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The current research aims to evaluate the performance of various approaches for 

estimating covariates within the latent class membership regression model in the context 

of growth mixture models.  Researchers have been searching for more efficient and 

accurate estimation methods for incorporating covariate information in mixture modeling 

in order to clearly differentiate between subjects from different groups and to make 

interpretation of the growth trajectories more meaningful. However, few studies have 

considered more complicated models such as growth mixture models where the latent 

class variable is more difficult to identify. To this end, two Monte Carlo simulations were 

conducted. In Simulation I, four estimation approaches were investigated to examine 

parameter recovery, variance and standard error efficacy related to both categorical and 

continuous covariates that defined the regression model for the latent class membership 

part of the model. Data generated for Simulation II include three covariates, with one 

dichotomous variable linked to latent class membership and the other two (one 

dichotomous and one continuous) associated with measurement part of the growth 

mixture model. Three estimation approaches were then compared using the population 

data generation model as well as a misspecified model.  
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Chapter 1: Introduction 

Growth mixture modeling (GMM; Muthén, 2001, 2004; Muthén & Muthén, 2000; 

Muthén & Shedden, 1999) continues to be a popular platform for practitioners in the 

social and behavioral sciences to examine population heterogeneity in growth 

characteristics of individuals’ longitudinal profiles. A primary goal of GMM is to identify 

two or more latent classes that represent subgroups thought to manifest qualitatively 

distinct patterns of change over time. Despite the increase of applied studies using  GMM 

in the literature (see, e.g., Colder, Campbell, Ruel, Richardson, & Flay, 2002; Colder, 

Mehta, Balanda, Campbell, Mayhew, Stanton, Pentz, & Flay, 2001; Ellickson, Martino, 

& Collins, 2004; Heybroek, 2011; Huang, Murphy, & Hser, 2012; Pinquart, & Schindler, 

2007), there remain unanswered methodological questions concerning the use of GMMs 

regarding correct model specification, optimal number of latent classes and accuracy of 

the classification of individuals into groups (Muthén, 2004; Nagin, 1999; Petras & 

Masyn, 2010). 

One line of research recommends that the conventional growth mixture model be 

extended to incorporate covariates in the mixture analysis (Muthén, 2003; 2004). 

Previous simulation studies and empirical research also have demonstrated that 

incorporating potentially important covariates that are related to the latent mixture 

variable may improve parameter estimates (see, e.g., Huang, Brecht, Hara, & Hser, 2010; 

Li & Hser, 2011; Lubke & Muthén, 2007). Petras and Masyn (2010) discussed in detail 

the importance of including auxiliary information in terms of antecedents (predictors and 

covariates) and distal outcomes of trajectory group membership in the general GMM 

analysis. By including auxiliary information, the conventional GMM can be extended to 
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estimate varying class membership probability as a function of a set of covariates (i.e., 

for each class the values of the latent growth parameters are allowed to be influenced by 

covariates) and to incorporate outcomes of the latent variables. In this way, the posterior 

probabilities of group membership can determine the ability of the model to clearly 

differentiate between subjects. Also, covariates or predictors make interpretation of the 

growth trajectories more meaningful because of the inclusion of individual background 

information, and this might be a most important reason for applied researchers to include 

individual specific information into the growth mixture analysis. For example, in an 

applied study by Pinquart and Schindler (2007) changes in life satisfaction in 1,456 

German retirees were investigated using the latent growth mixture modeling. One of the 

goals of the study was to test whether groups showing different trajectories would vary 

by personal characteristics such as retirement age, gender, socioeconomic status (SES), 

marital status, health, employment before retirement, and region, etc. Three patterns of 

change in life satisfaction were identified: in Group 1, satisfaction declined at retirement 

but remained on a stable or increasing pattern thereafter; in Group 2 satisfaction greatly 

increased at retirement but overall was declining; and in Group 3, satisfaction slightly 

increased temporarily at retirement. It was found that the three latent groups differed by 

most of the covariates considered in the study. For example, members of Group 1 were 

older when they retired and were more likely to be female and to report worse physical 

health. Members in Group 2 were typically younger when they retired and were more 

likely to be men, to be individuals of lower SES, to be unmarried, to report worse 

physical health, to be unemployed before retirement, and to live in the Eastern part of 
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Germany, and the majority of older adults in Group 3 showed a very small temporary 

increase in life satisfaction after retirement (Pinquart & Schindler, 2007).  

Though there are numerous advantages of including auxiliary variables in GMM 

analysis, the choice of an approach to estimating the model has been challenging, 

especially considering the fact that most of the research on estimation methods have been 

conducted on simple latent mixture models. For example, a conventional or standard 

approach to including covariates in a GMM analysis may involve the following three 

steps: (1) the unconditional GMM (e.g., a growth mixture model without any covariates 

and/or distal outcomes) is fitted based only on latent class indicators to determine the 

number of distinct trajectory groups; (2) class membership is assigned to each individual 

based on their highest posterior probability of belonging to a particular class; and (3) the 

relation between the assigned latent class membership and subject-specific background 

characteristics is investigated using either mean comparison tests (e.g., t-tests, ANOVAs, 

or chi-square tests) or multinomial logistic regression models. Whether using mean 

comparison tests or generalized linear regression models, one issue that arises is that class 

membership is treated as an exact, observed variable without taking into account the error 

associated with estimating these probabilities (Clark & Muthén, 2009). That is, the 

chances of an individual being mistakenly assigned to a particular class were not 

considered at all, which will lead to underestimated associations between covariates and 

class membership (Bolck, Croon & Hagenaars, 2004) and thus should not be used in 

model estimation (Nagin, 2005).  

Rather than treating auxiliary information as outcomes in post-hoc comparisons as 

is done in the conventional approach, a one-step maximum likelihood (ML) approach 
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(see, e.g., Bandeen-Roche, Miglioretti, Zeger & Rathouz, 1997; Dayton & Macready, 

1998; Van der Heijden, Dessens & Böckenholt, 1996) was recommended, which 

incorporates these additional concomitant variables as part of a single model. Estimation 

of the model proceeded permitting for the simultaneous examination of the covariates 

impact on the estimation of developmental trajectories and their association with the 

distal outcome (Huang et al., 2010; Muthén, 2004; Nagin, 2005; Roeder, Lynch & Nagin, 

1999). In the one-step approach, the latent class model and the regression model are 

combined into one joint model, which circumvents the problem of treating most likely 

class membership as an exact, observed variable. This is accomplished by taking into 

account the error associated with the posterior probability estimates and allowing 

individuals to be fractional members of all classes (Clark & Muthén, 2009). However, 

one major issue with this method may come from the impact of either the covariate 

variables or the distal outcome variable on the forming of the latent classes. That is, the 

latent classes formed from the joint model may differ in meaning from the latent classes 

obtained using the indicator variables alone and thus may potentially change their 

substantive interpretation. Another concern, according to Vermunt (2010), is that 

simultaneously building the classification model and the prediction model may not fit 

with the logic of most applied researchers, who often work sequentially from first 

building the classification model then adding covariates at a secondary stage of the 

analysis. Other disadvantages of the one-step approach are discussed in detail by 

Vermunt (2010).   

To independently evaluate the relation between the latent class variable and the 

auxiliary variables without using assigned class membership, other approaches have been 
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developed, such as using pseudo class (PC) draws (see, e.g., Clark & Muthén, 2009; 

Wang, Brown & Bandeen-Roche, 2005); and the BCH approach proposed by Bolck et al. 

(2004). With the PC method, for the latent class analysis, multiple random samples are 

drawn from a multinomial distribution of posterior probabilities (for each individual) 

being in each class (assuming there are more than two classes) so that each individual is 

given a chance to fall into neighboring classes (Clark & Muthén, 2009). Asparouhov and 

Muthén (2013) described the PC approach in an analogous fashion to the idea behind 

multiple imputation in missing data analysis which makes sense in that the latent classes 

are considered missing. Finally the class specific information associated with the 

auxiliary variable(s) is obtained using the multiple imputation techniques developed by 

Rubin (1987).  

Vermunt (2010) proposed a new three-step maximum likelihood (ML) procedure as 

an extension of the BCH approach based on the work of Bolck et al. (2004). With the 

new three-step ML approach, Vermunt used individual observations instead of a table of 

frequency counts to remove the limitation of using only categorical covariates, which 

then not only makes it possible to use both continuous and categorical predictors but 

makes the model estimation much more efficient (Vermunt, 2010). In this new approach, 

the latent class model was estimated first. Next, the most likely class variable was set 

based on the highest posterior probability from the latent class posterior distribution 

derived from the latent class analysis. With this approach, the classification uncertainty 

rate and the measurement error were computed to demonstrate that the most likely class 

variable could be treated as an imperfect measurement of latent class analysis. Thus, in 



 

6 

 

the third step, the measurement error in the most likely class was taken into account. 

Also, auxiliary information was included in this final stage of model estimation. 

This study will investigate four estimation approaches, namely, the conventional 

three-step approach, the one-step ML approach, the PC approach, and the three-step ML 

approach, by examining the association between covariates and the latent class variable 

under the GMM framework. Since one of the manipulated covariates is continuous, the 

BCH approach is not to be included in the current study because, as mentioned before, 

one limitation with this approach is that it can be used only for categorical covariates. 

1.1 Limitations of Previous Work  

Since problems with using the conventional approach were recognized (see, e.g., 

Clogg, 1995; Hagenaars, 1993; Roeder et al., 1999), researchers have been searching for 

more efficient and accurate estimation methods when incorporating auxiliary information 

in mixture modeling. For example, Clark and Muthén (2009) explored how different 

regression methods of relating latent class analysis results to auxiliary variables can 

impact estimation of auxiliary effects. Results showed that the one-step approach 

outperformed the conventional approach and the PC method in terms of recovering the 

true effect of the auxiliary variable on class membership. The PC method worked well 

when class separation was large. Vermunt (2010) compared the conventional three-step 

procedure, the one-step approach, the BCH approach, and his proposed three-step ML 

approach with respect to bias in the estimates of the covariate effects and bias in the 

standard error estimates when covariates were included in latent class modeling. Results 

showed that the BCH method and the three-step ML method demonstrated good 

parameter estimates and standard errors except when the classes were poorly separated. It 
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was also found that the three-step ML method was much more efficient than the BCH 

method in terms of the standard deviation of parameter estimates, and it was almost as 

efficient as the one-step estimation approach. One limitation with these studies is that 

only simple latent class models for discrete responses were used. None of these studies 

considered more complicated models such as growth mixture models where the latent 

class variable is more difficult to identify. Also, although Vermunt (2010) included three 

categorical predictor variables in their simulation study, Clark and Muthén (2009) only 

considered the impact of one continuous covariate in their study. It is quite possible that 

in real data analytic situations many covariates of different types should be considered 

simultaneously when investigating parameter recovery, model estimation, and standard 

error accuracy.    

In a recent white paper by Asparouhov and Muthén (2013), the relation between a 

latent class variable and an auxiliary variable in mixture modeling was examined using 

different approaches under different manipulated simulation design conditions. Results 

showed that the new three-step ML approach uniformly outperformed the PC approach 

for analyzing the relation between a latent class variable and an auxiliary variable 

independently of the latent class model estimation. Also, if the class separation was 

adequate the three-step ML approach had the same efficiency as the one-step approach. 

One major difference between this study and the other studies was that in addition to 

looking at the simple latent class models, more complicated models such as a growth 

mixture model was included to evaluate the performance of the various estimation 

approaches. However, in spite of the added model complexity, limitations were noted. 

First, only one covariate was included, which, as was mentioned above is not common in 
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analytic situations found in practice. Second, the impact of covariate effect size (i.e., the 

strength of the association of the covariate(s) with the latent class membership) on the 

proposed new three-step estimation method was not fully investigated.  

1.2 The Current Study 

As was discussed earlier, incorporating covariates related to the latent class analysis 

may improve the ability of the mixture model to clearly differentiate between subjects 

because the posterior probabilities of group membership are estimated as a function of a 

set of covariates. On the other hand, covariates make interpretation of the growth 

trajectories more meaningful because of the inclusion of individual background 

information. Since nearly every application in longitudinal studies incorporates some 

covariate information and applied researchers want to know how covariates help explain 

group membership, it is important that the estimation of the relation between covariates 

and the latent class membership is accurate. Biased covariate effect estimates from either 

misclassification of cases and/or from using a particular algorithm will ultimately affect 

the results of the analysis and make the interpretation unreliable.     

Therefore, this study aims to evaluate four approaches for the estimation of 

parameters from growth mixture models with covariate(s): (1) the conventional approach, 

(2) the one-step ML approach, (3) the PC approach, and (4) the three-step ML 

approaches. Specifically, the estimated relations between a latent class variable and 

covariate(s) from using the four estimation approaches will be compared. Covariates with 

differing effect sizes will be one major manipulated factor in the current study.  
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Chapter 2: Literature Review 

2.1 Latent Growth Modeling 

Methods for longitudinal data analysis have experienced unprecedented 

development since the 1990s when models for mean change such as ANOVA and 

MANOVA were no longer favored (Bauer, 2007) in lieu of approaches that allowed 

investigation of change in individuals over time. A class of useful methods to study has 

emerged over the past twenty years from the area of structural equation modeling (SEM), 

and falls under the general heading of latent growth modeling (McArdle, 1988; Meredith 

& Tisak, 1990). Latent growth models (LGMs) allow the change process to be 

characterized by a mathematical function common to all subjects, but whose 

parameterization is permitted to vary among individuals (Bollen & Curran, 2006). That is, 

the relative standing of an individual at a specific time point could be modeled as a 

function of an underlying process which has parameter values that vary randomly across 

individuals (Meredith & Tisak, 1990). The analytic goals in using LGMs are to 

understand (1) the typical behavior of the underlying change process of the phenomenon 

captured by the parameters of the model, (2) the extent to which these parameters, and 

hence phenomenon, vary across individuals, and (3) whether some of this variability can 

be explained by individual-specific characteristics (Hancock, Harring & Lawrence, 2013; 

Harring, 2009).  

 In one of its simplest forms, a linear function with a subject-specific intercept and 

slope can be specified for each individual’s continuous repeated measures that 

demonstrate straight line change patterns. An unconditional latent linear growth model, 
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for repeated measurements of a continuous dependent variable, can be presented by using 

a general SEM notation: 

,i i i i y Λ η ε     (1) 

 

where y i is a p × 1 vector of repeated measures for individual i, ηi is a q × 1 vector of 

individual- 

specific growth factors (i.e., intercept and slope), and Λi  is a p × q matrix of factor 

loadings. Assuming (for simplicity) that the outcome variable is measured at four equal-

interval time points, then the factor loading matrix might be specified:   

'
1 1 1 1

0 1 2 3
Λ

 
  
 

i . (2) 

  

The p × 1 vector of time-specific errors, εi ,  captures the deviations from the data to the 

fitted model for each individual. These errors are assumed to be normally distributed, 

( , )ε 0 Θi iN , with mean vector of 0 and covariance matrix iΘ . At the population level, 

individual-specific growth factors are formulated initially as the sum of fixed and random 

effects, 

η α ζ i i , (3) 

   

where α is a  q × 1 vector of growth factor means (i.e., intercept and slope factor means), 

and ζi  is a q × 1 vector of random effects reflecting individual differences of an 

individual’s growth factors from these means. The random effects are also assumed to be 

normally distributed,      

 ( , )ζ 0 Ψi N , also with mean vector of 0 and covariance matrix, Ψ , and are uncorrelated 

with the individual level errors (i.e., cov( ζi ,
'

ε i ) = 0). Therefore, the key assumptions 
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underlying the LGM are: (a) the growth patterns for all cases are from the same 

functional form; and (b) the repeated measures are multivariate normally distributed, 

which implies that the individual growth parameters and time-specific residuals are also 

multivariate normal (Muthén, 2004).  

The linear LGM is often a starting point in many analyses, not necessarily because 

it is the most realistic representation of growth for modeling a particular variable, but 

rather because it often fits well for many processes in a fairly restricted span of the 

development. Of course, other types of functional forms within the LGM framework (i.e., 

quadratic, logarithmic, exponential – see, e.g., Choi, Harring, & Hancock, 2009; Grimm 

& Ram, 2009; Petras & Masyn, 2010) are possible, especially when theory dictates a 

more complex growth pattern or there is sufficient empirical evidence to support such 

elaborations.  

2.1.1 Latent growth models with covariates 

In many situations, it is common at some later point of an analysis to include 

individual attributes at the population level model to better understand determinants 

which explain differences in the individual trajectories. Brown (2003) also addressed that 

under the primary assumption of LGMs that the growth trajectory representing change in 

the dependent indicator variables is modeled as a single population distribution, any 

nonrandom deviation from the underlying population distribution must be modeled 

explicitly by covariates included in the study design (e.g., social economic status, age, 

gender). Assuming the same linear developmental pattern discussed in Equation 1 and 

Equation 2 above, the conditional LGM with static covariates can be used to determine 
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which variables influence the intercepts or slopes. Time-invariant covariates, a 1r  

vector, xi , enter the LGM at the population level through 

i i i  η α Γx ζ , (4) 

 

where Γ  is a q × r matrix of coefficients relating each of the covariates to the growth 

factors. In a similar manner as ordinary least squares regression models, covariates can be 

continuous or categorical, and it is assumed that the effects of covariates or predictors on 

the growth factors are the same for all individuals (Petras & Masyn, 2010). In the same 

vein, the inclusion of covariates changes the population intercept and slopes as they are 

now interpreted conditionally on the covariates. It is assumed that the residuals are 

uncorrelated with the covariates.   

2.2 Growth Mixture Models  

Although the conventional LGM has the advantage of analyzing longitudinal data 

from the perspective of individual growth patterns, the model assumes that observed data 

are sampled from one homogenous population (Wang & Bodner, 2007). That is, the 

LGM assumes that there is a common growth pattern or trajectory for all the individuals 

in the study (Tofighi & Enders, 2008). In other words, the population being studied is 

homogeneous in terms of their growth trajectories. The fact is, however, that the observed 

data might reveal different subpopulations and each subpopulation has its own growth 

patterns defined by a particular set of model parameters. Thus, if the data being studied 

indicate the existence of subpopulations, the use of only one common model to describe 

growth for the subpopulations would not be appropriate. In this situation, analytic 

methods that are capable of allowing for, and actually identifying, the developmental 

trajectories of subpopulations are needed (Liu, 2012).  
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In response to the need to discern latent trajectory subgroups, a modeling technique 

known as growth mixture modeling (GMM; Muthén, 2001, 2004; Muthén & Muthén, 

2000; Muthén & Shedden, 1999) was developed. Conceptually, GMM is a combination 

of latent growth modeling and latent class analysis (LCA; McCutcheon, 1987). The 

combination of these two methods makes it possible to identify and estimate the 

subpopulations with qualitatively distinct patterns of development over time (Wang & 

Bodner, 2007). GMM permits heterogeneity in the growth trajectories represented by a 

latent categorical variable that defines k latent classes of individuals (Tofighi & Enders, 

2008). With the integration of categorical latent variables, GMM relaxes the single 

population assumption to allow for parameter differences across unobserved 

subpopulations, which means that different classes of individuals are allowed to vary 

around class-specific mean growth curves (Muthén, 2004). This is different from LGMs 

where individuals vary around a single mean growth curve. Therefore, with GMM, not 

only can each class have a unique set of parameters that describe its growth pattern, but 

within-individual and between-individual variability can also be class-specific (Wang & 

Bodner, 2007). This modeling flexibility is the basis of GMM framework (Muthén & 

Asparouhov, 2009). The linear LGM discussed above can be extended to the GMM 

formulation in the following way. Suppose a linear LGM is specified for each 

subpopulation k. Then the GMM model takes the following form: 

y Λ η ε
k k k

i i i i   (5) 

 
k k k

i i η α ζ , (6) 

 

where  

( , )ε 0 Θ
k k

i iN                     ( , ),           1,..., .k k

i N k Kζ 0 Ψ  
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Here, differences in k
α capture the differences in the growth factor means of the 

latent classes. The growth factor variances and covariances are also class specific, having 

covariance matrix Ψ
k , that follows a normal distribution centered at a mean vector of 0. 

It is assumed that the residuals are normally distributed, have mean vector of 0 and 

covariance matrix Θk

i
 which captures differences in the dispersion of the individual 

trajectories and time-specific residuals within classes (Bauer, 2007). It is also assumed 

that ε
k

i
 and ζ

k

i
 are independent.  

When estimating GMM parameters, there are additional parameters compared to the 

latent growth model, namely class-specific proportions k  of latent classes 1,2, .k ...,K  

Let ( )yip  denote the unconditional (or marginal) probability of observing individual i’s 

longitudinal sequence of measurements y i , and ( | )i ip C ky  is the conditional 

probability distribution of iy given membership in class k. So by aggregating the K 

conditional probability distribution functions ( | )i ip C ky , the probability distribution of 

the data iy  is a weighted sum of the component probability distributions:  

1

( ) ( | )
K

k

i i

k

p p C k


  iy y , (7) 

  

where the latent class probabilities k  are constrained to be 0 1k   and must sum to 

1: 
1

1
K

k

k




 . This is the sum across all K classes of the probability of y i  given subject i's 

membership in class k weighted by the probability of membership in class k. Rolfe (2010) 

showed that the likelihood of the sample of n subjects is the product of the individual 

contributions to the likelihood function specified by Equation 7, namely, 
1

( )
n

i

i

L p


 y . 
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2.2.1 Growth mixture models with covariates  

Although growth mixture models have the advantage of enumerating possible 

subpopulations, one challenging issue has been the identification of the “correct” number 

of latent classes. Class enumeration has received a great deal of attention in the 

methodological literature and has been investigated from various perspectives. For 

example, several studies compared model fit measures and statistical tests used to guide 

class enumeration (see, e.g., Liu & Hancock, 2014; Nylund, Asparouhov, & Muthén, 

2007; Tofighi & Enders, 2008; Wang & Bodner, 2007). Specifically, the performance of 

information-based indices and nested model likelihood ratio tests for relative model 

comparisons were studied. However, though a variety of suggestions were provided from 

these studies, there is no agreement on the best criteria for determining the number of 

classes in mixture modeling (Nylund et al., 2007). In a recent simulation study, Liu and 

Hancock (2014) proposed the idea of using an unrestricted multivariate normal mixture 

strategy to assess class enumeration. They compared the performance of a linear GMM 

against that of a completely unrestricted multivariate normal mixture model in terms of 

their ability to identify the correct number of latent classes and found that the 

theoretically compelling completely unrestricted multivariate normal mixture model was 

superior to the linear GMM when the nature of the growth curve was not certain and the 

sample size was sufficiently large. In addition to model comparisons and modeling 

strategies, another line of research has taken into account the inclusion of covariates in 

GMM. According to Bauer and Curran (2003), the common practice of using GMM 

without covariates for class enumeration has been questioned in the methodological 

literature. Obviously this practice implicitly assumes that fitting growth mixture models 
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without covariates would recover the correct number of classes whether or not the 

covariates impact class membership or growth factors in the population. However, this 

assumption may not hold universally (Muthén, 2004). In Tofighi and Enders’ (2008) 

study, incorporation of covariates was recognized as one of the factors that were thought 

to influence the extraction of the correct number of classes in the GMM context. 

According to Muthén (2004), auxiliary information in terms of predictors or covariates of 

the latent factors and latent group membership, as well as distal static outcomes of 

trajectory group membership (Lubke & Muthén, 2005; Petras & Masyn, 2010) can be 

efficiently included in a GMM analysis to obtain more accurate parameter estimates and 

latent class assignment. Covariates of class membership and growth factors should be 

included to correctly specify the model, find the proper number of classes, and correctly 

estimate class proportions and class membership (Muthén, 2004). Particularly, by 

including relevant individual-level characteristics in the model, membership in a specific 

trajectory group can be predicted with high probability (Nagin, 2005).  

Auxiliary information may take the form of antecedents (or covariates), concurrent 

events, or consequences (or distal outcomes). The unconditional growth mixture model, 

like that specified in Equation 5 and Equation 6, can be extended in many ways based on 

the relation between auxiliary variables and the growth factors and/or the latent class 

membership. For example, covariates can enter the basic growth mixture model to 

explain individual differences in growth attributes. They can also be related with latent 

group membership.     

To help understand how covariates and distal outcomes are related to a GMM 

analysis, one such extended growth mixture model is shown in Figure 2.1. The model 
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consists of the following components: covariates or predictor variables (X), a categorical 

latent class variable (C), repeated continuous outcomes (Y), growth intercept ( 0 ) and 

slope ( 1 ), and a distal outcome variable (Z) as the consequences of the growth process. 

In terms of covariates, both time-variant and -invariant covariates (e.g., treatment and 

intervention effects) can be included in the GMM framework. Since the effect of time-

invariant covariates is what the study will examine, time-varying covariates will not be 

discussed further. Time-invariant covariates can be incorporated in the GMM analysis in 

several ways. First, the categorical latent class variable C may be related to covariates X 

via a multinomial logistic regression model which specifies the functional relation 

between the probability of class membership and set of covariates X, as expressed by 

Equation 8 below.    

0

0

1

exp( )
( | ) ,

exp( )

k k

i
i i K

h h

i

h

p C k






 



Γ x
x

Γ x

 
(8) 

 

where class K is the reference class and 
0 0K   and 0K Γ  for identification purposes so 

that the log odds of comparing class k to the last class K is 

0log[ ( | ) / ( | )] .k k

i i i i ip C k p C K    x x Γ x  (9) 

 

Here k
Γ  is a 1 q  vector of regression coefficients denoting the effect of x on the log 

odds of membership in class k relative to class K, and  0

k  is the logistic regression 

intercept for class k relative to class K. Lubke and Muthén (2007) pointed out that it was 

important to include in a growth mixture model the covariates that predicted class 

membership when examining the latent classes. The arrow from X to C in Figure 2.1 

shows this type of direct relation.  
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Figure 2.1. Path diagram for a general linear growth mixture model with time-invariant 

covariates (X) and distal outcome of change (Z) 

Time-invariant covariates can also enter the growth mixture model as direct 

predictors of trajectory parameters. In this case, the direct effects from the covariates to 

the growth factors can be class-invariant or class-specific. The direct effect of class-

invariant covariates on the growth factors is shown by the arrows pointing from X to 0  

and 1  in Figure 2.1. These direct effects on the growth factors can be expressed in the 

population model of Equation 6 as 

k k

i i i  η α Γx ζ , (10) 

  

where α
k  is a 1q   vector of conditional regression intercepts for η within class k, and 

Γ  is a q r  matrix of regression coefficients representing the effects of x on η.  
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When direct effects of class-specific covariates on the growth factors occur, the 

association of these effects and the growth factors can be expressed below  

k k k k

i i i  η α Γ x ζ ,  (11) 

 

where α
k  is still a 1q   vector of conditional regression intercepts for η within class k, 

but k
Γ  is a q r  matrix of class-specific regression coefficients, indicating the effect of 

some particular explanatory variables on η within class k. The direct effects of class-

specific covariates on the growth factors are indicated by the dashed arrows pointing 

from X to 0  and 1  in Figure 2.1.  

According to Petras and Masyn (2010), when class-varying covariates are included 

in the model, latent classes are defined not only by heterogeneity in growth trajectories 

but also heterogeneity in the effect of those covariates on the growth trajectories.  

In addition to covariates, it is often interesting to include distal outcomes in a GMM 

analysis. According to Petras and Masyn (2010), a distal outcome can be framed in one 

of two ways. First, a distal outcome can be seen as an additional indicator of the latent 

class variable (i.e., the latent class variable captures variability in the growth factors, 

variability in the distal outcome, and the association between the growth factors and the 

distal outcome). Secondly, the distal outcome can be envisioned as an outcome of latent 

class membership where Z is not included in the estimation of the GMM, and which can 

be used to investigate the predictive validity of the latent classes (Clark & Muthén, 2009). 

Examples of distal outcomes framed as a consequence of latent class membership include 

alcohol dependence predicted by heavy drinking trajectory classes (Muthén & Shedden, 

1999) and high school dropout predicted by mathematics achievement development 

trajectory classes (Muthén, 2004). Given that growth is interpreted on the latent class 
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variable, it is reasonable to allow the latent trajectory class variable to predict the distal 

outcome (Muthén, 2004). The effects of covariates on the distal outcome can also be 

included to indicate that, for each class, the probabilities of Z vary as a function of X. The 

arrows from C to Z and from X to Z in Figure 2.1 show these specific relations. The distal 

outcome variable can be either continuous or categorical, and the regression can be 

linear, logistic, or other types of generalized linear regression models depending on the 

form and scale of the distal outcome. For a dichotomous distal outcome scored 0 and 1, 

for example, the functional relation can be expressed as 

1
( 1| , )

1 exp{ }
i i i

k k i

p z C k


  
 

x
v x

, (12) 

 

where  iz  represents a distal outcome predicted by an individual’s class membership as 

well as his or her background characteristics (i.e., covariates), the main effect of C is 

captured by the class-varying thresholds k  (an intercept with its sign reversed), and kv  

is class-varying slopes for x, indicating different covariate effects on z for different 

trajectory classes. The conditional probabilities of 1iz   for each class is 
exp( )

1 exp( )

k

k




 at x 

= 0.  

2.3 Growth Mixture Modeling Estimation via the EM Algorithm  

The literature is replete with a variety of estimation methods for mixture analyses. 

For example, maximum likelihood (ML) estimation (see, e.g., Codd & Cudeck, 2014; 

Harring, 2012) has been widely used to maximize the data given a particular set of 

parameters. Maximum likelihood estimates for the parameters can be found iteratively 

through using an optimization algorithm such as Newton-Raphson. As another example, 

the expectation-maximization (EM) optimization algorithm (Dempster, Laird, & Rubin, 
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1977) can be used to circumvent the heavy computation from using, for example, a 

method in which the integration of the loglikelihood function must be handled directly, to 

a method that views the estimation problem as one which can be formulated as a missing 

data problem. In their study, Codd and Cudeck (2014) extended the work by Harring 

(2012) and discussed how SAS PROC NLMIXED could be utilized to carry out ML 

estimation of a nonlinear random coefficient mixture model. As an alternative to ML 

estimation, the literature has shown an increasing rate of applications of mixture analyses 

using MCMC methods within a Bayesian estimation framework (see, e.g., Depaoli, 2013; 

Muthén & Asparouhov, 2012; Yang & Dunson, 2010). In GMM, the main difference 

between ML and Bayesian estimation methods is the inclusion of prior information (i.e., 

a prior belief about the values of model parameters) for the modeling of the growth and 

variance/covariance parameters (Depaoli, 2013). While different estimation methods 

have been developed for mixture analyses, the current paper limits the discussion to ML 

estimation implemented via an EM algorithm in that the method is by far most popular 

estimation method used in GMM analysis and it is accessible through commercial 

software.  

The EM algorithm is an iterative procedure for finding ML estimates and is 

especially useful for models that can be seen as having incomplete or missing data. The 

EM algorithm is a broadly applicable approach since it simplifies ML estimation 

substantially by reformulating the given incomplete-data problem as a complete-data 

problem (McLachlan & Krishnan, 2008). Because class membership is considered 

missing, the observed data y i  alone in the mixture model can be treated as incomplete. 

Like in any other finite mixture modeling context, in GMM estimation, it is assumed that 
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the proportion of observations falling in latent class is unknown and must be estimated 

along with the other parameters of the model. Therefore, the estimation of a growth 

mixture model consists of two parts: the estimation of parameters related to the LGM and 

the estimation of class proportions (Tolvanen, 2008).  

 The loglikelihood function corresponding to incomplete data vectors iy  can be 

written as: 

1

ln ( , | ) ln ( | )θ y y θ
n

k

i

i

L f


 , (13) 

where  

1

( | ) ( | )y θ y θ
K

k k k k

i i

k

f f


 , (14) 

 

which shows a mixture of K density functions where k  is the class proportion for class k. 

Thus, Equation 13 can be written as:  

1 1 1

ln ( , | ) ln ( | ) ln ( | )θ y y θ θ
n n K

k k k k

i i

i i k

L f f y
  

 
   

 
   .  

where θ
k  is parameter estimates related to the unconditional LGM for class k and 

1 1, , )K     . The density function for class k is 

( | ) ~ ( , )y θ μ Σ
k k k k

if N  

where  

μ Λα
k k  

'Σ ΛΨ Λ Θ
k k k

i  . 

Because GMMs contain unobserved latent variable values as well as latent class 

membership, there is no closed-form solution for the parameter estimates (see, e.g., 

Kohli, 2011; Mann, 2009). Therefore, the EM algorithm can be used to obtain the GMM 
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model parameter estimates. To identify class membership, a vector of unobservable 

0/1indicators for each individual for each class,  
'

1,..., K
i i i
c c c , can be defined as 

1,     if the th subject belongs to class 

0,     otherwise

k

ic i k 



,  1,..., ,     =1,..., .i n k K  

Thus, the loglikelihood function for complete data can be given as (see, e.g., Muthén & 

Shedden, 1999; Tolvanen, 2008): 

1

1 1

ln ( | , ) ln ( | ,

{ln( ) ln[ ( | )]},

n

i i

i

n K
k k k k

i i

i k

L L

c f



 



 





θ y c θ y c )

   y  θ

 

 

 

(15) 

where the inclusion of the unknown indicator variable k

ic  implies  maximizing the 

complete-data loglikelihood. It can also be observed that in Equation 15 the loglikelihood 

function is comprised of two independent parts: (1) the sum of the weighted K class 

probabilities and (2) the sum of the weighted K density functions. Each part can be 

maximized separately and reconstituted in the M-step of the EM algorithm (Muthén & 

Shedden, 1999).   

In the E-step (i.e., expectation step) of the EM algorithm, the complete-data 

loglikelihood function in Equation 15 is replaced by its conditional expectation function 

given observed data y i  and the current parameter estimate 0θ̂  (the initial starting value 

for θ  on the first iteration).  

 

0

1 1

ln ( | , ) ln ( | , )

[ | , ]{ln( ) ln[ ( | )]},
n K

k k k k

i i

i k

L E L

E c f
 



 

θ y c θ y c

   y θ y  θ
 

where 
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 (16) 

 

The E-step reduces to computing the posterior probabilities for each individual (i.e., 

the probabilities of an individual belonging to a certain class) with respect to the 

parameter values at the first iteration.  

These posterior probabilities are then used in the M-step (i.e., the maximization step) 

for maximizing the conditional expectation of Equation 15. That is,  

 

1 1

ln ( | , ) ln ( | , )

{ln( ) ln[ ( | )]},
n K

k k k k

i i

i k

L E L

f 
 



 

θ y c θ y c

   y  θ
 

where the estimates of k

i  replace unknown indicators k

ic . The remaining model 

parameters in ( | )k k

if y θ  with estimates in k
θ  (e.g., k

α , k
Ψ , and k

iΘ ) and the class 

probabilities 1 1, , )K      are computed. After the M-step, the algorithm returns to 

the E-step to calculate new posterior probabilities and then again to the M-step (Kohli, 

2011). This iteration continues until the convergence criterion related to the complete-

data loglikelihood is met (Harring, 2012). A known deficit of the EM algorithm is its 

slow rate to converge to a solution. Yet, the popularity and usefulness of the EM 

algorithm for GMM applications stems from its seemingly simple implementation and 

how reliably it can ascertain local optima through stable, uphill steps. ML via the EM 

algorithm is the default estimator for mixture analyses in Mplus 7.11, which will be used 

to generate data and analyze replicate data sets in the upcoming simulation.  
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2.4 Estimation Approaches for Growth Mixture Models with Covariates 

2.4.1 Conventional three-step approach 

In modeling growth mixture models with covariates, the conventional method, a 

step-by-step approach (D’Unger, Land, & McCall, 2002; Feng, Shaw, & Silk, 2008; 

Fergusson & Horwood, 2002; Jo, Wang, & Lalongo, 2010; McDermott & Nagin, 2001; 

Nagin & Land, 1993; Nagin, Farrington, & Moffitt, 1995), is usually adopted: First, 

unconditional GMM analyses are conducted based on only latent class indicators to 

determine the number of distinct trajectory groups. Then, predicted posterior class 

membership probabilities are calculated and class membership is assigned to each 

individual based on their highest posterior class membership probabilities. Finally, 

relation between the assigned latent class membership and/or the growth factors and 

subject-specific background characteristics and/or distal outcome(s) is investigated using 

either the mean comparison tests or multinomial logistic regression models. This means 

that the model does not include covariates or distal outcomes in the unconditional growth 

analyses. Influences from predictor variables are taken into account subsequently in the 

conditional analysis. In the third step, many researchers use mean comparisons tests, such 

as t-tests, ANOVA, or chi-square tests to summarize or compare among trajectories 

groups. Or, they may examine the relation between growth factors and auxiliary variables 

using regression analysis. Researchers may also use multinomial logistic regression 

models to explore the relation between latent classes and auxiliary variables, such as most 

likely class regression (i.e., regression of most likely class membership on the covariates), 

probability regression (i.e., regression of an individual’s logit-transformed posterior 

probability to be in a given class on the covariates), and probability-weighted regression 
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(i.e., regression that is weighted by an individual’s posterior probability to be in a given 

class) (Clark & Muthén, 2009). 

2.4.2 One-step ML approach  

Rather than relating covariates to the latent class variable and/or the growth factors 

in a separate, subsequent step as is done in the conventional approach, an alternate 

estimation procedure, a one-step ML approach for estimating the effects of covariates 

(see, e.g., Huang et al., 2010; Muthén, 2004; Nagin, 2005; Roeder et al., 1999), was 

recommended which include the additional variables as part of a single model estimation 

of developmental trajectories to allow for the simultaneous examination of the covariates’ 

impact on the estimation of developmental trajectories and their association with the 

distal outcome. By including the additional variables as part of a unified model, this one-

step approach solves the problem of treating most likely class membership as an exact, 

observed variable by taking into account the error associated with probability estimates, 

and allowing individuals to be fractional members of all classes (Clark & Muthén, 2009). 

The one-step approach considers a model for ( | )i ip y x  rather than ( )ip y . Thus, the 

model has the form  

1

( | ) ( | ) ( | )
K

i i i i i i

k

p p C k p C k


  y x x y , (17) 

 

where the probability ( | )i ip C k x  is parameterized by means of a multinomial logistic 

regression model expressed in  Equation 8. By allowing latent class probabilities to vary 

with individual characteristics, it is possible to test whether and by how much a specified 

covariate affects probability of class membership controlling for the level of other 

covariates that potentially affect latent class probability estimates. The k
Γ  parameters in 
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Equation 8 and the multinomial parameters defining ( | )i ip C ky  will be obtained by 

maximizing a loglikelihood function based on ( | )i ip y x (Vermunt, 2010), which is  

1 1 1

log log ( | ) log ( | ) ( | )
n n K

i i i i i i

i i k

L p p C k p C k
  

     y x x y . (18) 

 

 Distal outcome variables can also be included in the single-step approach. However, 

when the distal outcome has a direct effect from both a covariate and the latent class 

variable, the latent class model will not be affected by this direct effect (Asparouhov & 

Muthén, 2013).   

2.4.3 Pseudo class draw approach  

Pseudo class (PC) draws (Bandeen-Roche, Miglioretti, Zeger, & Rathouz, 1997) is 

one option to independently evaluate the relation between the latent class variable and the 

auxiliary variables without using assigned class membership (Asparouhov & Muthén, 

2006; Wang et al., 2005). The first step in the PC approach is to estimate the mixture 

model without covariates. During this step, posterior distribution for each individual 

being in each of the latent classes is calculated. Then, in the second step, using this 

posterior distribution, multiple pseudo-class draws for each individual’s class variable are 

generated. That is, multiple pseudo-class memberships are obtained by making multiple 

random draws from the discrete posterior latent class probability distribution for each 

individual in the sample. This second step gives each individual a chance to fall into 

neighboring classes (Clark & Muthén, 2009). Typically, 20 pseudo-class draws are used 

for each observation, which means each individual is classified 20 times (Wang et al., 

2005). These multiple pseudo class draws are used as multiple imputations of each 

observation’s class membership as if the class membership was missing. One apparent 
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benefit of using the random draws is that they account for the uncertainty in class 

assignment (Asparouhov & Muthén, 2013). The next step of the PC approach is to 

estimate the logistic regression model with the covariates explaining latent class 

membership repeatedly for the multiple draws (i.e., 20 draws), and the obtained 

parameter estimates are averaged. That is, the subsequent analysis is performed for each 

random draw, and finally the class specific information associated with the auxiliary 

variable(s) is obtained after results are combined across draws using the multiple 

imputation techniques developed in Rubin (1987). 

2.4.4 Three-step ML approach  

To avoid all the issues mentioned above, a new three-step ML approach was 

proposed by Vermunt (2010). In this new approach, the unconditional growth model 

would first be estimated, which is exactly the same as the initial step in the conventional 

three-step approach. Then, a most likely class variable is defined using the highest 

posterior probability from the latent class posterior distribution derived from the 

unconditional growth mixture analysis. In the third step, the most likely class variable is 

used as latent class indicator variable with classification error probability taken into 

account. Also, in this final stage of model estimation, auxiliary variables (e.g., relevant 

predictors) are introduced with the measurement model (i.e., the unconditional GMM) 

kept fixed. It is easily seen that the big difference between the new three-step ML 

approach and the conventional three-step approach is in the third step where the most 

likely class membership variable is treated as an imperfect measurement of latent class 

membership analysis in the new method but not in the conventional approach. Below is a 

detailed description of how the new three-step ML approach works.  
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The most useful part of the new three-step approach in GMMs is the posterior 

probabilities which is a measure of an individual’s likelihood of belonging to each of the 

k trajectory classes based on his or her longitudinal pattern of behavior y i  (i.e., 

( | )yi ip C k ).  A posterior probability can be derived via the Bayes’ rule (Dias & 

Vermunt, 2008; Goodman, 2007; McLachlan & Peel, 2000; Vermunt, 2010) using: 

( | ) ( | )
( | )

( ) ( | )

k k

i i i i
i i k

i i i

p C k p C k
p C k

p p C k

 



 
  


y y

y
y y

. (19) 

       

During the initial latent class model estimation, posterior probabilities of class 

membership for each subject are computed. Then, in the second step, subjects are 

assigned to the most likely class membership s for the most likely class variable W using 

the largest posterior probabilities. Classification error probability is also considered in 

this step. It should be mentioned here that there are two widely used classification rules, 

namely, the modal assignment and the proportional assignment (Vermunt, 2010). When 

modal assignment is considered, class assignment is hard because a subject will be 

classified into the class for which ( | )yi ip C k  is largest. This is very similar to what 

Fraley and Raftery (2002) referred to as hard assignment to the class with the highest 

posterior probability in the context of regression mixture models. When proportional 

assignment is considered, subjects are treated as belonging to latent class k with 

probability of ( | )yi ip C k , which is referred to as a “soft” classification. The three-step 

ML approach investigated in this study focuses only on the hard assignment rule. It 

should be noted that although one potential limitation of using the hard class assignment 

rule during this step is the lack of classification accuracy which might lead to biased 
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coefficient estimates, in the next step described in detail, it can be seen that classification 

error probability is considered so as to obtain more accurate parameter estimates.  

In the third step when covariates are added to the GMM, a relation is established 

between ( | )xi ip W s  and ( | )xi ip C k , as shown below 

1

( | ) ( | ) ( | )
K

i i i i i i

k

p W s p C k p W s C k


    x x , (20) 

 

which looks similar to the one-step ML approach where the model has the form of 

Equation 17.   Equation 20 suggests that the new method takes into account the 

classification error probability (i.e., ( | )i ip W s C k  ), which makes parameter estimates 

more accurate. This is different from the conventional three-step approach in which 

classification error is not considered at the last stage of analysis. Based on the equation 

above, more accurate estimates of covariate effects can be obtained by treating the most 

likely class variable as an imperfect measurement of the latent classes. Then, the 

following loglikelihood function can be maximized:  

1 1

ln ln ( | ) ( | )
N K

ML i i i i

i k

L p C k p W s C k
 

     x , (21) 

 

which yields ML estimates for both ( | )xi iP C k  and the regression coefficients 

(Vermunt, 2010).  

Asparouhov and Muthén (2013) discussed in detail the procedures of calculating 

classification error probability during step two. A matrix of average class membership 

probabilities needs to be established first, where iW  is the most likely class variable with 

s rows and iC is the true latent class variable with k columns. Within each of the most 

likely latent classes, the average probability of membership for the most likely latent 
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class as well as the remaining, ‘less likely’ classes for the matrix are computed. A matrix 

of corrected average probabilities of class membership skq  is subsequently derived using 

( | ) sk s
sk i i k

sk ss

p N
q p W s C k

p N


   


, (22) 

  

where s and k stand for, respectively, the sth row (s = 1 through s) and kth column (k = 1 

through k) of the matrix, and sN  represents the sample size for the most likely class on 

the sth row. In the third step, the most likely class variable iW  is used as latent class 

indicator variable with uncertainty rates prefixed at the probabilities skq  (Asparouhov & 

Muthén, 2013). That is, the most likely latent class variable is specified as a nominal 

indicator of the latent class variable with logits, log sk

Sk

q

q

 
 
 

, where S is the last class. 

These logarithmic ratios would enter directly into the secondary statistical analysis as 

indicators of uncertainty (measurement error) in assigning cases to classes.   

2.5 Advantages and Limitations of the Estimation Approaches 

Nagin (2005) cautioned that the conventional three-step method should not be used 

for model estimation. Bolck et al. (2004) and Vermunt (2010) also demonstrated that the 

conventional three-step procedure produced biased coefficient estimates, and thus it was 

advocated to estimate the entire latent class regression model all at once. Clark and 

Muthén (2009) also discussed in detail the problems associated with some of the 

commonly used regression approaches mentioned above, and they pointed out that with 

either the mean comparison or regression methods in the third step, using the most likely 

class membership as an exact, observed variable was problematic. In terms of the mean 

comparison and the most likely class regression methods, since individuals would be 
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assigned to the most likely class based on their highest posterior probability of being in 

that class, the analysis does not take into account the uncertainty of the classification. 

Thus, these methods are technically inappropriate for making inferences about 

characteristics that distinguish trajectory group membership in circumstances in which 

class membership is not known with certainty (Roeder et al., 1999). Similar concerns 

surround the probability and probability-weighted regression approaches where although 

probabilities of being in a class are used, errors associated with the estimated 

probabilities are still not taken into account, which may negatively impact the estimation 

of the standard errors of the regression coefficients between the posterior probabilities 

and auxiliary variables.  

Compared with the conventional three-step method both the one-step and the more 

recently devised three-step ML approaches explicitly incorporate uncertainty in the 

derived categorical membership (McIntosh, 2013). The PC approach also takes into 

account classification uncertainty by using multiple random draws. In terms of the one-

step ML approach, it has the advantage of taking into account the classification 

uncertainty by allowing individuals to be fractional members of all classes. However, one 

major concern may come from the impact of either the covariate variables or the distal 

outcome variables on the forming of latent class. That is, the latent class formed from the 

joint model may differ in meaning from the latent class obtained using only the indicator 

variables and thus may potentially change the substantive interpretation of the latent 

classes. Also, the method may not be practical when a large number of potential auxiliary 

variables are involved in the secondary analysis. Not only the prediction model but also 

the measurement model needs to be re-estimated when a covariate is added or deleted 
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from the analysis, which makes exploratory work more challenging (Vermunt, 2010). 

Also, the decision about the number of classes in a model is hard to make considering the 

potential influence from including or not including covariates on class enumeration. On 

the other hand, simultaneously building the classification model and the prediction model 

may not make much sense for most applied researchers who are inclined to the idea of 

building the classification model first before including covariates into the analysis 

(Vermunt, 2010). 

In terms of the new three-step ML approach, obviously, it satisfies the logic 

requirement of most applied researchers by following the conventional step-by-step idea. 

One clear advantage of this method over the conventional approach is that the most likely 

class membership is not treated as an exact, observed variable in the final stage analysis 

as was in the conventional approach. With the new approach, the most likely class 

variable is used with measurement error probabilities taken into account. Also, according 

to Asparouhov and Muthén (2013), if the class separation is good the new three-step 

approach has the same efficiency as the one-step approach. However, a potential problem 

may still exist since classification error probabilities are derived from the estimated 

parameters of latent class analysis without covariates, which, according to Vermunt 

(2010), may result in slightly underestimated standard errors.     

2.6 Research on Comparing the Approaches 

Studies have been conducted recently to compare the performance of various 

estimation approaches to incorporating covariates in mixture modeling. The main 

purpose of these studies was to see how efficient and reliable these methods were in 

terms of estimating the association between the latent class variable and auxiliary 
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information under different conditions. For example, using simulated and real data, Clark 

and Muthén (2009) explored how different regression methods of relating latent class 

analysis results to covariates can impact estimation of auxiliary effects. Specifically, their 

study compared the estimates and standard errors of a regression between the most likely 

class membership or the posterior probabilities and a covariate using the conventional 

approach with those obtained from other methods: the PC method and the one-step 

regression approach. Results showed that the one-step approach performed the best in 

terms of recovering the true covariate effect. The PC method worked well when class 

separation was large. When class separation was not large, like the conventional 

regression methods, the PC method underestimated the standard errors, which is 

problematic because an effect may be identified as significant, when in fact, it may not be 

(Clark & Muthén, 2009). In another study, Vermunt (2010) compared the standard three-

step procedure, the one-step approach, the BCH approach, and his proposed three-step 

ML approach with respect to bias in the estimates of the covariate effects and bias in the 

standard error estimates when covariates were included in latent class modeling. Results 

showed that the standard three-step approach performed poorly in the sense that its 

parameter estimates were severely biased downward. Both the BCH method and the 

three-step ML method demonstrated good parameter estimates and standard errors except 

when the classes were very poorly separated. It was also found that the three-step ML 

method was much more efficient than the BCH method in terms of the standard deviation 

of parameter estimates, and it was almost as efficient as the one-step estimation approach. 

In a very recent unpublished study by Asparouhov and Muthén (2013), the relation 

between a latent class variable and a predictor variable in mixture modeling was 
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examined using different approaches under different simulation designs. Results showed 

that the new three-step ML approach uniformly outperformed the PC approach for 

analyzing the relation between a latent class variable and a covariate independently of the 

latent class model estimation. Also, if the class separation was substantial the three-step 

ML approach had the same efficiency as the one-step approach in terms of bias, mean 

squared error and confidence interval coverage of parameter estimates. In another recent 

study, Bakk, Tekle and Vermunt (2013) used both simulated and real data to investigate the 

association between distal outcomes and latent class variable using different methodological 

approaches. The results showed that the conventional three-step approach led to severely 

biased parameter estimates compared with other methods like the three-step ML method. 

However, when class separation was low, the three-step ML method underestimated the 

parameter estimates and their corresponding standard errors.   

 One limitation with these studies is that very simple latent class models for discrete 

responses were used. Although Asparouhov and Muthén (2013) also included more 

complicated models such as a growth mixture model to evaluate how well different 

estimation approaches performed, like most previous studies, their study included only 

one covariate and had a very limited number of manipulated factors and levels within 

those factors. Vermunt (2010) included three predictor variables in his simulation study; 

however, all the predictor variables were categorical. It is quite possible that in real data 

analytic scenarios many covariates of different types should be considered in model 

estimation. Bakk et al. (2013) included only distal outcome variables in their latent class 

analyses. Another limitation found in Asparouhov and Muthén’s study with respect to 

GMM is that although three different types of direct effects from the auxiliary variable on 
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the growth factors were manipulated, the impact of the covariates with various effect 

sizes on the new three-step estimation was not investigated. 

 In summary, Chapter 2 has briefly reviewed the mathematical and theoretical 

background of growth mixture models with auxiliary variables as well as three estimation 

approaches applicable for these models. To help understand the development of these 

complex models, the review started from the latent growth modeling procedure from 

which the GMM is extended by combining LGM with LCA. Similarly, the idea of 

including covariate(s) into LGM has been extended to GMM with auxiliary variables. 

The advantages of including auxiliary information to a GMM were also discussed. For 

example, by including relevant individual-level characteristics in the model, membership 

in a specific trajectory group could be predicted with high probability, which helps to 

correctly estimate class proportions and class membership, find the proper number of 

classes, and obtain more accurate parameter estimates. Also, covariates or predictors 

make interpretation of the growth trajectories more meaningful because of the inclusion 

of individual background information. Various ways of including covariate variables as 

well as distal outcomes into a GMM were introduced. Then, the chapter reviewed 

maximum likelihood estimation via the EM algorithm which is the method used in this 

study. Another very important section of the review is the estimation approaches for 

GMMs with auxiliary variables. Procedures of conventional three-step approach, one-

step ML approach, and a new three-step ML approach were described in detail, whose 

advantages as well as limitations were also discussed. The end of the chapter reviewed 

research on the comparison of various estimation approaches, and limitations of previous 

work were noted which have lead to the idea of the current study.  
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In view of the limitations of previous work on examining the performance of 

various estimation approaches to incorporating covariates in latent class analysis, Chapter 

3 aims to assess the performance of four estimation approaches (i.e., the conventional 

three-step approach, the one-step ML approach, the PC approach, and the three-step ML 

approach) for estimating covariate effects on GMMs. Specifically, covariate effect 

estimates on the latent class modeling will be derived using the four procedures and then 

compared in terms of bias estimates of the covariates effects.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

38 

 

Chapter 3: Methodology 

 This study uses Monte Carlo simulation to assess the performance of various 

methods used for estimating covariate effects on the latent class membership model 

within a growth mixture modeling framework. By using Monte Carlo simulation 

techniques, sample data with known population parameters are generated and the 

performance of the methods is evaluated under different manipulated conditions and/or 

model specifications. Specifically, two separate simulation studies are conducted to 

examine whether these methods are able to accurately estimate the relation between latent 

class membership and covariate(s) under two different scenarios. The experimental 

design of the two simulation studies is described in detail in this chapter in terms of the 

manipulated factors, data generation model, models used to fit the data, covariate effect 

definition and outcome measures used in the analyses. The software used for data 

simulation as well as the analysis is also discussed.  

3.1 Simulation Design 

This section explains the factors manipulated and why particular factor levels are 

considered for the two simulation studies. The manipulated factors are the same for both 

simulation studies and are described in detail first. Then mathematical explanation of 

how to manipulate degrees of class separation and covariate effect is provided. In 

addition, the choice of class separation levels and procedures compared in each of the 

two studies are discussed. Finally, the number of replications used is mentioned.   

3.1.1 The same manipulated factors in the two studies  

For the two simulation studies, the same fixed design characteristics include: (1) the 

number of time points, (2) the number of latent classes, (3) sample size, (4) proportions 



 

39 

 

for the dichotomous covariate, (5) distribution of the continuous covariate, and (6) the 

mixing proportions of the latent classes. Both of the simulation studies include time-

invariant covariates in the analyses. In addition, some simplified assumptions are made in 

order for the two studies to be manageable considering the complexity of the models. For 

example, the GMMs specified in the two studies model change for normally distributed 

indicator variables and assume that individual growth trajectories are linear (i.e., 

quadratic, higher order polynomials or nonlinear functions are not considered). It is also 

assumed that residual variances among indicator variables are invariant over classes (i.e., 

Θ Θ
k   for all k) and are homoscedastic and uncorrelated (i.e., 2

nΘ I ), and that 

growth factor covariance matrices are unstructured and invariant across latent trajectory 

classes (i.e., Ψ Ψ
k   for all k). Since model complexity is one factor that makes model 

convergence a potential issue, it has been recommended that residual variances among 

indicator variables as well as growth factor variances and covariances be constrained 

equal across classes to ensure the absence of singularities and to ensure the existence of a 

global solution (Hipp & Bauer, 2006; Liu, Hancock, & Harring, 2011). By adding 

constraints to the model, the number of free parameters to be estimated is reduced, which 

is expected to improve convergence in model estimation. According to Muthén (2001), 

mixture models are particularly sensitive to local maxima when differences in the factor 

variances and covariances between classes are large. Results from a simulation study by 

(Bauer & Curran, 2003) also showed that prediction of class membership is not more 

accurate when factor variances are allowed to vary than when factor variances were 

constrained across classes.  
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Tables 3.1 and 3.2 below show the fixed design characteristics and the manipulated 

factors for both of the simulation studies respectively. A detailed explanation of why 

certain level(s) are considered for use for the studies is followed immediately. It should 

be noted that the level(s) are selected based on a careful review of relevant simulation 

studies and pilot work. 

Table 3.1  

Fixed Factors in the Two Simulation Studies 

Factor  Fixed Value 

Number of repeated measures  6  

Number of latent classes  2 

Proportions for the dichotomous covariate  30:70 

Distribution of the continuous covariate  Normal (0, 1) 

Table 3.1 shows four fixed factors used for the two studies. The number of repeated 

measures is fixed at six assuming all individual growth trajectories in each subpopulation 

start and end at the same point. It is often seen in both simulation studies and substantive 

research of growth mixture models that the number of measurement occasions is three or 

more (see, e.g., Brown, 2003; Jung & Wickrama, 2008; Masyn & Brown, 2001), and it 

has been recommended that a minimum of three time points be used to specify a linear 

model (Willett, Singer, & Martin, 1998). Simon, Ercikan, and Rousseau (2012) suggested 

a minimum of four repeated measures to achieve more power in growth modeling. On the 

other hand, considering the potential issues regarding convergence or power, at least five 

indicators have been recommended (Muthén & Curran, 1997). Therefore, the choice of 

six time points seemed reasonable. As per the number of latent classes, a two-latent class 

model is chosen so as to keep the scope of the study manageable. For both studies, 
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distributions of covariates are the same. For example, proportions for the dichotomous 

covariate are all fixed at 30:70 and the continuous covariate has a standardized normal 

distribution with a mean of 0 and variance of 1.   

Table 3.2  

Manipulated Factors in the Two Simulation Studies 

Factor  Levels 

Levels of sample size  N = {500, 1,000, 5,000, and 10,000} 

Mixing proportions  30:70; and 50:50  

Degrees of class separation  Mahalanobis distance (MD) = {1.0, 2.0, and 

3.5} 

Covariate effect  Odds ratio (OR) = {1.5, 9.0} 

Table 3.2 shows three manipulated factor conditions for this research. In terms of 

sample size, four conditions are considered which are 500, 1,000, 5,000, and 10,000. 

Literature review has shown various sample size ranging from 25 to 10,000. However, 

for latent class analysis, a sample size of 500 is considered a small sample size, especially 

in the low-separation condition (Vermunt, 2010). A sample size of 1,000 is selected 

because it is a typical sample size level used in methodological growth mixture modeling 

studies (see, e.g., Brown, 2003; Clark & Muthén, 2009; Kohli, 2011; Nylund et al., 2007; 

Tolvanen, 2008; Vermunt, 2010). The choice of a sample size of 5,000 is consistent with 

one of the manipulated conditions for growth mixture models by Asparouhov and 

Muthén (2013) whose work has been extended into this particular study, and a very large 

sample size of 10,000 (see, e.g., Vermunt, 2010) is added to avoid sampling fluctuation 

as well as to increase the convergence rate.     
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Results from previous studies (see, e.g., Nylund et al., 2007; Tofighi & Enders, 

2008) have indicated that the mixing proportion plays an important role in growth 

mixture analyses. The current study will manipulate mixing proportion conditions at two 

levels: 30:70 and 50:50. More extreme levels such as 10:90 have led to severe 

convergence issues in past studies (e.g., Tolvanen, 2008) and thus will not be investigated 

further in this study.  

 Another factor assumed to affect growth mixture analysis is class separation. As for 

degrees of class separation, though three levels are indicated in Table 3.2, the choice of 

levels for the two studies differs slightly. Specifically, all three levels are used for 

Simulation I whereas only two levels (i.e., MD = 2.0 and MD = 3.5) are considered for 

Simulation II. Mathematical explanation of the index of MD used for measuring degrees 

of class separation and why certain levels of class separation are selected for the two 

studies are provided below in Section 3.1.2.     

3.1.2 Class separation and growth factor means 

 Class separation is assumed to affect the estimation approach with respect to linking 

covariates with the latent class variable. It has been found that the estimation accuracy of 

GMMs is largely affected by how well subpopulations are separated (see, e.g., Everitt, 

1981; Lubke & Muthén, 2007; Tofighi & Enders, 2008). Class separation can occur at the 

latent level or the measured variable level (see, e.g., Tolvanen, 2008). This study will 

focus exclusively on class separation at the latent level for the growth parameters. Class 

separation in this study is measured in terms of the multivariate Mahalanobis distance 

(MD; Mahalanobis, 1936) between two classes and is manipulated by varying the latent 
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growth factors (e.g., growth trajectory intercept and slope). MD between two latent 

classes is defined as follows: 

1 2 1 1 2( ) ( )( ) ( ) ( ) ( )
μ μ Ψ μ μMD    ,  

 

where 1( )
μ  and 2( )

μ  are the growth factor means for the first and second latent classes, 

respectively (McLachlan & Peel, 2000), and 1
Ψ

  represents the inverse of the common 

covariance matrix of individuals’ growth parameters. In this study, the means would be 

the intercept and slope growth parameters for each trajectory class. Referring to previous 

studies and also based on exploratory analyses in a pilot study, the current research sets 

MDs at 1.0, 2.0, and 3.5 for Simulation I and at 2.0 and 3.5 only for Simulation II. MD 

values of 1.0, 2.0, and 3.5 reflect small, large, and very large trajectory separation 

conditions, respectively (see, e.g., Depaoli, 2013; Everitt, 1981; Lubke & Muthén, 2005; 

Lubke & Neale, 2006; Tolvanen, 2008; Tueller & Lubke, 2010). Small class separation 

(i.e., MD = 1) is not considered in Simulation II because of the extremely high non-

convergence rate found in a pilot study. Figure 3.1 below shows example graphs 

corresponding to the three MD levels to help visually understand what degree of class 

separation are implied by the chosen levels of MD. It can be observed that when MD = 1, 

there is a great deal of overlaps between observations from the two classes, and when 

MD becomes a larger value such as MD = 2, the two classes are further apart from each 

other with some overlap, but clearly not as much as when MD = 1. There is almost no 

overlapping between the two classes at MD = 3.5, suggesting the two classes are well 

separated.  
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(a) MD = 1.0 

  

 

 

(b) MD = 1.0 

  

 

 

(c) MD = 3.5 

Figure 3.1. Examples of Mahalanobis distance (MD) for two classes. 
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 It should be added here that parameters for growth factor covariance matrices and 

residual variance used for both simulations are defined as:  

2
cov( )

.45 .4

 
   

 
η Ψ  and 2cov( ) , ε Θ I  where 2 .75  . 

It has been advocated in several simulation studies on latent growth models and GMMs 

that in practice, the ratio of the intercept variance to the slope variance is approximately 

5:1 (see, e.g., Depaoli, 2013; Liu, 2012). In line with the consistency of this 

recommendation from the literature, the diagonal values in Ψ  are in this ratio with the 

covariance set so that the correlation between the random effects is approximately 0.50.  

 The population values for the growth factor means (using different means of 

intercept and slope) under different class separation conditions are provided in Table 3.3.  

Table 3.3 

 

Growth Factor Mean Parameters under Different MDs 

Growth Factor Mean 

MD = 1 MD = 2 MD = 3.5 

Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 

Intercept 10 11.22 10 12.44 10 14.28 

Slope 2 2.55 2 3.09 2 4.19 

3.1.3 Manipulating covariate effect  

Covariate effect size is one major manipulated factor in this research. Covariate 

effect size with respect to the strength of the association between the covariate(s) and 

class membership is manipulated using odds ratio (OR). Odds ratio estimates the change 

in the odds of membership in the target group (i.e., class 1) for a one unit increase in the 

predictor. The covariate can be either dichotomous or continuous. Two levels of OR, 1.5 

and 9.0, are considered for both simulations in this study, indicating small and large 
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effect, respectively (see, e.g., Cohen, 1988). Detailed description of these effects is to be 

found in Section 3.2 for Simulation I and Section 3.3 for Simulation II. In addition to 

covariate effect on the latent class membership, Simulation II also incorporates covariates 

that enter the measurement model, which, again, is discussed further in Section 3.3.   

3.1.4 Procedures compared in the two simulations   

The procedures compared in Simulation I are the conventional three-step approach, 

the one-step ML approach, the PC approach, and the new three-step ML approach. There 

are only three procedures compared in Simulation II which are the conventional three-

step approach, the one-step ML approach, and the new three-step ML approach. The PC 

approach is not considered in Simulation II because of its poor performance (see 

discussion below) found in Simulation I.    

3.1.5 Replications   

For both simulations, 500 replications in each cell of the design are executed. In 

methodological studies focused on growth mixture modeling, the minimum number of 

replications has been found to be 100 (see, e.g., Asparouhov & Muthén, 2013). Many 

studies have used 500 replications (see, e.g., Bauer & Curran, 2003; Brown, 2003; 

Nylund et al., 2007), and has also been an advocated number of replications in a recent 

book chapter by Bandalos and Leite (2013) to ensure an accurate portrayal of the 

precision in the estimates.  

Data are generated and analyzed using Mplus Version 7.11 (Muthén & Muthén, 

2012).  
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3.2 Simulation I 

Simulation I examines how well the conventional three-step approach, the one-step 

ML approach, the PC approach, and the new three-step ML approach perform in terms of 

estimating covariates effects on the latent class membership independent of the 

measurement model where the latent classes are determined by the pattern of growth 

trajectories. Data are generated such that time-invariant covariates enter the growth 

mixture model as direct predictors of latent class membership.    

3.2.1 The data generation model 

 In the first simulation, the form of the logistic regression function is used to model 

the relation between the covariates and the latent classes. Two covariates (one categorical 

and one continuous) are generated as predictors of an individual being in a latent class 

through the multinomial logistic regression equation given as  

0 1 1 2 2

0 1 1 2 2

1

exp( )
( | )

exp( )

k k k
k i i
i i i K

h h h

i i

h

x x
p C k

x x

  


  


 
  

 
x , 

 

where 1ix  is a dichotomous covariate (e.g., gender) defined with values corresponding to 

either 0 or 1 (e.g., female = 0 and male = 1), and 2ix  is a continuous covariate (e.g., 

aptitude) having a standardized normal distribution with a mean of 0 and variance of 1. 

The regression coefficients (i.e., 
1

k  and 
2

k ) represent the effect of covariates on the log 

odds of membership in class k relative to class K, and 0

k  is the logistic regression 

intercept for class k relative to class K. For simplicity, interaction between the two 

covariates is not considered in this study. For purposes of model identification, latent 
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class 2 will be considered the reference class, then coefficients, 2

0 , 2

1 , and 2

2   are all 

fixed as 0. The final logistic model can then be expressed in its logit form as: 

1 1 2 1 1 1

0 1 1 2 2( ) ( / )i i i i ilogit =log x x          

A path diagram is created and is shown in Figure 3.2 to help understand the data 

generation model for Simulation I, where Y1 – Y6 are the six repeated measures, 0  and 

1  are the intercept and the slope respectively, X stands for the covariates, and C is the 

categorical latent class variable. The arrow from X to C shows that the covariates enter 

the growth mixture model as predictors of latent class membership.    

 

 

Figure 3.2. Path diagram for the data generation model for Simulation I 

 It should be noted that the predictors, 1x  and 2x , are generated such that the 

strength of the correlation between these two variables is weak to moderate positive, 

0.30  . Inducing the correlation between categorical and continuous variables in this 

research is to mimic the real life situation where most of the variables are correlated and 
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independent relation between variables seldom exists. Since Mplus software program 

does not include an algorithm for directly generating a categorical variable, the 

correlation between the dichotomous variable 1x  and the continuous variable 2x  are 

produced following the procedures described below.  

 Suppose that 1x  and 2x  follow a bivariate normal distribution with a correlation of 

1 2x x  (in our case, 
1 2x x = 0.3). If 1x  is dichotomized to produce 1Dx , then the resulting 

correlation between 1Dx  and 2x  can be designated as 
1 2 1 2

( / )
Dx x x x h pq  , where p  

and q  are the proportions of the population above and below the point of 

dichotomization, respectively, and h  is the ordinate of the normal probability density 

function at the same point (Magnusson, 1966). Values of h for any point of 

dichotomization can be found in standard tables of normal curve areas and ordinates (e.g., 

Cohen & Cohen, 1983, p. 521), and the sign of correlation in the equation should not 

change with dichotomization. Therefore, instead of using 0.3, the correlation parameter 

used in this study for data generation is: 0.395.  

3.2.2 Covariate effect  

 As was mentioned earlier, covariate effect size with respect to the strength of the 

association between the covariates and class membership is manipulated using odds ratio 

(OR). Two levels of OR are set for both 1x  and 2x  as 1.5, and 9 to indicate small and 

large effect, respectively (see, e.g., Cohen, 1988). Therefore, four sets of covariate effects 

for 1x  and 2x are manipulated, which are: 1.5 for 1x  and 1.5 for 2x , 9 for 1x  and 9 for 2x , 

1.5 for 1x  and 9 for 2x , and 9 for 1x  and 1.5 for 2x . Since 1ix  is defined with values 
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corresponding to either 0 or 1, an odds ratio between different covariate groups and latent 

classes is shown as: 

1 1
1

1 1

( 1| 0) / ( 2 | 0)
Odds ratio = exp( )

( 1| 1) / ( 2 | 1)

p C x p C x

p C x p C x


   


   
,  

where the odds of being in class 1 is approximately 1exp( )  times greater for one 

categorical group (e.g., males) than the other (e.g., females). Levels of odds ratio are also 

used to manipulate the strength of the relation between 2x and the latent class 

membership, although the interpretation is different from that for the dichotomous 

covariate. Specifically, for a one unit increase in 2x  (e.g., aptitude), it is expected to result 

in an approximately ( 2exp( ) -1) increase or decrease in the odds of being in class 1, 

holding 1x  constant. Regression coefficient parameters used for generating the data are 

provided in Table 3.4 below. 

Table 3.4 

Regression Coefficient Parameters for Data Generation in Simulation I 

 Regression Coefficient CE = 1 CE = 2 CE =3 CE = 4 

1
1  0.405 2.197 0.405 2.197 

1
2  0.405 2.197 2.197 0.405 

Note: Odds ratios are 1.5 for 1x  and 2x  at CE = 1; odds ratios are 9.0 for 1x  and 2x at CE = 2; odds ratios 

are 1.5 for 1x  and 9.0 for 2x  at CE = 3; and odds ratios are 9.0 for 1x  and 1.5 for 2x  at CE = 4.  

3.2.3 Summary of manipulated conditions for Simulation I 

In summary, four levels of sample size, three levels of class separation, two levels 

of mixing proportion and four sets of covariate effects are used in the experimental 
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design, which results in 4 × 3 × 2 × 4 = 96 cells. Since four estimation methods are 

examined under each of these cells, the total number of conditions is 96 × 4 = 384.  

3.3 Simulation II 

Simulation II examines how well the conventional three-step approach, the one-step 

ML approach, and the new three-step ML approach perform in terms of estimating 

covariate effects on the latent class membership when other time-invariant covariates 

enter the growth mixture as direct predictors of class trajectories. Therefore, the major 

difference between Simulation I and Simulation II in terms of data generation is that there 

are more covariates in Simulation II than in Simulation I and, instead of being linked only 

to the latent class part of the model, covariates in Simulation II are related to different 

parts of the growth mixture model, which has made the measurement model more 

complicated. As discussed earlier, time-invariant covariates can enter the growth mixture 

model as direct predictors of the parameters of the class trajectories, and the direct effects 

from the covariates to the growth factors can be class-invariant or class-specific. In the 

second simulation, only direct, class-specific covariates in the growth part of the model 

are considered while a third covariate affecting the latent class membership is also 

included. Thus, the total number of covariates included in Simulation II is three.  

3.3.1 The data generation model 

Data generation for Simulation II is more complicated than that for Simulation I. 

First, the form of the logistic regression function is used to model the relation between 

the covariate and the latent classes. Considering the model convergence issue for very 

complicated models, only one categorical covariate is generated as a predictor of an 
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individual being in a latent class through the multinomial logistic regression equation 

given as  

0 1 1

0 1 1

1

exp( )
( | )

exp( )

k k
k i
i i i K

h h

i

h

x
p C k

x

 


 



  


x , 

 

where 1ix  is a dichotomous covariate (e.g., gender). The regression coefficient, 
1

k , 

represents the effect of the covariate 1ix  on the log odds of membership in class k relative 

to class K, and 
0

k  is the logistic regression intercept for class k relative to class K. Again, 

for purposes of model identification, latent class 2 will be considered the reference class, 

and then coefficients, 2

0 , and 2

1  are all fixed as 0. Therefore, the final logistic model 

expressed in its logit form is: 

1 1 2 1 1

0 1 1( ) ( / )i i i ilogit =log x      .  

To model the relations the covariates and growth trajectories, time-invariant 

covariates enter the GMM model as predictors of trajectory parameters through Equation 

11. With two covariates incorporated, the associations of covariates with the growth 

factors can be expressed with the Level-2 model using hierarchical notation as:  

0 0 01 2 02 3 0

k k k k k

i i i ix x          

1 1 11 2 12 3 1

k k k k k

i i i ix x          

where 0

k

i  is the intercept of the true change trajectory, 1

k

i  is the linear slope of the true 

change trajectory, and 0

k  and 1

k  represent population-average intercept and slope 

parameters within class k, respectively. 2x  and 3x  are Level-2 covariates, with 2x  being 

a dichotomous covariate defined with values corresponding to either 0 or 1 (e.g., home 
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language: non-English = 0 and English=1), and 3x  being continuous (e.g., aptitude) 

which has a standardized normal distribution with a mean of 0 and variance of 1. Class-

specific regression coefficients,
01

k , 
02

k , 
11

k  and 
12

k  indicate the relative effect of the 

explanatory variables on the outcome. Specifically, 
01

k  and 
02

k  represent the effects of 

2x  and 3x  on an individual’s specific intercept, and 
11

k  and 
12

k  are the effects of 2x  and 

3x  on an individual’s specific slope parameters. Residual error terms, 
0

k  and 
1

k , are 

bivariate normally distributed, 2

0 0~ (0, )k

i N   and 2

1 1~ (0, )k

i N  , where 2

0  and 2

1   

represent residual variances for each growth parameter, respectively, and the  covariance 

between them is 0.45.  

A path diagram is also created for the data generation model used in Simulation II 

(see Figure 3.3), where the dashed arrows from X to 0  and 1  indicate the class-specific 

covariates on the growth factors and the arrow from X to C indicates the relation between 

the covariates and the latent class variable. 

 

Figure 3.3. Path diagram for the data generation model for Simulation II. 
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 As was discussed earlier, to mimic the real life situation where orthogonal relations 

between variables barely exist, 1x , 2x , and 3x  are generated such that the strength of the 

correlation between any pair of these variables is weak to moderate positive, 0.30  . 

Similar to what was done in Simulation I (see Section 3.2.1), the same algorithm is used 

to produce the desired correlation between a dichotomous variable and a continuous 

variable in Mplus.   

3.3.2 Covariate effect 

 Like Simulation I, covariate effect size with respect to the strength of the 

association between the covariate and class membership is manipulated using odds ratio 

(OR). Two levels of OR are set for 1x  as 1.5, and 9 to indicate small and large effect, 

respectively (see, e.g., Cohen, 1988). Since 1ix  is a dichotomous variable defined with 

values of 0 and 1, an odds ratio between different covariate groups and latent classes may 

be specified as: 

1 1
1

1 1

( 1| 0) / ( 2 | 0)
Odds ratio = exp( )

( 1| 1) / ( 2 | 1)

p C x p C x

p C x p C x


   


   
.  

On the other hand, although covariate effect size with respect to the strength of the 

association between the covariates and growth trajectories is not examined in this study, 

it is manipulated in the way that Tofighi and Enders (2008) did in their study where 

percentage of variance explained by the covariates was used for covariate effect control. 

Specifically, following their example, the values of the coefficients are chosen arbitrarily 

such that the covariates account for 16% of the intercept and slope variation in Class 1, 

and 6% of the variation in the growth factors in Class 2. These proportions of explained 

variance roughly correspond with Cohen’s (1988) effect size benchmarks in the multiple 
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regression context (e.g., 6% and 14% approximate a medium and large effect size for 2R

). The regression coefficient parameters used for generating the data for Simulation II are 

provided in Table 3.5, and the algorithm used for generating these regression coefficient 

parameters is described in Appendix A.  

Table 3.5 

Regression Coefficient Parameters for Data Generation in Simulation II 

Latent Class Intercept Slope  CE = 1 CE = 2 

Class 1 1
01 = 0.336 

1
02 = 0.500 

1
11 = 0.232 

1
12 = 0.200 

 1
1  = 0.405  

1
1  = 2.197 

Class 2 2
01 = 0.500 

2
02 = 0.200 

2
11 = 0.200 

2
12 = 0.100 

   

Note: Odds ratios are 1.5 for 1x  at CE = 1 and 9.0 for 1x  at CE = 2; regression coefficients of intercept and 

slope are chosen for Class 1 such that the covariates account for 16% of the intercept and slope variation; 

regression coefficients of intercept and slope are chosen for Class 2 such that the covariates account for 6% 

of the variation in the growth factors.  

3.3.3 Two models used for Simulation II 

 Two models are used for Simulation II: the correctly specified model and a 

misspecified model. By correctly specified model, we mean that the data generation 

model is used for data analysis. That is, 1x  is included in the latent class and 2x  and 3x  

are incorporated in the measurement part of the model. In terms of the misspecified 

model, only one condition is considered where the two covariates associated with the 

growth factors are not included in the data analysis.      

3.3.4 Summary of manipulated conditions for Simulation II 

In sum, four levels of sample size, two levels of class separation, two levels of 

mixing proportion, and two levels covariate effects on the latent class membership are 

included in the second simulation design, which result in 4 × 2 × 2 × 2 = 32 cells. Since 
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three estimation methods will be examined under each of these cells, and two models are 

used for data analysis, the total number of conditions is 32 × 3 × 2 = 192.  

3.4 Criteria for Evaluating Estimation Approaches 

One might consider a method to perform well when the parameter estimates 

stemming from that estimation approach are unbiased and their variation is small. 

Therefore, the outcome measures to be compared in the current research include: (1) 

percent relative bias in the estimates of the covariate effects, (2) variance of the covariate 

effect estimates, and (3) standard error efficacy of the covariate effect estimates. In 

addition, estimation convergence will be examined and monitored. 

One criterion to be used for evaluating the four estimation methods will be the 

percent relative bias for the covariate effect estimates. Bias is defined by the average 

difference between the population-generating covariate effect value and the parameter 

estimates, which is expressed as 

Bias of ˆ ˆ[ ]bias E      

where   is the true covariate effects (population parameter) and, ˆE[ ]  is the expected 

covariate estimates computed from the replicate data sets within each cell of the design. 

A percent relative bias will be obtained by dividing the bias of a parameter estimate (i.e., 

estimate of a covariate effect) by the population parameter value, which is expressed as 

Relative bias of 
ˆ[ ]ˆ 100rb

E  




 
   
 

. 

Relative bias may be preferred in this situation because the magnitude of the parameter 

estimates in the analyses will be on different scales and thus relative bias essentially 

removes the scale of the parameter in its calculation putting the values on equal footing. 
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Variance of covariate effect estimates within each cell will also be compared. 

Variance is informative in that it suggests the variability of parameter estimates in the 

population by examining its empirical sampling distribution and is calculated as  

500
1 2

1

ˆ ˆ ˆvar( ) 500 ( )
j

  



  . 

Standard error efficacy of the covariate effect estimates will be used as another 

criterion for estimation method comparison, which can be obtained using  

Standard Error Efficacy of 
1

ˆ( )ˆ
ˆ( )

SE

SD





 , 

where ˆ( )SE   is the square root of the mean variance of ̂  derived from the 500 

replications (i.e., 

500
2

1

ˆ( ( ))

ˆ( )
500

j

j

SE

SE









, where ˆ( )jSE   is the standard error estimates 

of   for replication j),  and 1

499ˆ ˆ( ) ( )
500

SD SD    which is the corrected sample 

standard deviation of 500 parameter estimates in a given cell. If the estimated standard 

errors computed based on an approach are accurate, the ratio of ˆ( )SE   to 1
ˆ( )SD   should 

be close to 1 (Lee, 2007; Lee, Song & Poon, 2004). It should be noted that unlike the 

mean of the standard error estimates (i.e., 

500 500

1 1

ˆ ˆ( ) var ( )

500 500

j j

j j

SE  
 



 
), ˆ( )SE   is an 

unbiased estimate of the true sampling variability. This is because the standard error 

estimates provided by the software programs are in fact the square root of the variances, 

and although taking the square root does not result in biased variance of an estimator, this 

nonlinear transformation causes a biased estimator of the population standard error. 
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Going back to the standard error efficacy of the covariate effect estimates, values greater 

than 1 indicate that the standard errors are overestimated, implying increase of 

committing Type II errors by the model whereas values less than 1 indicate that the 

standard errors are underestimated by the model (chance of committing Type I errors).      

Using the collated data for the three evaluation criteria (i.e., relative bias, parameter 

estimate variance, and standard error ratio) as dependent variables, three separate 

repeated measures ANOVAs will be conducted to determine the statistical significance of 

the effects of the different levels of the manipulated factors in various covariate 

estimation approach conditions. In the ANOVA, all conditions are treated as the fixed 

effects. In summary, four main effects (i.e., sample size, degrees of class separation, 

mixing proportion, and covariate effects) and their interaction terms, up to three-way 

interaction, will be included in each of the three models used in this research.   

In addition to test the statistical significance (i.e., a significant effect is claimed if p-

value < nominal level), in order to determine the practical significance of the effect, an 

effect size index, eta-square ( 2 ), which is defined as
total

effect

SS

SS
2  will also be assessed. 

An 2 of 0.06 indicates a medium sized effect (see, e.g., Cohen, 1988) and will be used as 

a cutoff for practical significance with smaller values denoting impractical significance. 

Using the results from the factorial ANOVAs will guide which findings to focus on when 

reporting the results of the simulation studies.    

3.5 Two Potential Issues to Address 

3.5.1 Label switching 

Label switching refers to the arbitrary mismatch between estimated class 

membership and generating class membership for simulated data in mixture modeling. 
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Only one of the possible permutations is the correct match and others indicate an 

occurrence of label switching. The occurrence of the label switching has to be detected 

and mismatched class membership has to be corrected before aggregating parameter 

estimates from multiple replications. Failing to match the correct class membership will 

result in the incorrect evaluation of the accuracy of the parameter estimation.  

Since the current study uses ML estimation via the EM algorithm for the analysis of 

the growth mixture models, the label-switching issues present in Bayesian MCMC 

estimation (between- and within-chains) do not exist here. However, as has been pointed 

out in previous (see, e.g., McLachlan & Peel, 2000; Tueller, Drotar, & Lubke, 2011), the 

class labels are arbitrary in mixture models without previous knowledge of 

subpopulations. In simulation studies, parameter estimates are aggregated over 

replications and from replication to replication the same classes may not be labeled the 

same. It is critical to avoid aggregating parameter estimates over mislabeled classes. The 

label-switching problem can be prevented by using true parameter values starting values, 

making model constraints or inspecting parameter estimates after estimation. In this 

study, all three procedures will be implemented. In terms of model constraints, MODEL 

CONSTRAINT commands are included in the Mplus syntax. For example, if we define 

i1 as intercept for Class 1, i2 as intercept for Class 2, and s1 as slope for Class 1 and s2 as 

slope for Class 2, then we can add “MODEL CONSTRAINT: i1 < i2; s1 < s2;” to the 

Mplus code to make sure the labeled Class 1 does have higher intercept or slope than 

Class 2.  
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3.5.2 Convergence 

In terms of the convergence, problems are regularly found in mixture model studies. 

Since the current study only examines the parameter recovery in converged cases, low 

convergence rates will undermine the evaluation of parameter recovery and subsequent 

factorial analysis of variance results. The distribution of estimates from limited number 

of replications might not represent the true sampling distribution of population 

parameters. Unbalanced cell sizes within the factorial design may hinder the 

interpretation of ANOVA results. For the two simulations, new datasets were generated 

and estimated until the number of replications converged for each simulation cell reaches 

500. Detailed reports of the convergence rate will be presented and discussed later in 

Chapter 4.  

It should be added that Mplus is flexible in terms of setting starting values, number 

of random starts and final optimizations, and perturbation levels to mitigate problems 

with model convergence under the EM algorithm. In both of the simulations, true 

population parameters will be used as the starting values to provide efficient information 

for the estimation algorithm to obtain improved model convergence. In terms of number 

of random starts and number of final optimizations, the default for latent variable mixture 

analysis in Mplus 7.11 (Muthén & Muthén, 2012) is 10 random sets of start values with 

two solutions with the highest log-likelihoods chosen as the starting values to be iterated 

until convergence is obtained or the iterative estimation is stopped due to a lack of 

convergence. In Mplus syntax, the STARTS = 50 10 option will be used to change the 

number of starting values in the initial stage from 10 (default) to 50 and the number of 

final optimizations from 2 (default) to 10. In addition, perturbation level of the starting 
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values will be changed from 5 (default) to 3. Selection of these values is made based on 

findings from previous studies (see, e.g., Hipp & Bauer, 2006; Li, Harring, & Macready, 

2014).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4: Results 

 In this chapter the results of two Monte Carlo simulations are presented. The 

results are based on 500 replications that achieved convergence to the global solution 

across all estimation algorithms under investigation. Convergence rates are reported for 
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both of the simulations. Then, results from the impact of using various approaches for 

estimating covariate effects on the latent class membership under different manipulated 

conditions are discussed separately for each of the simulations. In order to test 

statistically significant effects of different methods on covariate effects estimation under 

the manipulated factors, several repeated measures analyses of variance (ANOVA) were 

conducted in SPSS (version 18.0). Specifically, percent relative bias, variance of the 

covariate effect estimates and standard error efficacy from using various estimation 

approaches were compared under the simulation conditions.  

To make presentation of the results concise, a list of abbreviations of the 

manipulated factors and the estimation methods is used in the tables and the graphics and 

shown in Table 4.1.   

 

 

 

 

 

 

 

 

Table 4.1 

Abbreviations of the Manipulated Factors and the Estimation Methods 

Factor Abbreviation 
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Covariate Estimation Approach 

Conventional Three-step Approach 

One-step ML Approach 

PC Approach 

Three-step ML Approach 

A 

A1 

A2 

A3 

A4 

Model 

Misspecified Model 

Correctly Specified Model 

M 

M1 

M2 

 Sample Size N 

Latent Class Mixing Proportion MP 

Class Separation CS 

Covariate Effect CE 

 

4.1 Convergence Rate 

Although convergence issues were not the intended focus of this research, it is still 

interesting to see how well the replications converge under the various simulated 

conditions using different covariate effect estimation methods. Because the common 

problems with using the EM algorithm for fitting any type of mixture model are non-

convergence or local maxima, the divergent replications in this study included 

replications that failed to converge to a consistent solution or converged replications with 

local maxima. The convergence rate for each condition was calculated using the first 500 

replications. Proportion of properly converged replications for each of the estimation 

methods were reported for each of the two simulations at the different covariate effect 

sizes.  

4.1.1 Convergence rate for Simulation I 

Tables 4.2 – 4.5 showed the rates of converged replications for the four estimation 

approaches under various simulated conditions at different levels of covariate effect. One 

common observation from the four tables was that across all levels of covariate effect, 
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convergence rates were 100% for all of the four estimation methods across levels of 

sample size and mixing proportion when class separation was at the highest level of MD 

= 3.5. It was also observed that the convergence rates for the PC approach and the three-

step ML approach were above 95% under all the 96 simulated conditions. Eighty-nine out 

of 96 (92.7%) cells showed convergence rates of over 90% for the conventional three-

step method, and the convergence rates for the other 7 cells ranged from 85.6% to 89.4%. 

An examination of the convergence rates for the one-step ML approach showed that the 

convergence rate was as low as 49.8% at the condition of MD = 1.0, mixing proportion of 

30:70, and sample size of 500 when both 1x  and 2x  had small covariate effect (see Table 

4.2), and that the convergence rate under the same combined condition was 75.0% (see 

Table 4.5) when covariate effect was large for 1x  and small for 2x . The low convergence 

rate of 50.6% from using the one-step ML approach was also observed in Table 4.2 at 

mixing proportion of 50:50 when class separation was at MD = 1.0, sample size was 500, 

and both 1x  and 2x  had small covariate effect. The low convergence rates observed in 

Tables 4.2 and 4.5 suggested that compared with the other three estimation approaches, 

the one-step ML approach was more sensitive to low class separation, small sample size 

and the size of covariate effect from the continuous variable (i.e., 2x ). However, it was 

also noticed in these two tables that at MD = 1.0 the convergence rates from the one-step 

approach improved dramatically at both levels of mixing proportion when sample size 

increased.  

Table 4.2 

Convergence Rate with Small Covariate Effects for both 1x  and 2x  (%) 
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Class 

Separation 

(MD) 

Mixing 

Proportion 

Sample 

Size 

Conventional 

3-Step 

1-Step 

ML 

PC 3-Step 

ML 

1.0 30:70 500 88.0 49.8 96.4 96.4 

  1000 90.8 65.4 96.0 96.0 

  5000 96.2 97.4 96.0 96.0 

  10000 98.6 100 99.0 99.0 

 50:50 500 92.2 50.6 98.4 98.4 

  1000 92.6 65.8 97.2 97.2 

  5000 93.2 99.0 97.6 97.8 

  10000 96.4 100 97.2 97.2 

2.0 30:70 500 99.6 94.0 99.2 99.2 

  1000 100 99.8 100 100 

  5000 100 100 100 100 

  10000 100 100 100 100 

 50:50 500 99.2 92.4 99.2 99.2 

  1000 100 99.4 100 100 

  5000 100 100 100 100 

  10000 100 100 100 100 

3.5 30:70 500 100 100 100 100 

  1000 100 100 100 100 

  5000 100 100 100 100 

  10000 100 100 100 100 

 50:50 500 100 100 100 100 

  1000 100 100 100 100 

  5000 100 100 100 100 

  10000 100 100 100 100 
 

Note: the bolded numbers are the numbers discussed in Section 4.1.1. 

 

Table 4.3 

Convergence Rate with Large Covariate Effects for both 1x  and 2x  (%) 

Class 

Separation 

(MD) 

Mixing 

Proportion 

Sample 

Size 

Conventional 

3-Step 

1-Step 

ML 

PC 3-Step 

ML 

1.0 30:70 500 85.6 94.0 95.8 95.8 
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  1000 88.6 97.6 97.2 97.2 

  5000 93.0 100 96.6 96.6 

  10000 96.6 100 97.8 97.8 

 50:50 500 90.8 94.6 96.0 96.0 

  1000 92.0 99.4 94.6 94.6 

  5000 91.0 100 95.8 95.4 

  10000 94.0 100 97.6 97.6 

2.0 30:70 500 99.4 99.4 99.6 99.6 

  1000 100 100 100 100 

  5000 100 100 100 100 

  10000 100 100 100 100 

 50:50 500 99.4 100 98.0 98.0 

  1000 100 100 99.2 99.2 

  5000 100 100 100 100 

  10000 100 100 100 100 
3.5 30:70 500 100 100 100 100 

  1000 100 100 100 100 

  5000 100 100 100 100 

  10000 100 100 100 100 
 50:50 500 100 100 100 100 
  1000 100 100 100 100 
  5000 100 100 100 100 
  10000 100 100 100 100 

Note: the bolded numbers are the numbers discussed in Section 4.1.1. 
 

 

 

 

 

 

Table 4.4 

Convergence Rate with Small Covariate Effect for 1x  and Large Covariate Effect for 2x  

(%) 
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Class 

Separation 

(MD) 

Mixing 

Proportion 

Sample 

Size 

Conventional 

3-Step 

1-Step 

ML 

PC 3-Step 

ML 

1.0 30:70 500 88.0 91.2 97.2 97.2 

  1000 89.4 98.0 97.0 97.0 

  5000 95.0 100 97.4 97.6 

  10000 97.6 100 98.4 98.4 

 50:50 500 91.0 91.6 97.2 97.2 

  1000 93.4 98.8 98.0 98.0 

  5000 94.0 100 96.8 96.6 

  10000 96.4 100 98.0 98.2 

2.0 30:70 500 99.8 100 98.4 98.4 

  1000 100 100 100 100 

  5000 100 100 100 100 

  10000 100 100 100 100 

 50:50 500 99.8 100 99.4 99.4 

  1000 99.8 100 100 100 

  5000 100 100 100 100 

  10000 100 100 100 100 

3.5 30:70 500 100 100 100 100 

  1000 100 100 100 100 

  5000 100 100 100 100 

  10000 100 100 100 100 

 50:50 500 100 100 100 100 

  1000 100 100 100 100 

  5000 100 100 100 100 

  10000 100 100 100 100 

Note: the bolded numbers are the numbers discussed in Section 4.1.1. 
 

 

 

 

Table 4.5 

Convergence Rate with Large Covariate Effect for 1x  and Small Covariate Effect for 2x  

(%) 
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Class 

Separation 

(MD) 

Mixing 

Proportion 

Sample 

Size 

Conventional 

3-Step 

1-Step 

ML 

PC 3-Step 

ML 

1.0 30:70 500 86.8 75.0 95.2 95.2 

  1000 86.8 89.6 95.2 95.2 

  5000 93.8 99.0 97.8 98.0 

  10000 96.2 99.8 99.4 99.4 

 50:50 500 91.8 83.4 96.2 96.2 

  1000 91.8 94.4 97.2 97.2 

  5000 90.6 99.6 95.8 95.6 

  10000 94.6 100 96.0 96.2 

2.0 30:70 500 99.4 99.8 99.0 99.0 

  1000 100 100 100 100 

  5000 100 100 100 100 

  10000 100 100 100 100 

 50:50 500 99.2 98.8 98.6 98.6 

  1000 100 100 99.6 99.6 

  5000 100 100 100 100 

  10000 100 100 100 100 

3.5 30:70 500 100 100 100 100 

  1000 100 100 100 100 

  5000 100 100 100 100 

  10000 100 100 100 100 

 50:50 500 100 100 100 100 

  1000 100 100 100 100 

  5000 100 100 100 100 

  10000 100 100 100 100 

Note: the bolded numbers are the numbers discussed in Section 4.1.1. 
 

 

 

 

4.1.2 Convergence rate for Simulation II 

As was mentioned earlier in Chapter 3, more covariates were incorporated in 

Simulation II than were in Simulation I and, unlike Simulation I where covariates entered 
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only the latent class part of the model, one covariate in Simulation II was linked to latent 

class membership prediction while two other covariates entered the model as direct 

predictors of the parameters of the latent class growth trajectories. Also, in Simulation II, 

three instead of four estimation procedures were considered for estimation method 

comparison, namely, the conventional three-step procedure, the one-step ML procedure, 

and the new three-step ML procedure. In addition, two models were fitted in Simulation 

II: a misspecified model where the two covariates associated with the growth factors 

were not included in the analysis and the correctly specified or the true model used for 

data generation.      

The convergence rates for the three estimation methods under the manipulated 

conditions are presented in Tables 4.6 and 4.7. Please note that the misspecified model 

was labeled as M1 and the correctly specified model was labeled as M2 in the tables. It 

was observed that the proportion of converged replications for the three methods was 

always lower for the misspecified model than for the correctly specified model for each 

manipulated condition. It was also observed that for all three estimation approaches the 

convergence rates improved for each combined condition of mixing proportion, sample 

size, and covariate effect when class separation was larger under both model 

specifications. For example, the convergence rate for the three-step ML approach was 

71.2% for the correctly specified model under the condition of large covariate effect, 

mixing proportion of 30:70 and sample size of 500 when class separation was at MD = 

2.0 (see Table 4.7). When class separation became MD = 3.5, the convergence rate 

increased to 99.8%. It was also observed that the convergence rates for the correctly 
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specified model generally improved for all three methods at each combined condition of 

class separation, mixing proportion and covariate effect when sample size increased.  

A further examination of the two tables suggested that convergence rates were 

affected by the size of covariate effect as well. For example, convergence rates for the 

misspecified model overall increased for all of the three approaches at each combined 

cell of class separation, mixing proportion and sample size when covariate effect 

increased. It was also noticed that convergence rates for the one-step ML approach also 

improved for the correctly specified model at each combined condition of class 

separation, mixing proportion and sample size when covariate effect increased. For 

example, the convergence rate for the correctly specified model at MD = 2.0, mixing 

proportion of 30:70, and sample size of 500 was 85.4% with small covariate effect (see 

Table 4.6), and for the same condition when covariate effect was large the convergence 

rate increased to 97.8% (see Table 4.7).  However, the convergence rates for the three-

step ML approach decreased for the correctly specified model at class separation of MD 

= 2.0 when covariate effect related to 1x  increased. For example, Table 4.6 showed that 

the convergence rate at MD = 2.0, mixing proportion of 30:70, and sample size of 500 for 

the correctly specified model using the three-step ML approach was 79.0% when 

covariate effect was small, and when covariate effect grew larger, the convergence rate 

decreased to 71.2% (see Table 4.7).     

 

 

Table 4.6 

Convergence Rate with Small Covariate Effect for 1x  (%) 
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Class 

Separation 

(MD) 

Mixing 

Proportio

n 

Sampl

e Size 

Conventional 

3-Step 
1-Step ML 3-Step ML 

M1
1 

M2
2 

M1 M2 M1 M2 

2.0 30:70 500 60.4 82.8 59.2 85.4 53.8 79.0 

  1000 54.4 88.2 58.6 97.4 58.2 92.6 

  5000 56.2 91.0 55.8 100 54.6 100 

  10000 52.6 89.4 56.2 100 51.8 100 

 50:50 500 70.1 90.8 59.2 81.8 52.8 72.4 

  1000 61.4 92.0 55.8 94.2 58.0 87.8 

  5000 63.6 97.0 69.2 100 52.8 100 

  10000 71.3 99.8 68.8 100 52.6 100 

3.5 30:70 500 61.8 90.8 88.2 95.8 89.0 95.6 

  1000 71.8 91.4 96.4 99.2 96.8 99.2 

  5000 87.6 91.6 100 100 100 100 

  10000 96.8 97.0 100 100 100 100 

 50:50 500 92.0 92.8 89.4 90.8 80.8 90.6 

  1000 96.0 96.8 98.0 98.4 93.4 98.4 

  5000 98.6 98.8 100 100 100 100 

  10000 98.6 99.4 100 100 100 100 
 

Note: 
1 

M1 is the misspecified model; 
2
 M2 is the correctly specified model. It is the true 

model used for data generation; the bolded numbers are the numbers discussed in Section 

4.1.2. 

  

 

 

 

 

 

 

 

Table 4.7 

Convergence Rate with Large Covariate Effect for 1x  (%) 
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Class 

Separation 

(MD) 

Mixing 

Proportio

n 

Sampl

e Size 

Conventional 

3-Step 
1-Step ML 3-Step ML 

M1
1 

M2
2 

M1 M2 M1 M2 

2.0 30:70 500 67.4 83.8 96.8 97.8 69.8 71.2 

  1000 79.8 85.8 98.2 98.2 62.6 75.4 

  5000 79.0 98.2 100 100 61.4 75.8 

  10000 75.6 100 100 100 62.6 77.4 

 50:50 500 70.2 82.2 99.0 98.6 68.4 70.2 

  1000 80.4 84.8 100 100 83.0 91.2 

  5000 84.6 99.8 100 100 100 97.0 

  10000 88.0 100 100 100 100 100 

3.5 30:70 500 87.6 94.0 100 100 100 99.8 

  1000 90.8 99.4 100 100 100 100 

  5000 94.6 100 100 100 100 100 

  10000 95.2 100 100 100 100 100 

 50:50 500 87.6 97.2 100 100 100 91.8 

  1000 89.6 99.8 100 100 100 100 

  5000 91.8 100 100 100 100 100 

  10000 95.6 100 100 100 100 100 
 

Note: 
1 

M1 is the misspecified model; 
2
 M2 is the correctly specified model. It is the true 

model used for data generation; the bolded numbers are the numbers discussed in Section 

4.1.2. 

 

4.2 Results of Simulation I 

 In Simulation I, performance of the four covariate effect estimation procedures was 

investigated under 96 simulated conditions from four levels of sample size, three levels of 

class separation, two levels of latent class mixing proportions and four sets of covariate 

effects. Specifically, covariate effect parameter recovery on the latent class membership 

was examined and compared for the four estimation approaches in terms of relative bias, 

variance of covariate effect estimates and standard error efficacy of the covariate effect 

estimates. Results of the three indices are reported individually in three separate sections 

using both descriptive statistics and repeated measures ANOVA analysis. Descriptive 
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statistics of the three outcome indices are presented by levels of covariate effect. The 

main effects and up to the three-way interaction effects from the repeated measures 

ANOVA are reported only if they were identified to be both statistically significant (p-

value   .05) and had an effect size of 2 0.06  . The Huynh-Feldt correction was used 

to adjust the degrees of freedom when the sphericity assumption was not met.  

4.2.1 Results of percent relative bias in the covariate effect estimates 

4.2.1.1 Descriptive statistics of percent relative bias 

Percent relative bias measures how large the bias is relative to the true value of the 

parameter. Relative bias was used in this study because it provided a measure of the 

magnitude of the bias. Relative bias magnitude close to 0 indicated less biased parameter 

estimates. The descriptive statistics of percent relative bias for each of the estimation 

methods under the 96 manipulated conditions are presented in Tables 4.8 – 4.11. To 

facilitate interpretation, the tables are organized by levels of covariate effect.  It was 

observed that generally for all levels of covariate effect the magnitude of percent relative 

bias tended to be closer to 0 for all estimation approaches under each combined condition 

of sample size and mixing proportion when class separation increased. For example, in 

Table 4.8, for the three-step ML approach, when sample size was 500 and mixing 

proportion was 30:70, percent relative bias values for 1x  were 223.8, 63.7, and 10.9 at 

MD = 1.0, MD = 2.0 and MD = 3.5 respectively. Percent relative bias values for the 

covariate effect estimate for 2x  under the same conditions were 21.1, 5.6 and 0.8 at MD 

= 1.0, MD = 2.0 and MD = 3.5 respectively. Eyeballing the four tables also suggested 

that for all levels of covariate effects, the PC approach and the conventional three-step 

approach tended to underestimate the covariate effects. Furthermore, generally for all 
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levels of covariate effects, percent relative bias values were much closer to 0 for the one-

step ML approach and the three-step ML approach than for the PC approach or the 

conventional approach at any combined level of condition, suggesting the former two 

estimation approaches produced less biased parameter estimates.    

Differences in percent relative bias were observed between the estimation 

approaches. For example, for the one-step ML approach, at each combined condition of 

mixing proportion, class separation and covariate effect, percent relative bias values were 

closer to 0 for both 1x  and 2x  when sample size increased. Influence from the increase of 

sample size on percent relative bias under the same combined manipulated condition was 

different for the PC approach or the conventional approach from that observed with the 

one-step ML method. For the PC approach, the distance between the parameter estimates 

and the true values was getting larger especially at the lowest class separation level when 

sample size increased. For example, Table 4.11 showed that for the PC method, at class 

separation of MD = 1.0 and mixing proportion level of 30:70, the percent relative biases 

for the covariate effect estimate for 1x  were -83.2, -85.9, -87.1 and -87.5 corresponding to 

the sample size of 500, 1000, 5000, and 10000. Similarly, relative bias for the covariate 

effect estimate for 2x  changed from -71.8 to -83.4 when sample size increased from 500 

to 10000.  In a similar fashion, the conventional three-step approach showed that percent 

relative bias related to 1x  was further away from 0 at the first level of covariate effect 

when sample size increased for each combined condition of mixing proportion and class 

separation (see Table 4.8), although the influence from sample size was not obvious for 

2x  at any combined condition. It was interesting to notice that percent relative bias 

values related to 1x  were extremely far from the desired value of 0 for the three-step ML 
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method at the first and third levels of covariate effect (where either both covariates had 

small effect or 1x  had small effect and 2x  had large effect) when class separation was as 

small as MD = 1.0. For example, Table 4.8 showed that when covariate effect was small 

for both 1x  and 2x , magnitudes of percent relative bias for the three-step ML approach 

were 223.8, 313.6, 336.2, and 401.0 at sample size of 500, 1000, 5000, and 10000 

respectively when mixing proportion was 30:70 and class separation was at MD = 1.0. 

Table 4.10 also showed that when covariate effect was small for 1x  and large for 2x , 

percent relative bias values for the three-step ML approach under the same conditions 

were 357.2, 294.4, 247.2, and 75.9 for sample size of 500, 1000, 5000, and 10000 

respectively. The extreme percent relative bias values observed in these two tables 

suggested that the three-step ML approach was sensitive to the covariate effect size from 

the dichotomous variable when class separation was poor.          

 

 

 

 

 

 

 

 

Table 4.8   

Percent Relative Bias with Small Covariate Effects for 1x  and 2x  

Conditions Relative Bias of ̂  (%) 
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Conventional 

3-Step 
1-Step ML PC 3-Step ML 

Sampl

e Size 

Mixing 

Proportio

n 

Class 

Separatio

n 

1x  2x  1x  2x  1x  2x  1x  2x  

500 30:70 MD = 1.0 8.7 -56.3 83.2 27.7 -54.6 -70.1 223.8 21.1 

  MD = 2.0 -15.5 -36.8 33.2 -0.2 -35.0 -49.8 63.7 5.6 

  MD = 3.5 3.0 -7.2 12.3 0.7 -3.2 -10.4 10.9 0.8 

 50:50 MD = 1.0 -31.7 -59.6 92.0 53.6 -50.7 -69.4 178.4 61.2 

  MD = 2.0 -20.5 -35.8 23.7 2.7 -35.3 -47.3 17.9 -3.7 

  MD = 3.5 -2.5 -5.7 4.1 1.5 -6.5 -9.0 4.4 1.3 

1000 30:70 MD = 1.0 -48.3 -63.2 70.9 53.4 -67.2 -75.7 313.6 90.7 

  MD = 2.0 -28.1 -37.0 10.8 3.4 -47.5 -48.9 35.3 11.9 

  MD = 3.5 -6.0 -6.1 1.6 1.5 -10.0 -9.4 2.4 1.4 

 50:50 MD = 1.0 -48.9 -64.1 91.1 80.3 -65.9 -74.3 180.2 -7.5 

  MD = 2.0 -32.3 -35.1 5.8 0.7 -45.5 -48.4 2.7 -0.3 

  MD = 3.5 -6.0 -6.2 0.6 0.8 -9.5 -9.6 0.7 0.7 

5000 30:70 MD = 1.0 -56.4 -63.0 59.3 42.6 -80.6 -81.0 336.2 71.9 

  MD = 2.0 -34.9 -33.9 1.1 0.9 -51.3 -49.5 20.2 12.0 

  MD = 3.5 -6.6 -6.9 0.5 0.2 -10.9 -10.5 1.5 0.6 

 50:50 MD = 1.0 -61.2 -67.5 57.0 54.8 -79.0 -80.4 112.0 7.7 

  MD = 2.0 -33.7 -35.2 0.2 -0.4 -47.2 -48.3 -0.5 -0.1 

  MD = 3.5 -5.7 -7.2 0.8 -0.4 -9.2 -10.6 1.0 -0.4 

10000 30:70 MD = 1.0 -61.9 -62.6 8.0 10.5 -83.1 -81.7 401.0 167 

  MD = 2.0 -35.5 -34 -0.7 0.1 -52.0 -49.7 -0.5 0.2 

  MD = 3.5 -7.3 -7.0 -0.2 -0.1 -11.6 -10.7 0.0 -0.1 

 50:50 MD = 1.0 -62.6 -66.1 13.8 14.7 -80.6 -81.4 12.8 -9.7 

  MD = 2.0 -33.4 -34.7 0.9 -0.3 -46.7 -48.2 0.4 -0.3 

  MD = 3.5 -6.3 -7.0 0.2 -0.2 -9.7 -10.3 0.3 -0.2 

Note: the bolded numbers are the numbers discussed in Section 4.2.1.1. 

 

Table 4.9 

Percent Relative Bias with Large Covariate Effects for 1x  and 2x  

Conditions Relative Bias of ̂  (%) 



 

77 

 

Conventional 

3-Step 
1-Step ML PC 3-Step ML 

Sample 

Size 

Mixing 

Proportion 

Class 

Separation 
1x  2x  1x  2x  1x  2x  1x  2x  

500 30:70 MD = 1.0 -80.5 -82.4 15.3 15.7 -85.3 -86.9 -6.3 -63.2 

  MD = 2.0 -56.0 -59.3 6.3 5.0 -66.4 -69.0 -4.2 -9.6 

  MD = 3.5 -15.5 -17.5 3.0 1.9 -22.1 -24.4 2.6 1.4 

 50:50 MD = 1.0 -85.7 -82.7 4.1 10.2 -91.1 -88.2 -0.1 -54.9 

  MD = 2.0 -60.2 -56.0 2.3 2.6 -73.7 -68.3 7.5 -2.2 

  MD = 3.5 -20.0 -17.2 1.2 1.1 -28.3 -24.1 1.9 0.9 

1000 30:70 MD = 1.0 -81.2 -83.1 11.1 9.7 -86.4 -87.9 -14.4 -60.2 

  MD = 2.0 -55.8 -58.3 2.4 2.2 -66.7 -69.0 -2.4 -3.3 

  MD = 3.5 -16.5 -17.6 1.3 1.3 -23.2 -24.5 1.2 0.9 

 50:50 MD = 1.0 -80.6 -80.3 3.4 2.7 -91.7 -89.6 56.1 -31.1 

  MD = 2.0 -59.6 -56.0 1.0 0.8 -73.9 -68.9 8.6 -0.5 

  MD = 3.5 -19.8 -17.4 0.5 0.4 -28.6 -24.7 1.6 0.5 

5000 30:70 MD = 1.0 -80.1 -82.5 1.1 0.7 -88.4 -89.7 -10 -44.9 

  MD = 2.0 -55.6 -57.9 0.1 0.1 -66.9 -69.2 -0.8 -0.9 

  MD = 3.5 -17.2 -18.2 0.1 0.2 -23.9 -25.1 0.2 0.1 

 50:50 MD = 1.0 -81.1 -78.9 0.9 1.1 -92.0 -89.7 89.5 -20.7 

  MD = 2.0 -59.8 -56.0 0.0 0.2 -74.0 -69.0 0.0 0.1 

  MD = 3.5 -20.1 -17.7 0.0 0.1 -28.9 -25.0 0.0 0.0 

10000 30:70 MD = 1.0 -79.5 -81.9 -0.1 -0.1 -88.9 -90.1 -26.6 -31.8 

  MD = 2.0 -55.5 -57.8 -0.1 -0.1 -66.9 -69.2 -0.5 -0.3 

  MD = 3.5 -17.3 -18.2 -0.1 0.0 -23.9 -25.1 -0.1 -0.1 

 50:50 MD = 1.0 -80.5 -82.4 15.3 15.7 -85.3 -86.9 -6.3 -63.2 

  MD = 2.0 -56.0 -59.3 6.3 5.0 -66.4 -69.0 -4.2 -9.6 

  MD = 3.5 -15.5 -17.5 3.0 1.9 -22.1 -24.4 2.6 1.4 

Note: the bolded numbers are the numbers discussed in Section 4.2.1.1. 

 

 

Table 4.10 

Percent Relative Bias with Small Covariate Effect for 1x  and Large Covariate Effect for 

2x  
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Conditions 

Relative Bias of ̂  (%) 

Conventional 

3-Step 
1-Step ML PC 3-Step ML 

Sampl

e Size 

Mixing 

Proportio

n 

Class 

Separatio

n 

1x  2x  1x  2x  1x  2x  1x  2x  

500 30:70 MD = 1.0 -32.2 -81.8 189.2 12.8 -57.8 -86.6 357.2 -56.8 

  MD = 2.0 -20.4 -54.6 70.6 3.5 -44.8 -66.3 84.8 -5.9 

  MD = 3.5 0.6 -15.3 25.4 1.3 -6.6 -22.0 26.2 0.5 

 50:50 MD = 1.0 -35.1 -81.6 140.2 10.3 -57.4 -85.7 182.2 -61.0 

  MD = 2.0 -26.6 -55.5 43.0 4.4 -47.2 -65.7 41.4 -9.2 

  MD = 3.5 0.6 -15.0 18.5 1.1 -6.4 -21.3 17.7 0.6 

1000 30:70 MD = 1.0 -51.1 -82.4 109.3 9.9 -73.5 -87.8 294.4 -51.3 

  MD = 2.0 -36.4 -53.9 35.1 1.1 -58.6 -66.4 47.3 -2.6 

  MD = 3.5 -9.3 -15.7 9.6 0.4 -17.3 -22.0 10.4 0.2 

 50:50 MD = 1.0 -49.5 -81.4 70.3 8.2 -70.2 -86.6 232.8 -48.6 

  MD = 2.0 -43.6 -54.2 15.8 1.3 -57.2 -65.6 14.3 -3.1 

  MD = 3.5 -10.5 -15.6 4.8 1.0 -16.2 -21.1 5.0 0.6 

5000 30:70 MD = 1.0 -61.2 -78.1 22.0 0.8 -87.0 -88.4 247.2 -24.3 

  MD = 2.0 -52.4 -52.9 2.8 0.6 -69.5 -66.5 13 2.0 

  MD = 3.5 -15.8 -15.3 0.0 0.2 -23.9 -22.0 1.4 0.5 

 50:50 MD = 1.0 -69.4 -80.0 7.7 0.8 -84.5 -88.2 105.3 -33.6 

  MD = 2.0 -51.8 -53.6 -1.1 0.3 -63.6 -65.6 -2.0 -0.7 

  MD = 3.5 -14.8 -15.2 -0.8 0.3 -20.9 -21.5 -0.5 0.3 

10000 30:70 MD = 1.0 -70.1 -76.5 10.9 0.5 -90.0 -88.9 75.9 -19.3 

  MD = 2.0 -54.3 -53.0 -0.2 0.1 -70.8 -66.6 0.3 -0.2 

  MD = 3.5 -16.1 -15.5 -0.1 0.0 -24.2 -22.2 0.2 0.0 

 50:50 MD = 1.0 -73.6 -79.8 2.7 0.5 -87.0 -88.8 -13.9 -29.1 

  MD = 2.0 -51.7 -53.5 -0.5 0.1 -63.4 -65.6 -1.1 -0.1 

  MD = 3.5 -14.7 -15.3 -0.4 0.1 -20.7 -21.5 -0.4 0.1 

Note: the bolded numbers are the numbers discussed in Section 4.2.1.1. 

 

Table 4.11 

Percent Relative Bias with Large Covariate Effect for 1x  and Small Covariate Effect for 

2x  
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Conditions 

Relative Bias of ̂  (%) 

Conventional 

3-Step 
1-Step ML PC 3-Step ML 

Sampl

e Size 

Mixing 

Proportio

n 

Class 

Separatio

n 

1x  2x  1x  2x  1x  2x  1x  2x  

500 30:70 MD = 1.0 -88.1 0.3 -33.7 30.3 -83.2 -71.8 -1.1 -8.5 

  MD = 2.0 -50.6 -36.7 -5.7 4.8 -62.8 -50.6 50.5 4.3 

  MD = 3.5 -10.4 -7.7 3.5 2.1 -16.7 -11.2 7.7 1.2 

 50:50 MD = 1.0 -72.4 -65.5 -7.9 44.2 -77.7 -72.1 -17.8 -23.6 

  MD = 2.0 -41.7 -42.6 5.2 7.5 -52.9 -54.5 2.6 -4.8 

  MD = 3.5 -7.2 -10.1 2.7 0.0 -11.4 -14.3 2.6 -0.4 

1000 30:70 MD = 1.0 -74.0 -64.4 -24.0 17.8 -85.9 -76.9 3.4 -0.2 

  MD = 2.0 -50.0 -36.2 -5.0 3.4 -62.9 -51.1 42.6 6.3 

  MD = 3.5 -12.0 -8.1 0.9 1.2 -18.0 -11.9 3.0 0.7 

 50:50 MD = 1.0 -73.3 -68.3 -4.6 14.6 -80.1 -78.1 -17.2 -21.5 

  MD = 2.0 -40.5 -42.2 2.4 1.7 -53.0 -55.3 0.8 -0.8 

  MD = 3.5 -8.3 -9.1 0.9 0.7 -12.5 -13.5 1.0 0.5 

5000 30:70 MD = 1.0 -73.7 -65.2 -2.1 2.5 -87.1 -82.9 57.1 38.8 

  MD = 2.0 -47.5 -37.9 -3.2 0.6 -62.5 -53.0 90.5 3.7 

  MD = 3.5 -11.7 -8.0 0.2 0.5 -18.1 -12.3 2.7 0.8 

 50:50 MD = 1.0 -72.1 -71.6 1.8 5.3 -82.6 -83.5 1.6 -17.4 

  MD = 2.0 -40.2 -42.5 0.2 -0.3 -53.4 -55.9 0.0 -0.7 

  MD = 3.5 -9.1 -9.7 -0.1 -0.1 -13.3 -14.2 -0.1 -0.1 

10000 30:70 MD = 1.0 -71.4 -63.8 2.1 1.2 -87.5 -83.4 25.9 12.7 

  MD = 2.0 -45.5 -38.0 0.0 0.3 -62.1 -53.8 0.2 0.3 

  MD = 3.5 -12.0 -8.4 0.0 0.1 -18.3 -12.7 0.1 0.0 

 50:50 MD = 1.0 -70.9 -71.5 2.1 2.2 -83.6 -84.5 -17.3 -22.4 

  MD = 2.0 -40.1 -42.0 0.1 0.1 -53.3 -55.5 -0.2 0.1 

  MD = 3.5 -9.0 -9.8 -0.1 -0.4 -13.1 -14.2 -0.1 -0.4 

Note: the bolded numbers are the numbers discussed in Section 4.2.1.1. 

4.2.1.2 Repeated measures ANOVA results for the percent relative bias 

To better understand which factors and/or combination of factors impacted percent 

relative bias for the covariate effect estimates under the four estimation approaches, a 

repeated measures ANOVA was utilized where percent relative bias was modeled as a 
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function of the manipulated simulation conditions. It should be mentioned that in terms of 

the tests of within-replications effects, the estimation approach was used as a within-

replications factor because each replicated data set was exposed to each estimation 

approach in turn.  As was mentioned before, results for up to 3-way interactions as well 

as the main effects were assessed and are reported in Table 4.12 only if they were 

identified to be both statistically significant (p-value   .05) and have an effect size of 

2 0.06   (see, e.g., Cohen, 1988, p. 283; Kohli, 2010). The sphericity assumption was 

checked, and the Huynh-Feldt correction was used to adjust the degrees of freedom when 

the sphericity assumption was not satisfied.  

The ANOVA results presented in Table 4.12 showed that estimation approach had a 

significant effect on percent relative bias of covariate effect estimates related to both 1x  

and 2x . Sample size, class separation, and covariate effect had significant main between-

replications effects on percent relative bias of covariate effect estimates for 1x . None of 

the between-replications factors showed significant effect in estimation accuracy related 

to covariate effect of 2x . It was observed that estimation approach had large effect sizes 

of 2ˆ 0.46   for 1x  and  2ˆ 0.64  for 2x , indicating that estimation approach had a large 

impact on the accuracy of covariate effect parameter estimates. An effect size of 

2ˆ 0.27   (related to 1x ) for the main effect of covariate effect suggested that estimation 

accuracy for the dichotomous covariate effect was greatly influenced by the levels of 

covariate effect manipulated. Significant two-way interaction effects for 1x  were 

identified for A × CS ( 2ˆ 0.25  ), N × CE ( 2ˆ 0.10  ), and CS × CE ( 2ˆ 0.28  ). 

Interaction effects from A × CS was also found significant for relative bias related to 2x  (
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2ˆ 0.20  ). A × CS × CE was the only significant three-way interaction effect with an 

effect size of 2ˆ 0.10   and it was related to 1x . No significant three-way interaction 

effect was found for 2x .  

Table 4.12 

ANOVA Results of Manipulated Factors on the Percent Relative Bias 

Source 
1x   

2x  

F Value p-value 2   F Value p-value 2  

Within-Replications Effects
1        

A
 

701.257 <.001 0.46  911.395 <.001 0.64 

A × CS 188.106 <.001 0.25  141.512 <.001 0.20 

A × CS  × CE 24.828 <.001 0.10     

Between-Replications Effects        

N 28.612 <.001 0.06     

CS 43.073 <.001 0.06     

CE 123.824 <.001 0.27     

N  × CE 15.572   .003 0.10     

CS  × CE 63.233 <.001 0.28     

Note: 
1
 the Huynh-Feldt correction was used to adjust the degrees of freedom if necessary. 

A: covariate estimation approach; CS: class separation; CE: covariate effect; N: sample 

size; MP: latent class mixing proportion. 

 
For the main effects, Tukey’s HSD procedure was used for comparing pairs of 

means for the main effects of sample size, class separation and covariate effects for 1x , 

and the means for groups in homogeneous subsets were displayed in Tables 4.13 – 4.16. 

Table 4.13 showed that when sample size increased, percent relative bias of the covariate 

effect estimates for 1x  tended to depart from 0 (from 1.7 to -18.7). Significant changes in 

relative bias were found when sample size increased from 500 to 1000 and from 5000 to 
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10000. Table 4.14 or Table 4.15 showed no consistent pattern of change in percent 

relative bias across levels of either class separation or covariate effect.     

Table 4.13 

Pairwise Comparisons among Levels of N for Percent Relative Bias for 1x  

N Sample Size 
Subset 

1 2 3 

1 24   1.7 

2 24  -6.1  

3 24  -12.0  

4 24 -18.7   

 

Table 4.14 

Pairwise Comparisons among Levels of CS for Percent Relative Bias for 1x  

CS Sample Size 
Subset 

1 2 

1 32  -1.8 

2 32 -19.3  

3 32  -5.3 

Table 4.15 

Pairwise Comparisons among Levels of CE for Percent Relative Bias for 1x  

CE Sample Size 
Subset 

1 2 

1 24  9.0 

2 24 -26.6  

3 24  4.5 

4 24 -22.0  

 

Graphics were made to help to visually and directly examine the identified 

significant interaction effects. As was found in the ANOVA analysis, the two-way within 

by between interaction effects from A × CS had a significant effect on percent relative 

bias related to both 1x  and 2x . A comparison of Figure 4.1 and Figure 4.2 showed clearly 
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that for both 1x  and 2x , when class separation was larger, percent relative bias from 

using all estimation methods was closer to the desired value of 0, which was consistent 

with what was observed earlier in the descriptive statistics. Percent relative bias values 

were closest to 0 at MD = 3.5 and furthest from 0 at MD = 1.0 for all estimation 

approaches. It was also observed that compared with the conventional three-step 

approach (A1) and the PC approach (A3), both the one-step ML approach (A2) and the 

three-step ML approach (A4) had percent relative bias values around 0 at MD = 2.0 and 

MD = 3.5. It was observed in Figure 4.1 that percent relative bias for the three-step ML 

approach was far away from 0 at MD = 1.0, suggesting that effect estimation for the 

dichotomous covariate using the three-step ML approach was biased when class 

separation was poor.       

Graphics created for the significant two-way interactions for CE × N (Figure 4.3) 

and CE × CS (Figure 4.4) showed how between-replications interaction effects affected 

covariate effect estimate accuracy related to 1x . Figure 4.3 showed no consistency in the 

change of percent relative bias across the levels of covariate effect when sample size 

increased, although it did show that at sample size 500 percent relative bias was closer to 

0 with the increase of covariate effect levels. However, it should be noted that the change 

from a lower to a higher covariate effect level did not necessarily mean the change of the 

size of covariate effect. It was just a change of conditions. In this case, it simply meant 

that when sample size was 500, relative bias related to 1x  had the largest  distance away 

from 0 when covariate effect was small for both 1x  and 2x , and relative bias related to 1x  

was closest in distance from 0 when covariate effect was large for 1x  and small for 2x . 

When covariate effect was large for both 1x  and 2x , relative bias magnitudes related to 
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1x  were very close between sample sizes of 500 and 5000, and between sample sizes of 

1000 and 10000.  At sample size of 1000 and 10000, barely any change in percent 

relative bias was observed across the levels of covariate effect. Figure 4.4 showed the 

two-way interaction of CE × CS on the percent relative bias related to 1x .  It was 

observed that for all levels of covariate effect, the percent relative biases were the largest 

in terms of their absolute magnitude at MD = 1.0, and closest to 0 at MD = 3.5, 

suggesting that large class separation resulted in less biased parameter estimates for any 

level of covariate effect. It was also observed that at MD = 2.0 and MD = 3.5, covariate 

effects for 1x  were underestimated for all levels of covariate effect. At MD = 1.0, 

covariate effects were overestimated for 1x  at the first and the third level of covariate 

effects and  were underestimated at the second and the fourth level of covariate effects.    

 

 

 
Figure 4.1. A × CS on percent relative bias 

related to 1x  

 Figure 4.2. A × CS on percent relative bias 

related to 2x  

   

 

 

 
Figure 4.3. CE × N on percent relative bias  Figure 4.4. CE × CS on percent relative bias 
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related to 1x  related to 1x  

For the three-way interaction effect of A × CE × CS on percent relative bias of 

effect covariate estimates related to 1x , four two-way interaction effects of  A × CS were 

graphed for each level of covariate effect (see Figures 4.5 – 4.8). The figures showed that 

for all levels of covariate effect when class separation grew larger, percent relative bias 

from using all estimation methods was closer to the desired value of 0, and when class 

separation was very large at its highest level of MD = 3.5, all estimation approaches were 

at their best performance in terms of covariate effect estimate accuracy for 1x . It was also 

observed that compared with the conventional three-step approach and the PC approach, 

when covariate effect was small for both 1x  and 2x , or when covariate was small for 1x  

and large for 2x , the three-step ML approach lead to extreme percent relative bias values 

far away from 0 at MD = 1.0, indicating that parameter estimation related to the 

dichotomous covariate was severely affected for the three-step approach when class 

separation was poor and covariate effect from the dichotomous variable was small. 

Covariate effect estimates related to 1x  were more accurate for the one-step approach and 

the three-step ML approach than for the other two approaches at any class separation 

level when covariate effect was large for both 1x  and 2x , or when covariate effect was 

large for 1x  and small for 2x .  
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Figure 4.5. A × CS on percent relative bias for 1x  

at CE=1 

Figure 4.6. A × CS on percent relative bias 

for 1x  at CE=2 

  

 
 

Figure 4.7. A × CS on percent relative bias for 1x  

at CE=3 

Figure 4.8. A × CS on percent relative bias 

for 1x  at CE=4 

 
4.2.2 Results of variance of covariate effect estimates 

4.2.2.1 Descriptive statistics of variance of covariate effect estimates 

Compared to bias which indicates how close on average the estimates were to the 

true value, variance of covariate effect estimate suggests how much the parameter 

estimates change across the sample replications. It is assumed that the decrease of one of 

them is at the expense of increase of the other because variance of parameter estimates 

uses the mean of the estimates for each cell instead of the true value in measuring 

parameter estimate variability.  

Tables 4.16 – 4.19 followed showed variances of covariate effect estimates 

associated with 1x  and 2x  at the four levels of covariate effect. As expected, the results 
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indicated that variances of covariate effect estimates for the conventional three-step 

approach and the PC approach were generally smaller than those for the one-step ML 

approach or the three-step ML approach at each combined level of sample size, mixing 

proportion, class separation and covariate effect. When covariate effect was small for 

both 1x  and 2x  (see Table 4.16), variance of the covariate effect estimates related to 1x  

ranged from 0.002 to 0.085 while for 2x  ranged from 0.000 to 0.019 when the 

conventional three-step procedure was used. With the PC method, variance of the 

covariate effect estimates ranged from 0.001 to 0.047 for 1x  and from 0.000 to 0.010 for 

2x . It was also observed in Table 4.16 that the new three-step ML approach had the 

largest range of variance from 0.002 to 32.896 for the covariate effect estimates for 1x  as 

well as the largest range in variance from 0.001 to 58.227 for the covariate effect 

estimates for 2x . Variances of parameter estimates obtained using the one-step approach 

when 1x  and 2x  both had small covariate effect ranged from 0.002 to 1.983 for 1x  while 

for 2x  they ranged from 0.001 to 1.778.   

A similar pattern was observed in Tables 4.17 – 4.19 for the other three levels of 

covariate effects related to 1x  and 2x , which suggested that compared with the 

conventional three-step approach and the PC approach, the one-step ML approach and 

the three-step ML approach resulted in more variability in terms of covariate effect 

estimation. Descriptive statistics in the four tables also showed that the largest variance 

values were found with MD = 1.0 for any estimation approach used, meaning that when 

class separation was poor, covariate effect estimation had more variability no matter 

which estimation approach was used.    
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Table 4.16 

Variance with Small Covariate Effects for 1x  and 2x  

Conditions 

Variance of ̂  

Conventional 

3-Step 
1-Step ML PC 3-Step ML 

Sample 

Size 

Mixing 

Proportion 

Class 

Separation 
1x  2x  1x  2x  1x  2x  1x  2x  

500 30:70 MD = 1.0 0.085 0.019 1.472 0.842 0.012 0.004 10.993 5.098 

  MD = 2.0 0.039 0.012 0.088 0.026 0.020 0.006 0.2543 0.042 

  MD = 3.5 0.049 0.012 0.060 0.013 0.047 0.010 0.059 0.013 

 50:50 MD = 1.0 0.041 0.010 0.907 1.010 0.014 0.004 11.527 49.252 

  MD = 2.0 0.032 0.012 0.081 0.036 0.018 0.006 0.071 0.029 

  MD = 3.5 0.037 0.011 0.040 0.013 0.033 0.010 0.043 0.013 

1000 30:70 MD = 1.0 0.024 0.008 0.644 1.265 0.006 0.002 32.896 58.277 

  MD = 2.0 0.022 0.007 0.049 0.013 0.010 0.003 0.137 0.022 

  MD = 3.5 0.027 0.006 0.031 0.006 0.024 0.005 0.033 0.007 

 50:50 MD = 1.0 0.020 0.007 1.414 1.778 0.006 0.002 9.245 0.190 

  MD = 2.0 0.018 0.005 0.039 0.011 0.010 0.003 0.043 0.013 

  MD = 3.5 0.019 0.005 0.022 0.006 0.018 0.005 0.022 0.006 

5000 30:70 MD = 1.0 0.029 0.007 1.983 1.273 0.002 0.001 10.336 0.697 

  MD = 2.0 0.006 0.001 0.012 0.002 0.003 0.001 0.024 0.004 

  MD = 3.5 0.005 0.001 0.006 0.001 0.005 0.001 0.007 0.001 

 50:50 MD = 1.0 0.019 0.003 1.654 1.246 0.001 0.001 4.518 0.185 

  MD = 2.0 0.004 0.001 0.005 0.001 0.001 0.000 0.005 0.001 

  MD = 3.5 0.004 0.001 0.004 0.001 0.004 0.001 0.005 0.001 

10000 30:70 MD = 1.0 0.019 0.003 0.087 0.103 0.001 0.000 11.374 22.042 

  MD = 2.0 0.003 0.001 0.006 0.001 0.001 0.000 0.008 0.001 

  MD = 3.5 0.003 0.001 0.003 0.001 0.003 0.000 0.004 0.001 

 50:50 MD = 1.0 0.008 0.002 0.058 0.061 0.001 0.000 1.456 0.070 

  MD = 2.0 0.002 0.000 0.004 0.001 0.001 0.000 0.005 0.001 

  MD = 3.5 0.002 0.000 0.002 0.001 0.002 0.000 0.002 0.001 

Note: the bolded numbers are the numbers discussed in Section 4.2.2.1. 

 

 

 

Table 4.17 
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Variance with Large Covariate Effects for 1x  and 2x  

Conditions 

Variance of ̂  

Conventional 

3-Step 
1-Step ML PC 3-Step ML 

Sample 

Size 

Mixing 

Proportion 

Class 

Separation 
1x  2x  1x  2x  1x  2x  1x  2x  

500 30:70 MD = 1.0 0.077 0.032 3.721 3.104 0.017 0.011 21.128 0.477 

  MD = 2.0 0.128 0.032 0.539 0.233 0.041 0.013 3.543 0.281 

  MD = 3.5 0.171 0.043 0.247 0.066 0.119 0.030 0.997 0.082 

 50:50 MD = 1.0 0.063 0.027 3.320 2.948 0.023 0.009 17.813 0.227 

  MD = 2.0 0.060 0.027 0.364 0.234 0.028 0.015 1.287 0.359 

  MD = 3.5 0.089 0.042 0.119 0.061 0.067 0.029 0.141 0.075 

1000 30:70 MD = 1.0 0.040 0.021 2.046 1.600 0.008 0.006 15.816 0.283 

  MD = 2.0 0.050 0.012 0.246 0.088 0.017 0.006 1.075 0.130 

  MD = 3.5 0.072 0.021 0.102 0.029 0.048 0.015 0.120 0.036 

 50:50 MD = 1.0 0.042 0.017 2.127 1.482 0.014 0.005 13.168 0.208 

  MD = 2.0 0.029 0.011 0.154 0.092 0.014 0.006 0.232 0.161 

  MD = 3.5 0.043 0.020 0.058 0.030 0.033 0.014 0.069 0.036 

5000 30:70 MD = 1.0 0.101 0.019 0.301 0.145 0.004 0.003 19.276 0.467 

  MD = 2.0 0.013 0.002 0.052 0.019 0.004 0.001 0.110 0.029 

  MD = 3.5 0.018 0.005 0.025 0.007 0.012 0.003 0.029 0.008 

 50:50 MD = 1.0 0.021 0.009 0.145 0.120 0.004 0.003 6.918 0.238 

  MD = 2.0 0.005 0.002 0.028 0.014 0.003 0.001 0.044 0.027 

  MD = 3.5 0.008 0.004 0.012 0.005 0.006 0.003 0.013 0.006 

10000 30:70 MD = 1.0 0.049 0.013 0.120 0.062 0.002 0.002 23.442 0.208 

  MD = 2.0 0.006 0.001 0.027 0.009 0.002 0.001 0.042 0.014 

  MD = 3.5 0.009 0.002 0.013 0.003 0.006 0.001 0.014 0.004 

 50:50 MD = 1.0 0.018 0.007 0.066 0.053 0.003 0.002 0.911 0.209 

  MD = 2.0 0.003 0.001 0.013 0.007 0.001 0.001 0.021 0.015 

  MD = 3.5 0.004 0.002 0.006 0.003 0.003 0.001 0.007 0.003 

 

 

 

 

 

Table 4.18 
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Variance with Small Covariate Effect for 1x  and Large Covariate Effect for 2x  

Conditions 

Variance of ̂  

Conventional 

3-Step 
1-Step ML PC 3-Step ML 

Sample 

Size 

Mixing 

Proportion 

Class 

Separation 
1x  2x  1x  2x  1x  2x  1x  2x  

500 30:70 MD = 1.0 0.057 0.038 1.665 3.781 0.013 0.010 17.019 0.548 

  MD = 2.0 0.039 0.025 0.176 0.219 0.016 0.012 0.549 0.291 

  MD = 3.5 0.067 0.041 0.088 0.057 0.050 0.026 0.097 0.075 

 50:50 MD = 1.0 0.032 0.032 1.108 3.456 0.009 0.010 9.665 0.364 

  MD = 2.0 0.029 0.028 0.116 0.256 0.014 0.015 0.107 0.323 

  MD = 3.5 0.048 0.038 0.059 0.052 0.039 0.028 0.063 0.063 

1000 30:70 MD = 1.0 0.029 0.024 0.964 1.864 0.005 0.006 14.159 0.963 

  MD = 2.0 0.023 0.013 0.077 0.082 0.009 0.006 0.134 0.119 

  MD = 3.5 0.035 0.019 0.046 0.025 0.027 0.014 0.049 0.032 

 50:50 MD = 1.0 0.026 0.020 0.302 1.422 0.005 0.006 15.263 16.758 

  MD = 2.0 0.015 0.011 0.052 0.087 0.008 0.006 0.059 0.136 

  MD = 3.5 0.022 0.017 0.033 0.027 0.022 0.014 0.036 0.031 

5000 30:70 MD = 1.0 0.036 0.018 0.063 0.134 0.001 0.003 8.458 0.281 

  MD = 2.0 0.007 0.002 0.019 0.017 0.002 0.001 0.031 0.027 

  MD = 3.5 0.008 0.004 0.010 0.006 0.006 0.003 0.011 0.007 

 50:50 MD = 1.0 0.015 0.010 0.041 0.126 0.002 0.004 6.493 9.813 

  MD = 2.0 0.005 0.002 0.014 0.013 0.002 0.001 0.018 0.022 

  MD = 3.5 0.006 0.003 0.008 0.005 0.005 0.003 0.008 0.006 

10000 30:70 MD = 1.0 0.012 0.013 0.028 0.060 0.000 0.001 2.966 0.201 

  MD = 2.0 0.004 0.001 0.011 0.008 0.001 0.001 0.015 0.013 

  MD = 3.5 0.004 0.002 0.006 0.003 0.004 0.001 0.006 0.003 

 50:50 MD = 1.0 0.007 0.007 0.020 0.055 0.001 0.003 0.094 0.191 

  MD = 2.0 0.003 0.001 0.007 0.007 0.001 0.001 0.010 0.012 

  MD = 3.5 0.003 0.002 0.004 0.002 0.003 0.001 0.004 0.003 

 

 

 

 

 

Table 4.19 
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Variance with Large Covariate Effect for 1x  and Small Covariate Effect for 2x  

Conditions 

Variance of ̂  

Conventional 

3-Step 
1-Step ML PC 3-Step ML 

Sample 

Size 

Mixing 

Proportion 

Class 

Separation 
1x  2x  1x  2x  1x  2x  1x  2x  

500 30:70 MD = 1.0 0.032 0.033 1.416 0.730 0.026 0.004 17.348 0.255 

  MD = 2.0 0.119 0.012 0.413 0.029 0.042 0.006 16.648 0.040 

  MD = 3.5 0.131 0.013 0.202 0.016 0.094 0.012 0.942 0.016 

 50:50 MD = 1.0 1.257 0.021 1.945 0.506 0.027 0.003 8.891 0.092 

  MD = 2.0 0.064 0.010 0.487 0.108 0.035 0.006 2.644 0.033 

  MD = 3.5 0.071 0.012 0.087 0.015 0.058 0.011 0.101 0.015 

1000 30:70 MD = 1.0 2.344 0.030 1.228 0.280 0.013 0.002 16.402 0.306 

  MD = 2.0 0.041 0.006 0.288 0.013 0.016 0.003 8.313 0.020 

  MD = 3.5 0.055 0.007 0.084 0.008 0.041 0.006 0.111 0.008 

 50:50 MD = 1.0 0.050 0.006 1.313 0.250 0.017 0.002 6.561 0.183 

  MD = 2.0 0.027 0.005 0.114 0.014 0.016 0.003 0.223 0.016 

  MD = 3.5 0.035 0.006 0.043 0.007 0.029 0.005 0.048 0.007 

5000 30:70 MD = 1.0 0.115 0.009 0.585 0.018 0.006 0.000 19.563 0.465 

  MD = 2.0 0.008 0.001 0.043 0.003 0.004 0.001 11.542 0.004 

  MD = 3.5 0.013 0.001 0.018 0.001 0.010 0.001 0.024 0.002 

 50:50 MD = 1.0 0.032 0.003 0.503 0.053 0.008 0.000 6.968 0.292 

  MD = 2.0 0.005 0.001 0.018 0.002 0.003 0.000 0.033 0.003 

  MD = 3.5 0.006 0.001 0.007 0.001 0.005 0.001 0.008 0.002 

10000 30:70 MD = 1.0 0.047 0.005 0.506 0.005 0.003 0.000 11.888 0.179 

  MD = 2.0 0.006 0.001 0.030 0.001 0.002 0.000 0.052 0.002 

  MD = 3.5 0.007 0.001 0.010 0.001 0.005 0.001 0.011 0.001 

 50:50 MD = 1.0 0.017 0.003 0.219 0.010 0.006 0.001 0.674 0.012 

  MD = 2.0 0.003 0.000 0.010 0.001 0.002 0.000 0.015 0.002 

  MD = 3.5 0.003 0.001 0.004 0.001 0.002 0.000 0.004 0.001 

4.2.2.2 Repeated measures ANOVA results for the variance of covariate effects estimates 

As was done with percent relative bias, repeated measures ANOVA was used to 

identify factors and/or combination of factors that had significant impact on the variance 

of covariate effect estimates under the four estimation approaches. Variance of covariate 

effect estimates was modeled also as a function of the manipulated simulation conditions. 

Estimation approach was used as a within-replications variable and results for up to 3-
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way interactions as well as the main effects were assessed and reported in Table 4.20 if 

they were identified to be both statistically significant (p-value   .05) and have an effect 

size of 2 0.06  . The sphericity assumption was checked, and the Huynh-Feldt 

correction was considered to adjust the degrees of freedom if necessary.  

The ANOVA results presented in Table 4.20 showed that estimation approach, 

sample size, mixing proportion and class separation had significant main effects on 

variance of covariate effect estimates related to 1x . Estimation approach and class 

separation had very large effect sizes of 2ˆ 0.28   and  2ˆ 0.57   respectively on the 

effect estimate variability. Only class separation was identified as significant main effect 

on variance of parameter estimates related to 2x  ( 2ˆ 0.12  ). Significant two-way 

interaction effects for 1x were found for A × CS ( 2ˆ 0.38  ), N × CS ( 2ˆ 0.06  ), and 

MP × CS ( 2ˆ 0.06  ), and A × CS was also found significant for 2x  ( 2ˆ 0.08  ). Only 

one three-way interaction effect (A × CS × CE) related to 2x  was found significant with 

an effect size of 2ˆ 0.15  .  

 

 

 

 

 

 

 

Table 4.20 
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ANOVA Results of Manipulated Factors on the Variance of Covariate Effects Estimates 

Source 
1x   

2x  

F Value p-value 2   F Value p-

value 

2  

Within-Replications 

Effects
1 

       

A
 

157.593 <.000 0.28     

A × CS 108.551 <.000 0.38  3.137 .010 0.08 

A × CS × CE     1.981 .028 0.15 

         

Between-Replications 

Effects 

       

CS 154.636 <.000 0.57  4.748 .022 0.12 

N 10.619 <.000 0.06     

MP 33.534 <.000 0.06     

N  × CS 5.247   .003 0.06     

MP  × CS 15.358 <.000 0.06     

Note: 
1
 the Huynh-Feldt correction was used to adjust the degrees of freedom if necessary. 

A: covariate estimation approach; CS: class separation; CE: covariate effect; N: sample 

size; MP: latent class mixing proportion. 

Pairs of means for the main effects of sample size and class separation were 

compared for the variances of covariate effect estimates using Tukey’s HSD procedure 

which was not used for the main effect of mixing proportion with only two levels. Means 

for groups in homogeneous subsets were displayed for the main effects of sample size 

and class separation in Tables 4.21 – 4.23. It was observed in Table 4.21 that as sample 

size increased, variance of effect estimate for 1x  grew smaller from 1.733 to 0.569. 

Similarly, as class separation was larger, variance of effect estimates for 1x  was smaller 

from 3.220 to 0.050 (Table 4.22). Table 4.23 showed that for 2x , when class separation 

was large at MD = 3.5, variance of parameter estimate was at the lowest value of 1.042.   

 

Table 4.21 



 

94 

 

Pairwise Comparisons among Levels of N for Variance of Parameter Estimates Related 

to 1x  

N Sample Size 
Subset 

1 2 3 

1 24   1.733 

2 24  1.554 1.554 

3 24 1.048 1.048  

4 24 0.569   

 

 

Table 4.22 

Pairwise Comparisons among Levels of CS for Variance of Parameter Estimates Related 

to 1x .   

CS Sample Size 
Subset 

1 2 

1 32  3.220 

2 32 0.406  

3 32 0.050  

 

Table 4.23 

Pairwise Comparisons among Levels of CS for Variance of Parameter Estimates Related 

to 1x    

CS Sample Size 
Subset 

1 2 

1 32 1.102 1.102 

2 32  1.115 

3 32 1.042  

 

Graphics were created for the significant two-way interaction effects of A × CS, N 

× CS and MP × CS (Figure 4.9 – Figure 4.12). Figure 4.9 showed that as MD increased, 

variance of effect estimates for 1x  decreased for all levels of sample size. When sample 

size was at 500, 1000, and 5000, variance of effect estimates related to 1x  was the highest 

at the lowest level of class separation (i.e., MD = 1.0), and when sample size reached 

10000, variances were very close to 0 at both MD = 2.0 and MD = 3.5, suggesting that 
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when sample size and class separation were both large, variance of covariate effect 

estimates related to 1x  was very close to its lower bound of 0.    

 It was very interesting to observe the interaction effect of class separation and 

mixing proportion on the variance of covariate effect estimates for 1x  (see Figure 4.10). 

Variance values almost overlapped around the value of 0 for the two mixing proportion 

levels at MD = 3.5, indicating that when class separation was very large, covariate effect 

estimates for 1x  were very stable for both latent class proportion levels. Differences in 

variance between the two mixing proportion levels was observed at MD = 1.0 and MD = 

2.0 where the variance is higher for mixing proportion of 30:70 than that of 50:50. It was 

also noticed that when class separation was at MD = 2.0, variance of effect estimates for 

1x  was closer to 0 at mixing proportion of 50:50 than for the mixing proportion of 30:70.  

 Effects from the two-way interactions of estimation approach and class separation 

on the variance of covariate effect estimates were displayed in Figure 4.11 and Figure 

4.12 for 1x   and 2x  respectively where a similar pattern was observed. As might be 

expected, for both 1x  and 2x , variance values were always close to 0 for all estimation 

approaches at MD = 3.5. Variance values were also always close to 0 for all class 

separation levels when the conventional three-step approach and the PC approach were 

used, which makes sense considering their comparatively higher percent relative bias 

values observed in Section 4.2.1. It was also observed that for the one-step ML method, 

the covariate effect estimates for both 1x   and 2x  were close to 0 for MD = 2.0 and MD = 

3.5. For the three-step ML approach, variance of covariate effect estimates at MD = 1.0 
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was very large, suggesting that parameter estimates related to both 1x   and 2x  had more 

variability from using the three-step approach when class separation was very poor.  

 

 

 

 
Figure 4.9. N × CS on variance of effect 

estimates for 1x   

 

 Figure 4.10. CS × MP  on variance of effect 

estimates for 1x   

 

   

 

 

 
Figure 4.11. A × CS  on variance of effect 

estimates for 1x   

 Figure 4.12. A × CS on variance of effect 

estimates for 2x   

 

 Figures 4.13 – 4.16 depicted the three-way interaction effect of A × CS × CE on the 

variance of parameter estimates related to 2x . Two-way interactions of A × CS were 

graphed separately for each level of covariate effect. It was observed that for all levels of 

covariate effect, variances of covariate effect estimates for 2x  were close to 0 for the 

class separation of MD = 3.5 for all estimation approaches. Also, for all levels of 

covariate effect, the conventional three-step method and the PC method always showed 

the lowest variance values across all class separation levels. When class separation was at 
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the lowest considered level of MD = 1.0, both of the one-step ML method and the three-

step ML method showed largest variance values for all levels of covariate effect, 

suggesting again that these two approaches were sensitive to low class separation in 

terms of variability of covariate effect estimates related to 2x .     

 

 

 

 

Figure 4.13. A × CS on variance for 2x  at CE=1  Figure 4.14. A × CS on variance for 2x  at CE=2 

   

 

 

 

Figure 4.15. A × CS on variance for 2x  at CE=3  Figure 4.16. A × CS on variance for 2x  at CE=4 

 

4.2.3 Results of standard error efficacy of the covariate effect estimates    

4.2.3.1 Descriptive statistics of the standard error efficacy of the covariate effect 

estimates 

 Standard error efficacy of the covariate effect estimates, a standard error ratio, was 

another criterion used to measure the performance of the estimation approaches. As was 

mentioned earlier, a standard error efficacy value greater than 1 indicates that the 
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standard errors are overestimated, implying increase of making a Type II error. On the 

other than, if an efficacy value is less than 1, the standard errors are underestimated, 

suggesting chance of committing a Type I error. Therefore, an efficacy value close to 1 is 

desired which suggests that the estimated standard errors computed based on an approach 

provide accurate estimates of the population standard errors.  

 Tables 4.24 – 4.27 below showed descriptive statistics in standard error efficacy for 

the covariate effect estimates. It was observed that for all combined levels of sample size, 

mixing proportion, and covariate effect, standard error efficacy values related to both 1x  

and 2x  were closest to 1 for all estimation approaches when class separation was at the 

highest considered level of MD = 3.5. The PC approach always attained efficacy values 

greater than 1 across all levels of sample size, mixing proportion and class separation, 

suggesting higher probability of committing Type II errors when the PC approach was 

used.  
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Table 4.24 

Standard Error Efficacy with Small Covariate Effects for 1x  and 2x  

Conditions 

Variance of ̂  

Conventional 

3-Step 
1-Step ML PC 3-Step ML 

Sampl

e Size 

Mixing 

Proportio

n 

Class 

Separatio

n 

1x  2x  1x  2x  1x  2x  1x  2x  

500 30:70 MD = 1.0 0.210 0.898 1.172 0.942 2.735 2.131 0.354 0.193 

  MD = 2.0 1.289 1.005 0.940 1.351 2.014 1.650 1.969 1.005 

  MD = 3.5 1.085 1.004 1.059 1.026 1.167 1.146 1.085 1.016 

 50:50 MD = 1.0 1.324 1.194 1.360 0.964 2.3797 2.238 0.292 0.060 

  MD = 2.0 1.225 0.951 1.229 1.064 1.937 1.528 1.259 0.964 

  MD = 3.5 1.086 0.949 1.107 0.947 1.208 1.043 1.089 0.954 

1000 30:70 MD = 1.0 2.093 1.074 1.667 0.925 2.923 2.264 0.240 0.043 

  MD = 2.0 1.171 0.945 1.184 1.040 1.957 1.630 1.356 0.956 

  MD = 3.5 1.020 1.005 1.029 1.015 1.147 1.119 1.019 1.005 

 50:50 MD = 1.0 2.496 1.188 1.170 1.229 2.715 2.297 0.322 0.699 

  MD = 2.0 1.099 0.990 1.076 0.996 1.776 1.575 1.083 0.975 

  MD = 3.5 1.061 0.985 1.057 0.978 1.159 1.082 1.062 0.991 

5000 30:70 MD = 1.0 1.266 1.086 4.056 3.258 3.044 2.356 0.395 0.522 

  MD = 2.0 0.987 1.005 1.009 1.022 1.734 1.669 0.957 0.955 

  MD = 3.5 1.019 1.009 1.015 1.006 1.130 1.124 1.022 1.006 

 50:50 MD = 1.0 2.486 1.110 2.480 2.193 2.818 2.046 0.396 0.462 

  MD = 2.0 0.985 1.011 1.041 1.063 1.681 1.687 1.009 1.023 

  MD = 3.5 0.989 1.021 0.986 1.022 1.088 1.120 0.990 1.024 

10000 30:70 MD = 1.0 1.069 0.979 1.124 1.332 2.519 2.429 0.377 0.124 

  MD = 2.0 0.964 1.016 0.952 1.051 1.629 1.679 0.952 1.017 

  MD = 3.5 0.960 1.041 0.960 1.015 1.064 1.137 0.960 1.039 

 50:50 MD = 1.0 1.407 1.146 1.148 1.287 2.456 1.717 0.346 1.122 

  MD = 2.0 1.012 1.030 1.048 1.052 1.700 1.657 1.008 1.007 

  MD = 3.5 1.017 1.026 1.013 1.039 1.114 1.134 1.020 1.036 
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Table 4.25 

Standard Error Efficacy with Large Covariate Effects for 1x  and 2x  

Conditions 

Variance of ̂  

Conventional 

3-Step 
1-Step ML PC 3-Step ML 

Sampl

e Size 

Mixing 

Proportio

n 

Class 

Separatio

n 

1x  2x  1x  2x  1x  2x  1x  2x  

500 30:70 MD = 1.0 1.230 0.756 1.218 1.123 2.446 1.415 0.335 0.852 

  MD = 2.0 0.914 0.823 1.319 1.085 1.648 1.373 0.757 0.939 

  MD = 3.5 0.960 0.996 1.004 0.987 1.203 1.215 0.973 0.990 

 50:50 MD = 1.0 1.245 0.793 1.266 1.261 1.979 1.464 0.375 0.862 

  MD = 2.0 0.972 0.794 1.141 1.170 1.645 1.159 0.570 1.076 

  MD = 3.5 0.986 0.956 1.015 0.978 1.185 1.163 1.012 1.004 

1000 30:70 MD = 1.0 1.516 0.663 1.249 1.246 2.409 1.270 0.362 0.642 

  MD = 2.0 0.958 0.924 1.164 1.070 1.792 1.434 1.071 0.922 

  MD = 3.5 1.031 0.993 1.069 1.026 1.304 1.197 1.083 1.030 

 50:50 MD = 1.0 1.087 0.680 1.123 1.234 1.882 1.405 0.432 2.224 

  MD = 2.0 0.964 0.882 1.026 1.048 1.630 1.261 0.893 0.814 

  MD = 3.5 0.987 0.972 1.009 0.962 1.188 1.172 1.004 0.988 

5000 30:70 MD = 1.0 0.921 0.598 1.016 0.984 2.076 1.028 0.339 0.464 

  MD = 2.0 0.843 0.951 1.008 0.944 1.665 1.438 0.924 0.844 

  MD = 3.5 0.929 0.939 0.957 0.955 1.163 1.162 0.961 0.962 

 50:50 MD = 1.0 1.117 0.562 1.045 1.033 1.560 0.886 0.511 0.504 

  MD = 2.0 0.992 1.019 0.982 1.062 1.666 1.382 0.876 0.845 

  MD = 3.5 1.008 1.032 1.000 1.056 1.208 1.226 1.018 1.071 

10000 30:70 MD = 1.0 0.969 0.557 1.018 0.962 1.895 0.964 0.330 2.867 

  MD = 2.0 0.865 0.959 0.981 0.961 1.671 1.449 0.899 0.883 

  MD = 3.5 0.915 0.982 0.941 0.998 1.144 1.211 0.943 0.992 

 50:50 MD = 1.0 1.107 0.621 1.038 1.030 1.709 0.974 0.435 0.365 

  MD = 2.0 0.954 0.986 1.012 1.045 1.654 1.391 0.885 0.803 

  MD = 3.5 0.997 0.996 0.962 0.994 1.190 1.214 0.978 1.003 
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Table 4.26 

Standard Error Efficacy with Small Covariate Effect for 1x  and Large Covariate Effect 

for 2x  

Conditions 

Variance of ̂  

Conventional 

3-Step 
1-Step ML PC 3-Step ML 

Sampl

e Size 

Mixing 

Proportio

n 

Class 

Separatio

n 

1x  2x  1x  2x  1x  2x  1x  2x  

500 30:70 MD = 1.0 1.513 0.717 1.307 1.103 3.055 1.506 0.343 0.752 

  MD = 2.0 1.467 0.920 1.356 1.139 2.478 1.443 0.988 0.937 

  MD = 3.5 1.180 0.988 1.181 1.013 1.435 1.262 1.182 0.982 

 50:50 MD = 1.0 1.623 0.726 1.190 1.081 3.082 1.376 0.394 1.325 

  MD = 2.0 1.328 0.783 1.282 1.045 2.307 1.183 3.342 1.226 

  MD = 3.5 1.163 0.965 1.188 0.994 1.360 1.159 1.192 1.013 

1000 30:70 MD = 1.0 2.016 0.689 1.165 1.177 3.252 1.394 0.368 0.612 

  MD = 2.0 1.286 0.912 1.254 1.084 2.332 1.369 1.343 0.917 

  MD = 3.5 1.137 1.019 1.130 1.048 1.351 1.236 1.148 1.037 

 50:50 MD = 1.0 1.383 0.703 1.477 1.329 3.114 1.340 0.235 0.074 

  MD = 2.0 1.269 0.907 1.234 0.994 2.158 1.279 1.295 0.809 

  MD = 3.5 1.217 1.013 1.117 0.962 1.277 1.155 1.112 0.993 

5000 30:70 MD = 1.0 1.588 0.674 1.121 1.035 3.870 1.048 1.148 0.794 

  MD = 2.0 1.050 0.938 1.081 0.969 1.982 1.388 1.073 0.853 

  MD = 3.5 1.068 0.967 1.065 0.958 1.263 1.176 1.088 0.978 

 50:50 MD = 1.0 1.843 0.655 1.114 1.061 2.878 0.899 0.477 0.065 

  MD = 2.0 0.993 1.010 1.031 1.059 1.767 1.392 1.018 0.879 

  MD = 3.5 1.008 1.004 1.022 1.009 1.186 1.191 1.019 1.026 

10000 30:70 MD = 1.0 1.199 0.414 1.133 1.004 3.452 0.985 0.507 0.442 

  MD = 2.0 0.987 0.938 1.008 0.999 1.835 1.377 0.988 0.884 

  MD = 3.5 1.006 1.000 1.004 1.029 1.190 1.217 1.011 1.037 

 50:50 MD = 1.0 1.461 0.477 1.087 1.051 3.141 0.662 4.241 0.334 

  MD = 2.0 0.988 0.982 1.013 1.016 1.792 1.344 0.995 0.841 

  MD = 3.5 1.032 1.015 1.015 1.042 1.188 1.229 1.031 1.052 
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Table 4.27 

Standard Error Efficacy with Large Covariate Effect for 1x  and Small Covariate Effect 

for 2x  

Conditions 

Variance of ̂  

Conventional 

3-Step 
1-Step ML PC 3-Step ML 

Sampl

e Size 

Mixing 

Proportio

n 

Class 

Separatio

n 

1x  2x  1x  2x  1x  2x  1x  2x  

500 30:70 MD = 1.0 1.653 0.721 1.397 0.940 1.907 2.151 0.378 0.944 

  MD = 2.0 0.850 0.997 1.892 1.040 1.528 1.623 0.473 1.004 

  MD = 3.5 0.980 0.989 1.039 0.976 1.210 1.105 1.163 0.992 

 50:50 MD = 1.0 0.235 0.788 1.250 1.082 1.714 2.304 0.372 0.864 

  MD = 2.0 0.897 1.013 1.423 0.920 1.425 1.614 0.529 0.992 

  MD = 3.5 0.966 1.000 0.980 0.987 1.117 1.109 0.964 1.006 

1000 30:70 MD = 1.0 0.182 0.638 1.828 1.042 1.989 2.123 0.405 0.952 

  MD = 2.0 0.980 1.007 1.920 1.030 1.721 1.653 0.695 0.995 

  MD = 3.5 1.041 0.975 1.031 0.968 1.267 1.085 1.046 0.981 

 50:50 MD = 1.0 0.863 1.084 1.671 1.281 1.602 2.212 0.320 0.612 

  MD = 2.0 0.960 1.032 1.040 1.014 1.489 1.658 1.177 1.005 

  MD = 3.5 0.960 0.995 0.972 0.994 1.106 1.121 0.966 1.001 

5000 30:70 MD = 1.0 0.861 0.989 2.496 1.036 1.634 2.483 0.294 0.772 

  MD = 2.0 1.010 0.993 1.080 1.031 1.663 1.724 0.611 1.018 

  MD = 3.5 0.965 0.995 0.981 0.994 1.148 1.113 0.965 0.996 

 50:50 MD = 1.0 1.530 1.193 1.476 1.282 1.235 2.411 0.277 0.334 

  MD = 2.0 1.001 1.044 1.018 1.042 1.501 1.729 0.828 1.006 

  MD = 3.5 1.050 0.983 1.064 1.001 1.209 1.117 1.057 0.985 

10000 30:70 MD = 1.0 0.801 0.815 4.595 1.197 1.539 2.247 0.592 0.452 

  MD = 2.0 0.854 1.007 0.940 1.058 1.627 1.745 0.793 1.028 

  MD = 3.5 0.926 1.032 0.939 1.026 1.133 1.143 0.936 1.039 

 50:50 MD = 1.0 0.939 0.824 1.349 1.212 1.176 1.783 0.817 1.032 

  MD = 2.0 0.977 1.046 0.964 1.075 1.493 1.724 0.839 1.014 

  MD = 3.5 1.025 1.075 1.026 1.095 1.178 1.211 1.035 1.086 
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4.2.3.2 Repeated measures ANOVA results for the standard error efficacy of the 

covariate effect estimates  

Results of the repeated measures ANOVA for the standard error efficacy of the covariate 

effect estimates are presented in Table 4.28. Estimation methods and covariate effect both 

had significant main effect for 1x  and 2x . The effect sizes of estimation approach on 

standard error efficacy were 2 = 0.37 and 2 = 0.40 for 1x  and 2x , respectively, and 

those of covariate effects on standard error efficacy were 2 = 0.22 and 2 = 0.23 for 1x  

and 2x . Class separation had a significant main effect on standard error efficacy only 

related to 1x . In terms of interaction effects, A × CS, A × CE, and CE  × CS all had 

significant effects on standard error efficacy for both 1x  and 2x . Significant two-way 

interaction effects of N × CS and N × CE on standard error efficacy were found related to  

1x  ( 2 = 0.08) and 2x ( 2 = 0.11), respectively. Significant three-way interaction effect 

on standard error efficacy was found for A × CE × CS for both 1x  and 2x , and for N × 

CE × CS related only to 2x .  
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Table 4.28 

ANOVA Results of Manipulated Factors on the Standard Error Efficacy 

Source 
1x   

2x  

F Value p-value 2   F Value p-

value 

2  

Within-Replications 

Effects
1 

       

A
 

118.967 .000 0.37  113.842 .000 0.40 

A × CS 35.041 .000 0.22  21.983 .000 0.16 

A × CE 6.639 .000 0.06  7.147 .000 0.08 

A × CE × CS 

 

4.081 .000 0.08  5.697 .000 0.12 

        
Between-Replications 

Effects 

       

CS 32.998 .000 0.26     

CE 18.732 .000 0.22  19.276 

 

.000 0.23 

N × CE     3.057 .021 0.11 

N  × CS 3.343 .022 0.08     

CE  × CS 3.743 .014 0.09  10.250 .000 0.24 

N × CE × CS     2.533 .028 0.18 
 

Note: 
1
 the Huynh-Feldt correction was used to adjust the degrees of freedom if necessary. 

A: covariate estimation approach; CS: class separation; CE: covariate effect; N: sample size; MP: 

latent class mixing proportion. 

 

Tukey’s HSD procedure was used for comparing pairs of means for the main effects 

of class separation and covariate effects. The means for groups in homogeneous subsets 

were displayed in Tables 4.29 – 4.31. Table 4.29 showed that when sample size 

increased, standard error efficacy of the covariate effect estimates for 1x  became closer to 

the desired value of 1 from 1.431 at MD = 1.0 to 1.071 at MD = 3.5, and the decrease in 

standard error efficacy values for 1x  was significant for all possible pairs of levels of 

class separation. Table 4.30 and Table 4.31 showed that when both 1x  and 2x  had large 

effect, standard error efficacy related to 1x  obtained values close to 1.  
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Table 4.29 

Pairwise Comparisons among Levels of CS for Standard Error Efficacy for 1x  

CS Sample Size 
Subset 

1 2 3 

1 32   1.431 

2 32  1.254  

3 32 1.071   

 

Table 4.30 

Pairwise Comparisons among Levels of CE for Standard Error Efficacy for 1x  

CE Sample Size 
Subset 

1 2 

1 24  1.315 

2 24 1.114  

3 24  1.444 

4 24 1.136  

 

Table 4.31 

Pairwise Comparisons among Levels of CE for Standard Error Efficacy for 2x  

CE Sample Size 
Subset 

1 2 

1 24  1.155 

2 24 1.036  

3 24 .991  

4 24  1.155 

 

 

Two-way interaction effects of A × CS, A × CE, and CE × CS on standard error 

efficacy were graphed for 1x  and 2x  together to easily compare how these effects impact 

standard error efficacy of covariate effect estimates related to 1x  and 2x . Figures 4.17 

and 4.18 showed that for all estimation approaches, standard error efficacy for both 

covariates were the closest to the desired value of 1 at MD = 3.5 and the furthest from 1 
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for MD = 1.0. For all levels of class separation, the PC approach showed efficacy values 

furthest from 1 compared with the other three approaches.  Figure 4.19 and Figure 4.20 

showed that for all levels of covariate effect standard error efficacy from using the PC 

approach were always larger than and much further away from 1 when compared with the 

values obtained with other three approaches. In terms of two-way interaction effect of CE 

× CS, Figure 4.21 and Figure 4.22 showed that when class separation was at its largest 

considered level of MD = 3.5, standard error efficacy values were close to the desired 

value of 1 for all levels of covariate effect. When class separation was at its lowest 

considered level of MD = 1.0, standard error efficacy values were found to be further 

away from 1 at covariate effect levels of 1, and 3 where either both covariates had small 

effect or 1x  had small effect and 2x  had large effect size. 

 

 

 

Figure 4.17. A × CS on standard error efficacy 

for 1x  

 Figure 4.18. A × CS on  standard error efficacy 

for 2x  

   

 

 

 
Figure 4.19. A × CE on standard error efficacy 

for 1x  

 Figure 4.20. A × CE on standard error efficacy 

for 2x  
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Figure 4.21. CE × CS on standard error 

efficacy for 1x  

 Figure 4.22. CS × CE on standard error efficacy 

for 2x  

 

 Figure 4.23 and Figure 4.24 followed showed the interaction effects of N × CS 

related to 1x  and N × CE related to 2x , respectively. For the interactions of sample size 

and class separation, Figure 4.23 showed that at MD = 2.0 and MD = 3.5, standard error 

efficacy values related to 1x  decreased and tended to approach 1 when sample size was 

increased. Further when class separation was at MD = 3.5 and sample size was 10000, 

standard error efficacy was the closest to 1. Two-way interaction effect from sample size 

and covariate effects on standard error efficacy of covariate effect estimates for 2x  

looked more complicated (see Figure 4.24). Standard error efficacy values seemed to be 

closest to 1 at CE = 3 when sample size was 1000. At CE = 4 standard error efficacy 

values were very close to each other between levels of sample size and away from 1.    

 

 

 

Figure 4.23. N×CS on standard error efficacy for 

1x  

 Figure 4.24. N×CE on standard error efficacy for 

2x  
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 Figures 4.25 – 4.28 below showed the three-way interaction effect of N × CE × 

CS on standard error efficacy of the covariate effect estimates related to 2x by levels of 

covariate effect. When class separation was at MD = 3.5, standard error efficacy values 

were close to 1 for all sample sizes at all levels of covariate effect. At MD = 1.0, the 

efficacy values tended to change or fluctuate a lot among levels of sample size. Efficacy 

values were comparatively stable among levels of sample size for all levels of covariate 

effect at MD = 2.0 and MD = 3.5, suggesting that when class separation was large, 

standard error efficacy of the covariate effect estimates related to continuous variable 

were close to 1.     

 

 

 

 
Figure 4.25. N×CS on standard error efficacy for 

2x  at CE=1 

 Figure 4.26. N×CS on standard error efficacy for 

2x  at CE=2 
   

 

 

 
Figure 4.27. N×CS on standard error efficacy for 

2x  at CE=3 

 Figure 4.28. N×CS on standard error efficacy for 

2x  at CE=4 
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 The three-way interaction effect of A × CE × CS on standard error efficacy related 

to 1x  and 2x  was presented in four pairs of graphs by the levels of covariate effects 

(Figures 4.29 – 4.36). It was observed that at CE = 1 and CE = 4, for both 1x  and 2x , all 

estimation approaches lead to standard error efficacy values close to 1 when class 

separation was as large as MD = 3.5. When covariate effect was at CE = 1 (where both of 

the covariate effects had small effect size) and class separation was at MD = 2.0, the 

conventional three-step procedure, the one-step ML procedure and the three-step ML 

procedure had standard error efficacy values closer to 1 than the PC procedure. Similarly, 

when covariate effect was at CE = 2, all the estimation approaches except for the PC 

method had standard error efficacy values close to 1 at MD = 3.5. When CE = 3, efficacy 

values for the two covariates were very similar to each other between MD = 2.0 and MD 

= 3.5 for all the estimation approaches except for the PC procedure.  

 

 

 
Figure 4.29. A×CS on standard error efficacy 

for 1x  at CE=1 

 Figure 4.30. A×CS on standard error efficacy 

for 2x  at CE=1 
   

 

 

 
Figure 4.31. A×CS on standard error efficacy 

for 1x  at CE=2 

 Figure 4.32. A×CS on standard error efficacy 

for 2x  at CE=2 
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Figure 4.33. A×CS on standard error efficacy 

for 1x  at CE=3 

 Figure 4.34. A×CS on standard error efficacy 

for 2x  at CE=3 
   

 

 

 
Figure 4.35. A×CS on standard error efficacy 

for 1x  at CE=4 

 Figure 4.36. A×CS on standard error efficacy 

for 2x  at CE=4 

 

4.3 Results of Simulation II 

 As was mentioned earlier in Chapter 3, Simulation II examined how well the 

conventional three-step approach, the one-step ML approach and the new three-step ML 

approach performed in terms of covariate effect estimation. Since there were more 

covariates in the data and these covariates entered different parts of the growth mixture 

model, it would be interesting to investigate the performance of the three estimation 

approaches under different model specifications. Therefore, data were analyzed with two 

models, namely, a misspecified model, and the correctly specified model which was used 

for data generation. The misspecified model used in the current research in fact was an 

underspecified model which incorporated only one covariate (linked to the latent class 

part of the model) and did not include the two covariates supposed to go into the growth 

part of the model.   
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 In this section, results of Simulation II are reported in the same way as was done in 

Simulation I. Both descriptive statistics of outcome measures as well as results of several 

repeated measures ANOVAs were presented using tables or graphs. Specifically, 

descriptive statistics are provided in two tables separately for the misspecified model and 

for the correctly specified model in terms of percent relative bias, variance and standard 

error efficacy of the covariate effect estimates from using the three different estimation 

approaches. Results of the repeated measures ANOVA were presented separately for the 

three outcome measures for each of the two models.     

4.3.1 Descriptive statistics of the outcome measures for the two models 

Table 4.32 and Table 4.33 below showed the descriptive statistics of the three 

outcome measures by the manipulated conditions for the misspecified model and the 

correctly specified model respectively. An examination of the percent relative bias values 

from the three estimation approaches suggested that for both models that were estimated, 

the conventional three-step approach produced the most biased parameter estimates and 

consistently underestimated the covariate effect across all conditions. Values of the 

percent relative bias presented in Table 4.32 showed that for the misspecified model the 

new three-step ML approach was closer to the desired value of 0 than the one-step ML 

approach which was in turn closer to 0 than the conventional three-step approach, 

suggesting that the three-step ML approach resulted in less biased parameter estimates 

than the other two approaches and the conventional approach always had the poorest 

covariate effect estimates. It was very interesting to notice in Table 4.33 that for the 

correctly specified model, percent relative bias values were closer to 0 for the new three-

step ML approach than for the one-step approach at small covariate effect whereas 
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percent relative bias values were closer to 0 for the one-step approach than for the three-

step ML approach at large covariate effect across all the other simulated conditions, 

indicating that the three-step ML approach resulted in less biased parameter estimates 

than the one-step approach when covariate effect from the dichotomous variable was 

small and that the one-step approach performed better than the three-step approach when 

covariate effect from the dichotomous variable was large.    

 In terms of variance of covariate effect estimates, Table 4.32 and Table 4.33 both 

showed that for both the misspecified model and the correctly specified model, the 

conventional three-step approach always resulted in the smallest variances and the new 

three-step ML approach had the largest variances across all condition levels. It was also 

observed that when covariate effect increased, variance of covariate effect estimates at 

the same combined conditions of sample size, mixing proportion and class separation 

increased across all three estimation approaches. Table 4.32 also showed that for the 

misspecified model, when sample size increased at each combined level of mixing 

proportion, class separation and covariate effect, variance values decreased for all three 

estimation approaches. This same consistency was also observed under the one-step ML 

approach for the correctly specified model.  

 In terms of the standard error efficacy, when compared with the desired value of 1, 

for some cells the standard error efficacy values showed very large deviation from 1 

when using the three-step ML approach. For example, for the misspecified model at the 

sample size of 500, mixing proportion of 30:70, class separation at MD = 2.0, and large 

covariate effect, standard error efficacy of the covariate effect estimation for the three-

step approach was 61.580. When sample size increased to 1000 under the same combined 
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condition, standard error efficacy value was 43.718, and when sample size was further 

increased to 10000, standard error efficacy value was as high as 86.585. Another 

observation was that for the three-step ML approach, the correctly specified model 

resulted in standard error efficacy values closer to 1 than the misspecified model at MP = 

30:70 and MD = 2.0 at both covariate effect levels across all levels of sample size.  
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Table 4.32 

Outcome Measures for Model 1 

Conditions Relative Bias (%) Variance Standard Error Efficacy 

N MP CS CE A1 A2 A4 A1 A2 A4 A1 A2 A4 

500 30:70 MD=2.0 1 -45.3 -33.8 28.2 0.022 0.041 1.223 1.656 1.982 8.988 

   2  -61.5 -30.7 -5.8 0.071 0.272 4.478 1.003 4.302 61.580 

  MD=3.5 1 -14.3 -13.2 -5.5 0.037 0.043 0.045 1.166 1.169 1.167 

   2  -14.8 -2.1 2.0 0.105 0.159 0.858 0.987 1.004 0.663 

 50:50 MD=2.0 1 -50.9 -34.2 -23.4 0.018 0.050 0.055 1.499 1.771 1.527 

   2  -53.7 -20.2 -17.3 0.071 0.152 1.521 0.858 4.088 1.093 

  MD=3.5 1 -16.6 -14.9 -9.0 0.031 0.038 0.039 1.117 1.085 1.115 

   2  -14.7 -5.8 -3.9 0.062 0.080 0.093 0.944 0.937 0.944 

1000 30:70 MD=2.0 1 -59.9 -56.6 -20.8 0.011 0.019 0.101 1.589 1.761 6.843 

   2  -60.4 -30.2 -2.2 0.029 0.163 1.849 1.071 1.903 43.718 

  MD=3.5 1 -23.1 -23.0 -15.4 0.022 0.024 0.027 1.062 1.092 1.061 

   2  -16.9 -5.0 -1.0 0.049 0.068 0.113 0.991 1.025 0.994 

 50:50 MD=2.0 1 -65.2 -60 -45.9 0.008 0.014 0.019 1.614 1.724 1.605 

   2  -53.2 -21.8 -14.0 0.035 0.073 0.964 0.813 1.121 0.907 

  MD=3.5 1 -24.4 -24.6 -17.7 0.016 0.018 0.019 1.096 1.093 1.099 

   2  -14.7 -6.0 -3.9 0.028 0.034 0.043 0.987 1.003 0.969 

5000 30:70 MD=2.0 1 -85.1 -84.9 -60.7 0.005 0.003 0.007 1.027 1.997 1.728 

   2  -57.4 -28.5 27.8 0.007 0.024 1.149 1.005 1.147 3.546 

  MD=3.5 1 -28.4 -28.3 -21.3 0.005 0.006 0.006 0.999 1.003 0.998 

   2  -17.4 -6.1 -2.2 0.009 0.014 0.020 1.001 1.000 0.963 

 50:50 MD=2.0 1 -86.5 -86.2 -72.4 0.004 0.003 0.004 1.035 1.742 1.584 

   2  -56.1 -21.7 -12.8 0.211 0.014 0.051 0.147 0.985 0.705 

  MD=3.5 1 -26.8 -26.8 -20.3 0.004 0.004 0.004 1.048 1.036 1.047 

   2  -14.8 -6.0 -4.1 0.006 0.007 0.008 0.980 0.982 0.972 

10000 30:70 MD=2.0 1 -90.3 -90 -69.2 0.004 0.001 0.003 0.858 2.068 1.704 

   2  -72.7 -40.9 -27.8 0.548 0.012 0.966 0.081 1.166 86.585 

  MD=3.5 1 -29.4 -29.8 -22.4 0.003 0.003 0.003 0.990 0.979 0.992 

   2  -17.8 -6.6 -2.9 0.005 0.007 0.010 0.959 0.949 0.936 

 50:50 MD=2.0 1 -89.2 -91.6 -78.0 0.002 0.001 0.002 0.965 2.115 1.661 

   2  -55.9 -22.0 -13.3 0.198 0.007 0.023 0.107 0.963 0.721 

  MD=3.5 1 -28.0 -27.9 -21.6 0.002 0.002 0.002 0.996 0.996 0.996 

   2  -14.7 -5.9 -4.0 0.003 0.004 0.004 0.962 0.972 0.965 
 

Note: A: covariate estimation approach; CS: class separation; CE: covariate effect; N: sample 

size; MP: latent class mixing proportion; M1: misspecified model; M2: correctly specified model. 

The bolded numbers are the numbers discussed in Section 4.3.1. 
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Table 4.33 

Outcome Measures for Model 2 

Conditions Relative Bias (%) Variance 
Standard Error 

Efficacy 

N MP CS CE A1 A2 A4 A1 A2 A4 A1 A2 A4 

500 30:7

0 

MD=2.

0 

1 -63.2 57.8 51.6 0.014 0.055 0.142 
1.93

8 
1.664 1.802 

   2  -91.8 -5.7 10.2 0.022 0.352 3.949 
1.52

6 
5.746 5.640 

  MD=3.

5 

1 -50.3 17.0 16.5 0.021 0.042 0.045 
1.53

2 
1.169 1.156 

   2  -82.6 4.9 9.0 0.042 0.170 0.818 
1.09

5 
1.061 1.033 

 50:5

0 

MD=2.

0 

1 -67.2 67.1 52.4 0.010 0.062 0.070 
1.99

0 
1.308 1.687 

   2  -92.5 0.8 -7.6 0.014 0.139 0.964 
1.72

4 
1.290 0.655 

  MD=3.

5 

1 -54.3 13.6 6.2 0.016 0.038 0.044 
1.56

0 
1.083 1.007 

   2  -83.3 -0.3 -2.9 0.026 0.079 0.213 
1.22

3 
0.944 0.601 

1000 30:7

0 

MD=2.

0 

1 -74.4 57.2 56.0 0.006 0.027 0.740 
2.02

7 
1.502 0.464 

   2  -93.8 -5.1 15.3 0.008 0.154 1.718 
1.73

9 
1.272 7.645 

  MD=3.

5 

1 -60.4 7.0 6.8 0.013 0.023 0.025 
1.36

5 
1.096 1.076 

   2  -84.0 2.0 4.7 0.022 0.071 0.113 
1.06

4 
1.016 0.957 

 50:5

0 

MD=2.

0 

1 -76.9 45.3 33 0.005 0.021 0.030 
2.03

4 
1.385 1.205 

   2  -93.6 0.0 -4.2 0.007 0.084 0.205 
1.62

1 
1.432 1.032 

  MD=3.

5 

1 -65.5 3.9 1.9 0.009 0.018 0.020 
1.44

8 
1.102 1.044 

   2  -83.9 -0.1 -0.2 0.013 0.033 0.046 
1.24

7 
1.015 0.904 

5000 30:7

0 

MD=2.

0 

1 -87.7 37.3 31.2 0.001 0.004 0.010 
1.92

4 
1.656 1.379 

   2  -95.1 -2.8 52.1 0.003 0.028 1.931 
1.40

5 
1.133 2.075 

  MD=3.

5 

1 -75.6 1.6 1.5 0.003 0.005 0.006 
1.19

7 
1.012 1.010 

   2  -83.6 0.9 3.2 0.005 0.014 0.019 
0.98

6 
1.010 0.978 

 50:5

0 

MD=2.

0 

1 -87.0 24.0 17.7 0.001 0.003 0.004 
1.77

7 
1.486 1.406 

   2  -94.1 0.6 -1.1 0.002 0.016 0.037 
1.28

8 
0.986 0.772 

  MD=3.

5 

1 -74.9 1.5 1.3 0.003 0.004 0.004 
1.13

9 
1.050 1.049 

   2  -82.3 -0.3 -0.3 0.003 0.007 0.007 
1.13

8 
1.000 1.031 

1000

0 

30:7

0 

MD=2.

0 

1 -90.7 30.5 26.1 0.001 0.002 0.004 
1.91

5 
1.694 1.516 

   2  -94.9 -2.1 65.8 0.001 0.013 1.115 
1.33

6 
1.158 2.954 

  MD=3.

5 

1 -77.4 0.5 0.2 0.002 0.003 0.003 
1.08

2 
1.010 1.016 

   2  -83.6 0.4 2.7 0.003 0.007 0.009 
0.98

9 
0.972 0.972 

 50:5

0 

MD=2.

0 

1 -89.3 18.7 12.8 0.001 0.001 0.002 
1.67

3 
1.621 1.426 

   2  -93.9 0.3 -1.4 0.001 0.007 0.017 
1.34

2 
1.002 0.781 

  MD=3.

5 

1 -77.4 0.3 0.2 0.002 0.002 0.002 
1.00

6 
1.012 1.020 

   2  -81.8 -0.1 0.1 0.001 0.004 0.004 
1.19

3 
0.980 0.985 

 

Note: A: covariate estimation approach; CS: class separation; CE: covariate effect; N: sample 

size; MP: latent class mixing proportion; M1: misspecified model; M2: correctly specified model. 
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4.3.2 Results of repeated measures ANOVA for Simulation II 

4.3.2.1 Repeated measures ANOVA results for the percent relative bias 

A repeated measures ANOVA was used for both the misspecified model and the 

correctly specified model to examine the impact of factors and/or combination of factors 

on percent relative bias for the covariate effect estimate under the three estimation 

approaches. Percent relative bias was modeled as functions of the manipulated factors of 

estimation approach, sample size, latent class mixing proportion, class separation and 

covariate effect size. Estimation approach was used as the only within-replications factor 

in both the misspecified model and the correctly specified model.  Results for up to 3-

way interactions as well as the main effects were reported in Table 4.34 only if they were 

both statistically significant (p-value   .05) and had medium effect size of 2 0.06 

(Cohen, 1988). The sphericity assumption was checked and the Huynh-Feldt correction 

was considered to adjust the degrees of freedom when the sphericity assumption was not 

adequately satisfied. In addition, post hoc tests were performed for the significant main 

effect with at least three groups.   

The ANOVA results presented in Table 4.34 showed that except for mixing 

proportion which had a significant main effect on percent relative bias for only the 

correctly specified model ( 2ˆ 0.06  ), all the other factors had significant effects on 

percent relative bias of covariate effect estimates for both of the misspecified model and 

the correctly specified model. More two-way interaction effects were identified 

significant for the misspecified model than for the correctly specified model. For example, 

significant two-way interaction effects for the misspecified model included A × MP 

( 2ˆ 0.06  ), A × CS ( 2ˆ 0.19  ), A × CE ( 2ˆ 0.08  ), N × CE ( 2ˆ 0.11  ), and those 
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for the correctly specified model included only N × CE ( 2ˆ 0.18  ) and CS × CE 

( 2ˆ 0.11  ). No significant three-way interaction effect was identified in the ANOVA 

analysis for either of the estimated models.  

Table 4.34  

ANOVA Results of Manipulated Factors on Percent Relative Bias for 1x  

Source 
M1  M2 

F Value p-

value 

2   F Value p-

value 

2  

Within-Replications 

Effects
1 

       

A
 

94.049 .000 0.50  1806.783 .000 0.93 

A×MP 11.036 .010 0.06     

A×CS 36.332 .000 0.19     

A×CE 15.336 .004 0.08     

        
Between-Replications 

Effects 

       

N 19.311 .018 0.08  10.934 .040 0.10 

MP     19.100 .022 0.06 

CE 170.328 .001 0.25  113.132 .002 0.33 

CS 281.290 .000 0.41  40.278 .008 0.12 

N×CE 25.285 .012 0.11  20.388 .017 0.18 

CS×CE     38.235 .009 0.11 
 

Note: 
1
 the Huynh-Feldt correction was used to adjust the degrees of freedom if necessary. 

A: covariate estimation approach; CS: class separation; CE: covariate effect; N: sample size; MP: 

latent class mixing proportion; M1: misspecified model; M2: correctly specified model. 

 Tukey’s HSD procedure was used for comparing pairs of means for the main effects 

of sample size for both of the models. The means for groups in homogeneous subsets 

were displayed below in Table 4.35 which showed that when sample size increased, 

percent relative bias of the covariate effect estimates for 1x  tended to depart from the 

desired value of 0 for both of the models. Percent relative bias values decreased from -

19.1 to -36.3 for the misspecified model and decreased from -9.8 to -22.3 for the 
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correctly specified model when the sample size increased from 500 to 10000, with 

significant change in relative bias found for both models when sample size increased 

from 500 to 1000 and for the correctly specified model when sample size increased also 

from 5000 to 10000, which suggested that covariate effect estimation was more accurate 

when sample size was small. It was also observed that relative bias values were closer to 

0 for the correctly specified model than for the misspecified model at each level of 

sample size, suggesting that at the same sample size level, covariate effect estimates were 

less biased for the correctly specified model than for the misspecified model.        

Table 4.35 

Pairwise Comparisons among Levels of N for Percent Relative Bias for the Two Models   

N Sample Size 

Subset 

M1 M2 

1 2 1 2 

1 8  -19.1  -9.8 

2 8 -27.8 -27.8 -16.0 -16.0 

3 8 -34.5  -21.3 -21.3 

4 8 -36.3  -22.3  

 Significant two-way interaction effects were examined using graphs presented in 

Figures 4.37 – 4.42. Interaction effect on percent relative bias between estimation 

approach and mixing proportion for the misspecified model was depicted in Figure 4.37 

where the three-step ML approach always showed relative bias values closer to 0 at both 

mixing proportion levels. When latent class mixing proportion was at 30:70 (i.e., MP = 1), 

the three-step ML approach resulted in less biased covariate effect estimates than at the 

mixing proportion level of 50:50, although no obvious difference in relative bias was 

observed for either the conventional three-step approach or the one-step approach 

between levels of mixing proportion. Figure 4.38 depicted the interaction effect of 
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estimation approach and class separation on percent relative bias for the misspecified 

model. It may be observed that all three estimation approaches had relative bias values 

closer to 0 at class separation of MD = 3.5 than at MD = 2.0, suggesting that when class 

separation increased, covariate effect estimates tended to be more accurate for any of 

these estimation approaches. Figure 4.38 also showed that for the misspecified model, 

percent relative bias values from using the three-step ML approach were lower than the 

other two approaches at each class separation levels, and that the conventional three-step 

approach always resulted in values wither larger distance from 0 than either of the other 

two methods. In terms of the interaction effect between estimation approach and 

covariate effect for the misspecified model, it was observed in Figure 4.39 that for all 

estimation approaches examined, relative bias values were closer to 0 when covariate 

effect size was large. In addition, the one-step approach lead to the least biased covariate 

effect estimates at CE = 2 whereas the three-step ML approach performed best in 

covariate effect estimation at CE =1. The two-way interaction effect of sample size and 

covariate effect on both models were displayed in Figures 4.41 and 4.42. It looked like 

percent relative bias values were closer to 0 at CE = 2 than at CE = 1 at each sample size 

level for the misspecified model but closer to 0 at CE = 1 than at CE = 2 for the correctly 

specified model. Also, percent relative bias magnitudes were relatively stable across all 

sample size levels for both of the models at CE = 2, indicating sample size did not have 

much influence on parameter estimates when covariate effect was large. Figure 4.40 

showed the interaction effect between class separation and covariate effect for the 

correctly specified model. Obviously, relative bias values were closer to 0 at CE = 1 at 

each class separation level and, when covariate effect was large at CE = 2, percent 
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relative bias values were very similar between class separation levels. In fact, both 

Figures 4.40 and 4.42 showed that for the correctly specified model percent relative bias 

values were closer to 0 when covariate effect was small either across class separation 

levels or across levels of sample size.   

 

 

 

 

Figure 4.37. A×MP on percent relative bias for Model 1  Figure 4.38. A×CS on percent relative bias for Model 1 

 

 

 

Figure 4.39. A×CE on percent relative bias for Model 1  Figure 4.40. CS×CE on percent relative bias for Model 2 

 

 

 

Figure 4.41. N×CE on percent relative bias for Model 1  Figure 4.42. N×CE on percent relative bias for Model 2 
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4.3.2.2 Repeated measures ANOVA results for the variance of the covariate effect 

estimates  

 Following the same criteria used before for identifying significant factors and/or 

combination of factors in repeated measures ANOVA analysis, all manipulated factors 

showed significant main effects on variances for both the misspecified model and the 

correctly specified model (see Table 4.36). While moderate two-way interaction effects 

for MP × CS ( 2ˆ 0.08  ), MP × CE ( 2ˆ 0.08  ), and CS × CE ( 2ˆ 0.09  ) were found 

only for the correctly specified model, significant two-way interaction effects were found 

for A × N, A × MP, A × CS, A × CE, and N × CE for both models. Significant three-way 

interaction effects were identified for A × N × CE and A × CS × CE for both of the two 

models. In addition, A × N × CS showed a significant three-way interaction effect 

( 2ˆ 0.09  ) only for the misspecified model while the three-way interactions of A × MP 

× CS ( 2ˆ 0.07  ) and A × MP × CE ( 2ˆ 0.07  ) were found significant only for the 

correctly specified model.  
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Table 4.36  

ANOVA Results of Manipulated Factors on the Variance of Covariate Effect Estimates 

Source 
M1  M2 

F Value p-value 2   F Value p-value 2  

Within-Replications 

Effects
1 

       

A
 

401.489 <.000 0.16  67.347 <.000 0.17 

A×N 114.277 <.000 0.14  8.273   .011 0.06 

A×MP 160.672 <.000 0.07  38.957 <.000 0.10 

A×CS 298.451 <.000 0.12  45.035 <.000 0.12 

A×CE 246.873 <.000 0.10  46.842 <.000 0.12 

A×N×CE 48.796 <.000 0.06  8.354   .010 0.06 

A×CS×CE 170.571 <.000 0.07  30.242   .001 0.08 

A×N×CS 70.053 <.000 0.09     

A×MP×CS     28.886   .001 0.07 

A×MP×CE     26.233   .001 0.07 
        

Between-Replications 

Effects 

       

N 281.726 <.000 0.17  12.799   .032 0.11 

MP 375.695 <.000 0.08  39.275   .008 0.12 

CS 771.055 <.000 0.16  43.041   .007 0.13 

CE 813.944 <.000 0.17  52.386   .005 0.15 

N×CE 98.751   .002 0.06  9.703   .047 0.09 

MP×CS     25.979   .015 0.08 

MP×CE     26.814   .014 0.08 

CS×CE     29.377   .012 0.09 
 

Note: 
1
 the Huynh-Feldt correction was used to adjust the degrees of freedom if necessary. 

A: covariate estimation approach; CS: class separation; CE: covariate effect; N: sample size; MP: 

latent class mixing proportion; M1: misspecified model; M2: correctly specified model. 

 

 

Results of pairwise comparisons were only conducted for the main effect of 

sample size which has four levels. Pairs of means for sample size for both the 

misspecified model and the correctly specified model were compared using Tukey’s HSD 

procedure and the results were presented in Table 4.37. The means for groups in 
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homogeneous subsets suggested that for both models when sample size increased, 

variance of covariate effect estimates increased.  

Table 4.37 

Pairwise Comparisons among Levels of N for Variance of Covariate Effect Estimates for 

the Two Models 

N Sample Size 

Subset 

M1 M2 

1 2 3 1 2 

1 8   0.399  0.306 

2 8  0.156  0.142 0.142 

3 8 0.076   0.088  

4 8 0.066   0.050  

 

 Figures 4.43 – 4.47 on the next page displayed all the significant two-way 

interaction effects for the misspecified model. The patterns for these effects were easy to 

follow. For the interaction effect of sample size and covariate effect (see Figure 4.43), 

variance values decreased at both covariate effect levels when sample size increases, and 

variance was larger at CE = 2 than at CE = 1 for all sample size levels. For the interaction 

effect of estimation method and sample size, Figure 4.44 showed that variances of 

covariate effect estimates tended to decrease for all estimation approaches when sample 

size increased. The decrease in variance between sample size levels was more obvious for 

the three-step ML approach than for the other approaches, and variance values seemed 

close between the conventional method and the one-step method at each sample size level. 

When sample size was at 10000, variance values for all the three approaches were close 

to each other. Figure 4.45 – Figure 4.47 showed how the interaction effects between 

estimation approach and mixing proportion, class separation or covariate effect impacted 

variances of covariate effect estimates. Similar patterns may be noticed in these graphs 
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where low variance values were found for all estimation approaches at MP = 2, MD = 3.5, 

or CE = 1. With the new three-step approach, variance values differed greatly between 

levels of mixing proportion, class separation and covariate effect. In addition, the 

conventional three-step approach and the one-step approach had close variance values at 

and between levels of MP, CS and CE.  

 

 

 

 
Figure 4.43. N×CE on variance for M1  Figure 4.44. A×N on variance for M1 

   

 

 

 Figure 4.45. A×MP on variance for M1  Figure 4.46. A×CS on variance for M1 

   

 

  

Figure 4.47. A×CE on variance for Model 1   
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For the significant two-way interaction effect found for the correctly specified 

model, graphs were also created and displayed on the next page in Figures 4.48 – 4.55. 

For the interaction effect of sample size and covariate effect (see Figure 4.48), the 

observation was a little different from Figure 4.43 in that the decrease of variance values 

corresponding to the increase of sample size was not as obvious as that was observed for 

the misspecified model. However, the same interaction effect for both models did show 

that variance values were large at CE = 2 for all sample size levels. Figure 4.49 and 

Figure 4.50 were for the interaction effects of MP × CS and MP × CE respectively. 

Variance values were small at MD = 3.5 and at CE = 1 for both mixing proportion levels. 

Also, at these two factor levels, variance values seemed close between levels of mixing 

proportion. The interaction effect of class separation and covariate effect (Figure 4.51) 

showed that variance values were low at MD = 3.5 for both covariate effect levels, and a 

large discrepancy in variance between class separation levels was found at CE = 2. 

Figures 4.52 – 4.55 showed how the same within- and between-replication interaction 

effects examined in the misspecified model affected variances of covariate effect 

estimates under the correctly specified model, and a comparison between these figures 

and the figures for the misspecified model suggested that overall all these four interaction 

effects impacted variances in the same ways no matter which of the two models was 

considered.     
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 Figure 4.48. N×CE on variance for M2  Figure 4.49. MP×CS on variance for M2 

   

 

 

 Figure 4.50. MP×CE on variance for M2  Figure 4.51. CS×CE on variance for M2 

   

 

 

 
Figure 4.52. A×N on variance for M2  Figure 4.53. A×MP on variance for M2 

  
 

 

 

 

Figure 4.54. A×CS on variance for M2  Figure 4.55. A×CE on variance for M2 
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Significant three-way interaction effects for the misspecified model were displayed 

in Figures 4.56 – 4.61, and significant three-way interaction effects for the correctly 

specified model were displayed in Figures 4.62 – 4.69. For the interaction effect of A × N 

× CS for the misspecified model, Figures 4.56 and 4.57 showed that variance values 

decreased when sample size increased for all estimation methods at both class separation 

levels and that this decrease was most obvious for the three-step ML approach. It was 

also observed that the conventional approach and the one-step approach were close in 

variance of parameter estimates at each level of sample size. Significant three-way 

interaction effects identified for both models were: A × N × CE and A × CS × CE.  

Figures 4.58 and 4.59 showed the interaction effect of estimation approach and sample 

size at each covariate effect level for the misspecified model. Similar graphics were also 

created for the correctly specified model displayed in Figures 4.62 and 4.63. The 

common observation from these two pairs of plots was that variances decreased when 

sample size increased for all estimation methods at both covariate effect levels. In terms 

of the interaction effect of A × CS × CE, it was observed that at both levels of covariate 

effect variances were low at MD = 3.5 for all estimation methods. Also, the conventional 

approach and the one-step approach had close variance values at each level of class 

separation, and for the new three-step approach, variances were much smaller at MD = 

3.5 at both levels of covariate effect.  

Three-way interaction effects identified for the correctly specified model were 

shown in Figures 4.66 – 4.69. It was observed that variances were low for all estimation 

methods at MP = 2 for both class separation levels and covariate effect levels.    
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Figure 4.56. A×N on variance at MD=2.0 for M1  Figure 4.57. A×N on variance at MD=3.5 for M1 

   

 

 

 

Figure 4.58. A×N on variance at CE=1 for M1  Figure 4.59. A×N on variance at CE=2 for M1 

   

 

 

 

Figure 4.60. A×CS on variance at CE=1 for M1  Figure 4.61. A×CS on variance at CE=2 for M1 
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Figure 4.62. A×N on variance at CE=1 for M2  Figure 4.63. A×N on variance at CE=2 for M2 

   

 

 

 
Figure 4.64. A×CS on variance at CE=1 for M2  Figure 4.65. A×CS on variance at CE=2 for M2 

   

 

 

 
Figure 4.66. A×MP on variance at M =2.0 for M2  Figure 4.67. A×MP on variance at M =3.5 for M2 

   

 

 

 
Figure 4.68. A×MP on variance at CE=1 for M2  Figure 4.69. A×MP on variance at CE=2 for M2 
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4.3.2.3 Repeated measures ANOVA results for the standard error efficacy of the 

covariate effect estimates 

 Table 4.38 below provided a listing of the ANOVA results of manipulated factors 

on the standard error efficacy of the covariate effect estimates related to 1x . The 

identified significant factors and combination of the factors were shown for both of the 

two models, and it was observed that none of the factors or combined factors was 

recognized significant for the correctly specified model. For the misspecified model, 

interaction effects of A × MP, A × CS, A × CE, A × MP × CS, A × MP × CE, and A × 

CS × CE are reported because they were both statistically significant (p-value   .05) and 

had an effect size of 2 0.06  . 

Table 4.38 

ANOVA Results of Manipulated Factors on the Standard Error Efficacy for 1x   

Source 
M1  M2 

F Value p-value 2   F Value p-value 2  

Within-Replications Effects
1        

A
 

8.433 .018 0.10     

A×MP 8.560 .017 0.10     

A×CS 8.504 .018 0.10     

A×CE 6.376 .033 0.08     

A×MP×CS 8.628 .017 0.10     

A×MP×CE 6.564 .031 0.08     

A×CS×CE 6.441 .032 0.08     

        

Between-Replications Effects        

CS 10.440 .048 0.13     
 

Note: 
1
 the Huynh-Feldt correction was used to adjust the degrees of freedom if necessary. 

A: covariate estimation approach; CS: class separation; CE: covariate effect; N: sample size; MP: 

latent class mixing proportion; M1: misspecified model; M2: correctly specified model. 
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 Six interaction effects were graphed for the misspecified model and displayed in 

Figures 4.70 – 4.78. Figures 4.70 – 4.72 showed the two-way interaction effects for A × 

MP, A × CS and A × CE, respectively. These three interaction effects resulted in graphs 

that looked similar to each other although they involved different between-replications 

factors. It was observed that standard error efficacy values were close to 1 for MP = 2, 

MD = 3.5, and CE = 1 for all estimation approaches. Standard error efficacy values were 

close to 1 for the conventional approach and the one-step approach for all levels of 

mixing proportion, class separation, and covariate effect, and standard error efficacy 

values departed substantially from 1 at MP = 1, MD = 2.0, and CE = 2 for the three-step 

ML approach.  

 

 

 

Figure 4.70. A×MP on standard error efficacy for 

M1 

 Figure 4.71. A×CS on standard error efficacy 

for M1 

   

 

  

Figure 4.72. A×CE on standard error efficacy for 

M1 
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  Three-way interaction effects are presented graphically in Figures 4.73 – 4.78 for 

the misspecified model. For the interaction effect of A × MP × CS, the two-way 

interactions of A × MP were plotted for each CS level. Similarly, for the interaction 

effect of A × MP × CE, interaction effect of A × MP were plotted for each CE level, and 

A × CE were plotted for each CS level for the three-way interaction effect of A × CS × 

CE. Similar to what was observed for the two-way interaction effects, the three-way 

interaction effects examined the two-way interaction effects for a third factor condition. It 

was observed that standard error efficacy values were close to 1 for all the estimation 

approaches at MP = 2 for both levels of class separation and for both levels of covariate 

effect. Efficacy values for the three-step ML approach at MP = 1 were much higher than 

1, suggesting more chances of making Type II errors with the three-step ML approach 

when mixing proportion was at 30:70. However, standard error efficacy values were 

close to 1 for all three estimation approaches at CE = 1 for both class separation levels. It 

was observed again that standard error efficacy values were further away from the 

desired value of 1 for the three-step ML approach at MP = 1 across levels of class 

separation and covariate effect, and at large covariate effect across levels of class 

separation.     
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Figure 4.73. A×MP on standard error efficacy at 

MD=2.0 for M1 

 Figure 4.74. A×MP on standard error efficacy 

at MD=3.5 for M1 

   

 

 

 

Figure 4.75. A×MP on standard error efficacy at CE=1 

for M1 

 Figure 4.76. A×MP on standard error efficacy 

at CE=2 for M1 

   

 

 

 

Figure 4.77. A×CE on standard error efficacy at CS=1 

for M1 

 Figure 4.78. A×CE on standard error efficacy 

at CS=2 for M1 
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Chapter 5: Discussion 

5.1 Discussion of the Simulation Results 

 The focus of the current research was on evaluating the performance of various 

methods for estimating covariate effects on the latent class membership using Monte 

Carlo simulations. The procedures that were compared were the conventional three-step 

approach, the one-step ML approach, the PC approach, and the new three-step ML 

approach for Simulation I. The PC approach was not included in Simulation II because of 

its poor performance observed from Simulation I. Although the two Monte Carlo 

simulations both examined how well different estimation approaches performed in terms 

of estimating covariate effects on the latent class membership, they differed mainly in 

how the data were generated and what models were used for the data analyses. 

Specifically, Simulation I examined the performance of four estimation methods under 

the correctly specified measurement model (i.e., the unconditional GMM) where two 

covariates related to latent class membership were included in the analysis. Simulation II 

examined the performance of three estimation methods under both the correctly specified 

model as well as a misspecified model. For the correctly specified model, one covariate 

entered the latent class part of the model whereas the other two covariates were 

incorporated in the growth part of the model as they were generated, which made the 

model more complex compared with the model used in Simulation I. In terms of the 

misspecified model, data were generated under a correctly specified measurement model 

but fit with a model where only the covariate linked to latent class membership entered 

the analysis. This type of misspecification corresponds to real data analytic scenarios in 

which practitioners may not know whether the GMM should have covariates or not, or 
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what covariates should be included in the model. This misspecified model was 

considered because we wanted to see how well estimation methods performed for a 

misspecified model under the simulated conditions. Therefore, in Simulation II we were 

looking at how well the investigated estimation approaches performed under the 

manipulated conditions when models were becoming more complicated and when the 

model was misspecified.  

5.1.1 Convergence rate 

Although convergence was not the focus of this research per se, it was still useful to 

get an idea of how well the estimation approaches under investigation performed in terms 

of converging to a consistent, local solution. Since non-convergence or multiple local 

maxima are common problems with using EM algorithm for fitting finite mixture models, 

the choice of an estimation method with fewer convergence issues might be the first 

concern before researchers start any applied study using mixture models.   

Convergence rate results from Simulation I suggested that when class separation 

was very large, all estimation approaches had 100% convergence rates at each simulated 

condition. Convergence rates for the PC method and the three-step ML method were 

above 95% across all conditions. When class separation was as large as MD = 2.0 

convergence rates for all estimation methods were high at or above 99% when sample 

size was 5000 and 10000. Compared with the other three methods, the one-step approach 

was more sensitive to class separation, sample size, and covariate effects. For example, 

low convergence rates were observed for the one-step method when class separation was 

very poor at MD = 1.0 and sample size was small when both of the covariates had small 

effects or the continuous covariate has small effect. However, convergence rates 
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improved greatly for the one-step approach under the worst conditions of low class 

separation and low covariate effects when sample size increased to 5000, suggesting that 

convergence problem for the one-step approach could be mitigated with large sample size 

(e.g., 5000) under the worst condition where the continuous variable had small effect and 

class separation was poor.  

Results from Simulation II showed that the convergence rates for the three 

estimation methods were higher at any manipulated condition when the model used for 

the analysis was correctly specified than when the model was misspecified, suggesting 

that model specification might be an important factor to impact model convergence. For 

the correctly specified model, the convergence rates were improved for all three 

estimation methods across levels of covariate effects and mixing proportion when sample 

size and class separation increased. When class separation was very large at MD = 3.5, 

convergence rates were high and very close between the two models for both the one-step 

and the new three-step ML approaches across other conditions. Also, when the model 

was correctly specified, the convergence rates were generally higher for the one-step 

method than for the three-step ML method when covariate effect was large, which 

suggested again that the one-step approach is sensitive to covariate effect size. In fact, the 

convergence rates were much higher for the one-step approach than for the other 

approaches with both models when class separation was large.  

5.1.2 Different approaches for covariate effect estimation 

Performance of various approaches for estimating covariate effects on the latent 

class membership was investigated under the same manipulated factors for the two 

simulations. However, due to the poor performance of the PC method found in 
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Simulation I and the very low convergence rates from low class separation found in a 

pilot study for Simulation II, only three estimation methods and two levels of class 

separation were considered for the second simulation. In addition, because only one 

covariate was related to latent class membership, only two levels of covariate effect were 

manipulated in Simulation II. Also, for the first simulation, performance of the estimation 

approaches was investigated using the true model, and for the second study, both a 

misspecified model and the true model were fit to the same data. For the two true models 

used, we wanted to see how well the selected approaches performed in covariate effect 

estimation in terms of recovery and standard error efficacy under similar manipulated 

conditions when a model got more complicated. In other words, we were really interested 

in knowing how the estimation methods interacted with the other manipulated factors 

under each model in terms of covariate effect estimate accuracy. For the misspecified 

model used in Simulation II, we wanted to see how well the selected methods performed 

in covariate effect estimation under the manipulated factors when a simple model was 

used for data analyses. Therefore, in this research the estimation approaches were 

examined in terms of covariate effect estimation on the latent class membership under 

three different models, using both descriptive statistics and repeated ANOVAs. Percent 

relative bias, variance of covariate effect estimates and standard errors of the covariate 

effect estimates were used as criteria for evaluating the estimation approaches under 

investigation.  

5.1.2.1 Findings from Simulation I  

Results of both the descriptive statistics and the repeated measures ANOVA for 

Simulation I showed that estimation approach had a large impact on the accuracy of 
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parameter estimates of interest. When class separation was very large, all of the four 

approaches tended to have less biased parameter estimates at each combined manipulated 

condition. The PC method and the conventional three-step approach lead to more biased 

parameter estimates, which was consistent with previous findings by Vermunt (2010). It 

was also found that covariate estimates related to both the dichotomous and the 

continuous variables for the PC approach were more biased than for the conventional 

three-step approach across all combined manipulated conditions. Consistent with the 

findings of Asparouhov and Muthén (2013), when class separation was very large, the 

one-step and the three-step ML approaches resulted in very close and more accurate 

covariate effect estimates across all levels of covariate effects. It was also found that 

parameter estimate related to the dichotomous covariate was severely affected by poor 

class separation and small covariate effect related to the dichotomous variable when the 

three-step ML approach was used.  Corresponding to what was found about percent 

relative bias, the one-step ML approach and the three-step ML method had more 

variability in covariate effects estimation than the conventional three-step method or the 

PC method, and that for all covariate effects levels, the conventional three-step method 

and the PC method always showed the least variability across all class separation levels. 

In terms of standard error efficacy of the covariate effect estimates, results showed that 

the efficacy values for both covariates were the closest to 1 when class separation was 

very large and the furthest from 1 when class separation was poor for all the estimation 

methods. Standard error efficacy values greater than 1 for the PC method meant more 

chances of committing Type II errors from using this method. It was also found that when 

the covariate effects were small for both auxiliary variables, all estimation approaches 
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lead to standard error efficacy values close to 1 when class separation was as large as MD 

= 3.5. Standard error bias from using either the conventional three-step approach or the 

new three-step ML approach were close to 1 when class separation was large. 

5.1.2.2 Findings from Simulation II 

 Results of both the descriptive statistics and the repeated measures ANOVA for 

Simulation II indicated that for both the misspecified and the correctly specified models, 

the conventional three-step approach not only consistently underestimated the covariate 

effect of the variable related to the latent class membership but the parameter estimates 

were the most biased. 

For the misspecified model, the three-step ML approach resulted in the least biased 

parameter estimates. With respect to variances, the values tended to decrease for all 

estimation approaches when sample size increased, and the decrease in variance values 

between sample size levels was more obvious for the three-step ML approach than for the 

other approaches. It was also interesting to find that for both the misspecified model and 

the correctly specified model, sample size did not have much influence on accuracy of 

parameter estimates when the covariate effect was large. 

 In terms of parameter estimation from the misspecified model, results showed that 

when class separation increased, covariate effect estimates were less biased for the one-

step ML and the three-step ML approaches but not for the conventional approach. 

However, the standard error efficacy values for the conventional approach and the one-

step ML approach were much closer to 1 than the three-step ML approach when mixing 

proportion was 30:70 and the dichotomous covariate had large effect, suggesting more 

chances of committing Type II errors from using the three-step ML approach under this 
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condition. For the correctly specified model, the three-step ML method had the least 

biased covariate effect estimates when the dichotomous covariate had small effect 

whereas the one-step ML approach lead to the least biased parameter estimates when the 

dichotomous has large effect. For the correctly specified model, parameter estimates from 

the conventional approach were more biased when covariate effect was large. Variances 

were small when sample size was large, mixing proportion was 30:70, or class separation 

was very large for the correctly specified model.  

 The similarities between the two models make a lot of sense in that for the 

misspecified model, the covariate effect estimated was related to the variable that entered 

the latent class part of the model, so the misspecified model was in some sense ‘partly’ 

correct with missing only the information from the two other covariates that were 

supposed to be incorporated into the measurement part of the model. Different from 

ANOVA results of Simulation I, significant main or interaction effects on variance of 

covariate effect estimates were not found for the correctly specified model, suggesting 

that when a model was misspecified, many factors might affect bias and standard error 

efficacy of the covariate effect, and thus, its corresponding hypothesis test.     

5.2 Recommendations for Applied Researchers 

Many factors may influence a researcher’s choice of a particular estimation method 

used for his or her study. The following general recommendations are provided with 

respect to the consideration of model convergence issues and other factors based on the 

findings from the current research.  

In terms of model convergence concerns, it is recommended that class separation be 

examined before continuing the research. When class separation is large enough, 
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convergence issues may not be a big concern for any of the estimation methods 

investigated. However, with low class separation, convergence problems might occur 

with any estimation approach. For example, Simulation I showed that when class 

separation was poor and a continuous covariate had low effect, convergence rate for the 

one-step ML approach was low except when sample size was as large as 5000, 

suggesting that convergence problem for the one-step approach under the worst condition 

(i.e., the continuous variable has small covariate effect and the class separation is poor) 

approach could be mitigated when large sample size is used. 

Model specification is another very important factor for convergence. The model 

used for data analysis should take into account the theories in the related field, or when 

there is not enough theory behind the proposed model, selection of a certain model could 

be made by comparing fit indexes. In terms of the model selection, in a recent simulation 

study, Liu and Hancock (2014) proposed the idea of using an unrestricted multivariate 

normal mixture strategy to assess class enumeration. It was found that the theoretically 

compelling completely unrestricted multivariate normal mixture model was superior to 

the linear GMM when the nature of the growth curve was not certain and the sample size 

was sufficiently large.  

In addition to convergence issues, the choice of an estimation method also depends 

on the accuracy of parameter estimates from using a method, which has to also take into 

account the characteristics/structure of the data to be analyzed. Based on the findings 

from this research, the PC method is not recommended, especially when class separation 

is low. It is also recommended that when covariate effect for a categorical variable is 

large, the one-step ML method might be a better choice whereas with small covariate 



 

142 

 

effect, the three-step approach performs better in parameter estimation. It should be 

reminded that large class separation is always important for more accurate parameter 

estimates when the new three-step ML approach is to be used. It should also be added 

that in Simulation I parameter estimates related to the dichotomous variable were 

severely affected by small covariate effect from that variable for the 3-step ML approach 

when class separation was poor. However, in Simulation II it was found that the three-

step ML approach lead to less biased parameter estimates than the one-step approach 

when covariate effect was small for all levels of class separation. The reason is that in 

Simulation II, levels of class separation were both large. Therefore, results from both 

simulations in terms of influence of covariate effect on the three-step ML approach were 

consistent. 

5.3 Implications, Limitations and Future Research 

The idea of the current study was stimulated by Vermunt (2010). The study is 

comprehensive in that instead of looking at only LCA, we examined the approaches for 

covariate effect estimation under the very complex growth mixture modeling framework. 

Since as nearly every application in longitudinal research incorporates some covariate 

information and applied researchers want to know how covariates help explain group 

membership, it is important that the estimation of the relation between covariates and the 

latent class membership is accurate when an estimation approach is used.   

 Like all other studies, the current research has limitations. First, in terms of the 

experimental design, the manipulated conditions in this research may not generalize to all 

possible real-life conditions. Second, using only replications that had converged solutions 

may have impacted generalizability of the inferences drawn from the research, especially 
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when convergence rates were low for some conditions. In addition, increasing the number 

of iterations in order to obtain the aimed number of converged replications might have 

made the results inaccurate in the current study.  

  Third, in terms of the models used in the study, they were not representative of all 

possible models present in the real world situation in terms of model complexity or model 

specification. The current research represents a step forward from previous studies by 

considering more covariates of different types and by considering covariates incorporated 

into the different parts of a growth mixture model. The situations manipulated in this 

research were much simpler than real life situations where more often researchers might 

be faced with a large number of covariates and no information was provided as to which 

part of the model each covariate is supposed to enter. However, the results could be 

suggestive of what may happen in these more complex situations. It should be reminded 

also that the misspecified model selected for Simulation II was in fact an under-specified 

model which did not include the information from the measurement part, which explains 

why estimation methods and other manipulated factors interacted similarly between the 

two models used in Simulation II in terms of impacts on outcome measures. For Future 

research, more misspecified models should be examined and significant tests should also 

be conducted to see how estimation methods impact covariate effect estimation under 

different model specifications.  

 Fourth, the current study used the converged replications across all estimation 

approaches for the analyses, which means that the replications that did not converge for 

any one estimation approach were not used for the other approaches. It would be 
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interesting to examine why some particular replications worked for one estimation 

approach but not for the others.  

 Fifth, results from the current research showed that the PC approach performed 

poorly almost across all simulated conditions. It should be noted, however, that the 

current research used only the default random draws from Mplus. It would be interesting 

to see what the results are like when the number of random draws is increased.  

Finally, more estimation should be explored so that the strength of association 

between covariate effects and growth trajectories could be examined. With that, more 

interesting research could be done to better understand how covariates are related to 

different parts of a growth mixture model.    
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Appendix A 

Suppose X1  and X2  be random variables with means µ1 and µ2, variances 2

1 , 2

2 , 

and covariance 12 , respectively. Let β1 and β2 be constants. The algorithm used for 

growth trajectory related covariate effect control for Simulation II is described below:  
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