not obey this relationship.

The model set of HMMs and the desirable distributions are defined very differently. The
HMMs are defined in a “bottom up” manner as Q(I,S) = Q(S)Q(I]S), that is, as generative
models in which S produces I. Typically both Q(S) and Q(I|S) can be freely varied so long
as ) € Q. Conversely, the desired distributions are defined in a “top down” manner in terms
of P(I) and P(S|I) so that P(I,S) = P(I)P(S|I). Once the training data is available, P(I} is
fixed as P(I) and only the term P(S|I) varies.

2.5 Restatement of the Likelihood Criteria

Rather than use the parameterization N = 1,2, ..., to describe the algorithms, an essociation
parameter a € [0,1] can be used to define the desired distributions:

D“:DO{PGP:|P‘1(~|I)|§;11— VIeT). (40)
For a = 0, D* = DBY and for a = 1, D* = DSKM_If N is the largest integer so that N < L
then P* = DYV for that value of N.

The association parameter determines how many “best” sequences are considered in scoring
a observed sequence: for @ = 1, there is one best sequence; for @ = 0, none are considered best;
for intermediate values of a, a collection of best candidates is considered. Using ¢ avoids using

infinity as an index.

For a; > 0 and b; > 0,if 3, ai =a and 3, b; = b, then 5, a,log & > alog ¢ with equality if f & = 5.



For convenience in the subsequent discussion of maximum likelihood training it will be
assumed that the association parameter is fixed. Rather than redefine everything in terms of «,
the notation based on N will be kept. The likelihood criterion is denoted

L2,(I) = log Q°(I, B%(I)) VIET. (41)

For N =1, this denotes the MLSS criterion L% (I) = logmaxs Q?(I,S); for N = oo, it denotes
the BW criterion L% (I) = log Q(I); for intermediate values of N, the corresponding N-Best
criterion is meant.

The general likelihood criterion is then to find models which improve according to

B IR(1) <> P(I) LYH(D). (42)

IeT IeT

3 Generalization in Maximum Likelihood Training

In many applications the observations which form the training set T are only a smnall subset of
the possible values which the observed variable can assume. In the following arguments it is
assumed that there is significant, if unknown, data not included in the training set which should
be acknowledged. This data is referred to as 7° = {I € Z : I ¢ T} to denote the values not
found in the training set (7°U7 = 7). Although training algorithms can only exploit data
available in T, the resulting model is intended to describe accurately related data not found
in the training set. If a training procedure produces a model with this property, it is said to
generalize well from the training data.

One of the characteristics of the desired distributions is that their “visible support” is re-
stricted to the training set. For P € D , it follows from Equations 11 and 35 that P(7) = 1.
This implies that

PeD: PU,S)=0 VIeT: VS (43)

because for I € T¢, P(I,S) < P(I) < P(T°) = 0. This is pointed out in {19] in the estimation
of point-process intensities.

If a training algorithm were to succeed in finding an exact, optimum solution, that is, to
find a model Q7 such that D(D || QF) = 0, this model would necessarily belong to D. Although
the model would be optimum according to the criterion which defines the algorithm, it would
be unable to generalize about data not in the training set. In a sense, the ability of such an
algorithm to produce models which generalize well requires that the algorithm not achieve its
training goal.

While it is unlikely that the algorithm will ever find anything but suboptimal solutions
which do not belong to D (there are exceptions [20]), it is possible for the resulting models to be
overtrained in the following sense. Suppose that an additional set of data V', called the validation
set, is also available during training. The validation data defines a family of distributions V in
the same way as the training data defines D

V={PeP:P()= '#I'VV(TQ}' (44)

Ideally, while the training algorithm yields improving performance on the training set according
to Equation 10, the performance on the validation set also improves

DV | Q7)< DV || Q7). (45)

If it happens that at some iteration this relationship is violated the model is said to be over-
trained, which is evidence of poor generalization. Methods which explicitly reserve some of the
training set to perform such tests are called cross-validation [21], or holdout, methods and a
procedure which halts the EM algorithm based on the test described above is described in [22].



3.1 A Modified Set of Desired Distributions

A possible way to avoid overtraining motivated by these considerations is to modify the general
set of desired distributions (Equation 35) by introducing a confidence parameter c

D.={PeP:) P(S)=cP(I) VIET} 0<c<l. (46)
ses

In this set of distributions the training set is given probability P(7") = ¢, while all other possible
observations are given probability P(7°) = 1 — ¢. This is prompted by the intuitive motivation
for cross-validation, which is that training should not proceed as if there were no possibilities
other than those included in the training data.

In typical applications of the EM algorithm the likelihood criterion completely specifies the
desired distribution over the observed variable and the E-Step is used only to estimate the
desired behavior of the hidden variables. Under the likelihood criterion presented here however,
the likelihood criterion is incompletely specified outside the training set. No assumptions are
rnade about the correct likelihood of the individual elements of 7°¢, other than that the linear
constraint P(7°¢) = 1—c is satisfied. As as result, the E-Step also estimates at each iteration the
likelihood criterion where it is unspecified. Performing the I-Projection under the incomplete
linear constraint leads to an estimate of the unspecified likelihood criterion according to the
rainimum discrimination information principle [14].

Another approach to generalization from data is exemplified by [23]. The data set is analyzed
to attempt to match the power of the model to the data with the goal of finding the smallest
model which accurately describes the data. This parsimony principle is widely used when
considering problems in generalization. For many problems, though, the size of model is fixed
beforehand and only the model parameters can be varied. The size can be determined either
by the physics of the problem, as in [22, 24], or, as in speech recognition, by a grammar which
describes combinations of words and phonemes represented by the model states. In these cases
the appropriate solution to overtraining is to obtain more data because a smaller model cannot
be used. The modified set of desirable distributions proposed here can be considered as a non-
presumptive attempt to augment or extend the training set to a size appropriate for the model
being trained.

The tendency of the EM algorithm to overfit training data is addressed in [25]. Overfitting
is reduced by restricting the model set to those models whose parameters satisfy smoothness
constraints. The smoothness criterion is considered prior knowledge, however, and unlike the
approach proposed here, the constraints are applied to the set of models, not to the empirical
distributions formed by the data set, i.e. the constraints are applied to @, not D. In general these
smoothness constraints make the EM algorithm harder to implement. More is required than
simply smoothing the model produced by the M-step: the algorithm must be modified so that the
M-step is a constrained optimization which searches for models among those with appropriate
smoothness. Techniques which relax the requirement that smoothing and maximization be
performed simultaneously have also been found to reduce overfitting [26, 27]. It will be shown
that applying the confidence constraint to the desired distributions as suggested here adds little
complexity to the learning algorithms.

3.2 The Small Data Set Assumptions
The derivations which follow make use of the small data set assumption
QT)~0 vQe Q. (47)

This is clearly satisfied in most speech recognition examples where special techniques must be
used to avoid numerical underflow computing the probabilities involved [1].
A slightly stronger assumption is also invoked

Y. QULS) IS ~0 vQeQ (48)

IeT,S
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for some statistics g. Typically the g are indicator functions which specify that I and S jointly
satisfy some property when I belongs to 7. When this is so

ZQ(I)S) g(I,S) SZQ(I’S) 1T(I) :Q(T) (49)
s 1,5

so this assumption is no stronger than the first assumption.

4 Imposing the Confidence Constraint

The Maximum Likelihood training algorithms presented earlier can be modified to include this
constraint on the desired distributions (see Equation 40):

DY = D.Nn{PeP:|PI(ID|XN VIeT}. (50)

The initial step in each training algorithm requires finding the I-Projection PP of the current
model QP onto DY by solving Equation 6. In Appendix A it is shown that I-Projection has the
following form

¢ P(I) QP(S|BY(I),I) SeBi(I), 1T
PP(1,8)={ 0 S¢BN(I),IeT . (51)

Qr(,8) c
(1-0) 2L ret

The divergence from Q? to DY is

P(I) (

D(P? || Q°) = CZP(I)logm+1 + cloge. (52)
T y

_M%m()

The improvement under the divergence stated in Equation 10 still holds, however the result-
ing improvement in likelihood scoring of the training set is slightly more complicated. Combining
Equations 52 and 10 yields

¢y P(D) LX)+ (1 = ) log Q¥ (T°) < ¢y P(I) L (1) + (1 - ) log QP (T°).  (53)
T T

From this it appears that the modified algorithm attempts to maximize the likelihood criterion,
as in Equation 42, but is penalized if the model support becomes concentrated on the training
data, i.e. if QP+1(7°) decreases.

These two objectives may be incompatible. Consider the case of the Baum Welch algorithm
for which L%, (I) = log Q7 (I) and suppose that

log QP (1) > log QP(I) VI € T (54)

which is desirable because the marginal likelihood of each training item is increased. However,
it implies that
log QP+ (T°) < log Q(7°) (55)

and that Equation 53 may be violated.

4.1 Continuous Hidden and Observed Variables

The above presentation is complicated in the case when the model observation distributions are
continuous. A derivation of the EM algorithm under the maximum likelihood criterion will be
presented first. Then an application of the alternating minimization procedure will be presented
for continuous models with a discounted likelihood criterion.

11



4.1.1 A Review of a Derivation of the EM Algorithm

The following derivation of the EM algorithm is presented in [28] and for HMMs in [29]. It is
presented here for models defined on continous product spaces. Consider the models ¢ which
are defined on the space (S,S) % (I,7) in terms of densities f

Q(A,B):/A/B fs1 A€S, Bel. (56)

The training goal under the marginal likelihood criterion is to modify a model QF with density f?
to obtain a new model QP*! so that the likelihood of the training data T is improved according

to
II s+ @y 2 [T @) (57)
I'eT €T
or equivalently,
> log I > > log £(I). (58)
I'eT I'eT
Following [28], the relationship
log fr =log f1,s —log fs|1 (59)

and the properties of conditional expectation are used as follows:

Y log I = ) Eqsllog (DI =1] (60)
I'eT I'eT
= Y Egllog AY (I, =11 Eqsllog fii (ST = 1}. (61)
I'eT I'eT

By Jensen’s Inequality, the elements of the second summation obey

Eqsllog f55 (S)II' = 1 < Eqsllog f5(S)I' = 1] (62)
so that
Y log I 2 Y Eqellog YIS = 1= ) Eqs[log I =1.  (63)
I'eT I'eT I'er

Under the EM algorithm, QP! is chosen so that

frtl = Aremax 3" Eqsllog f1,5(1,S)|I' = 1]. (64)

I'eT

To show that this produces an improved model under the likelihood criterion, note that this
choice of fP+1 implies

3" Eqellog (LS =11 2 ) Eqsflog f5(1,S)|I' = 1). (65)
I'eT I'eT

Applying this to Equation 63 yields

Yo log NI 2 Y Eoellog f75(1L S =11 ) Eqellog f§,(S)II' = 1] (66)
I'eT I'eT I'eT
= > log f2(I') (67)
I'eT

and improvement under the likelihood criterion is obtained.
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4.1.2 Imposing the Confidence Constraint on Continuous Models

Formulating the EM algorithm for models with continuous observations within the alternat-
Ing minimization framework is problematic. This is so because, as defined above, the desired
distributions have the property that P(7) > 0, while the models typically are smooth so that
Q(T) = 0. P is therefore not continuous with respect to @ so that D(P||Q) is not finite. This is
addressed in [6], Page 229, and the correct approach is described, which requires transforming
the models so that the divergence is well defined. The observations are assumed to be real
valued and D-dimensional, i.e. S = R,

To present the desired results for the discounted data criterion, a different approach is taken
here, which is technically incorrect but direct. For each training example I; € 7, define a set
A; € R so that I; € 4; and A(A;) = ¢, where X is Lebesque measure on RP. The value of €
is chosen small enough so that the A; are disjoint. The sets A; define e-neighborhoods around
the training examples and are used to define a ”smooth” empirical distribution on ®P

P(A) =) ai (AN A). (68)

)

where a; = %(T"ll Foreach I; € T, P(A;) = %ﬁ’ which agrees with the empirical distribution
for discrete observation models.
The discounted desirable distributions are defined as

Dc:{P:/A/dpzcﬁ(A) VAeT} (69)
This is equivalent to
Dc:{P://1AidP:cai i=1,...,|7T|}. (70)
The first step of the alternating minimization algorithm requires finding minpep, D(P||QP)
for a given model Q. The models @ are assumed to be smooth, with densities fs 1, f1, fs|1-

The I-Projection of QP onto a set of distributions specified through the linear constraints of
Equation 70 is well known and has the form

oP
an— =bexp Zi:ti 14, (71)

where t; is chosen so that the linear constraints are satisified and b ensures that the I-projection
is normalized. Satisfying the linear constraints yields

//1Ae be' fs 1 (72)

ca; —

ca; = be" 73
e /A,/fS'I (73)

b ¢ - ca; ) 74

Define A = UA;, and the following yields the value of b

1 = //-aﬁfs,f (75)
1 = Z/ /QC:)fSI‘i‘/C/bQSI (76)

c+bQ(A) (77)

—
Il

go that b = Ql(;‘cc

5
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Combining these results yields the density of P?, the I-Projection of Q? onto D,

a; 1—-c¢
c g, + (1 —¢) ——=1 78
2 guay (-9 o (78)
The density of PP with respect to Lebesque measure can be written as
a; 1-¢
R =c ——14, f5;+ == lac /%, 79
; Q(A,) A; fS,I QP(AC) A fS,I ( )
where f? denotes the density of QF.
The next step requires finding QP! as mingeg D(PP||Q). This requires solving
in D(P? '//h”l h 80
min = min —
mia DPPIQ) = o (50)

= mjax//h”logf (81)
m;lx[//Z%u.. og s+ [ [ Gy las loss] (82)
max( Y ot [ [ mons+ gt [ [ reer) 9

For small enough ¢ and smooth densities f, the following approximation is valid

%

/ / £2(1,8)log f(I,S) dI dS = / £7(I;, S)log f(I;, S) dS / I (84)
A; A,

Il

’ / F2(I;, S) log f#(I;, S) dS. (85)

Similarly, Q°(A;) = € fP(I;) and QP(A°) = 1. Substituting these approximations into Equa-
tion 83 yields

gia P10 ~ max( 0 s [ essties) + (10 [ [ o o

- max[cza,- [rsimosias)+a-a [ [rosnn e

= max ITI > Eqs[log f(S, D' = 1|+ (1 - ¢) Eqrlog f(S,1)]. (83)
I'eT

By comparison to Equation 64, it appears that that the discounted likelihood criterion
modifies the usual maximum likelihood reestimation by introducing an additive penalty based
on the cross-entropy between the current model and the new model. Because the second term
is maximized when fP*! equals f?, smaller values of ¢ which emphasize the second term will
prevent the reestimated model from differing too much from the current model, effectively
slowing the EM algorithm.

The addition of this penalty term falls within the framework of [25], where the EM algorithm
is applied to cases where the maximum likelihood criterion is augmented with an arbitrary,
additive penalty term. In that work though, the penalty term is fixed, i.e. does not vary with
each iteration, and describes general desired properties of the reestimated models. It will be
shown that the penalty presented here which is due to the discounted data criterion introduces
little additional computation to the EM algorithm.

Except where otherwise noted, discrete observation models will be the focus of the remainder
of this work.
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5 Model Reestimates Under the Modified Likelihood Cri-
terion

The next step in the training procedure requires finding a new model @QP*! from the desired
distribution PP by solving Equation 9. While the actual solution requires knowledge of the
family Q, general characteristics of the solution can be described. Consider the exponential
form of the model distribution

QU,S) = QUIS) Q(S) (89)
= ;—eXP{ij,k gix(1,S)+ D wr gi(S)} (90)
v jk P
= (v 9(1,5)) (91)
Zw = Z exp{w - ¢(I,5)}. (92)
1,8

A distribution on countable spaces can be put in this form, for example, by choosing the possibly
redundant representation wy = log Q(S), wj ; = log Q(I|S), where j and k index the sets Z and
S, and the g are indicator functions. The parameters w are called the natural parameters of
the distribution.

Associated with the natural parameters are the moments, or expectation parameters, of the
function ¢

= Y a(S) Q) (93)
S

ge = 91,5 QUS) (94)
IS

The moments of QP*! and P? are denoted as ¢g?t! = Ege+1g and pP = Ep»ryg, respectively.
The model Q?*! which achieves ming D(PP || Q) can be shown to be the model whose
moments are identical to those of the desired distribution PP

Qrtt: ¢t =y (95)

This is shown in Appendix B for HMMs.

The EM procedure can be summarized in terms of these moments: from the current model
Q? the desired moments p? must first be found; the model QP! is then found so that it has the
same moments.

The computation of p? proceeds by substituting Equation 51 into 94

P = Y g(I,5) P(1,S) (96)
1,5
= ¢ > gL, QEIBYI, D) P(D) + s Y 9(1,9) QP(I,S)

1&Tes Q’”(7°) 1€7%s

Y P(I) Eqs[g(I, $)|BR (1), 1] + W[ZH(L S)QF(I,S) = > 9(1,5) @ (1,5)]

IeT IeT,S
= o) P(I) Erlo(L SIIBR (D), 1+ gl = D o(1,8) (1, 9)]. (97)
IeT Q ( ) Ie7,S

The next step assumes Equation 95 is satisfied at the previous iteration

P =c)_ P(I)Eqrs(,S)|By(I), T + Q,,(Tc)[P”' > dLS)Q(LS)]. (98)

IeT IeT,s
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In the usual, ¢ = 1, form of the training algorithms the reestimate of p* which would be
found from QP is denoted §?. Its value is found by setting ¢ = 1 in Equation 98

7 =3 P(DEq:s(I,5)|BY (1), 1. (99)

IeT
To compare the discounted update rule to the usual rule, Equation 98 can be written as

l—-¢

Pl T

[P = ) 9(1,S) @*(1,9)] (100)

1e7,s

Under the small data set assumptions described earlier, these equations become

P=cPF+(1-op" (101)

The modification to the maximum likelihood criterion effectively slows the training algorithm
by low-pass filtering the reestimates of the moments which determine the model parameters.

The addition of the confidence parameter adds little complexity to the EM algorithm. The
M-step is unaffected. The E-step is performed as usual and the resulting moments are mixed
with the moments produced by the previous E-step; the added complexity is in storing and
mixing moments.

It is worth stressing that the moment estimates are being filtered, not the parameter esti-
mates. This distinction is important because parameters and moments live in separate spaces
and the simple filtering in the moment space described by Equation 101 can lead to more compli-
cated updating behavior in the parameter space. The term “filtering” also stresses the difference
between this technique and smoothing.

5.1 EM as Gradient Descent in Moment Space

Consider the marginal likelihood criterion

Q) =>Q(,S) (102)
S

and its associated, discounted desired distributions

D.={P:Y P(I,$)=cP(I)}. (103)
S

In Appendix D it is shown that

) _ 1 .
oD@ |Q)=—c(p~q)+(1-0) W(Q(T) 4—759(175) Q,5)) (104)

B

which under the small data set assumption becomes

DD, (| @)=~ (7-0). (105)

Under exact updating, Equation 95, the moment low-pass filtering of Equation 101 can be
written as

P o= cpP+(1-c)p? (106)
= P 4@ -pY) (107)
= P e D(D. || Qler. (108)
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Define the moment covariance matrix X as

opi
R 2 ¢
L 5w, (109)
That this is the moment covariance matrix can be derived as follows
5[),’ 6 1
i U L . 110
5, uy 2 gi—exp{w g} (110)
1 )
= E[g, g]-——exp{w g} — gi exp{w- g} T 5w Zw) (111)
w
1,8
= Fogigi— [ 2] Sgi — explw-g) (112)
= Q49 9j 7w (511)]' 2w L gi 7o CXpLw - g
6 :
= Eqgigj— [% log zu] pi (113)
= Eqgigj—pipj (114)
The last step uses the relationship
—logz, = 1 Eiex {9 - w} (115)
6'(1)] g w - 2w S 6 ] p g
= Z ;exp{g - w} (116)
1,5
= pj. (117)

% is the Fisher Information matrix. It also forms a metric tensor which relates the expectation
coordinate system and the natural parameter coordinate system by [30, 31]

opi
1
6w] Zéwj 6[), (118)

Applying this relationship to Equation 104 yields

VuD(D: || Q) = £V, D(D. || Q). (119)

Using X* to denote the moment covariances determined under @7, the EM algorithm can
be described as a gradient descent in the expectation coordinate system with a step size of 1 in
a direction defined by the moment covariance matrix X7

P =9~ VDD Qler - (120)

Under the small data set assumption, the discounted, ¢ < 1, algorithm can be described as an
update in the same direction, but with a reduced step size

P =P - SV, DD, || Q)lgr- (121)

5.2 Reestimates of Hidden Markov Models

The model family Q considered here first will be that of left-to-right, variable duration Hidden
Markov Models (VDHMM) [32].

I=(h,....It) Le{l,... M} (122)
S=(Sl,...,SL) St G{l,,N} St SSt_i.lA (123)
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The variables S; describe the state occupancy of the system at time ¢ and I; is an observation
generated while the system is in that state. The model distribution Q(I,S) = Q(I|S) Q(S)
is determined through component distributions b, and d,,, where the b, are state-dependent
observation distributions and the d,, are state-duration densities

L

QUIS) = T]bs.(&) (124)
i]-vl .

Q) = J[dn(m), =D 6.(S). (125)
n=1 t=1

The variable 7, describes the duration of state n in sequence S.
In Appendix B, it is shown that QP*! is found from QP according to

BF(r) = cJ,’;“(T)+—1c;—,,ET) [dﬁ(r)—Q”(T,Tnﬂ)] (126)
@) = eBM6)+ Q,,(T) LAORS=— ZZQP(IS I =i8 =n)] (127)
Tn IeT t

where b and d are the reestimates which would have been found from Q” by the usual, ¢ = 1,
training algorithm. These are found using the scaled version of the forward-backward algo-
rithm [3]; the correction quantities inside the brackets can be found using the algorithm in its
unscaled form.

Under the small data set assumptions the reestimates of the component model distributions
become

Ft = P4 (1-0) P (128)
o= bt 4 (1— ) b (129)

The effect is to retard overtraining by slowing the rate at which any element of the component
distributions approaches zero.

In this example, the HMM component distributions are filtered directly. This is not in-
consistent with the earlier argument which led to filtering of the moments of the distribution.
Consider the exponential form of P(S)

P(S) H do(m) = exp{E Elogd (1) 6;(7n)} (130)

n=1 7

exp{ZEwn r9n,7(5)} (131)

where wy, ; = logd,(7) and g, -(s) = 6;(7»). The moments of the distribution, gp , = Egn -(S),
satisfy gn, = dn(7). So when the component distributions of the model are unconstrained,
filtering the model moments is equivalent to filtering the component distributions. However,
this need not be so when the component distributions of the model are constrained to particular
parameterizations.

5.2.1 Homogeneous State Transition Probabilities

Often the hidden process is defined by homogeneous state transition probabilities a so that

PT(SH_l = n'[St) = Qp p! St =n (132)
where arbitrary state transitions are allowed. The distribution of the hidden sequence is then
T ()
Q(S) = ap (133)

n,ni=1
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where #, ,/(S) is the number of transitions from state n to state n’ in S.
The observation distributions %! which define QP+(I|S) are found as above in Equa-
tion 126. However QP+1(S) must be reestimated in terms of a?*!. In Appendix B.1 it is shown

that 41
it = i: 2 (134)
where
#0r = Y PP(S) #an(S) (135)
S
#EFL = gt (136)

The moments #P*! are found in the same manner as those in Equation 100 and under the
small data set assumption they become (see Appendix B.1)

# = (1—o)#h (137)
where #ﬁt}, is the moment reestimate under the usual, ¢ = 1.0, algorithm
#t = ZP(I Eqe[#n,n(S)|BR (), I]. (138)
IeT

The parameter reestimates are therefore

1
p+1 flta’ + (1 C) #n !
n,n #g+1 + (1 _ C) #ﬁ
The simple linear filtering of the moments in Equation 137 leads to a more complicated updating

of the distribution parameters. However the increase in complexity is negligible: computing
the filtered moments is simple and the task of computing parameters from the moments is

(139)

unchanged.
To see the effect of this filtering, note that the usual ¢ = 1.0 parameter update is
pptl

atl = z—g-fl— (140)
and that from Equation 134 ,

@ = ##",’n,"’ (141)
so that

Pt = ~}n’+n1’ +(1-c¢) (#ﬁ/{fﬁ“) ab . (142)
o et (1—c) (#h/#:)

Suppose that #2+1 > #P_ This implies that

ittt (143)

and that no correction is applied to the parameter reestimate. Alternatively, if #ﬁ“ <L #B
then

atl ~adl (144)

and the algorithm is effectively prevented from modlfying the parameter.

This shows that the modified algorithm favors relatively large values of the moment reesti-
mate #2+! and that if it produces such values the algorithm is allowed to procede uncorrected.
Since this term is the expected state duration given the observations, the algorithm is encour-
aged to produce models in which all states are expected to appear frequently. Conversely, the
algorithm is discouraged from producing models in which states may be expected to appear
infrequently and which rely on a few states to model the observations.
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5.2.2 Continuous Observation Densities

To generalize this technige to HMMs with continuous observation densities, the results from the
previous discussion of continuous variables will be applied. The derivation will follow [29] (see
also [33, 34]), although only the single mixture case will be presented for models with homoge-
neous transition probabilities and training under the marginal likelihood criterion. Applications
to observation densities formed by mixtures of Gaussians and other likelihood criterion follow
the procedure presented here.

Suppose that the input observation is taken from R, and the state dependent observation
densities are Gaussians with the form

ba(1) = expl— (I - 1tn) 55 (I = o) (145)

1
(2m)P/2[Sq 3

with mean p,,, and covariance £,,. The joint likelihood of an observed sequence I and a hidden
sequence S is

T N

(S s

£ D =T]bs(z) [T afme™® (146)
t=1 n'n=1

where f is parameterized by {a, u,X}.
From Equation 88, the parameters {a?*!, uP*1 £P*+1} are found from the model Q* param-
eters by solving

mfax[lcﬂ 3" Eqsllog f(S,DII' = 11+ (1 ¢)Eqs log ¢(S, 1) ]. (147)
I'eT

It is shown in Appendix E that the parameter updates take the following form

pr1 G (L o) (#B/EEYY)
o = c+(1—c) (#h/#) .
ot = cTpH + (1) (#/#5HDTE (149)

c+(1—c) (#h/#)
c 1p+1
c+ (l(if)"(#:/zﬁ‘) (R — ) (R — it 1) +

1—c¢
c(#H /#h) + (1)

As in the reestimation of the state transition parameters, the relative values of the current
expected state durations and the reestimated durations control the progression of the algorithm.

(b, — By (b — bty

6 Relationship to Other Algorithms
6.1 Moment Decay and Weight Decay

This technique bears some resemblance to estimates of model parameters in which the training
criterion is augmented by a function which constrains the model parameters. An example of this
is in training artificial neural networks from labeled data sets. A feed-forward neural network
classifier can be described as a function f,, parameterized by a weight vector w. A labeled data
set is a set of observations T = {(I, O)} where I is a feature or data vector and O is the correct,
or target network output value when I is the network input. A typical training goal is to find
network weights which minimize the empirical error

CoM= Y N fulD)=Oll2. (150)

(I1,0)eT
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To encourage generalization from the training data, a bias term can be added to the cost [35]
C,, = Cy(T) + By. (151)

This additional term is non-empirical, in that it is not explicitly a function of the training data.
If By, is chosen to be quadratic, the gradient descent parameter update rule with step size « 1s

[35, 7]

Wt = WP - aV,Cllur (152)
(1-2a)uw? — aVyCylwr. (153)

For small «, this is called weight decay, because irrelevant weights, i.e. weights for which

VuwCulwr = 0, decay to zero. This is a “shrinkage” technique, and its relationship to ridge

regression is discussed in [36]; this penalty can also be incorporated in the EM algorithm [25].
The parameter update can be rewritten as

wPtl = o (WPt =V, Cou(T)|we) + (1 — @) w? (154)
= aﬂ;p+1+(1—a)wp (155)

which resembles the low-pass version of the algorithm in Equation 101. This is a gradient
algorithm, so the mixture above arises from the gradient step size rather than from a balance
of constraints.

When the models have an exponential form as in Equation 89, the moments and natural
parameters are dual [31]. So within the framework of exponential models, and allowing for
the differences between the exact updating of the Alternating Minimization algorithm and the
incremental nature of gradient search, the technique proposed here is the dual of weight decay
and might be termed moment decay.

6.2 Complete Data

The modification to the maximum likelihood criterion above is introduced in HMM training,
however it can also be used when there are no hidden variables and the estimation is based on
completely observable data. Suppose a variable takes values in the set X' = {1,..., M} and
that m values are not observed in the training set, i.e. |{z € X' : #7(x) = 0}| = m. The set of
desired distributions is
Dcz{P:P(z):c#—lT—:l%Q zeT). (156)
If the models are unconstrained, then @Q can be chosen so that ming D(D. || Q) = 0. For
¢ =1, D, contains one member, the maximum likelihood solution

ML/ N _ #r(z)

(157)

For ¢ < 1, choosing the maximum entropy solution of minpep, ming D(P || Q) yields

el c #2) g7

The value of ¢ is arbitrary, however picking ¢ = |T|T+m leads to
#r(z)
Q@)= Igm €T (159)
mam 2E€T°

which is equivalent to adding 1 to the bins left empty by the training data. This is a variation of
the Add-One technique which, although widely used, has undesirable properties as an estima-
tor [37]. It also shows that, in this formulation, ¢ should approach 1 as the number of unobserved
symbols (m) approaches 0. Cross-validation of density estimates based on divergence criteria
are discussed in [38].
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6.3 Prior Information

A Bayesian approach to including prior information in HMM training algorithms is presented
in [39] as a way to avoid overtraining. Suppose the prior information consists of knowledge
about the moments. A set of moments p° is known or suspected independently of the training
data. These moments determine a model Q° such that Eqeg(I,S) = ¢°. It is suggested that
this knowledge be included in the moment reestimation as ([39],Equation 7)

P = + " (160)

Because the p® bound the reestimates from zero, this is termed a regularization technique. The
Add-One technique as applied in HMM modeling can also be described in this way.

This regularization can be derived within an Alternating Minimization framework, if the prior
information leads to a model @Q° which obeys the small data assumptions. By this assertion,

> QI 8) 17+(I) g(I,8) = ¢°. (161)

1,5

Define a set of distributions whose moments are constrained on the complement of the traininy
set:
M. ={P:>" P(1,8) 1r<(I) ¢(1,8) = (1 —¢) ¢°}. (162)

1,8

The set of desired distributions which leads to Equation 160 is
DN N M.. (163)

The moment constraints are enforced outside the training set to avoid incompatible constraints.
If the confidence value c is 0, p! = ¢° and Q% = Q°, so that training algorithm ignores the

training data and produces the model consistent with the prior information. If ¢ = 1, the prior

information is ignored and the algorithm proceeds with complete confidence in the training data.
It is shown in Appendix C that the I-Projection of QP onto DN N M., is

c P(D) Qv (S|BR(I),I) T€T
PP(1,5) = . (164)
(1-¢) Q%I S) IeTe

This is found by projecting onto DN N M, the projection of QP onto DY .
Under the small data set assumption, the resulting moment update equation is

p":c[)’p+(1—c)p0. (165)

This derivation of the Bayesian regularization technique leads to an interesting interpretation
of moment decay. The set of desirable distributions DY does not provide enough information
to carry out the model reestimation. Including the prior information M, provides enough
information to perform the reestimation, but if it is not supplied, it is computed from the
current model. Moment decay is equivalent to guessing prior information based on the current
model. In a sense, the results of each reestimation, as well as the initial model, are treated as
prior information at the next reestimation. The value of ¢ can be used to control how quickly
the prior information is discarded.

It is possible to include incomplete prior knowledge, i.e. some of the [q}’, q](-’y ) may be unspec-
ified so that Q° is not uniquely determined. The moment estimates for which priors are given
are updated using Equation 165 while those for which no prior values are given are updated
using Equation 101.
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6.4 Sequential Algorithms

In the Alternating Minimization procedure the model parameters are reestimated so that Equa-
tion 95 holds exactly

wPtl . Pl = pp, (166}
In Maximum Likelihood HMM training, the Baum-Welch algorithm yields in one step a model
which satisfies this relationship. In training other models, such as the Boltzmann Machine [40],
no such one-step, exact algorithm is available. Typically sequential, gradient descent algorithms
are used to find the model with the correct moments. In some cases it is possible to implement
the gradient search so that Equation 95 holds, for example Boltzmann Machine training can
be formulated using Iterative Proportional Fitting to meet this constraint [41]. In other cases,
though, the model parameters are modified in the direction of decreasing D(D. || Q), and the
minimization is not solved exactly. This leads to a stochastic approximation to the Alternating
Minimization algorithm (e.g. [42], Eq. 4) which uses sequential rather than exact updating.

The model parameters are updated as

wtl = w? —a VyD(D. || Q)ler (167)
for a small step size a. In Appendix D it is shown for the marginal likelihood scoring that
1
VD@ | Qlor = —c (7" = ¢") + (1 = ©) Gy (@D ¢ = 3_9(1,5) Q°(1,5))  (168)
T,8
which under the Small Data Set Assumptions becomes
VoD@ || Q)lgr = —c(# —¢") (169)
= ¢VyD(De=1 || Q)lgr (170)
The parameter update is then
Wt = wP — ca VyD(Dez1 || Q)lor (171)

The confidence parameter leads directly to slower learning in these sequential algorithms by
reducing the step size.

6.5 Clamping in Boltzmann Machine Learning

Boltzmann Machines [40] are artificial neural networks of binary valued, stochastic units which
can be made to learn in an approximation of the EM algorithm. Learning proceeds in two
phases. The network visible units are clamped according to an environmental distribution P
and the hidden units operate freely. In the free-running phase, all units are allowed to operate
freely. Statistics are accumulated while the network is operating in each mode, and the network
weights are modified so that the free-running behavior of the network better matches the clamped
behavior.

The steady-state distribution of the clamped network corresponds to the I-Projection of the
current model onto D [41] i

Q, S) = Q(S|I) P(I). (172)

Under the discounted data criterion and the small data set assumption, the steady-state distri-
bution according to the I-Projection onto D, is

QL 8) = QSID [ P(I) + (1 - ) QD). (173)

The discounted data criterion effectively leads to a modified environmental distribution. While
the statistics are accumulated, the network is clamped as usual to P for a portion ¢ of the
accumulation. For the remaining portion of the accumulation, data is collected with the net-
work free-running. Moment decay can be implemented in the Boltzmann Machine distributed
computational architecture with only a minor change in the usual learning rule. It is not neces-
sary to store the moments from the previous iteration because they are found again during the
free-running portion of the moment accumulation.
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7 Examples of HMM Training and Generalization
7.1 VDHMM

The first examples of training and validation are presented for a simple VDHMM and a small
training set. The training and validation sets each consist of 10 separate instances of a spoken
digit. Acoustic features are obtained from a cochlear model and vector quantized using a
codebook of size 32 so that each word is represented by a sequence of codeword indices [43]. A
single model with N = 5 hidden states is trained for different values of ¢ and its performance
on the validation set is evaluated at each iteration. This case is somewhat artificial in that the
model is much more powerful than required by the training set. However this is exactly the
situation in which models do not generalize well.

7.1.1 Baum Welch Algorithm

Figure 1 shows the performance of the Baum Welch algorithm for ¢ = 1 and ¢ = 0.5. Each in-
stance of the algorithm starts with the same initial model in which the duration and observation
distributions are uniform. The trained models show improved performance at each iteration as
measured on the training set and specified by Equation 10. However, the generalization ability
of the usual (¢ = 1) algorithm (shown as -o-) is fairly poor. In training each word, the perfor-
mance on the validation set fails to improve at the third iteration. The generalization shown
when ¢ = 0.5 is improved. Performance on the validation set continues to improve until at least
the seventh iteration and achieves a higher score overall. For both values of ¢, the final training
scores are nearly identical.

Some explanation of this improvement in generalization is given by Figure 2 which shows the
sequence of reestimates of the duration distribution d;, obtained in training the word “nine”.
When ¢ = 1.0 the algorithm quickly, by iteration 3, concentrates the distribution about isolated
durations. By contrast when ¢ = 0.5, terms in the distribution decay to zero much more slowly.
At the third iteration, it also concentrates on individual durations, however, the distribution is
not so depressed around these values. Although it obscures the details of the distributions, this
is most visible in the logarithmic plot shown for iteration 4 where it is clear that the distribution
found when ¢ = 0.5 supports a much broader range of durations than when ¢ = 1.0.

In both training examples shown here, the likelihood score of the training set improves at
each iteration. This occurs despite the modified likelihood gain of Equation 53, which suggests
that some exchange between the likelihood score and the likelihood of 7¢ might occur.

7.1.2 Out-of-Class Rejection

Although it is not ensured by the maximum likelihood criterion, it is additionally desirable that
a model trained to maximize the likelihood of data from one class also yield a low score when
used to evaluate data from other classes. If this is so, a classifier based on a maximum likelihood
rule will work reliably.

The data presented in Figure 1 is presented again in Figure 3. Also presented (plotted as
-*.) are the results of testing the model trained on utterances of “nine” using the validation
set of “zero”, and the results of testing the model trained on utterances of “zero” using the
validation set of “nine”. The rejection of out-of-class data is better when ¢ = 1.0 than when
¢ = 0.5, although it is sufficient for correct recognition when ¢ = 0.5.

7.2 Triphone Modeling with Gaussian Observation Densities

The acoustic properties of a phoneme depend upon the context in which it occurs. One method
of modeling this variability is to create context-dependent models so that different phoneme
models can be used in different contexts. In triphone modeling, the context information is the
identity of the preceeding and following phonemes.
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Figure 1: Baum Welch Algorithm: Log-likelihood Scores on Training and Validation Sets vs.
Training Iteration for two values of ¢ in two training tasks. Curves -x- plot the score 3, log Q7(I)
on the training set; curves -o- plot the score )~ log QP(1) on the validation set. The utterances
modeled are (top) “nine” and (bottom) “zero”. The test and validation sets cach contain 10
utterances.
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Figure 3: Baum Welch Algorithm: Log-likelihood Scores on Training, In-Class and Cross-Class
Validation Sets vs. Training Iteration for two values of c. Curve —z— plots values of 3 ;-7 log Q7(I);
curve —o— plots values of ;.\ log QP(I); curve -*- plots values of 3 oy log QP(I), where V is the

validation set of the other model.
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Figure 4: (Top) Training and validation scores in training a monophone model for /k/ using the ¢ =
1 Baum Welch algorithm for |7 = 296 and |V| = 78. No overtraining is evident. (Bottom) Training
and validation scores in training a triphone model for /cl-k-ix/ using the Baum Welch algorithm
for [7] = 25 and |V| = 7 for ¢ = 1.0 and ¢ = 0.6. Overtraining is evident, but generalization
performance is improved for ¢ = 0.6. The final, trained monophone model is used as the initial
triphone model.
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Figure 5: (Top) Training and validation scores in training a triphone model for /t-ay-m/ using the
Baum Welch algorithm for |7| = 6 and |V| = 6 for ¢ = 1.0 and ¢ = 0.3. (Bottom) Training and
validation scores in training a triphone model for /ax-vel-b/ using the Baum Welch algorithm for
|7] =33 and |[V| =11 for ¢ = 1.0 and ¢ = 0.9.
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Table 2: Selected Phoneme and Triphone Frequencies from Dialect Region 1 of the TIMIT Database

Phoneme | Training Set | Test Set
/k/ 296 78
Jel -k - ix/ 25 7
vcl 613 164
ax-vcl-b 33 11
/ay/ 163 45
/t-ay-m/ 6 6

A context-dependent model is trained using only instances of the phoneme found in that
context. A shortcoming of this approach is that it is difficult to find enough instances of a
phoneme in all possible contexts to train reliable context-dependent models.

Typically a reliable monophone (context-independent) model is first trained using the usually
large amount of context-indepent training data. This model is then used as an initial model in
further training with context-dependent data.

An example is given here of training triphone models using moment decay to prevent over-
training. The experiment is conducted using data taken from Dialect Region 1 of the TIMIT
database [?]. A model will be trained for the phoneme /k/ in the context /cl - k - ix/, as in
“kettle”. The occurences of several phonemes sampled from dialect region 1 are given in Table 2
It is clear that specifying the context reduces the amount of training data.

The model used is a three-state left-to-right model with no skips allowed. The observation
distributions are single mixture, diagonal covariance Gaussians. The state transition probabil-
ities are reestimated according to Equation 139. The means and covariances are reestimated
according to Equations 148 and 149. The observations are 12 liftered, Mel-Frequency Cepstral
coefficients, a frame energy term, and their first difference coefficients. The features and model
reestimates are computed using the HTK Hidden Markov Model Toolkit {44].

An initial model for /k/ is found using a Segmental K-Means initialization procedure which
makes use of all the training data. Only the observation distributions are varied. This model is
used as the initial model in the Baum-Welch training algorithm. Although the training algorithm
is essentially allowed to find a fixed point, no overtraining is evident in the context independent
model (Figure 4,top).

The resulting monophone model for /k/ is used to initialize the Baum-Welch reestimation
of /cl - k + ix/. As shown in Figure 4, bottom, overtraining occurs by the second iteration in
the usual ¢ = 1 Baum-Welch reestimation. When ¢ = 0.1, however, overtraining is postponed
until the 11th iteration and the overall score of the validation set is much improved.

Examples in training other triphones using the Baum-Welch and modified Segmental K-
Means (only means and variances updated) are also given in Figures 5 and 6.

8 Conclusion

A uniform description of the Baum Welch, Segmental K-Means and N-Best maximum likelihood
Hidden Markov Model training algorithms has been developed by describing these algorithms as
instances of the Alternating Minimization procedure. It is shown that these algorithms can be
distinguished by a single parameter which describes a varying restriction on the set of desirable
distributions that defines each algorithm. This restriction determines the size of the support of
the a posteriori desired distributions.

A procedure has been presented which is intended to improve the generalization of statisti-
cal models trained from data using the Alternating Minimization procedure under a maximum
likelihood criterion. It is compared to other reestimation techniques which incorporate penal-
ties to enforce parameter smoothness, and it is stressed that in this algorithm the penalty, or
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discounting, is applied to the data set, not the model set. While the confidence constraint may
slow the training algorithms, in the examples given it involves very little additional calculation.

This technique is presented as a modification to the maximum likelihood criterion. However,
it only relies upon a minimum divergence formulation and can be applied to other models and
techniques which can be formulated in this framework, such as training under a Maximum
Mutual Information criterion [16] which may be useful in improving the cross-class rejection
described in the examples.

The technique tunes the rate at which the EM algorithm abandons prior information. It may
be useful in applications such as speaker adaptation where a small amount of speaker dependent
data is used to refine speaker independent models. It may also be useful in the opposite task of
merging well-trained speaker-dependent models into robust, speaker-independent systems

A manner for choosing the correct value of ¢ is not known; a fixed value may not even
be appropriate. While it appears that lower values of ¢ encourage generalization, lower values
of ¢ also slow the training algorithm. In this algorithm, there is a clear trade-off between
generalization and speed of learning.
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A I-Projection of ” onto DY

From Equation 6, PP should be found to minimize

P(1,5) P( P(1,8) .
D(P | QF) = P(I,8) lo + P(I,5) (174)
LI et L L iy

The minimization can be performed independently on each sum if the conditions for membership
of PP in DY

P(I) = ¢ P(I) VIET (175)
|P=Y(ID)] € N VIeET (176)
P(T®) = 1-c¢ (177)

are not violated. Through the log-sum inequality [18], the sum on 7°° satisfies the inequality

P(T)
Qv (T¢)

> P(,5) log ((1 ?) > P(T°) log (178)

IeTe §
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and achieves this lower bound if and only if

P(1,S) Qr(1,S)

= ¢, ¢
P(T) G (T9) leT (179)
Satisfying Equation 177 implies that
Qr(1,S)
PYLSY=(1—-¢) ——= T€T". 180
(1,5) = (1-¢) s (180)
P? is found for I € T in the same way as Equation 25 is derived. The sum on 7 obeys
P(1,S5) P(I,5)
> P(1,8) log = > > PUS) g4 (181)
I€T Ses S8 IET seP-(|1) Qr(1,5)
P(I)
> P(I) log - (182)
Z;r Ysep-1¢n @ (1, 5)
with equality if and only if
P
P(LS) _ Qr(1,5) IeT. (183)

P(I) — Ysep-1(n@(1,5)

Satisfying Equations 175 and 176 and minimizing the term on the right hand side requires that

c P(I z—ﬁ—”i’—SL— SeP-l(D, T€T
PP(I,8) = { ) senr, ) IS Ch . (184)
0

S¢P-Y|D, IeT

Combining the distributions which minimize the two sums yields the I-projection of Q onto D..

e P(I Qs SeP(|, IeT
( ) SeBK,(I) QP(I,S) (| )
PP(I,S)=<% S¢P-\(|I), IeT - (185)
(1-<) &GS IeTe

The divergence from Q7 to D, is found by substituting Equations 178 and 182 into Equation 174

_ o Pr(I) yiop LT) \

D(P? || QF) = ;pz’(z)l g Seem OO + PP(T%)log 5 (T (186)

:Zcﬁ(])logcf’([)—ZcP(I)log( Y QrILS) )+ (1- c)log Tc (187)
T SeBY, (1) (

= clogc+cZP(I log P(I) + (1 — ¢)log =

Q,,(T) c%}P(I)log( Y. QUL9)(188)

SeBL (1)

B VDHMM Reestimation

In this section, the association parameter a is fixed at some value in [0, 1}. The updated Hidden
Markov Model QP+ = {§P+1 dP*1} is found from the current desired distribution P? by solving

PP(I,S) _

rrgnD(P” Q) = manP”(I S) log ==L 00D -

max »_ PP(I,S) logQ(I,5) (189)
@ 1,8
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= mgx[lz’;P”(I,S) logQ(IIS)+;P”(S) log Q(S) ] (190)
= mg,x[ ;PP(I,S) Xt:logbg,(It)+ZS:P”(S) Zﬂ:logdn(rn)]

= méixlz;P”(I,S) Zt:logbs,(It)+m;u(XS:Pp(S) ;logdn(m)

= mbaxZ‘:PP(I,S) ZZZén(S,)ég(It)logbn(i)+m(?xZPP(S) ZZ&T(Tn)logdn(T
= Emaleogb (z);EPP(I ,S) 6n(Se)8: (It)+Zrnax210gd T)ZPP +(7a)

;n;z:x;logbn(i) ;P"(It =14, S =n)+ ;ncli:szrjlogdn T) PP(1, =1T). (191)

The distribution QP! which maximizes these terms is ([2], Lemma 2)

&t (r) = PP(r,=7) (192)
41/ ZPP(ItZi,St;‘n)_ZPp(It:i,St:ﬂ) .
Ry SEG=n A (199)

where 78 = 3, PP(S; = n) = ) 7PP(m, = 7).
For ¢ = 1, the usual algorithm, Q?*! is found from P? by substituting

PP(1,8) = P(I) Q"(SIBY(),]) (194)

into Equations 192 and 193 to obtain

&(r) = Y P(I) ) Q(SIBY(), ) (195)
IeT S:T=T

BRG = Y S PO Y @SB (196)
™ 5 reT =i 5:81=n

where the tilde denotes that these are the ¢ = 1 reestimates from Q?.
For ¢ < 1, the reestimate of the duration distribution can be found by substituting Equa-
tion 51 into Equations 192 and 193 and following the derivation of Equation 100

d’r’f'"l(T) = ¢ Jﬁ+1(7)+ QP(T) [ (r) = QP(T, 1, = 7)] (197)
B = cEg+1(i)+ QP(T) 40) = ZZQ” (I,S: I, =i,5 =n)]. (198)
Ie7T t

B.1 HMM Reestimation with Constrained Duration Densities

When Q(S) = H" ni=1 Gy, ’,‘1"'( ) , finding QP*! from PP proceeds from Equation 190 by finding
the parameters a which maximize

D PP(S)logQ(S) = ZP” S) > #nn(S)log an (199)
S n,n’
= Zlog U ZP”(S #n ni(S) (200)
= Z #0540 10g an e (201)

= Z[Z an nt log apn | (202)

36



where

#otl = Z PP(S)#n.n0(S) (203)
and also
#2F1= 3N PP(S)#n (). (204)
n S
If aP*! is chosen as
#p+1/
T = g (205)

then the bracketed term above is maximized ([2], Lemma 2) and QP*! is found.
The moments are derived in the same way as Equation 100

#orh = Y PP(S)#an(S) (206)
S
= Y PLS)#am(S)+ Y. PP(LS)#nn(S) (207)
Ie7,s IeTe,S
= CZP(I)Z#M(S)Q”(SIB (1), I)+(1_C)Z#nn(5 S Qr(1,S)  (208)
IeT IeTe
= CZP(I)Eor(sm[#n,n:(S)lev(I),I]+(1—C)Z#n,nr(5 [Q"(S) = >_Q(1,5)]
IeT S IeT
= HE A= #h = DD Fan (R, (209)
IeT S

where the usual, ¢ = 1.0, reestimate of the moment is
= 2 P Ege(sin[#n,n (S) BR (D), 1]. (210)
IeT

Under the small data set assumption this becomes

#PHL —egrtl L (1) #P . 211)
n,n n,n n,n Y

C I-Projection onto DY N M,

Denote the I-Projection of QF onto Df’ , defined in Equation 51, as P*. Because D({_V and
DY N M, are both convex, the I-Projection of P* onto M. is the I-Projection of QP onto
DY N M. ([17) Theorem 3.2). Denote the I-Projection of P* on DN N M, as P**. It is well
known that

P*(1,S8) = P*(I1,S) exp{A-g(1,S) 17<(I)}. (212)

where the Langrange multipliers A are chosen so that P** € DY N M.. Suppose A = w® — w?.
Evaluating the condition for membership in M, yields

IZS:P**(I,S) 17-(I) ¢(I,S) = I;SP*(I,S) exp{A-g(1,9)} (213)
) €7,
= X a-9 TN ol a(1,5) (214)
- le(‘;c) IE; exp{w” - g(I, )} exp{)-g(I,5)} (215)
= o T enfu® o(1,9) (216)

Q(T°) | 7 s
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1-¢ 0 oo
" 0@, 5,0 o

€Te,S
= (1-¢)¢° (218)

where the last equation assumes that Q% and QP obey the small data assumptions.
The I-Projection of QP onto DY N M, is therefore

P™(1,5) P*(1,5) exp{A-g(I,5) 1r<(1)} (219)

¢ P(I) QP(S|B%,(I), ) IeT
= (220)
¢! ""c) Qp(Tc exp{A-g(I,5)} I1€T*

{ cP(I) QP(S|BY,(I),I) T€T

(1-¢)Q°(LS) IeT®

(221)

D Sequential Algorithms

From Equation 52,
8 . 8 5 -
mD(D,’)’ Q)= ~C;P(I) ZSE1ogQ(1, Bn(I)) - (1 —c)é—alogQ(T ). (222)

The first term would be evaluated as

2 1og QUL Bn (1)) =

5 Y QU,s) (223)

Qa, o (1))6 =

however because By is a function of w it is not necessarily true that

2 Y Q=Y —Qu.s) (224)

Bn(I) Bn(I)

In general, it is too strong an assumption that small changes in parameters will not affect the
most likely hidden variables. For the marginal likelihood Q(I, Bn(I)) = 3¢ Q(I,S), so this is
not a problem. Only this case will be considered.

The first derivative is somewhat difficult to evaluate directly, so the approach used in Section
2 of [5] will be followed. Define

Zy = Zexp w-g(I,S). (225)
$0
Q,8) = w (226)
and I
Q= Zs 2 105), (227)
Note that Q(S|I) = %%) so
: 9) ,
siy = <= wl 228
Q( | ) Zgl exp w g(I,S’) ( )
exp w-g¢(I,S) .
———-—————Zw D (229)
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where

zuw(l) = Zexp w-g(I,S") (230)
SI
It follows that
logQ(I) = logQ(I, S) —log Q(S|1) (231)
= logzw(I) —logz,. (232)
It is now easier to take the derivatives:
é 1 ] 99"
solog () = Z'U—(I);%expw-g(ﬂs) (233)
= 91,5 Q(sII) (234)
s
and
=1 = 1yl 1,8) 235
5o 08w = 4 6 exp w - g( (235)
= Zg(I, S)Q(1,5) (236)
1S
= gq (237)
so that
2108 QULS) = 3 9(1,5) QUSIT) - (238)
6“) Og ) - = g b q
Inserting this into the first term of Equation 222 yields
- 6 .
Y P(D)p=logQU) = Zg 1,8) P(1) Q(SI1) — g (239)
T
- e (240)
The derivative of log Q(7°) is found via
8 § 8 -g(1, S
6—Q(Tc) = > 3_Q(I,s) = %ﬁp__‘.”__ﬁu (241)
v Tes oY Tes Zw
_ 14 expw-g(,5) & .
= E — 5 X w-g(I,5) —TCZ; e (242)
= 3 a1, S)M Z Q(I,S)iéi 3 exp w-g(I', 5')
Te,8 Zw wI’,S'
; anexp w-g(l',S8") .
= Y 91,5 QUS8) - Z QU 8)— O (0 e R ACKE R OYEY
T8 Wt st Zur
= Y 91,9 Q,S) - (’Z’c) > oI, 8HQI, S") (244)
T°,8 I8
= Y 9(1,9) QU5 -Q(T°) q (245)
Te,8
= Q(T)q-)_9(1,5)QUS) (246)
7,8
so that 5
5o logQ(T°) = Q(Tc)(Q T)q~ Zg(l $) QUL S)). (247)
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Substituting this and Equation 240 into Equation 222 yields

) . 1 .
PP Q) =-c(p-9)+(1~¢) W( QT)q— ) 9(1,9) QL S)). (248)

7,8

E Reestimation of HMM Gaussian Observation Distri-
butions

To model continuous observations taken from RP, the density of a Hidden Markov Model with
a single mixture, Gaussian observation density can be written as

A(1,8) = Hbs,(m H Fope 51 (249)

n,n'=1
where the state dependent observation density has the form

1

(1) = o7

1 — &)
palBal} el (=) 27 (1= )] (250)
From a model QP parameterized by {a?, pu?, XP}, it is necessary to find a new set of parameters
which maximize the auxiliary function, Equation 88. This will be done by differentiating with
respect to each parameter, setting the derivatives to zero, and solving for the new parameter
set.

Finding p5t: Following [29], using 57— log b,(i) = Y11 — pp), it follows that

a N

a”n = a—[z]og ng (It) + Zlog a54,51,¢+1 ] (251)
= 6%225 1(Sy) log b (1) (252)

- Ea (S)Z7 (I = pa)- (253)

Differentiation and maximization of the auxiliary function requires finding p2+! as the solution
of

) ,
7| lfT—l > Eqsllogq(S, I)li = I+ (1 - ¢)Eqs log (S, 1) ] = 0. (254)
i ieT

Consider first the ¢ = 1 case which yields the usual, EM, reestimate of y,, denoted 2!, This
requires solving

0

E pl I = = 255
. |T|Z arllogg(S, Dli = 1) =0. (255)
Evaluating the expectation yields
0 . 1 ) .
g PorllogQ(S, Dli= 1) = Eqel)_ 6a(S)ER (I — pa)li = 1] (256)
n t

S [Eqel)  6n(S)Lili = 1] — Eqe[#a(S)|i = Ijtn] (257)

where the final step uses #,(S) = Y, 6,(S;) to denote the number of occurences of state n in
sequence S. The term T%'T Sicr Eqe[#n(S)|i = I] is denoted #5%! so that

ZEQP[logQ(S Di=11=2 % ITI > Egs Zé (S)) Lli = I)—#2+1 1, ], (258)

Hn ITI IeT
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Setting this to zero yields

L G = |T| 3" Eqe 25 (S:) L) = 1. (259)

ieT

For ¢ < 1, the derivative of the second term in Equation 254 can be found as

logg(S,1) = Eqs[Z7" ) 8a(St) (It = )] (260)

= SV Eqi[ Y 8a(S) L] - 57t Egel ) 8(St) i (261)

= T  Eqe[ Y 64(Se) L] = B3t Eqel #a(S) ] 1t (262)
4

= 571 Eqr[Eqe[) 6a(St) It 1S:]] = 557 #4 jin (263)

t

= ZVEqe[) ] 6a(St) Eqr[ 1 [S: 1]~ T30 #h yin (264)
t

= IV EQi[ ) 6a(St) s, ) - 27 #h (265)
t

= T Ege[ Y 8a(S)] = 57" #5 i (266)

= Toluh # —Et,:l #h 1 (267)

where #£ is used to denote Eqr #4(S).
The derivative of the auxiliary function for ¢ < 1 is therefore

a |T| ZE’Qp logg(S,D|i=114+ (1 —c)EgelogQ(S,I)] = (268)
sET
o l(lTl > For 26 (S0 Tili = 1) = 5+ pa) + (L= ) B3 #h (4 — jia).
IeT

Setting this to zero yields

c Ege[X", 00(Se) Lli = 1]+ (1 — ¢) #5, 1,
ap+t = I 2rer Eao [¥t+1( 1) 1y 1+ ( (269)
c#HT +(1-¢)
c Rt #E + (1— o) #h b ;
= £ P+l ( ) P : (270)
cH#ET + (1 -c)#h
e (L= o (/) -
c+(L—c) Hh/#:)
Finding XPt1: After [29], finding X**! requires solving
[ 77 ZEQP [logq(1, S)|i = Il + (1 — ¢) Egslogq(I,S)]. (272)

IeT

Using 5—%"- logq(1,S) =, — (I — ptn)'(I = pn), and following the first step in the derivation of
pEt

s 10g4(7,8) = 32 60(SO[En = (1 = ) (s = )] (213
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Inserting this into Equation 272 yields

32 Ry m IEZT Eqs[logg(I, S)li = I + (1~ ¢) Eqrlogq(1,5) ] = (274)
7 2 Forl Eén(st i=11%0 = 7o 3 Forl Zén (50) (I = pun)' (Tt = pin)i = 1]
ieT €T
+(1 - ¢) Eqn Z%(St NS0 — (1= Ba 3 6a(S)(L = an) s — ).
t t
As in the derivation of u2t! the first term in Equation 274 is
T ZEQ,[Zs (S))i=1]=c#2t1 (275)
I l €T
The second term in Equation 274 is evaluated using Equation 259. It follows that
T ;EQ" Y8 (Se) (T = pn) (I = pa)li = 1] = (276)
1 1 1 L .
m 5 Bl S ) e B 4 = ) U= 4 P = pli= = @10
=3 Eq»[Z«S (S0) (T — ABFYY(L — i2¥h))i = 11+ (278)
7] =
207 3 Farl 32 60(50) (s = FEHY A~ i = [+ G — ) G5 o) =
€T
Tl ZEQ»[Z«S (S) (I = EFY) (I = Y= 11+ (279)
SET
I ZEQP[Z5 (Se) (I — gty i = NS — pn) + ¢ (BT — ) (Y — pan) =
ieT
7 2 Ferl D2 60(S0) (he = A (T = ) = 1+ (280)
ieT
2 C#"“(u”“ pa) (BEFY = pn) + € (B — pn) (BEFY — pn) =
T 2 Barl 35 n(51) (e = XY (= )l = T+ (281)
tET
c(Q#RT + D(EF — pa) (BT — pin).
The third term in Equation 274 is evaluated using the definition #2 = Eq»#,.(S5).
The final term in Equation 274 is found as
Eqe[ > 6(Se) (It — pn)' (It — )] = (282)
1
Eqe[ ) Eqr[6a(St) (It = pn) (I = pa)l S]] = (283)
t
Basl 3 6a(5:) Bqul(T — i, + i — ) (T — i + i, — pin)|Si]] = (284)
t
Bqrl 3 8a(0) Earl(Ti — i) (I — p2)ISi] + (12 — in) (8, — pin) ] = (285)
t
Eqr[ > 6n(Se) T, + (b — pa) (Hh — pn) ] = (286)
t
#5 5+ #0 (uh — pn) (17, — pn). (287)
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For the usual, ¢ = 1, case, setting the derivative of the auxiluary function to 0 yields

0 1
—--———E Egellogq(I,S)li =1] =
o%, ITl & Q[ g‘I( )l ]

#ﬁ+lzn+|T|ZEQ»[26(st ) (fe = Y (L = )i = 1]

ieT

so that
B EP = S Bl 3050 (= Y (o= 4l = 1)

i€T
Using the above in the derivative of the auxiluary function yields
6

ITI Z Eqe[logg(1,S)|i = I]+ (1 — ¢) Egr logq(I, S)] =
IeT

CHENIDn — [T IR+ 2+ (T — Y (B - ) ]+

(1= c)#h B = (1= [ (uh — ™) (uh, — ui*1) + 2]
The reestimate of the covariance under the modified likelihood criterion is therefore
e £ 4 (1—c) #5322
cH + (1—c) #5
Lo #HL 4+ )(EH — b (i — ph) 4 (=) #5 (= pi ) (e, =

+1
)24

(288)

(289)

(290)

(291)

)

c# +(1-o) #h cHIT +(1-0)#
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