
ABSTRACT

Title of dissertation: COMBINING DESCRIPTION LOGIC
REASONING WITH AI PLANNING FOR
COMPOSITION OF WEB SERVICES

Evren Sirin, Doctor of Philosophy, 2006

Dissertation directed by: James Hendler
Department of Computer Science

As Web Services become more prevalent — with the aim of achieving inter-

operability between heterogeneous, decentralized and distributed systems — the

problem of selecting and composing services to accomplish a given task becomes

more important. Using Web ontologies to describe different properties of Web Ser-

vices provided by separate developers facilitates their integration. Automating the

composition of Web Services is essential for various different subjects ranging from

ordinary users performing tasks on the Web, businesses carrying out complex trans-

actions, and scientists collaborating with each other on the computational Grid.

In this thesis I present the HTN-DL formalism which combines Hierarchical

Task Network (HTN) planning and Description Logics (DL) to automatically com-

pose Web Services which are described with Web Ontology Language (OWL).

The main contributions of this thesis are as follows:

• The HTN-DL formalism, which couples Hierarchical Task Network (HTN)

planning and Description Logics. HTN-DL combines the expressivity of De-

scription Logics with the efficiency of HTN planning systems to solve Web

Service composition problems.

• A translation algorithm from the Semantic Web Service language OWL-S to

HTN-DL. This translation algorithm shows that the control constructs used to

describe the control flow of a Web Service workflow can be encoded in an HTN-

DL domain. The translation also provides a semantics for OWL-S processes;

and it is also shown that this semantics is compatible with the previously

proposed Situation Calculusbased semantics of OWL-S.

• Novel optimization techniques for DL reasoning which target nominals and

large number of individuals. These optimization techniques allow the HTN-

DL planner to efficiently reason with OWL-DL ontologies during planning.

Our empirical analysis shows that these optimizations dramatically improve

consistency checking, classification, and realization tasks.

• Optimizations for conjunctive query answering w.r.t. DL knowledge bases.

Inspired by some query optimization techniques used in relational databases,

a cost-based model is presented to estimate the evaluation time of DL queries.

• An implementation of the HTN-DL planning system that interacts directly

with Web Services. The components of the planning system, OWL-DL rea-

soner Pellet and API for OWL-S services, are also released as stand-alone tools

and have been incorporated into many systems.

COMBINING DESCRIPTION LOGIC REASONING WITH AI
PLANNING FOR COMPOSITION OF WEB SERVICES

by

Evren Sirin

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2006

Advisory Commmittee:
Professor James Hendler, Chair
Professor Ashok Agrawala
Professor Mark Austin
Professor Ian Horrocks
Dr. Ryusuke Masuoka
Professor Dana Nau

c© Copyright by

Evren Sirin

2006

DEDICATION

To my family

ii

ACKNOWLEDGMENTS

I wish to thank a number of people who have supported, directed, and assisted

me in completing this thesis. First of all, I would like to thank my advisor, James

Hendler, whose support, advice and encouragement throughout the years helped me

tremendously. Under the roof of MINDSWAP, he created a research environment

full of enthusiasm and inspiration which made this thesis possible.

Out of the MINDSWAP members, above all, I would like to express my heart-

felt gratitude for Bijan Parsia who helped me in every aspect of my research. His

guidance and inspiration helped me to start my thesis and his continuous nagging

helped me to finish it. I would also like to thank my colleagues Bernardo Cuenca

Grau and Aditya Kalyanpur for fruitful discussions and the papers we co-authored

some of which contributed to my thesis. I have received a lot of support from other

members of the MINDSWAP group including Ron and Amy Alford, Jennifer Gol-

beck, Christian Halaschek, Yarden Katz, Vladimir Kolovski, David Taowei Wang,

and others I may have forgotten. Special thanks to Kendall Clark for his careful

proofreading.

I would also like to express how valuable it was for me to collaborate with many

knowledgeable and helpful people along the way, Prof. Dana Nau and two of his

students, Dan Wu and Ugur Kuter; Ryusuke Masuoka and many other people from

the Fujitsu Labs of America, College Park; the members of the OWL-S coalition, just

iii

to name a few. Ian Horrocks and his detailed comments about the thesis improved

the quality of the document a lot.

It is important to note that life at College Park would be much harder with-

out my dear friends, Fazil, Burcu, Tikir, Okan and others. I owe so much to my

parents Serife and Mehmet Sirin and my brother Uygar Sirin who have been the

best role models for me and always supported me with their endless love. I am espe-

cially grateful to my wife Fusun Yaman who always provided help and comfort even

though she had her own thesis to finish. I would not have gone through the painful

experience of getting a PhD if it wasn’t for her love and company. I also would like

thank my daughter Gizem whose expected arrival was the best motivation for me

to finish my thesis.

iv

TABLE OF CONTENTS

List of Algorithms ix

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Motivation . 1

1.2 Proposed Solution . 7

1.3 Contributions . 8

1.4 Thesis Outline . 9

2 Preliminaries 11

2.1 Web Services . 11

2.2 Semantic Web . 13

2.3 Description Logics . 14

2.3.1 Syntax . 15

2.3.2 Semantics . 17

2.3.3 Inference Problems . 18

2.3.4 A Tableau Algorithm for SHOIN 23

2.4 Semantic Web Services . 28

2.5 AI Planning . 29

v

3 Coupling Planning with Description Logics: HTN-DL 33

3.1 AI Planning and Web Service Composition 33

3.2 HTN-DL . 37

3.2.1 Overview . 37

3.2.2 Syntax . 43

3.2.3 Semantics . 55

3.3 HTN-DL Algorithm . 64

3.3.1 Evaluating Conditions . 65

3.3.2 Updating State . 69

3.3.3 Interleaving Execution and Planning 72

4 Translating Web Service Descriptions to HTN-DL 75

4.1 Relation between OWL-S and HTN-DL 76

4.2 From OWL-S to HTN-DL . 79

4.2.1 Translating Profile Descriptions 79

4.2.2 Translating Process Models 80

4.3 OWL-S semantics . 93

5 Optimizing OWL-DL Reasoning 99

5.1 Reasoning with Nominals in OWL-DL 101

5.2 Preprocessing Optimizations . 105

5.2.1 Existing Optimizations . 105

5.2.2 Nominal Absorption . 107

5.3 Optimizations for Consistency Checking 111

vi

5.3.1 Existing Optimizations . 113

5.3.2 Learning-based Disjunct Selection 114

5.3.3 Completion Graph Caching 116

5.3.4 Lazy Completion Graph Generation 118

5.4 Optimizations for Subsumption and Instance Checking 119

5.4.1 Nominal-based Model Merging 120

6 Efficient Conjunctive Query Answering 126

6.1 Answering Atomic Queries . 127

6.1.1 Retrieving Instances . 128

6.1.2 Retrieving Role Fillers . 131

6.2 Answering Conjunctive Boolean Queries 133

6.3 Answering Conjunctive Retrieval Queries 135

6.4 Cost-based Query Reordering . 136

6.4.1 Size and Cost Estimation . 141

6.5 Query Simplification . 142

7 Implementation and Evaluation 144

7.1 System Architecture . 144

7.2 Pellet: OWL-DL Reasoner . 146

7.2.1 Pellet Architecture and Design 146

7.2.2 Tableaux Reasoner . 147

7.2.3 OWL Species Coercion . 150

7.2.4 ABox Query Engine . 151

vii

7.2.5 Special Features . 153

7.3 OWL-S API: API for Web Service . 155

7.3.1 The Design Objectives . 156

7.3.2 Architecture of the OWL-S API 157

7.4 HTN-DL: Planning for Web Services 159

7.5 Experimental Evaluation . 159

7.5.1 Reasoning Performance . 160

7.5.2 Planning Performance . 167

8 Related Work 173

8.1 Description Logics and Planning . 173

8.2 Description Logics and Web Services 177

8.3 Web Service Composition and Planning 180

9 Conclusions 184

9.1 Summary . 184

9.2 Contributions and Impact . 185

9.3 Discussion . 187

9.4 Future Work . 189

A Proofs 193

Bibliography 208

viii

LIST OF ALGORITHMS

1 HTN-DL planning algorithm . 65

2 Finding applicable methods and operators 66

3 Translation of a generic OWL-S constrol construct 84

4 Translation of a Sequence construct 87

5 Translation of a Choice construct . 88

6 Translation of a Split-Join construct 89

7 Translation of an If-Then-Else construct 90

8 Translation of a Repeat-While construct 91

9 Translation of a Repeat-Until construct 98

10 Modified absorption algorithm . 112

11 Learning-based disjunct selection algorithm 117

12 Finding obvious instances and non-instances 132

13 Conjunctive query answering algorithm for retrieval queries 137

14 Query cost estimation for conjunctive retrieval queries 140

ix

LIST OF TABLES

2.1 Semantics of SHOIN axioms . 18

2.2 Tableau expansion rules for SHOIN 27

3.1 Task matching based on preconditions and effects 42

4.1 Golog constructs used to represent OWL-S processes 94

7.1 Evaluation of optimization strategies implemented in Pellet 161

7.2 Evaluating size estimation performance and accuracy with respect to

sampling ratio. 165

7.3 Comparison of query evaluation times for different orderings 167

x

LIST OF FIGURES

3.1 A composite Web Service example using a task ontology 40

5.1 Completion graphs for concepts RedWine and ItalianWine 121

5.2 Completion graphs for concepts DryWine and NonSweetWine 123

7.1 Overview of HTN-DL planning system 145

7.2 Main components of the Pellet reasoner 147

7.3 Different completion strategies implemented in Pellet 148

7.4 Components of the query engine . 152

7.5 Basic components of the OWL-S API 158

7.6 Correlation between the cost estimates and the query answering time 166

7.7 Comparison of HTN-DL with JSHOP system 170

7.8 Performance of HTN-DL planner . 172

xi

Chapter 1

Introduction

1.1 Motivation

The World Wide Web has become a part of daily life. Many different tasks —

shopping, financial transactions, and travel arrangements — are now being accom-

plished as a routine matter of daily life over Web. When users interact with Web

sites to accomplish these tasks, there are a number of issues they need to solve.

Finding the right Web site to provide the requisite service is a challenge as generally

there are many possibilities. Often there is no one such provider and the user needs

to visit several different Web sites to accomplish the overall goal.

Let us consider some scenarios which illustrate users accomplishing some tasks

on the Web:

1. Bob is feeling sick with several symptoms. He goes to an online health service

that suggests an over-the-counter medicine for his symptoms. He then finds a

pharmacy Web site to locate a pharmacy that sells the medicine and is near to

his location. Then he gets the directions to the pharmacy using a map service.

2. Bob’s symptoms have not improved, so he decides to see a specialist for an

examination. He checks the Web service of his health insurance provider to

find the approved specialists in the area. He chooses a doctor and contacts

1

the doctor’s Web site to make an appointment. He records the appointment

time in his personal calendar and sets up a reminder to notify him one day

before the appointment.

3. Bob lives in Washington, DC and is making travel arrangements to attend a

conference in Kyoto, Japan. He first needs to register for the conference using

the conference Web site. To make his flight arrangements, he can use three

airports near Washington, DC and two airports near Kyoto. He also needs to

make local transportation arrangements. Depending on the airport selection,

he may choose to drive (his own car in DC or a rental car in Japan) or use

public transportation for getting to and from the airports. To make his ac-

commodation arrangements, he looks for hotels near the conference venue. He

finds a hotel that has an available room for the dates he is traveling. After ev-

erything is finalized, he sends the final travel itinerary to the business office to

initiate the reimbursement process for his expenses. Finally, he publishes the

dates he will be traveling to an online shared calendar hosted by his research

lab so that his colleagues will be informed of his schedule.

4. Bob wants to get the DVDs of the 6 movies in the Star Wars series. He does

not have a preference between getting all of them at once or geting them

separately, though he would prefer to get the special edition set that contains

episodes IV, V, and VI together. In either case, he wants the DVDs of those

episodes to be new and unused, but he can get the other episodes second-hand

to reduce the total cost.

2

Bob faces several different problems in each scenario. One problem is to find

the best service, according to his definition of best, that provides the functionality he

desires. For example, he might need to go through a number of different pharmacy

Web sites to find the closest one or look at different DVD stores to find the cheapest

price. While looking at the DVD stores, he needs to verify which ones are selling used

DVDs and which ones are selling new ones. In the case of his trip to Kyoto, there

might be incompatibilities with how different services work. For example, the hotel

cost might be billed in Japanese yen, but the all the items in the reimbursement

request should be reported in US dollars. Resolving all these issues manually is

time-consuming, error-prone, and thankless.

The aim of the Web Services paradigm [12] is to provide a standard description

language for the services available on the Web. The idea is to describe the func-

tionality of services in a machine interpretable way so that interaction with these

services can be achieved without human control. Such descriptions typically define

the structure of messages that need to be sent in order to execute a service and

the format of the output that will be returned by the service. However, since the

Web is a distributed and uncontrolled environment, describing syntactic features of

Web Services is not sufficient: different Web Service developers might use different

structures for their services. For example, when Bob is looking for a pharmacy , the

address returned by the pharmacy locator might be structures with several fields

such as street address, city, state, etc. However, the map service might require the

addresses as one concatenated string. In this case, even though the message con-

tents used by both services are semantically the same, the automatic execution of

3

the composition would fail if the conversion between message types is not done.

Providing more semantics for Web Service descriptions can be achieved using

ontologies on the Semantic Web. The Semantic Web vision [9, 51] is of a world where

loosely coupled, independently evolving ontologies provide common understandings

between heterogeneous agents, systems, and organizations. Such ontologies can

be exploited to provide fairly rich descriptions for several different aspects of Web

Services, including categorization of services, semantics of the message contents,

information about the provider, and so on.

Given such Web Service descriptions, the main steps involved in the preceding

scenarios about Bob can be summarized thus: discovering the available services

on the Web; matching the capabilities of the services with the user’s objective;

composing multiple services to fulfill all the requirements; and, finally, executing the

generated composition automatically.

The main motivation of this thesis is the problem of composing Semantic

Web Services. Matching service capabilities is very closely related and cannot be

considered separately. Discovery1 and execution are considered as separate issues.

Although the scenarios we have mentioned above only concern ordinary Web

users, similar problems come up in other settings. For example, consider the growing

multidisciplinarity of many large-scale scientific reasearch projects. Scientific collab-

orations on the Grid infrastructure are increasing and moving towards service-based

architectures [31]. Many tasks on the Grid require the coordination and combina-

tion of multiple services and resources. Composing these services in workflows of

1By which term we mean locating Web Service description files

4

varying complexity is required for different tasks [10, 2]. For example, a Grid appli-

cation might retrieve data from one source, use different programs to analyze and

transform the data, combine these results in a particular format, and then send it

to another service for further processing.

Similar scenarios also occur in B2B applications [8, 18, 99]. The composition of

services is very interesting from a business perspective because online partnerships

can automatically be formed without prior agreements. A business that wants to

order some items from a manufacturer and then arrange the shipment details can

achieve this goal by combining the services provided by manufacturers and shipment

companies. As in previous examples, the dynamic composition of services in this

context also requires understanding of the service capabilities and the compatibility

between available services.

Some fundamental characteristics shared by all these examples include the

following:

• Decentralized Setting Service descriptions are created by different providers

that do not necessarily use the same vocabulary or structure to describe the

services.

• Service Attributes There are many Web Services with similar functionality

and capabilities. The only distinguishing features between services might be

attributes such as who is providing the service, what kind of credentials they

have, what kind of security policies are being used in the communication.

These attributes need to be taken into consideration while deciding whether

5

a service will be included in the composition or not.

• Composite Services Not all Web Services are atomic, some are composite ser-

vices that are constructed from other (possibly composite) services. For ex-

ample, a composite service might describe several different steps of interacting

with a Web site. Alternatively, composite services can act as reusable, cus-

tomizable templates outlining the standard operating procedures for accom-

plishing a task. Therefore, it is important to describe and reason with such

composite service descriptions.

• Open World For Web Service composition problems, most typically we do not

have complete information about the world. It is not realistic to adopt the

closed world assumption and assume that what we do not know is false. When

reasoning about the world, we need to take into consideration that we have

incomplete information.

• Interleaved Execution and Composition The composition system might not

have all the relevant information to solve a composition problem but some

of the Web Services provide information that is relevant. Such information-

providing services should be executed during composition so that information

gathered can be used to build the composition.

• Efficiency There are many services available on the Web. During composition,

reasoning about these services, e.g. matching their capabilities and considering

how the execution of one service will affect other services, should be done very

6

efficiently.

1.2 Proposed Solution

This thesis presents HTN-DL which combines HTN planning formalism with

Description Logic representation. There are many novel features of HTN-DL that

makes it suitable for solving Web Service composition problems. An expressive

knowledge representation language with Open World semantics is used to represent

the state of the world. Actions and tasks are also described using an ontology

so that task matching can be done in a flexible way. HTN-DL also differentiates

between world-altering effects and knowledge effects making it possible to execute

information-providing services during compositions.

A forward-decomposition planning algorithm is presented to solve HTN-DL

problems. The algorithm takes into consideration that we have incomplete knowl-

edge and therefore the truth value of a condition can take three values: true, false,

and unknown. Only plans that are guaranteed to be sound with the given knowledge

are found. Services that have only knowledge effects are executed during composi-

tion.

It is shown that several control structures that are commonly used to model

composite Web Services can be expressed as HTN-DL methods. Specifically, an

algorithm for translating process models expressed in the Semantic Web Service

language OWL-S to HTN-DL is given. The correctness of the compositions generated

from the resulting planning domain is shown with respect to the Situation Calculus

7

semantics of OWL-S.

As the planning system relies on the inferences drawn by the DL reasoner, the

practicality of the proposed solution crucially depends on the efficiency of the DL

reasoner. For this reason, several novel optimization techniques, especially geared

toward handling nominals and large number of individuals, are presented. The

empirical analysis shows that these optimizations can dramatically improve consis-

tency checking, classification, and realization tasks. The reasoning service that is

frequently used by the the HTN-DL planning system is conjunctive query answering.

Optimization techniques for conjunctive query answering inspired by the techniques

used in relational databases are presented in order to improve query evaluation

times.

1.3 Contributions

The contributions of this thesis are as follows:

• The HTN-DL formalism, which couples HTN planning and Description Logics,

combines the expressivity of Description Logics with the efficiency of HTN

planning systems to solve Web Service composition problems. The hierarchi-

cal structure of HTN-DL domains can conveniently describe composite Web

Service descriptions and fit in well with the loosely coupled nature of Web Ser-

vices. Ontology-based reasoning provides a flexible mechanism to reuse the

Web Services that are defined by separate developers in different contexts.

• A translation algorithm from OWL-S to HTN-DL is provided in order to show

8

that the control constructs used to describe the control flow of a Web Service

workflow can be encoded as HTN-DL domains. The translation provides a

semantics for OWL-S processes and is shown to be compatible with the previ-

ously proposed Situation Calculusbased semantics of OWL-S.

• Novel optimizations for DL reasoning targeting nominals and large number of

individuals are presented. Our empirical analysis shows that these optimiza-

tions drastically improve consistency checking, classification, and realization

tasks.

• Optimizations for conjunctive query answering w.r.t. DL knowledge bases

are introduced. Inspired by query optimization techniques used in relational

databases, a cost-based model is presented to estimate the evaluation time of

DL queries. We propose efficient heuristics to compute the costs of queries and

demonstrate the effectiveness of the query optimization techniques empirically.

• An implementation of HTN-DL planning system that interacts directly with

Web Services is presented. The components of the planning system, the OWL-

DL reasoner Pellet and the API for OWL-S services, are also released as stand-

alone tools and have been incorporated in many systems.

1.4 Thesis Outline

This thesis is organized as follows:

• Chapter 2 presents briefly the background information required to follow the

9

theory in this thesis.

• Chapter 3 discusses how AI planning techniques can be used for Web Service

composition problems. We examine the common issues and problems that

arise when we try to model Web Services in a planning domain. Then we

present HTN-DL which combines HTN planning formalism with Description

Logic representation to overcome these problems.

• Chapter 4 presents a translation algorithm that generates HTN-DL domains

from OWL-S descriptions.

• Chapter 5 explains optimization techniques designed for the DL SHOIN ,

the DL underlying OWL-DL. We focus on methods that can improve the

efficiency of standard reasoning services such as KB consistency, classification,

and realization.

• Chapter 6 presents optimization methods to improve conjunctive query an-

swering which greatly effects the performance of HTN-DL.

• Chapter 7 describes the system architecture of the HTN-DL system and its

components namely; Pellet, an OWL-DL reasoner, the OWL-S API, an API

designed for Web Services. We also present the empirical evaluation of the

system performance.

• Chapter 8 discusses the related work.

• Finally Chapter 9 concludes with the summary, impact of the thesis and dis-

cussions about the future work.

10

Chapter 2

Preliminaries

In this chapter, we provide some background on Web Services, Semantic Web,

Description Logics, and AI planning. The purpose of this chapter is to describe the

basic concepts, introduce the necessary terminology, and present relevant definitions.

2.1 Web Services

There are various different standards that have been developed for different

Web Service tasks such as description, discovery and invocation. These technologies

are primarily designed to be used in conjunction with other Web standards, e.g.

XML for syntax and HTTP for communication.

SOAP [45] is the communication protocol designed to exchange messages be-

tween applications over the Web. It is fundamentally a stateless, one-way message

exchange paradigm, but applications can create more complex interaction patterns

by combining such one-way exchanges. SOAP provides a distributed processing

model where a SOAP message is delivered from a sender to an ultimate receiver via

zero or more SOAP intermediaries. This distributed processing model can support

many message exchange patterns including but not limited to one-way messages,

request/response interactions, and peer-to-peer conversations.

Web Service Description Language (WSDL) [19] is the language to describe the

11

mechanics of interacting with a particular Web service. The abstract functionality

of the Web service is defined in terms of the types of messages it sends and receives

in WSDL interface. An interface is a set of operations and an operation is a se-

quence of input and output messages. An operation associates a message exchange

pattern (MEP) with the message types that will be exchanged during execution.

The message types are defined using a schema language such as (but not limited to)

XML Schema. The abstract interfaces are associated to concrete message formats

and transmission protocols with binding descriptions.

Universal Description Discovery and Integration (UDDI) [114] is an emerging

standard registry system for Web Services. UDDI allows businesses to advertise

their Web Services by publishing their descriptions on a global registry. There

are three main parts of this registry: White Pages that list contact information

about the company that developed the Web service; Yellow Pages that organize

Web services by such categories as geography and industry code; and Green Pages

that hold WSDL descriptions. UDDI supports the association of an unbounded set

of properties to the description of Web Services via a construct called TModel. For

example, a service may specify its category using an arbitrary classification system

though their meaning is not codified, therefore there may be two different TModels

with the same meaning, but this similarity cannot be recognized.

12

2.2 Semantic Web

The Semantic Web [9] is an extension of the current Web in which information

is given well-defined meaning, better enabling computers and people to work in

cooperation. This is realized by marking up Web content, its properties, and its

relations, in a reasonably expressive markup language with a well-defined semantics.

Semantic Web languages are used to represent information about resources on

the Web. This information is not limited to be about Web resources but can be

about anything that can be identified. Uniform Resource Identifiers (URIs) are used

to uniquely identify entities. For example, it is possible to assign a URI to a person,

to the company he works for, to the car he owns, etc. so relations between these

entities can be written and shared on the Semantic Web.

There is a stack of languages that have been published as W3C recommenda-

tions to be used on Semantic Web. At the bottom layer of the stack, there is the

Resource Description Framework (RDF) [16]. RDF is a simple assertional language

that is designed to represent information in the form of triples. Triples are state-

ments that contain a subject, a predicate and an object. RDF Schema (RDFS) [15]

is a collection of RDF resources that can be used to describe properties of other

RDF resources. Unlike its name suggests, RDFS is not a schema that imposes spe-

cific constraints on the structure of a document, but instead it provides information

about the interpretation of the statements given in an RDF data model. In this

regard, RDFS has similarities to frame based languages and can even be described

as a relatively inexpressive Description Logic (DL).

13

The Web Ontology Language (OWL) [23], is the most expressive standard-

ized Semantic Web language that is layered on top of RDF and RDFS. OWL can

be used to define classes (unary relations) and properties (binary relations) as in

RDFS but also provides constructs to create new class descriptions as logical com-

binations (intersections, unions, or complements) of other classes, define cardinality

restrictions on properties and so on. OWL has three different species: OWL-Lite,

OWL-DL and OWL-Full. OWL-Lite and OWL-DL differ from OWL-Full such that

they define certain constraints on RDF and RDFS so as to be compatible with the

traditional semantics of DLs.

The semantics of unrestricted RDF-S and OWL-Full is non-traditional and

the reasoners built for OWL Full fragment tend to be sound but incomplete. Since

there is no straight-forward way to extend the existing reasoners to support the full

expressivity of OWL-Full. Therefore, we will be focusing on OWL-DL fragment

of the language and use sound and complete reasoning techniques developed for

Description Logics.

2.3 Description Logics

Description Logics are a family of class-based knowledge representation for-

malisms [3]. A DL knowledge base typically comprises two components: a “TBox”

and an “ABox”. The TBox contains intensional knowledge in the form of a terminol-

ogy and the ABox contains extensional knowledge that is specific to the individuals

of the domain of discourse. Intensional knowledge is usually thought to change

14

rarely and extensional knowledge is usually thought to be contingent, or dependent

on a single set of circumstances, and therefore subject to occasional or even constant

change [3].

In the rest of the section, we briefly describe the syntax and semantics of the

Description Logic SHOIN which is the DL underlying OWL-DL.

2.3.1 Syntax

Let NC , NR, NI be non-empty and pair-wise disjoint sets of atomic concepts,

atomic roles, and individuals respectively. The set of SHOIN roles is the set

NR ∪ {R− | a ∈ NR}, where R− denotes the inverse of the atomic role R. To avoid

considering roles such as R−−, we define the function Inv such that Inv(R) = R−

and Inv(R−) = R for R ∈ NR.

A role inclusion axiom is an expression of the form R v S, where R,S ∈ NR.

A transitivity axiom is an expression of the form Trans(R), where R ∈ NR. An

RBox R is a finite set of role inclusion axioms and transitivity axioms.

Let v∗ be the reflexive-transitive closure of v. A role R is transitive if there

is a role S such that Trans(S) ∈ R with S v∗ R and R v∗ S. R is simple if there is

no role S such that S v∗ R and S is transitive. R is complex if it is not simple.

The set of SHOIN -concepts (or concepts for short) is defined inductively as

the minimal set for which the following holds:

1. every concept name C ∈ NC is a concept,

2. if C and D are concepts and R is a role, then (C uD) (conjunction), (C tD)

15

(disjunction), (¬C) (negation), (∃R.C) (existential restriction), and (∀R.C)

(value restriction) are also concepts, and

3. if C is a concept, R is a simple role and n ∈ IN, then (≤ nR) and (≥ nR) are

also concepts (called at-most and at-least number restrictions), and

4. if a ∈ NI is an individual, then {a} is also a concept.

We use > and ⊥ to abbreviate A t ¬A and A u ¬A, respectively, where A is

a concept name.

For C, D concepts, a concept inclusion axiom is an expression of the form

C v D. A TBox T is a finite set of concept inclusion axioms. A concept equivalence

axiom has the form C ≡ D and is simply an abbreviation for C v D and D v C.

Axiom C v D is called a primitive definition if C is a concept name and it is called

a general concept inclusion (GCI) if C is a complex concept. A TBox T is called a

general TBox if it contains GCIs.

An ABox A is a finite set of concept and role membership axioms of the form

C(a), R(a, b), ¬R(a, b), and (in)equality axioms a ≈ b and a 6≈ b, where C is a

SHOIN concept, R is a role, and a and b are individuals.

A knowledge base K is a triple (A, T ,R) where A is an ABox, T is a TBox

and R is an RBox.

To improve readability, we will use the shorthand notation K∪ {α} to denote

the addition of the axiom α to one of the ABox or the TBox component of the KB

K. Clearly, if α is an ABox (resp. TBox) axiom it will be added to the ABox (resp.

TBox) component. More formally, if K = (A, T ,R) and K′ = K ∪ {C(a)} then

16

K ′ = (A′, T ,R) where A′ = A ∪ {C(a)}. Similarly, if K′ = K ∪ {C v D} then

K ′ = (A, T ′,R) where T ′ = T ∪ {C v D}.

2.3.2 Semantics

An interpretation I is a pair I = (∆I , ·I) where ∆I is a non-empty set,

called the domain of the interpretation, and ·I is the interpretation function. The

interpretation function maps each atomic concept A ∈ NC to a subset of ∆I , each

atomic role R ∈ NR to a subset of ∆I ×∆I , each individual a ∈ NI to an element

of ∆I . The interpretation function is extended to concept descriptions as follows:

• (¬C)I = ∆I \ CI

• (C uD)I = CI ∩DI

• (C tD)I = CI ∪DI

• (∃R.C)I = {x | ∃y : (x, y) ∈ RI ∧ y ∈ CI}

• (∀R.C)I = {x | ∀y : (x, y) ∈ RI → y ∈ CI}

• (≥ nR)I = {x |]{y | (x, y) ∈ RI} ≥ n}

• (≤ nR)I = {x |]{y | (x, y) ∈ RI} ≤ n}

• {a}I = {aI}

The interpretation function is extended to complex roles as follows:

• (Inv(R))I = {(x, y) | (y, x) ∈ RI}

17

Axiom type Syntax Satisfaction Condition
Concept inclusion C v D CI ⊆ DI

Role inclusion R v S RI ⊆ SI

Transitivity Trans(R) (RI)+ ⊆ RI

Concept membership C(a) aI ∈ CI

Role membership R(a, b) (aI , bI) ∈ RI

Negated role membership ¬R(a, b) (aI , bI) 6∈ RI

Equality a ≈ b aI = bI

Inequality a 6≈ b aI 6= bI

Table 2.1: Semantics of SHOIN axioms

The satisfaction of a SHOIN axiom in an interpretation I is given by the

conditions listed in Table 2.1.

If an interpretation I satisfies an axiom α we say I |= α. The interpretation

I is a model of the ABox A (resp. TBox T or RBox R) if it satisfies all the axioms

in A (resp. T or R). I is a model of K = (A, T ,R), denoted by I |= K, if I is a

model of A, T and R.

2.3.3 Inference Problems

The basic inference problem for DL is checking KB consistency. The knowledge

base K is consistent if it has a model. The additional inference problems are

• Concept Satisfiability, A concept C is satisfiable relative to K if there is a

model I of K such that CI 6= ∅.

• Concept Subsumption A concept C is subsumed by concept D relative to K

if, for every model I of K, CI ⊆ DI .

• Concept Instantiation An individual i is an instance of concept C relative to

K if, for every model I of K, aI ∈ CI .

18

All these reasoning problems can be reduced to KB consistency. For example,

concept C is satisfiable w.r.t. the KB K if K ∪ {C(a)} is consistent where a is an

individual not occurring in K.

A DL conjunctive query Q(x,y) is a conjunction of terms of the form C(x),

R(x, y) or ¬R(x, y), where C is a concept, R is a role, and x, y are individual

names taken from NI or variable names taken from the sets x and y. The x and y

are all the variables appearing in the terms and are called distinguished and non-

distinguished variables, respectively. A boolean conjunctive query is a query that

has no distinguished variables, i.e. x = ∅. We will use Q(y) to denote boolean

queries. A ground boolean query is a query that has no variables, i.e. x∪y = ∅. We

will use Q() to denote ground boolean queries. To avoid confusion, we will use the

term retrieval query for conjunctive queries with distinguished variables. We denote

by V C(Q) the set of variables and individuals in Q.

Before defining the semantics for queries let us present some notation that will

be useful. A variable substitution (or variable mapping) is a function from variable

names to one of (or a combination of) individual names, elements of the domain,

and variable names. The range of the substitution might be different depending on

the context and the range will be explicitly specified in the text for each variable

substitution. If θ and σ are variable substitutions, theta− denotes the inverse sub-

stitution of theta, θ ∪ σ denotes the union of two substitutions, and θσ denotes the

composition of two substitutions. Note that, the result of these operations might not

always be a proper variable substitution, e.g. inverse of a valid variable substitution

might be undefined.

19

Example 2.1 The following are three valid variable substitutions:

θ = {x→ a, y → a}

σ = {x→ c}

ρ = {z → x}

Then we have

θ− = undefined

ρ− = {x→ z}

θ ∪ σ = undefined

θ ∪ ρ = {x→ a, y → a, z → x}

ρσ = {z → c}

ρθ = {z → x}

If α is a query term and θ is a variable substitution, we use αθ to denote the

term where the variables in α are substituted according to θ. If Q(x,y) is a DL

query then Q(xθ,y) denotes the query where all the occurrences of variables in Q

has been replaced with the corresponding mapping in θ.

20

Example 2.2 Let Q(x,y) be the following boolean query

Q(x,y) = purchased(customer, ticket) ∧ PlaneT icket(ticket)

∧NonRefundable(ticket) ∧ livesIn(customer, city)

where x = {customer, city} and y = {ticket}. Let θ be the following variable

substitution.

θ = {cust→ Bob, city → WashingtonDC}

Applying the substitution θ to the query Q yields the following boolean query

Q(xθ,y) = purchased(Bob, ticket) ∧ PlaneT icket(ticket)

∧NonRefundable(ticket) ∧ livesIn(Bob, WashingtonDC)

Now we are ready to describe how to interpret boolean queries. An interpre-

tation I is a model of a boolean query Q(y), denoted I |= ∃y : Q(y) (or shortly

I |= Q), if there is a variable substitution θ : V C(Q)→ ∆I such that θ(a) = aI for

each individual a ∈ V C(Q), and I |= αθ for each atom α in the query. The notation

αθ denotes the query atom α where the variables of α are substituted according to

θ. The knowledge base K entails a boolean query Q, denoted by K |= Q, if every

model of K satisfies Q.

Now let us consider queries with distinguished variables. An answer to a

query Q(x,y) w.r.t. knowledge base K is a variable substitution θ that maps the

distinguished variables of the query x to the individuals in K such that the boolean

21

query Q(xσ,y) is entailed by K as defined above. Note that, for interpreting boolean

queries, we use substitution that maps variables to arbitrary elements of the domain

whereas for a query answer we require that the distinguished variables mapped to

named individuals in the KB. The answer set of a query Q w.r.t. K (denoted by

Q(K)) is the set containing all the answers of query Q w.r.t. K. Since a boolean

query does not have any distinguished variables, the answer set for a boolean query

can either be empty, indicating the boolean query is not entailed by the KB, or it

can be a singleton set with one empty mapping, indicating the boolean query is

entailed.

A query Q(x,y) is subsumed by (contained in) query Q′(x,y′) w.r.t. K =

〈A, T ,R〉 (denoted by K |= Q v Q′), if, for every possible ABox A′ and the knowl-

edge base K′ = 〈A′, T ,R〉, it holds that Q(K′) ⊆ Q′(K′). Query containment is

very closely related to query answering. The standard technique of “query freezing”

[115] can be used to reduce query containment problem to query answering in DLs

[90]. To decide query subsumption, we build a canonical ABox AQ from the query

Q(x,y) by replacing each of the variables in x and y with fresh individual names not

appearing in the KB. Let θ be the substitution denoting the mapping of variables

x to the fresh individuals. Then, for K = 〈A, T ,R〉, K |= Q v Q′ iff θ is in the

answer set of Q′ w.r.t. to KQ = 〈AQ, T ,R〉.

Note that, this standard query subsumption definition is based on the assump-

tion that both Q and Q′ share the same set of distinguished variables. In the general

case, we say that the query Q(x,y) is subsumed by query Q′(x′,y′) if there is a con-

tainment mapping θ : x′ → x ∪ NI such that Q(x,y) is subsumed by Q′(x′θ,y′).

22

We will denote the general query subsumption relation as K |= Q vθ Q′.

2.3.4 A Tableau Algorithm for SHOIN

In this section, we briefly discuss the tableau algorithm for the DL SHOIN .

For a detailed description of the algorithm, we refer the reader to [62].

As we have explained above all reasoning problems can be reduced to KB

consistency problem. DL tableau-based algorithms decide the consistency of a KB

K by trying to construct (an abstraction of) a model for K. The main elements that

characterize a tableau algorithm are [6]:

• An underlying data structure, called the completion graph.

• A set of expansion rules.

• A blocking condition, for ensuring termination.

• A set of clash-triggers, to detect logical contradictions (clashes).

A completion graph G is a finite directed graph, in which the possible models

for the input knowledge base are represented. Each node and edge in G is labeled

with a set of concepts and a set of roles respectively. To decide the consistency of

a knowledge base K, the algorithm generates an initial graph G, constructed from

K and repeatedly applies the expansion rules until a clash (i.e. a contradiction) is

detected in the label of a node, or until a clash-free graph is found to which no more

rules are applicable. The application of a rule may add new concepts to the label of

a node, trigger the generation of a new node or cause two different nodes to merge.

23

A completion graph is called complete if it contains a clash, or if no more rules are

applicable.

Tableau algorithm for SHOIN is non-deterministic in the sense that there

might exist completion rules that yield more than one possible outcome. A tableau

algorithm will return consistent iff there exists at least one way to apply the non-

deterministic rules such that a complete clash-free graph is obtained.

Termination of tableau algorithms is guaranteed through blocking : halting the

expansion process when a “cycle” is detected [5]. When the algorithm detects that

a path in G will be expanded forever without finding a clash, then the application of

the generating rules (the ones that trigger the creation of new nodes in the graph)

is blocked in the leaf node x of the path. In such case, we say that x is blocked in G.

Several bocking strategies have been developed in the literature for different logics

(see, for example, [108] [57]).

Reasoning w.r.t. a general TBox T and a role hierarchy R can be reduced to

reasoning w.r.t. R alone in the presence of transitive roles and role hierarchies. The

entire TBox can be internalized into a single concept description [63] that will be

added to every individual in the domain.

For ease of presentation, as usual, we assume all concepts to be in negation

normal form (NNF). Each concept can be transformed into an equivalent one in

NNF by pushing negation inwards, making use of de Morgans laws and the duality

between existential and universal restrictions, and between at-most and at-least

number restrictions, [3].

A completion graph for K is a directed graph G = (V, E,L, 6=) where each

24

node x ∈ V is labeled with a set of (possibly complex) concepts and each edge

〈x, y〉 ∈ E is labeled with a set of role names L(〈x, y〉) containing (possibly inverse)

roles occurring in R. Additionally, we keep track of inequalities between nodes of

the graph with a symmetric binary relation 6= between the nodes of G. We will

define the exact blocking condition used for SHOIN below.

In the following, we often use R ∈ L(〈x, y〉) as an abbreviation for 〈x, y〉 ∈ E

and R ∈ L(〈x, y〉). If 〈x, y〉 ∈ E, then y is called a successor of x and x is called a

predecessor of y. Ancestor is the transitive closure of predecessor, and descendant

is the transitive closure of successor. A node y is called an R-successor of a node x

if, for some R′ with R′ v∗ R, R′ ∈ L(〈x, y〉); x is called an R-predecessor of y if y

is an R-successor of x. A node y is called a neighbor (R-neighbor) of a node x if y

is a successor (R-successor) of x or if x is a successor (R-successor) of y. The set of

S-neighbors for a node x ∈ G is denoted by SG(x).

Next, we define and explain some terms and operations used in the expansion

rules in more detail:

• Nominal Nodes and Blockable Nodes A node x is a nominal node if L(x)

contains a nominal. A node that is not a nominal node is a blockable node. A

nominal o ∈ NI is said to be new in G if no node in G has o in its label.

• Blocking A node x is label blocked if it has ancestors x′, y and y′ such that

1. x is a successor of x′ and y is a successor of y′,

2. y, x and all nodes on the path from y to x are blockable,

3. L(x) = L(y) and L(x′) = L(y′), and

25

4. L(〈x′, x) = L(〉y′, y〈).

In this case, we say that y blocks x. A node is blocked if either it is label

blocked or it is blockable and its predecessor is blocked; if the predecessor of

a blockable node x is blocked, then we say that x is indirectly blocked.

• Safe Neighbor An R-neighbor y of a node x is safe if (i) x is blockable or if

(ii) x is a nominal node and y is not blocked.

• Merging and Pruning Merging a node y into a node x (written Merge(y, x))

in G yields a graph that is obtained from G by adding adding L(y) to L(x),

“moving” all the edges leading to y so that they lead to x and “moving” all the

edges leading from y to nominal nodes so that they lead from x to the same

nominal nodes; we then remove (or prune) y (and blockable sub-trees below

y) from the completion graph. Details of the Merge and Prune operations are

provided in [62].

• Clash A completion graph G is said to contain a clash if:

– There exists a node x in G s.t. {A,¬A} ⊆ L(x) for a concept name

A ∈ NC , or,

– There exists a node x in G s.t. (≤ nS) ∈ L(x) and there are n + 1

S-neighbors y0, . . . , yn of x with yi 6= yj for all 1 ≤ i < j ≤ n for a role

S ∈ NR, or,

– There are two nodes x 6= y with o ∈ L(x) ∩ L(y) for some o ∈ NI .

26

u-rule: If 1. C1 u C2 ∈ L(x), x is not indirectly blocked, and
2. {C1, C2} 6⊂ L(x),

then set L(x) = L(x) ∪ {C1, C2}
t-rule: If 1. C1 t C2 ∈ L(x), x is not indirectly blocked, and

2. {C1, C2} ∩ L(x) = ∅,
then set L(x) = L(x) ∪ C for some C ∈ {C1, C2}

∃-rule: If 1. ∃S.C ∈ L(x), x is not blocked, and
2. x has no safe S-neighbor y with C ∈ L(y),

then create a new node y with L(〈x, y〉) = {S} and L(y) = {C}
∀-rule: If 1. ∀S.C ∈ L(x), x is not indirectly blocked, and

2. there is an S-neighbor y of x with C /∈ L(y),
then set L(y) = L(y) ∪ {C}

∀+-rule: If 1. ∀S.C ∈ L(x), x is not indirectly blocked, and
2. there is some R, with Trans(R) and R v∗ S, and
3. there is an R-neighbor y of x with ∀R.C /∈ L(y),

then set L(y) = L(y) ∪ {∀R.C}
≥-rule: If 1. ≥ nR ∈ L(x), x is not blocked, and

2. there are not n safe S-neighbors y1, . . . , yn of x
with yi 6= yj for 1 ≤ i < j ≤ n,

then create n new nodes y1, . . . , yn with L(〈x, yj〉) = {R},
L(yj) = {C}, and yj 6= yk for 1 ≤ j < k ≤ n

≤-rule: If 1. ≤ nR ∈ L(x), x is not directly blocked, and
2. x has more than n S-neighbors and there are two S-neighbors

y and z s.t. y 6= z does not hold
then 1. If y is a nominal node, then Merge(z, y),

2. else if z is a nominal node or an ancestor of x,
then Merge(y, z),

3. else Merge(z, y)
O-rule: If 1. For some o ∈ NI , there are 2 nodes x, y with o ∈ L(x) ∩ L(y)

and not x 6= y
then Merge(x, y)

O?-rule: If 1. ≤ nR ∈ L(x), x is a nominal node, x is an S-successor of a
blockable node y and not x 6= y

2. there is no m such that 1 ≤ m ≤ n, ≤ mS ∈ L(x),
and there exist m nominal S-neighbors z1, . . . , zm of x
with zi 6= zj for all 1 ≤ i < j ≤ m.

then 1. guess m with 1 ≤ m ≤ n and set L(x) = L(x) ∪ {≤ mS}
2. create m new nodes y1, . . . , ym with L(〈x, yi〉) = {S},
L(yi) = {oi} for each oi ∈ NI new in G, and yi 6= yj

for all 1 ≤ i < j ≤ m

Table 2.2: Tableau expansion rules for SHOIN

27

The completion graph for a SHOIN KB K = (A, T ,R) is initialized as an

arbitrarily connected graph of nominal nodes, each representing a nominal (indi-

vidual) used in A or T . If a is an individual used in K then the corresponding

nominal node in G will be named ra and the label of this node will be initialized

as L(a) = {a} ∪ {C | C(a) ∈ A}. The edges between two nodes a and b will be

initialized as L(〈a, b〉) = {R | R(a, b) ∈ A}.

Then, the expansion rules shown in Table 2.2 are applied in succession to build

the graph, each adding new nodes or edges (and/or labels resp.). Note that some

of the expansion rules are non-deterministic. For example, if the disjunction C tD

is present in the label of a node, the algorithm chooses either C or D to be added

to the node label. Therefore, in practice, each possible expansion should be tried

in turn until a fully expanded and clash-free graph is found, or all possibilities have

been shown to lead to contradictions. Searching non-deterministic expansions is the

main cause of intractability in the tableaux algorithm.

2.4 Semantic Web Services

OWL-S [96] provides a set of OWL ontologies to describe Web Services in

a more expressive way than allowed by WSDL. The features of the Web Service,

e.g. message types, constraints and capabilities, are defined using the terms from

Web Ontologies. OWL-S partitions the semantic description of a web service into

three components: the service profile, process model, and grounding. The Service-

Profile describes what the service does by specifying the input and output types,

28

preconditions and effects. The ProcessModel describes how the service works; each

service is either an AtomicProcess that is executed directly or a CompositeProcess

that is a combination of subprocesses (i.e., a composition). The Grounding contains

the details of how an agent can access a service by specifying a communications

protocol, parameters to be used in the protocol, and the serialization techniques to

be employed for the communication. The similarities between OWL-S and other

technologies may be briefly expressed as follows: the ServiceProfile is analogous to

yellow-page- like advertisements in UDDI, the ProcessModel is similar to the busi-

ness process model in BPEL4WS, and the Grounding is a mapping from OWL-S

to WSDL. The main contribution of OWL-S is the ability to support richer de-

scriptions of the services and the real world entities they affect in such a way as to

support greater automation of the discovery and composition of services. In Chap-

ter 4, we will provide a more detailed analysis of OWL-S and discuss how it relates

to HTN-DL.

2.5 AI Planning

Most of the planning approaches rely on a general model, the model of state-

transition systems. In a state-transition system there are finite or recursively enu-

merable set of states, actions and events along with a transition function that maps

a state, action, event tuple to a set of states. Given a state transition system, the

purpose of planning is to find which actions to apply to which states in order to

achieve some objective, starting from some given situation.

29

Classical planning is mainly based on the initial modeling of the STRIPS [29]

system. In this representation a state is represented by a set of ground literals

expressed in a first-order language. An action is an expression specifying which

first-order literals belong to the state in order for the action to be applicable, and

which literals the action will add or remove in order to make a new world state. An

atom p holds in state s iff p ∈ s. If g is a set of literals with variables, s satisfies

g (denoted s |= g) when there is a substitution σ such that every positive literal of

σ(g) is in s and no negated literal of σ(g) is in s.

In classical planning, a planning operator is a triple o = (N, P, E), where

N , name of the operator, is a syntactic expression n(x1, . . . , xn) and n is a unique

operator symbol and x1, . . . , xn is the inputs of the operator, P is the precondition

of the operator expressed as a conjunction of (possibly unground) set of literals. E

is the effects of the operators which can be positive or negative, i.e. E+ (generally

referred as the add list) represents the set of literals that will be added to the

state and E− (generally referred as the delete list) represents the set of literals that

will be removed from the state. An operator o is applicable in a state s when the

preconditions are satisfied in the state. Most planners represent the world state with

a relational database and thus precondition evaluation is straight-forward. Applying

the effects of an operator is done by adding or deleting entries from the database.

This representation is insufficiently expressive for some real domains. As a

result, many language variants have been developed. Action Description Language

(ADL) [100] is an important variation. ADL extends STRIPS representation by

explicitly including negative literals in the state, having conditional effects for oper-

30

ators and allowing existential variables and disjunctions in goal formulas. Penberthy

and Weld [101] developed a partial order planning algorithm named UCPOP [102]

to handle a significant subset of ADL action representation.

HTN planning is similar to classical planning in that each world state is repre-

sented by a set of literals and each action corresponds to a state transition. However,

HTN planners differ from classical AI planners in what they plan for, and how they

plan for it. The objective of an HTN planner is to produce a sequence of actions

that perform some activity or task. The description of a planning domain includes

a set of operators similar to those of classical planning, and also a set of methods,

each of which is a prescription for how to decompose a task into subtasks. Planning

proceeds by using methods to decompose tasks recursively into smaller and smaller

subtasks, until the planner reaches primitive tasks that can be performed directly

using the planning operators.

Here we will provide a formal description of a simplified version of HTN plan-

ning formalism as presented in more detail in [36]. This version is called Simple Task

Network (STN) planning in [36] and is slightly less general than the formalization

of HTN planning presented in [26]. However, even with this simplification, HTN

planning is more expressive than classical planning [36] and allows very efficient

implementations, as in SHOP2 system [93].

Formally, a task is an expression of the form t(x1, . . . , xn) where t is the task

symbol and x1, . . . , xn are parameters of the task given as an ordered list. Task

symbols are categorized into two disjoint sets: primitive and nonprimitive. By

definition, every operator symbol is a task symbol.

31

An HTN method is a tuple m = (N, T, P, w). N , the name of the method,

and P , the precondition of the method, is defined similar to operators. T is a

nonprimitive task denoting the task this method accomplishes. w is a task network

which contains tasks, along with ordering constraints on these tasks. The ordering

between the tasks can be partial or total. The elements of the task network are

called subtasks of m.

Task matching is deciding which actions can be used to possibly accomplish

a task. An operator o = (N, P, E) matches a task t if N = t. A method o =

(N, T, P, w) matches a task t if T = t. An operator o (resp. method m) is applicable

to a primitive (resp. nonprimitive) task t in state S if o (resp. m) matches t and

P o (resp. Pm) is satisfied in S.

An HTN planning problem is the triple (s, w, D) where s is the initial state, w

is the initial task network, and D is the planning domain that consists of operator

and method descriptions. A forward-search HTN planner starts with the initial

task network and selects a task that has no predecessors. If the task is primitive,

an applicable operator is found and added to the plan. For nonprimitive tasks, an

applicable method is found and the selected task is replaced with the subtasks of the

method. Planning continues recursively until there are no tasks left in the network.

32

Chapter 3

Coupling Planning with Description Logics: HTN-DL

In this chapter we first discuss how AI planning techniques can be used for

Web Service composition problems. We examine the common issues and problems

that arise when we try to model Web Services in a planning domain. Then we

present HTN-DL a formalism that combines HTN planning with Description Logics

to overcome these problems.

3.1 AI Planning and Web Service Composition

Several Semantic Web Services languages describe services in ways amenable

to planning since services have preconditions and effects that are expressed as logical

conditions. Using this similarity, it is possible to treat Web Services as planning

operators and use a causal planner in the style of STRIPS to generate Web Service

compositions. With this approach each Web Service is first translated to a planning

operator, the objective is expressed as a logical condition, and the planner generates

a plan which is essentially a sequence of Web Service instances — that is, a sequential

composition that causes the goal condition to be true upon execution.

Unfortunately, this direct encoding of Web Service composition as a planning

problem itself has several problems. First, the typical logic for expressing precondi-

tions and effects in a planning system has a radically different expressiveness than

33

the Web ontology languages do. In a planning system, the state of the world rep-

resentation contains only facts about the world but not axioms.1 However, such

axioms are essential in Web Service composition problems to help the system figure

out relations between complex concepts, such that it is possible to relate terms from

different ontologies.

Another issue is the Closed World Assumption (CWA) that AI planning sys-

tems rely on. If a fact is not contained in the local knowledge base, then it is simply

assumed to be false. However, this assumption is not realistic in the Web context as

we cannot expect to have all the relevant information in our local knowledge base.

When making decisions we need to consider the known facts and possibilities that

are consistent with these facts.

The planner having incomplete information needs to gather some information

in order to solve the composition problem. It is necessary that information-gathering

and composition generation is interleaved so that a decision can be made to include

which service in the composition. Given the Web’s size and nature, it is likely that

trying to gather all the possible information will be wasteful at best and practically

impossible in the common case. The relevance of possible information should be

determined by the context of the composition problem and possible combinations

the planner is considering, which means that it makes sense to gather the information

at that point.

This also requires the planning system to distinguish information-providing

1Sometimes axioms in the form of Horn rules are also allowed, but this is still far from the
expressivity of OWL, for example.

34

services from world-altering services. We need to describe if executing a service

will provide just information or have some other effects on the world. For example,

learning the available airline schedules provides us some information we were not

aware of. On the other hand, buying the plane ticket has some effects on the world,

e.g. one less available seat in that flight, less money in the banking account, etc.

The planner can execute the information-providing services freely as it does

not change anything in the world other than our knowledge.2 However, executing a

world-altering service requires much more caution because it might commit the user

to do something that is not desired. Buying an airplane ticket without making sure

that there is an available hotel at the specified time would yield very undesirable

results.

Note that a world-altering service might also provide some information as a

result of execution. Actually, any service that has an output is providing some

information. For the flight reservation service, the effect of the service is booking

the ticket and the output is a confirmation code associated with the reservation.

Therefore, the same service can have both world-altering effects and knowledge

effects that need to be identified.

Representing a Web Service as a planning operator has two other problems:

1) It is not possible to describe the internal structure of composite services. 2)

2Actually, this is not exactly correct because an information gathering process might affect
other things such as other parties’ knowledge. For example, supplying your address and social
security number to a Web Service has the effect that the other party has knowledge about your
personal identity. One would want to be careful before executing such information-providing
services. However, such issues are beyond the scope of this thesis and will not be addressed here.
We will simply assume that the information sent to an information-providing service is only used
to return an answer and is not used or stored for another purpose.

35

A planning operator has only information about preconditions and effects, but we

need to express more information about services, e.g. the provider of the service,

credentials of the provider, user ratings about the service, etc. Let us examine these

two cases in more detail.

Some Web Services have a composite structure, i.e. they are constructed from

other (possibly composite) services. For example, such a composite service might

describe several different steps of interacting with a Web site. Alternatively, com-

posite services can act as reusable and customizable template descriptions outlining

the standard operating procedures for accomplishing a task. It is not possible to

treat these composite services as atomic because there might be (possibly non-

deterministic) choices inside the composite service that will change the way service

affects the state. The planner needs to consider the internal structure of the services

and plan accordingly.

The non-functional attributes of a service play a very important role when

there are many services with similar functionality and capabilities. The only distin-

guishing features between services might be attributes such as who is providing the

service, what kind of credentials they have, what kind of security policies are being

used in the communication. Unfortunately, a planning operator cannot represent

such information.

36

3.2 HTN-DL

3.2.1 Overview

HTN-DL is a planning formalism that combines HTN planning formalism with

Description Logic (DL) representation to overcome the problems described in the

previous section. The DL is used to describe both actions and states with an ex-

pressive knowledge representation language.

HTN planning, as it stands, looks promising to tackle the Web Service compo-

sition problems. The hierarchical structure of HTN planning domains (see Section

2.5) can conveniently describe composite service descriptions. Composite Web Ser-

vices can be mapped to HTN methods whereas atomic Web Services are mapped

to HTN operators (we will discuss the details of this mapping in Chapter 4). HTN-

style domains fit in well with the loosely coupled nature of Web Services: different

decompositions of a task are independent so the designer of a method does not have

to have close knowledge of how the further decompositions will go or how prior

decompositions occurred.

Nevertheless, HTN planning suffers from most of the problems discussed in the

previous section, e.g. state representation is simple, Closed World Assumption is

adopted, there is no notion of outputs or knowledge effects, no attributes of actions

other than preconditions and effects are described.

Furthermore, there are some other restrictions and limitations specific to HTN

planning that make it difficult to apply to Web Service composition problems:

37

• In HTN planning, a task is identified only by its name and the number of argu-

ments it has. This is all the information to identify what kind of functionality

this task accomplishes. Naturally, it is not possible to express or infer relations

between different tasks.

• There is a strict separation between primitive and nonprimitive tasks which

is not applicable to Web Services. Due to this separation, we cannot have

both a method and an operator achieving the same task. However, this is

a very common case for Web Services as we can have both an atomic and

a composite service with the exact same functionality. A simple example is

online shopping services. Some services request you in one step to send the

purchase order with all necessary shipping and billing information; some other

services ask you to create an account (or login to an existing account), add

the items to a shopping cart, and proceed to checkout. In the end, the task

“buying an item” is essentially the same in both cases.

• In HTNs there is a one-to-one mapping between operators and primitive tasks.

Hence, there can only be one operator that accomplishes any given primitive

task. Clearly, this assumption is also too restricted for Web Services.

In order to overcome these problems, HTN-DL combines HTN planning with

DL ontologies. The key differences of HTN-DL compared to classical HTN planning

systems can be summarized in the following categories:

• Task descriptions Tasks are described using ontologies and matching tasks

with operators and methods is done based on the task ontology. More specifi-

38

cally, task symbols are represented as DL concepts and operators, and methods

are represented as instances. Task matching is partly reduced to the instance

retrieval problem in DLs. In addition, preconditions and effects are associated

with tasks, so that more information about the task is provided which is also

used to determine matching services.

• Operator/method descriptions Operator and method definitions use DL queries

to describe the conditions in preconditions and effects. Outputs of services,

which are not traditionally considered in planning systems, are represented

as existential variables in effect descriptions. Knowledge effects of an action

are expressed separately so that information-providing services can be distin-

guished from world-altering services.

• State representation In HTN-DLthe state of the world is described as a DL

knowledge base. This allows one to use a very expressive knowledge rep-

resentation language represent the known information about the world. As

traditional in DLs, the Open World Assumption is adopted in reasoning.

Before describing the formal syntax and semantics of the HTN-DL let us give

a brief overview of the formalism with a simplified Web Service composition exam-

ple. Suppose a conference Web site is providing a Web Service that will help the

attendants make their travel arrangements to the conference. Conference organiz-

ers create composite Web Service descriptions with several components to handle

different tasks: registration to the conference, as well as making arrangements for

both accommodation and transportation. The workflow of such a composite service

39

Figure 3.1: A composite Web Service provided by a conference Web site that makes
the arrangements for people coming to the conference. Some parts of the service,
e.g. making travel arrangements, needs to be done by third party services. These
parts are described in abstract using an ontology so the user agent reading this
description can find and plug-in an appropriate service for these steps

is shown in Figure 3.2.1 as a flow chart.

The registration service is directly provided by the conference organizers, but

the services to make accommodation and travel arrangements are provided by exter-

nal parties. The conference organizers do not want to commit to any specific travel

agent service at these steps so that each user can customize this template according

to their needs and preferences. At design time, such components can be described

as abstract services; and, at run time, they will be matched with concrete services

by the planner.

In HTN-DL, such abstract services are represented as HTN-DL tasks. An

HTN-DL task is primarily described as a concept in a task ontology. This con-

cept represents a service category, which means that services belonging to this cat-

egory can provide the desired functionality. For example, in the example shown

40

in Figure 3.2.1, the abstract service Book Flight is associated with the category

Scheduled-Passenger-Air-Transportation from the North American Industry Classi-

fication System (NAICS) ontology. Any service which is inferred to belong to this

category would be considered as a possible candidate. Of course, this category need

not be a named concept; it can be a complex concept that describes additional

restrictions on the service. These restrictions would be typically defined on the

non-functional attributes of the service, e.g. its rating, provider, QoS attributes,

etc.

In addition to the service category, tasks can have preconditions and effects

describing when a service is executable and what will happen after execution. How-

ever, when matching a task with a concrete service, the preconditions and effects do

not need to be an exact match. In general, the matching service can have a more

generic precondition and a more specialized effect. Since preconditions and effects

are described as DL conjunctive queries, matching can be done by query subsump-

tion (See Section 2.3.3 for the definition of query subsumption). Condition C1 is

more generic (resp. specialized) than condition C2, if the condition C1 is subsumed

by (resp. subsumes) the condition C2.

In Table 3.1, we show an example of precondition and effect expressions for

the Book Flight task and a service from an imaginary travel agency SemanticTravel.

The precondition of the task says that we want to only book flights originating

from the US. The precondition of the SemanticTravel service indicates that it sells

plane tickets originating from either US or Canada. This is considered a match

because the capability of the service covers (and does more than) the functionality

41

we specified in the task. The effect of the Book Flight task requires that, at the end

of the Web Service execution, the customer should own a ticket. The description of

SemanticTravel service says that the customer will own a non-refundable airplane

ticket. This is a more specialized effect expression which means accomplishing this

effect will also accomplish the effect we desire. Therefore, SemanticTravel service is

a valid match for the Book Flight task.

After the matching is done and some candidate services are found we still

need to check their preconditions to verify that necessary conditions to use these

services is met. In HTN-DL state information is also represented using DL ontolo-

gies so precondition evaluation is done by DL query answering. Note that, classical

planning systems typically adopt Closed World reasoning for precondition evalua-

tion. However, due to standard DL semantics, we adopt Open World reasoning in

HTN-DL.

Some of the matching services may not have any effects on the world but

just provide information to the users. A service that returns plane schedules is one

such service. Normally a planner does not execute any of the actions put into the

partial plan because it is not guaranteed that a final plan can be generated. For

example, booking a hotel before ensuring that a plane ticket can be found would

yield undesirable outcomes. But for a service that have only knowledge effects this

Book Flight Task SemanticTravel Service
Precondition USAirport(departAirport) USorCanadaAirport(departAirport)
Effect owns(cust, t) ∧ Ticket(t) owns(cust, t) ∧ PlaneT icket(t)

∧ NonRefundable(t)

Table 3.1: Preconditions and effects of a matching task and a concrete service

42

is not an issue since it can be repeatedly executed without changing the state and

committing the user to any other action. In HTN-DL, purely information providing

services are executed during planning to gather information that can be used in

subsequent steps.

In the next sections, we will provide the formal syntax and semantics of HTN-

DL. Note that, there are many different DLs with varying expressivity investigated

in the literature. In what follows, we define the general characteristics of HTN-DL

in a such a way that a different DL can be plugged-in. There is no requirement to

a DL with specific expressivity. Furthermore, it is also possible to use DLs with

different expressivity in state representation and task ontology. In Section 3.3, we

will discuss how the choice of DL expressivity affects some of the algorithms.

3.2.2 Syntax

We start by defining what a state is.

Definition 3.1 (State) State S = 〈SA, ST , SR〉 is a DL ontology, where SA is an

ABox (set of ground DL-literals), ST is a TBox (set of concept inclusion axioms),

and SR is an RBox (set of role inclusion axioms and transitivity axioms).

We consider that the planner’s local state is an incomplete description of the

world. There are possibly many interpretations that satisfy all the assertions and

axioms in the state. One of these interpretations is the exact description of the state

of the world, denoted by W . However, without having complete information, the

planner does not know which interpretation is the correct one.

43

The component SA is similar to what is traditionally considered to be a state

in planning. It is a collection of facts known about the current state of the world.

Since we do not have complete information, we cannot use Closed World Assumption

(CWA) and we store both positive and negative facts. We employ Open World

Assumption (OWA) when querying the state in accord with with the standard DL

semantics.

The combination of ST and SR constitute what is traditionally called state con-

straints, sometimes also referred as domain constraints or domain axioms. These

axioms reflect the knowledge about the world that holds for every possible world. A

state would be considered inconsistent if there are assertions in the state contradict-

ing these axioms. In this manner, state constraints help us to detect the integrity

of the agent’s local knowledge. In addition, these axioms may be used to infer new

facts from the asserted facts in the state.

We assume that actions we perform can change the state only by modifying the

facts in SA but actions are not allowed to change the state constraints. For example,

if the state constraints contain the inclusion axiom Course v ∀takes−.Student

saying that only students can take courses, execution of no service can change this

axiom. But the fact that Bob takes the course CS-101, denoted with the ABox

assertion takes(Bob, CS-101), can be changed with the execution of a service, e.g.

by dropping the course using the service provided by the registrar’s office.

In the real world, state constraints might change over time. For example, at

some point the regulations can be modified such that people who are not students

will be allowed to take courses. We assume that such changes will be done outside

44

the HTN-DL formalism; that is, the changes to the state constraints will be done

externally and then the new state information can be fed to the planner to generate

plans.

In a DL that allows nominals, the separation between the state facts and state

constrains is not well-defined as we can encode all the ABox assertions of SA as

TBox axioms in TA, e.g. ABox assertion C(a) is equivalent to the inclusion axiom

{a} v C. Although these two statements are semantically equivalent, since we

require that state constraints hold in every state, encoding an ABox assertion as

a TBox axiom will have a different impact. This encoding models what is called

a rigid relation [37] in the planning literature; that is, relations that cannot be

changed by any action. For example, the relation hasBorder(USA, Canada) is a rigid

relation that cannot change over time. In a classical planning system, it is to ensured

that rigid relations will always persist by disallowing those relations in the effects of

actions. When state constraints are involved, ensuring this is not straight-forward

as the ramifications of an action might influence relations that are not explicitly

stated in the effect expression. By encoding rigid relations as state constraints, we

can guarantee that they will not be affected by the actions.

As in the original HTN formalism, we have two types of actions: operators

that are atomic actions with no internal structure and methods that are composite

actions which can further be decomposed into smaller parts.

Definition 3.2 (Operator) An operator is described as o = (N, I, O, P, EW , EK).

N is the operator name, I is the set of input parameters, O is the set of output

45

parameters. P is the preconditions of the action in the form of a boolean DL con-

junctive query. EW and EK are the effects of the action, again in the form of a

boolean DL conjunctive query, and they describe how the state changes after ex-

ecution. More specifically, EW is the world-altering effects, i.e. it describes how

the world state W will change after execution of o. EK, on the other hand, is the

knowledge effects, i.e. it describes how planner’s local state S will change.

HTN-DL operator definition differs from the definition of standard HTN op-

erators in several ways. First, the ordering of inputs for an HTN-DL operator is

not significant whereas in HTN planning the order of the inputs determine their

function. Second, we have the notion of outputs in HTN-DL which can be thought

as existential variables referred in the effects description. The value of an output

variable can only be learned after executing the operator. Effects of an operator is

similar to HTN case; it describes the changes that will happen in the world. Knowl-

edge effects, on the other hand, do not describe changes in the state of the world but

explains how the mental state of the agent will change after the execution of this

action. By executing the action, the planner will learn the values corresponding to

the output variables of the action such that the conditions in the knowledge effects

hold. In other words, after executing an action that has only knowledge effects,

the world stays in the same state W but planner’s state S is expanded to better

approximate W .

Although knowledge-producing effects are explicitly specified, HTN-DL does

not have the notion of knowledge preconditions in operator definitions. This is

46

simply because we assumed that the preconditions for actions do not depend on

the knowledge of an agent. The preconditions of an action may only depend on

the current state. This is similar to the knowledge-free Markov assumption in [40].

This assumption is true for Web Services because when we are executing a remote

Web Service the Web Service provider does not have any information about our

knowledge other than the information we supply via the inputs of the service. In

this sense, inputs of an action encode knowledge preconditions because the agent

needs to know the input values in order to execute the action.

The precondition expression P is in the form of a boolean DL conjunctive

query. This expression may contain variables from I which will be substituted with

the given input values before evaluation. The additional variables in P are simply

treated as existential variables.

We do not associate types with the input or output variables. As usual, type

of a parameter is simply a unary predicate, i.e. a DL concept, and can be encoded as

an additional conjunct in the precondition expression. Similarly, the output types

can be encoded as knowledge effects.

Example 3.1 Consider a course registration service. This service, given the stu-

dent ID, the class and the term to register for, registers the student to the course.

This service can only be used if the student has completed the prerequisites of the

class and there are open seats. The following operator definition describes such a

service. Note that, the operator has two outputs, a transaction ID that can be used

as a reference number for the student’s proof of registration and a timetable for the

47

student. Upon execution, we will learn information about these outputs and what we

will learn is described as the knowledge effects of this operator.

o =(registerClass, {studentID, class, term}, {transactionID, timeTable},

completedPrereq(studentID, class) ∧ open(class, term),

takesCourse(studentId, class),

T ransaction(transactionID) ∧ TimeTable(timeTable))

Definition 3.3 (Task Description) A task has the form t = (N, I, O, P, EW , EK)

where N is the task symbol, I is the set of input parameters, O is the set of output

parameters, P is the precondition expression, EW is the effect expressions, and EK

is the knowledge effects similar to operator descriptions.

A task is an abstract description of a functionality. Intuitively, the task symbol

represents the functionality required and inputs/outputs are used to specify the

data flow between tasks. Precondition and effects are used to provide additional

information about how the inputs and outputs of a service are related.

Note that, the definition of an HTN-DL task is significantly different then an

HTN task which is described solely by its name and its parameters. The additional

information we provide in the task descriptions will allow us to define a much more

flexible task matching definition as we will explain in the next section in more detail.

Example 3.2 Example 3.1, describes a concrete action we can use for registering a

course. The following example shows a generic task studentRegistration describing

48

a similar functionality. Task definition is slightly different: It has one less output

and uses a different vocabulary to describe preconditions and effects. We will later

explain how these two descriptions can be matched.

t =(studentRegistration, {studentID, course, semester}, {transactionID},

completedPreReq(studentID, class) ∧ haveSeat(course, semester),

takesCourse(studentId, course),

T ranaction(transactionID))

Before we describe methods, first we define task networks which will be used

to construct methods.

Definition 3.4 (Task Network) A task network is an acyclic directed graph in

the form w = (η, ε, λ) where η is the set of nodes, ε is the set of edges, and λ is is a

list of parameter binding constraints. Each node u ∈ η contains a task tu. Parameter

bindings are in the form a← b such that

• a is either a variable symbol or a a tuple 〈u, p〉 where u is a node in η and p

is an input parameter associated with task tu.

• b is either a variable symbol, a constant or a tuple 〈v, q〉 where v is a node in

η and q is an output parameter associated with task tv.

The edges of w define a partial ordering of η. That is, u ≺ v if the there is

a path from u to v. These ordering constraints specify which task will be achieved

before which task. If the ordering is total we say w is totally ordered.

49

The parameter bindings in our task network definition is something novel to

HTN-DL. The purpose is simply to define the data flow between different tasks in

the network and possibly the parameters of the enclosing method. In classical HTN,

the data flow is established by using the same variable symbols in different task

occurrences and then let the unification algorithm take care of the rest. This method

is not applicable in HTN-DL because the order of parameters in task descriptions

have no meaning (recall that input and output parameters are defined as sets not

ordered lists). For this reason, we use parameter binding constraints that explicitly

specify the occurrence of a task (via the task node) and the name of the parameter.

Note that the output of one task can be specified as input to another task

in the parameter binding constraints. This binding implies an ordering constraint

between these two task occurrences as we need to achieve the task with the output

before the other task. Without loss of generality, we will assume that such implicit

ordering constraints are already deducible from ε. Note that, we still require the

task network to be acyclic so any cyclic parameter binding constraint is not allowed.

Example 3.3 Course registration has additional steps such as charging the student

account and sending a notification message. The following task network describes

these steps involved in the process:

50

w =({u1 = studentRegistration, u2 = updateStudentsBill, u3 = notify},

{(u1, u2), (u2, u3)},

{〈u1, studentID〉 ← SID, 〈u1, course〉 ← CourseName, 〈u1, term〉 ← term,

〈u2, transactionID〉 ← 〈u1, transactionID〉, 〈u3, bill〉 ← 〈u2, bill〉

〈u3, studentID〉 ← SID, receipt← 〈u1, transactionID〉})

This is a totally ordered task network with three task nodes u1, u2 and u3 that

correspond to the tasks studentRegistration, updateStudentBill and notify,

respectively. According to the parameter bindings the input for the task node u2 is the

output of the node u1 which is the transaction id returned by studentRegistration.

Similarly the inputs for u3 come from the outputs of u1 and u2. The inputs of u1

come from the variables SID, CourseName and term. Furthermore, the output of

u1 is bound to the variable receipt.

Definition 3.5 (Conditional Task Network) A conditional task network is a

construct of the form [(C1 : τ1) . . . (Cn : τn)] where each Ci is in the form of a

boolean DL query and each τi is a task network.

Intuitively, a conditional task network is a nested if-then-else structure de-

scribing different ways to decompose a method under different conditions. The

conditions Ci are in the form of a boolean query. We find the smallest i such that

Ci is true in the current state. We can also use a condition such as >(a) where a

51

is an arbitrary individual to express a condition that will always be satisfied. This

might be useful for the cases if we want the last branch to be unconditional, e.g.

representing the else part of an if-then-else structure.

Definition 3.6 (Method) A method has the form m = (N, I, O, P, V, EW , EK , Γ)

where N , I, O, P , EW , and EK are defined similar to the operators. The additional

element V is a subset of local variables mentioned in the expression P . Γ is a

conditional task network such that for every parameter binding a ← b in Γ if a is

a variable then a ∈ O and if b is a variable then b ∈ I ∪ V . Furthermore, for each

output o ∈ O there is at most one binding o← b in the parameter bindings of every

task network in Γ.

A method description is syntactically very similar to an operator descrip-

tion but in addition it contains a conditional task network component. A method

achieves a task by accomplishing the subtasks defined in that task network whose

condition is satisfied.

The local variables V of a method are simply some variables that will be bound

by the precondition expression. The values are then used as input parameters to the

subtasks in the network Γ. Of course, in some cases, there might be multiple different

bindings that satisfy the precondition expression. The planner would consider all

such bindings while searching for a plan. Note that, the conditions defined inside

the task network Γ cannot be used to assign any values to the variables in V since

they are only boolean queries.

52

Methods might also have effects associated with them but they should not be

confused by the high-level effects as used in some HTN systems [124]. Following the

HTN formalism presented in [27], we treat such effects as postconditions that need

to hold after the last task in Γ is achieved. State can only be changed by operators.

The effects of a method just defines some conditions that will hold after all the tasks

in Γ are achieved regardless of in which order or with which actions those tasks are

achieved.

Example 3.4 The registration process is slightly different for students who work

as a graduate assistant as their payment is waived. The following is a method that

combines the task network w of Example 3.3 with this additional condition.

m = (register, {SID, CourseName}, {term}, {receipt},

nextTerm(term) ∧ open(courseName, term),

takesCourse(SID, course),>,

[(GraduateAssistant(SID) : ({u1 = studentRegistration}, ∅, λ));

(> : w)])

where w is the task network in Example 3.3 and λ is defined as

λ = {〈u1, studentID〉 ← SID, 〈u1, course〉 ← CourseName,

〈u1, term〉 ← term, receipt← 〈u1, transactionID〉}

Definition 3.7 (Task Ontology) A task ontology Tont is a DL ontology where

53

task symbols are used as concept names and operator and method names are used as

individual names.

There are several functions of the task ontology. First, it describes how tasks

are related to each other via the subsumption hierarchy. For example, buy-new-book

and buy-used-book tasks can be described as specializations of the more general

task buy-book. This would simply be achieved with a concept inclusion axiom in

the task ontology.

The task ontology also describes which operators or methods can be used to

achieve a certain task. For example, a membership inclusion axiom can state that

acme-book-service is an instance of the buy-new-book concept. There can be

additional properties described about services in the task ontology. For example,

the task ontology might contain the following assertions about acme-book-service:

providedBy(acme-book-service, acme-corporation).

locatedIn(acme-corporation, USA).

CertifiedSeller(acme-corporation).

Suppose there is also a task describing any functionality provided by a certified

organization located in USA:

CertifiedUSSeller ≡ ∃providedBy.CertifiedSeller u locatedIn.{USA}

54

Looking at the task ontology one can conclude that acme-book-service is an

instance of CertifiedUSSeller and can be used to achieve this task.

A planning domain is simply a combination of operator and method descrip-

tions coupled with a task ontology.

Definition 3.8 (Planning Domain) A planning domain D is defined as the triple

(O, M, Tont) where O is the set of operator descriptions, M is the set of method

descriptions, and Tont is the task ontology.

Finally, we give a formal definition of the planning problem.

Definition 3.9 (Planning Problem) A planning problem P is a triple (S, w,D)

where S is the initial state, w is the task network to plan for, and D is the planning

domain.

3.2.3 Semantics

In this section, we provide an operational semantics for HTN-DL. We start by

defining the semantics for states. Let us first define the consistency of a state by

reiterating the consistency definition of a DL knowledge base.

Definition 3.10 ((In)consistent State) A state S = 〈SA, ST , SR〉 is consistent

if there is an interpretation I that satisfies all the assertions and axioms in S. The

state is inconsistent if there is no such interpretation.

An inconsistent logical theory entails everything which would cause a lot of

problems in our case. If the planner’s state is inconsistent then there would be

55

no point in planning because every action would be considered possible. For this

reason, we will make the following simplifying assumption.

Assumption 3.1 (Global Consistency Assumption (GCA)) The complete

knowledge about the world W = 〈AW , TW ,RW 〉 is always consistent.

Such an assumption is not very meaningful especially in the context of Web.

It is inevitable that any agent interacting with Web will encounter contradicting

information. However, dealing with such inconsistency is beyond the scope of this

thesis. See Section 9.4 for a discussion on this subject.

It is important to emphasize that GCA not only requires the initial state to be

consistent but also ensures that world state will remain consistent after execution of

any action. That is, if there is a service whose effects will cause the state to become

inconsistent then we will conclude that this service is not executable in real world.

We also assume that planner always has correct knowledge about the world.

Assumption 3.2 (Local Correctness Assumption (LCA)) Planner’s incom-

plete knowledge about the world, denoted by S, is always correct. Formally, we say

W |= S, that is, every entailment of S is also an entailment of W .

The preconditions of operators and methods as well as the conditions inside

task network are expressed in the form of conjunctive DL queries (see Section 2.3).

Due to Open World Assumption a condition might have three different truth values:

Definition 3.11 (Truth Value of Conditions) Let S = 〈SA, ST , SR〉 be the cur-

rent state and Q be a condition expressed as boolean conjunctive query. We say that

56

condition Q is true at state S iff S |= Q. Condition Q is false at state S iff

S |= ¬Q). Truth value of the condition is unknown if Q is neither true nor false at

state S.

Note that, due to incomplete information, the planner might conclude that a

condition Q is not satisfied at the current state S although Q is true at W . This

means some actions that are actually possible will not be considered by the planner

which is a consequence of incomplete information. However, it is important to

emphasize that the converse does not cause any problem. That is, whenever Q is

true at S, it is also guaranteed to be true at W due to LCA.

Definition 3.12 (Task Matching) Let S = 〈SA, ST , SR〉 be the current state,

D = (O,M, Tont) be the planning domain, and t = (N t, I t, Ot, P t, Et
W , Et

K) be a task.

We say that operator o = (N o, Io, Oo, P o, Eo
W , Eo

K) matches task t if Tont |= N t(N o)

and there is a unique mapping σ = σ1 ∪ σ2 such that mappings σ1 : Io → I t and

σ2 : Ot → Oo satisfy the conditions S |= P t vσ1 P o, S |= Eo
W vσ−1 ∪σ2

Et
W , and

S |= Eo
K vσ−1 ∪σ2

Et
K. The matching of a method m with task t is defined similarly.

Task matching has two steps: First step is, matching based on the task ontol-

ogy and the second step is, matching based on the preconditions and effects. Task

ontology based matching is simply reduced to the problem of instance checking. We

have a match if the operator (or the method) is inferred to be an instance of the

task in the task ontology Tont.

Matching based on preconditions and effects serves two purposes. First is

to ensure that the operator or method selected to achieve the task has the same

57

constraints about the state transition. For example, if the precondition of a task is

satisfied in the current state, the precondition of the matching operator or method

should also be satisfied. This means that the precondition of the matching action

is allowed to be more relaxed. The relation between the effects of the task and

matching action is exactly the opposite. The task description requires us to find an

action that will achieve some certain effects. Therefore, the matching action should

generate at least the effects specified in the task. Additional effects by the action

would be permitted. The subsumption relation between the conditions of the task

and the operator (or the method) verifies these constraints.

The second purpose of the matching preconditions and effects is to figure out

how the inputs and the outputs of the operator (or the method) align with the

inputs and the outputs of the task. Unlike classical HTN formalism, the ordering

of the parameters in the task do not have any special meaning. This means that

when we have a task with two inputs and a matching operator with also two inputs

we do not know which input of the operator corresponds to which input of the

task. The containment mapping σ in the query subsumption is used to establish

this correspondence between the inputs and the outputs. Note that, the uniqueness

of the σ mapping is essential to the definition of task matching. If there are two

different mappings that satisfy the subsumption between conditions, it means there

is ambiguity about the parameters and we cannot use this action.

Definition 3.13 (State Transition) Let S = 〈SA, ST , SR〉 be the current state,

o = (N, I, O, P, EW , EK) be an operator, and θ be an assignment of individuals to

58

input variables I. Applying operator oθ in state S causes the current state to change

into S ′ = γ(S, oθ) such that S ′ |= EW θ ∧ EKθ.

Note that, we have not described the exact semantics of the transition function

γ other than saying that state S will change in a way that the effects of the action

become true. In the presence of state constraints, defining a precise semantics

for such transitions are problematic. As pointed out in [107], some state axioms

can be considered as additional qualifications for the actions whereas some others

encode ramifications of the actions. That is, in some cases, the effects of the action

might contradict with the axioms in our terminology in a way that we conclude it

is not possible to do this action. In other cases, domain axioms tell us how the

explicitly asserted effects of an action need to be propagated to produce the implicit

effects. But in either case, the terminological component remains same and only the

assertional component is modified.

There have been many proposals about update semantics [119, 71, 107, 39, 52]

mostly for propositional knowledge bases and without domain axioms. With the

abundance of such semantics with different properties and varying advantages and

disadvantages, many researchers have argued that there is no single update semantics

that can be used in every setting [120].

For this reason, we do not restrict ourselves to one specific update semantics

and leave it as a configurable parameter. We adopt the approach of Transaction

Logic [11] and say that atomic updates with different semantics can be used in

different situations. The only requirement we have from γ function is that effects of

59

an operator actually hold in the successor state. A reasonable requirement is that

the world should change minimally as to ensure the effects. That is, a statement

holding in a state should persist unless it conflicts with the update. This is very easy

to ensure when the state is represented as a set of ground facts but the definition

of minimality is quite difficult for the reasons explained above. In Section 3.3.2, we

explain the approach currently adopted in HTN-DL algorithm in more detail.

Definition 3.14 (Operator Applicability) Let o = 〈N o, Io, Oo, P o, Eo
W , Eo

K〉 be

an operator, S = 〈SA, ST , SR〉 be the current state, t = (N t, I t, Ot, P t, Et
W , Et

K) be

a task and θ be an assignment of individuals to input variables I t. Then we say that

operator o is applicable to task t at state S if

1. o matches t with mapping σ, and

2. the condition P oρ is true at state S where ρ is the composite mapping σθ, and

3. the resulting state S ′ = γ(S, oσθ) is consistent.

We consider the applicability of an operator w.r.t. the inputs that will be used

to execute this action. We replace all the appearances of the input variables in the

precondition expression with the specified constants. Note that, the precondition

expression is not necessarily ground after this substitution because there might be

other variables used in the precondition expression.

The operator applicability also requires that the successor state is consistent.

The interaction between the facts in the state, state constraints and the update

operation γ might cause a contradiction in the final state. Such constraints, called

60

as qualification constraints by Lin and Reiter [80], describe additional qualifications

for the actions. Thus, an action violating a state constraint cannot be executed in

the real world. While the solution of Lin and Reiter [80] compiles qualification con-

straints into precondition expressions (and discards the constraints during reasoning

about actions) we leave such constraints in the state and verify that they still hold

after (simulated) execution of an operator.

Definition 3.15 (Method Applicability) Let m = (Nm, Im, Om, Pm, V m, Em
W ,

Em
K , Γ) be a method where Γ = [(C1 : τ1) . . . (Cn : τn)] is a conditional task network,

S = 〈SA, ST , SR〉 be the current state, t = (N t, I t, Ot, P t, Et
W , Et

K) be a task, and θ

be an assignment of individuals to input variables I t. A method m is applicable to

task t in S if

1. m matches t with mapping σ, and

2. there exists a mapping φ from the variables in V to the individuals in S such

that φ is in the answer set of Pmσθ w.r.t. S, and

3. there exists i such that Ciρ is true at state S and Cjρ is false at state S ∀j < i

where the mapping ρ is defined as σθ ∪ φ.

We will say that τi is the active task network in Γ. τiρ, the task network obtained

by applying substitution ρ to the active network, is called a simple reduction of t by

m in S.

Note that, due to incomplete knowledge, there might be cases where the

method is not applicable although its precondition is satisfied. This is because

61

the conditional task network describes a nested if-then-else structure and for an

if-then-else statement one or the other choice should be selected based on the truth

value of the condition. If the truth value is unknown, as might be the case, the

planner has no way of choosing between two possibilities. Choosing one option over

the other might cause the planner to generate unsound plans (these are unsound

plans w.r.t. complete knowledge of the world). For this reason, to avoid ambiguity,

we say a method is applicable only if all the conditions can be proved or disproved.

This requirement is too restrictive in the sense that we completely give up

when we realize we do not have enough information. An alternative would be to

generate conditional plans based on these unknown conditions in the hope that as

we start executing the actions in the plan we might gather the necessary information

to make a decision.

Next we are going to formally define task decomposition. The definition is

very similar to the one given in [37] thus it is very complicated. Intuitively what it

says is given a state S and a task u with no predecessors in a task network w we can

replace the task u with a simple reduction of u by a method in S. For this, we need

to update the nodes, the edges and the parameter bindings to change any references

of u to the subtasks in the reduction. Also as discussed in [37] when dealing with

partially ordered tasks we need to enforce the preconditions of m until at least one

subtask is accomplished. That is why task decomposition definition returns a set of

task networks, i.e. one for each subtask that has no predecessor in the reduction.

Definition 3.16 (Task Decomposition) Let S be a state, w = (η, ε, λ) be a task

62

network, u ∈ η be a node that has no predecessors. Let succ(u) be the set of all

immediate successors of u. Also let w′ = (η′, ε′, λ′) be the task network obtained

by removing the node u, the edges and the parameter bindings involving u from w.

Suppose task network wm = (ηm, εm, λm) is a simple reduction of tu by a method m

in S with θ where θ is a mapping for input parameters of tu based on the parameter

bindings in λ. Let start(wm) be the set of all nodes in ηm that has no predeces-

sors. If ηm is nonempty, then the result of decomposing u in w by wm (denoted by

δ(u, w,wm)) is a set of task networks {(η′ ∪ ηm, ε′ ∪ εv, λ
∗) | v ∈ start(wm)} where

• εv = εm ∪ {(g, h) | g ∈ ηm, h ∈ succ(u)} ∪ {(v, u′) | u′ ∈ start(w)− {u}}

• λ∗ = λ′ ∪ {a← b | a← 〈u, p〉 ∈ λ and p← b ∈ λm} ∪ λ′m where

λ′m = λm − {a← b | a← b ∈ λm and a ∈ Otu}

If ηm is empty then δ(u, w,wm) = {(η′, ε′, λ∗)}.

Finally, we define when a plan is considered to be a solution for a planning

problem.

Definition 3.17 (Plan) Let P = (S0, w,D) be a planning problem. The plan π =

〈o1, o2, . . . , on〉 is a solution for P if one of the following conditions hold:

• Both w and π are empty.

• There is a task node 〈lu : tu〉 ∈ w and there is no 〈lv : tv〉 ∈ w such that

lv ≺ lu, and

– Operator o1 applicable to tu in S0 and the plan π′ = 〈o2, . . . , on〉 is a

solution for the planning problem P ′ = (γ(So, o1), w \ {u}, D), or

63

– There is a simple reduction wm of tu by a method m in S0 and π is a

solution for P ′ = (S0, w
′, d) where w′ ∈ δ(u, w,wm).

The set of all solutions to a planning problem is denoted by solves(S0, P, D).

3.3 HTN-DL Algorithm

In this section, we present the HTN-DL algorithm and explain the details of

how condition evaluation and state updates are done. Algorithm 1 shows the pseudo-

code of the planning algorithm. This is a forward-decomposition HTN planning al-

gorithm working in the same spirit as other forward-planning HTN systems such as

SHOP2 [94]. The biggest difference in HTN-DL is line 5 where the find-applicable

procedure is called to find operators and methods applicable to the selected task

in the current state. Note that, we do not distinguish between primitive and non-

primitive tasks and we can match both an operator and a method with the same

task.

Algorithm 2 shows a simplified version of the find-applicable procedure3.

We iterate through the instances of the given task and find the matching operators

and methods. We check for applicability as defined in the HTN-DL semantics. For

operators, we check the satisfiability of the precondition and ensure the consistency

of the successor state. For methods, we again check for the satisfiability of the

precondition and then find the active task network. Note that, as discussed in the

3For brevity, we do not include the parts related to variable bindings, e.g. normally we apply
the input bindings to the precondition expression before we check for satisfiability and evaluating
method precondition involves retrieving bindings for the local variables

64

Algorithm 1 HTN-DL(S, w, D)

1: if w is empty then

2: return 〈〉 // an empty plan is returned for empty task network

3: end if

4: Let u = 〈l : t〉 be a node in w with no predecessors

5: Let A = find-applicable(S, t, D) be the set of all applicable operators

and methods

6: if A is empty then

7: return fail

8: end if

9: Nondeterministically choose an action from A

10: if an operator o is chosen then

11: Let S ′ = γ(S, o)

12: Let w′ = w \ {u}
13: return 〈o, HTN-DL(S’,w’,D)〉
14: else if a method m is chosen then

15: Let wm be a simple reduction of t by m in S

16: Nondeterministically choose a w′ from δ(u, w,wm)

17: return HTN-DL(S, w′, D)

18: end if

previous section, a method will be considered inapplicable if a condition can be

neither proved or disproved.

3.3.1 Evaluating Conditions

The problem of evaluating conditional expressions is directly reducible to DL

query answering. The preconditions of operators and the conditions inside a con-

ditional task network are boolean queries that require a true/false answer. The

preconditions of methods, on the other hand, are retrieval queries where the local

variables of a method are the distinguished variables of that query. We will examine

65

Algorithm 2 find-applicable(S, t, D)

Inputs: S is the current state, t = (N t, I t, Ot, P t, Et
W , Et

K) is the task,

D = (O,M, Tont) is the planning domain

1: Let result = {} // result is the set of matching operators and methods

2: for all a such that Tont |= N t(a) do

3: if o ∈ O such that o = (a, Io, Oo, P o, Eo
W , Eo

K) then

4: // a is an operator name

5: if S 6|= P o then continue loop end if

6: if S |= P t v P o and S |= Eo
W v Et

W and S |= Eo
K v Et

K then

7: Let S ′ = γ(S, o)

8: if S ′ is consistent then

9: Let result = result ∪ {o}
10: end if

11: end if

12: else if m ∈M such that m = (a, Im, Om, V m, Pm, Em
W , Em

K , Γ) then

13: // a is a method name

14: if S 6|= P o then continue loop end if

15: if S |= P t v Pm and S |= Em
W v Et

W and S |= Em
K v Et

K then

16: Let n be the number of task networks in Γ

17: for i = 1 to n do // this loop finds the active task network

18: if S |= Ci then

19: Let result = result ∪ {m}
20: else if S |= ¬Ci then

21: continue loop

22: end if

23: // either we found the active network or Ci can be neither proved nor

disproved. In either case we are done with this method

24: exit loop

25: end for

26: end if

27: end if

28: end for

29: return result

66

both cases separately.

Answering boolean conjunctive queries can be reduced to KB consistency

checking using the so-called “rolling-up” technique [58, 64]. This technique works

by creating a concept expression from the conjunctive query and checking if that

concept has a non-empty interpretation in every model of the KB. If K is the original

KB, Q is the boolean conjunctive query, CQ is the concept we obtain by rolling-up

Q then we say K |= Q iff K ′ = K ∪ {> v ¬CQ} is inconsistent.

There are some limitations of the rolling-up technique based on the expressivity

of the KB and the features of the query. We treat the conjunctive query as a graph

where each variable is a node and each role is a directed edge between nodes. If

there are constants (individuals) used in the query atoms, we can simply get rid of

such atoms using one step of rolling-up. For example, a query atom p(x, a) (resp.

p(a, x)) where p is a role, x is a variable, and a is a constant, can be turned into

(∃p.{a})(x) (resp. (∃p−.{a})(x)).

Without loss of generality, we can assume that the query graph is weakly

connected; that is, there is an undirected path between any two nodes in the graph.

We can split a disconnected query graph into weakly connected, mutually disjoint

subgraphs. The original query is satisfied by the KB if all the subqueries are satisfied.

for this reason, we will only consider weakly connected graphs.

The rolling-up technique can be used for answering boolean conjunctive queries

if there are no cycles in the query graph. Recall that, all the variables in a boolean

query are non-distinguished (we will later discuss the case of distinguished variables

separately). If the KB does not contain any transitive and inverse roles, e.g. the

67

DL expressivity ALCN , then the cycles in the query can only be caused by existing

individuals (due to the tree-model property of the language). In that case, we

can turn the query into a retrieval query by treating the variables in the cycle as

distinguished variables. The boolean query should be true if and only if the answer

set of the retrieval query is non empty.

However, if the KB in question uses the full expressivity of OWL-DL, i.e.

the DL SHOIN , this approach is not applicable. For this reason, we will restrict

the precondition expressions to non-cyclic queries. This is actually not a serious

problem in practice for the following reason: The condition expressions of HTN-DL

operators and methods nearly always refer to input variables. During planning,

we substitute input variables with the given input bindings before we evaluate the

condition. Therefore, even though the initial query expression is cyclic, the query we

actually evaluate may not contain any cycles as the variables causing the problem

are replaced with constant values.

For task decomposition, we also need to decide when a negation of the query

is entailed. As we explained above, if K is a KB, Q is a boolean conjunctive query,

CQ is the concept we obtain by rolling-up Q then K |= Q iff K ′ = K ∪ {> v ¬CQ}

is inconsistent. If K′ is consistent then all we can conclude is K 6|= Q which is not

equivalent to K |= ¬Q. The condition K 6|= Q is weaker because it just says that it

is possible but not necessary that Q is false in the world. If we plan some actions

on this possibility, we might end up generating unsound plans. For this reason, in

HTN-DL semantics, finding the active network in a conditional task networks is done

by checking the entailment of negated query, i.e. checking K |= ¬Q.

68

If we want to check that the negation of a query Q is entailed then we can

again use rolling-up to obtain CQ and test its (un)satisfiability. CQ is satisfiable only

if there is a model I |= K s.t. CI
Q 6= ∅. If such a model exists, it is straight-forward

to show that every non-distinguished variable in the query can be mapped to an

element of ∆I in this interpretation satisfying every query atom. Therefore, we can

say that K |= ¬Q iff CQ is unsatisfiable w.r.t. K.

Answering retrieval queries can simply be reduced to boolean query answering

by substituting the distinguished variables in the original query with the individuals

from KB. If the resulting query (which might still have non-distinguished variables

in it) is entailed by the KB then the substitution is added to the answer set. If

the original query contains a cycle with only non-distinguished variables then we

would not be able to answer the query. If the cycle has at least one distinguished

variable (whose removal breaks the cycle) then we would still be able to roll-up

the partially-grounded query (since constants do not cause cycles). Although, this

approach is technically sound, it is not practical. We will address this issue in detail

in Chapter 6.

3.3.2 Updating State

During planning, the planner will simulate the effects of actions as operators

are added to the plan. The state will be updated according to the effects of the

action. The physical effects of an action describe what will change in the world.

Using this description planner needs to update its local state such that this local

69

state will still represent the world state correctly. We will now describe how to

handle world-altering effects and knowledge effects separately.

As we explained in Section 3.2.3, defining the semantics of an update opera-

tion in an expressive KR language is not straight-forward. This is an extensively

studied research topic [119, 71, 107, 39, 52] in reasoning about action community

but there is not a consensus on a single correct solution even for propositional KBs.

The postulates put forward by Katsuno and Mendelzon [71] proposes some basic

characteristics an update operation should have but the update semantics devel-

oped in the literature do not agree on these basic properties as examined in detail

by Herzig and Rifi [52].

Currently the approach we adopt for state updates is a formula-based approach

close to WIDTIO (When In Doubt Throw it Out [119]) approach [38, 39]. According

to this update operator, updating the KB K with U yields K′ = K ∪ U if K′ is

consistent. If there is an inconsistency a minimal number of assertions are removed

from K such that addition of U will not cause an inconsistency. The state constraints

are protected from the removal operation. The implementation of formula-based

updates is very straight-forward using the axiom pinpointing service [70] developed

for SHOIN .

Although, formula-based update operation is computationally attractive, it

also has disadvantages. With WIDTIO approach, there is a danger of retracting

too much information in order to eliminate inconsistency thus leading to less and

less knowledge as planning continues. Since our removal operation is constrained to

ABox assertions the effects of this problem is somewhat limited. The main reason

70

for adopting this update operation was to reuse existing efficient implementation for

updates. As we mentioned in the previous section, it would be fine to use a different

update operation such as the recently proposed model-based update operations for

DLs [81, 4].

When a service has only knowledge effects we can simply execute this service

and add the information to the KB (we will discuss this in more detail in the

next section). If the action has both world-altering effects and knowledge effects

then execution is not desirable without ensuring the subsequent steps in the plan

will be successful. Since knowledge effects most typically refer to the outputs of the

service, it is not possible to know what the exact effects of the service will be without

execution. In such cases, we assign a skolem constant to each output variable, apply

this substitution to the effect description to obtain a ground set of ABox assertions

and add these assertions to the state.

Note that, being cautious and not executing any actions with world-altering

effects has some consequences. In some cases, we will not be able to find some

plans because we do not know what the outcome of execution will be. For example,

consider the studentRegistration and notify tasks used in Example 3.3. The task

notify uses the output from the task studentRegistration but during planning we

will not know the value of the output transactionID. In this example, we can

still generate a plan because all we have to verify is that transactionID should

be of type Transaction which is guaranteed by the task definition. But if notify

task had to make another decision based on the value of transactionID then plan

would fail. This is because there is no information about the skolem constant we

71

introduced for output transactionID other than what is stated in the effects of

studentRegistration so nothing else can be proved from the planner’s local state.

It is possible to relax the restriction about execution of world-altering services.

For example, suppose we execute studentRegistration service but later fail to find

a plan (e.g. the billing service cannot be executed). We could backtrack from this

situation if there is a service dropClass that lets us to remove the course from

student’s schedule. If there is an inverse action for the service we are interested

in then we can safely execute this service and use the inverse action for undoing

the effects. For example, such a backtracking strategy has been adopted in the

PUCCINI planner [40].

3.3.3 Interleaving Execution and Planning

As we have previously discussed, executing purely information-providing ser-

vices during planning does not have any undesired side-effects and is essential to

solve many real world problems. The information returned from the service will be

about the initial state of the planning problem. Since none of the world-altering ac-

tions planner simulated so far has been executed in the real world. For this reason,

executing information-providing services during planning should be conceptually

equivalent to executing them before planning started.

Executing information providing services in the initial state is straight-forward.

We can simply add the information returned by the service to the local state. We do

not need to use the update function to apply the knowledge effects because neither

72

the actual state of the world nor the planner’s state has changed.

The situation is different if the information is gathered at a point where the

planner already modified its local state. Adding the retrieved information to the

intermediate state could cause us to generate invalid plans. For example, consider

the case where the planner execute a Web Service to get the available appointment

times from a hospital and then planner simulates scheduling an appointment at

one of the available time slots. If the information-providing service is executed

again, the service would return the exact same available appointment times since

the appointment has not been done in the real world. Adding the same available

times to the state would be a problem because planner would be able to schedule

another appointment in the same time slot.

If the information-providing services were to return only boolean answers,

e.g. given a ground conjunctive query the service returns true or false, then

we could use the solution described in [105] which is to guard the information-

providing actions: Do not execute the sensing action if the truth value of the query

is known. This simple criteria is enough to ensure that the planner will not over-

write the planned actions with information gathered. However, in HTN-DL set-

ting, information-providing services return a set of values that make the knowledge

effects true and we cannot adopt this solution. Requiring that no information-

providing service will be executed more than once is also not satisfactory as two

different services might return overlapping information. In the most general case,

the safe solution is to add the information to initial state and apply the effects

of partial plan generated so far. If the update operation ensures the condition

73

γ(K1, U) ∪ γ(K2, U) = γ(K1 ∪ K2, U) then we can simply apply the effects to the

gathered information and combine the results with the current intermediate state.

74

Chapter 4

Translating Web Service Descriptions to HTN-DL

This chapter discusses how HTN-DL can be used for Web Service composition

problems. We will first discuss how HTN-DL relates to Web Services in general and

then examine the relation between HTN-DL and OWL-S. We specifically focus on

OWL-S language as it is currently the most mature and the most widely deployed

Semantic Web Services technology.

We present a translation algorithm that will generate HTN-DL domains from

OWL-S descriptions. We discuss translation of profile descriptions and process mod-

els separately and examine each control construct in detail. This translation shows

that the control flow of a Web Service workflow can be encoded using HTN-DL

methods. The algorithms presented in this chapter can be used to represent the

control constructs in other Web Service description languages.

The translation algorithm also provides a formal semantics to OWL-S language.

OWL-S specification does not have a formal semantics but one has been given by

Narayanan and McIlraith [92] in terms of the situation calculus [106] and Golog

[77]. We show that both semantics are equivalent for the subset they both cover.

In addition, HTN-DL can encode additional constructs, such as partially ordered

composite services that interleave, and provides a additional features such as services

that are both world-altering and information-providing.

75

4.1 Relation between OWL-S and HTN-DL

As we have reviewed in Section 2.4, OWL-S language partitions a service de-

scription into three components: service profile; process model and grounding. Ser-

vice profile is used to describe the service capabilities defined through inputs, out-

puts, preconditions and effects as well as attributes such as the quality of service

provided, security guarantees made, etc. Process model describes the pattern of

interaction with the Web Service. Grounding defines the execution details of the

Web Service by linking the process definition typically to a WSDL operation (other

kind of groundings are also possible).

OWL-S process ontology is a quite extensive orchestration language that pro-

vides control flow elements such as Perform, Sequence, Any-Order, Choice, Split,

If-Then-Else, Repeat-While, and Repeat-Until. A CompositeProcess in OWL-S

can be built from other processes using these constructs. Processes that do not

have any internal structure (or whose internals are hidden) are defined as Atom-

icProcesses. Roughly, an OWL-S AtomicProcess corresponds to an HTN-DL operator

and an OWL-S CompositeProcess corresponds to an HTN-DL method.

OWL-S process models can express a number of workflow patterns character-

ized in the literature [121, 117]. These pre-defined compositions may integrate ser-

vices from different locations and they are executable. However, every step defined

in the workflow is bound to one concrete process. For this reason, such composite

process descriptions are not flexible enough to be used in different situations. In

the event that one of the component services is not available anymore the whole

76

composite process description would fail.

What is missing in OWL-S process ontology is a way of describing abstract

functionality that can be matched with concrete services at run-time or plan-time.

OWL-S defines a third type of processes named SimpleProcess which was originally

envisaged to address a similar problem but this construct is still under-specified as

of the latest release (version 1.1). Technical overview states that SimpleProcess is

primarily designed to provide an abstract view for an existing atomic or composite

process. That is, it is mainly used when the concrete process that corresponds to

the abstract view is known a priori at design-time.

In order to make OWL-S capable of representing abstract processes we need

something similar to an HTN-DL task. Abstract processes should not be tied to

any specific service but should describe a functionality that we can match with the

capabilities of existing services. Such a functionality description should certainly

refer to profile descriptions. The non-functional attributes described in the profile

section are required to differentiate the candidate services so that best possible

choice can be found.

In order to describe such abstract processes, we propose to add a new process

type AbstractProcess to OWL-S process ontology. Equivalently, the specification of

SimpleProcess can be cleared up to serve such a purpose. To avoid ambiguity we

will use the name AbstractProcess throughout this chapter.

An AbstractProcess is similar to an AtomicProcess description and has inputs,

outputs, preconditions and effects. The difference is that AbstractProcesses are not

directly connected to any specific Profile or Grounding description. And unlike

77

SimpleProcess, it does not have any links to existing processes. AbstractProcess

being another type of Process, can be used inside a Perform construct. This allows

us to have partially abstract templates, e.g. we can have a sequence where first step

is a concrete AtomicProcess that is executable and second step is an AbstractProcess

that needs to be instantiated.

The following is an example that describes an AbstractProcess that sells books

and accepts credit cards Visa or Mastercard1.

(define abstract process GetBook

inputs: (RequestedBook - books:Book,

ShipmentAdress - loc:Address,

Payment - :VisaOrMastercard

outputs:(Receipt - :PurchaseReceipt)

result: (

shippedTo(RequestedBook, ShipmentAdress))

);

When we want to perform an abstract process we would express this with a

Perform construct. As an additional parameter to Perform we would specify what

kind of service profiles would be acceptable in matching. The following example

shows a Perform statement where the matching services for GetBook are limited

to services that sell new or used books and has high user rating. Services that

lend books (e.g. libraries and book clubs) are explicitly disallowed in the profile

description.

:PerformBookBuy a p:Perform ;

p:process :GetBook ;

1For brevity, process descriptions are written in OWL-S presentation syntax and all other
ontological definitions are given in N3 syntax. Both formats can easily be translated to verbose
RDF/XML syntax.

78

p:profile [

a owl:Class;

[owl:intersectionOf (

[owl:onProperty :hasUserRating;

owl:someValuesFrom :High]

[owl:unionOf (

:NewBookBuyingService

:UsedBookBuyingService)]

[owl:complementOf

:BorrowBookService])]] .

4.2 From OWL-S to HTN-DL

In this section, we explain how OWL-S service descriptions can be encoded

as HTN-DL domains. For each service, the profile description is translated to an

element in the task ontology and the process model is translated to a set of methods

and operators.

Before we present the translation algorithm, we first discuss some of the dif-

ferences between OWL-S and HTN-DL representations and explain how this effects

the translation algorithm. Then we describe how to translate profile descriptions

and process models separately.

4.2.1 Translating Profile Descriptions

The profile descriptions in OWL-S are represented as a set of ABox assertions.

The profile of a service is represented as an instance of a specific concept named

ServiceProfile. The profile descriptions are associated with “service parameters”

that describe different features of the service. The service parameters are simply

79

some relations asserted in the ABox. These relations may be about many different

things such as the quality of service, e.g. the average response time, the security

protocol, e.g. encryption algorithm, the service provider, e.g. where the provider is

located and what credentials they have.

The ontologies used to describe OWL-S services might also describe profile

hierarchies. Profile hierarchy is a categorization of services where typically the

ServiceProfile is the top concept. Categories of services are defined by describing

some restrictions on the service parameters of the profile.

Since OWL-S profile descriptions are nothing more than OWL ontologies we

can directly use them as HTN-DL task ontologies. The only issue here is that

the individuals in the task ontology should be mapped to operator and method

definitions we have. In the next section, we will show how operator and method

descriptions are generated from process models. Therefore, all we need to do is

relate the operators and methods coming from translation of process models to the

individuals coming from the translation of profile descriptions. As OWL-S service

description tells us the profile and process belonging to the service, establishing this

relation is also trivial.

4.2.2 Translating Process Models

There are some representational and expressivity differences between OWL-S

and HTN-DL that make an exact translation impossible. One major difference was

the lack of abstract processes in OWL-S which we have already discussed. Next, we

80

will point out some other issues.

The effects of an OWL-S process is not described in two categories as in HTN-

DL. Therefore, there is no way to tell whether a service has any world-altering effects

or it is just an information-providing service. This problem can be solved easily if we

annotate the (appropriate) OWL-S effects as knowledge effects as we do in HTN-DL.

OWL-S allows one to express conditional effects. A conditional effect says

that the change in the world will happen only if a certain condition is met. This

is different from the precondition description because the result of executing of an

action in a state where precondition is not satisfied have an undefined effect. Con-

ditional effects, on the other hand, describe the effects precisely but under different

conditions different effects might occur. Although, HTN-DL does not allow condi-

tional effects for operators or methods, one can simulate this expressivity using an

additional method. For example, if an operator has a conditional effect, we could

define a method and use the conditions of the effects as the conditions of the task

network. At each task network, we would use a single method that is achieved by a

slightly modified version of the operator, i.e. augmented with corresponding effect

description. To keep the presentation simple, we will only focus on unconditional

effects in our translation algorithm.

One feature of OWL-S not supported in HTN-DL is concurrent processes. The

control constructs Split and Split-Join describe a set of process that can be

executed concurrently with or without synchronization, respectively. In HTN-DL,

we do not have concurrent actions but we allow interleaving of composite actions.

Using this feature, we choose to translate Split and Split+Join as unordered set of

81

methods that can be interleaved arbitrarily. Although this encoding will rule out the

plans where two atomic processes are executed concurrently, the plan still is correct

with respect to the semantics because there is no hard constraint for simultaneous

execution.

There are also some areas where OWL-S specification is not clear. For example,

using the output of one process invocation as an input for another process invocation

is common practice. But doing so asserts an implicit ordering relation between two

invocations. The OWL-S specification does not particularly say what happens when

such a data flow link is defined between two performs that are used in the same

Split-Join construct. To resolve this ambiguity, we will assume that such data

flow links do not exist in the process models we are translating to HTN-DL.

We are now ready to present the translation algorithm. We will start with

the translation of logical conditions, then examine each control construct separately

and finally wrap up with the translation of processes.

Translating Conditions

OWL-S allows logical expressions to be expressed in several different languages

such as Semantic Web Rule Language (SWRL) [59], Knowledge Interchange Format

(KIF) [35], and Declarative RDF System (DRS) [85, 86]. These languages have

different expressive power to describe different kind of formulas but generally the

logical expressions in OWL-S are limited to conjunctions of (possibly nonground)

OWL facts. For example, if SWRL is being used to express a condition then the

82

expression is simply a list of atoms (named as AtomList) but not a complete rule

definition. For the purposes of the translation, we will assume SWRL syntax is

being used.

SWRL atom lists can be directly expressed as HTN-DL conditions since both

expressions are in the same form. One additional atom type in SWRL is built-in

atoms. SWRL built-in atoms include operations for comparing data values, per-

forming mathematical computation, manipulating strings, etc. Such operations are

not included in the HTN-DL formalism but it is very straight-forward to incorporate

such extensions to HTN-DL in the style of SHOP2 since HTN-DL is also a forward-

planning algorithm. Evaluating conditions in a state yields values for variables to

which we can apply these built-in functions.

Translating Control Constructs

We translate each OWL-S control construct to an HTN-DL task and a set of

HTN-DL methods achieving that task. Translating each construct requires slightly

different operations as we will present in this section. Algorithm 3 shows the pseudo-

code of the generic control construct translation function that simply calls the cor-

responding translation function.

When we are translating the control constructs to HTN-DL we not only need

to have the same control flow but also have the same data flow. There are two

different places in OWL-S process models to specify data flow. First is when we are

performing a process we specify where the inputs are coming from; which is either

83

Algorithm 3 Translate-Construct(X)

Inputs: X is an OWL-S control construct, P is the enclosing parent process

Outputs: Tuple 〈t,D〉 where t is a task description for X and D is the domain

description containing all the operators and methods generated for X

1: if X is a Sequence construct then

2: return Translate-Sequence(X)

3: else if X is a Choice construct then

4: return Translate-Choice(X)

5: else if X is a Any-Order construct then

6: return Translate-Any-Order(X)

7: else if X is a Split-Join construct then

8: return Translate-Split-Join(X)

9: else if X is a If-Then-Else construct then

10: return Translate-If-Then-Else(X)

11: else if X is a Repeat-While construct then

12: return Translate-Repeat-While(X)

13: else if X is a Repeat-Until construct then

14: return Translate-Repeat-Until(X)

15: else if X is a Perform construct then

16: return Translate-Perform(X)

17: end if

the input (or a local variable) of the enclosing composite process or the output

of a previous perform statement. Second is where we specify how the output of

composite service is linked to an output of a perform statement.

In theory, the data flow specification of OWL-S can be directly expressed using

the parameter bindings in a task network description. However, due to nesting of

control constructs, two Perform statements sharing a variable might end up in

different method descriptions. For this reason, we need to carry these variables

through the inputs and outputs of methods we generate.

In order to handle the data flow, we first define the inputs and outputs associ-

84

ated with a control construct. The scope of a control construct is defined recursively

as the control construct itself union the scope of all its components. A control con-

struct X produces a variable v if v is the output of a perform statement in the scope

of X. A control construct X uses a variable v if v is used as input to a perform

statement in the scope of X or it is used in a logical condition in the scope of X. A

control construct X requires a variable v if X uses v but does not produce v. The

inputs of a control construct X (denoted as In(X)) is all the variables X requires.

The outputs of a control construct X (denoted as Out(X)) is all the variables X

produces. Computation of In(X) and Out(X) is done trivially by traversing the

control constructs recursively.

Given these definitions, the data flow between nested control constructs is

straight-forward to write. Suppose, construct Y is a component of the construct X,

Then for each parameter in In(Y) and Out(Y), we need a parameter binding to the

corresponding variable in the construct X. In a Sequence construct, a construct

might use the output of a sibling, so we need to have additional bindings for those

cases. These are standard data flow elements that need to exist in every construct.

We will call these standard data flow bindings DF(X) and directly use in our trans-

lation. In some cases, namely repeat loops, we will actually need some additional

bindings which we will explicitly describe in the translation procedure.

There is still one more issue we need to solve. As we mentioned at the be-

ginning of this section, for each control construct, we generate one task and one or

more methods that can achieve that task. The task ontology tells us exactly which

methods we can use to achieve the task. But the mapping between the parameters

85

of the task and the parameters of the method need to be established through the

precondition and effect expressions. Note that, even though we use the same vari-

able names for the parameters of the method and the task, the planner would not

still match the parameters because the same variable names in different contexts

are treated as coincidental.

The problem with parameter mapping in this case is that control constructs

do not have preconditions or effects; only processes have preconditions and effects.

Therefore, we need to come up with such precondition and effects expressions that

they will enable us to match the parameters but these additional expressions will

not affect the planning process. For this purpose, we will create additional concept

names In1, In2, In3, . . . , Out1, Out2, Out3, . . . and use them in precondition and ef-

fect expressions. If a control construct X has two inputs In(X) = {y, z} then

the precondition expression will be Pre(X) = In1(y) ∧ In2(z). The effect expres-

sion Eff(X) will be computed similarly. We will use the same precondition and

effect expression in the task and the method we generate so that parameters will be

matched.

We are finally ready to describe the translation procedure for specific control

constructs. Each control construct is examined separately with the exception of

Produce construct. Produce construct is syntactic sugar for describing the param-

eter bindings for the outputs of a composite process. They do not describe any

additional functionality and only affect the data flow bindings. Therefore, Produce

constructs will be processed by the DF(X) procedure and we will omit them in the

following translation functions.

86

Sequence Translation of a Sequence construct is quite straight-forward. We re-

cursively translate all the components of the sequence and create one task network

where the tasks are totally ordered.

Algorithm 4 Translate-Sequence(X)

Inputs: X is a Sequence construct in the form X1 ; X2 ; . . . ; Xk

1: Let D = (O, M, Tont) be an initially empty HTN-DL domain

2: Let t = (Nt, In(X),Out(X),Pre(X),Eff(X), ∅) be a task description where Nt

is a unique task name

3: for all i : 1 ≤ i ≤ k do

4: Let 〈ti, Di〉 = Translate-Construct(Xi)

5: Let ni be a task node for task ti

6: end for

7: Let m = (Nm, In(X), ∅,Out(X),Pre(X),Eff(X), ∅,
[> : ({n1, . . . , nk}, {(ni, ni+1) | 1 ≤ i < k},DF(X))])

8: Add method m to M

9: Add a new concept Nt, a new individual Nm and assertion Nt(Nm) to Tont

10: return 〈t,D ∪
⋃

1≤i≤k

Di〉

Note that, translating component constructs could create more elements in

the HTN-DL domain so we combine the results of recursive steps in the end. The

complete translation code for Sequence is shown in Algorithm 4.

Choice Executing a Choice control construct is achieved by executing any one

of its components. There is no requirement other than the chosen construct being

executable, i.e. the preconditions of all the involved processes are satisfied. The

semantics of this construct is very similar to the relation between HTN-DL tasks

and methods. a task can be achieved by many different methods as long as the

method (and all its subtasks) are applicable in the given state. Using this similarity,

87

Algorithm 5 Translate-Choice(X)

Inputs: X is a Choice construct in the form: X1 ;? X2 ;? . . . ;? Xk

1: Let D = (O, M, Tont) be an initially empty HTN-DL domain

2: Let t = (Nt, In(X),Out(X),Pre(X),Eff(X), ∅) be a task description where Nt

is a unique task name

3: for all i : 1 ≤ i ≤ k do

4: Let 〈ti, Di〉 = Translate-Construct(Xi)

5: Let ni be a task node for task ti

6: Let mi = (Nmi
, In(X), ∅,Out(X),Pre(X),Eff(X), ∅,

[> : ({ni}, ∅,DF(X))])

7: Add method mi to M

8: Add assertion Nt(Nmi
) to Tont

9: end for

10: return 〈t,D ∪
⋃

1≤i≤k

Di〉

we translate a Choice construct into one task and a set of methods (one method

corresponding to each component) as shown in algorithm 5.

Any-Order The construct Any-Order allows its components to be executed in

arbitrary order but disallows any interleaving between components. Therefore, it

is merely syntactic sugar for defining a choice over all possible permutations of the

component constructs. For this reason, we will omit the translation of this construct.

Split-Join As we mentioned earlier, we translate Split-Join constructs as possi-

bly interleaving non-concurrent task networks. For this reason, the translation of a

Split-Join is quite similar to Sequence translation the only difference being that

there are are no edges (i.e. ordering constraints) in the generated task network. The

Algorithm 6 shows the translation function.

88

Algorithm 6 Translate-Split-Join(X)

Inputs: X is a Split-Join construct in the form: X1 ||> X2 ||> . . . ||> Xk

1: Let D = (O, M, Tont) be an initially empty HTN-DL domain

2: Let t = (Nt, In(X),Out(X),Pre(X),Eff(X), ∅) be a task description where Nt

is a unique task name

3: for all i : 1 ≤ i ≤ k do

4: Let 〈ti, Di〉 = Translate-Construct(Xi)

5: Let ni be a task node for task ti

6: end for

7: Let m = (Nm, In(X), ∅,Out(X),Pre(X),Eff(X), ∅,
[> : ({n1, . . . , nk}, ∅,DF(X))])

8: Add method m to M

9: Add a new concept Nt, a new individual Nm and assertion Nt(Nm) to Tont

10: return 〈t,D ∪
⋃

1≤i≤k

Di〉

If-Then-Else The If-Then-Else construct defines a simple conditional state-

ment. If the condition specified is satisfied in the current state the construct in

the “then” part is executed. Otherwise, if there is an “else” part we execute the

construct specified there. Note that, the condition of the If-Then-Else is not like

a precondition. The unsatisfiability of a precondition indicates a failure whereas it

is all right when the “if” condition is false. We simply do not perform the action.

For this reason, we use the conditional task networks to translate If-Then-Else

structures rather than precondition expressions. Algorithm 7 shows the translation

procedure for the case where there is an “else” component. In the case, where the

“else” part is missing, we can simply omit n2 and use an empty task network for

the second network.

89

Algorithm 7 Translate-If-Then-Else(X)

Inputs: X is in the form: if(Cond) then X1 else X2

1: Let D = (O, M, Tont) be an initially empty HTN-DL domain

2: Let t = (Nt, In(X),Out(X),Pre(X),Eff(X), ∅) be a task description where Nt

is a unique task name

3: for all i : 1 ≤ i ≤ 2 do

4: Let 〈ti, Di〉 = Translate-Construct(Xi)

5: Let ni be a task node for task ti

6: end for

7: Let m = (Nm, In(X), ∅,Out(X),Pre(X),Eff(X), ∅,
[Cond : ({n1}, ∅,DF(X))

> : ({n2}, ∅,DF(X))])

8: Add method m to M

9: Add a new concept Nt, a new individual Nm and assertion Nt(Nm) to Tont

10: return 〈t,D ∪D1 ∪D2〉

Repeat-While The construct Repeat-While defines a structure where a control

construct is repeated as long as a certain condition holds in the state. We can

encode such a loop using recursive task networks, that is, a method has a subtask

which is the same task that method achieves.

Although the main idea behind this translation is simple, the details are a

little complicated. Basically, we are creating one method that has a conditional task

network with two task networks. The first task network (which has the condition

used in the Repeat-While construct) first achieves the task corresponding to the

body of the repeat loop and then recursively applies the same method again. When

the condition becomes false at a certain step, we use the second task network which

is simply empty. This second empty task network is needed to distinguish between

a failure, i.e. a task not being achieved, and the case where the loop condition

becomes false. This task network is empty so applying this task network will not

90

affect the resulting plan or the state of the world.

Algorithm 8 Translate-Repeat-While(X)

Inputs: X is in the form: while(Cond) do X ′

1: Let D = (O, M, Tont) be an initially empty HTN-DL domain

2: Let Oaux be a set of new variable names s.t. there is a one-to-one and onto

mapping function σ : Oaux → Out(X)

3: Let t = (Nt, In(X) ∪ Oaux,Out(X),Pre(X),Eff(X), ∅) be a task description

where Nt is a unique task name

4: Let 〈t′, D′〉 = Translate-Construct(X ′)

5: Let n′ be a task node for task t′

6: Let nX be a task node for task t // Used in the recursive step

7: Let λ1 = {〈n′, i〉 ← i | i ∈ In(X)} ∪ {〈nX , i〉 ← i | i ∈ In(X)}
∪ {〈nX , oaux〉 ← 〈n′, o〉 | o ∈ Out(X) and o = σ(oaux)}
∪ {o← 〈nX , o〉 | o ∈ Out(X)}

8: Let λ2 = {o← oaux | o ∈ Out(X) and o = σ(oaux)}
9: Let m = (Nm, In(X) ∪Oaux, ∅,Out(X),Pre(X),Eff(X), ∅,

[Cond : ({n′, nX}, {(n′, nX)}, λ1);

> : (∅, ∅, λ2)])

10: Add method m to M

11: Add a new concept Nt, a new individual Nm and assertion Nt(Nm) to Tont

12: return 〈t,D ∪D′〉

The complicated part of the translation is to handle the outputs that are

generated inside the repeat loop. If the output of the composite process is linked

to the output of a process that is performed inside the loop, we need to use the

output value generated at the last iteration of the loop. In the translated version,

the last recursive call ends with the empty task network. To handle the flow of

data correctly, we define additional input parameters in the generated task and

methods. These additional input parameters simply carry the output generated at

the previous step and in the end the empty task network simply assigns these values

91

to the output variables. As a result, the final output values are actually the ones

coming from the latest iteration.

Repeat-Until The Repeat-Until construct repeats a control construct until a

certain condition is satisfied. This is the negated version of Repeat-While loop

with the difference that we will always perform the control constrict at least once

because the condition is checked after the perform. Therefore, the translation is

very similar to Repeat-While but we need an additional method that will perform

the first iteration of the loop. After the first iteration, we call the second method

that mimics the behavior of Repeat-While.

Perform The Perform construct is used to execute one other process. The exe-

cuted process can be atomic or composite. Translating the Perform construct can

be achieved by simply translating the referred process. Other than that, the perform

construct helps us to create the data flow bindings as described earlier.

Translating Processes

Translation of a process generates one HTN-DL task as in the case of control

constructs. In addition, an AtomicProcess is mapped to an HTN-DL operator and a

CompositeProcess is mapped to an HTN-DL method. Translating an AbstractProcess

on the other hand, does not create any operator or method as expected. Since

AbstractProcess is not a concrete executable process it is only mapped to an HTN-

DL task.

92

Translation of processes is very straight-forward. The inputs, outputs, precon-

ditions and effects of the process are directly used in the task definition. Similarly,

we generate the operator definition for AtomicProcesses and the method definition

for CompositeProcesses. The method we generate for a CompositeProcess is sim-

ply the method generated for the top-most control construct used in the process

description.

4.3 OWL-S semantics

OWL-S specification does not provide a formal semantics for the language.

The translation we provided can be used as a basis for a formal semantics of OWL-

S. Earlier Narayanan and McIlraith [92] defined a semantics for OWL-S in terms

of the situation calculus [106] and Golog [77]. The semantics is given by mapping

the process models to actions in the situation calculus formalism. Based on these

semantics, a formal definition of Web Service composition problem is given. In

this section, we show that the semantics we provided is compatible with this view.

More specifically, we show the plans generated by HTN-DL algorithm based on our

translation are equivalent to the action sequences found in Situation Calculus.

The situation calculus in a first-order language for reasoning about action and

change. In the situation calculus, the state of the world is described by functions

and relations (fluents) relativized to a situation s, e.g., f(x, s). The function do(a, s)

maps a situation s and an action a into a new situation. A situation is simply a

history of the primitive actions performed from an initial, distinguished situation

93

S0.

Golog is a high-level logic programming language based on the situation calcu-

lus, that enables the representation of complex actions. It builds on top of the situa-

tion calculus by providing a set of extra-logical constructs (Figure 4.1) for assembling

primitive actions, defined in the situation calculus, into complex actions that col-

lectively comprise a program, δ. Given a domain theory, D and a Golog program

δ, program execution must find a sequence ~a, such that D |= Do(δ, S0, do(~a, S0)).

Do(δ, S0, do(~a, S0)) denotes that Golog program δ starting at S0 will legally ter-

minate in situation do(~a, S0)) where do(~a, S0)) is used to abbreviate the following

expression do(an, do(an−1, . . . , do(a1, S0)). Thus, a1, . . . , an are the actions that re-

alize Golog program δ, starting in the initial situation, S0.

The semantics given in [92] and [88] maps an OWL-S process to a Golog pro-

gram where atomic processes in OWL-S are mapped to primitive actions in Golog

and composite processes in OWL-S are mapped to corresponding complex Golog

actions. Note that, there is a representational difference between how HTN-DL and

Situation Calculus describe the state of the world. HTN-DL represents the state

as an OWL-DL KB whereas in the situation calculus, the state of the world is de-

Syntax Explanation
a primitive action
δ1; δ2 sequence
cond? test
δ1| δ2 nondeterministic choice of actions
δ∗ nondeterministic iteration
if cond then δ1 else δ2 endIf conditional
while cond do δ endWhile while loop

Table 4.1: A subset of Golog constructs to create complex actions that are relevant
to OWL-S constructs.

94

scribed by relations (fluents) relativized to a situation which is simply a sequence

of actions. As shown in [4], it is straight-forward to translate an OWL-DL KB

to an equivalent Situation Calculus theory using the correspondence between DLs

and first order logic [13]. Furthermore, [4] shows that, with an appropriate update

semantics, after the execution of a service, the respective successor states obtained

in Situation Calculus and a DL based action formalism can be proven equivalent.

Therefore, we can assume that when the same sequence of actions/operators are

applied to a situation/state, the logical entailments of the final situation/state will

be the same. Rest of this chapter we will use this equivalence and the same name

to denote world states in both notations when the meaning is clear.

Using the Situation Calculus based semantics of OWL-S, the Web Service

composition problem is defined as follows:

Definition 4.1 (OWL-S Service Composition) Let K = {K1, K2, . . ., Km} be

a collection of OWL-S processes, C be a possibly composite process defined in K,

S0 be the initial state, and P = (p1, p2, . . . , pn) be a sequence of atomic processes

defined in K. Then P is a composition for C with respect to K in S0 iff in action

theory, we can prove:

Σ |= Do(δC , S0, do(~a, S0)))

where

• Σ is the axiomatization of K and S0 as defined in action theory.

• δC is the complex action defined for C as defined in action theory

95

• ai is the primitive action defined for pi as defined in action theory

Note that this definition is for offline planning, i.e. there is no execution of

information-providing Web Services during planning. In the Golog approach [88],

information gathering during planning is achieved by what is called the Middle

Ground execution (MG) for sensing actions. The correctness of MG depends on

the Invocation and Reasonable Persistence (IRP) assumption [88]. Intuitively, IRP

assumption says that

• Information-providing services should be executable in the initial state, and

• Information gathered from these services cannot be changed by external or

subsequent actions.

The first condition follows from the fact that information gathering is done

with respect to the initial state. The second condition assumes no external source

will change the gathered information during the planning process but also prohibits

the planner from changing the gathered information as well. This is to prevent

the kind of problems we discussed in 3.3.3, that is, the gathered information might

incorrectly overwrite the effects of already planned actions. Since [88] is not limited

to boolean sensing actions the simple solution we described in 3.3.3 is not applicable

any more. If we use the same restrictions for information-providing services in both

Golog and HTN-DL then the correspondence between the entailments of HTN-DL

state and Situation Calculus situation would be preserved.

We formally state the equivalence between the plans generated in HTN-DL

and Situation Calculus as follows:

96

Theorem 4.1 Let K = {K1, K2, . . . , Km} be a collection of OWL-S process mod-

els, C be a possibly composite process defined in K, S0 be the initial state, and

P = (p1, p2, . . . , pn) be a sequence of atomic processes defined in K. Then P is

a composition for C with respect to K in S0 iff P is a plan for planning problem

(S0, TC, D) where TC is the task network containing the single task returned by the

translation for process C, and D is the HTN-DL domain created from K.

Proof See the Appendix for the proof of this theorem. 2

97

Algorithm 9 Translate-Repeat-Until(X)

Inputs: X is in the form: do X ′ until(Cond)

1: Let D = (O, M, Tont) be an initially empty HTN-DL domain

2: Let Oaux be a set of new variable names s.t. there is a one-to-one and onto

mapping function σ : Oaux → Out(X)

3: Let t1 = (Nt1 , In(X),Out(X),Pre(X),Eff(X), ∅) be a task description where Nt1

is a unique task name

4: Let n1 be a task node for task t1

5: Let t2 = (Nt2 , In(X) ∪ Oaux,Out(X),Pre(X),Eff(X), ∅) be a task description

where Nt2 is a unique task name

6: Let n2 be a task node for task t2

7: Let 〈t′, D′〉 = Translate-Construct(X ′)

8: Let n′ be a task node for task t′

9: Let λ1 = {〈n′, i〉 ← i | i ∈ In(X)} ∪ {〈n2, i〉 ← i | i ∈ In(X)}
∪ {〈n2, oaux〉 ← 〈n′, o〉 | o ∈ Out(X) and o = σ(oaux)}
∪ {o← 〈n2, o〉 | o ∈ Out(X)}

10: Let λ2 = {o← oaux | o ∈ Out(X) and o = σ(oaux)}
11: Let m1 = (Nm1 , In(X), ∅,Out(X),Pre(X),Eff(X), ∅,

[> : ({n′, n2}, {(n′, n2)}, λ1)])

12: Let m2 = (Nm2 , In(X) ∪Oaux, ∅,Out(X),Pre(X),Eff(X), ∅,
[Cond : (∅, ∅, λ2);

> : ({n′, n2}, {(n′, n2)}, λ1)])

13: Add methods m1 and m2 to M

14: Add new concepts Nt1 and Nt2 , new individuals Nm1 and Nm2 , and assertions

Nt1(Nm1) and Nt2(Nm2) to Tont

15: return 〈t,D ∪D′〉

98

Chapter 5

Optimizing OWL-DL Reasoning

So far, the thesis focused on the coupling of DLs with HTNs for solving Web

Service composition problems. Proposed HTN-DL formalism uses DL reasoning

services for task matching and precondition evaluation. A composition system built

on HTN-DL formalism can be used in practice only if the DL reasoning can be done

efficiently.

In particular, this chapter focuses on efficient reasoning with nominals, a topic

that has not been investigated in the DL literature. At the current stage of re-

search and deployment, existing optimizations have been implemented and proved

useful for the DL SHIN . However, there was no specific optimization techniques

developed to handle nominals. Furthermore, even though a decision procedure for

SHON fragment of OWL-DL, which includes nominals but not inverse properties,

was known since 2001, there was no implemented system that handled this expres-

sivity (with or without optimizations).

Nominals allow us to define concepts in terms of individuals and are required

for describing many different aspects of Web Services. For example, a language

translator Web Service such as the one provided by Babelfish does not only say that

the input should be an instance of the Language concept but specifies the exact set

of supported languages as an enumeration, e.g. {English,French,...,Russian}.

99

Another example is when a service is only executable by people located at a cer-

tain geographic location;. For example, OWL-S profile ontology contain a service

parameter named geographicRadius1 to limit this region to a specific country.

Then the set of services executable in the US would be defined as the concept

∃geographicRadius.{US} where an enumeration with a single element is used.

One other use of nominals in HTN-DL is to partially “close the world”. A

known disadvantage of open world reasoning is that it is not possible to say that

we have complete knowledge about some aspect of the domain. Combined with

the information gathering ability, open world reasoning results in what is known as

sensor abuse [83, 40]; that is, the planner tries to gather more and more information

which does not help in finding a new plan. For example, consider the problem of

buying an airplane ticket from Washington, DC to Kyoto, Japan. We know that

there are only three airports located in the Washington, DC area that are identified

by the airport codes {DCA,IAD,BWI}. Under open world reasoning, the planner

would think that there might be other airports in the area that we are not aware.

In the case that no tickets can be found for the flights departing from these airports,

the planner would execute information-providing services to find information about

additional airports. Obviously, gathering information about other airports (that

are located in different parts of the country) will not help us to find a plan. Using

nominals, we can state the known three airports are indeed the only airports in the

area preventing such problems.

1This parameter was previously part of the core OWL-S ontologies but is now provided in one
of the extension ontologies developed by the OWL-S coalition

100

In this chapter, we will first describe why reasoning with nominals is challeng-

ing and explain how some of the existing optimization techniques are not applicable

any more. Then we will describe several different optimization techniques that are

designed to improve the efficiency of standard reasoning services such as KB con-

sistency, classification, and realization. In Chapter 6 we will examine the case of

answering conjunctive queries.

5.1 Reasoning with Nominals in OWL-DL

OWL-DL can be seen as a syntactic variant of the DL SHOIN . Although

tableau-based decision procedures for prominent fragments of SHOIN , such as

SHIN [60] and SHON [56] have been known for quite a long time, the design of

a decision procedure for SHOIN has been accomplished only very recently [62].

Expressive description logics, in particular the ones mentioned above, are

known to have very high worst-case complexity. As a consequence, there exists a

significant gap between the design of a decision procedure and the achievement of a

practical implementation. Naive implementations are doomed to failure. In order to

achieve acceptable performance, modern DL reasoners, such as FaCT++, RACER,

DLP and Pellet, implement a suite of optimization techniques [54, 61, 53, 47, 48, 46].

These optimizations lead to a significant improvement in the empirical performance

of the reasoner and have proved effective in wide variety of realistic applications.

From an implementation point of view, reasoning with OWL-DL is hard be-

cause the existence of nominals in the language pose some serious challenges. For

101

example, in the presence of nominals, ABox assertions can affect the satisfiability

of a concept and the classification of a TBox. In other words, nominals break the

“separation” between the TBox and the ABox that traditionally existed in the im-

plemented DLs. For example, one optimization technique is partitioning the ABox

into smaller disconnected components where consistency checking is faster. A query

about an individual can be answered by the partition it belongs to. However, when

there are nominals, it is not possible to find the partitions in a preprocessing step

since nominals may connect different parts of the ABox. Another optimization tech-

nique that has been reported to be very effective is ABox chain contraction [46].

This technique removes the individuals from an ABox by turning them into ∃ re-

strictions on the predecessor individuals. Consequently, the size of the ABox is

reduced and the effect of model caching optimization is increased. However, such a

contraction is not possible for individuals used in concept descriptions.

From a logical point of view, the nominal constructor [56, 109] transforms

the object name o into the concept description {o}, which is evaluated, by every

model-theoretic interpretation, to a singleton set with o as its only element. So

far, nominals have been partially approximated in DL reasoners by treating them

as pair-wise disjoint atomic concepts, commonly called pseudo-nominals. However,

this technique is known to lead to incorrect inferences in some cases.

From a modeling point of view, nominals are used in a significant number of

ontologies available on the Semantic Web. The OWL-DL specification [23] contains

two modeling constructs specific for nominals, which illustrate their main uses in

Ontology Engineering.

102

• The OneOf construct allows to define a concept by finite enumeration of its

elements. For example, the atomic concept Continent can be defined, using

nominals, as follows:

Continent ≡ {europe, asia, america, antartica, africa, oceania}

where the elements of the enumeration are individuals in the KB.

• The hasValue construct is used as a shorthand for an existential restriction on

a nominal concept. This construct can be used to describe European cities as

cities located in Europe:

EuropeanCity v City u ∃locatedIn.{europe}

One prominent example of the use of nominals for modeling is the Wine On-

tology [112], the ontology prepared by the W3C Web Ontology (WebOnt) working

group and published in the OWL guide [112] to demonstrate the features of the lan-

guage. The purpose of the WebOnt group was to use all the language constructs of

OWL in a relatively straight-forward way to teach novice OWL users about OWL.

However, the resulting ontology turned out to be very challenging for automated

reasoners. This feature, simple in design but very hard to reason with, makes the

Wine ontology a very interesting test case. For this reason, we will examine the

Wine ontology in more detail and explain the novel optimizations developed in this

thesis using examples from the Wine ontology. Although the Wine ontology might

not seem directly related to HTN-DL it is believed to be a good representative of

103

OWL ontologies (as witnessed by the fact that the developers of the OWL language

created it as a teaching tool) and other OWL ontologies (that are more relevant for

HTN-DL) will have similar characteristics.

The Wine ontology extensively relies on the OneOf and hasValue constructs

for describing different kinds of wines according to various criteria, like the area they

are produced in, the kinds of grapes they contain, their flavor and color, etc. For

example, a “Cabernet Franc Wine” is defined to be a dry, red wine, with moderate

flavor and medium body and which is made with Cabernet Franc grapes

CabernetFranc ≡ Wine u ≤ 1madeFrom u ∃madeFrom.{cabFrancGrape}

CabernetFranc v ∃hasColor .{red} u ∃hasFlavor .{moderate} u

∃hasBody .{medium}

Potential wine flavors, colors, etc are defined using an enumeration of individ-

uals. For example:

WineFlavor ≡ {delicate,moderate, strong}

The Wine ontology contains only 138 concepts and 206 individuals and hence

it is a relatively small knowledge base. However, its classification has remained, so

far, an open problem for DL reasoners. Using the optimizations proposed here, the

reasoner Pellet has become the first (and currently the only) reasoner to classify the

Wine ontology.

104

There are several reasons that make the Wine ontology hard for automated

reasoning: First, as we mentioned earlier, there is the issue of ABox statements

affecting the TBox. Second, the ontology contains a significant number of General

Concept Inclusion Axioms (GCIs) associated with nominals that cannot be handled

by current preprocessing techniques. As a result, tableau expansions become very

expensive computationally and hence every additional satisfiability test performed

during classification is likely to be very expensive.

5.2 Preprocessing Optimizations

The axioms in a DL KB are not typically in a form that facilitates reasoning

services. For example, semantically equivalent but syntactically different axioms are

hard to detect by a reasoner and they degrade the performance of reasoning. There-

fore, modifying the axioms by applying syntactic transformations in a preprocessing

step has proved to be very useful in practice [54]. In the following subsections, we

will first review the existing preprocessing optimization absorption and then describe

a novel technique nominal absorption that can absorb axioms involving nominals.

5.2.1 Existing Optimizations

General Concept Inclusion Axioms (GCIs) are hard to reason with, given the

high degree of non-determinism they introduce. For each GCI, one disjunction is

added to the label of each node in a tableaux expansion, which causes an exponential

blow-up in the search space. As a consequence, even a reduced number of GCIs can

105

degrade the performance of a DL reasoner significantly.

Primitive definitions, on the other hand, can be efficiently handled by the

technique known as lazy unfolding [54]. Instead of internalizing primitive definitions

and causing additional disjunctions one can have additional expansion rules that will

replace defined concepts with their definition. For example, if T contains the non-

primitive definition axiom A ≡ C, and the u-rule is applied to a concept (AuD) ∈

L(x) so that A and D are added to L(x), then at this point A can be unfolded by

substituting it with C.

Although it is possible to treat primitive definitions as general axioms this is

highly inefficient. The solution to handle TBoxes that contain both primitive defini-

tions and general axioms is to divide the TBox into two components, an unfoldable

part Tu and a general part Tg, such that Tg = T \ Tu, and Tu contains unique,

acyclical, definition axioms. It is then possible to use lazy unfolding to deal with

Tu, and internalization to deal with Tg.

Absorption [54] is a preprocessing technique that tries to eliminate GCIs from

a TBox by replacing them with primitive definitions. This technique moves axioms

from Tg into Tu reducing the number of disjunctions that will be introduced during

tableaux expansion. Let us illustrate how this technique works with the following

general axiom

MealCourse u ∃hasFood .Dessert v ∀hasDrink .(∃hasSugar .{Sweet})

that says every meal course containing a dessert should have a sweet wine. We can

106

transform this axiom into a primitive definition of the form

MealCourse v ∀hasDrink .(∃hasSugar .{Sweet}) t ¬∃hasFood .Dessert

that says every meal course has either sweet wine or it cannot contain a desert.

The former axiom introduces a disjunction for every node in the completion graph

whereas the disjunction in the the latter axiom is only applied to nodes that has

MealCourse in its label. This way the non-determinism is localized to a much smaller

subset.

Absorption has revealed a key technique in the past for processing DL ontolo-

gies [53, 55]. However, existence of nominals in the KB causes a different kind of

GCIs to occur which are not amenable with the existing absorption technique. In

the following section, we describe novel transformation methods to overcome this

problem.

5.2.2 Nominal Absorption

As stated before, there are two main ways of using nominals in ontologies:

defining concepts by finite enumeration of its elements (the OWL OneOf construct)

and defining concepts in terms of existential restrictions on a nominal (the OWL

hasValue construct). For both cases, we provide an extension of existing absorption

techniques.

107

OneOf Absorption Let us start with enumerations. Consider the concept named

WineColor in the Wine Ontology, which is defined as follows:

WineColor ≡ {red , rose,white}

WineColor vWineDescriptor

The combination of these two axioms create a GCI ({red , rose,white} v

WineDescriptor) which is not captured by the currently available absorption tech-

niques and hence, the disjunction:

¬WineColor t {red , rose,white}

would be added to every node in the tableau expansion. On the other hand, an

enumeration is equivalent to the disjunction of its elements, i.e.:

{rose, red ,white} ≡ {rose} t {red} t {white}

This leads to an additional difficulty: enumerations are likely to introduce a

significant number of backtracking points. These disjunctions, when added to every

node of the tableau expansion, cause the search space to grow exponentially with the

number of elements in the enumeration. Thus, the presence of these non-absorbable

GCIs is going to significantly affect reasoning performance.

Nominal absorption is a novel optimization technique that transforms such

108

axioms into a primitive definition and a set of ABox assertions. The technique relies

on the following equivalence:

Proposition 5.1 The inclusion axiom (5.1) is logically equivalent to the set of

TBox axioms and ABox assertions in (5.2)

C ≡ {a1, . . . , an} (5.1)

C v {a1, . . . , an} and C(a1) and . . . and C(an) (5.2)

Proof See the Appendix for the proof of this proposition. 2

This proposition lets us to replace a non-absorbable GCI into one primitive

definition and a set of ABox assertions. Note that the set C(a1), ..., C(an) of ABox

assertions is equivalent to the GCI {a1, ..., an} v C. In our example, the enumeration

axiom would be absorbed as follows:

WineColor v {red , rose,white}

WineColor(red);WineColor(rose);WineColor(white)

We still have a disjunction due to the presence of {red, rose, white}. However,

this disjunction will only affect the instances of WineColor concept instead of all

the individuals. Thus, the effect of the disjunction is now localized to a very small

number of individuals.

109

HasValue Absorption Let us now consider the case of hasValue restrictions.

Axioms in the following form are commonly found in the Wine ontology:

Riesling ≡Wine u ≤ 1madeFrom u ∃madeFrom.{RieslingGrape}

Considering that there are other inclusion axioms such as

Riesling v ∃hasColor.{White}

we are again left with GCIs. Standard absorption techniques can take care of such

cases by absorbing the axiom into the definition of the Wine concept, i.e. the

concept

Wine v Riesling t ∀madeFrom.¬{RieslingGrape}t ≥ 2madeFrom)

is added to the definition of Wine. Therefore, this disjunctive definition introduces

a backtracking point in the tableau expansion for every node containing Wine in its

label. Standard absorption technique creates nearly 30 of such disjunctions relative

to the Wine concept, and since there are more than 50 wine instances in the ontology,

the search space significantly grows.

However, the semantics of nominals allows a more effective absorption of the

above axiom by taking advantage of the following equivalence:

110

Proposition 5.2 The following two inclusion axioms are logically equivalent:

∃p.{o} v C (5.3)

{o} v ∀p−.C (5.4)

Proof See the Appendix for the proof of this proposition. 2

It is very straight-forward to show that the inclusion axiom {o} v C is log-

ically equivalent to the ABox assertion C(o) (see the proof of Proposition 5.1 in

the appendix). Using these equivalences in the previous example would yield the

following ABox assertion:

(∀madeFrom−.(Riesling t ¬Winet ≥ 2madeFrom))(RieslingGrape)

The resulting axiom still contains the same number of disjuncts, but this

time the effect is localized to the individuals related to RieslingGrape via the role

madeFrom, which are considerably less than the number of Wine instances.

Algorithm 10 describes the standard absorption algorithm extended with nom-

inal absorption. The additional steps are marked with comments in bold font.

5.3 Optimizations for Consistency Checking

After the preprocessing step, a KB consistency check is done by applying the

tableau expansion rules of Table 2.2 to the initial completion graph. As explained in

Section 2.3.4, disjunctive concepts give rise to non-deterministic expansion. Search-

ing non-deterministic expansions is the main cause of intractability in tableaux

111

Algorithm 10 Absorb(C v D)

1: Let G = {C,¬D} be the initial set // Initialize

2: if A ∈ G and A is atomic then // Concept absorption

3: Replace (A v C) ∈ Tu with A v u{C,¬(u(G \ {A}))}
4: return

5: end if

6: if C ∈ G and C = {o1, . . . , on} then // OneOf absorption

7: Add (¬(uG))(oi) to the ABox for each individual oi

8: return

9: end if

10: if C ∈ G and C = ∃p.{o1, . . . , on} then // HasValue absorption

11: Add (∀p−.¬(uG))(oi) to the ABox for each individual oi

12: return

13: end if

14: if A ∈ G (resp. ¬A ∈ G) and (A ≡ D) ∈ Tu then // Simplification

15: Substitute A (resp. ¬A) with D (resp. ¬D) and go to line 2

16: end if

17: if C ∈ G and C = (C1 u . . . u Cn) then // Conjunction simplification

18: Let G = G t {C1, . . . , Cn} and go to line 2

19: end if

20: if C ∈ G and C = (C1 t . . . t Cn) then // Recursion

21: for all Ci do

22: Try recursively absorbing ¬Ci ∪G \ {C}
23: end for

24: else

25: Leave G in Tg (Absorption failed)

26: end if

112

subsumption testing algorithms. Next, we will describe some of the existing opti-

mizations developed to tackle this issue and the problems with these optimizations.

5.3.1 Existing Optimizations

Searching non-deterministic expansions due to disjunctive concepts can be

very expensive especially when there is an inherent unsatisfiability concealed in a

sub-problem. This can lead to large amounts of unproductive backtracking search,

sometimes called thrashing. For example, expanding a node x, where

L(x) = {(C1 tD1), . . . , (Cn ∪Dn),∃R.(A uB),∀R.¬A}

could lead to the fruitless exploration of 2n possible R-successors of x before the

inherent unsatisfiability is discovered.

Backjumping [54], a type of dependency-directed backtracking, is an optimiza-

tion technique that associates a dependency set with the node and edge labels in

a completion graph to indicate the non-deterministic choice on which the labels

depend. When a clash is discovered, the dependency sets of the clashing concepts

can be used to identify the most recent branching point causing the clash. It is

then possible to jump back over intervening branching points without exploring any

alternative branches. This technique can lead to a dramatic reduction in the size of

the search tree and thus a huge performance improvement.

When a disjunction in the label of the node is being expanded, the order

in which disjuncts are selected can make a dramatic change in the performance

113

of the tableau reasoner. Many different heuristics have been developed for DPLL

SAT algorithms to minimize the size of the search tree. The well known Maximum

number of Occurrences in disjunctions of Minimum Size (MOMS) heuristic [33]

and the heuristic from Jeroslow and Wang [69] are two examples. However, it has

been shown in the DL literature that such heuristics generally counter-interact with

backjumping leading to much worse performance [54].

In the next subsection, we will present Learning-based Disjunct Selection, a

novel disjunct selection heuristic that does not have an adverse effect on other opti-

mizations. Unlike other optimization techniques, learning-based disjunct selection is

aimed towards building clash-free completion graphs rather than revealing clashes.

Nearly all of the ontologies published on the Semantic Web are consistent (and in-

consistent ontologies are quite useless as they entail every logical sentence). For this

reason, KB consistency checks end up building clash-free completion graphs and

learning-based disjunct selection speeds up this process.

5.3.2 Learning-based Disjunct Selection

An investigation of real world ontologies reveals that, in many cases, there are

some disjunctions that essentially have only one possible expansion. However, this

reality is detected by the reasoner only after numerous tableaux rule applications

that tries all the “wrong” disjuncts. Moreover, this expensive cycle is typically

repeated many times for each individual with similar characteristics. Let us illustrate

this case with an example from OWL-S ontologies. Given the following axioms

114

Process ≡ AtomicProcess t CompositeProcesst SimpleProcess

AtomicProcess v ¬SimpleProcess

AtomicProcess v ¬CompositeProcess

CompositeProcess v ¬SimpleProcess

CompositeProcess ≡ Process u ≤ 1.composedOf u ≥ 1.composedOf

> v ∀composedOf.ControlConstruct

> v ∀composedOf−.CompositeProcess

The standard preprocessing steps, e.g. normalization and absorption, produce the

following axiom2:

Process v ≥ 2.composedOf t CompositeProcess t ≤ 0.composedOf

During the tableaux expansion, for any AtomicProcess instance, we will face

to expand this disjunction. Obviously, in this example, the only right selection is the

second disjunct (≤ 0.composedOf) because the first disjunct (≥ 2.composedOf) is

unsatisfiable by definition (due to the domain restriction only CompositeProcesses

can have composedOf roles and CompositeProcesses are not allowed to have more

than one value) and the second disjunct (CompositeProcess) causes a clash due to

the disjointness axiom between AtomicProcess and CompositeProcess. However, a

DL reasoner will observe this fact only after applying several other rules, in this

case the ≥-rule and unfolding-rule. When these rule applications are interleaved

2There is a possibility that absorption algorithm yields different results depending on the order
axioms processed, but the non-determinism does not have any effect on this specific example

115

with other rule applications, several other disjunctions might have been expanded

for a different number of individuals, which causes a significant amount of wasted

computation. Moreover, OWL-S knowledge bases would typically have lots of Atom-

icProcess instances and, consequently, these steps would be repeated for each of such

instances, which degrades performance significantly.

The learning-based disjunct selection technique aims to minimize the wasted

computation by avoiding inherently clash-generating expansions. The idea is to

reuse the clash-free expansions for instances with similar characteristics. The heuris-

tic is to sort the disjuncts based on how many clashes they caused during rule ap-

plications. Note that when the dependency sets for concepts are being maintained

it is quite easy to detect if a certain disjunction expansion caused the clash or not.

Algorithm 11 shows the pseudo-code of learning based disjunct selection. This

technique only learns from clashes, i.e. unsuccessful selections, and it does not

keep track of successful expansions. It would be nearly impossible to keep track of

successful expansions during completion since it is not clear when and how we can

conclude a disjunction expansion was successful. One possibility is to do a post-

processing step after a clash-free completion and iterate through the nodes in the

completion graph to update the disjunction statistics for future use.

5.3.3 Completion Graph Caching

In the presence of nominals in the TBox, ABox assertions can affect concept

satisfiability and classification. Thus, when checking the satisfiability of an atomic

116

Algorithm 11 expand-disjunction(x, D)

Inputs: x the node we are expanding in the completion graph, D is a disjunctive

concept in the form D1 t . . . tDn

1: Let stats = get-statistics(D) // stats is an array of integer values

2: if stats not found then

3: Let stats be an integer array of length n

4: for all i : 1 ≤ i ≤ n do

5: Let stats[i] = 0

6: end for

7: save-statistics(D, stats)

8: end if

9: Pick the next untried disjunct Dk such that stats[k] is minimum

10: Add Dk to L(x) and continue tableau expansion

11: if there is a clash then

12: increment stats[k]

13: end if

concept A after the initial KB consistency check, we need, in principle, to include

in the initial completion graph for A a root nominal node xa for each individual a

in the ABox. The presence of these nodes in the initial configuration of the graph

is likely to cause a large number of expansion rules to be triggered and hence may

involve a significant computational overhead.

The main idea underlying the completion graph caching technique is to store

the state of the completion graph after the initial KB consistency check and reuse it

for subsequent concept satisfiability and subsumption tests. Expanding the nominal

nodes from its initialization state may involve the application of a large number of

expansion rules. By using cached graph we avoid repeating the process for different

concept satisfiability tests.

For the initial KB consistency test, we create all the nominal nodes and apply

117

all the expansion rules. For any subsequent consistency check, we use the already

expanded graph as the initial graph so that already applied expansion rules will not

be repeated.

One needs to be careful when reusing an earlier completion graph because

there might be some edges or node labels dependent on a non-deterministic choice.

If there is a clash due to such an edge or a node label, the backtracking must be done

accordingly. In order to backtrack correctly, we need to cache not only the nodes

and edges, but also the information about dependency sets for the labels of nodes

and edges plus the history of merge operations so that nodes can be restored after

backjumping. Although caching this information affects memory consumption, the

overhead is not critical and pays off in terms of significant speed-up in subsequent

concept satisfiability and subsumption tests.

5.3.4 Lazy Completion Graph Generation

Even in the presence of nominals in the TBox, there are typically many atomic

concepts whose corresponding satisfiability check does not involve the application

of the nominal rule and, therefore, the content of the ABox and the nominals do

not influence their satisfiability. For these concepts, generating the nominal nodes

corresponding to the ABox individuals results in an unnecessary overhead. Even if

we use the cached completion graph for these individuals, maintaining extra nodes

(copying, checking if a rule is applicable, etc.) can be costly.

Since the KB is consistent, the rules triggered by the presence of the initial

118

graph of nominal nodes will never yield to a clash in the tableau expansion for A.

Lazy completion graph generation avoids such a computational burden by not

including the nominal nodes in the initial completion graph when checking concept

satisfiability. If the nominal rule is triggered during tableau expansion, then all

the nominal nodes are added to the completion graph. This simple technique may

yield a dramatic performance improvement, as discussed later on in empirical results

section.

It is important to realize that the combination of lazy completion graph gener-

ation and completion graph caching may interact with backjumping and, in order to

ensure the correctness of the technique, we generate the initial set of nominal nodes

every time backjumping is applied, even if the nominal rule has not been triggered.

The reader may have noted that lazy completion graph generation is very

conservative in two different ways: First, even if a merge is forced by the application

of the nominal rule, there are cases in which it suffices to generate only a subset of

the nominal nodes; second, the generation of the completion graph may not always

be required after backjumping. This provides room for further improvements in the

future.

5.4 Optimizations for Subsumption and Instance Checking

Classification of named concepts in a KB is one of the most important appli-

cations of DL reasoners. Optimization techniques for classification aim at reducing

as much as possible the number of subsumption tests to be performed. Similarly,

119

for instance checking, we would like to conclude if an individual is an instance of

the concept or not without doing a consistency test.

In the next sections, we will first describe how model merging technique can be

improved to take advantage of HasValue restrictions. Then, we will show this tech-

nique can also be used for ordinary existential restrictions. Finally, we will describe

a simple method to use these techniques more effectively for defined concepts.

5.4.1 Nominal-based Model Merging

Nominal-based pseudo-model merging is an optimization technique to discover

“obvious” non-subsumptions between concepts (or non-instantiations between indi-

viduals and concepts). In particular, this technique is especially effective if there are

many concepts in the KB defined in terms of hasValue restrictions, i.e. existential

restrictions on nominals. For example, the concept:

RedWine vWine u ∃hasColor .{red}

is defined in terms of the nominal concept {red}.

The nominal-based pseudo-model merging technique uses cached information

relative to nominals from previous satisfiability tests to prove non-subsumption with-

out performing a new satisfiability test.

The basic idea is to examine the edges from the blockable root node to nominal

nodes in the completed graph which was generated to check the satisfiability of a

concept. For example, checking the satisfiability of concept RedWine starts by

120

Figure 5.1: Completion graphs for concepts RedWine and ItalianWine

creating a completion graph that contains a root node r1 labeled with concept

RedWine and one nominal node for each nominal occurring in the ontology. The

completion graph G1 for concept RedWine is schematically shown in Figure 5.1.

The root node r1 in G1 is connected to the nominal node rred through a hasColor -

labeled edge indicating that RedWine v ∃hasColor.{red}. Now let us consider

Italian wines, defined as follows:

ItalianWine v Wine u ∃producedIn.{italy}

In the completion graph of ItalianWine (shown as G2 in Figure 5.1), the

nominal node rred is not a neighbor of the concept node r2. From this information,

it is possible to infer that O 6|= ItalianWine v ∃hasColor.{red} and thus O 6|=

ItalianWine v RedWine. Note that, for non-simple roles, instead of testing for

node neighborhood, we would have considered paths connecting the root node and

the nominal node.

However, there is still one more issue we need to consider. Let us consider the

121

following axioms:

DryWine ≡ Wine u ∃hasSugar.{dry}

NonSweetWine ≡ Wine u ∃hasSugar.{dry, offdry}

We want to test whether DryWine is subsumed by NonSweetWine. The

graphs G1 and G2 in Figure 5.2 are valid completion graphs for DryWine and

NonSweetWine respectively. The root node r1 for the concept DryWine in G1 is

connected to the nominal node rdry by a hasSugar -edge. On the other hand, in G2,

the nominal node rdry is not neighbor of the root node r2. A naive application of

nominal-based pseudo model merging would incorrectly conclude that DryWine is

not a subclass of NonSweetWine.

In this case, the subsumption holds although the edges to nominal nodes differ.

The reason is that there is another valid completion graph (G3 in Figure 5.2) for

NonSweetWine in which the root node r3 for concept NonSweetWine does have

a hasSugar -edge leading to the nominal node rdry. Therefore, in order to infer the

non-subsumption, the edge to the nominal node should be present in every possible

completion graph for NonSweetWine or, in other words, the presence of the edge

should not depend on a non-deterministic choice in the execution of the tableau

algorithm. For this reason, nominal-based pseudo-model merging can be used only

in conjunction when dependency sets are stored for each node label and edge label.

Since all the existing DL reasoners already make use of the dependency-directed

backjumping optimization, this requirement does not cause an extra overhead.

122

Figure 5.2: Completion graphs for concepts DryWine and NonSweetWine

Let us now describe formally how the nominal-based pseudo-model merging

technique works: Let G = (V, E,L, 6=) be a clash-free completion graph for concept

A w.r.t. to an ontology O and rA ∈ V be the root node create for concept A3 that

was initialized with L(rA) = {A}. For each nominal o in O we are guaranteed to

have a nominal node ro ∈ V such that {o} ∈ L(ro).

Suppose that we want to test whether an ontology O entails the subsump-

tion relation D v C. Let GC (respectively GD) be a fully expanded and clash-free

tableaux expansion representing a common model of C and O (respectively a com-

mon model of D and O). Then we say that O 6|= D v C if one of the following two

conditions hold:

1. There is a simple role p such that:

(a) The nominal node ro is a p-neighbor of the root node rC in GC and the

presence of such an edge does not depend on a non-deterministic choice,

and

3Note that, there is a possibility that the root node rA will not exist in the final completion
graph GA because it was merged into a nominal node and then pruned from the graph. If rA

was merged to another node ro and the merge operation did not depend on any non-deterministic
choice we can simply use ro instead. But if the merge operation depends on a non-deterministic
choice then we cannot use the nominal-based model merging technique.

123

(b) The nominal node ro is not a p-neighbor of rD in GD.

2. There is a non-simple role p such that:

(a) There is a path of nodes z0, . . . , zk in GC with k ≥ 1, rC = z0, ro = zk and

zi a q-neighbor of zi−1 for 0 ≤ i < k for some q a sub-role of p. Moreover,

the presence of such a path does not depend on a non-deterministic choice,

and

(b) There is no such path in GD (with or without dependencies) from rD to

the nominal node ro.

Intuitively, conditions (1a) and (2a) imply that the concept C is subsumed by

∃p.{o} and conditions (1b) and (2b) imply that that concept D is not subsumed by

∃p.{o}. The following theorems (proved in the appendix) state the correctness of

this technique.

Theorem 5.1 Let G′ = (V ′, E ′,L′, 6=) be the initial completion graph for the con-

cept C w.r.t the ontology O such that V ′ = {rC , ro1 , . . . , rom} where rC is the root

node for concept C and roi
is the nominal node corresponding to nominal oi. L′ is

initialized such that L(rC) = {C} and L(roi
) = {oi} for 1 ≤ i ≤ m.

Theorem 5.2 Let O |= C v ∃p.{o} with C satisfiable w.r.t. O, then in every

clash-free and complete graph G for C w.r.t. O there must exist a blockable node x

with no predecessors (i.e. a root) that verifies the following:

• If p is simple then the nominal node o must be a p-neighbor of x in G

124

• If p is not simple, then there must exist a path z0, . . . , zk in G with k ≥ 1, x =

z0, o = zk and zi a q-neighbor of zi−1 for 0 ≤ i < k and q v∗R p.

Proof See the Appendix for the proof of this theorem. 2

One direct application of the nominal-based model merging technique is for

getting the role fillers of an individual. For example, the fillers of role madeIntoWine

for the individual MerlotGrape would give us all the wine instances that were made

from MerlotGrape. Answering this question is equivalent to retrieving the instances

of the concept ∃madeIntoWine−.{MerlotGrape} which means we can directly use

nominal-based model merging.

125

Chapter 6

Efficient Conjunctive Query Answering

Conjunctive query answering service is an important part of the HTN-DL al-

gorithm. There are two different uses of query answering in HTN-DL. First is the

evaluation of preconditions in operator and method descriptions (see Section 3.3.1).

The applicability of an action is determined by checking the precondition expres-

sion against the current state of the world. The precondition is in the form of a DL

conjunctive query and the state is a DL KB; therefore, condition evaluation is sim-

ply reduced to query answering. Precondition evaluation either requires answering

boolean queries (as in operator preconditions) or retrieval queries (as in method pre-

conditions). Second use of query answering is in task matching (see Section 3.2.3).

We explained how task matching relies on determining query subsumption between

precondition and effect expressions. Since query subsumption service is reduced to

query answering (see Section 2.3.3) the planner is essentially faced with another

query answering problem.

During a plan generation, the planner typically evaluates many preconditions

and tests for task matching. In both cases, the DL knowledge base we are dealing

with is quite large. Moreover in the case of state information, the DL KB is con-

stantly changing as the planner simulates the effects of actions put into the partial

plan generated during the search. The instances of the task ontology might also be

126

changing if the availability of services is changing, e.g. as in the discovery of new

services. Query answering against changing KBs is even harder as the cached results

are invalidated frequently.

For these reasons, the performance of the planning system is considerably

affected by the query answering performance of the reasoner. The practicality of

the planning system depends on how fast the conjunctive queries can be answered.

In this chapter, we present optimization techniques for conjunctive query an-

swering. We examine boolean queries and retrieval queries separately. These tech-

niques are applicable for query answering in general but we examine the cases that

occur in HTN-DL in more detail.

We will start with the discussion of atomic queries, review some of the existing

optimization algorithms, and describe how they interact with the optimization tech-

niques described in the previous section. Then we look at boolean query answering

and finally talk about answering conjunctive retrieval queries. We present how the

reordering of query atoms can improve query answering time and present techniques

and heuristics to find (near-)optimal orderings.

6.1 Answering Atomic Queries

We start with answering atomic ABox queries in the form C(x) and p(x, y).

The case of ground and non-ground queries are examined separately.

127

6.1.1 Retrieving Instances

The ground query C(a), so-called instance check, is answered by adding the

negated statement ¬C(a) to the ABox and checking for (in)consistency. KB con-

sistency is an expensive operation so we want to avoid the consistency check as

much as possible. We can use the completion graph created for the initial ABox

consistency test. Since we always want to make sure that the information we have is

consistent (any logical statement is entailed by an inconsistent KB) we will have the

completion graph generated.As described in Section 5.3.3, caching this completion

graph also improves the efficiency for subsequent reasoning steps.

The completion graph generated for the ABox can be used for both finding

obvious instances and non-instances. If a concept exists in the label of a node with

no dependency information then we can conclude that the concept will occur in

every possible model of the KB and thus the individual is an instance. When we

cache completion graphs, we also store the branching information, e.g. what kind of

non-deterministic choices were made at each step and how many possibilities of that

choice has been tried. For example, a disjunction branch for concept C1 t C2 t C3

would say which of the disjuncts were already tried. Therefore, if C3 is in the label

of the node and we see that C1 and C2 had already been tried with no success, i.e the

branches were closed with a clash, then we can again conclude that the individual

corresponding to that node is an instance of C3.

Note that, for defined concepts, even if the individual is an instance of the

concept, checking the label of the node might not reveal this relation. For example,

128

consider the following definition of a bus driver:

BusDriver ≡ Driver u ∃drives.Bus

In a completion graph, the label of a node might not contain the concept BusDriver

but if it contains the concept Driver and has an outgoing edge labeled with the

role drives (and none of the labels has a dependency) then we can conclude that

the individual is an instance of BusDriver. Therefore, we can break up the concept

definition into its components and check for obvious instances and non-instances

for each component recursively. If the individual is an obvious instance of all the

conjuncts then we say it is an obvious instance of the concept, if its an obvious

non-instance of at least one conjunct then it is not an instance of the concept. The

same idea can be applied to disjunctive definitions.

We can also use the completion graph for finding obvious instances of exis-

tential concepts. Let us illustrate this with an extension of the previous example.

Suppose we have the following TBox axioms

Driver ≡ Person u ∃drives.V ehicle

Bus v V ehicle

and the ABox assertions

Driver(Bob), drives(Bob, Bus42), Bus(Bus42)

129

Now, even if we examine the parts of BusDriver concept definition separately, we

will not find ∃drives.Bus in the label of the node corresponding to Bob. However,

finding the drives edge we can check the node for Bus42 to see if it is an instance

of Bus.

Obvious non-instances can be detected by the pseudo model merging technique

explained in Section 5.4.1 without performing a consistency test [47]. If we have a

pseudo-model for the negation of the concept (which can be built after a satisfiability

test) we check if the pseudo-model of the concept can be merged with the pseudo-

model of the individual (we can simply reuse the node from ABox completion as

the pseudo-model of the individual). If there are no interactions between two nodes

that could possibly cause a clash we conclude that the individual is not an instance

of the concept.

The naive way to answer the non-ground atomic query C(x), so-called instance

retrieval, is to iterate over all the individuals in the ABox and do a consistency

check when the above methods fail to detect an obvious instance or non-instance.

Typically most of the remaining individuals are non-instances and do not cause

an inconsistency when the negated statement is added to the KB. Binary instance

retrieval technique presented in [48] exploits this characteristic and combines many

instance checks in one ABox consistency test. If there is no inconsistency all the

candidate individuals are proven to be non-instances, otherwise the method splits

the set of candidates into two and continues. Clearly, the effectiveness of binary

instance retrieval is maximized if the candidate list contains less instances.

Algorithm 12 shows the pseudo-code that combines all of the mentioned tech-

130

niques. Note that, we have a special case for concepts in the form ∃p.D but not

∀p.D. This is simply because having one model of the KB where the ∀ restriction

is satisfied is not enough evidence to conclude for instance relation.

6.1.2 Retrieving Role Fillers

In OWL-DL, the role constructors are much less expressive compared to con-

cept constructors. In less expressive fragments, the relation p(a, b) holds only if in

the original ABox it is asserted that a and b is related by p or one of its subroles.

The interactions between the role hierarchy and number restrictions invalidate this

assumption, e.g. a super role assertion combined with cardinality restrictions may

cause the relation to hold. Transitive roles complicate the situation even more; now

a path between a and b is enough for the relation to hold. Having nominals in the

KB makes things even more complicated as nominals might relate individuals from

disconnected parts of the ABox.

This observation might lead to think that we will need to check for every

possible pair of individuals to find all the tuples in the p(x, y) relation. Fortunately,

this is not the case. Instead of examining the asserted facts in the ABox, we can

inspect the completion graph generated for the ABox consistency test. Suppose in

this completion graph, there is an edge between a and b labeled by the role p or one

of its subroles. If this edge does not depend on any non-deterministic choice then

we can conclude that p(a, b) is entailed. As we have shown in the nominal-based

model merging technique of Section 5.4.1, if no such edge exists then the relation is

131

Algorithm 12 isKnownInstance(K,G, n, C, S)

Inputs: K = 〈A, T ,R〉 is the input KB, G is the complete clash-free graph for
A, n is a node in G corresponding to an individual i, C is a (possibly complex)
concept, S is the set of seen 〈n, C〉 pairs to avoid infinite cycles

Outputs: Returns true if i is obviously a C instance, false if it is an obvious
non-instance, unknown if neither can be proven without a consistency test

Let result = unknown

if 〈n, C〉 ∈ S then
return result

else
Let S = S ∪ 〈n, C〉

end if
if C ∈ L(n) with empty dependency set then

Let result = true

else if mergable(n, ¬C) then
Let result = false

else if (C ≡ D) ∈ T then
Let result = isKnownInstance(K,G, n, D, S)

else if C is in the form C1 u . . . u Ck then
Let result = true

for all i : 1 ≤ i ≤ k do
Let resulti = isKnownInstance(K,G, n, Ck, S)
if resulti = false then

Let result = false and exit loop
else if resulti = unknown then

Let result = unknown

end if
end for

else if C is in the form C1 t . . . t Ck then
for all i : 1 ≤ i ≤ k do

Let resulti = isKnownInstance(K,G, n, Ci, S)
if resulti = true then

Let result = true and exit loop
end if

end for
else if C is in the form ∃p.D then

if n has no p-neighbor then
Let result = false

else if n has a p-neighbor m with no dependency then
Let result = isKnownInstance(K,G, m, D, S)

end if
end if
return result

132

not entailed because there is at least one model where the relation does not hold.

If there is an edge between a and b but the edge depends on a non-deterministic

choice, we cannot conclude if the relation holds or not. For example, if we have the

the assertion (∃p.{b} t C)(a) in the KB K then we might end up with such a

completion graph. If K∪¬C(a) is inconsistent then p(a, b) holds, otherwise it does

not. All such individuals are possible role fillers for individual a.

If we have some possible candidates as role fillers, we can reduce the query

p(x, a) (resp. p(a, x)) to an instance retrieval query for concept ∃p.{a} (resp.

∃p−.{a}).

If both arguments in the query are non-ground as in p(x, y), then we first need

to generate all candidates for x (e.g. by retrieving the instances of ∃p.>) and then

use the above techniques to find corresponding y values.

6.2 Answering Conjunctive Boolean Queries

As we have discussed in Section 3.3.1, the rolling-up technique can be used to

answer boolean conjunctive queries if there is no cycle involving only variables. The

query Q is rolled-up into a concept expression CQ and we test for KB satisfiability

after adding the axiom CQ v ⊥.

One immediate observation is that such a consistency test will be quite ex-

pensive since we cannot reuse the cached completion graph due to the additional

axiom in the TBox. However, if we have a constant mentioned in the query we

can equivalently reduce the problem to instance checking. Suppose we have the

133

following boolean query

Q(x, y)→ C(x) ∧ p(x, a) ∧ q(a, y) ∧D(y)

We can select x, y, or the constant a as the root node for rolling up. If we choose a

and proceed, the rolled-up concept we get is

CQ = {a} u ∃p−.C u ∃q.D

It is very straight-forward to prove that K ∪ {> v ¬CQ} is inconsistent iff K |=

(∃p−.C u ∃q.D)(a) (direct consequence of the proof of Proposition 5.1) .

With this equivalence we can simply use instance checking and take advantage

of the optimization techniques we presented in the previous section. It is interesting

to note that concepts we generate by rolling-up primarily consist of conjunctions

and existential restrictions (of course other type of complex expressions might be

directly used in the query). Therefore, the Algorithm 12 can be effectively used to

return obvious answers without a consistency test.

Recall that, boolean queries in HTN-DL e.g. precondition of an operator, is

evaluated only after we have the input bindings for the operator. For this reason,

the query expressions always have a constant value and we can use instance checking

to answer the query.

134

6.3 Answering Conjunctive Retrieval Queries

Answering retrieval queries can be done by assigning an individual to each dis-

tinguished variable to obtain a (partially-)ground boolean query and then checking

the if the boolean query is entailed. If the boolean query is entailed, the tuple used

in the assignment will be in the answer set of the retrieval query.

Trying all possible tuples in the domain is obviously not practical. As sug-

gested in [65] one can first roll-up the query without any assignment and retrieve

possible candidates for each variable making the search space smaller. There is still

one important drawback of this approach which stems from not having the ability

to see why a particular binding fails. Suppose we have a query p(x, y)∧ q(y, z) with

three distinguished variables and we have 10 possible candidates for each variable.

If the individuals x1 and y1 (the first candidates for variables x and y respectively)

are not related with p then regardless of any assignment to z any tuple having x1

and y1 fail. If we build tuples incrementally by checking the satisfiability at each

step we can eliminate many possibilities early.

The retrieval queries we encounter in HTN-DL are nearly always queries with

only distinguished variables. Recall that, the local variables of a method act as the

distinguished variables of a query and later they are used as input values to subtasks.

For this reason, we will focus on answering queries with only distinguished variables.

If there are only distinguished variables in a query then we do not need the

rolling-up technique to answer the query. As we explained at the beginning of

the chapter, instance retrieval is most effective with named concepts. If we use

135

rolling-up to generate complex concepts, we would later break up the concept to

its components to find obvious instances and non-instances. Repeating this step for

every possible candidate is wasteful. Instead, we can consider each atom separately

which also makes it easier to generate tuples incrementally.

Algorithm 13 presents a query answering algorithm for queries with only dis-

tinguished variables. The algorithm simply iterates through all the atoms in the

query and either generates bindings for a variable or tests if the previous bindings

satisfy the query atom. Generating bindings are done by invoking the instance

retrieval function retrieve which in turn might perform several consistency checks

as described earlier. Theoretically, testing the satisfaction of a query atom might

also require a consistency check. However, as explained in the previous section,

most of these tests can be answered without doing a consistency test. Especially,

the retrieval operations regarding the role assertions, e.g. retrieve(∃p.{u}), do not

typically require any consistency check.

Initially the algorithm is invoked by AnswerQuery(K, A, ∅, ∅) where A is an

ordering of the atoms in the query. The correctness of this algorithm is quite clear

as the satisfaction of every binding is reduced to KB entailment. Thus, this is a

sound and complete procedure for answering conjunctive queries.

6.4 Cost-based Query Reordering

The efficiency of Algorithm 13 depends very much on the order query atoms

are processed. For example, in the query C(x) ∧ p(x, y) ∧ D(y), suppose C has

136

Algorithm 13 AnswerQuery(K, A,B, Sol)

Inputs: K is the input KB, A is a list of query atoms, B is the binding built so far,

Sol is the set of all bindings that satisfy the query

if A = [] then

return Sol ∪ {B}
end if

Let a = first(A) and R = rest(A)

Substitute the variables in a based on the bindings in B

if a = C(v) and K |= C(v) then

Let Sol = AnswerQuery(K, R, B, Sol)

else if a = C(x) then

for all v ∈ retrieve(C) do

Let Sol = AnswerQuery(R,B ∪ {x← v}, Sol)

end for

else if a = p(v, u) and K |= p(v, u) then

return AnswerQuery(K, R, B, Sol)

else if a = p(x, v) (resp. p(v, x)) then

for all u ∈ retrieve(∃p.{v}) (resp. u ∈ retrieve(∃p−.{v})) do

Let Sol = AnswerQuery(K, R, B ∪ {x← u}, Sol)

end for

else if a = p(x, y) then

for all v ∈ retrieve(∃p.>) do

for all u retrieve(∃p.{v}) do

Let Sol = AnswerQuery(R,B ∪ {x← v} ∪ {y ← u}, Sol)

end for

end for

end if

return Sol

100 instances, each instance has one p value and D has 10.000 instances. The or-

dering [C(x), p(x, y), D(y)] would be much more efficient compared to the ordering

[D(x), p(x, y), C(y)]. We would do one instance retrieval operation to get 100 in-

stances, find the corresponding p values and test whether these are D instances. The

second ordering, on the other hand, requires us to iterate over 10.000 individuals

137

and check for a p− value that does not exists for most d instances.

There are several important challenges to finding an optimal query reordering.

In query optimization for relational databases, the main objective is to find an

optimal join order and generally the bottleneck is reading data from disk. In a

DL reasoner, the most costly operation is consistency checking so we should try to

minimize the number of consistency checks performed.

There are two parameters that will help us to estimate the cost of answering a

query. First, we need to estimate how costly an atomic query is, e.g. for an instance

retrieval query, estimate how long it will take to find all the instances. Second,

we need to estimate the size of the results, e.g. how many instances a concept

has. These two parameters are interdependent to some degree. For example, if

C has 100.000 instances and D has only 10 instances, retrieving C instances is

typically more costly. However, this is not always true because there might be

100.000 individuals that are considered as possible D instances (i.e. the methods

described in Section 6.1 failed for all those individuals). In that case, we would be

forced to do many expensive consistency tests. For this reason, there is no easy way

of estimating these parameters that would work for in different situations. In the

next section, we will describe some methods for computing these parameters.

For now, we will assume that for each atomic query type, there are cost func-

tions Cir(C), Cic(C), Crr(r) and Crc(r) that returns the cost of instance retrieval for

concept C, the cost of a single instance checking for concept C, the cost of role filler

retrieval for role r and the cost of verifying a role filler for role r, respectively. Note

that, we are assuming the cost of instance checking for a concept is the same for

138

all the different individuals in the KB. This assumption may not be very accurate

but considering that we typically deal with large number of individuals, it is not

practical to compute estimates for every individual.

In addition, we will assume that the size estimates for concepts and properties

are also ready. We will use |C| to denote the number of C instances and |p| to

denote the total number of tuples in p relation. The average number of p fillers for

an individual is denoted by avg(p) and computed as |p|/|∃p.>|. Similarly, we say

avg(p−) = |p|/|∃p−.>|.

Given the parameters for the cost computation and the size estimates, Algo-

rithm 14 computes an estimate for the cost of query answering for a certain ordering.

Cost estimation is linear in the number of query atoms, provided that size

estimates are already computed. However, there are exponentially many orderings

to try so an exhaustive search to find the best ordering is still very expensive. It is

possible to use some heuristics to prune the search space. The heuristics we use are:

1. For each atom at position i > 1 in the ordered list, there should be at least

one atom at position j < i s.t. two atoms share at least one variable.

2. Atoms of the form p(x, v) and p(v, x) should appear before other atoms in-

volving x.

3. An atom of the form C(x) should come immediately after the first atom that

contains x.

The first rule is similar to the general query optimization rule that cross prod-

ucts should be avoided. The second rule makes use of the fact that generally an

139

Algorithm 14 EstimateCost(A, B)

Inputs: A is a sorted list of query atoms, B is the variables bound so far

if A = [] then

return 1

end if

Let a = first(A) and R = rest(A)

if a = C(x) and x ∈ B then

return Cic(C) + EstimateCost(R,B)

end if

if a = C(x) and x 6∈ B then

return Cir(C) + |C| ∗ EstimateCost(R,B ∪ {x})
end if

if a = p(x, y) and {x, y} ⊆ B then

return Crc(p) + EstimateCost(R,B)

end if

if a = p(x, y) and {x, y} ∩B = {x} then

return Crr(p) + avg(p) ∗ EstimateCost(R,B ∪ {y})
end if

if a = p(x, y) and {x, y} ∩B = {y} then

return Crr(p) + avg(p−) ∗ EstimateCost(R, B ∪ {x})
end if

if a = p(x, y) and {x, y} ∩B = ∅ then

return Cir(∃p.>) + |p| ∗ Crr(p) ∗ EstimateCost(R,B ∪ {x, y})
end if

individual is related to limited number of other individuals. The last rule is to

discard the orderings such as [C(x), p(x, y), q(y, z), D(y)]. This ordering is not de-

sirable because if p(x, y) finds a binding for y such that D(y) is not satisfied, we

would unnecessarily retrieve the q fillers before realizing the failure.

140

6.4.1 Size and Cost Estimation

There are several different ways to estimate |C|. Of course we do not want to

perform any consistency test to estimate the size as this would defeat the purpose

of computing the size estimate. The most straight-forward way is to examine the

asserted facts in the ABox to figure out which individuals are obvious instances.

Examining the completion graph of the ABox will give a better estimate. We can use

the more advanced technique of Section 6.1 to obtain even more accurate estimates.

The main idea behind size estimation is to iterate over the nodes in the com-

pletion graph of ABox and for each concept call the algorithm isKnownInstance.

The algorithm might return true, false, or unknown. It is not possible to know

(without a consistency test) how many of the individuals with unknown result

will end up being instances. In such cases, we estimate that with probability κ

such individuals would indeed be instances of that concept giving us the formula

|C| = |Cknown|+ κ ∗ |Cunknown|.

This technique will give a quite accurate estimate on the size of instances.

However, as the number of instances increases, iterating over all the individuals and

concepts would be quite time-consuming and not practical even as a preprocessing

step. One observation is that we do not need to iterate over all the concepts as some

of them will not be used in any of the queries. For an HTN-DL domain, we could

inspect the precondition expressions and determine which concepts are mentioned

in the queries. Or alternatively we can generate these statistics on-the-fly when a

query arrives and compute the size estimation only for the concepts mentioned in

141

the query.

A more effective solution is to use random sampling which has proven to be

very useful in relational database settings. We can simply select a random sample

of individuals from the ABox and compute the estimates based on that smaller

estimate. If σ is the sampling ratio, the size estimation formula would be |C| =

σ ∗ (|Cknown|+ κ ∗ |Cunknown|).

We have not talked about size estimation for roles but the same principals

and algorithms can be directly used for roles, too. As we are iterating over the

individuals, we can use the techniques of Section 6.1.2 to find obvious and possible

role fillers and compute the size estimate for roles.

We can also use |Cunknown| to have an estimate about Cir(C) and Cic(C). If

|Cunknown| = 0 then it means that all the individuals can be retrieved without

any consistency test. As |Cunknown| increases Cir(C) will increase because more

consistency tests will be needed.

6.5 Query Simplification

In some cases, there might be redundant atoms in a query that can be safely

removed from the query without affecting the results. For example, if C v D then

the query C(x)∧D(x) is logically equivalent to query C(x). Such redundant atoms

do not cause to make additional consistency tests (methods described in Section

6.1 are quite effective for these cases) but even repeating computationally cheap

operations many times causes a noticeable overhead in the end.

142

The idea behind query simplification is to discover redundant atoms with cheap

concept satisfiability tests. But performing too many concept satisfiability tests for

simplifications that do not occur frequently in queries is wasteful. For example,

simplification based on subsumption of named concepts and roles are nearly never

applicable in real world queries or in the benchmarking problems for query answer-

ing.

We have pinpointed the following two common query simplifications based on

domain and range restrictions. If the DL conjunctive query contains the following

set of atoms

Q = {C(x), p(x, y), D(y)}

then we can simplify it in two different ways as follows

Q′ = Q \ {C(x)} if ∃p.> v C (Domain simplification)

Q′′ = Q \ {D(y)} if C v ∀p.D (Range simplification)

Note that domain/range simplification can also be done even if one of the

atoms C(x) or D(y) is missing since we can simply insert >(x) or >(y) as an

additional atom. In such cases global domain/range restrictions of properties can

be directly used and simplification can be done with no subsumption test.

143

Chapter 7

Implementation and Evaluation

In this chapter, we describe the HTN-DL planning system and its components:

Pellet OWL-DL reasoner, OWL-S Web Services API, and HTN-DL planner. We

describe the architecture of each component, discuss their role and integration in

the HTN-DL planning system and also explain their impact outside HTN-DL. We

also present performance evaluation results about the reasoner and planner showing

the effectiveness of the optimization techniques presented and the practicality of

HTN-DL system for Web Service composition composition problems.

7.1 System Architecture

Figure 7.1 shows the main components of the HTN-DL planning system. The

implementation of the planning algorithm described in Section 3.3 is responsible of

solving HTN-DL planning problems. HTN-DL planning domains are created by the

translation algorithm of Section 4.2 which is implemented on top of OWL-S API.

Execution of Web Services to gather information is also done using the execution

engine of OWL-S API.

The composition process starts by translating OWL-S descriptions to HTN-DL

domains. HTN-DL system does not perform Web Service discovery; that is, it as-

sumes all the service descriptions (regardless of what functionality they provide) are

144

Figure 7.1: Overview of HTN-DL planning system

given to the system as input. HTN-DL domain generated contains both a task on-

tology (translation of OWL-S profile descriptions) and a set of method and operator

definitions (translation of OWL-S process models).

The goal of the composition is given to the planning system as a partially-

ordered ground task network. The state of the world is represented as a DL knowl-

edge base. HTN-DL planner uses the reasoner Pellet to find the matching operators

and methods for a given task. Then the planner, again using the reasoner, evaluates

the preconditions of actions to determine applicability.

145

7.2 Pellet: OWL-DL Reasoner

Pellet reasoner is the main driving force behind the HTN-DL planning system.

The reasoner is responsible of handling the maintenance of state including precon-

dition evaluation and effect application and also matching tasks with operators and

methods. Besides its functionality in HTN-DL Pellet is a full-fledged OWL-DL rea-

soner with many novel features. In this section, we describe Pellet’s architecture,

its main components and special features.

7.2.1 Pellet Architecture and Design

Pellet, in its core, is a Description Logic reasoner. However, unlike other DL

reasoners, it has been designed to work with OWL right from the beginning. This

design choice had huge influence on the overall architecture. It affected how the

tableau reasoner was implemented, e.g. with the ability to reason with instance

data (ABox reasoning) without making the Unique Name Assumption (UNA), and

what kind of supporting modules to have, e.g. having an XML Schema datatype

reasoner and a query engine.

Figure 7.2 shows the main components of Pellet. The core of the system is the

tableaux reasoner that checks the consistency of a knowledge base. The reasoner

is coupled with a datatype oracle that can check the consistency of conjunctions

of (built-in or derived) XML Schema simple datatypes. The OWL ontologies are

loaded into the reasoner after species validation and ontology repair. This step

ensures that all the resources have an appropriate type triple (a requirement for

146

Figure 7.2: Main components of the Pellet reasoner

OWL-DL but not OWL-Full) and missing type declarations are added according to

some heuristics (see subsection 7.2.3 for details). During the loading phase, axioms

about classes are put into the TBox component and assertions about individuals are

stored in the ABox component. TBox axioms go through the standard preprocessing

of DL reasoners, e.g. normalization, absorption and internalization, before they are

fed to the tableaux reasoner. The system provides a thin layer for programmatic

access through the Service Programming Interface (SPI) that provides convenience

functions to access the reasoning services provided.

7.2.2 Tableaux Reasoner

The tableaux reasoner has only one functionality: checking the consistency of

an ontology. As explained in Section 2.3 all other reasoning tasks can be defined in

terms of consistency checking. In order to support future extensions, the internals

147

Figure 7.3: Different completion strategies implemented in Pellet

of the tableaux reasoner are built on an extensible architecture.

The completion algorithm inside the tableaux reasoner is designed so that

different completion strategies can be plugged in. This approach has two major

advantages: First, different completion strategies with different heuristics can be

used based on the characteristics of the given KB, e.g. the expressivity of the

KB. Second extensions that need quite different completion strategies, e.g. E-

Connection reasoning, can be implemented without changing the rest of the sys-

tem. Figure 7.3 shows the different completion strategies currently implemented in

Pellet. SHOINStrategy is the default completion strategy that supports the full

expressivity of OWL-DL. This strategy is based on the recently developed decision

procedure for SHOIQ[62].

The SHOINStrategy covers the full expressivity of OWL-DL and exhibits a

good “pay as you go” behavior, e.g. the tableaux rule for nominals is never applied

if there are no nominals in the KB. However, the blocking strategy required for

148

SHOIN is dynamic double blocking which is quite complex and may not prevent

the completion graph from getting very large. If it is known that there are no

nominals in the KB, e.g. the expressivity is SHIN , then an optimized version of

double blocking [61] can be used. Also, in this case, we do not even need to check

if nominal rule is applicable (since it will never be) and save some more time. The

SHINStrategy does exactly this, and hence, whenever the expressivity of the KB

is detected to fall into this category, this strategy will be selected over the default

SHOINStrategy. Similarly, the SHONStrategy employs an even more efficient

blocking strategy (subset blocking) [56] and is selected whenever appropriate.

Some completion strategies behave quite different than others. For example,

if there are no instances in the KB (just class and property descriptions) then it

is known that every concept satisfiability check will start with a completion graph

that has just one node. If there are also no inverse roles in the KB, more efficient

completion strategies, e.g. the trace method, can be used. In such case, we can use

additional optimizations such as caching the satisfiability status of internal nodes.

The EmptySHNStrategy uses this approach and manages to handle large TBoxes

such as the famous Galen medical ontology.

The dynamic completion strategy selection ensures the soundness and com-

pleteness of the reasoner (for each strategy we use only optimization techniques that

are known to be sound and complete) while exploiting the most efficient algorithm

for the given KB.

149

7.2.3 OWL Species Coercion

OWL ontologies are encoded as RDF/XML graphs. OWL-DL imposes a num-

ber of restrictions on RDF graphs, some of which are substantial (e.g., that the set

of class names and individual names be disjoint) and some less so (that every item

have an rdf:type triple). Ensuring that an RDF/XML document meets all the

restrictions is a relatively difficult task for authors, and many existing OWL doc-

uments are nominally OWL-Full, even though their authors intend for them to be

OWL-DL. Pellet incorporates a number of heuristics to detect “DLizable” OWL-Full

documents in order to “repair” them.

The heuristics implemented in Pellet attempt to guess the correct type for

an untyped resource. These are mainly standard operations, e.g. a resource used

in the predicate position is inferred to be a property. Some situations have more

than one solution, e.g. an untyped resource used only in one cardinality restriction

can be any of object or a data property. In these cases, Pellet heuristics choose

object properties and classes over data properties and datatypes by default, but

this behavior can be configured.

Ensuring the vocabulary separation, e.g. disjointness of classes, properties and

individuals, is another hard problem especially in the distributed Web environment

where people might be required to import an OWL-Full ontology that they might

have no control over. In such a case, it is not acceptable for a reasoner to reject

processing the ontology altogether. For this reason, Pellet provides several options

to the users where vocabulary separation is not respected:

150

• Ignore the statements that cause the problem. If a URI is used both as a class

and as a property, one of these definitions will be ignored and the accepted

definition depends on the order the statements are processed (this order is

generally non-deterministic and based on which underlying parser is used).

• Accept all the definitions for the URI but treat them differently for query

answering. For example, if the same URI is defined both as a class and as

a property, Pellet will create both a class and a property and associate the

axioms with the corresponding definition. Depending on the queries, asking

subclasses vs. asking sub properties, the appropriate definition will be used.

• Reject processing the ontology completely.

These options give the user more control about how to deal with the different

cases and provide a plausible solution for a certain set of OWL-Full ontologies. On

the other hand, some features of OWL-Full ontologies are completely out of scope

for Pellet. For example, defining cardinality restrictions on transitive properties

causes undecidability. Extending built-in vocabulary, e.g. creating a subproperty of

rdf:type, requires a completely different reasoning procedure. Therefore, for such

OWL-Full features only options provided are Ignore or Fail.

7.2.4 ABox Query Engine

Pellet ABox query engine is based on the query answering algorithms and

optimizations described in Chapter 6. Figure 7.4 shows the general design of the

query engine. The query engine is composed of several modules. Initially, the query

151

Figure 7.4: Components of the query engine

goes through several preprocessing steps. The first step of is to analyze the query and

determine if it consists of independent sub-queries, that is, query graph is composed

of disconnected graphs. If this is the case, the query is split into multiple queries

which are answered separately. The results are combined at the end on a tuple by

tuple basis to minimize memory consumption.

After this initial step, the query is modified based on the optimization tech-

niques described in Chapter 6. The actual query answering is done by one of several

different query answering engines. Each query is answered by exactly one engine

and the selection is based on the properties of the query, e.g. whether it is a boolean

query or a retrieval query, or how many distinguished/non-distinguished variables

exist. Query engine selection and query optimization is not completely separate.

For example, if there is a single variable in the query then reordering the query

atoms does not make sense. So these two steps are mixed together.

152

7.2.5 Special Features

The extensible architecture of Pellet made it possible to develop some special

features that do not exist in any other reasoners. Here, we briefly describe these

features:

Axiom pinpointing Axiom pinpointing is a non-standard DL inference service

that provides a justification for any arbitrary entailment derived by a reasoner from

an OWL-DL knowledge base. Given a KB and any of its logical consequences, the

axiom pinpointing service determines the premises in the KB that are sufficient for

the entailment to hold. The justification is useful for understanding the output of

the reasoner, which is key for many tasks, such as ontology debugging, design and

evolution.

In order to determine a justification for an entailment, Pellet tracks and stores

the original source axioms from the ontology as they are modified and used through-

out the tableaux expansion process. For this purpose, we extend the dependency sets

used in the clash detection procedure to keep track of the axioms. As the reasoner

continues applying the tableau rules, the axiom set for each assertion needs to be

updated as well as the dependency set information. When an inconsistency-revealing

clash is discovered, the axiom set is presented along with the clash information. This

ensures that only the axioms directly relevant to the inconsistency are obtained.

In order to determine all the justifications, Pellet uses a combination of tracing

and a variant of Reiter’s hitting set algorithm (see [70]). Single justification trac-

ing involves almost no overhead and the results are used for generating on-demand

153

explanations and for improving the efficiency of incremental reasoning through up-

dates.

E-Connections E-Connections [76] are a framework for combining several families

of decidable logics, such as Description Logics, Modal Logics, as well as some logics

of time and space. In an E-Connection, the coupling between the combined logics is

loose enough for obtaining general results about transfer of decidability: if reasoning

is decidable in each of the component logics, then it is decidable in the combined

formalism as well.

In [44] we have proposed tableau algorithms for different E-Connection lan-

guages involving Description Logics. The basic strategy to extend a DL tableau

algorithm with E-Connections support is based on “coloring” the completion graph.

Nodes of different “colors”, or sorts, correspond to different domains (ontologies).

The application of the expansion rules, blocking conditions and clash triggers de-

pend on both the “color” of the node under consideration and the expressivity

allowed on the link relations. (For a detailed discussion on combined tableau al-

gorithms for E-Connections we refer the reader to [44].) Pellet has been extended

with tableau-based decision procedures for E-Connection languages involving com-

binations of SHOIN (D) ontologies. The initial experimental results show that the

performance for the E-Connected KBs is very similar to their OWL counterparts.

Rules Pellet has support for AL-log[25] (Datalog + SHOIN (D)) via a coupling

with a Datalog reasoner. It incorporates the traditional algorithm (described in

154

[25]) and a new precompilation technique that is incomplete but more efficient. The

key idea of this implementation is to pre-process all of the DL atoms that appear

in the Datalog rules, and include them as facts in the Datalog subsystem. Once the

pre-processing is done, queries can be answered by the Datalog component using

any of the known techniques for Datalog query evaluation.

Pellet also has a preliminary implementation of a direct tableau algorithm

for a DL-safe rules [91] extension to SHOIN (D). Preliminary empirical results

have been encouraging and we think that the DL-safe implementation is practical

for small to mid-sized ontologies esp. when the full expressivity of SHOIN (D) is

needed.

7.3 OWL-S API: API for Web Service

The OWL-S service descriptions are simply OWL-DL ontologies mostly con-

taining instances of concepts defined in OWL-S ontologies. As such, service de-

scriptions are canonically expressed in the OWL using RDF/XML exchange syntax.

There are many tools that work with an RDF based model but working with OWL-S

descriptions at the RDF or even the OWL level is quite difficult and tedious as they

tend to be at the wrong level of abstraction. Furthermore, the OWL-DL axioms do

not sufficiently constrain the OWL-S descriptions as we have discussed in Chapter 4.

So, for programmatic generation of descriptions, for validation, for certain sorts of

reasoning and for execution and monitoring, it is helpful to have service descriptions

represented at a higher level of abstraction.

155

The OWL-S API is a Java library which provides this higher level of abstrac-

tion. These classes also support various useful services such as validation of OWL-S

descriptions (beyond what is expressed in the ontologies), matchmaking, and exe-

cution.

7.3.1 The Design Objectives

The OWL-S API was designed to let programmers access and manipulate

OWL-S service descriptions easily. For this reason, the main purpose of the API is

to provide a data model that covers the specifics of OWL-S. However, the design of

the API was driven by many other factors and objectives:

Support for multiple OWL-S versions OWL-S ontologies are constantly being

refined and extended by the OWL-S coalition. The radical changes in the ontolo-

gies between different versions make it harder to develop and maintain applications

based on the structure of the OWL ontologies. For example, the OWL-S processes

were modeled as OWL classes in OWL-S 0.9 whereas they are modeled as OWL

individuals in OWL-S 1.0 and higher versions. The data model in the API should

be general enough to support different versions of the ontologies.

Execution of services OWL-S Process Model defines how a service works. Pro-

cesses are defined either as one-step directly-invocable AtomicProcesses or as Com-

positeProcesses that are composed of other processes combined with one (or more)

of the control construct defined in the Process ontology. An execution engine should

156

handle interpreting these control constructs. The invocation of AtomicProcesses are

described by Grounding specifications that map the processes to WSDL operations.

Some applications may extend the grounding specification to use other standards

such as UPnP. The execution engine should support the invocation of WSDL services

as a minimum requirement but it must also be flexible to handle other grounding

specifications.

Extensibility of OWL-S descriptions One essential feature in describing Web

Services with OWL-S is being able to extend the base OWL-S ontologies in order

to describe specific features for a service. For this purpose, OWL-S profile ontology

defines a construct named ServiceParameter so that concepts defined in other on-

tologies may easily be integrated into OWL-S profile descriptions. The API should

let the users easily handle the concepts that are not part of the core OWL-S ontolo-

gies, thus not part of the core data model in the API.

7.3.2 Architecture of the OWL-S API

The OWL-S API was designed to achieve the objectives described in the previ-

ous section. The data model for services were created to reflect the structure of the

OWL-S model. While the Java interfaces and methods were designed in conjunction

with the classes and properties defined in the OWL-S ontologies, there is no tight

coupling between the two. A set of Readers have been created to parse descriptions

of different versions of OWL-S into the same data model. Therefore, there is one

consistent view for all the services even if different versions of the ontologies have

157

Figure 7.5: Basic components of the OWL-S API

been used. Serialization of the descriptions are handled by a set of Writers. Writers

are generally used to serialize the service for a specific OWL-S version but may also

be used for other purposes, e.g. generating an HTML presentation for the service.

The basic components of the API are shown in the Figure 1.

The API has been built using the Jena [17] toolkit but the interfaces has been

designed so that functionality of the OWL-S API is not bound to the specifics of

the underlying RDF/OWL API. A basic OWLResource interface is provided for

accessing the information in the RDF model and can easily be implemented for

different RDF toolkits. Querying the RDF model makes it possible to get the

extended parameters that are not part of the standard OWL-S ontologies. It is also

possible to wrap the frequently used OWL concepts in a Java interface. This feature

is similar to polymorphic views in the Jena toolkit and makes programming easier

when applications are being developed for a fixed set of ontologies. Creation of Java

158

interfaces can even be automated so a code template can be generated for a given

OWL-S description, similar to how stubs are generated from WSDL descriptions.

The execution of processes are handled by a ProcessExecutionEngine. The

default implementation provides the execution of all control constructs defined in

OWL-S. The OWL-S API is coupled with the Pellet reasoner which is used to verify

the preconditions of services before execution and evaluate the conditions expressed

in control constructs such as If-Then-Else, Repeat-While, and Repeat-Until.

The invocation of WSDL services are achieved through the Axis Web Services

package. The API can also execute OWL-S services that have UPnP groundings

through the extensions developed in collaboration with Fujitsu Labs of America,

College Park in the context of Task Computing [84] for interacting with devices in

pervasive environments.

7.4 HTN-DL: Planning for Web Services

7.5 Experimental Evaluation

In this section, we present the evaluation of the HTN-DL planning system. We

start with the evaluation of reasoner Pellet in isolation. We show that optimiza-

tion techniques presented in this thesis improve reasoning performance in general.

Then we examine the performance of the coupling in the HTN-DL system. We test

the planning system both on examples coming from standard planning benchmark

problems and also on Web Service composition problems,

All the experiments presented in this section have been performed on a Pen-

159

tium Centrino 1.6GHz computer with 1.5GB memory using Java 1.4.2. The exper-

iment shave been repeated 20 times and averages are presented.

7.5.1 Reasoning Performance

We start with the performance evaluation for the tasks of consistency check-

ing, classification and realization. Then we show the results on conjunctive query

answering.

Evaluating Reasoning Optimizations

We have run the experiments on four ontologies: the Wine ontology, presented

in the OWL documentation [112], the AKT Portal Ontology, used in the AKT

project for integrating information across universities, the OWL-S ontologies, for

describing Web Services, and the 3SAT ontology, included in the OWL test suite,

which is an encoding of the classical 3SAT problem in OWL-DL.

In order to evaluate the impact of each optimization, we have disabled the

optimizations one by one when processing each ontology. The results are shown

in Table 7.1. The first column indicates the enabled optimizations; the remaining

columns show the times for the initial ontology consistency check, classification (in-

cluding satisfiability of atomic concepts) and realization of individuals respectively.

The Wine Ontology is a medium-size ontology and it uses all of the constructs

provided in OWL-DL. It contains 137 atomic concepts, 17 roles and 206 individuals.

The concepts defined in the ontology are fairly complex and nominals are used

160

Wine OWL-S
Options Consist. Classif. Real. Consist. Classif. Real.
OHDMLC 772.0 16911.4 2154.3 377.6 2422.5 1021.5
HDMLC 16608.9 N/A N/A 407.6 2634.7 1141.8
O DMLC 21748.2 64463.7 61412.4 387.4 2500.7 1062.5
DMLC 230463.5 N/A N/A 388.7 2488.4 1083.6

OH MLC 3184.3 27182.1 35246.7 18006.8 2052.0 1059.5
OHD LC 766.0 32294.3 9852.3 391.4 2461.7 1089.3
OHDM C 779.1 20973.1 2155.4 387.3 45669.9 1113.4
OHDM 793.2 N/A N/A 389.4 72805.7 1116.6

AKT Portal 3SAT
Options Consist. Classif. Real. Consist. Classif. Real.
OHDMLC 6.0 399.6 47.0 1651.5 3.0 1.0
HDMLC 7.0 2647.0 785.1 11478.5 3.0 6498.3
O DMLC 2.0 374.6 41.1 1542.1 2.0 2.1
DMLC 6.0 2606.7 786.3 8072.5 1.0 18493.7

OH MLC 1.0 1607.2 49.1 1471.1 3.0 1.0
OHD LC 3.0 382.6 43.2 920.5 1.0 0.0
OHDM C 4.1 1030.4 44.1 1388.9 5.0 1.0
OHDM 0.0 1503.3 42.0 1050.4 1362.0 0.0

Table 7.1: Consistency checking, classification and realization times for four dif-
ferent ontologies. All times are given in milliseconds. Classification times include
concept satisfiability and subsumption tests. Realization time shows how long it
took to find the most specific type for each individual. Each row gives the timing
where a different set of optimizations is enabled. Each letter in the option descrip-
tion indicates which optimization is enabled, i.e. if there is no dash it means all
the optimizations weer enabled. A dash indicates that the optimization reported
in that position has been disabled. The letters used for the optimizations are as
follows: Nominal absorption for OneOf (O) and hasValue (H), Learning-based Dis-
junct Selection (D), Nominal-based Pseudo-Model Merging (M), Lazy Completion
Graph Generation (L), Completion Graph Caching (C).

161

profusely. With all the optimizations enabled, consistency checking takes less than

a second, whereas the total processing time, including classification and realization

takes approximately 20 seconds. Nominal absorption has the highest impact on

performance: without any kind of nominal absorption Pellet cannot classify the

ontology in the specified time limit and consistency time increases by three orders

of magnitude.

Learning-based disjunct selection is especially effective for realization tests

and nominal-based pseudo-model merging heavily influences classification, since it

avoids a large number of subsumption tests. Lazy completion graph generation and

graph caching have a dramatic impact on concept satisfiability and subsumption:

if both optimizations are disabled, Pellet times out after the initial KB consistency

test.

The OWL-S ontology is a medium-sized KB developed by the OWL-S coalition

and widely used by the Semantic Web Services community. It contains 97 concepts,

191 roles and 2320 individuals, with 5 nominals. The individuals for our experiments

represent Web services and have been generated in a realistic Task Computing en-

vironment [84] developed at Fujitsu Labs of America. OWL-S does use nominals,

but marginally. The optimization with the most impact is disjunct selection, which

makes it possible to identify similarity patterns between individuals and use them

for making the right non-deterministic choices during the tableaux expansion.

The AKT portal ontology is also medium-sized. It contains 173 atomic con-

cepts, 142 roles and 75 individuals, with 15 nominals (all in enumerations). The

descriptions are not as complex as those in Wine and nominals are used, though

162

not heavily. Due to the presence of enumerations, nominal absorption reduces clas-

sification time. Lazy graph generation, graph caching and learning-based disjunct

selection also have an influence in the results.

The 3SAT ontology uses nominals for encoding the 3SAT problem in OWL-

DL. Due to the way the problem has been encoded, the ontology contains just

1 atomic concept, no roles and 20 nominals. For this case, nominal absorption

and graph caching are especially effective. Both techniques speed up consistency

checking time in three orders of magnitude.

Finally, we have run an experiment with a modified version of the Wine Ontol-

ogy, containing pseudo-nominals. Since traditionally DL reasoners do not support

reasoning with nominals, the pseudo-nominal approach tries to approximate the

enumerated class definitions by replacing each nominal {o} with a fresh atomic con-

cept Po and adding the assertion Po(o) to the ABox. Reasoners such as Racer and

KAON2 adopt this technique and are not complete w.r.t. nominals.

We have run 10 independent experiments with all the optimizations enabled

to classify and realize the modified Wine ontology containing pseudo-nominals. We

have obtained the following results: 541ms for consistency, 2423ms for classification

and 158648ms for realization. Note that, since the ABox does not influence reasoning

in the TBox, due to the absence of nominals, consistency and classification times

are faster; however, a high computational price is paid in realization since nominal-

based model merging cannot be used any more. Overall, the total processing time

is 1 order of magnitude slower with pseudo-nominals. This result indicates that

faking nominals can be more costly, especially when nominals are used heavily in

163

the ontology.

Very recently a new version of FaCT++ reasoner supporting nominals was

released. FaCT++ version 1.0.0 supports the DL SHOIQ(D). However, this version

of FaCT++ does not support ordinary ABox assertions1 so it was not possible to

run some of the above experiments or measure consistency checking and realization

times separately. For this reason, we have only tried one experiment: classifying

Wine ontology using FaCT++ 1.0.0. We have used a timeout of 30 minutes and

classification was not completed in any experiment in the allowed time frame. This

result also supports our hypothesis that without specific optimizations, reasoning

with nominals is not practical.

We can summarize our results as follows:

1. It is not practical to reason with nominals without having special optimiza-

tions, especially when the ontology uses nominals heavily.

2. Nominal absorption has proven the most useful technique and has a significant

impact, even in presence of a marginal number of nominals in the ontology.

3. Learning-based disjunct selection is particularly effective in the presence of

individuals with similar characteristics, as shown in the OWL-S case.

4. Nominal-based pseudo-model merging is only useful on ontologies with has-

Value restrictions 2 and affects primarily classification and realization times.

1Theoretically, ABox individuals can be encoded as nominals and ABox assertions can be turned
into inclusion axioms but such an automated transformation was not available

2Wine is the only ontology in our experiments that contains hasValue restrictions

164

5. Lazy graph generation and graph caching can have a dramatic influence on

concept satisfiability and subsumption tests.

6. The pseudo-nominal approximation is not only unsound, but may actually

degrade the reasoner’s performance.

Evaluating Conjunctive Query Answering Optimizations

In our experiments, we first tested the accuracy of the size estimation. For

this purpose, have used some of the existing benchmark problems for conjunctive

queries: the data from Lehigh University Benchmark (LUBM) [125] and ontologies

Vicodi and Semintec from [89]. The following tables show the number of individuals

in each dataset, the time spent for estimating the size of all the concepts in each

dataset, and the mean normalized error over all concepts in the given ontology. For

example, an error of 3.6 means that if the actual number of instances for a concept

was 200, the algorithm returned 200± 7.2. We have varied the sampling percentage

from %20 to %100.

As expected, error in size estimation decreases as we inspect more and more

individuals. More interestingly, for these ontologies, sizes can be computed with ei-

Sampling Percentage
Dataset Size %20 %40 %60 %80 %100
LUBM 55664 3.6 6.7 9.7 11.8 15.0
Semintec 17941 0.9 1.6 2.4 3.2 3.9
Vicodi 16942 1.8 3.4 5.1 6.9 8.6

(a) Time spent in seconds

Sampling Percentage
Dataset %20 %40 %60 %80 %100
LUBM 0.7 0.3 0.6 0.4 0.0
Semintec 6.4 4.4 4.9 3.7 0.0
Vicodi 18.5 11.3 7.6 4.7 0.9

(b) Mean normalized error

Table 7.2: Evaluating size estimation performance and accuracy with respect to
sampling ratio.

165

Figure 7.6: The correlation between the cost estimates and the actual query eval-
uation time. Each data point represents a different ordering of the corresponding
query. Note that, due to simplification and heuristic pruning, number of data points
is less than all possible orderings.

ther perfect or nearly perfect accuracy if all the individuals are inspected. However,

computation time also increases. Looking at these results we decided to use a sam-

pling ratio of %20 which yields fairly accurate results with reasonable computation

time.

Next, we looked at the effectiveness of the cost model defined in this paper.

Query ordering has a significant effect especially when there are many atoms in the

query. Therefore, we used three conjunctive queries, Q2 (6 atoms), Q8 (5 atoms),

Q9 (6 atoms), from LUBM and Q2 (5 atoms) from Semintec and Q2 (3 atoms)

from Vicodi. We generated all the possible query orderings, pruned the orderings

based on the aforementioned heuristics and computed the time to answer each query

with that ordering. Figure 7.6 shows the scatter plot of different query orderings

166

LUBM Q2 LUBM Q8 LUBM Q9 Semintec Vicodi
Min Cost Ordering 20 320 227 100 81
Min Time Ordering 10 285 164 100 81
Median 1183 341 311 135 255
Max Time Ordering 1233 348 400 140 2123

Table 7.3: Comparison of query evaluation times for different orderings

where X axis is the estimated cost and Y axis is the actual time it took to generate

the answers. The correlation factor for each query is different ranging from low

(∼ 0.5) to perfect score (= 1). More importantly, in each case, the lowest-cost

query ordering found by the estimation algorithm is very close to the optimal value.

Table 7.3 shows these results in more detail and displays query evaluation

time (in milliseconds) for the minimum cost ordering, the minimum time ordering,

the maximum time ordering and the median of all orderings (still excluding the

heuristically pruned orderings). Although the minimum cost ordering does not

always take minimum time, we can still see that the improvement in query evaluation

time compared to an arbitrary ordering can be more than one order of magnitude.

7.5.2 Planning Performance

We wanted to investigate two different points in our experiments: 1) How does

HTN-DL perform for solving benchmark problems designed for classical planners

2) How do the new task matching/ranking mechanism scale to a large number of

services and complex ontologies.

The objective of the first experiment is to see the overhead of using a DL

reasoner for evaluating preconditions and effects of the services compared to the

167

original planning system where the state of the world is represented simply as a

relational database. In order to have a planning problem that would run on both

systems, we took a standard planning problem (Rover domain) which was used in

the 2002 International Planning Competition [32]). In this domain, a collection of

rovers navigate a planet surface, finding samples of rocks, analyzing the samples,

and communicating the results back to a lander. We encoded this domain in HTN-

DL using a DL ontology. This encoding changes the original planning problem in

several ways:

1. Some facts about the state, such as the type of rovers involved and the rocks

on the planet, are described using the ontology. As a consequence, evaluating

the conditions of operators and methods resort to theorem proving rather than

simple database queries.

2. This domain, as many other standard planning domains, uses n-ary predicates

to represent some relations, e.g. can traverse(rover, loc1, loc2). We trans-

lated such relations using extra individuals, e.g. (can traverse(rover, path),

begins(path, loc1), ends(path, loc2). For this reason, HTN-DL versions of prob-

lems were larger compared to the original problems, especially the harder

problems contained significantly more number of individuals.

3. By following the example of [30], we “opened-up” the initial state by making

the knowledge about some of the predicates, such as the location of a rover,

incomplete.

Although the HTN-DL translations of the problems were considerably different

168

than the original problems to get an idea about the effectiveness of HTN-DL system,

we compared the performance results to JSHOP, the Java version of the SHOP

planner [95]. This is not really a fair comparison as the input planning problem to

the planners is different. The reason for using JSHOP (instead of another planner

that can better represent incomplete information) is because the most important

factor that affects planning time is the domain knowledge encoded in the planning

domain as seen in the results of the International Planning Competition [32]. Using

a different system that has a different way of representing control knowledge would

be even harder.

There were 20 different problems of increasing complexity provided in the plan-

ning competition and we ran both systems 20 times on each problem and computed

the average time spent on planning. Figure 7.7 shows (in logarithmic scale) the to-

tal planning time spent by both systems for the different problems in the suite. As

seen in the figure, the total planning time for HTN-DL is generally slightly greater

than JSHOP. However, for the hardest problem, where there are large number of

resources, HTN-DL performance is better than JSHOP. This is due to the fact that

DL reasoner Pellet used in HTN-DL is optimized to handle large number of in-

stances whereas the JSHOP implementation is not. This experiment shows that

even though the expressivity of the knowledge representation language increases

dramatically the reasoning time does not necessarily increase.

To test the performance of task matching/ranking in the presence of large

ontologies, we have created a planning domain about obtaining books using Web

Services. We created different versions of book-obtaining services which have dif-

169

Figure 7.7: Comparison of HTN-DL with JSHOP system

ferent conditions, e.g. some online stores require registration before you place an

order, a university library on the other hand will lend books only to its students

and faculty. The planner needs to find a service for each book in the request list,

verify the availability, ensure all the conditions of the service are met. The planning

problem is to buy one or more books where there are different restrictions for each

book, e.g. for a certain book we may be interested in only unused copies sold by a

high rated service.

Note that this is a relatively simple problem from a planning perspective but

has quite different characteristics than a usual planning problem. Classical planning

benchmark problems, e.g. famous blocks world problem, has generally dealt with

a small number of predefined actions, e.g. move block, in the presence of large

number of objects, e.g. hundreds of blocks. However, interesting Web Composition

170

problems generally deal with a large number of actions with varying properties, e.g.

hundreds of book selling services, but with limited number of objects involved, e.g.

buying a couple of books. For this reason, we believe this setting is a good starting

example that shows the characteristics of a Web Services domain.

For describing the task ontology, we have augmented the OWL version of

the North American Industry Classification System (NAICS) ontology with some

additional definitions. NAICS ontology contains definitions about 1800 categories

for classifying business establishments. We have used the categories such as “Book

stores” (NAICS code 451211), “Used Merchandise Stores” (NAICS code 453310),

“Electronic Shopping” (NAICS code 454111) and specialized these classes for book

buying services .

Figure 7.8 shows the planning time for solving different versions of this prob-

lem. We have randomly generated planning domains with 50, 100, 250, 500 and

1000 services and planning problems that involved buying 1, 2, 3, 5, and 10 books.

For each setting, we used 10 different problems and reported the average planning

time. Note that buying 10 books using 1000 services takes only 1.4sec which is quite

reasonable. Optimized instance retrieval algorithm used in task matching show a

linear behavior even for the cases where we have 1000 instances (i.e. services) and

2000 concepts (i.e. categories) in the task ontology.

171

Figure 7.8: Performance of HTN-DL planner where each line shows the time spent
with a different size of input task network

172

Chapter 8

Related Work

8.1 Description Logics and Planning

There are several different ways that Description Logics and planning systems

have been combined in the past. DLs have been used to represent the state of the

world, the actions used in planning and the plans generated. We will review the

different types of combinations and examine how they relate to HTN-DL.

The most common approach of using DL to represent the state of the world

is to use a propositional representation of planning problems where DL concept de-

scriptions represent different states. CLASP (CLassification of Scenarios and Plans)

[24] is one such system that uses the Classic [14] Description Logic to represent states

and actions. The actions are described in the STRIPS style with preconditions, add

lists and delete lists. These expressions as well as states can be expressed either

as a primitive DL concept or a conjunction of primitive concepts. A specific state

is represented as an instance of conjunctive concept. An action is applicable if the

current state is an instance of its precondition expression. State transition is com-

puted by removing/adding elements from/to the conjunctive concept as defined by

the action’s add and delete lists. In this regard, the planner uses Closed World

Assumption and requires complete knowledge about the problem to be given.

This approach to represent state is very closely related to that of De Giacomo

173

et. al. [20, 21, 68] where the tight correspondence between Propositional Dynamic

Logics (PDL) [110, 22] and Description Logics is used to reason about actions. The

correspondence is realized through a (onetoone and onto) mapping from PDLs for-

mulas to DLs concepts, and from PDLs actions to DLs roles. The state constraints

and effect axioms are described as inclusion axioms. The planning problem can be

posed as proving the subsumption Initial v ∃Any∗.F inal where Initial is the DL

concept describing initial state, final is the DL concept describing the goal state,

Any is a universal super role, and the operator ∗ is the transitive closure opera-

tor. Subsumption testing would be reduced to unsatisfiability and the plan would

be reconstructed from the proof of inconsistency. This representation can encode

concurrent actions (using role conjunction) and nondeterminism between actions

(using role disjunction) but has the disadvantage of requiring complete knowledge

about the world as pointed out by [7]. To overcome this problem a DL that in-

corporates non-monotonic operators, namely minimal knowledge operator K and

default assumption operator A, can be used [21, 68]. However, since no reasoner

supporting such an expressivity exists, the implementation of such a system resorts

to procedural rules of Classic making it somewhat limited.

In a similar vein, Badea [7] proposes a satisfiability based encoding of planning

problems in the spirit of [72]. This time the plan is constructed from a model

constructed by the DL reasoner. However, the complete knowledge requirement

still exists.

RAT (Representation of Actions using Terminological logics) [50] also uses

concept expressions to describe state of the world. But different from the previous

174

approaches, it has a more expressive precondition language where agreements and

disagreements between functional roles can be used to describe the relations between

action parameters. An action can be applied to a state if the precondition expression

subsumes the current world state.

Representing action hierarchies is another area where DLs have been used.

The main purpose is to provide an operation that can decide subsumption between

actions similar to the subsumption between concepts. CLASP system defines two

different kinds of subsumption between actions: “psubsumption” and “gsubsump-

tion”. Kemke [74, 73] provides a slightly different subsumption definition. Liebig

and Rosner [79] categorizes different subsumption techniques as follows:

• AbstractionSubsumption: Abstractionsubsumption means that an action

A1 subsumes another action A2 iff A1’s pre and postconditions are more gen-

eral than those of A2. Kemke’s definition conforms to this kind of subsump-

tion, as well as the “psubsumption” in CLASP.

• GoalSubsumption: This relation organizes actions simply by considering

the subsumption ordering of the goal description. This is useful, if a library is

searched for an action which secures the achievement of a given goal. This is

called “gsubsumption” in CLASP.

• ApplicabilitySubsumption: According to applicabilitysubsumption, an ac-

tion A1 subsumes an action A2 iff A1 is always applicable when A2 is. In

this case, it is necessary that A1 has a weaker precondition and a stronger

postcondition than A2.

175

Liebig and Rosner argues that different type of action subsumption is appropriate in

different settings. Although the precondition and effect languages in these systems

are quite different compared to HTN-DL, one can see the conceptual similarity be-

tween the task matching in HTN-DLand the definition of applicabilitysubsumption.

Since in HTN-DL, we are interested in replacing the task with an executable concrete

action, it is natural that applicabilitysubsumption is fitting for our purposes.

Action subsumption is closely related to plan subsumption and plan recog-

nition. CLASP system provides an extension to CLASSIC language where plans

can be defined from actions using operators SEQUENCE, LOOP, REPEAT, TEST

(conditional branching), OR (disjunctive branching), and SUBPLAN. The SUB-

PLAN construct supports modular definitions of plans through definitions of mean-

ingful sub-networks. Plan subsumption is then defined based on p-subsumption

and g-subsumption notions we explained earlier plus the subsumption between plan

expressions that are described using the above constructs. There is no recursion al-

lowed in the plan expressions so it is possible to represent each plan expression as a

regular expression. Then plan subsumption can be done by checking if the language

accepted by one deterministic finite automata (DFA) is subsumed by the other DFA.

Using this approach, CLASP can classify plans into a plan taxonomy and determine

if a specific plan instance, called a scenario, satisfies a plan expression. Although

this approach is quite useful since HTN-DL is more expressive regular expressions

(even totally ordered task networks can encode context-free languages [37]) it is not

directly applicable to HTN-DL.

The work of Baader et. al. [4], although not directly dealing with planning,

176

is closely related to HTN-DL. In their paper, authors propose to describe Web Ser-

vices using DL-based preconditions and effects similar to HTN-DL. Although their

service descriptions are ground, i.e. there are no input variables, their approach

can be easily extended to services with parameters. Authors provide a model-based

update semantics for their service descriptions. There are two problems considered

regarding reasoning about actions: executability and projection. Executability is

the problem of deciding if the preconditions of the service is satisfied in the current

state. Projection is to check if a certain condition holds after the execution of several

services. It is shown that executability and projection can be reduced to each other

and complexity results for a variety of DLs is provided. The limitations of the service

descriptions, e.g. restriction to only acyclic TBoxes, not using transitive properties,

allowing only primitive concepts in effects, are justified to avoid semantic problems

that are similar to those for disjunctive postconditions. The semantics provided

for the updates in this work is complementary to HTN-DL and as we discussed in

Section 3.2.3 and 3.3.1 could be integrated to HTN-DL.

8.2 Description Logics and Web Services

In this section, we will review the related work in the area of DLs and Web

Services. In particular, we will present the existing work on how DL reasoning has

been used to facilitate Web Service matchmaking. We will discuss how the task

matching features of HTN-DL relate to these approaches.

Research on matching Semantic Web Services has primarily focused on using

177

the subsumption relation between Web Service advertisements and requests. And

more specifically the subsumption relation between the input and output types have

been used to generate matchings for Web Services that were defined using OWL-S.

The OWL-S Matchmaker [97] is the first system that implemented this idea in a

system.

The Matchmaker system uses OWL-S profiles to describe service requests as

well as the services advertised. A service provider publishes a DAML-S description

to a common service repository. When someone needs to locate a service to perform

a specific task, a ServiceProfile for the desired service is created. Request profiles

are matched by the service registry to advertised profiles using DL subsumption as

the core inference service. In particular, the Matchmaker computes subsumption

relations between each individual input, output, precondition and effect (IOPE) of

the request and the advertisement Service Profile. If the classes of the corresponding

parameters are equivalent, there is an exact and thus best match. If there is no

subsumption relation, then there is no match. Given a classification of the types

describing the IOPEs, the Matchmaker assigns a rating depending on the number

of intervening named classes between the request and advertisement parameters.

Finally, the ratings for all of the IOPEs are combined to produce an overall rating

of the match. In summary, the basic rating used in matchmaking are as follows:

• Exact If advertisement A and request R are equivalent concepts, it is called

an Exact match

• PlugIn If request R is sub-concept of advertisement A, it is called a PlugIn

178

match

• Subsume If request R is super-concept of advertisement A, it is called a

Subsume match

• Fail Otherwise, there is no match

There have been several proposals [43, 78] to extend the matchmaking algo-

rithms to exploit more features of subsumption relations. For example, when there

is no subsumption relation between the advertisement and request, a rating called

Intersection may be assigned when their intersection is not empty, i.e. advertise-

ment and request descriptions are not disjoint. This case implies that relaxing some

of the constraints on the request may provide better results. And both approaches

differ from the Matchmaker because they use the whole service description, or more

correctly the profile description, for discovery purposes and try to find the subsump-

tion relation between these more complex class expressions. Li and Horrocks [78]

point out a problem about OWL-S profile descriptions where encoding too much

information in the profile, e.g. name and address of the provider, prevents effective

matching. They overcome this problem by separating various components of the de-

scription; in particular the description of the service being provided was separated

from the descriptions of the providing and requesting “actors”.

The main difference of task matching in HTN-DL is that we consider precon-

dition and effect expressions in the matching criteria. Without any precondition

and effect descriptions, our task matching criteria would indeed boil down to pure

type-based matching. But as we pointed out in Section 3.2.1, type-based matching

179

is not enough to differentiate functionality of parameters that has same types.

The METEOR-S Web Service Composition Framework (MWSCF) [111] is also

relevant as it allows users to describe abstract Web Service workflows. MWSCF

describes Semantic Process Templates (SPT) that describe a workflow of abstract

and concrete services. The templates may include QoS criteria that will be used

for discovery. For ranking discovered services, each selection criteria is assigned a

numerical score and a weighted combination of these scores are computed to rank

the services. The main difference of our approach compared to MWSCF is the

way we make use of non-deterministic choice constructs to encode possible different

execution paths and consider recursive decomposition of templates. MSWCF on the

other hand focuses on matching abstract services with atomic concrete services.

8.3 Web Service Composition and Planning

Several different AI planning techniques have been proposed to automate Web

Service composition. Most of these systems are based on causal planning where

there are only primitive actions but no composite actions. The state representation

is also limited to set of ground atoms and do not consider domain axioms. In what

follows, we will describe these planning systems in more detail and discuss how they

differ from HTN-DL.

The first approach for composing OWL-S services was described in [88] and is

based on the notion of generic procedures. This work extends the Golog language

to enable programs that are generic, customizable and usable in the context of the

180

Web. However, in Golog such programs are defined as macros and they are complied

away. So it is not possible to describe non-functional attributes of such programs

or use these attributes for flexible matching as in HTN-DL. The composition system

uses an augmented Golog interpreter that combines online execution of sensing

actions with offline simulation of world altering services. HTN-DL is very similar to

this approach in spirit. However, as discussed in Section 4.3, the Invocation and

Reasonable Persistence (IRP) assumption of [88] prevents the planner to change

(i.e. simulate the changes) the information gathered from external sources. One

advantage of using situation calculus as the underlying logical framework is the

additional expressivity and the ability to do arbitrary reasoning about first-order

theories. However, Golog implementation uses regression to reason about actions,

i.e. to solve executability and projection problems. As discussed in detail in [4],

translating OWL-S descriptions (or descriptions of similar expressitivity) to situation

calculus and applying regression yields a standard first-order theory which is not in

the scope of what Golog can handle without calling a general first-order theorem

prover.

In [87] a technique based on estimated-regression planning is proposed for

generating compositions of Web Services. The estimated-regression planner Optop

is used for this purpose. In Optop, a state of the planner is a situation, which is

essentially the current partial plan. Optop works with classical-planning goals; thus,

it checks whether the current situation satisfies the conjunction of the goal literals

given to the planner as input. During its search, Optop computes a regression-

match graph as described in [87], which essentially provides information about how

181

to reach to a goal state from the current situation. The planner returns the successor

situations that arises from applying the actions specified by that graph in the current

situation.

In a different approach, [82] proposed to model the services and the informa-

tion about the world by using the “knowledge-level formulation” first introduced in

the PKS planning system [103]. This formulation involves modeling Web Services

based on not what is actually true or false about them, but what the agent that

performs the composition actually knows to be true or false about their operations

and the results of those operations. In this approach, a composition is formulated

as a conditional plan, which allows for interleaving the executions of information-

providing and world-altering services. HTN-DLplans are not conditional because our

approach is based on executing the information-providing services during planning

to clear out the “unknown”s during planning time as much as possible. Modify-

ing HTN-DL algorithm to generate conditional plans would be valuable in order

to handle changing information. The other important difference of HTN-DL is the

treatment of knowledge. We do not model preconditions based on the knowledge of

the planning agent.

Another approach for Web Service composition is proposed in [104] and [113].

This approach is a planning technique based on the “Planning as Model Checking”

paradigm for the automated composition of web services described in OWL-S process

models. The OWL-S process models are translated into state transition systems that

describe the dynamic interactions with external services. The composition goals are

expressed in a language where temporal restrictions on goals and preferences about

182

goals can also be specified. With the composition goal and the state transition

systems, the planner, based on symbolic model checking techniques, returns an

executable process rather than a linear sequence of actions.

The XII [41] planner and its successor PUCCINI [40] was developed well before

Web Services came into existence but both planners designed to interact with so-

called softbots (SOFTware roBOTs). The SADL language developed for PUCCINI

distinguishes between (1) the world-altering and the observational effects of the

actions, and (2) the goals of satisfaction and the goals of information. The planner

can work under incomplete information but is also able to represent closed world

features using Local Closed World (LCW) representation [28]. LCW allows the

planner to know that it has complete knowledge about a subset of the state of

the world. PUCCINI algorithm, which is an extension of UCPOP [101], interleaves

execution and planning by invoking (mostly sensing) actions during planning. If

executed actions have some side-effects and the planner needs to backtrack, the

reversing actions are used to undo the side-effects. Although the state of the world

representation in PUCCINI is limited to ground set of literals but truth value of

literals are three-valued as in HTN-DL. There is also a strong similarity between the

LCW axioms and nominals in DLs as nominals can be used to “close the world”

by enumerations. Certain LCW axioms can be seen as syntactic variations of DL

axioms using nominals [49].

183

Chapter 9

Conclusions

9.1 Summary

In this thesis we have identified some of the challenges of automated Web Ser-

vice composition problems; namely, decentralized setting, handling service attributes,

composite services, reasoning with open world semantics, need for interleaved execu-

tion and composition and efficiency.

To address all these challenges, we presented HTN-DL which combines the

HTN planning formalism with DL representation. There are many novel features

of HTN-DL that make it suitable for solving Web Service composition problems.

The service categorization and non-functional attributes of services are described

in a task ontology that allows flexible matchmaking. The state of the world is

also represented as a DL knowledge base so that we have a much more expressive

language with Open World semantics. HTN-DL also differentiates between world-

altering effects and knowledge effects making it possible to interleave planning with

execution by invoking information-providing services during composition.

We show that HTN-DL methods are capable of representing control constructs

that are commonly used to model composite Web Services. Specifically, we provided

an algorithm to translate process models expressed in the Semantic Web Service lan-

guage OWL-S to HTN-DL. This translation provides a semantics for OWL-S process

184

models. We also show this semantics is compatible with a previous proposal that

gives a semantic for OWL-S in terms of situation calculus.

As the planning system relies on the inferences drawn by the DL reasoner, the

practicality of the proposed solution crucially depends on the efficiency of the DL

reasoner. For this reason, several novel optimization techniques, especially geared

toward handling nominals and large number of individuals, are presented in this

thesis. These are the first optimization techniques developed for nominals and em-

pirical analysis shows that these techniques can drastically improve the performance

of consistency checking, classification, and realization tasks. The other frequently

used reasoning service by the the HTN-DL planning system is conjunctive query

answering. To improve query evaluation times, optimization techniques for con-

junctive query answering inspired by the techniques used in relational databases are

presented.

Finally we presented our prototype implementation for HTN-DL. We described

the system architecture of the HTN-DL components; namely, Pellet, the OWL-DL

reasoner, and OWL-S API, an API for managing and executing Web Services. We

also present the empirical evaluation of the system performance.

9.2 Contributions and Impact

The contributions of this thesis are as follows:

• HTN-DL formalism, which couples HTN planning and Description Logics, com-

bines the expressivity of Description Logics with the efficiency of HTN plan-

185

ning systems to solve Web Service composition problems. The hierarchical

structure of HTN-DL domains can conveniently describe composite Web Ser-

vice descriptions and fit in well with the loosely coupled nature of Web Ser-

vices. Ontology-based reasoning provides a flexible mechanism to reuse the

Web Services that are defined by separate developers in different contexts.

• A translation algorithm from OWL-S to HTN-DL is provided showing that the

control constructs used to describe the control flow of a Web Service workflow

can be encoded as HTN-DL domains. The translation provides a semantics for

OWL-S processes and is shown to be compatible with the previously proposed

Situation Calculus based semantics of OWL-S.

• Novel optimizations for DL reasoning targeting nominals and large number of

individuals are presented. Our empirical analysis shows that these optimiza-

tions drastically improve consistency checking, classification and realization

tasks.

• Optimizations for conjunctive query answering w.r.t. DL knowledge bases

are introduced. Inspired by query optimization techniques used in relational

databases, a cost-based model is presented to estimate the evaluation time of

DL queries. We propose efficient heuristics to compute the costs of queries and

demonstrate the effectiveness of the query optimization techniques empirically.

• An implementation of HTN-DL planning system that interacts directly with

Web Services is presented. The components of the planning system, OWL-DL

186

reasoner Pellet and API for OWL-S services, are also released as stand-alone

tools and have been incorporated in many systems.

HTN-DL is the first formalism to combine planning with expressive knowledge

representation. It has an efficient implementation and it provides a promising so-

lution for Web Service composition problems. The optimizations for DL reasoning

presented in this thesis are not only applicable in Web Service composition problems

but improve DL reasoning performance for classification, realization and conjunc-

tive query answering. For example, Pellet can classify the notoriously hard Wine

ontology using the optimizations described in this thesis. The DL reasoner Pellet

and OWL-S API are also released as stand-alone open-source software. They are

incorporated in several academic and industrial projects such as Task Computing

Environment of Fujitsu Labs and Swoop in University of Maryland.

9.3 Discussion

The HTN-DL formalism tackles many of the problems associated with automat-

ing the composition of Web Services but there are still many issues that need to be

addressed. HTN-DL can serve as basis for a more extensive Web Service composition

framework that deals with these issues.

One problem we have not addressed throughout the thesis is the process of

discovering Web Service descriptions. The HTN-DL planner assumed that all the

service descriptions would be provided as input to the system. This is not very

realistic as we cannot expect the user’s planning agent to crawl the Web to find all

187

available Web Services. There are obviously practical issues because the number

of available Web Services is most likely to be very high. The anticipated way of

discovering Web Services is through Web Service registries where providers publish

the descriptions of their Web Services and users search the registry for an appropriate

service. Universal Description Discovery and Integration (UDDI) [114] is a standard

proposed for such a Web Service registry system based on WSDL descriptions.

Paolucci et. al. [98] discusses how to extend the UDDI architecture to enable

matching based on Semantic Web Services descriptions. A similar extension can be

designed for HTN-DL.

We also did not discuss in this thesis how one can trust the Web Service de-

scription will actually perform the task it claims to perform. The service description

might say that it sells books, but we do not have a guarantee that the service will

ship the book after the credit card is charged. Similar situations exist when a human

user is manually finding and executing services on the Web. However, automating

the generation of composition process makes the problem more serious because the

control and involvement of a human (who is supposed to make the decision whether

to use the service or not) is now minimized. We discussed in Chapter 3 how task

ontologies might be used to describe non-functional attributes of a service that

might include policy descriptions. The task matching might be limited to services

that satisfy certain policy requirements. Although there are several proposals —

including WS-Policy [122] and WS-Trust [123] — to describe such properties, the

standards are still very far away from allowing automatic verification of Web Service

descriptions.

188

One other problem we overlooked in this thesis is changing information. It

is possible that, during planning, some of the information the planner has will be

changed by external agents. We have no control over such events. It might not

always be possible to detect such cases. For example, we might gather the infor-

mation that a book is in stock in a bookstore, but before we execute the generated

plan, the last copy of the book might be sold to someone else.

9.4 Future Work

There are several different research directions which can improve and extend

the work presented in this thesis:

• Global Consistency In this work we made the global consistency assump-

tion, which requires the state of the world to be consistent and the updates

to yield consistent world states. However, this consistency requirement is not

achievable in a distributed environment such as the Web. There are at least

two different types of inconsistency that can arise. First, there can be a con-

tradiction between domain ontologies used to describe services. Second, even

if the domain ontologies are consistent, the information we gather from remote

services might be contradictory with each other or with the domain ontolo-

gies. For example, the first kind of contradiction arises if two service ontologies

describe the same concept in a conflicting way, e.g. one stating the a flight

itinerary can be associated with at most one flight where the other ontology

describes itineraries with multiple flights. The second type of inconsistency

189

can occur if one service says there is a seat available in one specific flight where

the second service says that flight is completely booked.

In [75], we provided a simple and effective, yet not a completely satisfactory,

solution for these kinds of inconsistencies by using trust metrics associated with

information-providing Web Services. If each service is associated with such a

ranking, we can start the execution of services with the highest ranked service

and ignore the results of a service if it contradicts with previous information we

collected. This simple sort of ranking scheme seems well suited for Web Service

developers and easy to integrate with WSDL or OWL-S descriptions. However,

this “all-or-nothing” approach has the disadvantage of discarding parts of the

information that might not be contradictory. Applying this similar strategy

to domain ontologies would be even harder because a contradiction does not

mean imperfect or faulty information as in the previous case but indicates a

more intrinsic problem in the way these ontologies model the world. In such

cases, using a paraconsistent logic that is robust in the face of inconsistencies

would be more appropriate. The kind of paraconsistency required and how

this will affect reasoning procedures is subject to future research.

• Web Service Choreography and Multi-agent Aspects One of the moti-

vations behind HTN-DL was to deal with Web Service descriptions developed

by separate providers. Although these services are decentralized, they are all

considered to be reactive; that is, the composition system finds, executes, and

handles coordination between them. In that sense, the HTN-DL framework

190

is motivated toward orchestration of Web Services. On the other hand, it

is possible to have more proactive services that can act autonomously. The

choreography of such services is closer to multi-agent systems where multiple

agents share or compete with resources and knowledge to solve planning prob-

lems. In such settings some of the remote services could be capable of solving

a subproblem of our overall goal, e.g. achieve one of the tasks in the input

task network, and we can delegate this problem to another agent.

• Preferences and Optimal Compositions This thesis concentrates on rep-

resenting Web Service composition problems and efficiently finding composi-

tions. But we do not address the preferences of the users regarding the services

used or the plans generated. User preferences can be specified in the composite

service descriptions to control how task matching will be done, e.g. rank the

possible matching services and use the most desire one. Or users might specify

some overall optimality conditions such as minimizing the total cost of compo-

sition. However, ensuring that the plan found is optimal with respect to such

conditions would typically not be practical in the Web Services context. Since

there are many different services that can be used for each task, exploring all

possibilities cannot be achieved in a reasonable time. We hypothesize that an

any-time algorithm that is capable of generating near-optimal solutions would

be appropriate in this setting.

• Planning without Method Descriptions The HTN-DL planner, as any

other HTNplanning system, requires the existence of method definitions for

191

decomposing a compound task into smaller tasks. In the event that there are

no matching tasks, the planner fails to find a plan. One way to overcome this

problem is to use a mixed-initiative planning system where the user helps to

find or build an appropriate method description for the missing step. Such a

solution has been successfully integrated into existing HTN planning systems,

e.g. see the HiCAP [1] system that employs SHOP2 [94] as a component of a

mixed initiative system. Another possible solution is to learn HTN domains

from existing plan traces as done in [67, 66, 34]. Looking at the previously

executed plans, a system can automatically generate method descriptions. A

similar approach has been adopted in the Web Services setting in the name

of workflow mining (or process mining) [118, 116, 42]. The objective of work-

flow mining is to generate a Web Service workflow description from execution

traces of Web Services. Given the correspondence between workflows and HTN

methods we provided in Chapter 4, the combination of techniques developed

in planning and workflow research might be fruitful for Web Services. And, fi-

nally, if there is not an available method to do task decomposition, one can use

classical causal planning to fill in the missing step. Since the task descriptions

in HTN-DL provide the expected effects of a task, a straight-forward causal

planning problem would be described by using the effects of the task as the

goal formula.

192

Appendix A

Proofs

Translation from OWL-S to HTN-DL

Theorem A.1 Let K = {K1, K2, . . . , Km} be a collection of OWL-S process mod-

els, C be a possibly composite process defined in K, S0 be the initial state, and

P = (p1, p2, . . . , pn) be a sequence of atomic processes defined in K. Then P is

a composition for C with respect to K in S0 iff P is a plan for planning problem

(S0, TC, D) where TC is the task network containing the single task returned by the

translation for process C, and D is the HTN-DL domain created from K.

Proof The proof of the theorem is by induction:

Hypothesis For a given OWL-S process C, P is a plan for the planning problem

(S0, TC , D) iff Σ |= Do(δC , S0, do(~a, S0))) where ~a = [a1, a2, . . .] is the sequence of

primitive actions in situation calculus that corresponds to the sequence of HTN-DL

operators in P .

Base Case Suppose A is an atomic OWL-S process and a is the corresponding

primitive action in situation calculus. Suppose oA and tA are the corresponding

HTN-DL operator and task for A. Then in Golog it is defined that

Do(a, s, s′) = Poss(a, s) ∧ s′ = do(a, s)

193

It means when the preconditions for the process is satisfied with respect to sit-

uation s then the primitive action sequence we will get for this simple program

will have only one element, namely ~a = [a]. In line 5 of HTN-DL algorithm,

find-applicable will return only oA since that is the only operator (or method)

in the domain that matches the task tA when the preconditions of the operator

are satisfied. As seen in line 10 the returned plan will contain only oA since the

recursive call will return empty list as there are no more tasks in the task network

to perform. Thus, the plan returned by HTN-DL is [oA] which is equivalent to the

situation calculus result.

Inductive Step We will do a case by case analysis for each of the control con-

structs in the process model to show that our translation and resulting plans HTN-DL

finds are correct.

Choice Suppose C is a control construct defined as a Choice of two1 other pro-

cesses C1 and C2. The HTN-DL translation for C will yield a task tC and two methods

M1 and M2 such that both methods match tC . Corresponding Golog program for

C is δC = δC1 | δC2 and the semantics is defined as

Do(δC1 |δC2 , s, s
′) = Do(δC1 , s, s

′) ∨Do(δC2 , s, s
′)

The disjunction means any ~a that is a valid action sequence for either δC1 or

δC2 will also be a valid sequence for δC . From our hypothesis we know for each action

sequence ~a that satisfies δC1 (or δC2) we have a valid HTN-DL plan PC1 (or PC2).

1The Golog choice operator | is defined for two operands. A choice of more operands could be
done by nested | operators which would not effect our proof here

194

The nondeterministic choices in HTN-DL algorithm (line 6 and line 12) shows that

when a plan is being sought for tC , any solution for any matching action instance, in

this case M1 and M2, will be returned as a result. This is due to the fact that those

two methods are the only ones in D that matches with task tC . Furthermore there

is only one simple reduction per method because both methods have only one task

network containing only one subtask in them and the set of local variables,i.e. V ,

is empty. Thus the nondeterministic choice ensures that when HTN-DL is asked to

find all the plans for C, both PC1 and PC2 will be returned proving the equivalence

to the answer in situation calculus.

Sequence Suppose C is a control construct defined as a Sequence of two other

processes C1 and C2. The corresponding Golog program for C is δC = δC1 ; δC2 and

the semantics is defined as

Do(δC1 ; δC2 , s, s
′) = (∃s∗)(Do(δC1 , s, s

∗) ∧Do(δC2 , s
∗, s′))

Suppose that situation s∗ represents a history of the action sequence ~a1. If the

action sequence recorded between situations s∗ and s′ is ~a2 then the final situation

s′ represents the concatenated sequence ~a =[~a1, ~a2].

The HTN-DL translation for Ci will yield a pair of task and method tCi and

MCi such that MCi matches Mti. Similarly translation for C will return a task tC

and one method MC such that MC matches tC . Furthermore MC has the conditional

task network (> : ({u1 = tC1, u2 = tC2}, {(u1, u2)}, λ)). Calling HTN-DL(s, tC1, D)

2 will return PC1 and from our hypothesis we know that it is equivalent to the action

2 We are abusing the notation here by using the task tC1 instead of the task network containing
only the task tC1.

195

sequence ~a1. We also know that calling HTN-DL(s∗, tC2 , D) will return a plan PC2

that is equivalent to the action sequence ~a2. The HTN-DL algorithm shows that

(line 14) when a task (in this case tC) is removed from the input task network w, it

is replaced with its simple reduction (in this case a task network containing tC1 and

tC2 and additional edges preserving the order of the subtasks). The tasks to solve

are selected from w in the order imposed by the edges in the network (line 4) so the

resulting plan for HTN-DL(s, tC , D) will actually be the concatenation of PC1 and

PC2 which is equivalent to the sequence ~a.

If-Then-Else Suppose C is a control construct defined as an If-Then-Else and

cond is the condition for the if statement, C1 is the process in the then part and C2

is the process in the else part. Corresponding Golog program for C is δC = (if cond

then δC1 else δC2 endIf) and the semantics is defined as

Do(if cond then δC1 else δC2 endIf, s, s’)

= Do((cond?; δC1), s, s’) ∨ Do((¬cond?; δC2), s, s’)

= (cond[s] ∧ Do(δC1 , s, s’)) ∨ (¬cond[s] ∧ Do(δC2 , s, s’))

The expression cond[s] evaluates to true whenever the fluent cond is true in situation

s. Suppose ~a1 is the action sequence for the situation δC1 and ~a2 is the action

sequence for the situation δC2 . If s satisfies cond then the result for δC will be ~a1

otherwise result will be ~a2.

The HTN-DL translation for Ci will yield a pair of task and method tCi and MCi

such that MCi matches Mti. Similarly translation for C will return a task tC and one

method MC such that MC matches tC . Furthermore MC has the conditional task

196

network (cond : ({u1 = tC1}, ∅, λ1); (> : ({u1 = tC2}, ∅, λ2)). From our hypothesis

we know that for any possible ~a1 (or ~a2) we have a valid HTN-DL plan PC1 (or PC2).

When we call HTN-DL(s, tC , D), the algorithm will check the conditions in the

method definition (line 12), cond and> to find a simple reduction. If cond is satisfied

then the algorithm returns PC1 and otherwise returns PC2 which is equivalent to the

the result in situation calculus.

Repeat-While Suppose C is a control construct defined as a Repeat-While and

cond is the condition for the while statement and C1 is the process in the loop body.

Corresponding Golog program for C is δC = (while cond do δC1 endWhile) and

the semantics is defined as

Do(while cond do δC1 endWhile, s, s’) = Do([[(cond?; δC1)]
∗; ¬cond?], s, s’)

This definition includes the nondeterministic iteration operation * which has a

second-order semantics [77]. We will use the restricted version of Golog as defined in

[88] where the the iterations has a limit k. This restriction eliminates the problems

caused by unlimited looping and enables us to define a first order semantics.

The HTN-DL translation for C1 will yield a pair of task and method tC1 and

MC1 such that MC1 matches Mt1. Similarly translation for C will return a task tC

and one method MC such that MC matches tC . Furthermore MC has the conditional

task network (cond : ({u1 = tC1u2 = tC}, {(u1, u2)}, λ1); (> : ∅, ∅, λ2)) where λ1 and

λ2 are the parameter bindings handling the data flow.

Assume the iteration runs k times. When k = 0, the above formula will

simplify to Do(¬cond?, s, s’) which returns an empty action sequence in situation

197

calculus. This new formula also implies condition cond is false in the initial situation

s. When HTN-DL is trying to solve MC , since cond is false the algorithm will choose

(line 12) the second condition-task list pair (note that the second condition in MC

is ∅ which is always true). The second task list is ∅ so HTN-DL will return an empty

plan as well. Suppose ~a is a valid action sequence for δC1 . From our hypothesis we

know for each action sequence ~a that satisfies δC1 we have a valid HTN-DL plan PC1.

In the general case, when k > 0, the Golog formula becomes Do([cond?; (δC1)
1;

. . .; cond?; (δC1)
k; ¬cond?], s, s’) hence the action sequence will be [~a1, . . ., ~ak].

Note that action sequence for each step of iteration may be different, for example

when δC1 contains nondeterministic choices. We also know that cond will be true

in situations s, s1, . . . , sk−1 and false in situation sk. When HTN-DL is searching a

plan for tC , the first condition (cond) will evaluate to true and HTN-DL will chose

the first task network containing tasks (tC1, tC). Solving the first task tC1 will add

P1 to the plan and solving second task C will recursively continue until cond fails.

Since, initial states are equal and plan prefixes are same, cond will not hold after

kth iteration. At this point, algorithm will chose the second condition-task list pair

(empty task list) which will conclude the recursion and the plan returned will be [P1,

. . ., Pk]. At each step of the iteration we will have the equivalent world states so the

action sequence ai and plan Pi will be equivalent due to our hypothesis. Therefore,

the final plan and the final action sequence will be equivalent.

Repeat-Until The proof for this case is very similar to the above proof for

Repeat-While construct and is omitted. 2

198

Nominal Absorption

Proposition A.1 (5.1) The inclusion axiom (5.1) is logically equivalent to the set

of axiom and assertions in (5.2)

C ≡ {a1, . . . , an} (A.1)

C v {a1, . . . , an} and C(a1) and . . . and C(an) (A.2)

Proof The axiom (A.1) is equivalent to the combination of following two axioms

C v {a1, . . . , an} (A.3)

{a1, . . . , an} v C (A.4)

By the definition of enumerations, axiom (A.4) is equivalent to:

{a1} t . . . t {an} v C (A.5)

We can rewrite axiom (A.5) as the following n separate axioms:

{a1} v C and . . . and {an} v C (A.6)

which is obviously valid based on the semantics

({a1} t . . . t {an})I ⊆ CI ⇐⇒ {a1}I ⊆ CI and . . . and {an}I ⊆ CI

199

Axiom (A.6) is equivalent to the following set of assertions:

C(a1) and . . . and C(an) (A.7)

because for each i we have

{ai}I ⊆ CI ⇐⇒ (ai)
I ∈ CI

since {a}I = {aI}.

Thus, we have shown that axiom (A.1) is transformed into the combination of

(A.3) and (A.7) which is equivalent to (A.2). 2

Proposition A.2 The following two inclusion axioms are logically equivalent:

∃p.{o} v C (A.8)

{o} v ∀p−.C (A.9)

Proof Let I = (∆I , ·I) be a model of (A.8) s.t. it does not satisfy (A.9). Since

I does not satisfy (A.9), then oI /∈ (∀p−.C)I which implies that oI ∈ (∃p−.¬C)I .

Thus, there exists an object x ∈ ∆I s.t. (x, oI) ∈ pI and x ∈ (¬C)I . On the

other hand, since Isatisfies (A.8) and x ∈ (∃p.{o})I , then x ∈ CI , which yields a

contradiction.

Let J = (∆J , ·J) be a model of (A.9) s.t. it does not satisfy (A.8). Since J

does not satisfy (A.8), there exists an x ∈ ∆J s.t. (x, oJ) ∈ pJ and x /∈ CJ . On

200

the other hand, since J satisfies (A.9), oJ ∈ (∀p−.C)J and, since (oJ , x) ∈ (p−)J ,

then x ∈ CJ , which again yields a contradiction. 2

Nominal-Based Pseudo-Model Merging

Theorem A.2 Let G′ = (V ′, E ′,L′, 6=) be the initial completion graph for the con-

cept C w.r.t the ontology O such that V ′ = {rC , ro1 , . . . , rom} where rC is the root

node for concept C and roi
is the nominal node corresponding to nominal oi. L′ is

initialized such that L(rC) = {C} and L(roi
) = {oi} for 1 ≤ i ≤ m.

Let G be the set of all complete and clash free graphs for C w.r.t. O that can

be obtained from G′ through the application of the expansion rules. If there is a

role p s.t. for every G = (V, E,L, 6=) in G there exists an edge 〈rC , ro〉 ∈ E with

p ∈ L(〈rC , ro〉), then, O |= C v ∃p.{o}.

Proof Let us assume that O 6|= C v ∃p.{o}. This means there should be an

interpretation where there is an element that belongs to both concept C and ∀p.¬{o}

(which is the negation normal form of ¬(∃p.{o}). Then we should be able to build

a clash free and complete completion graph starting with the initial graph G′′ =

(V ′′, E ′′,L′′, 6=) where L(r′′) = {C,∀p.¬{o}}. Since the graph G′′ is same as G′ with

one additional element in L(r), all the tableau rules applicable to G′ will still be

applicable to G′′. This means, every possible application of tableau expansion rules

to G′′ will yield a member of G (with the additional element ∀p.¬{o} in L′′(x)).

Then, by the assumption of the lemma, we know that p ∈ L′′(〈r, ro〉) would hold.

Therefore, the application of the ∀-rule would create a clash in G′′ since it would

201

add ¬{o} to the label of ro node. Hence we conclude no such clash free completion

graph exists and O |= C v ∃p.{o}. 2

Lemma A.1 Let O |= C v ∃p.{o}. Let T = (S,L,E) be a tableau for C w.r.t. O.

Then:

1. If p is a simple role, then, for any s ∈ S with C ∈ L(s) we have 〈s, o〉 ∈ E(p)

2. If p is not simple, there exists a role q v∗R p, Trans(q) = true and a path

s0, . . . , sk s.t. k ≥ 1, s = s0, o = sk and (si, si+1) ∈ E(q) for 0 ≤ i < k

Proof In [62] it is shown that the interpretation I = (∆I , ·I) defined from T as

follows:

• ∆I = S

• AI = {s | A ∈ L(s) for all atomic concepts A occurring in C or O}

• pI =


E(p)+ if Trans(p) = true

E(p) ∪
⋃

∀q,qv∗Rp

qI otherwise

is a model of O. Moreover, it is shown that:

1. If D ∈ L(s) then s ∈ DI

2. 〈s, t〉 ∈ E(p) iff 〈s, t〉 ∈ pI or there exists a role q v∗R p with Trans(q) = true

and a path s0, . . . , sk with k ≥ 1, s = s0, t = sk and 〈si, si+1〉 ∈ E(q) for

0 ≤ i < k. Moreover, if p is simple, pI = E(p)

Now, suppose that p is simple, s ∈ S, C ∈ L(s) and 〈s, o〉 /∈ E(p) Using (1) and

(2) above, we have that s ∈ CI and 〈s, o〉 /∈ pI , which implies that s /∈ (∃p.{o})I .

202

Consequently, I is a model of O that does not satisfy the axiom C v ∃p.{o}, and

hence a contradiction.

Suppose that p is not simple and there is no path s0, . . . , sk with k ≥ 1, s =

s0, o = sk and 〈si, si+1〉 ∈ E(q) for 0 ≤ i < k with q v∗R p and Trans(q) = true. If

C ∈ L(s), then by (1) and (2), we have that s ∈ CI and 〈s, o〉 /∈ pI , which again

yields a contradiction. 2

Lemma A.2 Assume that there is a simple role p s.t. in every tableau T =

(S,L,E) for C w.r.t. O if C ∈ L(s) for s ∈ S then 〈s, o〉 ∈ E(p) where o is a

nominal occurring in O.

Let G = (V, E,L, 6=) be a clash-free and complete completion graph for C w.r.t.

O and let the node x ∈ V be s.t. C ∈ L(x).

Then, the nominal node ro ∈ V is a p-neighbor of x in G.

Proof We will prove that from G, which is clash free and complete, it is possible

to construct a tableau T for C w.r.t. O. The way this is done is identical to the

soundness proof for SHOIN presented in [62].

More precisely, a path is a sequence of pairs of blockable nodes of G of the form

p̃ = (x0

x′0
, . . . , xn

x′n
). For such a path we define Tail(p) = xn and Tail′(p̃) = x′n. With

(p̃|xn+1

x′n+1
) we denote the path p̃ = (x0

x′0
, ..., xn

x′n
, xn+1

x′n+1
). The set Paths(G) is inductively

defined as follows:

• For each blockable node x of G that is a successor of a nominal node or a root

node, (x
x
) ∈ Paths(G), and

203

• For a path p̃ ∈ Paths(G) and a blockable node y in G:

– If y is a successor of Tail(p̃) and y is not blocked, then (p|y
y
) ∈ Paths(G)

and

– If y is a successor of Tail(p̃) and y is blocked by y′, then (p|y′
y
) ∈

Paths(G)

Due to the construction of Paths(G), all nodes occurring in a path are block-

able and for p̃ ∈ Paths(G) with p̃ = (p̃′| x
x′

), x is not blocked, x′ is blocked iff

x 6= x′ and x′ is never indirectly blocked. Furthermore the blocking condition im-

plies L(x) = L(x′). We denote by Nom(G) the set of nominal nodes in G and

define a tableau T = (S,L,E) from G as follows:

• S = Nom(G) ∪ Paths(G)

• L(p̃) =


L(Tail(p̃)) if p̃ ∈ Paths(G)

L(p̃) if p̃ ∈ Nom(G)

• E(R) = {〈p̃, q̃〉 ∈ Paths(G×G) |

q̃ = (p| x
x′

) and x′ is an R-successor of Tail(p̃) or

p̃ = (q| x
x′

) and x′ is an inv(R)-successor of Tail(q̃)}∪

{〈p̃, a〉 ∈ Paths(G)×Nom(G)| a is an R-neighbor of Tail(p̃)} ∪

{〈a, p̃〉 ∈ Nom(G)×Paths(G)| p̃ is an R-neighbor of a} ∪

{〈a, b〉 ∈ Nom(G)×Nom(G) | b is an R-neighbor of a}

In [62] it is proved that T constructed this way is a tableau for C w.r.t. O.

204

Now, assume that the nominal node ro ∈ V is not a p-neighbor of x in G

where C ∈ L(x). We show that we then encounter a contradiction.

There are three possibilities:

1. x is not blocked and is not a nominal node in G

2. x is blocked and is not a nominal node in G

3. x is a nominal node in G

Suppose x is not a nominal node in G, it is not blocked and C ∈ L(x).

Since x is not a nominal node and it is not blocked then there is a path p̃ in G

s.t. Tail(p̃) = Tail′(p̃) = x. By construction of T , p̃ ∈ S and C ∈ L(p̃). By

assumption of the Lemma, 〈p̃, o〉 ∈ E(p). However, we also know that a is not a

p-neighbor of x = Tail′(p̃) in G and by construction of T , 〈p̃, o〉 /∈ E(p) and hence

the contradiction.

Suppose x is not a nominal node in G, it is blocked by y and C ∈ L(x). Since

x is not a nominal node and it is blocked then there is a path p̃ in G s.t. Tail(p̃) = y

and Tail′(p̃) = x, with L(x) = L(y). By construction of T , p̃ ∈ S and C ∈ L(p̃). By

assumption of the Lemma, 〈p̃, o〉 ∈ E(p). However, we also know that x = Tail′(p̃)

is not a p-neighbor of a in G and by construction of T , 〈p̃, o〉 /∈ E(p) and hence the

contradiction again.

Finally, suppose that x is a nominal node in G and C ∈ L(x). Since x is a

nominal node then x ∈ S and C ∈ L(x), by construction of T . By assumption of

the Lemma, 〈x, o〉 ∈ E(p). However, we also know that a is not a p-neighbor of x

in G and by construction of T , 〈p̃, o〉 /∈ E(p) and hence the contradiction again. 2

205

Lemma A.3 Assume that there is a non-simple role p s.t. in every tableau T =

(S,L,E) for C w.r.t. O if C ∈ L(s), then there exists a role q v∗R p with Trans(q) =

true and a path s0, . . . , sk s.t. k ≥ 1, s = s0, t = sk and (si, si+1) ∈ E(q) for

0 ≤ i < k.

Let G = (V, E,L, 6=) be a clash-free and complete completion graph for C

w.r.t. O and let the node x ∈ V be a node with C ∈ L(x), then there exists a path

z0, . . . , zk in G with k ≥ 1, x = z0, o = zk and zi a q-neighbor of zi−1 for 0 ≤ i < k

and q vR∗ p.

Proof Let x be a node with C ∈ L(x), and assume that there is no path z0, . . . , zk

in G with k ≥ 1, x = z0, o = zk and zi a q-neighbor of zi−1 for 0 ≤ i < k and

q vR∗ p.

Identically to the proof of Lemma A.2, we can construct a tableau T =

(S,L,E) from G. By construction of T , C ∈ L(p̃), where Tail(p̃) = x. We have

two possibilities:

• x is not an ancestor of o in G.

• x is an ancestor of o, but there exists a pair of nodes y1, y2 s.t. x is an ancestor

of y1, y2 is an ancestor of o and y2 is a successor of y1, but y2 is not a q-neighbor

of y1.

In the first case, we obviously encounter a contradiction, because x and o are

not even connected in G. The second case reduces to the proof of Lemma 4. Let

p̃, q̃ be paths in G (according to the definition of the set Paths(G) in Lemma 4)

206

with Tail′(p̃) = y1 and Tail′(p̃) = y2 then (p̃, q̃) /∈ E(q) (note that by construction

p̃, q̃ ∈ S) and hence we find a contradiction. 2

Theorem A.3 Let O |= C v ∃p.{o} with C satisfiable w.r.t. O, then in every

clash-free and complete graph G for C w.r.t. O there must exist a blockable node x

with no predecessors (i.e. a root) that verifies the following:

• If p is simple then the nominal node o must be a p-neighbor of x in G

• If p is not simple, then there must exist a path z0, . . . , zk in G with k ≥ 1, x =

z0, o = zk and zi a q-neighbor of zi−1 for 0 ≤ i < k and q v∗R p.

Proof It is a straightforward consequence of the above lemmas. 2

207

BIBLIOGRAPHY

[1] David W. Aha, Leonard A. Breslow, Héctor Muñoz-Avila, Dana S. Nau, and

Rosina Weber. HICAP: Hierarchical interactive case-based architecture for

planning, 1999.

[2] José Luis Ambite and Matthew Weathers. Automatic composition of aggre-

gation workflows for transportation modeling. In dg.o2005: Proceedings of the

2005 national conference on Digital government research, pages 41–49. Digital

Government Research Center, 2005.

[3] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, and P.F. Patel-

Schneider, editors. The Description Logics Handbook: Theory, Implemen-

tations, and Applications. Cambridge University Press, 2003.

[4] F. Baader, C. Lutz, M. Milicic, U. Sattler, and F. Wolter. Integrating descrip-

tion logics and action formalisms: First results. In Proceedings of the Twenti-

eth National Conference on Artificial Intelligence (AAAI-05), Pittsburgh, PA,

USA, 2005.

[5] F. Baader and U. Sattler. An overview of tableau algorithms for description

logics. Studia Logica, 69:5–40, 2001.

[6] Franz Baader, Jan Hladik, Carsten Lutz, and Frank Wolter. From tableaux

to automata for description logics. Fundamenta Informaticae, 57:1-33, 2003.

[7] Liviu Badea. Planning in description logics: Deduction versus satisfiability

testing. In Description Logics, 1998.

208

[8] B. Benatallah and F. Casati. Special issue on web services. Distributed and

Parallel Databases, 12(2–3), September 2002.

[9] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific

American, 284(5):34–43, May 2001.

[10] Jim Blythe, Ewa Deelman, and Yolanda Gil. Automatically composed work-

flows for grid environments. IEEE Intelligent Systems, 19(4):16–23, 2004.

[11] Anthony J. Bonner and Michael Kifer. An overview of transaction logic. The-

oretical Computer Science, 133(2):205–265, 1994.

[12] David Booth, Francis McCabe, Eric Newcomer, Michael Champion, Chris Fer-

ris, and David Orchard. Web services architecture. W3C Working Group Note

11 February 2004 http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.

[13] Alex Borgida. On the relationship between description logic and predicate

logic queries. In CIKM ’94: Proceedings of the third international conference

on Information and knowledge management, pages 219–225, New York, NY,

USA, 1994. ACM Press.

[14] Alexander Borgida, Ronald J. Brachman, Deborah L. McGuinness, and

Lori Alperin Resnick. Classic: a structural data model for objects. In SIG-

MOD ’89: Proceedings of the 1989 ACM SIGMOD international conference

on Management of data, pages 58–67, New York, NY, USA, 1989. ACM Press.

209

[15] D. Brickley and R.V. Guha. RDF vocabulary description language: RDF

schema. W3C Recommendation 10 February 2004. http://www.w3.org/

TR/2004/REC-rdf-schema-20040210/.

[16] D. Brickley and R.V. Guha. Resource Description Framework (RDF) Model

and Syntax Specification. W3C Recommendation submitted 22 February 1999

http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/.

[17] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkin-

son. Jena: Implementing the semantic web recommendations. In Proc. of the

13th Int. World Wide Web Conference (WWW 2004), May 2004.

[18] F. Casati, D. Georgakopoulos, and M. Shan. Special issue on e-services. VLDB

Journal, 24(1), January 2001.

[19] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services

description language (wsdl) 1.1, 2001. http://www.w3.org/TR/2001/NOTE-

wsdl-20010315.

[20] Giuseppe De Giacomo, Luca Iocchi, Daniele Nardi, and Riccardo Rosati. Clas-

sic planning for mobile robots. In Proceedings of the FAPR-96 Workshop on

Planning in Complex Environments, 1996.

[21] Giuseppe De Giacomo, Luca Iocchi, Daniele Nardi, and Riccardo Rosati. De-

scription logic-based framework for planning with sensing actions. In Proceed-

ings of the 1997 Description Logic Workshop (DL’97), pages 39–43, 1997.

210

[22] Giuseppe De Giacomo and Maurizio Lenzerini. Boosting the correspondence

between description logics and propositional dynamic logics. In Proceedings of

AAAI-94, 12th Conference of the American Association for Artificial Intelli-

gence, pages 205–212, Seattle, US, 1994.

[23] Mike Dean, Dan Connolly, Frank van Harmelen, James Hendler, Ian Horrocks,

Deborah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein.

Web Ontology Language (OWL) Reference Version 1.0. W3C Working Draft

12 November 2002 http://www.w3.org/TR/2002/WD-owl-ref-20021112/.

[24] Premkumar T. Devanbu and Diane J. Litman. Taxonomic plan reasoning.

Artif. Intell., 84(1-2):1–35, 1996.

[25] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf.

Al-log: integrating datalog and description logics. Journal of Intelligent In-

formation Systems, 10:227–252, 1998.

[26] Kutluhan Erol, James Hendler, and Dana S. Nau. Htn planning: complexity

and expressivity. In Proceedings of the twelfth national conference on Artifi-

cial intelligence (vol. 2), pages 1123–1128. American Association for Artificial

Intelligence, 1994.

[27] Kutluhan Erol, James Hendler, and Dana S. Nau. Semantics for HTN plan-

ning. Technical Report CS-TR-3239, University of Maryland at College Park,

1994.

211

[28] Oren Etzioni, Keith Golden, and Daniel Weld. Tractable closed world reason-

ing with updates. In Jon Doyle, Erik Sandewall, and Pietro Torasso, editors,

KR’94: Principles of Knowledge Representation and Reasoning, pages 178–

189. Morgan Kaufmann, San Francisco, California, 1994.

[29] R. E. Fikes and N. J. Nilsson. Strips: A new approach to the application of

theorem proving to problem solving. In J. Allen, J. Hendler, and A. Tate,

editors, Readings in Planning, pages 88–97. Kaufmann, San Mateo, CA, 1990.

[30] Alberto Finzi, Fiora Pirri, and Ray Reiter. Open world planning in the situ-

ation calculus. In Proceedings of the 7th Conference on Artificial Intelligence

(AAAI-00) and of the 12th Conference on Innovative Applications of Artifi-

cial Intelligence (IAAI-00), pages 754–760, Menlo Park, CA, July 2000. AAAI

Press.

[31] Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. Grid services

for distributed system integration. Computer, 35(6):37–46, 2002.

[32] Maria Fox and Derek Long. International planning competition, 2002.

http://www.dur.ac.uk/d.p.long/competition.html.

[33] Jon W. Freeman. Improvements to Propositional Satisfiability Search Algo-

rithms. PhD thesis, Departement of computer and Information science, Uni-

versity of Pennsylvania, Philadelphia, 1995.

[34] Andrew Garland, Kathy Ryall, and Charles Rich. Learning hierarchical task

models by defining and refining examples. In K-CAP ’01: Proceedings of the

212

1st international conference on Knowledge capture, pages 44–51, New York,

NY, USA, 2001. ACM Press.

[35] Michael R. Geneserth and Richard E. Fikes. Knowledge Interchange Format

Version 3.0 Reference Manual. Technical Report Logic Group Report Logic-

92-1, Computer Science Department, Stanford University, June 1992.

[36] M. Ghallab, D. Nau, and P. Traverso. Automated Planning: Theory and

Practice, chapter Hierarchical Task Network Planning. Morgan Kaufmann,

2004.

[37] M. Ghallab, D. Nau, and P. Traverso. Automated Planning: Theory and

Practice. Morgan Kaufmann, 2004.

[38] M I Ginsberg and M L Ginsberg. Counterfactuals. Artificial Intelligence,

30(1):35–80, 1986.

[39] M. L. Ginsberg and D. E. Smith. Reasoning about action i: A possible worlds

approach. Artificial Intelligence, 35:165–195, 1988.

[40] K. Golden. Planning and Knowledge Representation for Softbots. PhD thesis,

University of Washington, 1997.

[41] K. Golden, O. Etzioni, and D. Weld. Planning with execution and incomplete

information. Technical Report TR96-01-09, Department of Computer Science,

University of Washington, February 1996.

213

[42] Robert Gombotz and Schahram Dustdar. On web services workflow mining.

In Business Process Management Workshops, pages 216–228, 2005.

[43] Javier Gonzalez-Castillo, David Trastour, and Claudio Bartolini. Description

Logics for Matchmaking of Services. In Workshop on Applications of Descrip-

tion Logics ADL 2001, Vienna, 2002.

[44] B. Cuenca Grau, B. Parsia, and E.Sirin. Combining OWL ontologies using

E-connections. Journal of Web Semantics, 4(1), January 2005.

[45] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, and

Henrik Frystyk Nielsen. SOAP Version 1.2 Part 1: Messaging Framework -

W3C Recommendation 24 June 2003, 2001. http://www.w3.org/TR/soap12-

part1/.

[46] V. Haarslev and R. Möller. An empirical evaluation of optimization strate-

gies for abox reasoning in expressive description logics. In Proc. of the Int.

Description Logics Workshop (DL’99), pages 115–119, 1999.

[47] V. Haarslev, R. Möller, and A.Y. Turhan. Exploiting pseudo models for TBox

and ABox reasoning in expressive description logics. In IJCAR 2001, Italy,

2001.

[48] Volker Haarslev and Ralf Mller. Optimization techniques for retrieving re-

sources described in owl/rdf documents: First results. In Didier Dubois,

Christopher A. Welty, and Mary-Anne Williams, editors, Proceedings of the

214

Ninth International Conference Principles of Knowledge Representation and

Reasoning (KR2004), pages 163–174, Whistler, Canada, 2004. AAAI Press.

[49] J. Heflin and H. Munoz-Avila. Lcw-based agent planning for the semantic

web, 2002.

[50] J. Heinsohn, D. Kudenko, B. Nebel, and H.-J. Profitlich. Rat - representation

of actions using terminological logics. In J. Heinsohn and B. Hollunder, editors,

DFKI Workshop on Taxonomic Reasoning, 1992. number D-92-08 in DFKI

Document.

[51] J. Hendler. Agents and the semantic web. IEEE Intelligent Systems, 16(2),

2001.

[52] Andreas Herzig and Omar Rifi. Propositional belief base update and minimal

change. Artificial Intelligence, 115(1):107–138, 1999.

[53] I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics.

PhD thesis, University of Manchester, 1997.

[54] I. Horrocks. Implementation and optimisation techniques. In The Description

Logic Handbook: Theory, Implementation, and Applications, pages 306–346.

Cambridge University Press, 2003.

[55] I. Horrocks and P. F. Patel-Schneider. DL systems comparison. In Interna-

tional Description Logics Workshop (DL’98), pages 55–57, 1998.

215

[56] I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) description

logic. In Proc. of the 17th Int. Joint Conf. on AI (IJCAI), pages 199–204,

2001.

[57] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for very expressive

description logics. Logic Journal of the IGPL, 8(3):239–263, 2000.

[58] I. Horrocks and S. Tessaris. A conjunctive query language for description logic

aboxes. In Proc. of the 17th Nat. Conf. on Artificial Intelligence (AAAI 2000),

pages 399–404, 2000.

[59] Ian Horrocks and Peter F. Patel-Schneider. A proposal for an owl rules lan-

guage. In Proc. of the Thirteenth International World Wide Web Conference

(WWW 2004). ACM, 2004.

[60] Ian Horrocks and Ulrike Sattler. A description logic with transitive and inverse

roles and role hierarchies. Journal of Logic and Computation, 9(3):385–410,

1999.

[61] Ian Horrocks and Ulrike Sattler. Optimised reasoning for SHIQ. In Proc.

of the 15th Eur. Conf. on Artificial Intelligence (ECAI 2002), pages 277–281,

July 2002.

[62] Ian Horrocks and Ulrike Sattler. A tableaux decision procedure for SHOIQ.

In Proc. of the 19th Int. Joint Conf. on AI (IJCAI 2005). Morgan Kaufman,

2005.

216

[63] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for very

expressive description logics. J. of the Interest Group in Pure and Applied

Logic, 8(3):239–264, 2000.

[64] Ian Horrocks and Sergio Tessaris. Querying the semantic web: a formal ap-

proach. In Ian Horrocks and James Hendler, editors, Proc. of the 13th Int.

Semantic Web Conf. (ISWC 2002), number 2342 in Lecture Notes in Com-

puter Science, pages 177–191. Springer-Verlag, 2002.

[65] Ian Horrocks and Sergio Tessaris. Querying the semantic web: a formal ap-

proach. In Proc. of the 13th Int. Semantic Web Conf. (ISWC 2002), 2002.

[66] Okhtay Ilghami, Dana S. Nau, and Hector Muñoz-Avila. Learning to do

HTN planning. In Proceedings of the Sixteenth International Conference on

AI Planning and Scheduling, Cumbria, UK, June 2006. AAAI Press.

[67] Okhtay Ilghami, Dana S. Nau, Hector Muñoz-Avila, and David W. Aha.

Learning preconditions for planning from plan traces and HTN structure.

Computational Intelligence, 21(4):388–413, november 2005.

[68] Luca Iocchi, Daniele Nardi, and Riccardo Rosati. Planning with sensing,

concurrency, and exogenous events: Logical framework and implementation.

In Anthony G. Cohn, Fausto Giunchiglia, and Bart Selman, editors, KR2000:

Principles of Knowledge Representation and Reasoning, pages 678–689, San

Francisco, 2000. Morgan Kaufmann.

217

[69] Robert G. Jeroslow and Jinchang Wang. Solving propositional satisfiability

problems. Annals of Mathematics and Artificial Intelligence, 1:167–187, 1990.

[70] Aditya Kalyanpur. Debugging and Repair of OWL Ontologies. PhD thesis,

University of Maryland, 2006.

[71] H. Katsuno and A.O. Mendelzon. On the difference between updating a knowl-

edge base and revising it. In P. Gardenfors, editor, Belief Revision, volume 29

of Cambridge Tracts in Theoretical Computer Science, pages 183–203. Cam-

bridge University Press, 1992.

[72] Henry A. Kautz and Bart Selman. Planning as satisfiability. In Proceedings

of the Tenth European Conference on Artificial Intelligence (ECAI’92), pages

359–363, 1992.

[73] Christel Kemke. A formal approach to describing action concepts in taxonomi-

cal knowledge bases. In Foundations of Intelligent Systems, 14th International

Symposium (ISMIS), pages 657–662, 2003.

[74] Christel Kemke. A formal theory for describing action concepts in termino-

logical knowledge bases. In Canadian Conference on AI, pages 458–465, 2003.

[75] Ugur Kuter, Evren Sirin, Dana Nau, Bijan Parsia, and James Hendler. In-

formation gathering during planning for web service composition. In Proceed-

ings of 3rd International Semantic Web Conference (ISWC2004), Hiroshima,

Japan, November 2003.

218

[76] O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. E-Connections of Ab-

stract Description Systems. Artificial Intelligence 156(1):1-73, 2004.

[77] Hector J. Levesque, Raymond Reiter, Yves Lesperance, Fangzhen Lin, and

Richard B. Scherl. GOLOG: A logic programming language for dynamic do-

mains. Journal of Logic Programming, 31(1-3):59–83, 1997.

[78] Lei Li and Ian Horrocks. A Software Framework For Matchmaking Based on

Semantic Web Technology. In Proc. of the Twelfth International World Wide

Web Conference (WWW 2003), Budapest, Hungary, May 2003.

[79] Thorsten Liebig and Dietmar Rösner. Action hierarchies in description logics.

In Description Logics Workshop, 1997.

[80] Fangzhen Lin and Raymond Reiter. State constraints revisited. Journal of

Logic and Computation, 4(5):655–678, 1994.

[81] H. Liu, C. Lutz, M. Milicic, and F. Wolter. Updating description logic aboxes.

In Proceedings of the Tenth International Conference on Principles of Knowl-

edge Representation and Reasoning (KR2006), Lake District, UK, 2006.

[82] Erick Martinez and Yves Lespérance. Web service composition as a plan-

ning task: Experiments using knowledge-based planning. In Proceedings of

the ICAPS-2004 Workshop on Planning and Scheduling for Web and Grid

Services, pages 62–69, June 2004.

[83] Matthew Mason. Kicking the sensing habit. AI Magazine, 14(1):58–59, 1993.

219

[84] Ryusuke Masuoka, Bijan Parsia, and Yannis Labrou. Task computing - the

semantic web meets pervasive computing -. In Proceedings of 2nd Interna-

tional Semantic Web Conference (ISWC2003), Sanibel Island, Florida, Octo-

ber 2003.

[85] D. McDermott. Drs: A set of conventions for representing logical languages

in rdf. http://www.daml.org/services/owl-s/1.0/DRSguide.pdf, 2004.

[86] D. McDermott and D. Dou. Representing disjunction and quantifiers in RDF.

In I. Horrocks and J. Hendler, editors, ISWC 2002, volume 2342, pages 250–

263, 2002.

[87] Drew McDermott. Estimated-regression planning for interactions with web

services. In AIPS, pages 204–211, 2002.

[88] Sheila McIlraith and T. Son. Adapting Golog for composition of semantic web

services. In Proceedings of the Eighth International Conference on Knowledge

Representation and Reasoning, Toulouse, France, apr 2002.

[89] B. Motik and U. Sattler. Practical DL reasoning over large ABoxes with

KAON2. In Proc. KR-2006, 2006.

[90] Boris Motik. Reasoning in Description Logics using Resolution and Deduc-

tive Databases. PhD thesis, Univesität Karlsruhe (TH), Karlsruhe, Germany,

January 2006.

[91] Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering for owl-dl with

rules. Journal of Web Semantics, 3(1):41–60, JUL 2005.

220

[92] S. Narayanan and S. McIlraith. Simulation, verification and automated com-

position of web services. In Proceedings of the Eleventh International World

Wide Web Conference, Honolulu, Hawaii, may 2002.

[93] D. Nau, T.C. Au, O. Ilghami, U. Kuter, J.W. Murdock, D. Wu, and F. Yaman.

SHOP2: An HTN planning system. Journal of Artificial Intelligence Research,

20:379–404, 2003.

[94] D. Nau, H. Munoz-Avila, Y. Cao, A. Lotem, and S. Mitchell. Total-order

planning with partially ordered subtasks. In Proceedings of the Seventeenth

International Joint Conference on Artificial Intelligence, Seattle, aug 2001.

[95] Dana S. Nau, Yue Cao, Amnon Lotem, and Hector Muñoz-Avila. Shop:

Simple hierarchical ordered planner. In IJCAI ’99: Proceedings of the Sixteenth

International Joint Conference on Artificial Intelligence, pages 968–975, San

Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[96] OWL Services Coalition. OWL-S: Semantic markup for web services, 2003.

OWL-S White Paper http://www.daml.org/services/owl-s/0.9/owl-s.pdf.

[97] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia Sycara.

Semantic Matching of Web Services Capabilities. In The First International

Semantic Web Conference, 2002.

[98] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia P. Sycara.

Importing the semantic web in uddi. In CAiSE ’02/ WES ’02: Revised Pa-

221

pers from the International Workshop on Web Services, E-Business, and the

Semantic Web, pages 225–236, London, UK, 2002. Springer-Verlag.

[99] Michael P. Papazoglou. Web services and business transactions. World Wide

Web, 6(1):49–91, 2003.

[100] Edwin P. D. Pednault. ADL: exploring the middle ground between strips and

the situation calculus. In Proceedings of the first international conference on

Principles of knowledge representation and reasoning, pages 324–332. Morgan

Kaufmann Publishers Inc., 1989.

[101] J. S. Penberthy and D. S. Weld. Ucpop: A sound, complete, partial order

planner for adl. In B. Nebel, C. Rich, and W. Swartout, editors, Principles

of Knowledge Representation and Reasoning: Proc. of the Third International

Conference (KR’92), pages 103–114. Kaufmann, San Mateo, CA, 1992.

[102] J. S. Penberthy and D. S. Weld. Ucpop: A sound, complete, partial order

planner for adl. In B. Nebel, C. Rich, and W. Swartout, editors, Principles

of Knowledge Representation and Reasoning: Proc. of the Third International

Conference (KR’92), pages 103–114. Kaufmann, San Mateo, CA, 1992.

[103] R. Petrick and F. Bacchus. A knowledge-based approach to planning with

incomplete information and sensing. In In Proceedings of the Fourth Inter-

national Conference on AI Planning and Scheduling (AIPS’98), pages 86–93,

1998.

222

[104] Marco Pistore, Fabio Barbon, Piergiorgio Bertoli, Dmitry Shaparau, and Paolo

Traverso. Planning and monitoring web service composition. In The 11th

International Conference on Artificial Intelligence, Methodologies, Systems,

and Applications (AIMSA), pages 106–115, 2004.

[105] R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Im-

plementing Dynamical Systems. MIT Press, 2001.

[106] R. Reiter. Knowledge In Action: Logical Foundations for Specifying and Im-

plementing Dynamical Systems. The MIT Press, 2001.

[107] Raymond Reiter. On specifying database updates. Journal of Logic Program-

ming, 25(1):53–91, 1995.

[108] U. Sattler. A concept language extended with different kinds of transitive

roles. In B. Nebel, editor, Proc. of the 20th German Annual Conf. on Artificial

Intelligence (KI 2001), Vol. 1137 of Lecture Notes In Artificial Intelligence,

pages 199–204. Springer Verlag, 2001.

[109] A. Schaerf. Reasoning with individuals in concept languages. Data and Knowl-

edge Engineering, 13(2):141–176, 1994.

[110] Klaus Schild. A correspondence theory for terminological logics: preliminary

report. In Proceedings of IJCAI-91, 12th International Joint Conference on

Artificial Intelligence, pages 466–471, Sidney, AU, 1991.

223

[111] Kaarthik Sivashanmugam, John A. Miller, Amit P. Sheth, and Kunal Verma.

Framework for semantic web process composition. International Journal of

Electronic Commerce, 9(2):71, Winter 2004-05.

[112] M.K. Smith, C. Welty, and D.L. McGuiness. OWL Web Ontology Language

Guide. W3C Recommendation http://www.w3.org/TR/owl-guide/, 2004.

[113] Paolo Traverso and Marco Pistore. Automated composition of semantic web

services into executable processes. In International Semantic Web Conference,

pages 380–394, 2004.

[114] UDDI. The UDDI technical white paper, 2000. http://www.uddi.org/.

[115] Jeffrey D. Ullman. Information integration using logical views. Theoretical

Computer Science, 239(2):189–210, 2000.

[116] Wil van der Aalst, Ton Weijters, and Laura Maruster. Workflow mining:

Discovering process models from event logs. IEEE Transactions on Knowledge

and Data Engineering, 16(9):1128–1142, 2004.

[117] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.

Advanced workflow patterns. In O. Etzion and P. Scheuermann, editors, 7th

International Conference on Cooperative Information Systems (CoopIS 2000),

volume 1901 of Lecture Notes in Computer Science, pages 18–29, 2000.

[118] T. Weijters and W.M.P. van der Aalst. Process mining: Discovering work-

flow models from event-based data. In B. Krse, M. de Rijke, G. Schreiber,

224

and M. van Someren, editors, Proceedings of the 13th Belgium-Netherlands

Conference on Artificial Intelligence (BNAIC 2001), pages 283–290, 2001.

[119] Marianne Winslett. Sometimes updates are circumscription. In IJCAI, pages

859–863, 1989.

[120] Marianne Winslett. Updating logical databases. Cambridge University Press,

New York, NY, USA, 1990.

[121] B. Kiepuszewski W.M.P. van der Aalst, A.H.M. ter Hofstede and A.P. Barros.

Workflow patterns. Distributed and Parallel Databases, 14(3):5–51, July 2003.

[122] WS-Policy. Web services policy framework (ws-policy). http://www-

106.ibm.com/ developerworks/library/specification/ws-polfram/.

[123] WS-Trust. Web services trust language (ws-trust). http://www-128.ibm.com/

developerworks/library/specification/ws-trust/.

[124] Qiang Yang. Formalizing planning knowledge for hierarchical planning. Com-

put. Intell., 6(1):12–24, 1990.

[125] Zhengxiang Pan Yuanbo Guo and Jeff Heflin. LUBM: A benchmark for OWL

knowledge base systems. Journal of Web Semantics, 3(2):158–182, 2005.

225

	List of Algorithms
	List of Tables
	List of Figures
	Introduction
	Motivation
	Proposed Solution
	Contributions
	Thesis Outline

	Preliminaries
	Web Services
	Semantic Web
	Description Logics
	Syntax
	Semantics
	Inference Problems
	A Tableau Algorithm for SHOIN

	Semantic Web Services
	AI Planning

	Coupling Planning with Description Logics: HTN-DL
	AI Planning and Web Service Composition
	HTN-DL
	Overview
	Syntax
	Semantics

	HTN-DL Algorithm
	Evaluating Conditions
	Updating State
	Interleaving Execution and Planning

	Translating Web Service Descriptions to HTN-DL
	Relation between OWL-S and HTN-DL
	From OWL-S to HTN-DL
	Translating Profile Descriptions
	Translating Process Models

	OWL-S semantics

	Optimizing OWL-DL Reasoning
	Reasoning with Nominals in OWL-DL
	Preprocessing Optimizations
	Existing Optimizations
	Nominal Absorption

	Optimizations for Consistency Checking
	Existing Optimizations
	Learning-based Disjunct Selection
	Completion Graph Caching
	Lazy Completion Graph Generation

	Optimizations for Subsumption and Instance Checking
	Nominal-based Model Merging

	Efficient Conjunctive Query Answering
	Answering Atomic Queries
	Retrieving Instances
	Retrieving Role Fillers

	Answering Conjunctive Boolean Queries
	Answering Conjunctive Retrieval Queries
	Cost-based Query Reordering
	Size and Cost Estimation

	Query Simplification

	Implementation and Evaluation
	System Architecture
	Pellet: OWL-DL Reasoner
	Pellet Architecture and Design
	Tableaux Reasoner
	OWL Species Coercion
	ABox Query Engine
	Special Features

	OWL-S API: API for Web Service
	The Design Objectives
	Architecture of the OWL-S API

	HTN-DL: Planning for Web Services
	Experimental Evaluation
	Reasoning Performance
	Planning Performance

	Related Work
	Description Logics and Planning
	Description Logics and Web Services
	Web Service Composition and Planning

	Conclusions
	Summary
	Contributions and Impact
	Discussion
	Future Work

	Proofs
	Bibliography

