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ABSTRACT

The problems of unified efficient computations of the discrete cosine transform (DCT),
discrete sine transform (DST), discrete Hartley transform (DHT), and their inverse trans-
forms are considered. In particular, a new scheme employing the time-recursive approach
to compute these transforms is presented. Using such approach, unified parallel lattice
structures that can dually generate the DCT and DST simultaneously as well as the DHT
are developed. These structures can obtain the transformed data for sequential input time-
recursively and the total number of multipliers required is a linear function of the transform
size N. Furthermore, there is no any constraint on N. The resulting architectures are reg-
ular, module, and without global communication so that it is very suitable for VLSI imple-
mentation for high-speed applications such as ISDN network and HDTV system. It is also
shown in this paper that the DCT, DST, DHT and their inverse transforms share an almost
identical lattice structure. The lattice structures can also be formulated into pre-lattice
and post-lattice realizations. Two methods, the STS0O and double-lattice approaches, are
developed to reduce the number of multipliers in the parallel lattice structure by 2N and
N respectively. The trade-off between time and area for the block data processing is also
considered.

This work is partially supported by the NSF grant ECD-8803012-06.






1 Introduction

Transform coding has found lots of applications in image, speech, and digital signal trans-
mission and processing. Due to the advances in ISDN network and high definition television
(HDTV) technology, high speed transmission of digital video signal becomes very desirable.
Among many transforms, the discrete cosine transform (DCT), discrete sine transform
(DST), and discrete Hartley transform (DHT) are very effective in transform coding appli-
cations to digital signals such as speech and image signals. The DCT is most widely used
in speech and image processing for data compression. This is all due to its better energy
compaction property and its near optimal performance which is mostly close to that of the
Karhunen-Loeve Transform (KLT) among many discrete transforms for highly correlated
signals, especially for the first order Markov Process [1, 2, 3]. It was shown by Jain that
the performance of the DST closes to that of the KLT for a first-order Markov sequence
with given boundary conditions, especially for signal with low correlation coefficients [4, 5].
In 1983, Bracewell introduced the DHT [6] which uses a transform kernel similar to that of
the discrete Fourier transform (DFT), while it is a real-valued transform. Therefore, it is
simpler than the DFT with respect to the computational complexity [7]. Like the DCT and
DST, the DHT has found many applications in signal and image processing [6, 8, 24, 28].
Since the DCT was introduced, many algorithms were proposed to improve the com-
putation speed and to reduce the hardware complexity. These algorithms can be classified
into the following categories: (1) indirect computation, (2) matrix factorization, (3) re-
cursive computation, and (4) systolic structure implementation. The indirect computation
[9, 10, 11, 12, 13] applies the existing fast algorithms in the DFT or the Walsh-Hadamard
transform to the DCT. It is not particularly efficient because the inherent properties of
the DCT are not exploited. The matrix factorization [14, 15, 25, 26] decomposes the DCT

into multiplications of many sparse matrices, therefore the numbers of multiplications and



additions can be comprehensively reduced. The recursive computations [16, 7] generate
the higher order DCT from the lower order one, but their signal flow architectures need
global communication which is not suitable for VLSI implementation. By using the recur-
sive properties effectively, this kind of DCT algorithms has fewer multipliers and adders,
while additional multiplexers are required. As for the systolic structure implementation
[17, 18, 27], it uses exiting systolic architectures for the DFT or other transforms to imple-
ment the DCT in a systolic manner. But some of the methods require that the number of
samples of the signal must be decomposed into mutually prime numbers. Like the DCT,
many fast algorithms have been proposed to improve the performance of the DST and DHT
(8, 19, 20, 4, 5]. Basically, they can be classified into the same ways as those of the DCT
and similar advantages and disadvantages can also been found.

In this paper, we propose a unified time-recursive lattice structure which can be used for
those discrete orthogonal transforms mentioned above, i.e., the DCT, DST, and DHT. We
consider the orthogonal transforms from a time-recursive point of view instead of the whole
block of data. It is all due to the fact that in digital signal transmission, the data arrives
serially. Also, many operations such as filtering and coding are done in a time-recursive way.
Based on this approach, the resulting architectures are almost identical for the DCT, DST,
and DHT. This algorithm decouples the transformed data components, hence, there is no
global communication needed in this structure. Besides, the lattice module is regular and
modular. Therefore, it is very suitable for VLSI implementation. In general, this method
requires 6 N multipliers for N-point data. And later we will show that a denormalization
can reduce the number to 4N. Since the number of multipliers is on the order of N, this
method requires fewer multipliers than most of other algorithms when N is large. One of
the important characteristics of this structure is that there are no any constraints on N.
This means that N can be any integer. As we know, most of the fast algorithms for discrete

transforms do have certain constraints on N. Another important result is that based on



the time-recursive approach, the fundamental properties among the DCT, DST, and DHT,
as well as some relative transforms can be obtained.

The rest of the paper is organized as follows. In Section 2, the dual generation of lattice
structures for the DCT and DST with the time-recursive approach is considered. The
inverse discrete cosine transform (IDCT) and the inverse discrete sine transform (IDST)
based on the lattice structures are discussed in Section 3. In Section 4, the time-recursive
lattice structure for the DHT is presented. All the above time-recursive properties are
derived by updating the time index by one. With block data processing, the time index
needed to be updated is more than one. The detailed effects and results of the block data
processing are discussed in Section 5. Reducing the number of multipliers in the lattice
structure is considered in Section 6. Then we compare these kinds of lattice structures with
other architectures in terms of the number of multipliers and adders in Section 7. Finally,

we give the conclusion in Section 8.

2 Dual Generation of DCT and DST

Instead of either using matrix factorizations to find fast algorithms or converting the DCT
to the DF'T, which can be implemented on various existing architectures, we will show an
efficient implementation of the DCT from the time recursive point of view. Focusing on the
sequence instead of the block of the input data, we can obtain not only the time recursive
relation between the DCT of two successive data sequences, but also the fundamental rela-
tion between the DCT and DST. In the following, the time recursive relation for the DCT

will be considered first.



2.1 Time-Recursive Discrete Cosine Transform

The one-dimensional (1-D) DCT of a sequential input data with length N beginning from

z(0) to z(N — 1) is defined as

2C(k) = {ﬂ(2n + 1)k
o(k,0) = == GG LN Iy =0,1,.,N—1, 1
X.(k,0) N gx(n)cos 5N } k=0 N (1)
where
1 if k=0,
Clky=1{ V2

1 otherwise.

Here the time index ¢ in X.(k,t) denotes that the transform starts from z(¢). Since C(k)’sin
(1) are constants, it is sufficient to consider first the DCT-like equation and fix the constant

later on. Let

N-1
Xolk0) = 3 el cos [.’i@’;—;ﬂﬁ] . 2)

From the definition, the 1-D DCT of the input data vector [z(1), z(2), ...,z(N)] is given by

N 2n—1) + 1]k
Xo(k,1) = n};lm(n) cos{ﬂ[ (n 2N)+ ] } (3)
This can be rewritten as
N
Xc k,]. = —————-——F(2n+ l)k - -I-C-E
(k,1) ;::lx(n)cos[ SN N]
b\ & T(2n + 1)k . (k) & . [rm(2n+ 1)k
= cos { — z(n) cos | ———=——} +sin | — sin | —————|. (4)
(N); S[ 2N } (N),;g”(") [ 2N ]
Define
N r A
X(k,1) = nZ::l z(n) cos Lzr_(g%;_l)l_c_- , (5)
and
')?(kl)_iv: (n)si M (6)
s(k, —nzlzzrnsmL N |
we then have
Xo(ky1) = -fc(k, 1) cos (%) —f—?s(k, 1) sin (%) . (M)



As we can see, a DST-like term X ,(k,1) exists in the equation. This motivates us to

investigate the time-recursive DST.

2.2 Time-Recursive Discrete Sine Transform

There are several definitions for the DST. Here we prefer the definition made by Wang in
[20] since it is of the form we are interested in the following derivations. The 1-D DST of a

data vector [2(0),z(1),...,a(N — 1)] is defined as

_2D(k) & : [7r(2n + l)k] B
X,(k,0) = —~ 7;) z(n) sin | E=L..N, (8)
where
L ifk=N,
Dk)=1{ V2

1 otherwise.

Note that the range of k is from 1 to N. Again, we consider the DST-like equation first

N-1
Xy(k,0) = Y a(w)sin [-”-(2—’;}12’-?] . 9)

The DST of the time update sequence {@(1),2(2),...,2(N)] is given by

X,(k,1) = é z(n)sin {ﬂz(n _2]17) + llk}
= X,(k,1) cos (—7;—\7]3) ~ X c(k, 1) sin (%) : (10)

Here the terms X,(k,1) and X.(k,1) which are used in (7) to generate X.(k,1) appear in
the equation of the new DST transform X,(k, 1) again. It suggests that the DCT and DST

can be dually generated from each other.

2.8 The Lattice Structures

From (7) and (10), it is noted that the new DCT and DST transforms X (k,1) and X,(k, 1),
can be obtained from X.(k, 1) and X,(k, 1) in the lattice form as shown in Fig. 1. The next

step is to update X .(k, 1) and X,(k,1) from the previous transforms X (k,0) and X,(k, 0).



We notice that X.(k,0) and X.(k, 1) have similar terms except the old data 2(0) and the
incoming new data z(N). Therefore X (k,1) and X,(k,1) can be obtained by downdating

the old data z(0) and updating the new data z(N) as

X.(k,1) = Xo(k, 0) — o(0) cos (-2’%”,—) + () cos [W]
= X(k,0) + [—x(O) + (——1)km(N)] cos (%) , (11)
and
X, (k, 1) = X,(k, 0) — 2(0)sin (%) + &(N)sin [W}
= X,(k,0) + [~2(0) + (~1)Fa(N)] sin (%) . (12)

From (7), (10), (11), and (12), the new transforms X (k,1) and X,(k,1) can be calculated
from the previous transforms X.(k,0) and X,(k,0) by adding the effect of input signals
2(0) and z(N). This manifests that the DCT and DST can be dually generated from each
other in a recursive way. The complete recursive lattice structure is shown in Fig. 2. Since
the multiplications can be reduced to addition and substraction for £ = 0 in the DCT and
k = N in the DST respectively, these two cases can be simplified and combined together as
shown in Fig. 3, while Fig. 2 is good for k = 1,2,..., N — 1.

To obtain the transformed signals defined in (1) and (8), we need to take the leading
coefficients C'(k)’s and D(k)’s into consideration. The problem is examined under three
cases: (1) k =1,2,..., N — 1, for the DCT and DST, (2) k = 0 for the DCT, and (3) k = N
for the DST. For k = 1,2, ..., N—1, the functions C(k) and D(k) have the same values 2/N.

By employing the same approach, the terms X (k,1) and X,(k, 1) become

X.(k,1) = Xe(k, 0) + [~2(0) + (= 1) a(N)] (%) cos (571]’\“7) , (13)
and
Xk 1) = Xa(k,0) + [~2(0) + (~)*a(W)] (%) sin (%) . (14)



Therefore the time-recursive relations for the new transforms X.(k, 1) and X,(k,1) as well

as the previous transforms X.(k,0) and X,(k,0) are given by

X, (k, 1) = {Xc(k,O) + [~2(0) + (~Da(N)] (%) cos (é’i]’s.-) } cos(%k)

+ {Xs(k, 0)+ [-2(0) + (- 1)*x(N)] (%) sin (%) } sin(%k), (15)

and

X, (k,1) = {Xs(k,O) + [=2(0) + (~1)Fa(i)] (%) sin (%) } cos(%)
_ {Xc(k,O) + [=a(0) + (= )ka(V) (72v‘> cos (%) } sin(fN’f). (16)

It is easy to see that the recursive structure is unchange except that the coefficients of the
multipliers in the input are & cos(%) and % sin(Z%) instead of cos(Z%) and sin(Z%) as
shown in Fig. 4. Cases (2) and (3) can be overcomed by incorporating one multiplier with
a coefficient ﬁ at the outputs as shown in Fig. 5.

Following is to illustrate how this dually generated DCT and DST lattice structure
works to obtain the DCT and DST with length N of a series input data [z(0),2(1),..,2(N —
1),z(N),...] for a specific k. The initial values of the transformed signals X (k) and X,(k)
are set to zero, so do the initial values in the shift register in the front of the lattice module.
The input sequence [2(0), z(1),...] shifts sequentially into the shift register as shown in Fig.
4. Then the output signals X.(k) and X,(k), &k = 0,1,..., N — 1, are updated recursively
according to (15) and (16). After the input datum (N — 1) shifts into the shift register, the
DCT and DST of the input data vector [z(0),2(1),...,z(N — 1)] are obtained at the output
for this index k. It takes NV clock cycle to get the X (k) and X,(k) of the input vector
[2(0),2(1),...,2(N — 1)]. Since there are N different values for £, the total computational
time to obtain all the transformed data is N2 clock cycles, if only one lattice module is
used. As shown in Fig. 6, a parallel lattice structure consists of N lattice modules can be

used for parallel computations and improves the compuational speed drastically. Here we



have seen that the transform domain data X (k,t) have been decomposed into N disjoint
components that have the same lattice modules with different multipliers coefficients in
them. In this case the total computational time decreases to N clock cycle. It is important
to notice that when the next input datum z(N) arrives, the transformed data of the input
data vector [z(1),z(2),...,2(N)] can be obtained immediately. Likewise, the transformed
data of subsequent inputs can be generated per clock cycle.

It is obvious that this lattice structure is quite different from the signal flow graph realiza-
tion obtained from the fast DCT algorithms [14, 15]. Since there is no global communication
and the structure is modular and regular, it is suitable for practical VLSI implementation.
The most fascinating result is that this architecture can be applied to any number of N.
From this point of view, it is more attractive than other existing algorithms. In fact, most
algorithms [21, 18] are limited to the sequence length N which either must be power of 2
or must be decomposable into mutually prime number. In addition, this lattice structure
reveals some interesting properties between the DCT and DST. The DCT and DST can be
dually generated simultaneously. Since the DCT is near the optimal tranform KLT in highly
correlated signal, while the DST approaches to the KLT in low correlation coefficient. As we
are able to obtain the DCT and DST at the same time, this lattice structure is very useful
especially when we do not know the statistics of the incoming signal. Furthermore, we can
use a single lattice module with only 6 multipliers and 5 adders to recursively compute any
N-point DCT and DST simultaneously. To have the transformed data parallely, we need
N lattice modules. As mentioned before, it is suitable for VLSI implementation since all
the modules have the same structures except the 0th module can be simplified as shown in

Fig. 5. This parallel lattice structure requires 6 N — 4 multipliers and 5N — 1 adders.



3 Inverse Discrete Cosine Transform (IDCT) And Inverse

Discrete Sine Transform (IDST)

3.1 Time-Recursive IDCT

According to the definition of the DCT in (1), the IDCT for the transform domain sequence
[X(0), X(1),..,. X(N-1)]is

7(2n + 1)k] ’

N-1
0)= Y C(k)X(k = 0,1,.,N—1. (17)
)= X X (k) os| T30 n

The coefficients C'(k)’s are given in (1). From the time-recursive point of view, the IDCT

of the new sequence [X(1), X(2), ..., X(V)] can be expressed as

N
ze(n,1) = 3. C(k = 1)X (k) cos [”(2" +22(’“ = ”}. (18)
k=1
Similar to the the previous sections, we can decompose (18) into
ze(n,1) = cos [7r(2n+1 ] ZC(k DX (k)c [7r(2+;1)_k]
+in [”(2" + 1)] > 0(k = DX(K)sin [ﬁﬁ_;l)—k] . (19)
Define
N
Te(n,1) = Z C(k - )X (k)cos [1(2—1-;—;—1)—]6] , (20)
and
N
- . [r(2n+ 1)k
Ts(n,1) = Clk - D)X (k)sin | ————|, 21
(n 1) = 32 Clk = DX (1) | T2 (21)
then we have
ze(n, 1) =T.(n,1)cos [KQ;L—A;-—L)] + T5(n, 1) sin [%——1—)—] . (22)

In order to be a dually generated pair of the IDCT given in (17), we define the auxiliary

inverse discrete sine transform (AIDST) as

m(2n + l)k] . n=0,1,..,N—1. (23)

N-1
zs(n,0) = Z C(k)X (k)sin [ 5N
k=0



Although this definition utilizes the sine functions as the transform kernel, it is not the
inverse transform of the DST. To tell it from the IDST, we call this the AIDST. The

AIDST for the data sequence [X (1), X(2),..., X(N)] can be written as

N
. [r(2n+ 1)(k - 1)]
= - . 24
zs(m,1) kzz:lC'(k 1)X (k) sm[ 5 (24)
By using the trigonometric function expansions, z4(n,1) becomes
. 7(2n + 1)} _ ) [7r(2n+ 1)]
zs(n,1) = xs(n,l)cos{ 5N — T(n,1)sin 5 . (25)

3.1.1 Lattice Structure for IDCT

Combining (22) and (25), we can see that the IDCT and the AIDST can be generated in
exactly the same way as the dual generation of the DCT and DST. Therefore, the lattice
structure in Fig.1 can be applied here except that the coefficients need to be modified.
Since the coefficients C'(k)’s are inside the expression in the inverse transform, the relation
between z.(n,0) and Z.(n,1) will be different from what we have in the DCT. Equations
(17) and (20) as well as (21) and (23) have the same terms for k£ € {2,3..., N — 1}. After

adding the effects of the terms for £ = 0 and k = 1, we obtain

Te(n,1) = 2,(n,0) — —%X(O) + (% - 1) cos [-71-(—2;7;————1)] X(1), (26)
and
Zo(n, 1) = 25(n, 0) + (= 1)"X (V) + (% - 1) sin [ﬂ%\;ﬂl] X(1). (27)

The complete lattice module for the IDCT and AIDST is shown in Fig.7. This IDCT
lattice structure has the same lattice module as that of the DCT except for the input stage
where one more adder and one more multiplier are needed. However, the procedure to
calculate the transformed data is the same. Therefore, this IDCT lattice structure has all
the advantages as that of the DCT. To obtain the inverse transform parallelly, we need N
such IDCT lattice modules where 7N multipliers and 6 N adders are required. Again, we

can see that the numbers of adders and multipliers are linear functions of N.

10



3.2 Time-Recursive IDST

From the definition of the DST in (8), the IDST for the transform domain sequence

[X(1),X(2),...,X(N)]is given by

(2n + 1)k} ’

N
z5(n,0) =Y D(k)X(k)sin [ o n=0,1,..,N—1. (28)
k=1

The coefficients D(k)’s are given in (8). Analogous to Section 3.1, we define the auxiliary

inverse discrete cosine transform (AIDCT)

n=0,1,.,N-1, (29)

T(2n + l)k]
2N ’

N
2e(n,0) = 3" D(K)X (k) cos [
k=1

which is the dually generated pair of the IDST. The IDST and AIDCT of the new sequence

of transformed data [X(2), X(3), ..., X(N + 1)] are given respectively by

2y(n, 1) = Ig D(k — 1)X (k) sin [”(2" +2;),(’“ - 1)] : (30)
and
2e(n,1) = ]:zj:l D(k — 1)X (k) cos [”(2" +2;),(k — 1)] . (31)
Same as before, we can decom[:(jse (30) and (31) to
25(n, 1) = Ty(n, 1) cos [”—(2-2"7*9] — %.(n,1)sin [-’3(—2%;—1)] , (32)
and
2o(n, 1) = Fo(n, 1) cos [L(Q%‘N“L—l)] +%,(n,1)sin [%ﬁﬁ] , (33)
where
To(n,1) = 1%1 D(k = 1)X (k) cos [EQ%]TV—”—’“} , (34)
and -
%, (n, 1) = g D(k - 1)X (k) sin [”(L’;]‘Vti)—’?] . (35)

11



3.2.1 Lattice Structure for IDST and AIDCT

If we employ the technique in the previous section to exploit the relations between zs(n,1)

and Z,(n,1) as well as z.(n, 1) and Z.(n, 1), the results are

Zo(n,1) = as(n,0)—sin [f_(%”N*—l)] X(1)
1 7(2n+ 1)

- (5 - 1) X0 + -1 eos [T X+ 1, (00)
and

Te(n,1) = z.(n,0) — ¢

] [7r(2n+ 1) .

] X0 - (-1

Equations (32), (33), (36) and (37) reveal that to dually generate the IDST and AIDCT

{fﬁ"_i_l_)] X(N+1). (37)

requires 9 multipliers and 7 adders which are more than that of the IDCT and AIDST. The
result is shown in Fig. 8. To reduce the number of multipliers and adders, substituting (36)

and (37) into (32) and (33) and rearranging (32) and (33), then we have

zs(n,1) = cos [_7"_(25_]\‘;_1)] zs(n,0) — sin [%] zc(n,0)
(\/_ 1)(=1)" cos [%} X(N)+ (%)(—1)”X(N +1), (38)
and
zo(n,1) = cos [ﬂ—(%—l—)-] z.(n,0)+ sin [ﬂg—]g—ﬁ] zs(n,0)

—X(1) = (75 = (- sin [LZED] X () + (51X +1139)

The lattice module of this rearranged IDST and AIDCT is shown in Fig. 9. This structure
differs from all the previous lattice modules in that the input signals are added at the end
of the lattice. From now on, we call this lattice structure a post-lattice module and the
previous ones as pre-lattice modules. This post-lattice module needs 7 multipliers and 5
adders which are less than the corresponding pre-lattice module. A parallel post-lattice

structure, which generates N transformed data simultaneously, requires 7N multipliers

12



and 5N adders. All the transform pairs mentioned above have pre-lattice and post-lattice
structures. Not all post-lattice structures are superier to their pre-lattice counterparts in
the hardware complexity. For example, the IDCT and AIDST post-lattice module has 9
multipliers and 7 adders which are more than its pre-lattice realization. As to the DCT
and DST, the pre-lattice and post-lattice modules have the same numbers of multipliers

and adders.

4 Discrete Hartley Transform (DHT)

According to Bracewell’s definition of the DHT in [6], the data sequence z(n) and the DHT

transformed data X (k) have the following relation

X(k,0)

It

H
2|
=2
——~
S
S’
e———
(]
(@]
o
N
X
= 2
3
N’
<
=
TN
=
= 2
S
—
| SUN— )

k=0,1,..,N - 1. (40)

The DHT uses real variables cos(zﬁré“ﬂ) + sin(2—’%&’1) as the transform kernel, while discrete
Fourier transform (DFT) uses the complex exponential exp(%’{kr”), as the transform kernel.
Since one complex multiplication needs four real multiplications, the compuation of the
DHT is simpler than that of the DFT [19]. Because the kernel of the DHT is a summation

of cosine and sine terms, we can separate them to make it look like a combination of a

DCT-like and a DST-like transforms in the following way
X (k,0) = X.(k,0)+ X,(k,0), (41)

where

X (k,0) = ]—b—NZ—:l z(n) [cos (27;\];:”)] , (42)

n=0

13



and
N-1

X, (k,0) = % 3 a(n) [sin (27;\’,”)] . (43)

n=0

The preceding coefficient 4+ in (40) is neglected here for simplicity. The X.(k,0) is the
so called DCT-I and the X,(k,0) is the DST-I that are defined by Yip and Rao in [22).
Since the DHT can be decomposed into the combination of the DCT-I and DST-I, the dual
generation of both for the DHT is thus possible. The DCT-I and the DST-I of the data

sequence [z(1),z(2),...,z(N)] are

N —
Xo(k,1) = % Z z(n) cos [M]%_-_l_)_] , (44)
n=1
and
N
X, (k1) = % > a(n)sin [@k—(]’;-ll—)] . (45)

The new transforms X'c(k, 1) and X’s(k, 1) can be further expressed as

Xo(k,1) = X (k,1) cos (@N—k) + X,(k,1)sin (2_]7;-"3) : (46)
and
X,(k,1) = Xo(k, 1) cos (%) _ X.(k, 1)sin (%’9 , (47)
where
N
- wkn
Xo(k,1) = ]—17—2 z(n) cos (2N )
n=1
= Xu(k,0)+ - [-2(0) + 2(N)], (48)
and
= N rkn
X (k1) = % > a(n)sin <2]\’: )
n=1
= X,(k,0). (49)

The lattice module for the DHT is shown in Fig. 10. For the case of k = 0, the lattice

structure can be further simplified into Fig. 11. From Fig. 10, we can see that the numbers

14



of multipliers and adders are less than those of the dual generation of the DCT and DST.
The total numbers of multipliers and adders in the parallel DHT lattice architecture are

5N — 4 and 5N — 3 respectively.

5 Block Processing

All the time-recursive discrete transforms derived above are all based on the block-size-one
update which means the time index is updated by one. That is, at each iteration only the
effect of one old data is removed and the information of one new data is updated. We expect
better performance by increasing the block size. This motivates us to discuss the effect on

the lattice structure when the block size is increased.

5.1 Block Processing of time-recursive DCT and DST

We begin the discussion of block processing with the block-size-two update. As before, the
transformed data X.(k,2) and X,(k,2) are defined as the DCT and DST of the input vector

[(2),2(3),...,2(N),2(N + 1)]. That is,

N+l T n—
Xe(k,2) =" a(n) cos{ A 2;,) * 1]k}, (50)
n=2
and
N+1 219(n —
X,(k,2) = > z(n) sin{ 2 2]\2[) t ”k}. (51)

n=2

To obtain X (k,2) from X (k,0) and X,(k,2) from X,(k,0) directly, we can rewrite X .(k,2)

and X;(k,2) as

X (k, 2) = Xu(k, 2) cos (27’;-’3) +X,(k,2)sin (%) : (52)
and
Xs(k,2) = X,(k,2) cos (2—]7:713) — X(k,2)sin (2—1—7:716-) , (53)
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where

N+1

X(k,2) = nz_:zw(n)cos [W]
= X.(k,0)+ [~2(0) + (—1)kz(N)] cos (%)
H=a(1) + (=1)f2(N + 1)] cos (%%’f) , (54)
and
X, (k,2) = gx(n)sin [E%-Nii)_’?]
= X,(k,0)+ [=z(0) + (=1)Fz(N)]sin (%)
+[=2(1) + (—1)*x(N + 1)]sin (i—”;) : (55)

The lattice module for the block-size-two update is shown in Fig. 12. There are two
more multipliers in the lattice, i.e., the total number of multipliers is eight. To have the
transformed data parallelly, we need N such lattice modules. The latency for this kind
of parallel structure is N/2 and the total number of multipliers is 8 N. Since there is no
complex communication problem in the lattice structure, the area-time complexity (AT
can be approximated by the product of the number of multipliers and the time latency.
Denote AT'm as the area-time complexity of the block-size-m update, then AT1 = 6N?
and AT2 = 4N?2. Next, let us consider the more general case for the block-size-m update,
where m ranges from one to N. The 1-D DCT and DST of block-size-m update are to
obtain the transform of [z(m),z(m + 1),...,2(N + m — 1)] directly from the transform of

[(0), 2(1),...,2(N — 1)]. We have

N4m-1 w{2(n —m
Xe(k,m) = Z z(n) cos [ [ ZN) ha 1]k] ) (56)
and
N4m-—1 - .
X,(k,m)= Y z(n) sin[ [2(n 2;3) T I]k] : (57)

n=m
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Applying the same procedure in the case of block-size-two update, we can write (56) and

(57) as

X.(k,m) = X(k,m) cos (mek) + X, (k, m)sin (m;k) , (58)

and

mwk

i ) — X.(k,m)sin (mj:frk) . (59)

X(k,m) = X,(k,m) cos (
where

Xkm) = 35 a(n)eos p-t

n=m

= X.(k,0)- mi:l z(n) cos (W)

n=0
N+4+m-1
+ n;\l z(n) cos [W)} cos (%n_]_v”zlc_)

= X.(k,0)+ "i [—2(n) + (=1)*z(N + n)] cos [Zr—(-z%]%—l-l—li] , (60)

n=0

and

X.(km) = Nglw(”)““ &
= Xs(k,o)—§$(n)si“ [W]
_ N§_1 2(n)sin [W(QZ; Dk] sin (gn;vk)

n=N

= Xk 0) 4+ 3 [~o(n) + (~1)5x(N + n)]sin [

n=0

7r(2n+1)k] . (61)

2N

Combining those input terms with same cosine and sine multiplier coefficients together, we
can obtain the lattice module for block size m as shown in Fig. 13. To obtain the transform
data X (k) parallelly, N lattice modules of Fig. 13 are required. The total number of
multipliers of the parallel structure is (4 4+ 2m)N and the latency time is N/m. Therefore,
the area-time complexity is ATm = i%lm. In the limiting case of the block-size-N

update, i.e., we move a whole block of the input data sequence, AT'N = (4 + 2N )N which
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reduces to the smallest area-time complexity. The area-time product is getting smaller

when the block size m is increased. This means that when the block size is increased, the

area-time complexity becomes more efficient. That is, if the hardware resource is allowed,

we can trade the number of multipliers for better time efficiency.

6 Multiplier-Reduction of the lattice structure

In the VLSI implementation, the number of multipliers is an important factor to the cost
and complexity of the system. In this section, we develop two methods to reduce the
number of multipliers in our parallel lattice structures. The first scheme makes use of a
series input series output (S750) approach and 2N multipliers can be saved; the trade-off
is that the latency is increased. The second approach, which reconstructs the structure into

a double-lattice realization, reduces N multipliers and the latency remains intact.

6.1 SISO Approach

Denote the output and input data at time k as (X.(k), Xs(k)) and (2, z5x) respectively
for a lattice structure as shown in Fig. 14, where the input and output have the following

relations

X.(k) [Xc(h = 1)+ Tiaek] Iy + [Xs(k — 1) + Tazgx] L'y,

Xo(k) = [Xo(k—1)+ T3zs] Ty — [Xe(k — 1) + Tyzzer] T (62)

By dividing both equations by Ty, we have

X(k)/Ts = [X(k = 1)+ Ty2o) To/Ty + [Xo(k - 1) + Tozoi],

Xy(k)/Ty = [Xy(k— 1)+ Dsas] Ta/Ty — [Xe(k — 1) + Tyzeh]. (63)

The lattice structure manifesting the above relations is plotted in Fig. 15. It is noted that

only two multipliers exist in this structure and the outputs obtained differ from the original
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one by a factor I'y. To examine the effect of this multiplier reduction on the recursive

operation from X (1) to X.(N), we start with the derivation from k£ = 1. That is

XC(l)/F4 = [XC(O) + I1137c1] r2/114 + [XS(O) + I‘33351] ’

Xs(l)/I‘4 = [XS(O) + F3$31] P2/F4 - {XC(O) + I‘lxcl] . (64)
For k=2

X(2)/Tys = [Xe(1) 4 2] To/Ta+ [Xs(1) 4+ Tazs2],

I

XS(Q)/I‘4 [Xs(l) + ngsz] I‘z/F4 — [Xc(l) + Flmcz] . (65)

Because the outputs at time k = 1 are X (1)/I'y and X,(1)/T4, Xc(1) and X,(1) at (65)
should be replaced by X.(1)/T4 and X,(1)/I'y. To keep the above equations valid, we can

multiply both equations by 1/T'4 as shown

X(2)/13

[Xe(1)/Ta 4 (T1/T4)ze2] T2 /Ta + [Xo(1)/Ts + (T3/T4)2s2] 5

X,(2)/13 [Xs(1)/T4+ (T3/Ta)z2] T2 /Ta ~ [X5(1)/Ts + (T1/T4)2c] . (66)

The coefficients of the input multipliers are I'y /Iy and I's/T'4, instead of I'; and I'z at time
k = 1, and the output are X.(2)/T% and X,(2)/T3. For k = N, the recursive equations

become

XMW1 = [XeN = /DY 4 (Ta/TY o] T/ T
+ [X(V = /DY 4 (/T Men]
Xy(N/TY = [X,(N = 1)/~ + (15/T) o] To/Ts

— [ = )/t (T ] (67)

From the above derivations, we observe that the two multipliers can be removed by using
variable multipliers in the input stage where the multiplicators (I';,I'1 /Ty, .., I'1/ I‘flv ~1) and

(T's,T3/Ty,..,I'3/TY 1) are stored in the shift registers. The structure are shown in Fig. 16.

19



The output can be obtained by multiplying the factor I'Y. This kind of rearrangement does
not save the multipliers. However, for N such lattice structure, the number of multipliers
can be reduced by using variable multipliers at the output stage and the coefficients for each
stage I'Y (4), ¢ = 0,1,2,.., N — 1, are stored in the shift registers. Fig. 17 shows the final
structure where the total number of multipliers are 4N 4 2. This means that the number
of multipliers for N parallel such lattice structures are reduced from 6N to 4N + 2. The
tradeoff is that 2V 4 2 shift registers are required and the latency becomes 2N instead of
N. Also, this resulting structure is a SISO system, while the original parallel structure is
a STPQO system.

For example, the variable-multiplier method derived above can be applied to the lattice
structure of the DCT and DST. There is no multipliers needed for k¥ = 0, therefore the
module remain the same. For k = 1,2,.., N — 1, the multiplier-reduced lattice structure
is shown in Fig. 17, where the coeflicients are I'y = cos(kr/2N), ['y = cos(kx/N), T'3 =
sin(kw /2N ), and Ty = sin(kw/N). The total multipliers are 4N — 2 and the latency for this

S150 structure is 2N.

6.2 Double-lattice Approach
Generally, a post-lattice structure has the following forms
Xc(k) = ToXo(k~1)+TyXs(k—1)+Dzy,
Xs(k) = ToXs(k—1)-TyX(k—1)+ T3z (68)
The X (k) and X (k) can be rearranged in the following manner
Xe(K) = 5 (P4 DLXelk = 1)+ Xu(k = D] + (T2 - T)lXo(k — 1) — X,(k — 1))
+Izek,
X,(k) = 5 (T + DXk = 1) + X,(k = 1)] = (g - LXKk — 1) - Xa(k — 1))

—oT, Xo(k — 1) + Tazek. (69)

20



The operational flow graph of (69) is demonstrated in Fig. 18. Instead of calculating the
outputs from (68) directly, we add and subtract X .(k—1) and X,(k — 1) first, then mutiply
the results by the sum and difference of the multiplying coefficients T'y and T'y respectively.
The results are called t1 and ¢2 as shown in the Fig. 18. We add and subtract ¢t1 and
12 again, then divide the results by 2, which can be achieved by left shifting. Finally, we
complete the computations by adding the inputs Tyz. and Tszop — 2T4 X (k — 1). This
reconstruction can save one multiplier. A parallel lattice structure with NV lattice modules
based on (68) needs 6N multipliers and 4N adders. As for this reconstructed parallel
structure, there are 5N multipliers and 7N adders in the architecture. This approach can
be applied to all the parallel post-lattice structures of different orthogonal transforms. For
all the lattice architectures, a total of N multipliers can be saved, but 3N more adders are

required. The latency is N clock cycles and the system remains S7PO.

7 Comparisons of the Architecture

From the previous discussions, we see that the proposed unified parallel lattice structures
have many attractive features. There are no constraints on the transform size N. It dually
generates two discrete transforms the DCT and DST simultaneously and evidences the time
evolutions of sequential input vectors. Since it produces the transformed data of subsequent
input vector per clock cycle, it is especially efficient for systems with series input data such
as communication systems. Further, the structure is regular, module, and without global
communication. As a consequence, it is suitable for VLSI implementation.

Here, we would like to compare our lattice structures of the DCT and DST with those
proposed in [14, 15, 7]. The architecture in [14] uses the matrix factorization method
which is a repesentive of fast algorithms. In [15], an improved fast structrue with fewer

multipliers is proposed. Hou’s architecture in [7] uses recusive computations to generate
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the higher order DCT from the lower order one. The characteristics of these structures are
disscused in the introduction. A comparison regarding their inherent properties is listed in
Table 1. To be clear, the quantitative comparisons in terms of the parameters, which are
the numbers of multipliers, adders, and the latency, are given in Table 2, Table 3, and Table
4.

The lattice architecture with six multipliers in the module as shown in Fig. 4 is called
Liu-Chiul structure, the one in Fig. 17 is called Liu-Chiu2, and the parallel structure
with the double-lattice modules as shown in Fig. 18 is called Liu-Chiu3. The structure
in Liu-Chiul has 6 N — 4 multipliers, 5N — 1 adders, and the latency is N. There are 4N
multipliers, 5N —1 adders, and the latency is 2N in the structure of Liu-Chiu2. The number
of multipliers is reduced by the order 2N in the expense of that the latency is double and the
data flow becomes ST50. The Liu-Chiu3 architecture has 5N multipliers and 7N adders
and the the latency is N clock cycles. From these Tables, it is noted that the number of
multipliers in our architectures is higher than that of others when N is small. This is due to
the dual gerenation of two transforms (the DCT and DST) at the same time. If we consider
one transform only, the number of multipliers needed is 2N in Liu-Chiu2’s structure which
is compatible with Lee’s. Since the numbers of multipliers and adders of our structures are
on the order N, our algorithms have fewer multipliers and adders than those proposed in
[14, 15]. Although Hou’s algorithm has the fewest multipliers, his architecture needs global
communications and the design complexity is much higher than ours. In addition, it is
apparently that our structures are faster than others for series input data systems. The
operations of other structures can not start until all of the data in the block arrive.

A comparison for our DHT structure based on the lattice module in Fig. 10 and different
DHT algorithms [23, 18] is listed in Table 5. The architecture in [23], a representive fast
algorithm, is developed based on the existing FFT method. Chaitali-JaJa’s algorithm in

[18] decomposes the transform size N into mutually prime numbers and implements them
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in a systolic manner. Their structure needs extra registers and the latency is higher than
others. It is easy to see that our structure is better than others in terms of hardware

complexity and speed.

8 Conclusion

In this paper, unified time-recursive algorithms and lattice structures that can be applied to
the DCT, DST, DHT and their inverse transforms, are considered. In fact, there are various
forms of sin and cosine transform pairs, (the DCTI/DSTI, DCTII/DSTII, DCTIII/DSTIII,
and DCTIV/DSTIV) as mentioned by Yip and Rao in [22]. They also have their time-
recursive lattice realizations. The procedures to attain the lattice structures of different
transforms are similar and the resulting 57 PO lattice stuctures differ only in the multiplying
coefficients and the input stage. All the transform pairs have their pre- and post-lattice
realizations that differ in that the input signals are added in the front and the end of the
lattice respectively. The hardware complexity of the pre-lattice realizations and their post-
lattice counterparts depends on the definitions of the transforms and it cannot be readily
determined which one is better. The number of multiplers in these parallel lattice structures
is a linear function of the transform size N and the latency is N clock cycles. Two methods,
the §150 and double-lattice approaches, are developed to reduce the number of multipliers
for the parallel lattice structures. The SISO approach can reduce 2N multipliers and the
latency becomes 2N. The double-lattice approach can reduce N mutipliers and the the
latency remains intact. From the discussion of the block processing, it is noted that the
area-time complexity becomes more efficient when the block size m is increased. That is, if
the hardware resource is allowed, we can trade the hardware for better time efficiency. All
the resulting parallel structures are module, regular, and only locally connected. Further,

there is no any constraint on the transform size N. It is obvious that the design complexity
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of these structures is relatively low compared with other algorithms. The charteristics of
these algorithms are suitable for processing series input data since the transformed data for
sequential input can be obtained per clock cycle. Therefore, it is very attractive to VLSI

implementations and high speed applications such as HDTV signal coding and transmission.
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Fig.1 The lattice module.
Fig.2 The lattice structure for the DCT and DST, £ =1,2,...,N — 1.
Fig.3 The lattice structure of £ = 0 for the DCT and k = N for the DST.

Fig.4 The lattice structure for the DCT and DST with coefficients C'(k)’s and D(k)’s,
k=1,2,....N—1.

Fig.5 The lattice structure of ¥ = 0 for the DCT and k¥ = N for the DST with
coefficient C(0) and D(N).

Fig.6 The parallel lattice structure for the DCT and DST.

Fig.7 The lattice structure for the IDCT and AIDST.

Fig.8 The pre-lattice structure for the IDST and AIDCT.

Fig.9 The post-lattice structure for the IDST and AIDCT.

Fig.10 The lattice structure for the DHT for k = 1,2...,N — 1.

Fig.11 The lattice structure for the DHT for & = 0.

Fig.12 The lattice structure for block-size-two operation on the DCT and DST.
Fig.13 The lattice structure for block-size-m operation on the DCT and DST.
Fig.14 The general lattice module.

Fig.15 The model of multiplier-reduction.

Fig.16 The multiplier-reduced lattice module.

Fig.17 The complete parallel multiplier-reduced lattice structure.

Fig.18 The double-lattice form of the post-lattice realization.

Table 1 Comparisions of different DCT algorithms.

Table 2 Comparisions of the number of multipliers.

Table 3 Comparisions of the number of adders.

Table 4 Comparisions of the latency.

Table 5 Comparisions of different DHT algorithms.
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Figure 1: The lattice module.
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Figure 3: The lattice structure of £ = 0 for the DCT and ¥ = N for the DST.
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Figure 5: The lattice structure of £ = 0 for the DCT and k = N for the DST with coefficient
C(0) and D(N).
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/
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7: The lattice structure for the IDCT and AIDST.
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Figure 12: The lattice structure for block-size-two operation on the DCT and DST.
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Figure 13: The lattice structure for block-size-m operation on the DCT and DST.
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Figure 14: The general lattice module.
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X (k-1
Figure 15: The model of multiplier-reduction.
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Figure 16: The multiplier-reduced lattice module.
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Figure 17: The complete parallel multiplier-reduced lattice structure.
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I denotes left shift one bit

Figure 18: The double-lattice form of the post-lattice realization.
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Liu-Chiul | Liu-Chiu2 | Liu-Chiu3 | Chen [14] [ Lee[15] Hou[7]
et. al.
No. of 6N —4 4N 5N —3 N1In(N) N/2 N -1
multipliers —3N/2 +4 | xIn(N)
Latency N 2N N N/2 (In(N)—1) | 3N/2
*In(N)/2 (order)
Limitation on no no no power of 2 | power of 2 [ power
transform size N of 2
Communication | local local local global global global
I/0 operation SIPO SISO SIPO PIPO PIPO SIPO
Table 1: Comparisions of different DCT algorithms.
NO } Liu-Chiul | Liu-Chiu2 | Liu-Chiu3 | Chen et. al. | Lee | Hou
8 44/2 32/2 37/2 16 12 |7
16 |92/2 64/2 7/2 44 32 115
32 | 188/2 128/2 157/2 116 80 {31
64 | 380/2 256/2 317/2 292 192 | 63
Table 2: Comparisions of the number of multipliers.
NO | Liu-Chiul | Liu-Chiu2 | Liu-Chiu3 | Chen et. al. | Lee | Hou
8 39/2 39/2 52/2 26 29 |18
16 | 79/2 79/2 108/2 74 81 |41
32 | 159/2 159/2 220/2 194 209 | 88
64 | 319/2 319/2 444 /2 482 513 | 183
Table 3: Comparisions of the number of adders.
NO | Liu-Chiul | Liu-Chiu2 | Liu-Chiu3 | Chen et. al. | Lee | Hou
8 8 16 8 4 6 13
16 |16 32 16 6 10 |21
32 132 64 32 8 15 | 44
64 | 64 128 64 10 21 |73

Table 4: Comparisions of the latency.




Liu-Chiu | Sorenson et. al. [23] | Chakrabari-JaJa[18]
No. of SN —4 | NIn(N)—-3N+4 [2N
multipliers
No. of Adders 5N -3 [3NIn(N)—3N+4 |[4N++/N
Latency N Nln(N) 2N
Limitation no power of 2 N =N1%xN2, N1 and N2
on transform size are mutually prime
Communication | local global local
1/0O operation SIPO PIPO S150

Table 5: Comparisions of different DHT algorithms.




