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Chapter 1: Introduction

Growth mixture modeling (GMM; Muthén, 2001, 2004; Muthén & Muthén, 2000;
Muthén & Shedden, 1999) continues to be a popular platform for practitioners in the
social and behavioral sciences to examine population heterogeneity in growth
characteristics of individuals’ longitudinal profiles. A primary goal of GMM is to identify
two or more latent classes that represent subgroups thought to manifest qualitatively
distinct patterns of change over time. Despite the increase of applied studies using GMM
in the literature (see, e.g., Colder, Campbell, Ruel, Richardson, & Flay, 2002; Colder,
Mehta, Balanda, Campbell, Mayhew, Stanton, Pentz, & Flay, 2001; Ellickson, Martino,
& Collins, 2004; Heybroek, 2011; Huang, Murphy, & Hser, 2012; Pinquart, & Schindler,
2007), there remain unanswered methodological questions concerning the use of GMMs
regarding correct model specification, optimal number of latent classes and accuracy of
the classification of individuals into groups (Muthén, 2004; Nagin, 1999; Petras &
Masyn, 2010).

One line of research recommends that the conventional growth mixture model be
extended to incorporate covariates in the mixture analysis (Muthén, 2003; 2004).
Previous simulation studies and empirical research also have demonstrated that
incorporating potentially important covariates that are related to the latent mixture
variable may improve parameter estimates (see, e.g., Huang, Brecht, Hara, & Hser, 2010;
Li & Hser, 2011; Lubke & Muthén, 2007). Petras and Masyn (2010) discussed in detail
the importance of including auxiliary information in terms of antecedents (predictors and
covariates) and distal outcomes of trajectory group membership in the general GMM

analysis. By including auxiliary information, the conventional GMM can be extended to



estimate varying class membership probability as a function of a set of covariates (i.e.,
for each class the values of the latent growth parameters are allowed to be influenced by
covariates) and to incorporate outcomes of the latent variables. In this way, the posterior
probabilities of group membership can determine the ability of the model to clearly
differentiate between subjects. Also, covariates or predictors make interpretation of the
growth trajectories more meaningful because of the inclusion of individual background
information, and this might be a most important reason for applied researchers to include
individual specific information into the growth mixture analysis. For example, in an
applied study by Pinquart and Schindler (2007) changes in life satisfaction in 1,456
German retirees were investigated using the latent growth mixture modeling. One of the
goals of the study was to test whether groups showing different trajectories would vary
by personal characteristics such as retirement age, gender, socioeconomic status (SES),
marital status, health, employment before retirement, and region, etc. Three patterns of
change in life satisfaction were identified: in Group 1, satisfaction declined at retirement
but remained on a stable or increasing pattern thereafter; in Group 2 satisfaction greatly
increased at retirement but overall was declining; and in Group 3, satisfaction slightly
increased temporarily at retirement. It was found that the three latent groups differed by
most of the covariates considered in the study. For example, members of Group 1 were
older when they retired and were more likely to be female and to report worse physical
health. Members in Group 2 were typically younger when they retired and were more
likely to be men, to be individuals of lower SES, to be unmarried, to report worse

physical health, to be unemployed before retirement, and to live in the Eastern part of



Germany, and the majority of older adults in Group 3 showed a very small temporary
increase in life satisfaction after retirement (Pinquart & Schindler, 2007).

Though there are numerous advantages of including auxiliary variables in GMM
analysis, the choice of an approach to estimating the model has been challenging,
especially considering the fact that most of the research on estimation methods have been
conducted on simple latent mixture models. For example, a conventional or standard
approach to including covariates in a GMM analysis may involve the following three
steps: (1) the unconditional GMM (e.qg., a growth mixture model without any covariates
and/or distal outcomes) is fitted based only on latent class indicators to determine the
number of distinct trajectory groups; (2) class membership is assigned to each individual
based on their highest posterior probability of belonging to a particular class; and (3) the
relation between the assigned latent class membership and subject-specific background
characteristics is investigated using either mean comparison tests (e.g., t-tests, ANOVAs,
or chi-square tests) or multinomial logistic regression models. Whether using mean
comparison tests or generalized linear regression models, one issue that arises is that class
membership is treated as an exact, observed variable without taking into account the error
associated with estimating these probabilities (Clark & Muthén, 2009). That is, the
chances of an individual being mistakenly assigned to a particular class were not
considered at all, which will lead to underestimated associations between covariates and
class membership (Bolck, Croon & Hagenaars, 2004) and thus should not be used in
model estimation (Nagin, 2005).

Rather than treating auxiliary information as outcomes in post-hoc comparisons as

is done in the conventional approach, a one-step maximum likelihood (ML) approach



(see, e.g., Bandeen-Roche, Miglioretti, Zeger & Rathouz, 1997; Dayton & Macready,
1998; Van der Heijden, Dessens & Bockenholt, 1996) was recommended, which
incorporates these additional concomitant variables as part of a single model. Estimation
of the model proceeded permitting for the simultaneous examination of the covariates
impact on the estimation of developmental trajectories and their association with the
distal outcome (Huang et al., 2010; Muthén, 2004; Nagin, 2005; Roeder, Lynch & Nagin,
1999). In the one-step approach, the latent class model and the regression model are
combined into one joint model, which circumvents the problem of treating most likely
class membership as an exact, observed variable. This is accomplished by taking into
account the error associated with the posterior probability estimates and allowing
individuals to be fractional members of all classes (Clark & Muthén, 2009). However,
one major issue with this method may come from the impact of either the covariate
variables or the distal outcome variable on the forming of the latent classes. That is, the
latent classes formed from the joint model may differ in meaning from the latent classes
obtained using the indicator variables alone and thus may potentially change their
substantive interpretation. Another concern, according to Vermunt (2010), is that
simultaneously building the classification model and the prediction model may not fit
with the logic of most applied researchers, who often work sequentially from first
building the classification model then adding covariates at a secondary stage of the
analysis. Other disadvantages of the one-step approach are discussed in detail by
Vermunt (2010).

To independently evaluate the relation between the latent class variable and the

auxiliary variables without using assigned class membership, other approaches have been



developed, such as using pseudo class (PC) draws (see, e.g., Clark & Muthén, 2009;
Wang, Brown & Bandeen-Roche, 2005); and the BCH approach proposed by Bolck et al.
(2004). With the PC method, for the latent class analysis, multiple random samples are
drawn from a multinomial distribution of posterior probabilities (for each individual)
being in each class (assuming there are more than two classes) so that each individual is
given a chance to fall into neighboring classes (Clark & Muthén, 2009). Asparouhov and
Muthén (2013) described the PC approach in an analogous fashion to the idea behind
multiple imputation in missing data analysis which makes sense in that the latent classes
are considered missing. Finally the class specific information associated with the
auxiliary variable(s) is obtained using the multiple imputation techniques developed by
Rubin (1987).

Vermunt (2010) proposed a new three-step maximum likelihood (ML) procedure as
an extension of the BCH approach based on the work of Bolck et al. (2004). With the
new three-step ML approach, Vermunt used individual observations instead of a table of
frequency counts to remove the limitation of using only categorical covariates, which
then not only makes it possible to use both continuous and categorical predictors but
makes the model estimation much more efficient (Vermunt, 2010). In this new approach,
the latent class model was estimated first. Next, the most likely class variable was set
based on the highest posterior probability from the latent class posterior distribution
derived from the latent class analysis. With this approach, the classification uncertainty
rate and the measurement error were computed to demonstrate that the most likely class

variable could be treated as an imperfect measurement of latent class analysis. Thus, in



the third step, the measurement error in the most likely class was taken into account.
Also, auxiliary information was included in this final stage of model estimation.

This study will investigate four estimation approaches, namely, the conventional
three-step approach, the one-step ML approach, the PC approach, and the three-step ML
approach, by examining the association between covariates and the latent class variable
under the GMM framework. Since one of the manipulated covariates is continuous, the
BCH approach is not to be included in the current study because, as mentioned before,
one limitation with this approach is that it can be used only for categorical covariates.
1.1 Limitations of Previous Work

Since problems with using the conventional approach were recognized (see, e.g.,
Clogg, 1995; Hagenaars, 1993; Roeder et al., 1999), researchers have been searching for
more efficient and accurate estimation methods when incorporating auxiliary information
in mixture modeling. For example, Clark and Muthén (2009) explored how different
regression methods of relating latent class analysis results to auxiliary variables can
impact estimation of auxiliary effects. Results showed that the one-step approach
outperformed the conventional approach and the PC method in terms of recovering the
true effect of the auxiliary variable on class membership. The PC method worked well
when class separation was large. Vermunt (2010) compared the conventional three-step
procedure, the one-step approach, the BCH approach, and his proposed three-step ML
approach with respect to bias in the estimates of the covariate effects and bias in the
standard error estimates when covariates were included in latent class modeling. Results
showed that the BCH method and the three-step ML method demonstrated good

parameter estimates and standard errors except when the classes were poorly separated. It



was also found that the three-step ML method was much more efficient than the BCH
method in terms of the standard deviation of parameter estimates, and it was almost as
efficient as the one-step estimation approach. One limitation with these studies is that
only simple latent class models for discrete responses were used. None of these studies
considered more complicated models such as growth mixture models where the latent
class variable is more difficult to identify. Also, although Vermunt (2010) included three
categorical predictor variables in their simulation study, Clark and Muthén (2009) only
considered the impact of one continuous covariate in their study. It is quite possible that
in real data analytic situations many covariates of different types should be considered
simultaneously when investigating parameter recovery, model estimation, and standard
error accuracy.

In a recent white paper by Asparouhov and Muthén (2013), the relation between a
latent class variable and an auxiliary variable in mixture modeling was examined using
different approaches under different manipulated simulation design conditions. Results
showed that the new three-step ML approach uniformly outperformed the PC approach
for analyzing the relation between a latent class variable and an auxiliary variable
independently of the latent class model estimation. Also, if the class separation was
adequate the three-step ML approach had the same efficiency as the one-step approach.
One major difference between this study and the other studies was that in addition to
looking at the simple latent class models, more complicated models such as a growth
mixture model was included to evaluate the performance of the various estimation
approaches. However, in spite of the added model complexity, limitations were noted.

First, only one covariate was included, which, as was mentioned above is not common in



analytic situations found in practice. Second, the impact of covariate effect size (i.e., the
strength of the association of the covariate(s) with the latent class membership) on the
proposed new three-step estimation method was not fully investigated.

1.2 The Current Study

As was discussed earlier, incorporating covariates related to the latent class analysis
may improve the ability of the mixture model to clearly differentiate between subjects
because the posterior probabilities of group membership are estimated as a function of a
set of covariates. On the other hand, covariates make interpretation of the growth
trajectories more meaningful because of the inclusion of individual background
information. Since nearly every application in longitudinal studies incorporates some
covariate information and applied researchers want to know how covariates help explain
group membership, it is important that the estimation of the relation between covariates
and the latent class membership is accurate. Biased covariate effect estimates from either
misclassification of cases and/or from using a particular algorithm will ultimately affect
the results of the analysis and make the interpretation unreliable.

Therefore, this study aims to evaluate four approaches for the estimation of
parameters from growth mixture models with covariate(s): (1) the conventional approach,
(2) the one-step ML approach, (3) the PC approach, and (4) the three-step ML
approaches. Specifically, the estimated relations between a latent class variable and
covariate(s) from using the four estimation approaches will be compared. Covariates with

differing effect sizes will be one major manipulated factor in the current study.



Chapter 2: Literature Review

2.1 Latent Growth Modeling

Methods for longitudinal data analysis have experienced unprecedented
development since the 1990s when models for mean change such as ANOVA and
MANOVA were no longer favored (Bauer, 2007) in lieu of approaches that allowed
investigation of change in individuals over time. A class of useful methods to study has
emerged over the past twenty years from the area of structural equation modeling (SEM),
and falls under the general heading of latent growth modeling (McArdle, 1988; Meredith
& Tisak, 1990). Latent growth models (LGMs) allow the change process to be
characterized by a mathematical function common to all subjects, but whose
parameterization is permitted to vary among individuals (Bollen & Curran, 2006). That is,
the relative standing of an individual at a specific time point could be modeled as a
function of an underlying process which has parameter values that vary randomly across
individuals (Meredith & Tisak, 1990). The analytic goals in using LGMs are to
understand (1) the typical behavior of the underlying change process of the phenomenon
captured by the parameters of the model, (2) the extent to which these parameters, and
hence phenomenon, vary across individuals, and (3) whether some of this variability can
be explained by individual-specific characteristics (Hancock, Harring & Lawrence, 2013;
Harring, 2009).

In one of its simplest forms, a linear function with a subject-specific intercept and
slope can be specified for each individual’s continuous repeated measures that

demonstrate straight line change patterns. An unconditional latent linear growth model,



for repeated measurements of a continuous dependent variable, can be presented by using
a general SEM notation:

Yi = Am; +&, 1)
where y.isap x 1 vector of repeated measures for individual i, n, is a q x 1 vector of
individual-
specific growth factors (i.e., intercept and slope), and A, is a p x g matrix of factor

loadings. Assuming (for simplicity) that the outcome variable is measured at four equal-

interval time points, then the factor loading matrix might be specified:

111 1
A‘:{o 12 3] @

The p x 1 vector of time-specific errors, g, captures the deviations from the data to the

fitted model for each individual. These errors are assumed to be normally distributed,

g, ~ N(0,0,), with mean vector of 0 and covariance matrix @,. At the population level,

individual-specific growth factors are formulated initially as the sum of fixed and random

effects,
n =0+, 3)
where a is a q x 1 vector of growth factor means (i.e., intercept and slope factor means),

and ¢, isaq x 1 vector of random effects reflecting individual differences of an

individual’s growth factors from these means. The random effects are also assumed to be

normally distributed,

& ~ N(0,), also with mean vector of 0 and covariance matrix, ¥, and are uncorrelated

with the individual level errors (i.e., cov(¢ , €, ) = 0). Therefore, the key assumptions
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underlying the LGM are: (a) the growth patterns for all cases are from the same
functional form; and (b) the repeated measures are multivariate normally distributed,
which implies that the individual growth parameters and time-specific residuals are also
multivariate normal (Muthén, 2004).

The linear LGM is often a starting point in many analyses, not necessarily because
it is the most realistic representation of growth for modeling a particular variable, but
rather because it often fits well for many processes in a fairly restricted span of the
development. Of course, other types of functional forms within the LGM framework (i.e.,
quadratic, logarithmic, exponential — see, e.g., Choi, Harring, & Hancock, 2009; Grimm
& Ram, 2009; Petras & Masyn, 2010) are possible, especially when theory dictates a
more complex growth pattern or there is sufficient empirical evidence to support such
elaborations.

2.1.1 Latent growth models with covariates

In many situations, it is common at some later point of an analysis to include
individual attributes at the population level model to better understand determinants
which explain differences in the individual trajectories. Brown (2003) also addressed that
under the primary assumption of LGMs that the growth trajectory representing change in
the dependent indicator variables is modeled as a single population distribution, any
nonrandom deviation from the underlying population distribution must be modeled
explicitly by covariates included in the study design (e.g., social economic status, age,
gender). Assuming the same linear developmental pattern discussed in Equation 1 and

Equation 2 above, the conditional LGM with static covariates can be used to determine
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which variables influence the intercepts or slopes. Time-invariant covariates, a r x1
vector, X, enter the LGM at the population level through
N, =a+Ix +§, 4)

where I' is a g x r matrix of coefficients relating each of the covariates to the growth
factors. In a similar manner as ordinary least squares regression models, covariates can be
continuous or categorical, and it is assumed that the effects of covariates or predictors on
the growth factors are the same for all individuals (Petras & Masyn, 2010). In the same
vein, the inclusion of covariates changes the population intercept and slopes as they are
now interpreted conditionally on the covariates. It is assumed that the residuals are
uncorrelated with the covariates.
2.2 Growth Mixture Models

Although the conventional LGM has the advantage of analyzing longitudinal data
from the perspective of individual growth patterns, the model assumes that observed data
are sampled from one homogenous population (Wang & Bodner, 2007). That is, the
LGM assumes that there is a common growth pattern or trajectory for all the individuals
in the study (Tofighi & Enders, 2008). In other words, the population being studied is
homogeneous in terms of their growth trajectories. The fact is, however, that the observed
data might reveal different subpopulations and each subpopulation has its own growth
patterns defined by a particular set of model parameters. Thus, if the data being studied
indicate the existence of subpopulations, the use of only one common model to describe
growth for the subpopulations would not be appropriate. In this situation, analytic
methods that are capable of allowing for, and actually identifying, the developmental

trajectories of subpopulations are needed (Liu, 2012).
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In response to the need to discern latent trajectory subgroups, a modeling technique
known as growth mixture modeling (GMM; Muthén, 2001, 2004; Muthén & Muthén,
2000; Muthén & Shedden, 1999) was developed. Conceptually, GMM is a combination
of latent growth modeling and latent class analysis (LCA; McCutcheon, 1987). The
combination of these two methods makes it possible to identify and estimate the
subpopulations with qualitatively distinct patterns of development over time (Wang &
Bodner, 2007). GMM permits heterogeneity in the growth trajectories represented by a
latent categorical variable that defines k latent classes of individuals (Tofighi & Enders,
2008). With the integration of categorical latent variables, GMM relaxes the single
population assumption to allow for parameter differences across unobserved
subpopulations, which means that different classes of individuals are allowed to vary
around class-specific mean growth curves (Muthén, 2004). This is different from LGMs
where individuals vary around a single mean growth curve. Therefore, with GMM, not
only can each class have a unique set of parameters that describe its growth pattern, but
within-individual and between-individual variability can also be class-specific (Wang &
Bodner, 2007). This modeling flexibility is the basis of GMM framework (Muthén &
Asparouhov, 2009). The linear LGM discussed above can be extended to the GMM
formulation in the following way. Suppose a linear LGM is specified for each

subpopulation k. Then the GMM model takes the following form:

Yi = A g (5)
0 =af g, (6)
where
£ ~N(0,0) ¢ ~ N(0,¥"), k=1,..,K.
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Here, differences in o capture the differences in the growth factor means of the

latent classes. The growth factor variances and covariances are also class specific, having

covariance matrix ¥*, that follows a normal distribution centered at a mean vector of 0.

It is assumed that the residuals are normally distributed, have mean vector of 0 and
covariance matrix ®* which captures differences in the dispersion of the individual
trajectories and time-specific residuals within classes (Bauer, 2007). It is also assumed
that & and ¢ are independent.

When estimating GMM parameters, there are additional parameters compared to the
latent growth model, namely class-specific proportions ¢* of latent classes k =12, ...,K.
Let p(y;) denote the unconditional (or marginal) probability of observing individual i’s
longitudinal sequence of measurements y,, and p(y, |C, =k) is the conditional
probability distribution of y, given membership in class k. So by aggregating the K
conditional probability distribution functions p(y; |C, =k), the probability distribution of

the data y, is a weighted sum of the component probability distributions:

K
P(Y:) =D ¢ P(y;IC; =k), (7)
k=1
where the latent class probabilities ¢* are constrained to be 0 < ¢* <1 and must sum to

K
1: Z(pk =1. This is the sum across all K classes of the probability of y, given subject i's
k=1

membership in class k weighted by the probability of membership in class k. Rolfe (2010)

showed that the likelihood of the sample of n subjects is the product of the individual

contributions to the likelihood function specified by Equation 7, namely, L = H ply;) .

i=1
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2.2.1 Growth mixture models with covariates

Although growth mixture models have the advantage of enumerating possible
subpopulations, one challenging issue has been the identification of the “correct” number
of latent classes. Class enumeration has received a great deal of attention in the
methodological literature and has been investigated from various perspectives. For
example, several studies compared model fit measures and statistical tests used to guide
class enumeration (see, e.g., Liu & Hancock, 2014; Nylund, Asparouhov, & Muthén,
2007; Tofighi & Enders, 2008; Wang & Bodner, 2007). Specifically, the performance of
information-based indices and nested model likelihood ratio tests for relative model
comparisons were studied. However, though a variety of suggestions were provided from
these studies, there is no agreement on the best criteria for determining the number of
classes in mixture modeling (Nylund et al., 2007). In a recent simulation study, Liu and
Hancock (2014) proposed the idea of using an unrestricted multivariate normal mixture
strategy to assess class enumeration. They compared the performance of a linear GMM
against that of a completely unrestricted multivariate normal mixture model in terms of
their ability to identify the correct number of latent classes and found that the
theoretically compelling completely unrestricted multivariate normal mixture model was
superior to the linear GMM when the nature of the growth curve was not certain and the
sample size was sufficiently large. In addition to model comparisons and modeling
strategies, another line of research has taken into account the inclusion of covariates in
GMM. According to Bauer and Curran (2003), the common practice of using GMM
without covariates for class enumeration has been questioned in the methodological

literature. Obviously this practice implicitly assumes that fitting growth mixture models
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without covariates would recover the correct number of classes whether or not the
covariates impact class membership or growth factors in the population. However, this
assumption may not hold universally (Muthén, 2004). In Tofighi and Enders’ (2008)
study, incorporation of covariates was recognized as one of the factors that were thought
to influence the extraction of the correct number of classes in the GMM context.
According to Muthén (2004), auxiliary information in terms of predictors or covariates of
the latent factors and latent group membership, as well as distal static outcomes of
trajectory group membership (Lubke & Muthén, 2005; Petras & Masyn, 2010) can be
efficiently included in a GMM analysis to obtain more accurate parameter estimates and
latent class assignment. Covariates of class membership and growth factors should be
included to correctly specify the model, find the proper number of classes, and correctly
estimate class proportions and class membership (Muthén, 2004). Particularly, by
including relevant individual-level characteristics in the model, membership in a specific
trajectory group can be predicted with high probability (Nagin, 2005).

Auxiliary information may take the form of antecedents (or covariates), concurrent
events, or consequences (or distal outcomes). The unconditional growth mixture model,
like that specified in Equation 5 and Equation 6, can be extended in many ways based on
the relation between auxiliary variables and the growth factors and/or the latent class
membership. For example, covariates can enter the basic growth mixture model to
explain individual differences in growth attributes. They can also be related with latent
group membership.

To help understand how covariates and distal outcomes are related to a GMM

analysis, one such extended growth mixture model is shown in Figure 2.1. The model
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consists of the following components: covariates or predictor variables (X), a categorical

latent class variable (C), repeated continuous outcomes (Y), growth intercept (7,) and
slope (7,), and a distal outcome variable (Z) as the consequences of the growth process.

In terms of covariates, both time-variant and -invariant covariates (e.g., treatment and
intervention effects) can be included in the GMM framework. Since the effect of time-
invariant covariates is what the study will examine, time-varying covariates will not be
discussed further. Time-invariant covariates can be incorporated in the GMM analysis in
several ways. First, the categorical latent class variable C may be related to covariates X
via a multinomial logistic regression model which specifies the functional relation
between the probability of class membership and set of covariates X, as expressed by

Equation 8 below.

exp(ys +I'*x,
p(Ci=k|Xi): - p(70 |) ,

2 exp(y; +I'x;)
h=1

(8)

where class K is the reference class and y, =0 and T =0 for identification purposes so
that the log odds of comparing class k to the last class K is

log[p(C; =k |x)/ p(C, =K |x)] =75 +x;. (9)
Here I'* isa 1x q vector of regression coefficients denoting the effect of x on the log
odds of membership in class k relative to class K, and ¢ is the logistic regression

intercept for class k relative to class K. Lubke and Muthén (2007) pointed out that it was
important to include in a growth mixture model the covariates that predicted class
membership when examining the latent classes. The arrow from X to C in Figure 2.1

shows this type of direct relation.
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Figure 2.1. Path diagram for a general linear growth mixture model with time-invariant
covariates (X) and distal outcome of change (Z)

Time-invariant covariates can also enter the growth mixture model as direct
predictors of trajectory parameters. In this case, the direct effects from the covariates to
the growth factors can be class-invariant or class-specific. The direct effect of class-

invariant covariates on the growth factors is shown by the arrows pointing from X to 7,
and 7, in Figure 2.1. These direct effects on the growth factors can be expressed in the
population model of Equation 6 as

n:‘ =a +I'x; +§;, (20)
where a* isa qx1 vector of conditional regression intercepts for n within class k, and

I' isa qxr matrix of regression coefficients representing the effects of x on .
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When direct effects of class-specific covariates on the growth factors occur, the
association of these effects and the growth factors can be expressed below
N =a +T*x, +&°, (11)

k

where a” is still a g x1 vector of conditional regression intercepts for n within class k,

but T* isa q = r matrix of class-specific regression coefficients, indicating the effect of

some particular explanatory variables on ny within class k. The direct effects of class-
specific covariates on the growth factors are indicated by the dashed arrows pointing

from X to 7, and 7, in Figure 2.1.

According to Petras and Masyn (2010), when class-varying covariates are included
in the model, latent classes are defined not only by heterogeneity in growth trajectories
but also heterogeneity in the effect of those covariates on the growth trajectories.

In addition to covariates, it is often interesting to include distal outcomes in a GMM
analysis. According to Petras and Masyn (2010), a distal outcome can be framed in one
of two ways. First, a distal outcome can be seen as an additional indicator of the latent
class variable (i.e., the latent class variable captures variability in the growth factors,
variability in the distal outcome, and the association between the growth factors and the
distal outcome). Secondly, the distal outcome can be envisioned as an outcome of latent
class membership where Z is not included in the estimation of the GMM, and which can
be used to investigate the predictive validity of the latent classes (Clark & Muthén, 2009).
Examples of distal outcomes framed as a consequence of latent class membership include
alcohol dependence predicted by heavy drinking trajectory classes (Muthén & Shedden,
1999) and high school dropout predicted by mathematics achievement development

trajectory classes (Muthén, 2004). Given that growth is interpreted on the latent class
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variable, it is reasonable to allow the latent trajectory class variable to predict the distal
outcome (Muthén, 2004). The effects of covariates on the distal outcome can also be
included to indicate that, for each class, the probabilities of Z vary as a function of X. The
arrows from C to Z and from X to Z in Figure 2.1 show these specific relations. The distal
outcome variable can be either continuous or categorical, and the regression can be
linear, logistic, or other types of generalized linear regression models depending on the
form and scale of the distal outcome. For a dichotomous distal outcome scored 0 and 1,
for example, the functional relation can be expressed as

1
z.=1|C =k,x.) = ,
p( ] | [} I) l+eXp{Tk _kai} (12)

where z; represents a distal outcome predicted by an individual’s class membership as

well as his or her background characteristics (i.e., covariates), the main effect of C is

captured by the class-varying thresholds z, (an intercept with its sign reversed), and v,
is class-varying slopes for X, indicating different covariate effects on z for different

exp(z, )

trajectory classes. The conditional probabilities of z, =1 for each class is
1+exp(z,)

at x

=0.
2.3 Growth Mixture Modeling Estimation via the EM Algorithm

The literature is replete with a variety of estimation methods for mixture analyses.
For example, maximum likelihood (ML) estimation (see, e.g., Codd & Cudeck, 2014;
Harring, 2012) has been widely used to maximize the data given a particular set of
parameters. Maximum likelihood estimates for the parameters can be found iteratively
through using an optimization algorithm such as Newton-Raphson. As another example,
the expectation-maximization (EM) optimization algorithm (Dempster, Laird, & Rubin,
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1977) can be used to circumvent the heavy computation from using, for example, a
method in which the integration of the loglikelihood function must be handled directly, to
a method that views the estimation problem as one which can be formulated as a missing
data problem. In their study, Codd and Cudeck (2014) extended the work by Harring
(2012) and discussed how SAS PROC NLMIXED could be utilized to carry out ML
estimation of a nonlinear random coefficient mixture model. As an alternative to ML
estimation, the literature has shown an increasing rate of applications of mixture analyses
using MCMC methods within a Bayesian estimation framework (see, e.g., Depaoli, 2013;
Muthén & Asparouhov, 2012; Yang & Dunson, 2010). In GMM, the main difference
between ML and Bayesian estimation methods is the inclusion of prior information (i.e.,
a prior belief about the values of model parameters) for the modeling of the growth and
variance/covariance parameters (Depaoli, 2013). While different estimation methods
have been developed for mixture analyses, the current paper limits the discussion to ML
estimation implemented via an EM algorithm in that the method is by far most popular
estimation method used in GMM analysis and it is accessible through commercial
software.

The EM algorithm is an iterative procedure for finding ML estimates and is
especially useful for models that can be seen as having incomplete or missing data. The
EM algorithm is a broadly applicable approach since it simplifies ML estimation
substantially by reformulating the given incomplete-data problem as a complete-data
problem (McLachlan & Krishnan, 2008). Because class membership is considered

missing, the observed data y; alone in the mixture model can be treated as incomplete.

Like in any other finite mixture modeling context, in GMM estimation, it is assumed that
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the proportion of observations falling in latent class is unknown and must be estimated
along with the other parameters of the model. Therefore, the estimation of a growth
mixture model consists of two parts: the estimation of parameters related to the LGM and
the estimation of class proportions (Tolvanen, 2008).

The loglikelihood function corresponding to incomplete data vectors y, can be

written as:
InL(p,0]y)=>_Inf(y;|0), (13)
i=1
where
k ¢ k £k k
fly; 10)=> ¢ f (y,10"), (14)
k=1

which shows a mixture of K density functions where ¢ is the class proportion for class k.

Thus, Equation 13 can be written as:

IL(@.01¥) =3I £(510) 3| 3073, 16%)

i=1
where 0% is parameter estimates related to the unconditional LGM for class k and
¢ =(¢',...,0"™"). The density function for class k is
f (y; 16°) ~ N(n*, %)
where
p* = Ac
I = AP A+ OF.
Because GMMs contain unobserved latent variable values as well as latent class

membership, there is no closed-form solution for the parameter estimates (see, e.g.,

Kohli, 2011; Mann, 2009). Therefore, the EM algorithm can be used to obtain the GMM
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model parameter estimates. To identify class membership, a vector of unobservable
0/lindicators for each individual for each class, ¢; = {cllc,K} , can be defined as

¢ = (1, if the ith subject belongs to class k i=1..,n k=1,.., K.
0, otherwise

Thus, the loglikelihood function for complete data can be given as (see, e.g., Muthén &

Shedden, 1999; Tolvanen, 2008):

INL@y, )= InL(O]y;c)
i=1
n K

=" ci{In(p") +In[F*(y, | 6)1}, (15)

i=1 k=1
where the inclusion of the unknown indicator variable ¢ implies maximizing the

complete-data loglikelihood. It can also be observed that in Equation 15 the loglikelihood
function is comprised of two independent parts: (1) the sum of the weighted K class
probabilities and (2) the sum of the weighted K density functions. Each part can be
maximized separately and reconstituted in the M-step of the EM algorithm (Muthén &
Shedden, 1999).

In the E-step (i.e., expectation step) of the EM algorithm, the complete-data
loglikelihood function in Equation 15 is replaced by its conditional expectation function
given observed data y, and the current parameter estimate 60 (the initial starting value
for @ on the first iteration).

INL(0|y,c)~E[InL(B]y,c)]

n

ZZZ E[ci |y, 0 H{In(p") +In[f“(y; | 6)1},

where
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E[Cik |y’90] _ fk f k(yi |90)
> oty |0°)‘ (16)

= (Dik.

The E-step reduces to computing the posterior probabilities for each individual (i.e.,
the probabilities of an individual belonging to a certain class) with respect to the
parameter values at the first iteration.

These posterior probabilities are then used in the M-step (i.e., the maximization step)
for maximizing the conditional expectation of Equation 15. That is,

INLO|y,c)~E[InL(B]y,c)]

=3 gk {In(e") + [ £y, | 613,

i=1 k=1

where the estimates of ¢ replace unknown indicators c;. The remaining model
parameters in f*(y,|0*) with estimates in 8* (e.g., a, ¥*, and ©}) and the class

probabilities @' =(¢",...,@"™") are computed. After the M-step, the algorithm returns to

the E-step to calculate new posterior probabilities and then again to the M-step (Kohli,
2011). This iteration continues until the convergence criterion related to the complete-
data loglikelihood is met (Harring, 2012). A known deficit of the EM algorithm is its
slow rate to converge to a solution. Yet, the popularity and usefulness of the EM
algorithm for GMM applications stems from its seemingly simple implementation and
how reliably it can ascertain local optima through stable, uphill steps. ML via the EM
algorithm is the default estimator for mixture analyses in Mplus 7.11, which will be used

to generate data and analyze replicate data sets in the upcoming simulation.
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2.4 Estimation Approaches for Growth Mixture Models with Covariates
2.4.1 Conventional three-step approach

In modeling growth mixture models with covariates, the conventional method, a
step-by-step approach (D’Unger, Land, & McCall, 2002; Feng, Shaw, & Silk, 2008;
Fergusson & Horwood, 2002; Jo, Wang, & Lalongo, 2010; McDermott & Nagin, 2001;
Nagin & Land, 1993; Nagin, Farrington, & Moffitt, 1995), is usually adopted: First,
unconditional GMM analyses are conducted based on only latent class indicators to
determine the number of distinct trajectory groups. Then, predicted posterior class
membership probabilities are calculated and class membership is assigned to each
individual based on their highest posterior class membership probabilities. Finally,
relation between the assigned latent class membership and/or the growth factors and
subject-specific background characteristics and/or distal outcome(s) is investigated using
either the mean comparison tests or multinomial logistic regression models. This means
that the model does not include covariates or distal outcomes in the unconditional growth
analyses. Influences from predictor variables are taken into account subsequently in the
conditional analysis. In the third step, many researchers use mean comparisons tests, such
as t-tests, ANOVA, or chi-square tests to summarize or compare among trajectories
groups. Or, they may examine the relation between growth factors and auxiliary variables
using regression analysis. Researchers may also use multinomial logistic regression
models to explore the relation between latent classes and auxiliary variables, such as most
likely class regression (i.e., regression of most likely class membership on the covariates),
probability regression (i.e., regression of an individual’s logit-transformed posterior

probability to be in a given class on the covariates), and probability-weighted regression
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(i.e., regression that is weighted by an individual’s posterior probability to be in a given

class) (Clark & Muthén, 2009).

2.4.2 One-step ML approach

Rather than relating covariates to the latent class variable and/or the growth factors
in a separate, subsequent step as is done in the conventional approach, an alternate
estimation procedure, a one-step ML approach for estimating the effects of covariates
(see, e.g., Huang et al., 2010; Muthén, 2004; Nagin, 2005; Roeder et al., 1999), was
recommended which include the additional variables as part of a single model estimation
of developmental trajectories to allow for the simultaneous examination of the covariates’
impact on the estimation of developmental trajectories and their association with the
distal outcome. By including the additional variables as part of a unified model, this one-
step approach solves the problem of treating most likely class membership as an exact,
observed variable by taking into account the error associated with probability estimates,
and allowing individuals to be fractional members of all classes (Clark & Muthén, 2009).

The one-step approach considers a model for p(y, |x;) rather than p(y,). Thus, the

model has the form

p(yi |Xi):ZK: p(ci =k|Xi)p(yi|Ci=k)! (17)

k=1
where the probability p(C, =k|X;) is parameterized by means of a multinomial logistic
regression model expressed in Equation 8. By allowing latent class probabilities to vary
with individual characteristics, it is possible to test whether and by how much a specified

covariate affects probability of class membership controlling for the level of other

covariates that potentially affect latent class probability estimates. The I'* parameters in
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Equation 8 and the multinomial parameters defining p(y; | C, =k) will be obtained by

maximizing a loglikelihood function based on p(y; | x;) (Vermunt, 2010), which is

log L= 1og p(y, k) = Y-log Y- B(C, =k IX)P(Y, C, =K). (19)

i=1

Distal outcome variables can also be included in the single-step approach. However,
when the distal outcome has a direct effect from both a covariate and the latent class
variable, the latent class model will not be affected by this direct effect (Asparouhov &
Muthén, 2013).
2.4.3 Pseudo class draw approach

Pseudo class (PC) draws (Bandeen-Roche, Miglioretti, Zeger, & Rathouz, 1997) is
one option to independently evaluate the relation between the latent class variable and the
auxiliary variables without using assigned class membership (Asparouhov & Muthén,
2006; Wang et al., 2005). The first step in the PC approach is to estimate the mixture
model without covariates. During this step, posterior distribution for each individual
being in each of the latent classes is calculated. Then, in the second step, using this
posterior distribution, multiple pseudo-class draws for each individual’s class variable are
generated. That is, multiple pseudo-class memberships are obtained by making multiple
random draws from the discrete posterior latent class probability distribution for each
individual in the sample. This second step gives each individual a chance to fall into
neighboring classes (Clark & Muthén, 2009). Typically, 20 pseudo-class draws are used
for each observation, which means each individual is classified 20 times (Wang et al.,
2005). These multiple pseudo class draws are used as multiple imputations of each

observation’s class membership as if the class membership was missing. One apparent
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benefit of using the random draws is that they account for the uncertainty in class
assignment (Asparouhov & Muthén, 2013). The next step of the PC approach is to
estimate the logistic regression model with the covariates explaining latent class
membership repeatedly for the multiple draws (i.e., 20 draws), and the obtained
parameter estimates are averaged. That is, the subsequent analysis is performed for each
random draw, and finally the class specific information associated with the auxiliary
variable(s) is obtained after results are combined across draws using the multiple
imputation techniques developed in Rubin (1987).
2.4.4 Three-step ML approach

To avoid all the issues mentioned above, a new three-step ML approach was
proposed by Vermunt (2010). In this new approach, the unconditional growth model
would first be estimated, which is exactly the same as the initial step in the conventional
three-step approach. Then, a most likely class variable is defined using the highest
posterior probability from the latent class posterior distribution derived from the
unconditional growth mixture analysis. In the third step, the most likely class variable is
used as latent class indicator variable with classification error probability taken into
account. Also, in this final stage of model estimation, auxiliary variables (e.g., relevant
predictors) are introduced with the measurement model (i.e., the unconditional GMM)
kept fixed. It is easily seen that the big difference between the new three-step ML
approach and the conventional three-step approach is in the third step where the most
likely class membership variable is treated as an imperfect measurement of latent class
membership analysis in the new method but not in the conventional approach. Below is a

detailed description of how the new three-step ML approach works.
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The most useful part of the new three-step approach in GMMs is the posterior
probabilities which is a measure of an individual’s likelihood of belonging to each of the
k trajectory classes based on his or her longitudinal pattern of behavior vy, (i.e.,

pP(C, =k|y,)). A posterior probability can be derived via the Bayes’ rule (Dias &

Vermunt, 2008; Goodman, 2007; McLachlan & Peel, 2000; Vermunt, 2010) using:

C kv P POIC =K) _ o"pyi[Ci=k)
p(C, 1Y) o(y.) Z¢kp(yi|ci=k)

(19)

During the initial latent class model estimation, posterior probabilities of class
membership for each subject are computed. Then, in the second step, subjects are
assigned to the most likely class membership s for the most likely class variable W using
the largest posterior probabilities. Classification error probability is also considered in
this step. It should be mentioned here that there are two widely used classification rules,
namely, the modal assignment and the proportional assignment (Vermunt, 2010). When
modal assignment is considered, class assignment is hard because a subject will be
classified into the class for which p(C, =k |y;) is largest. This is very similar to what
Fraley and Raftery (2002) referred to as hard assignment to the class with the highest
posterior probability in the context of regression mixture models. When proportional
assignment is considered, subjects are treated as belonging to latent class k with
probability of p(C, =k|y,;), which is referred to as a “soft” classification. The three-step
ML approach investigated in this study focuses only on the hard assignment rule. It
should be noted that although one potential limitation of using the hard class assignment

rule during this step is the lack of classification accuracy which might lead to biased
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coefficient estimates, in the next step described in detail, it can be seen that classification
error probability is considered so as to obtain more accurate parameter estimates.
In the third step when covariates are added to the GMM, a relation is established

between p(W, =s|x,) and p(C, =k|x,), as shown below

D(\Mzslxi)ZZD(Cizklxi)p(\/\/i=S|Ci=k), (20)

which looks similar to the one-step ML approach where the model has the form of
Equation 17. Equation 20 suggests that the new method takes into account the
classification error probability (i.e., p(W, =s|C, =k)), which makes parameter estimates
more accurate. This is different from the conventional three-step approach in which
classification error is not considered at the last stage of analysis. Based on the equation
above, more accurate estimates of covariate effects can be obtained by treating the most
likely class variable as an imperfect measurement of the latent classes. Then, the

following loglikelihood function can be maximized:
N K
InLML:ZIan(Ci:k|Xi)p(\Ni=S|Ci:k)a (21)
i= k=1

which yields ML estimates for both P(C. =k |x;) and the regression coefficients
(Vermunt, 2010).

Asparouhov and Muthén (2013) discussed in detail the procedures of calculating
classification error probability during step two. A matrix of average class membership
probabilities needs to be established first, where W, is the most likely class variable with

srows and C. is the true latent class variable with k columns. Within each of the most

likely latent classes, the average probability of membership for the most likely latent
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class as well as the remaining, ‘less likely’ classes for the matrix are computed. A matrix

of corrected average probabilities of class membership g, is subsequently derived using

psk X Ns

Gy = POW, =5 C, =k) = o 2——,
k Z:pstNs (22)

where s and k stand for, respectively, the sth row (s = 1 through s) and kth column (k =1

through k) of the matrix, and N, represents the sample size for the most likely class on
the sth row. In the third step, the most likely class variable W, is used as latent class
indicator variable with uncertainty rates prefixed at the probabilities g, (Asparouhov &

Muthén, 2013). That is, the most likely latent class variable is specified as a nominal

Oa

indicator of the latent class variable with logits, Iog{
Sk

j , Where S is the last class.

These logarithmic ratios would enter directly into the secondary statistical analysis as
indicators of uncertainty (measurement error) in assigning cases to classes.
2.5 Advantages and Limitations of the Estimation Approaches

Nagin (2005) cautioned that the conventional three-step method should not be used
for model estimation. Bolck et al. (2004) and Vermunt (2010) also demonstrated that the
conventional three-step procedure produced biased coefficient estimates, and thus it was
advocated to estimate the entire latent class regression model all at once. Clark and
Muthén (2009) also discussed in detail the problems associated with some of the
commonly used regression approaches mentioned above, and they pointed out that with
either the mean comparison or regression methods in the third step, using the most likely
class membership as an exact, observed variable was problematic. In terms of the mean

comparison and the most likely class regression methods, since individuals would be
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assigned to the most likely class based on their highest posterior probability of being in
that class, the analysis does not take into account the uncertainty of the classification.
Thus, these methods are technically inappropriate for making inferences about
characteristics that distinguish trajectory group membership in circumstances in which
class membership is not known with certainty (Roeder et al., 1999). Similar concerns
surround the probability and probability-weighted regression approaches where although
probabilities of being in a class are used, errors associated with the estimated
probabilities are still not taken into account, which may negatively impact the estimation
of the standard errors of the regression coefficients between the posterior probabilities
and auxiliary variables.

Compared with the conventional three-step method both the one-step and the more
recently devised three-step ML approaches explicitly incorporate uncertainty in the
derived categorical membership (Mclintosh, 2013). The PC approach also takes into
account classification uncertainty by using multiple random draws. In terms of the one-
step ML approach, it has the advantage of taking into account the classification
uncertainty by allowing individuals to be fractional members of all classes. However, one
major concern may come from the impact of either the covariate variables or the distal
outcome variables on the forming of latent class. That is, the latent class formed from the
joint model may differ in meaning from the latent class obtained using only the indicator
variables and thus may potentially change the substantive interpretation of the latent
classes. Also, the method may not be practical when a large number of potential auxiliary
variables are involved in the secondary analysis. Not only the prediction model but also

the measurement model needs to be re-estimated when a covariate is added or deleted
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from the analysis, which makes exploratory work more challenging (Vermunt, 2010).
Also, the decision about the number of classes in a model is hard to make considering the
potential influence from including or not including covariates on class enumeration. On
the other hand, simultaneously building the classification model and the prediction model
may not make much sense for most applied researchers who are inclined to the idea of
building the classification model first before including covariates into the analysis
(Vermunt, 2010).

In terms of the new three-step ML approach, obviously, it satisfies the logic
requirement of most applied researchers by following the conventional step-by-step idea.
One clear advantage of this method over the conventional approach is that the most likely
class membership is not treated as an exact, observed variable in the final stage analysis
as was in the conventional approach. With the new approach, the most likely class
variable is used with measurement error probabilities taken into account. Also, according
to Asparouhov and Muthén (2013), if the class separation is good the new three-step
approach has the same efficiency as the one-step approach. However, a potential problem
may still exist since classification error probabilities are derived from the estimated
parameters of latent class analysis without covariates, which, according to Vermunt
(2010), may result in slightly underestimated standard errors.

2.6 Research on Comparing the Approaches

Studies have been conducted recently to compare the performance of various
estimation approaches to incorporating covariates in mixture modeling. The main
purpose of these studies was to see how efficient and reliable these methods were in

terms of estimating the association between the latent class variable and auxiliary
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information under different conditions. For example, using simulated and real data, Clark
and Muthén (2009) explored how different regression methods of relating latent class
analysis results to covariates can impact estimation of auxiliary effects. Specifically, their
study compared the estimates and standard errors of a regression between the most likely
class membership or the posterior probabilities and a covariate using the conventional
approach with those obtained from other methods: the PC method and the one-step
regression approach. Results showed that the one-step approach performed the best in
terms of recovering the true covariate effect. The PC method worked well when class
separation was large. When class separation was not large, like the conventional
regression methods, the PC method underestimated the standard errors, which is
problematic because an effect may be identified as significant, when in fact, it may not be
(Clark & Muthén, 2009). In another study, Vermunt (2010) compared the standard three-
step procedure, the one-step approach, the BCH approach, and his proposed three-step
ML approach with respect to bias in the estimates of the covariate effects and bias in the
standard error estimates when covariates were included in latent class modeling. Results
showed that the standard three-step approach performed poorly in the sense that its
parameter estimates were severely biased downward. Both the BCH method and the
three-step ML method demonstrated good parameter estimates and standard errors except
when the classes were very poorly separated. It was also found that the three-step ML
method was much more efficient than the BCH method in terms of the standard deviation
of parameter estimates, and it was almost as efficient as the one-step estimation approach.
In a very recent unpublished study by Asparouhov and Muthén (2013), the relation

between a latent class variable and a predictor variable in mixture modeling was
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examined using different approaches under different simulation designs. Results showed
that the new three-step ML approach uniformly outperformed the PC approach for
analyzing the relation between a latent class variable and a covariate independently of the
latent class model estimation. Also, if the class separation was substantial the three-step
ML approach had the same efficiency as the one-step approach in terms of bias, mean
squared error and confidence interval coverage of parameter estimates. In another recent
study, Bakk, Tekle and Vermunt (2013) used both simulated and real data to investigate the
association between distal outcomes and latent class variable using different methodological
approaches. The results showed that the conventional three-step approach led to severely
biased parameter estimates compared with other methods like the three-step ML method.
However, when class separation was low, the three-step ML method underestimated the
parameter estimates and their corresponding standard errors.

One limitation with these studies is that very simple latent class models for discrete
responses were used. Although Asparouhov and Muthén (2013) also included more
complicated models such as a growth mixture model to evaluate how well different
estimation approaches performed, like most previous studies, their study included only
one covariate and had a very limited number of manipulated factors and levels within
those factors. Vermunt (2010) included three predictor variables in his simulation study;
however, all the predictor variables were categorical. It is quite possible that in real data
analytic scenarios many covariates of different types should be considered in model
estimation. Bakk et al. (2013) included only distal outcome variables in their latent class
analyses. Another limitation found in Asparouhov and Muthén’s study with respect to

GMM is that although three different types of direct effects from the auxiliary variable on
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the growth factors were manipulated, the impact of the covariates with various effect
sizes on the new three-step estimation was not investigated.

In summary, Chapter 2 has briefly reviewed the mathematical and theoretical
background of growth mixture models with auxiliary variables as well as three estimation
approaches applicable for these models. To help understand the development of these
complex models, the review started from the latent growth modeling procedure from
which the GMM is extended by combining LGM with LCA. Similarly, the idea of
including covariate(s) into LGM has been extended to GMM with auxiliary variables.
The advantages of including auxiliary information to a GMM were also discussed. For
example, by including relevant individual-level characteristics in the model, membership
in a specific trajectory group could be predicted with high probability, which helps to
correctly estimate class proportions and class membership, find the proper number of
classes, and obtain more accurate parameter estimates. Also, covariates or predictors
make interpretation of the growth trajectories more meaningful because of the inclusion
of individual background information. Various ways of including covariate variables as
well as distal outcomes into a GMM were introduced. Then, the chapter reviewed
maximum likelihood estimation via the EM algorithm which is the method used in this
study. Another very important section of the review is the estimation approaches for
GMMs with auxiliary variables. Procedures of conventional three-step approach, one-
step ML approach, and a new three-step ML approach were described in detail, whose
advantages as well as limitations were also discussed. The end of the chapter reviewed
research on the comparison of various estimation approaches, and limitations of previous

work were noted which have lead to the idea of the current study.
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In view of the limitations of previous work on examining the performance of
various estimation approaches to incorporating covariates in latent class analysis, Chapter
3 aims to assess the performance of four estimation approaches (i.e., the conventional
three-step approach, the one-step ML approach, the PC approach, and the three-step ML
approach) for estimating covariate effects on GMMs. Specifically, covariate effect
estimates on the latent class modeling will be derived using the four procedures and then

compared in terms of bias estimates of the covariates effects.
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Chapter 3: Methodology
This study uses Monte Carlo simulation to assess the performance of various

methods used for estimating covariate effects on the latent class membership model
within a growth mixture modeling framework. By using Monte Carlo simulation
techniques, sample data with known population parameters are generated and the
performance of the methods is evaluated under different manipulated conditions and/or
model specifications. Specifically, two separate simulation studies are conducted to
examine whether these methods are able to accurately estimate the relation between latent
class membership and covariate(s) under two different scenarios. The experimental
design of the two simulation studies is described in detail in this chapter in terms of the
manipulated factors, data generation model, models used to fit the data, covariate effect
definition and outcome measures used in the analyses. The software used for data
simulation as well as the analysis is also discussed.
3.1 Simulation Design

This section explains the factors manipulated and why particular factor levels are
considered for the two simulation studies. The manipulated factors are the same for both
simulation studies and are described in detail first. Then mathematical explanation of
how to manipulate degrees of class separation and covariate effect is provided. In
addition, the choice of class separation levels and procedures compared in each of the
two studies are discussed. Finally, the number of replications used is mentioned.
3.1.1 The same manipulated factors in the two studies

For the two simulation studies, the same fixed design characteristics include: (1) the

number of time points, (2) the number of latent classes, (3) sample size, (4) proportions
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for the dichotomous covariate, (5) distribution of the continuous covariate, and (6) the
mixing proportions of the latent classes. Both of the simulation studies include time-
invariant covariates in the analyses. In addition, some simplified assumptions are made in
order for the two studies to be manageable considering the complexity of the models. For
example, the GMMs specified in the two studies model change for normally distributed
indicator variables and assume that individual growth trajectories are linear (i.e.,
quadratic, higher order polynomials or nonlinear functions are not considered). It is also
assumed that residual variances among indicator variables are invariant over classes (i.e.,
®" =0 for all k) and are homoscedastic and uncorrelated (i.e., ® = ¢°I,,), and that
growth factor covariance matrices are unstructured and invariant across latent trajectory
classes (i.e., ¥* =¥ for all k). Since model complexity is one factor that makes model
convergence a potential issue, it has been recommended that residual variances among
indicator variables as well as growth factor variances and covariances be constrained
equal across classes to ensure the absence of singularities and to ensure the existence of a
global solution (Hipp & Bauer, 2006; Liu, Hancock, & Harring, 2011). By adding
constraints to the model, the number of free parameters to be estimated is reduced, which
is expected to improve convergence in model estimation. According to Muthén (2001),
mixture models are particularly sensitive to local maxima when differences in the factor
variances and covariances between classes are large. Results from a simulation study by
(Bauer & Curran, 2003) also showed that prediction of class membership is not more
accurate when factor variances are allowed to vary than when factor variances were

constrained across classes.
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Tables 3.1 and 3.2 below show the fixed design characteristics and the manipulated
factors for both of the simulation studies respectively. A detailed explanation of why
certain level(s) are considered for use for the studies is followed immediately. It should
be noted that the level(s) are selected based on a careful review of relevant simulation
studies and pilot work.

Table 3.1

Fixed Factors in the Two Simulation Studies

Factor Fixed Value
Number of repeated measures 6
Number of latent classes 2
Proportions for the dichotomous covariate 30:70
Distribution of the continuous covariate Normal (0, 1)

Table 3.1 shows four fixed factors used for the two studies. The number of repeated
measures is fixed at six assuming all individual growth trajectories in each subpopulation
start and end at the same point. It is often seen in both simulation studies and substantive
research of growth mixture models that the number of measurement occasions is three or
more (see, e.g., Brown, 2003; Jung & Wickrama, 2008; Masyn & Brown, 2001), and it
has been recommended that a minimum of three time points be used to specify a linear
model (Willett, Singer, & Martin, 1998). Simon, Ercikan, and Rousseau (2012) suggested
a minimum of four repeated measures to achieve more power in growth modeling. On the
other hand, considering the potential issues regarding convergence or power, at least five
indicators have been recommended (Muthén & Curran, 1997). Therefore, the choice of
six time points seemed reasonable. As per the number of latent classes, a two-latent class

model is chosen so as to keep the scope of the study manageable. For both studies,
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distributions of covariates are the same. For example, proportions for the dichotomous
covariate are all fixed at 30:70 and the continuous covariate has a standardized normal
distribution with a mean of 0 and variance of 1.

Table 3.2

Manipulated Factors in the Two Simulation Studies

Factor Levels
Levels of sample size N = {500, 1,000, 5,000, and 10,000}
Mixing proportions 30:70; and 50:50
Degrees of class separation Mahalanobis distance (MD) = {1.0, 2.0, and
3.5}
Covariate effect Odds ratio (OR) = {1.5, 9.0}

Table 3.2 shows three manipulated factor conditions for this research. In terms of
sample size, four conditions are considered which are 500, 1,000, 5,000, and 10,000.
Literature review has shown various sample size ranging from 25 to 10,000. However,
for latent class analysis, a sample size of 500 is considered a small sample size, especially
in the low-separation condition (Vermunt, 2010). A sample size of 1,000 is selected
because it is a typical sample size level used in methodological growth mixture modeling
studies (see, e.g., Brown, 2003; Clark & Muthén, 2009; Kohli, 2011; Nylund et al., 2007,
Tolvanen, 2008; Vermunt, 2010). The choice of a sample size of 5,000 is consistent with
one of the manipulated conditions for growth mixture models by Asparouhov and
Muthén (2013) whose work has been extended into this particular study, and a very large
sample size of 10,000 (see, e.g., Vermunt, 2010) is added to avoid sampling fluctuation

as well as to increase the convergence rate.
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Results from previous studies (see, e.g., Nylund et al., 2007; Tofighi & Enders,
2008) have indicated that the mixing proportion plays an important role in growth
mixture analyses. The current study will manipulate mixing proportion conditions at two
levels: 30:70 and 50:50. More extreme levels such as 10:90 have led to severe
convergence issues in past studies (e.g., Tolvanen, 2008) and thus will not be investigated
further in this study.

Another factor assumed to affect growth mixture analysis is class separation. As for
degrees of class separation, though three levels are indicated in Table 3.2, the choice of
levels for the two studies differs slightly. Specifically, all three levels are used for
Simulation | whereas only two levels (i.e., MD = 2.0 and MD = 3.5) are considered for
Simulation 1. Mathematical explanation of the index of MD used for measuring degrees
of class separation and why certain levels of class separation are selected for the two
studies are provided below in Section 3.1.2.

3.1.2 Class separation and growth factor means

Class separation is assumed to affect the estimation approach with respect to linking
covariates with the latent class variable. It has been found that the estimation accuracy of
GMMs is largely affected by how well subpopulations are separated (see, e.g., Everitt,
1981; Lubke & Muthén, 2007; Tofighi & Enders, 2008). Class separation can occur at the
latent level or the measured variable level (see, e.g., Tolvanen, 2008). This study will
focus exclusively on class separation at the latent level for the growth parameters. Class
separation in this study is measured in terms of the multivariate Mahalanobis distance

(MD; Mahalanobis, 1936) between two classes and is manipulated by varying the latent
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growth factors (e.g., growth trajectory intercept and slope). MD between two latent

classes is defined as follows:

MD = /(n® —p@ ) ¥ (n® —p@) ,
where p® and p® are the growth factor means for the first and second latent classes,

respectively (McLachlan & Peel, 2000), and ¥ represents the inverse of the common
covariance matrix of individuals’ growth parameters. In this study, the means would be
the intercept and slope growth parameters for each trajectory class. Referring to previous
studies and also based on exploratory analyses in a pilot study, the current research sets
MDs at 1.0, 2.0, and 3.5 for Simulation | and at 2.0 and 3.5 only for Simulation 1. MD
values of 1.0, 2.0, and 3.5 reflect small, large, and very large trajectory separation
conditions, respectively (see, e.g., Depaoli, 2013; Everitt, 1981; Lubke & Muthén, 2005;
Lubke & Neale, 2006; Tolvanen, 2008; Tueller & Lubke, 2010). Small class separation
(i.e., MD = 1) is not considered in Simulation Il because of the extremely high non-
convergence rate found in a pilot study. Figure 3.1 below shows example graphs
corresponding to the three MD levels to help visually understand what degree of class
separation are implied by the chosen levels of MD. It can be observed that when MD =1,
there is a great deal of overlaps between observations from the two classes, and when
MD becomes a larger value such as MD = 2, the two classes are further apart from each
other with some overlap, but clearly not as much as when MD = 1. There is almost no
overlapping between the two classes at MD = 3.5, suggesting the two classes are well

separated.
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Figure 3.1. Examples of Mahalanobis distance (MD) for two classes.
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It should be added here that parameters for growth factor covariance matrices and

residual variance used for both simulations are defined as:

2
cov(n) =¥ :( 4] and cov(g) =@ = o’I, where o° =.75.

45

It has been advocated in several simulation studies on latent growth models and GMMs
that in practice, the ratio of the intercept variance to the slope variance is approximately
5:1 (see, e.g., Depaoli, 2013; Liu, 2012). In line with the consistency of this
recommendation from the literature, the diagonal values in W are in this ratio with the
covariance set so that the correlation between the random effects is approximately 0.50.

The population values for the growth factor means (using different means of
intercept and slope) under different class separation conditions are provided in Table 3.3.
Table 3.3

Growth Factor Mean Parameters under Different MDs

MD =1 MD =2 MD =35
Growth Factor Mean Classl Class2 Class1 Class2 Class1 Class 2
Intercept 10 11.22 10 12.44 10 14.28
Slope 2 2.55 2 3.09 2 4.19

3.1.3 Manipulating covariate effect

Covariate effect size is one major manipulated factor in this research. Covariate
effect size with respect to the strength of the association between the covariate(s) and
class membership is manipulated using odds ratio (OR). Odds ratio estimates the change
in the odds of membership in the target group (i.e., class 1) for a one unit increase in the
predictor. The covariate can be either dichotomous or continuous. Two levels of OR, 1.5

and 9.0, are considered for both simulations in this study, indicating small and large
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effect, respectively (see, e.g., Cohen, 1988). Detailed description of these effects is to be
found in Section 3.2 for Simulation | and Section 3.3 for Simulation Il. In addition to
covariate effect on the latent class membership, Simulation Il also incorporates covariates
that enter the measurement model, which, again, is discussed further in Section 3.3.
3.1.4 Procedures compared in the two simulations

The procedures compared in Simulation | are the conventional three-step approach,
the one-step ML approach, the PC approach, and the new three-step ML approach. There
are only three procedures compared in Simulation 11 which are the conventional three-
step approach, the one-step ML approach, and the new three-step ML approach. The PC
approach is not considered in Simulation Il because of its poor performance (see
discussion below) found in Simulation |.
3.1.5 Replications

For both simulations, 500 replications in each cell of the design are executed. In
methodological studies focused on growth mixture modeling, the minimum number of
replications has been found to be 100 (see, e.g., Asparouhov & Muthén, 2013). Many
studies have used 500 replications (see, e.g., Bauer & Curran, 2003; Brown, 2003;
Nylund et al., 2007), and has also been an advocated number of replications in a recent
book chapter by Bandalos and Leite (2013) to ensure an accurate portrayal of the
precision in the estimates.

Data are generated and analyzed using Mplus Version 7.11 (Muthén & Muthén,

2012).
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3.2 Simulation |

Simulation I examines how well the conventional three-step approach, the one-step
ML approach, the PC approach, and the new three-step ML approach perform in terms of
estimating covariates effects on the latent class membership independent of the
measurement model where the latent classes are determined by the pattern of growth
trajectories. Data are generated such that time-invariant covariates enter the growth
mixture model as direct predictors of latent class membership.
3.2.1 The data generation model

In the first simulation, the form of the logistic regression function is used to model
the relation between the covariates and the latent classes. Two covariates (one categorical
and one continuous) are generated as predictors of an individual being in a latent class

through the multinomial logistic regression equation given as

k k k
ﬂ_ik — p(C| =k|Xi)= KeXp(j/O +}/1 Xi1+72xi2)
ZeXpO’g + 71Xy + 73 %)

h=1
where Xx;, is a dichotomous covariate (e.g., gender) defined with values corresponding to
either O or 1 (e.g., female = 0 and male = 1), and x;, is a continuous covariate (e.g.,
aptitude) having a standardized normal distribution with a mean of 0 and variance of 1.
The regression coefficients (i.e., 7, and y5 ) represent the effect of covariates on the log
odds of membership in class k relative to class K, and y; is the logistic regression

intercept for class k relative to class K. For simplicity, interaction between the two

covariates is not considered in this study. For purposes of model identification, latent
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class 2 will be considered the reference class, then coefficients, yZ, »,and . are all
fixed as 0. The final logistic model can then be expressed in its logit form as:

logit (77)=log (7 / ) = 15+ 1% + 122
A path diagram is created and is shown in Figure 3.2 to help understand the data
generation model for Simulation I, where Y; — Yg are the six repeated measures, 7, and
n, are the intercept and the slope respectively, X stands for the covariates, and C is the

categorical latent class variable. The arrow from X to C shows that the covariates enter

the growth mixture model as predictors of latent class membership.

Figure 3.2. Path diagram for the data generation model for Simulation |

It should be noted that the predictors, x, and x,, are generated such that the

strength of the correlation between these two variables is weak to moderate positive,

o =0.30. Inducing the correlation between categorical and continuous variables in this

research is to mimic the real life situation where most of the variables are correlated and
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independent relation between variables seldom exists. Since Mplus software program
does not include an algorithm for directly generating a categorical variable, the

correlation between the dichotomous variable x, and the continuous variable x, are

produced following the procedures described below.

Suppose that x, and x, follow a bivariate normal distribution with a correlation of

Py, (inourcase, p,, =0.3). If x is dichotomized to produce X5, then the resulting

correlation between x,, and x, can be designated as o, , = p,, (h//pq), where p

and q are the proportions of the population above and below the point of
dichotomization, respectively, and h is the ordinate of the normal probability density
function at the same point (Magnusson, 1966). Values of h for any point of
dichotomization can be found in standard tables of normal curve areas and ordinates (e.qg.,
Cohen & Cohen, 1983, p. 521), and the sign of correlation in the equation should not
change with dichotomization. Therefore, instead of using 0.3, the correlation parameter
used in this study for data generation is: 0.395.
3.2.2 Covariate effect

As was mentioned earlier, covariate effect size with respect to the strength of the
association between the covariates and class membership is manipulated using odds ratio

(OR). Two levels of OR are set for both x, and x, as 1.5, and 9 to indicate small and

large effect, respectively (see, e.g., Cohen, 1988). Therefore, four sets of covariate effects

for x, and x,are manipulated, which are: 1.5 for x, and 1.5 for x,, 9 for x, and 9 for x,,

1.5 for x, and 9 for x,, and 9 for x, and 1.5 for x,. Since X, is defined with values
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corresponding to either O or 1, an odds ratio between different covariate groups and latent

classes is shown as:

Odds ratio = PC=11%=0)/p(C=2|x=0) _
p(C=1|x,=1)/p(C=2|x =1)

exp(,).,

where the odds of being in class 1 is approximately exp(y,) times greater for one

categorical group (e.g., males) than the other (e.g., females). Levels of odds ratio are also

used to manipulate the strength of the relation between x,and the latent class
membership, although the interpretation is different from that for the dichotomous
covariate. Specifically, for a one unit increase in x, (e.g., aptitude), it is expected to result
in an approximately (exp(y,)-1) increase or decrease in the odds of being in class 1,
holding x, constant. Regression coefficient parameters used for generating the data are

provided in Table 3.4 below.
Table 3.4

Regression Coefficient Parameters for Data Generation in Simulation |

Regression Coefficient CE=1 CE=2 CE=3 CE=4
7t 0.405 2.197 0.405 2.197
yh 0.405 2.197 2.197 0.405

Note: Odds ratios are 1.5 for X; and X, at CE = 1, odds ratios are 9.0 for X; and X, at CE = 2; odds ratios
are 1.5 for X; and 9.0 for X, at CE = 3; and odds ratios are 9.0 for X; and 1.5 for X, at CE =4.

3.2.3 Summary of manipulated conditions for Simulation |
In summary, four levels of sample size, three levels of class separation, two levels

of mixing proportion and four sets of covariate effects are used in the experimental
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design, which results in 4 x 3 x 2 x 4 = 96 cells. Since four estimation methods are
examined under each of these cells, the total number of conditions is 96 x 4 = 384.
3.3 Simulation 11

Simulation 11 examines how well the conventional three-step approach, the one-step
ML approach, and the new three-step ML approach perform in terms of estimating
covariate effects on the latent class membership when other time-invariant covariates
enter the growth mixture as direct predictors of class trajectories. Therefore, the major
difference between Simulation | and Simulation Il in terms of data generation is that there
are more covariates in Simulation Il than in Simulation | and, instead of being linked only
to the latent class part of the model, covariates in Simulation Il are related to different
parts of the growth mixture model, which has made the measurement model more
complicated. As discussed earlier, time-invariant covariates can enter the growth mixture
model as direct predictors of the parameters of the class trajectories, and the direct effects
from the covariates to the growth factors can be class-invariant or class-specific. In the
second simulation, only direct, class-specific covariates in the growth part of the model
are considered while a third covariate affecting the latent class membership is also
included. Thus, the total number of covariates included in Simulation Il is three.
3.3.1 The data generation model

Data generation for Simulation Il is more complicated than that for Simulation |I.
First, the form of the logistic regression function is used to model the relation between
the covariate and the latent classes. Considering the model convergence issue for very

complicated models, only one categorical covariate is generated as a predictor of an
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individual being in a latent class through the multinomial logistic regression equation
given as

k k
ﬂ_ik — p(C| =k|Xi)= KeXpO/O +7/1 Xil) 1
Zexp(yoh + 71 %)

h=1

where x, is a dichotomous covariate (e.g., gender). The regression coefficient, »/,
represents the effect of the covariate x, on the log odds of membership in class k relative
to class K, and y; is the logistic regression intercept for class k relative to class K. Again,
for purposes of model identification, latent class 2 will be considered the reference class,
and then coefficients, »., and » are all fixed as 0. Therefore, the final logistic model
expressed in its logit form is:
logit (7;)=log (7; / 7°) = 1o + 11 %1

To model the relations the covariates and growth trajectories, time-invariant

covariates enter the GMM model as predictors of trajectory parameters through Equation

11. With two covariates incorporated, the associations of covariates with the growth

factors can be expressed with the Level-2 model using hierarchical notation as:

Moy = Qg + VorXai + Yo X + oy

T =04 + X + My X + 4o
where 7 is the intercept of the true change trajectory, 7\ is the linear slope of the true
change trajectory, and a, and o, represent population-average intercept and slope
parameters within class k, respectively. x, and x, are Level-2 covariates, with x, being

a dichotomous covariate defined with values corresponding to either 0 or 1 (e.g., home
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language: non-English = 0 and English=1), and X, being continuous (e.g., aptitude)
which has a standardized normal distribution with a mean of 0 and variance of 1. Class-
specific regression coefficients, ¢ , 7%, 71 and 5 indicate the relative effect of the
explanatory variables on the outcome. Specifically, y{, and y, represent the effects of
X, and X, on an individual’s specific intercept, and », and y,, are the effects of x, and
X, on an individual’s specific slope parameters. Residual error terms, ¢ and £, are
bivariate normally distributed, ¢ ~ N(0,57) and & ~ N(0,67), where o7 and o}

represent residual variances for each growth parameter, respectively, and the covariance

between them is 0.45.

A path diagram is also created for the data generation model used in Simulation |1
(see Figure 3.3), where the dashed arrows from X to 7, and 7, indicate the class-specific
covariates on the growth factors and the arrow from X to C indicates the relation between

the covariates and the latent class variable.

SR T |
Y Y, Y: Yo
6-
1 ’ 1
2 0 e
- \ n e n /

Figure 3.3. Path diagram for the data generation model for Simulation I1.

53



As was discussed earlier, to mimic the real life situation where orthogonal relations

between variables barely exist, x, x,, and X, are generated such that the strength of the
correlation between any pair of these variables is weak to moderate positive, p=0.30.

Similar to what was done in Simulation I (see Section 3.2.1), the same algorithm is used
to produce the desired correlation between a dichotomous variable and a continuous
variable in Mplus.
3.3.2 Covariate effect

Like Simulation I, covariate effect size with respect to the strength of the
association between the covariate and class membership is manipulated using odds ratio

(OR). Two levels of OR are set for x, as 1.5, and 9 to indicate small and large effect,
respectively (see, e.g., Cohen, 1988). Since x; is a dichotomous variable defined with

values of 0 and 1, an odds ratio between different covariate groups and latent classes may

be specified as:

Odds ratio = P(C =1]% =0)/p(C =2]x =0) =exp(y,).

p(C=1x=1)/p(C=2[x =1)

On the other hand, although covariate effect size with respect to the strength of the
association between the covariates and growth trajectories is not examined in this study,
it is manipulated in the way that Tofighi and Enders (2008) did in their study where
percentage of variance explained by the covariates was used for covariate effect control.
Specifically, following their example, the values of the coefficients are chosen arbitrarily
such that the covariates account for 16% of the intercept and slope variation in Class 1,
and 6% of the variation in the growth factors in Class 2. These proportions of explained

variance roughly correspond with Cohen’s (1988) effect size benchmarks in the multiple
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regression context (e.g., 6% and 14% approximate a medium and large effect size for R?
). The regression coefficient parameters used for generating the data for Simulation Il are
provided in Table 3.5, and the algorithm used for generating these regression coefficient

parameters is described in Appendix A.

Table 3.5

Regression Coefficient Parameters for Data Generation in Simulation 11

Latent Class Intercept Slope CE=1 CE=2

Class 1 7=0336  75=0.232 7 =0405  yl=2197
75»=0500  y5,=0.200

Class 2 74=0500  y3=0.200
75,=0200  ¥2=0.100

Note: Odds ratios are 1.5 for X; at CE=1and 9.0 for X; at CE = 2; regression coefficients of intercept and

slope are chosen for Class 1 such that the covariates account for 16% of the intercept and slope variation;
regression coefficients of intercept and slope are chosen for Class 2 such that the covariates account for 6%
of the variation in the growth factors.

3.3.3 Two models used for Simulation 11
Two models are used for Simulation 11: the correctly specified model and a
misspecified model. By correctly specified model, we mean that the data generation

model is used for data analysis. That is, x, is included in the latent class and x, and X,

are incorporated in the measurement part of the model. In terms of the misspecified
model, only one condition is considered where the two covariates associated with the
growth factors are not included in the data analysis.
3.3.4 Summary of manipulated conditions for Simulation Il

In sum, four levels of sample size, two levels of class separation, two levels of
mixing proportion, and two levels covariate effects on the latent class membership are
included in the second simulation design, which result in 4 x 2 x 2 x 2 = 32 cells. Since
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three estimation methods will be examined under each of these cells, and two models are
used for data analysis, the total number of conditions is 32 x 3 x 2 = 192,
3.4 Criteria for Evaluating Estimation Approaches

One might consider a method to perform well when the parameter estimates
stemming from that estimation approach are unbiased and their variation is small.
Therefore, the outcome measures to be compared in the current research include: (1)
percent relative bias in the estimates of the covariate effects, (2) variance of the covariate
effect estimates, and (3) standard error efficacy of the covariate effect estimates. In
addition, estimation convergence will be examined and monitored.

One criterion to be used for evaluating the four estimation methods will be the
percent relative bias for the covariate effect estimates. Bias is defined by the average
difference between the population-generating covariate effect value and the parameter
estimates, which is expressed as

Bias of 4, = E[0]-0

bias
where 6 is the true covariate effects (population parameter) and, E[6] is the expected
covariate estimates computed from the replicate data sets within each cell of the design.

A percent relative bias will be obtained by dividing the bias of a parameter estimate (i.e.,

estimate of a covariate effect) by the population parameter value, which is expressed as
Relative bias of 4, = [%jxmo.

Relative bias may be preferred in this situation because the magnitude of the parameter
estimates in the analyses will be on different scales and thus relative bias essentially

removes the scale of the parameter in its calculation putting the values on equal footing.
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Variance of covariate effect estimates within each cell will also be compared.
Variance is informative in that it suggests the variability of parameter estimates in the

population by examining its empirical sampling distribution and is calculated as
n 500 =<
var(9) =500 (0-0)°.
j=1

Standard error efficacy of the covariate effect estimates will be used as another

criterion for estimation method comparison, which can be obtained using

SE(6)

Standard Error Efficacy of 9 = -z,
SD, ()

where SE(9) is the square root of the mean variance of & derived from the 500

500

> (SE;(9))*

=t

replications (i.e., SE(é) = , Where SEj(é) is the standard error estimates

500

of @ for replication j), and SD, () = SD(d)- /;’%3 which is the corrected sample

standard deviation of 500 parameter estimates in a given cell. If the estimated standard
errors computed based on an approach are accurate, the ratio of SE(6) to SDl(é) should
be close to 1 (Lee, 2007; Lee, Song & Poon, 2004). It should be noted that unlike the

§SE Q) i/var,. (6)

mean of the standard error estimates (i.e., 1=

= SE(6) isan
500 500 ) ©)

unbiased estimate of the true sampling variability. This is because the standard error
estimates provided by the software programs are in fact the square root of the variances,
and although taking the square root does not result in biased variance of an estimator, this

nonlinear transformation causes a biased estimator of the population standard error.
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Going back to the standard error efficacy of the covariate effect estimates, values greater
than 1 indicate that the standard errors are overestimated, implying increase of
committing Type Il errors by the model whereas values less than 1 indicate that the
standard errors are underestimated by the model (chance of committing Type | errors).

Using the collated data for the three evaluation criteria (i.e., relative bias, parameter
estimate variance, and standard error ratio) as dependent variables, three separate
repeated measures ANOVASs will be conducted to determine the statistical significance of
the effects of the different levels of the manipulated factors in various covariate
estimation approach conditions. In the ANOVA, all conditions are treated as the fixed
effects. In summary, four main effects (i.e., sample size, degrees of class separation,
mixing proportion, and covariate effects) and their interaction terms, up to three-way
interaction, will be included in each of the three models used in this research.

In addition to test the statistical significance (i.e., a significant effect is claimed if p-

value < nominal « level), in order to determine the practical significance of the effect, an

effect

effect size index, eta-square (7°), which is defined as7* = will also be assessed.

total

An n?of 0.06 indicates a medium sized effect (see, e.g., Cohen, 1988) and will be used as

a cutoff for practical significance with smaller values denoting impractical significance.
Using the results from the factorial ANOVAs will guide which findings to focus on when
reporting the results of the simulation studies.
3.5 Two Potential Issues to Address
3.5.1 Label switching

Label switching refers to the arbitrary mismatch between estimated class

membership and generating class membership for simulated data in mixture modeling.
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Only one of the possible permutations is the correct match and others indicate an
occurrence of label switching. The occurrence of the label switching has to be detected
and mismatched class membership has to be corrected before aggregating parameter
estimates from multiple replications. Failing to match the correct class membership will
result in the incorrect evaluation of the accuracy of the parameter estimation.

Since the current study uses ML estimation via the EM algorithm for the analysis of
the growth mixture models, the label-switching issues present in Bayesian MCMC
estimation (between- and within-chains) do not exist here. However, as has been pointed
out in previous (see, e.g., McLachlan & Peel, 2000; Tueller, Drotar, & Lubke, 2011), the
class labels are arbitrary in mixture models without previous knowledge of
subpopulations. In simulation studies, parameter estimates are aggregated over
replications and from replication to replication the same classes may not be labeled the
same. It is critical to avoid aggregating parameter estimates over mislabeled classes. The
label-switching problem can be prevented by using true parameter values starting values,
making model constraints or inspecting parameter estimates after estimation. In this
study, all three procedures will be implemented. In terms of model constraints, MODEL
CONSTRAINT commands are included in the Mplus syntax. For example, if we define
i1 as intercept for Class 1, i2 as intercept for Class 2, and s1 as slope for Class 1 and s2 as
slope for Class 2, then we can add “MODEL CONSTRAINT: il <i2; sl <s2;” to the
Mplus code to make sure the labeled Class 1 does have higher intercept or slope than

Class 2.
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3.5.2 Convergence

In terms of the convergence, problems are regularly found in mixture model studies.
Since the current study only examines the parameter recovery in converged cases, low
convergence rates will undermine the evaluation of parameter recovery and subsequent
factorial analysis of variance results. The distribution of estimates from limited number
of replications might not represent the true sampling distribution of population
parameters. Unbalanced cell sizes within the factorial design may hinder the
interpretation of ANOVA results. For the two simulations, new datasets were generated
and estimated until the number of replications converged for each simulation cell reaches
500. Detailed reports of the convergence rate will be presented and discussed later in
Chapter 4.

It should be added that Mplus is flexible in terms of setting starting values, number
of random starts and final optimizations, and perturbation levels to mitigate problems
with model convergence under the EM algorithm. In both of the simulations, true
population parameters will be used as the starting values to provide efficient information
for the estimation algorithm to obtain improved model convergence. In terms of number
of random starts and number of final optimizations, the default for latent variable mixture
analysis in Mplus 7.11 (Muthén & Muthén, 2012) is 10 random sets of start values with
two solutions with the highest log-likelihoods chosen as the starting values to be iterated
until convergence is obtained or the iterative estimation is stopped due to a lack of
convergence. In Mplus syntax, the STARTS = 50 10 option will be used to change the
number of starting values in the initial stage from 10 (default) to 50 and the number of

final optimizations from 2 (default) to 10. In addition, perturbation level of the starting
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values will be changed from 5 (default) to 3. Selection of these values is made based on
findings from previous studies (see, e.g., Hipp & Bauer, 2006; Li, Harring, & Macready,

2014).

Chapter 4: Results
In this chapter the results of two Monte Carlo simulations are presented. The
results are based on 500 replications that achieved convergence to the global solution

across all estimation algorithms under investigation. Convergence rates are reported for
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both of the simulations. Then, results from the impact of using various approaches for
estimating covariate effects on the latent class membership under different manipulated
conditions are discussed separately for each of the simulations. In order to test
statistically significant effects of different methods on covariate effects estimation under
the manipulated factors, several repeated measures analyses of variance (ANOVA) were
conducted in SPSS (version 18.0). Specifically, percent relative bias, variance of the
covariate effect estimates and standard error efficacy from using various estimation
approaches were compared under the simulation conditions.

To make presentation of the results concise, a list of abbreviations of the
manipulated factors and the estimation methods is used in the tables and the graphics and

shown in Table 4.1.

Table 4.1

Abbreviations of the Manipulated Factors and the Estimation Methods

Factor Abbreviation
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Covariate Estimation Approach A

Conventional Three-step Approach Al
One-step ML Approach A2
PC Approach A3
Three-step ML Approach A4
Model M

Misspecified Model M1
Correctly Specified Model M2
Sample Size N

Latent Class Mixing Proportion MP
Class Separation CS
Covariate Effect CE

4.1 Convergence Rate

Although convergence issues were not the intended focus of this research, it is still
interesting to see how well the replications converge under the various simulated
conditions using different covariate effect estimation methods. Because the common
problems with using the EM algorithm for fitting any type of mixture model are non-
convergence or local maxima, the divergent replications in this study included
replications that failed to converge to a consistent solution or converged replications with
local maxima. The convergence rate for each condition was calculated using the first 500
replications. Proportion of properly converged replications for each of the estimation
methods were reported for each of the two simulations at the different covariate effect
sizes.
4.1.1 Convergence rate for Simulation |

Tables 4.2 — 4.5 showed the rates of converged replications for the four estimation
approaches under various simulated conditions at different levels of covariate effect. One

common observation from the four tables was that across all levels of covariate effect,
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convergence rates were 100% for all of the four estimation methods across levels of
sample size and mixing proportion when class separation was at the highest level of MD
= 3.5. It was also observed that the convergence rates for the PC approach and the three-
step ML approach were above 95% under all the 96 simulated conditions. Eighty-nine out
of 96 (92.7%) cells showed convergence rates of over 90% for the conventional three-
step method, and the convergence rates for the other 7 cells ranged from 85.6% to 89.4%.
An examination of the convergence rates for the one-step ML approach showed that the
convergence rate was as low as 49.8% at the condition of MD = 1.0, mixing proportion of

30:70, and sample size of 500 when both x, and x, had small covariate effect (see Table

4.2), and that the convergence rate under the same combined condition was 75.0% (see
Table 4.5) when covariate effect was large for x, and small for x,. The low convergence
rate of 50.6% from using the one-step ML approach was also observed in Table 4.2 at
mixing proportion of 50:50 when class separation was at MD = 1.0, sample size was 500,
and both x, and x, had small covariate effect. The low convergence rates observed in
Tables 4.2 and 4.5 suggested that compared with the other three estimation approaches,
the one-step ML approach was more sensitive to low class separation, small sample size
and the size of covariate effect from the continuous variable (i.e., X,). However, it was
also noticed in these two tables that at MD = 1.0 the convergence rates from the one-step
approach improved dramatically at both levels of mixing proportion when sample size
increased.

Table 4.2

Convergence Rate with Small Covariate Effects for both x, and x, (%)
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Class Mixing  Sample Conventional  1-Step PC 3-Step
Separation Proportion  Size 3-Step ML ML
(ANADN
1.0 30:70 500 88.0 49.8 96.4 96.4
1000 90.8 65.4 96.0 96.0
5000 96.2 97.4 96.0 96.0
10000 98.6 100 99.0 99.0
50:50 500 92.2 50.6 98.4 98.4
1000 92.6 65.8 97.2 97.2
5000 93.2 99.0 97.6 97.8
10000 96.4 100 97.2 97.2
2.0 30:70 500 99.6 94.0 99.2 99.2
1000 100 99.8 100 100
5000 100 100 100 100
10000 100 100 100 100
50:50 500 99.2 92.4 99.2 99.2
1000 100 99.4 100 100
5000 100 100 100 100
10000 100 100 100 100
3.5 30:70 500 100 100 100 100
1000 100 100 100 100
5000 100 100 100 100
10000 100 100 100 100
50:50 500 100 100 100 100
1000 100 100 100 100
5000 100 100 100 100
10000 100 100 100 100
Note: the bolded numbers are the numbers discussed in Section 4.1.1.
Table 4.3
Convergence Rate with Large Covariate Effects for both x, and x, (%)
Class Mixing  Sample Conventional  1-Step PC 3-Step
Separation Proportion  Size 3-Step ML ML
(ANAD
1.0 30:70 500 85.6 94.0 95.8 95.8
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1000 88.6 97.6 97.2 97.2

5000 93.0 100 96.6 96.6

10000 96.6 100 97.8 97.8

50:50 500 90.8 94.6 96.0 96.0
1000 92.0 99.4 94.6 94.6

5000 91.0 100 95.8 95.4

10000 94.0 100 97.6 97.6

2.0 30:70 500 99.4 99.4 99.6 99.6
1000 100 100 100 100

5000 100 100 100 100

10000 100 100 100 100

50:50 500 99.4 100 98.0 98.0
1000 100 100 99.2 99.2

5000 100 100 100 100

10000 100 100 100 100

3.5 30:70 500 100 100 100 100
1000 100 100 100 100

5000 100 100 100 100

10000 100 100 100 100

50:50 500 100 100 100 100
1000 100 100 100 100

5000 100 100 100 100

10000 100 100 100 100

Note: the bolded numbers are the numbers discussed in Section 4.1.1.

Table 4.4

Convergence Rate with Small Covariate Effect for x, and Large Covariate Effect for x,

(%)
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Class Mixing  Sample Conventional  1-Step PC 3-Step

Separation  Proportion  Size 3-Step ML ML
(MD)

1.0 30:70 500 88.0 91.2 97.2 97.2

1000 89.4 98.0 97.0 97.0

5000 95.0 100 97.4 97.6

10000 97.6 100 98.4 98.4

50:50 500 91.0 91.6 97.2 97.2

1000 93.4 98.8 98.0 98.0

5000 94.0 100 96.8 96.6

10000 96.4 100 98.0 98.2

2.0 30:70 500 99.8 100 98.4 98.4

1000 100 100 100 100

5000 100 100 100 100

10000 100 100 100 100

50:50 500 99.8 100 99.4 99.4

1000 99.8 100 100 100

5000 100 100 100 100

10000 100 100 100 100

35 30:70 500 100 100 100 100

1000 100 100 100 100

5000 100 100 100 100

10000 100 100 100 100

50:50 500 100 100 100 100

1000 100 100 100 100

5000 100 100 100 100

10000 100 100 100 100

Note: the bolded numbers are the numbers discussed in Section 4.1.1.

Table 4.5

Convergence Rate with Large Covariate Effect for x, and Small Covariate Effect for x,

(%)
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Class Mixing  Sample Conventional  1-Step PC 3-Step

Separation Proportion  Size 3-Step ML ML
(MD)

1.0 30:70 500 36.8 750 95.2 95.2

1000 86.8 89.6 95.2 95.2

5000 93.8 99.0 97.8 98.0

10000 96.2 99.8 99.4 99.4

50:50 500 91.8 83.4 96.2 96.2

1000 91.8 94.4 97.2 97.2

5000 90.6 99.6 95.8 95.6

10000 94.6 100 96.0 96.2

2.0 30:70 500 90.4 99.8 99.0 99.0

1000 100 100 100 100

5000 100 100 100 100

10000 100 100 100 100

50:50 500 99.2 98.8 98.6 98.6

1000 100 100 99.6 99.6

5000 100 100 100 100

10000 100 100 100 100

35 30:70 500 100 100 100 100

1000 100 100 100 100

5000 100 100 100 100

10000 100 100 100 100

50:50 500 100 100 100 100

1000 100 100 100 100

5000 100 100 100 100

10000 100 100 100 100

Note: the bolded numbers are the numbers discussed in Section 4.1.1.

4.1.2 Convergence rate for Simulation 11
As was mentioned earlier in Chapter 3, more covariates were incorporated in

Simulation Il than were in Simulation | and, unlike Simulation | where covariates entered
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only the latent class part of the model, one covariate in Simulation 11 was linked to latent
class membership prediction while two other covariates entered the model as direct
predictors of the parameters of the latent class growth trajectories. Also, in Simulation 11,
three instead of four estimation procedures were considered for estimation method
comparison, namely, the conventional three-step procedure, the one-step ML procedure,
and the new three-step ML procedure. In addition, two models were fitted in Simulation
I1: a misspecified model where the two covariates associated with the growth factors
were not included in the analysis and the correctly specified or the true model used for
data generation.

The convergence rates for the three estimation methods under the manipulated
conditions are presented in Tables 4.6 and 4.7. Please note that the misspecified model
was labeled as M1 and the correctly specified model was labeled as M2 in the tables. It
was observed that the proportion of converged replications for the three methods was
always lower for the misspecified model than for the correctly specified model for each
manipulated condition. It was also observed that for all three estimation approaches the
convergence rates improved for each combined condition of mixing proportion, sample
size, and covariate effect when class separation was larger under both model
specifications. For example, the convergence rate for the three-step ML approach was
71.2% for the correctly specified model under the condition of large covariate effect,
mixing proportion of 30:70 and sample size of 500 when class separation was at MD =
2.0 (see Table 4.7). When class separation became MD = 3.5, the convergence rate

increased to 99.8%. It was also observed that the convergence rates for the correctly
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specified model generally improved for all three methods at each combined condition of
class separation, mixing proportion and covariate effect when sample size increased.

A further examination of the two tables suggested that convergence rates were
affected by the size of covariate effect as well. For example, convergence rates for the
misspecified model overall increased for all of the three approaches at each combined
cell of class separation, mixing proportion and sample size when covariate effect
increased. It was also noticed that convergence rates for the one-step ML approach also
improved for the correctly specified model at each combined condition of class
separation, mixing proportion and sample size when covariate effect increased. For
example, the convergence rate for the correctly specified model at MD = 2.0, mixing
proportion of 30:70, and sample size of 500 was 85.4% with small covariate effect (see
Table 4.6), and for the same condition when covariate effect was large the convergence
rate increased to 97.8% (see Table 4.7). However, the convergence rates for the three-
step ML approach decreased for the correctly specified model at class separation of MD

= 2.0 when covariate effect related to x, increased. For example, Table 4.6 showed that

the convergence rate at MD = 2.0, mixing proportion of 30:70, and sample size of 500 for
the correctly specified model using the three-step ML approach was 79.0% when
covariate effect was small, and when covariate effect grew larger, the convergence rate

decreased to 71.2% (see Table 4.7).

Table 4.6

Convergence Rate with Small Covariate Effect for x, (%)
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Class Mixing sampl Corg\i(;rtltional 1-Step ML 3-Step ML
Separation Proportio . €p
(MD) n esize T\t M22 ML M2 ML M2
2.0 30:70 500 60.4 82.8 59.2 85.4 53.8 79.0
1000 4.4 88.2 58.6 97.4 58.2 926
5000 56.2 91.0 558 100 546 100
10000 52.6 89.4 56.2 100 51.8 100
50:50 500 70.1 90.8 59.2 81.8 528 724
1000 61.4 920 558 94.2 58.0 87.8
5000 63.6 97.0 69.2 100 52.8 100
10000 71.3 99.8 68.8 100 52.6 100
3.5 30:70 500 61.8 90.8 88.2 95.8 89.0 95.6
1000 71.8 914 964 99.2 96.8 99.2
5000 87.6 91.6 100 100 100 100
10000 96.8 97.0 100 100 100 100
50:50 500 92.0 92.8 89.4 90.8 80.8 90.6
1000 96.0 96.8 98.0 98.4 934 984
5000 98.6 98.8 100 100 100 100
10000 98.6 99.4 100 100 100 100

Note: 1 M1 is the misspecified model; 2 M2 is the correctly specified model. It is the true
model used for data generation; the bolded numbers are the numbers discussed in Section

4.1.2.

Table 4.7

Convergence Rate with Large Covariate Effect for x, (%)
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Class Mixing Conventional

1-Step ML 3-Step ML
Separation Proportio Sasmp' 3-Step P P
(MD) n €slz8 M1t M2 M1 M2 M1 M2
2.0 30:70 500 674 838 96.8 97.8 69.8 71.2

1000 79.8 85.8 98.2 98.2 626 754

5000 79.0 98.2 100 100 614 75.8

10000 75.6 100 100 100 626 774

50:50 500 70.2 822 99.0 98.6 68.4 70.2
1000 80.4 84.8 100 100 83.0 912

5000 84.6  99.8 100 100 100 97.0

10000 88.0 100 100 100 100 100

3.5 30:70 500 87.6 94.0 100 100 100  99.8
1000 90.8 994 100 100 100 100

5000 94.6 100 100 100 100 100

10000 95.2 100 100 100 100 100

50:50 500 876 972 100 100 100 9138
1000 89.6  99.8 100 100 100 100

5000 91.8 100 100 100 100 100

10000 95.6 100 100 100 100 100

Note: 1 M1 is the misspecified model; 2 M2 is the correctly specified model. It is the true
model used for data generation; the bolded numbers are the numbers discussed in Section
4.1.2.
4.2 Results of Simulation |

In Simulation 1, performance of the four covariate effect estimation procedures was
investigated under 96 simulated conditions from four levels of sample size, three levels of
class separation, two levels of latent class mixing proportions and four sets of covariate
effects. Specifically, covariate effect parameter recovery on the latent class membership
was examined and compared for the four estimation approaches in terms of relative bias,
variance of covariate effect estimates and standard error efficacy of the covariate effect

estimates. Results of the three indices are reported individually in three separate sections

using both descriptive statistics and repeated measures ANOVA analysis. Descriptive
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statistics of the three outcome indices are presented by levels of covariate effect. The
main effects and up to the three-way interaction effects from the repeated measures

ANOVA are reported only if they were identified to be both statistically significant (p-
value < .05) and had an effect size of 7* >0.06. The Huynh-Feldt correction was used

to adjust the degrees of freedom when the sphericity assumption was not met.
4.2.1 Results of percent relative bias in the covariate effect estimates

4.2.1.1 Descriptive statistics of percent relative bias
Percent relative bias measures how large the bias is relative to the true value of the

parameter. Relative bias was used in this study because it provided a measure of the
magnitude of the bias. Relative bias magnitude close to O indicated less biased parameter
estimates. The descriptive statistics of percent relative bias for each of the estimation
methods under the 96 manipulated conditions are presented in Tables 4.8 —4.11. To
facilitate interpretation, the tables are organized by levels of covariate effect. It was
observed that generally for all levels of covariate effect the magnitude of percent relative
bias tended to be closer to 0 for all estimation approaches under each combined condition
of sample size and mixing proportion when class separation increased. For example, in
Table 4.8, for the three-step ML approach, when sample size was 500 and mixing

proportion was 30:70, percent relative bias values for x, were 223.8, 63.7, and 10.9 at

MD = 1.0, MD = 2.0 and MD = 3.5 respectively. Percent relative bias values for the
covariate effect estimate for x, under the same conditions were 21.1, 5.6 and 0.8 at MD
= 1.0, MD = 2.0 and MD = 3.5 respectively. Eyeballing the four tables also suggested

that for all levels of covariate effects, the PC approach and the conventional three-step

approach tended to underestimate the covariate effects. Furthermore, generally for all
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levels of covariate effects, percent relative bias values were much closer to 0 for the one-
step ML approach and the three-step ML approach than for the PC approach or the
conventional approach at any combined level of condition, suggesting the former two
estimation approaches produced less biased parameter estimates.

Differences in percent relative bias were observed between the estimation
approaches. For example, for the one-step ML approach, at each combined condition of
mixing proportion, class separation and covariate effect, percent relative bias values were
closer to 0 for both x, and x, when sample size increased. Influence from the increase of
sample size on percent relative bias under the same combined manipulated condition was
different for the PC approach or the conventional approach from that observed with the
one-step ML method. For the PC approach, the distance between the parameter estimates
and the true values was getting larger especially at the lowest class separation level when
sample size increased. For example, Table 4.11 showed that for the PC method, at class
separation of MD = 1.0 and mixing proportion level of 30:70, the percent relative biases
for the covariate effect estimate for x, were -83.2, -85.9, -87.1 and -87.5 corresponding to
the sample size of 500, 1000, 5000, and 10000. Similarly, relative bias for the covariate
effect estimate for x, changed from -71.8 to -83.4 when sample size increased from 500
to 10000. In a similar fashion, the conventional three-step approach showed that percent
relative bias related to x; was further away from 0 at the first level of covariate effect
when sample size increased for each combined condition of mixing proportion and class
separation (see Table 4.8), although the influence from sample size was not obvious for
X, at any combined condition. It was interesting to notice that percent relative bias

values related to x, were extremely far from the desired value of O for the three-step ML
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method at the first and third levels of covariate effect (where either both covariates had
small effect or x, had small effect and x, had large effect) when class separation was as
small as MD = 1.0. For example, Table 4.8 showed that when covariate effect was small
for both x, and x, , magnitudes of percent relative bias for the three-step ML approach
were 223.8, 313.6, 336.2, and 401.0 at sample size of 500, 1000, 5000, and 10000
respectively when mixing proportion was 30:70 and class separation was at MD = 1.0.
Table 4.10 also showed that when covariate effect was small for x, and large for x,,
percent relative bias values for the three-step ML approach under the same conditions
were 357.2, 294.4, 247.2, and 75.9 for sample size of 500, 1000, 5000, and 10000
respectively. The extreme percent relative bias values observed in these two tables
suggested that the three-step ML approach was sensitive to the covariate effect size from

the dichotomous variable when class separation was poor.

Table 4.8

Percent Relative Bias with Small Covariate Effects for x, and x,

Conditions Relative Bias of 7 (%)
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Conventional

3-Step 1-Step ML PC 3-Step ML

TR beedo i % % R % A% n %
500 20:70 rIQ/ID =10 87 -563 832 277 -546 -70.1 2238 211
MD =2.0 -155 -36.8 332 -02 -350 -498 637 5.6
MD =35 3.0 -72 123 07 -32 -104 109 0.8
50:50 MD=1.0 -31.7 -59.6 920 536 -50.7 -69.4 1784 612
MD =2.0 -205 -368 237 27 -353 -473 179 37
MD =35 -2.5 57 41 15 65 90 4.4 13
1000  30:70 MD=1.0 -483 -63.2 709 534 -672 -757 3136 90.7
MD =2.0 -281 -37.0 108 34 -475 -489 353 119
MD =35 -6.0 -6.1 16 15 -100 -94 2.4 14
50:50 MD=1.0 489 -641 911 803 -659 -743 1802 -75
MD =2.0 -323 -351 58 07 -455 -484 27 03
MD =35 -6.0 62 06 08 -95 -96 0.7 0.7
5000  30:70 MD=1.0 -56.4 -63.0 593 426 -80.6 -81.0 3362 719
MD =2.0 -349  -33.9 11 09 -513 -495 202 120
MD =35 -6.6 69 05 02 -109 -105 15 0.6
50:50 MD=1.0 -61.2 -675 570 548 -79.0 -804 1120 7.7
MD =2.0 -33.7 -32 02 -04 -472 -483 -05 -01
MD =35 -5.7 -72 08 -04 -92 -106 10 -04
10000 30:70 MD =1.0 -61.9 -626 80 105 -831 -81.7 4010 167
MD =2.0 -35.5 34  -07 01 -520 -49.7 -05 0.2
MD =35 -7.3 -70 -02 -01 -116 -10.7 00 -01
50:50 MD=1.0 -62.6 -66.1 138 147 -806 -814 128 -97
MD =2.0 -334 347 09 -03 -46.7 -482 04 -03
MD =35 -6.3 -70 02 -02 -97 -103 03 -02

Note: the bolded numbers are the numbers discussed in Section 4.2.1.1.

Table 4.9

Percent Relative Bias with Large Covariate Effects for x, and x,

Conditions

Relative Bias of 7 (%)
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Conventional

3-Step 1-Step ML PC 3-Step ML
Sample  Mixing Class X, X, ¥ X, % X, ¥ X,
Size Proportion  Separation
500 30:70 MD=10 -805 -824 153 157 -853 -86.9 -6.3 -63.2
MD=20 -56.0 -59.3 6.3 50 -66.4 -69.0 -4.2 -9.6
MD=35 -155 -175 3.0 19 -221 -244 2.6 14
50:50 Mb=10 -8.7 -827 41 102 -911 -88.2 -0.1  -549
MD=20 -60.2 -56.0 2.3 26 -73.7 -68.3 7.5 -2.2
MD=35 -200 -17.2 1.2 1.1 -283 -241 1.9 0.9
1000 30:70 MbD=10 -81.2 -831 111 9.7 -84 -879 -144 -60.2
MD=20 -55.8 -58.3 24 22 -66.7 -69.0 -2.4 -3.3
MD=35 -165 -17.6 1.3 13 -232 -245 1.2 0.9
50:50 MD=10 -80.6 -803 34 27 -91.7 -89.6 561 -31.1
MD=20 -59.6 -56.0 1.0 08 -739 -68.9 8.6 -0.5
MD=35 -198 -174 05 04 -286 -24.7 1.6 0.5
5000 30:70 MD=1.0 -80.1 -825 11 0.7 -884 -89.7 -10  -44.9
MD=20 -556 -57.9 0.1 01 -669 -69.2 -0.8 -0.9
MD=35 -17.2 -182 0.1 02 -239 -251 0.2 0.1
50:50 MD=10 -811 -789 09 11 -920 -89.7 895 -20.7
MD=2.0 -59.8 -56.0 0.0 02 -740 -69.0 0.0 0.1
MD=35 -20.1 -17.7 0.0 01 -289 -25.0 0.0 0.0
10000 30:70 MbD=10 -795 -819 01 -01 -89 -90.1 -266 -318
MD=20 -555 -578 -01 -01 -66.9 -69.2 -0.5 -0.3
MD=35 -17.3 -182 -0.1 00 -239 -251 -0.1 -0.1
50:50 MD=10 -805 -824 153 157 -853 -86.9 -6.3 -63.2
MD=20 -56.0 -59.3 6.3 50 -66.4 -69.0 -4.2 -9.6
MD=35 -155 -175 3.0 19 -221 -244 2.6 14

Note: the bolded numbers are the numbers discussed in Section 4.2.1.1.

Table 4.10

Percent Relative Bias with Small Covariate Effect for x, and Large Covariate Effect for

Xy
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Relative Bias of 7 (%)

Conditions ConB\ieSr;(tai;)nal 1-Step ML PC 3-Step ML
Sampl  Mixing Class X X, X X, X, X, X X,
e Size  Proportio  Separatio
500 20:70 :\]/ID =10 -322 -818 1892 128 -57.8 -86.6 357.2 -56.8
MD=20 -204 -546 706 35 -448 -663 848 59
MD =35 06 -153 254 13 66 -220 26.2 05
50:50 MD=10 -351 -816 1402 103 -574 -857 1822 -61.0
MD=20 -26.6 -555 43.0 44 472 -65.7 414 -9.2
MD =3.5 0.6 -15.0 18.5 11 -6.4 -21.3 177 0.6
1000 30:70 MD=10 -51.1 -824 109.3 99 -735 -878 2944 -513
MD=20 -364 -53.9 35.1 11 -58.6 -66.4 473 -2.6
MD =3.5 93 -157 9.6 04 -173 -220 104 0.2
50:50 MD=10 -495 -814 70.3 82 -70.2 -86.6 2328 -48.6
MD=20 -436 -54.2 15.8 13 572 -656 143 -3.1
MD=35 -105 -15.6 4.8 10 -16.2 -211 5.0 0.6
5000 30:70 MD=10 -61.2 -78.1 22.0 08 -87.0 -884 2472 -243
MD=20 -524 -529 28 06 -695 -66.5 13 2.0
MD=35 -158 -15.3 0.0 0.2 -239 -22.0 14 0.5
50:50 MD=10 -69.4 -80.0 77 08 -845 -882 1053 -33.6
MD=20 -51.8 -53.6 -11 03 -636 -656 -20 -0.7
MD=35 -148 -15.2 -08 03 -209 -215 -05 0.3
10000 30:70 MD=10 -70.1 -76.5 10.9 05 -90.0 -889 759 -193
MD=20 -543 -53.0 -0.2 0.1 -70.8 -66.6 0.3 -0.2
MD=35 -16.1 -155 -0.1 0.0 -242 -22.2 0.2 0.0
50:50 MD=10 -736 -79.8 2.7 05 -87.0 -888 -139 -29.1
MD=20 -51.7 -535 -0.5 0.1 -634 -65.6 -1.1 -0.1
MD=35 -147 -15.3 -04 01 -20.7 -21.5 -04 0.1

Note: the bolded numbers are the numbers discussed in Section 4.2.1.1.

Table 4.11

Percent Relative Bias with Large Covariate Effect for x, and Small Covariate Effect for

Xy
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Relative Bias of 7 (%)

Conditions ConB\ieSr:(tai;mal 1-Step ML PC 3-Step ML
Sampl  Mixing Class X X, X, X, X, X, X, X,
e Size  Proportio Separatio
500 20:70 rI:/ID =10 -88.1 03 -337 303 -832 -718 -11 -85
MD=20 -506 -367 -57 48 -628 -50.6 505 43
MD=35 -104 -1.7 35 21 -16.7 -11.2 1.7 1.2
50:50 MD=10 -724 -655 7.9 442 777 -721  -17.8 -23.6
MD =20 -41.7 -426 5.2 75 -529 -545 26 -48
MD =3.5 -7.2  -10.1 2.7 0.0 -114 -143 26 04
1000 30:70 MD=10 -740 -644 -240 178 -859 -76.9 34 0.2
MD=2.0 -50.0 -36.2 -5.0 34 629 -511 426 6.3
MD =35 -12.0 -8.1 0.9 12 -180 -119 3.0 0.7
50:50 MD=1.0 -733 -68.3 46 146 -80.1 -781 -17.2 -215
MD=2.0 -405 -422 24 17 -53.0 -55.3 08 -08
MD =3.5 -8.3 9.1 0.9 0.7 -125 -135 1.0 0.5
5000  30:70 MbD=10 -737 -652 -21 25 -871 -829 57.1 388
MD=2.0 -475 -379 -3.2 06 -625 -53.0 905 3.7
MD =35 -11.7 -8.0 0.2 05 -181 -123 2.7 0.8
50:50 MD=10 -721 -716 1.8 53 -826 -835 16 -174
MD=2.0 -40.2 -425 02 -03 -534 -559 00 -0.7
MD =3.5 9.1 -9.7 -01 -01 -133 -142 -0.1 -01
10000 30:70 MD=10 -714 -63.8 2.1 12 -875 -834 259 127
MD=2.0 -455 -38.0 0.0 0.3 -621 -53.8 0.2 0.3
MD =35 -12.0 -8.4 0.0 01 -183 -12.7 0.1 0.0
50:50 MD=10 -709 -715 2.1 22 -836 -845 -173 -224
MD=2.0 -40.1 -420 0.1 0.1 -533 -555 -0.2 0.1
MD =3.5 -9.0 -9.8 -01 -04 -131 -142 -01 -04

Note: the bolded numbers are the numbers discussed in Section 4.2.1.1.
4.2.1.2 Repeated measures ANOVA results for the percent relative bias

To better understand which factors and/or combination of factors impacted percent

relative bias for the covariate effect estimates under the four estimation approaches, a

repeated measures ANOVA was utilized where percent relative bias was modeled as a
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function of the manipulated simulation conditions. It should be mentioned that in terms of
the tests of within-replications effects, the estimation approach was used as a within-
replications factor because each replicated data set was exposed to each estimation
approach in turn. As was mentioned before, results for up to 3-way interactions as well
as the main effects were assessed and are reported in Table 4.12 only if they were

identified to be both statistically significant (p-value < .05) and have an effect size of

n? >0.06 (see, e.g., Cohen, 1988, p. 283; Kohli, 2010). The sphericity assumption was
checked, and the Huynh-Feldt correction was used to adjust the degrees of freedom when
the sphericity assumption was not satisfied.

The ANOVA results presented in Table 4.12 showed that estimation approach had a
significant effect on percent relative bias of covariate effect estimates related to both x
and x, . Sample size, class separation, and covariate effect had significant main between-
replications effects on percent relative bias of covariate effect estimates for x,. None of
the between-replications factors showed significant effect in estimation accuracy related
to covariate effect of x, . It was observed that estimation approach had large effect sizes
of 7% =0.46 for x, and 7? =0.64for x,, indicating that estimation approach had a large
impact on the accuracy of covariate effect parameter estimates. An effect size of
7% =0.27 (related to x,) for the main effect of covariate effect suggested that estimation
accuracy for the dichotomous covariate effect was greatly influenced by the levels of
covariate effect manipulated. Significant two-way interaction effects for x, were
identified for A x CS (A% =0.25), N x CE (5% =0.10), and CS x CE (5? =0.28).
Interaction effects from A x CS was also found significant for relative bias related to x, (
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7% =0.20). A x CS x CE was the only significant three-way interaction effect with an
effect size of #? =0.10 and it was related to x,. No significant three-way interaction

effect was found for X, .

Table 4.12

ANOVA Results of Manipulated Factors on the Percent Relative Bias

X X,
Source F Value p-value n? F Value p-value n?

Within-Replications Effects”

A 701.257 <.001  0.46 911.395 <.001  0.64
AxCS 188.106 <.001  0.25 141512 <001  0.20
AxCS xCE 24828 <.001 0.10

Between-Replications Effects

N 28.612 <.001 0.06

CS 43.073 <.001 0.06

CE 123.824 <.001  0.27

N x CE 15.572 .003 0.10

CS xCE 63.233 <.001 0.28

Note: * the Huynh-Feldt correction was used to adjust the degrees of freedom if necessary.
A: covariate estimation approach; CS: class separation; CE: covariate effect; N: sample
size; MP: latent class mixing proportion.

For the main effects, Tukey’s HSD procedure was used for comparing pairs of
means for the main effects of sample size, class separation and covariate effects for x,,
and the means for groups in homogeneous subsets were displayed in Tables 4.13 — 4.16.

Table 4.13 showed that when sample size increased, percent relative bias of the covariate

effect estimates for x, tended to depart from O (from 1.7 to -18.7). Significant changes in

relative bias were found when sample size increased from 500 to 1000 and from 5000 to
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10000. Table 4.14 or Table 4.15 showed no consistent pattern of change in percent
relative bias across levels of either class separation or covariate effect.
Table 4.13

Pairwise Comparisons among Levels of N for Percent Relative Bias for x

. Subset
N Sample Size T > 3
1 24 1.7
2 24 -6.1
3 24 -12.0
4 24 -18.7
Table 4.14

Pairwise Comparisons among Levels of CS for Percent Relative Bias for x,

CS Sample Size 1 Subset 5

1 32 -1.8

2 32 -19.3

3 32 -5.3
Table 4.15

Pairwise Comparisons among Levels of CE for Percent Relative Bias for x

CE Sample Size I Subset >
1 24 9.0
2 24 -26.6
3 24 4.5
4 24 -22.0

Graphics were made to help to visually and directly examine the identified
significant interaction effects. As was found in the ANOVA analysis, the two-way within
by between interaction effects from A x CS had a significant effect on percent relative

bias related to both x;, and x, . A comparison of Figure 4.1 and Figure 4.2 showed clearly
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that for both x, and x,, when class separation was larger, percent relative bias from

using all estimation methods was closer to the desired value of 0, which was consistent
with what was observed earlier in the descriptive statistics. Percent relative bias values
were closest to 0 at MD = 3.5 and furthest from 0 at MD = 1.0 for all estimation
approaches. It was also observed that compared with the conventional three-step
approach (Al) and the PC approach (A3), both the one-step ML approach (A2) and the
three-step ML approach (A4) had percent relative bias values around 0 at MD = 2.0 and
MD = 3.5. It was observed in Figure 4.1 that percent relative bias for the three-step ML
approach was far away from 0 at MD = 1.0, suggesting that effect estimation for the
dichotomous covariate using the three-step ML approach was biased when class
separation was poor.

Graphics created for the significant two-way interactions for CE x N (Figure 4.3)
and CE x CS (Figure 4.4) showed how between-replications interaction effects affected
covariate effect estimate accuracy related to x, . Figure 4.3 showed no consistency in the
change of percent relative bias across the levels of covariate effect when sample size
increased, although it did show that at sample size 500 percent relative bias was closer to
0 with the increase of covariate effect levels. However, it should be noted that the change
from a lower to a higher covariate effect level did not necessarily mean the change of the
size of covariate effect. It was just a change of conditions. In this case, it simply meant

that when sample size was 500, relative bias related to x, had the largest distance away
from 0 when covariate effect was small for both x; and x,, and relative bias related to x
was closest in distance from 0 when covariate effect was large for x, and small for X, .

When covariate effect was large for both x, and x, , relative bias magnitudes related to
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x, were very close between sample sizes of 500 and 5000, and between sample sizes of
1000 and 10000. At sample size of 1000 and 10000, barely any change in percent
relative bias was observed across the levels of covariate effect. Figure 4.4 showed the
two-way interaction of CE x CS on the percent relative bias related to x,. It was
observed that for all levels of covariate effect, the percent relative biases were the largest
in terms of their absolute magnitude at MD = 1.0, and closest to 0 at MD = 3.5,
suggesting that large class separation resulted in less biased parameter estimates for any
level of covariate effect. It was also observed that at MD = 2.0 and MD = 3.5, covariate

effects for x, were underestimated for all levels of covariate effect. At MD = 1.0,
covariate effects were overestimated for x, at the first and the third level of covariate

effects and were underestimated at the second and the fourth level of covariate effects.
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related to x related to x

For the three-way interaction effect of A x CE x CS on percent relative bias of
effect covariate estimates related to x,, four two-way interaction effects of A x CS were
graphed for each level of covariate effect (see Figures 4.5 — 4.8). The figures showed that
for all levels of covariate effect when class separation grew larger, percent relative bias
from using all estimation methods was closer to the desired value of 0, and when class
separation was very large at its highest level of MD = 3.5, all estimation approaches were
at their best performance in terms of covariate effect estimate accuracy for x,. It was also
observed that compared with the conventional three-step approach and the PC approach,

when covariate effect was small for both x, and x, , or when covariate was small for x
and large for x,, the three-step ML approach lead to extreme percent relative bias values

far away from 0 at MD = 1.0, indicating that parameter estimation related to the
dichotomous covariate was severely affected for the three-step approach when class
separation was poor and covariate effect from the dichotomous variable was small.
Covariate effect estimates related to x, were more accurate for the one-step approach and
the three-step ML approach than for the other two approaches at any class separation

level when covariate effect was large for both x, and x, , or when covariate effect was

large for x;, and small for X, .
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4.2.2 Results of variance of covariate effect estimates

4.2.2.1 Descriptive statistics of variance of covariate effect estimates

Compared to bias which indicates how close on average the estimates were to the
true value, variance of covariate effect estimate suggests how much the parameter
estimates change across the sample replications. It is assumed that the decrease of one of
them is at the expense of increase of the other because variance of parameter estimates
uses the mean of the estimates for each cell instead of the true value in measuring
parameter estimate variability.

Tables 4.16 — 4.19 followed showed variances of covariate effect estimates

associated with x; and x, at the four levels of covariate effect. As expected, the results
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indicated that variances of covariate effect estimates for the conventional three-step
approach and the PC approach were generally smaller than those for the one-step ML
approach or the three-step ML approach at each combined level of sample size, mixing
proportion, class separation and covariate effect. When covariate effect was small for

both x, and x, (see Table 4.16), variance of the covariate effect estimates related to x,
ranged from 0.002 to 0.085 while for x, ranged from 0.000 to 0.019 when the
conventional three-step procedure was used. With the PC method, variance of the
covariate effect estimates ranged from 0.001 to 0.047 for x, and from 0.000 to 0.010 for
X, . It was also observed in Table 4.16 that the new three-step ML approach had the
largest range of variance from 0.002 to 32.896 for the covariate effect estimates for x, as
well as the largest range in variance from 0.001 to 58.227 for the covariate effect
estimates for x, . Variances of parameter estimates obtained using the one-step approach
when x, and x, both had small covariate effect ranged from 0.002 to 1.983 for x;, while
for x, they ranged from 0.001 to 1.778.

A similar pattern was observed in Tables 4.17 — 4.19 for the other three levels of

covariate effects related to x, and x, , which suggested that compared with the

conventional three-step approach and the PC approach, the one-step ML approach and
the three-step ML approach resulted in more variability in terms of covariate effect
estimation. Descriptive statistics in the four tables also showed that the largest variance
values were found with MD = 1.0 for any estimation approach used, meaning that when
class separation was poor, covariate effect estimation had more variability no matter

which estimation approach was used.
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Table 4.16

Variance with Small Covariate Effects for x, and x,

Variance of 7

Conditions nventional
Conventional 4 o ML PC 3-Step ML
3-Step
Sample Mixing Class X X, X, X, X, X, X, X,
Size Proportion  Separation
500 30:70 MD =1.0 0.085  0.019 1472 0.842 0.012 0.004 10.993 5.098

MD =2.0 0.039 0.012 0.088 0.026 0.020 0.006 0.2543 0.042

MD =3.5 0.049 0.012 0.060 0.013 0.047 0.010 0.059 0.013

50:50 MD =1.0 0.041 0.010 0.907 1.010 0.014 0.004 11.527  49.252

MD =2.0 0.032 0.012 0.081 0.036 0.018 0.006 0.071 0.029

MD = 3.5 0.037 0.011 0.040 0.013 0.033 0.010 0.043 0.013

1000 30:70 MD =1.0 0.024 0.008 0.644 1.265 0.006 0.002 32896  58.277
MD =2.0 0.022 0.007 0.049 0.013 0.010 0.003 0.137 0.022

MD =3.5 0.027 0.006 0.031 0.006 0.024 0.005 0.033 0.007

50:50 MD =1.0 0.020 0.007 1414 1778 0.006 0.002 9.245 0.190

MD =2.0 0.018 0.005 0.039 0.011 0.010 0.003 0.043 0.013

MD =3.5 0.019 0.005 0.022 0.006 0.018 0.005 0.022 0.006

5000 30:70 MD =1.0 0.029 0.007 1.983 1.273 0.002 0.001 10.336 0.697
MD =2.0 0.006 0.001 0.012 0.002 0.003 0.001 0.024 0.004

MD =3.5 0.005 0.001 0.006 0.001 0.005 0.001 0.007 0.001

50:50 MD =1.0 0.019 0.003 1.654 1246 0.001 0.001 4518 0.185

MD =2.0 0.004 0.001 0.005 0.001 0.001 0.000 0.005 0.001

MD =3.5 0.004 0.001 0.004 0.001 0.004 0.001 0.005 0.001

10000 30:70 MD =1.0 0.019 0.003 0.087 0.103 0.001 0.000 11.374  22.042
MD =2.0 0.003 0.001 0.006 0.001 0.001 0.000 0.008 0.001

MD =3.5 0.003 0.001 0.003 0.001 0.003 0.000 0.004 0.001

50:50 MD =1.0 0.008 0.002 0.058 0.061 0.001 0.000 1.456 0.070

MD =2.0 0.002 0.000 0.004 0.001 0.001 0.000 0.005 0.001

MD =3.5 0.002 0.000 0.002 0.001 0.002 0.000 0.002 0.001

Note: the bolded numbers are the numbers discussed in Section 4.2.2.1.

Table 4.17
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Variance with Large Covariate Effects for x, and x,

Variance of 7

Conditions Congxiesqggnal 1-Step ML PC 3-Step ML
Sample  Mixing Class X X, X, X, X, X, X, X,
Size Proportion  Separation
500 30:70 MD =1.0 0.077 0.032 3.721 3.104 0.017 0.011 21.128 0.477
MD =2.0 0.128 0.032 0539 0.233 0.041 0013 3543 0.281
MD =35 0.171  0.043 0247 0.066 0119 0.030 0997 0.082
50:50 MD =1.0 0.063 0.027 3.320 2948 0.023 0.009 17.813 0.227
MD =2.0 0.060 0.027 0.364 0.234 0.028 0.015 1.287 0.359
MD =3.5 0.089 0.042 0.119 0.061 0.067 0.029 0.141 0.075
1000 30:70 MD =1.0 0.040 0.021 2.046 1.600 0.008 0.006 15.816 0.283
MD =2.0 0.050 0.012 0.246  0.088 0.017 0.006 1.075 0.130
MD =35 0.072 0.021 0.102 0.029 0.048 0.015 0.120  0.036
50:50 MD =1.0 0.042 0.017 2127 1482 0.014 0.005 13.168 0.208
MD =2.0 0.029 0.011 0.154 0.092 0.014 0.006 0.232 0.161
MD =3.5 0.043 0.020 0.058 0.030 0.033 0.014 0.069 0.036
5000 30:70 MD =1.0 0.101 0.019 0.301 0.145 0.004 0.003 19.276  0.467
MD =2.0 0.013 0.002 0.052 0.019 0.004 0.001 0.110  0.029
MD =3.5 0.018 0.005 0.025 0.007 0.012 0.003 0.029  0.008
50:50 MD =1.0 0.021 0.009 0.145 0.120 0.004 0.003 6.918 0.238
MD =2.0 0.005 0.002 0.028 0.014 0.003 0.001 0044 0.027
MD =3.5 0.008 0.004 0.012 0.005 0.006 0.003 0.013  0.006
10000 30:70 MD =1.0 0.049 0.013 0.120 0.062 0.002 0.002 23.442 0.208
MD =2.0 0.006 0001  0.027 0.009 0.002 0001 0042 0014
MD =3.5 0.009 0.002 0.013 0.003 0.006 0.001 0.014 0.004
50:50 MD =1.0 0.018 0.007 0.066  0.053 0.003 0.002 0.911  0.209
MD =2.0 0.003 0001 0.013 0.007 0.001 0001 0021 0015
MD =3.5 0.004 0.002 0.006  0.003 0.003 0.001 0.007  0.003
Table 4.18
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Variance with Small Covariate Effect for x, and Large Covariate Effect for x,

Variance of 7

Conditions Congxiesqggnal 1-Step ML PC 3-Step ML
g?zrz Ple m:))ggg[ion (S:ézzsration & & & *2 & & & &
500 30:70 MD=1.0 0.057 0.038 1665 3781 0013 0010 17.019 0548

MD =2.0 0.039 0025 0176 0219 0016 0012 0549 0291
MD =35 0.067 0.041 0088 0057 0050 0026 0097 0.075
50:50 MD =10 0.032 0032 1108 3456 0.009 0010 9.665 0.364
MD =2.0 0.029 0028 0116 0256 0014 0015 0107 0.323
MD =35 0.048 0038 0059 0052 0039 0028 0063 0.063
1000 30:70 MD =10 0.029 0.024 0964 1864 0005 0006 14159  0.963
MD =2.0 0.023 0013 0077 0082 0009 0006 0134 0.119
MD =35 0.035 0019 0046 0025 0027 0014 0049 0.032
50:50 MD=1.0 0.026 0.020 0302 1422 0005 0006 15263 16.758
MD =2.0 0.015 0011 0052 0.087 0008 0006 0059 0.136
MD =35 0.022 0017 0033 0027 0022 0014 0036 0031
5000 30:70 MD=1.0 0.036 0018 0063 0.134 0001 0003 8458 0.281
MD =2.0 0.007 0.002 0019 0017 0002 0001 0031 0.027
MD =35 0.008 0.004 0010 0.006 0006 0003 0011  0.007
50:50 MD=1.0 0.015 0010 0041 0126 0002 0004 6493 9813
MD =2.0 0.005 0.002 0014 0013 0002 0001 0018 0.022
MD =35 0.006 0.003 0.008 0.005 0.005 0.003 0.008 0.006
10000 30:70 MD=1.0 0.012 0013 0028 0.060 0000 0001 2966 0.201
MD =2.0 0.004 0001 0011 0008 0001 0001 0015 0.013
MD =35 0.004 0.002 0006 0.003 0004 0001 0006 0.003
50:50 MD=1.0 0.007 0.007 0020 0055 0001 0003 0094 0.191
MD =2.0 0.003 0.001 0007 0007 0001 0001 0010 0012
MD =35 0.003 0.002 0004 0002 0003 0001 0004 0.003
Table 4.19
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Variance with Large Covariate Effect for x, and Small Covariate Effect for x,

Variance of 7

Conditions Congxiesqggnal 1-Step ML PC 3-Step ML
Sample  Mixing Class X X, X, X, X, X, X, X,
Size Proportion  Separation
500 30:70 MD =1.0 0.032 0.033 1416 0.730 0.026 0.004 17.348 0.255
MD =2.0 0.119 0.012 0.413 0.029 0.042 0.006 16.648  0.040
MD =35 0.131  0.013 0202 0.016 0.094 0012 0942 0.016
50:50 MD =1.0 1.257 0.021 1.945 0.506 0.027 0.003 8.891  0.092
MD =2.0 0.064 0.010 0.487 0.108 0.035 0.006 2.644  0.033
MD =35 0.071 0.012 0.087 0.015 0.058 0.011 0.101  0.015
1000 30:70 MD =1.0 2.344 0.030 1.228 0.280 0.013 0.002 16.402 0.306
MD =2.0 0.041 0.006 0.288 0.013 0.016 0.003 8.313  0.020
MD =35 0.055 0.007 0.084 0.008 0.041 0.006 0.111  0.008
50:50 MD =1.0 0.050 0.006 1.313 0.250 0.017 0.002 6.561  0.183
MD =2.0 0.027 0.005 0.114 0.014 0.016 0.003 0.223  0.016
MD =35 0.035 0.006 0.043  0.007 0.029 0.005 0.048  0.007
5000 30:70 MD =1.0 0.115 0.009 0.585 0.018 0.006 0.000 19.563 0.465
MD =2.0 0.008 0.001 0.043  0.003 0.004 0.001 11542 0.004
MD =35 0.013 0.001 0.018 0.001 0.010 0.001 0.024  0.002
50:50 MD =1.0 0.032 0.003 0.503 0.053 0.008 0.000 6.968 0.292
MD =2.0 0.005 0.001 0.018 0.002 0.003 0.000 0033 0.003
MD =35 0.006 0.001 0.007  0.001 0.005 0.001 0.008  0.002
10000 30:70 MD =1.0 0.047 0.005 0.506  0.005 0.003 0.000 11.888 0.179
MD =2.0 0.006 0.001 0.030 0.001 0002 0.000 0052 0.002
MD =35 0.007 0.001 0010 0.001 0005 0.001 0011 0.001
50:50 MD =1.0 0.017 0.003 0.219 0.010 0.006 0.001 0.674  0.012
MD =2.0 0.003 0.000 0.010 0.001 0002 0.000 0015 0.002
MD =35 0.003 0.001 0.004 0.001 0002 0.000 0004 0.001

4.2.2.2 Repeated measures ANOVA results for the variance of covariate effects estimates

As was done with percent relative bias, repeated measures ANOVA was used to
identify factors and/or combination of factors that had significant impact on the variance
of covariate effect estimates under the four estimation approaches. Variance of covariate
effect estimates was modeled also as a function of the manipulated simulation conditions.

Estimation approach was used as a within-replications variable and results for up to 3-
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way interactions as well as the main effects were assessed and reported in Table 4.20 if

they were identified to be both statistically significant (p-value < .05) and have an effect
size of ;7% >0.06. The sphericity assumption was checked, and the Huynh-Feldt

correction was considered to adjust the degrees of freedom if necessary.
The ANOVA results presented in Table 4.20 showed that estimation approach,
sample size, mixing proportion and class separation had significant main effects on

variance of covariate effect estimates related to x,. Estimation approach and class

separation had very large effect sizes of 7% =0.28 and 72 =0.57 respectively on the
effect estimate variability. Only class separation was identified as significant main effect

on variance of parameter estimates related to x, (%* =0.12). Significant two-way
interaction effects for x, were found for A x CS (5% =0.38), N x CS (#* =0.06), and

MP x CS (/% =0.06), and A x CS was also found significant for x, (#? =0.08). Only

one three-way interaction effect (A x CS x CE) related to x, was found significant with

an effect size of #? =0.15.

Table 4.20
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ANOVA Results of Manipulated Factors on the Variance of Covariate Effects Estimates

X, X,
Source F Value p-value n? F Value p- n?

Within-Replications I
AT 157593 <000 0.28
AxCS 108.551 <.000 0.38 3137 010  0.08
AxCSx CE 1981 028 0.5
Between-Replications
cS 154.636 <.000 0.57 4748 022 012
N 10.619 <000 0.06
MP 33.534 <000 0.06
N x CS 5.247 003  0.06
MP x CS 15358 <.000 0.06

Note: * the Huynh-Feldt correction was used to adjust the degrees of freedom if necessary.
A: covariate estimation approach; CS: class separation; CE: covariate effect; N: sample
size; MP: latent class mixing proportion.

Pairs of means for the main effects of sample size and class separation were
compared for the variances of covariate effect estimates using Tukey’s HSD procedure
which was not used for the main effect of mixing proportion with only two levels. Means
for groups in homogeneous subsets were displayed for the main effects of sample size
and class separation in Tables 4.21 — 4.23. It was observed in Table 4.21 that as sample
size increased, variance of effect estimate for x, grew smaller from 1.733 to 0.569.
Similarly, as class separation was larger, variance of effect estimates for x, was smaller

from 3.220 to 0.050 (Table 4.22). Table 4.23 showed that for X, , when class separation

was large at MD = 3.5, variance of parameter estimate was at the lowest value of 1.042.

Table 4.21
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Pairwise Comparisons among Levels of N for Variance of Parameter Estimates Related
to x

: Subset
N Sample Size T > 3
1 24 1.733
2 24 1.554 1.554
3 24 1.048 1.048
4 24 0.569
Table 4.22

Pairwise Comparisons among Levels of CS for Variance of Parameter Estimates Related
to X,.

Cs Ssample Size - Subset ,
1 32 3.220
2 32 0.406
3 32 0.050

Table 4.23

Pairwise Comparisons among Levels of CS for Variance of Parameter Estimates Related
to X,

CS Sample Size 1 Subset >
1 32 1.102 1.102
2 32 1.115
3 32 1.042

Graphics were created for the significant two-way interaction effects of A x CS, N
x CS and MP x CS (Figure 4.9 — Figure 4.12). Figure 4.9 showed that as MD increased,

variance of effect estimates for x, decreased for all levels of sample size. When sample
size was at 500, 1000, and 5000, variance of effect estimates related to x, was the highest

at the lowest level of class separation (i.e., MD = 1.0), and when sample size reached
10000, variances were very close to 0 at both MD = 2.0 and MD = 3.5, suggesting that
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when sample size and class separation were both large, variance of covariate effect

estimates related to x, was very close to its lower bound of 0.

It was very interesting to observe the interaction effect of class separation and
mixing proportion on the variance of covariate effect estimates for x, (see Figure 4.10).
Variance values almost overlapped around the value of O for the two mixing proportion
levels at MD = 3.5, indicating that when class separation was very large, covariate effect
estimates for x, were very stable for both latent class proportion levels. Differences in
variance between the two mixing proportion levels was observed at MD = 1.0 and MD =
2.0 where the variance is higher for mixing proportion of 30:70 than that of 50:50. It was
also noticed that when class separation was at MD = 2.0, variance of effect estimates for
¥, was closer to 0 at mixing proportion of 50:50 than for the mixing proportion of 30:70.

Effects from the two-way interactions of estimation approach and class separation
on the variance of covariate effect estimates were displayed in Figure 4.11 and Figure

4.12 for x, and x, respectively where a similar pattern was observed. As might be
expected, for both x, and x,, variance values were always close to O for all estimation

approaches at MD = 3.5. Variance values were also always close to 0 for all class
separation levels when the conventional three-step approach and the PC approach were
used, which makes sense considering their comparatively higher percent relative bias
values observed in Section 4.2.1. It was also observed that for the one-step ML method,

the covariate effect estimates for both x;, and x, were close to 0 for MD = 2.0 and MD =

3.5. For the three-step ML approach, variance of covariate effect estimates at MD = 1.0
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was very large, suggesting that parameter estimates related to both x, and x, had more

variability from using the three-step approach when class separation was very poor.
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Figures 4.13 — 4.16 depicted the three-way interaction effect of A x CS x CE on the

variance of parameter estimates related to x, . Two-way interactions of A x CS were

graphed separately for each level of covariate effect. It was observed that for all levels of

covariate effect, variances of covariate effect estimates for x, were close to 0 for the

class separation of MD = 3.5 for all estimation approaches. Also, for all levels of

covariate effect, the conventional three-step method and the PC method always showed

the lowest variance values across all class separation levels. When class separation was at



the lowest considered level of MD = 1.0, both of the one-step ML method and the three-

step ML method showed largest variance values for all levels of covariate effect,

suggesting again that these two approaches were sensitive to low class separation in

terms of variability of covariate effect estimates related to x, .
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Figure 4.13. A x CS on variance for x, at CE=1
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Figure 4.15. A x CS on variance for x, at CE=3
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Figure 4.16. A x CS on variance for x, at CE=4

4.2.3 Results of standard error efficacy of the covariate effect estimates

4.2.3.1 Descriptive statistics of the standard error efficacy of the covariate effect

estimates

Standard error efficacy of the covariate effect estimates, a standard error ratio, was

another criterion used to measure the performance of the estimation approaches. As was

mentioned earlier, a standard error efficacy value greater than 1 indicates that the



standard errors are overestimated, implying increase of making a Type Il error. On the
other than, if an efficacy value is less than 1, the standard errors are underestimated,
suggesting chance of committing a Type | error. Therefore, an efficacy value close to 1 is
desired which suggests that the estimated standard errors computed based on an approach
provide accurate estimates of the population standard errors.

Tables 4.24 — 4.27 below showed descriptive statistics in standard error efficacy for
the covariate effect estimates. It was observed that for all combined levels of sample size,

mixing proportion, and covariate effect, standard error efficacy values related to both x,
and x, were closest to 1 for all estimation approaches when class separation was at the

highest considered level of MD = 3.5. The PC approach always attained efficacy values
greater than 1 across all levels of sample size, mixing proportion and class separation,
suggesting higher probability of committing Type Il errors when the PC approach was

used.
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Table 4.24

Standard Error Efficacy with Small Covariate Effects for x, and x,

Variance of 7

Conditions Congxiesqggnal 1-Step ML PC 3-Step ML
SSue Proporio Sepratio P % W% X%
n n
500 30:70 MD = 1.0 0210 0.898 1172 0942 2735 2131 0354 0.193
MD = 2.0 1289 1.005 0940 1.351 2014 1650 1969  1.005
MD =3.5 1.085 1.004 1.059 1.026 1167 1146 1085 1.016
50:50 MD = 1.0 1324 1194 1360 0.964 23797 2238 0292 0.060
MD =20 1.225 0951 1229 1.064 1937 1528 1259 0.964
MD =3.5 1.086 0949 1107 0.947 1208 1043 1089 0.954
1000 30:70 MD = 1.0 2.093 1074 1667 0925 2923 2264 0240 0.043
MD =20 1171 0945 1184 1.040 1.957 1630 1356 0.956
MD =3.5 1.020  1.005  1.029 1.015 1147 1119 1019 1.005
50:50 MD = 1.0 2496 1188 1170 1229 2715 2297 0322  0.699
MD =2.0 1.099 0990 1.076 0.996 1776 1575 1083 0.975
MD =3.5 1061 0985  1.057 0978 1159 1082 1062 0.991
5000 30:70 MD = 1.0 1266  1.086  4.056 3.258  3.044 2356 0395 0.522
MD =20 0.987 1005 1.009 1.022 1.734 1669 0957 0.955
MD =35 1.019 1.009 1015 1.006 1130 1.124 1.022 1.006
50:50 MD = 1.0 248 1110 2480 2193 2818 2046 0396  0.462
MD =20 0985 1.011 1041 1.063 1681  1.687 1009 1.023
MD =35 0.989 1021 098 1.022 1.088 1120 0990 1.024
10000  30:70 MD = 1.0 1.069 0979 1124 1.332 2519 2429 0377 0.124
MD =2.0 0.964 1.016 0952 1.051 1629 1.679 0952  1.017
MD =35 0.960 1041 0960 1.015 1.064 1137 0960 1.039
50:50 MD = 1.0 1407 1146  1.148 1.287 2456 1717 0346 1.122
MD =20 1.012 1.030 1048 1.052 1700 1.657  1.008  1.007
MD =35 1.017 1.026 1013 1.039 1114 1134 1.020 1.036
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Table 4.25

Standard Error Efficacy with Large Covariate Effects for x, and x,

Variance of 7

Conditions Congxiesqggnal 1-Step ML PC 3-Step ML
SSue Proporio Sepratio P % W% X%
n n
500 30:70 MD = 1.0 1230 0756  1.218 1.123 2446 1415 0335 0.852
MD = 2.0 0914 0823 1319 1085 1.648 1373  0.757 0.939
MD =3.5 0.960 0996 1.004 0.987 1.203 1215 0973  0.990
50:50 MD = 1.0 1245 0793  1.266 1.261  1.979 1464 0375 0.862
MD =20 0972 0794 1141 1170 1645 1159 0570 1.076
MD =3.5 0.986 0956 1.015 0978 1185 1163 1012 1.004
1000 30:70 MD = 1.0 1516  0.663  1.249 1.246 2409 1270 0362 0.642
MD =2.0 0958 0.924 1164 1.070 1792 1434 1071 0.922
MD =3.5 1031 0993  1.069 1.026  1.304 1197 1083  1.030
50:50 MD = 1.0 1.087 0.680 1.123 1.234  1.882 1405 0432 2224
MD =20 0.964 0882 1.026 1.048 1.630 1261 0893 0.814
MD =3.5 0.987 0972 1.009 0962 1188 1172 1004 0.988
5000 30:70 MD = 1.0 0.921 0598 1.016 0.984 2076 1028 0339 0.464
MD =2.0 0.843 0951  1.008 0.944  1.665 1438 0924 0.844
MD =35 0929 0939 0957 0955 1163 1162 0961 0.962
50:50 MD = 1.0 1117 0562  1.045 1.033 1560 0.886 0511 0.504
MD =20 0.992 1019 0982 1.062 1.666 1382 0876 0.845
MD =35 1.008  1.032 1000 1.056 1208 1.226 1018 1.071
10000  30:70 MD = 1.0 0.969 0557 1.018 0962 1.895 0964 0330 2.867
MD =2.0 0.865 0959 00981 00961 1.671 1449 0899 0.883
MD =35 0915 0982 0941 0998 1144 1.211 0943 0.992
50:50 MD = 1.0 1107 0.621  1.038 1.030 1709 0974 0435 0.365
MD =20 0.954 0986 1012 1.045 1.654 1391  0.885 0.803
MD =35 0.997 0996 00962 0994 1190 1214 0978 1.003
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Table 4.26

Standard Error Efficacy with Small Covariate Effect for x, and Large Covariate Effect

for x,
Variance of 7
Conditions Cong\iesr:g;)nal 1-Step ML PC 3-Step ML
eszr?z%l m:))ggg[io (S:(Iegsasratio & & & % & & & &
n n
500 30:70 MD = 1.0 1513 0717 1307 1103 3055 1506 0343 0.752
MD = 2.0 1467 0920 1356 1139 2478 1443 0988 0937
MD =35 1180 0988 1181 1.013 1435 1262 1182 00982
50:50 MD = 1.0 1623 0726 1190 1.081 3082 1376 0394 1325
MD = 2.0 1328 0783 1282 1.045 2307 1183 3342 1226
MD =35 1163 0965 1188 0.994 1360 1159 1192 1.013
1000 30:70 MD = 1.0 2016 0689 1165 1177 3252 1394 0368 0612
MD = 2.0 1286 0912 1254 1.084 2332 1369 1343 0917
MD =35 1137 1019 1130 1.048 1351 1236 1148 1037
50:50 MD = 1.0 1383 0703 1477 1329 3114 1340 0235 0074
MD = 2.0 1269 0907 1234 0994 2158 1279 1295 0.809
MD =35 1217 1013 1117 0962 1277 1155 1112 0.993
5000 30:70 MD = 1.0 1588 0674 1121 1.035 3870 1048 1148 0.794
MD = 2.0 1050 0938 1081 0969 1982 1388 1073 0853
MD =35 1.068 0967 1065 0958 1263 1176 1088 0978
50:50 MD = 1.0 1843 0655 1114 1.061 2878 0899 0477 0.065
MD = 2.0 0993 1010 1.031 1059 1767 1392 1018 0.879
MD =35 1.008 1004 1022 1009 118 1191 1019 1.026
10000  30:70 MD = 1.0 1199 0414 1133 1.004 3452 0985 0507 0.442
MD = 2.0 0987 0938 1.008 0999 1835 1377 0988 0.884
MD =35 1.006 1000 1004 1.029 1190 1217 1011 1037
50:50 MD = 1.0 1461 0477 1087 1051 3141 0662 4241 0334
MD = 2.0 0988 0982 1013 1016 1792 1344 0995 0841
MD =35 1032 1015 1015 1.042 1188 1229 1031 1052
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Table 4.27

Standard Error Efficacy with Large Covariate Effect for x, and Small Covariate Effect

for x,
Variance of 7
Conditions Cong\iesr:g;)nal 1-Step ML PC 3-Step ML
eszr?z%l m:))ggg[io (S:(Iegsasratio & & & % & & & &
n n
500 30:70 MD = 1.0 1653 0721 1397 0940 1907 2151 0378 0.944
MD = 2.0 0850 0997 1.892 1.040 1528 1623 0473 1.004
MD =35 0980 0989 1.039 0976 1210 1105 1.163 0.992
50:50 MD = 1.0 0235 0788 1250 1.082 1714 2304 0372 0.864
MD = 2.0 0.897 1013 1423 0920 1425 1614 0529 0.992
MD =35 0966 1.000 0980 00987 1117 1109 0964 1.006
1000 30:70 MD = 1.0 0182 0638 1.828 1042 1989 2123 0405 0.952
MD = 2.0 0980 1.007 1920 1030 1721 1653 0695 0.995
MD =35 1.041 0975 1031 0968 1267 1085 1046 0981
50:50 MD = 1.0 0863 1.084 1671 1281 1602 2212 0320 0612
MD = 2.0 0960 1.032 1.040 1014 1489 1658 1177 1.005
MD =35 0960 0995 0972 0994 1106 1121 0966 1.001
5000 30:70 MD = 1.0 0861 0989 2496 1036 1634 2483 0294 0772
MD = 2.0 1010 0993 1080 1.031 1663 1724 0611 1018
MD =35 0965 0995 0981 0994 1148 1113 0965 0.996
50:50 MD = 1.0 1530 1193 1476 1282 1235 2411 0277 0334
MD = 2.0 1.001 1044 1018 1.042 1501 1729 0828 1.006
MD =35 1050 0983 1064 1.001 1209 1117 1057 0985
10000  30:70 MD = 1.0 0801 0815 4595 1197 1539 2247 0592 0452
MD = 2.0 0854 1007 0940 1.058 1627 1745 0793 1.028
MD =35 0926 1032 0939 1026 1133 1143 0936 1.039
50:50 MD = 1.0 0939 0824 1.349 1212 1176 1783 0817 1.032
MD = 2.0 0977 1046 0964 1075 1493 1724 0839 1014
MD =35 1025 1075 1026 1.095 1178 1211 1035 1.086
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4.2.3.2 Repeated measures ANOVA results for the standard error efficacy of the
covariate effect estimates

Results of the repeated measures ANOVA for the standard error efficacy of the covariate
effect estimates are presented in Table 4.28. Estimation methods and covariate effect both

had significant main effect for x, and x, . The effect sizes of estimation approach on
standard error efficacy were 7%= 0.37 and 7= 0.40 for x, and x, , respectively, and

those of covariate effects on standard error efficacy were 7?=0.22 and ;%= 0.23 for x
and x, . Class separation had a significant main effect on standard error efficacy only
related to x;. In terms of interaction effects, A x CS, A x CE, and CE x CS all had
significant effects on standard error efficacy for both x, and x, . Significant two-way
interaction effects of N x CS and N x CE on standard error efficacy were found related to
x, (7?=0.08) and x, (%= 0.11), respectively. Significant three-way interaction effect
on standard error efficacy was found for A x CE x CS for both x, and x,, and for N x

CE x CS related only to x, .
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Table 4.28

ANOVA Results of Manipulated Factors on the Standard Error Efficacy

s X Xy
ouree F Value p-value ,72 F Value p- ,72

Within-Replications
Effects?
A 118.967 .000 0.37 113.842 .000 0.40
A x CS 35.041 .000 0.22 21983 .000 0.16
A x CE 6.639 .000 0.06 7.147 .000 0.08
A x CE x CS 4.081 .000 0.08 5.697 .000 0.12
Between-Replications
Effects
CS 32.998 .000 0.26
CE 18.732 .000 0.22 19.276 .000 0.23
N x CE 3.057 021 011
N x CS 3.343 .022 0.08
CE xCS 3.743 .014 0.09 10.250 .000 0.24
N x CE x CS 2.533 .028 0.18

Note: * the Huynh-Feldt correction was used to adjust the degrees of freedom if necessary.
A: covariate estimation approach; CS: class separation; CE: covariate effect; N: sample size; MP:
latent class mixing proportion.

Tukey’s HSD procedure was used for comparing pairs of means for the main effects
of class separation and covariate effects. The means for groups in homogeneous subsets
were displayed in Tables 4.29 — 4.31. Table 4.29 showed that when sample size
increased, standard error efficacy of the covariate effect estimates for x, became closer to
the desired value of 1 from 1.431 at MD = 1.0 to 1.071 at MD = 3.5, and the decrease in
standard error efficacy values for x, was significant for all possible pairs of levels of

class separation. Table 4.30 and Table 4.31 showed that when both x, and x, had large

effect, standard error efficacy related to x, obtained values close to 1.
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Table 4.29

Pairwise Comparisons among Levels of CS for Standard Error Efficacy for x

) Subset
CS Sample Size T > 3
1 32 1.431
2 32 1.254
3 32 1.071
Table 4.30

Pairwise Comparisons among Levels of CE for Standard Error Efficacy for x

CE Sample Size 1 Subset >
1 24 1.315
2 24 1.114
3 24 1.444
4 24 1.136

Table 4.31

Pairwise Comparisons among Levels of CE for Standard Error Efficacy for x,

CE Sample Size 1 Subset >
1 24 1.155
2 24 1.036
3 24 991
4 24 1.155

Two-way interaction effects of A x CS, A x CE, and CE x CS on standard error

efficacy were graphed for x, and x, together to easily compare how these effects impact
standard error efficacy of covariate effect estimates related to x, and x, . Figures 4.17

and 4.18 showed that for all estimation approaches, standard error efficacy for both

covariates were the closest to the desired value of 1 at MD = 3.5 and the furthest from 1
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for MD = 1.0. For all levels of class separation, the PC approach showed efficacy values
furthest from 1 compared with the other three approaches. Figure 4.19 and Figure 4.20
showed that for all levels of covariate effect standard error efficacy from using the PC
approach were always larger than and much further away from 1 when compared with the
values obtained with other three approaches. In terms of two-way interaction effect of CE
x CS, Figure 4.21 and Figure 4.22 showed that when class separation was at its largest
considered level of MD = 3.5, standard error efficacy values were close to the desired
value of 1 for all levels of covariate effect. When class separation was at its lowest
considered level of MD = 1.0, standard error efficacy values were found to be further
away from 1 at covariate effect levels of 1, and 3 where either both covariates had small
effect or x, had small effect and x, had large effect size.
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Figure 4.23 and Figure 4.24 followed showed the interaction effects of N x CS
related to x, and N x CE related to x, , respectively. For the interactions of sample size
and class separation, Figure 4.23 showed that at MD = 2.0 and MD = 3.5, standard error
efficacy values related to x, decreased and tended to approach 1 when sample size was
increased. Further when class separation was at MD = 3.5 and sample size was 10000,
standard error efficacy was the closest to 1. Two-way interaction effect from sample size
and covariate effects on standard error efficacy of covariate effect estimates for x,
looked more complicated (see Figure 4.24). Standard error efficacy values seemed to be

closest to 1 at CE = 3 when sample size was 1000. At CE = 4 standard error efficacy

values were very close to each other between levels of sample size and away from 1.
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Figure 4.23. NxCS on standard error efficacy for Figure 4.24. NxCE on standard error efficacy for
X1 X2
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Figures 4.25 — 4.28 below showed the three-way interaction effect of N x CE x

CS on standard error efficacy of the covariate effect estimates related to x, by levels of

covariate effect. When class separation was at MD = 3.5, standard error efficacy values

were close to 1 for all sample sizes at all levels of covariate effect. At MD = 1.0, the

efficacy values tended to change or fluctuate a lot among levels of sample size. Efficacy

values were comparatively stable among levels of sample size for all levels of covariate

effect at MD = 2.0 and MD = 3.5, suggesting that when class separation was large,

standard error efficacy of the covariate effect estimates related to continuous variable

were close to 1.
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The three-way interaction effect of A x CE x CS on standard error efficacy related

to x, and x, was presented in four pairs of graphs by the levels of covariate effects
(Figures 4.29 — 4.36). It was observed that at CE = 1 and CE = 4, for both x, and X, , all

estimation approaches lead to standard error efficacy values close to 1 when class
separation was as large as MD = 3.5. When covariate effect was at CE = 1 (where both of
the covariate effects had small effect size) and class separation was at MD = 2.0, the
conventional three-step procedure, the one-step ML procedure and the three-step ML
procedure had standard error efficacy values closer to 1 than the PC procedure. Similarly,
when covariate effect was at CE = 2, all the estimation approaches except for the PC
method had standard error efficacy values close to 1 at MD = 3.5. When CE = 3, efficacy
values for the two covariates were very similar to each other between MD = 2.0 and MD

= 3.5 for all the estimation approaches except for the PC procedure.
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4.3 Results of Simulation 11

As was mentioned earlier in Chapter 3, Simulation Il examined how well the
conventional three-step approach, the one-step ML approach and the new three-step ML
approach performed in terms of covariate effect estimation. Since there were more
covariates in the data and these covariates entered different parts of the growth mixture
model, it would be interesting to investigate the performance of the three estimation
approaches under different model specifications. Therefore, data were analyzed with two
models, namely, a misspecified model, and the correctly specified model which was used
for data generation. The misspecified model used in the current research in fact was an
underspecified model which incorporated only one covariate (linked to the latent class
part of the model) and did not include the two covariates supposed to go into the growth

part of the model.
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In this section, results of Simulation Il are reported in the same way as was done in
Simulation I. Both descriptive statistics of outcome measures as well as results of several
repeated measures ANOVAs were presented using tables or graphs. Specifically,
descriptive statistics are provided in two tables separately for the misspecified model and
for the correctly specified model in terms of percent relative bias, variance and standard
error efficacy of the covariate effect estimates from using the three different estimation
approaches. Results of the repeated measures ANOVA were presented separately for the
three outcome measures for each of the two models.

4.3.1 Descriptive statistics of the outcome measures for the two models

Table 4.32 and Table 4.33 below showed the descriptive statistics of the three
outcome measures by the manipulated conditions for the misspecified model and the
correctly specified model respectively. An examination of the percent relative bias values
from the three estimation approaches suggested that for both models that were estimated,
the conventional three-step approach produced the most biased parameter estimates and
consistently underestimated the covariate effect across all conditions. Values of the
percent relative bias presented in Table 4.32 showed that for the misspecified model the
new three-step ML approach was closer to the desired value of 0 than the one-step ML
approach which was in turn closer to 0 than the conventional three-step approach,
suggesting that the three-step ML approach resulted in less biased parameter estimates
than the other two approaches and the conventional approach always had the poorest
covariate effect estimates. It was very interesting to notice in Table 4.33 that for the
correctly specified model, percent relative bias values were closer to O for the new three-

step ML approach than for the one-step approach at small covariate effect whereas
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percent relative bias values were closer to 0 for the one-step approach than for the three-
step ML approach at large covariate effect across all the other simulated conditions,
indicating that the three-step ML approach resulted in less biased parameter estimates
than the one-step approach when covariate effect from the dichotomous variable was
small and that the one-step approach performed better than the three-step approach when
covariate effect from the dichotomous variable was large.

In terms of variance of covariate effect estimates, Table 4.32 and Table 4.33 both
showed that for both the misspecified model and the correctly specified model, the
conventional three-step approach always resulted in the smallest variances and the new
three-step ML approach had the largest variances across all condition levels. It was also
observed that when covariate effect increased, variance of covariate effect estimates at
the same combined conditions of sample size, mixing proportion and class separation
increased across all three estimation approaches. Table 4.32 also showed that for the
misspecified model, when sample size increased at each combined level of mixing
proportion, class separation and covariate effect, variance values decreased for all three
estimation approaches. This same consistency was also observed under the one-step ML
approach for the correctly specified model.

In terms of the standard error efficacy, when compared with the desired value of 1,
for some cells the standard error efficacy values showed very large deviation from 1
when using the three-step ML approach. For example, for the misspecified model at the
sample size of 500, mixing proportion of 30:70, class separation at MD = 2.0, and large
covariate effect, standard error efficacy of the covariate effect estimation for the three-

step approach was 61.580. When sample size increased to 1000 under the same combined
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condition, standard error efficacy value was 43.718, and when sample size was further
increased to 10000, standard error efficacy value was as high as 86.585. Another
observation was that for the three-step ML approach, the correctly specified model
resulted in standard error efficacy values closer to 1 than the misspecified model at MP =

30:70 and MD = 2.0 at both covariate effect levels across all levels of sample size.
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Table 4.32

Outcome Measures for Model 1

Conditions Relative Bias (%) Variance Standard Error Efficacy

N MP  CS CE AL A2 A4 Al A2 A4 Al A2 A4
500 30:70 MD=2.0 1 = 453 .338 282 0022 0041 1223 1656 1982 8988
2 615 307 58 0071 0272 4478 1003 4302 61580

MD=35 1 = ;43 132 55 0037 0043 0045 1166 1169  1.167

2 148 21 20 0105 0159 0858 0987 1004  0.663

50:50 MD=2.0 1 = 509 .342 234 0018 0050 0055 1499 1771 1527

2 537 202 -17.3 0071 0152 1521 0858 4088  1.093

MD=35 1 = 166 -149 90 0031 0038 0039 1117 108  1.115

2 147 58 -39 0062 0080 0093 0944 0937  0.944

1000 30:70 MD=20 1 = 599 566 -208 0011 0019 0101 1589 1761  6.843
2 04 302 22 0029 0163 1849 1071 1903 43718

MD=3.5 1 = 537 30 -154 0022 0024 0027 1062 1092  1.061

2 169 50 -10 0049 0068 0113 0991 1025  0.994

50:50 MD=20 1 55 g0 -459 0008 0014 0019 1614 1724 1605

2 532 218 -140 0035 0073 0964 0813 1121  0.907

MD=35 1 = 544 246 -177 0016 0018 0019 1096 1093  1.099

2 147 60 -39 0028 0034 0043 0987 1003  0.969

5000  30:70 MD=2.0 1 57 .g49 -60.7 0005 0003 0007 1027 1997  1.728
2 574 285 278 0007 0024 1149 1005 1147  3.546

MD=35 1 = 84 283 -21.3 0005 0006 0006 0999 1003  0.998

2 174 61 22 0009 0014 0020 1001 1000  0.963

5050 MD=2.0 1  g55 862 724 0004 0003 0004 1035 1742 1584

2 51 217 -128 0211 0014 0051 0147 0985  0.705

MD=35 1 = 68 .68 -203 0004 0004 0004 1048 1036  1.047

2 148 60 -41 0006 0007 0008 0980 0982  0.972

10000 30:70 MD=2.0 1 993 90 9.2 0004 0001 0003 0858 2068  1.704
2 727 409 -27.8 0548 0012 0966 0081 1166  86.585

MD=35 1 = 594 208 -224 0003 0003 0003 0990 0979  0.992

2 178 66 -29 0005 0007 0010 0959 0949  0.936

5050 MD=2.0 1 g9, 916 -780 0002 0001 0002 0965 2115 1661

2 559 220 -133 0198 0007 0023 0107 0963 0721

MD=35 1 = 809 279 -21.6 0002 0002 0002 0996 0996  0.99

2 147 59 -40 0003 0004 0004 0962 0972  0.965

Note: A: covariate estimation approach; CS: class separation; CE: covariate effect; N: sample
size; MP: latent class mixing proportion; M1: misspecified model; M2: correctly specified model.
The bolded numbers are the numbers discussed in Section 4.3.1.
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Table 4.33

Outcome Measures for Model 2

Standard Error

. . o .
Conditions Relative Bias (%) Variance Efficacy

N MP  CS CE AL A2 A4 Al A2 A4 AL A2 Al
500 307 MD=2. 632 578 516 0014 0055 0142 19 1664 1802
918 57 102 0022 0352 3949 192 5746 5640
MD=3. 503 170 165 0021 0042 0045 19 1169 1156
826 49 90 0042 0170 0818 99 1061 1033
505 MD=2. 672 671 524 0010 0062 0070 19 1308 1687
925 08 -76 0014 0139 0964 72 1200 0655
MD=3. 543 136 62 0016 0038 0044 190 1083 1007
833 -03 -29 002 0079 0213 22 0944 0601
1000  30:7  MD=2. 744 572 560 0006 0027 0740 202 1502 0464
938 51 153 0008 0154 1718 '3 1272 7.645
MD=3. 604 70 68 0013 0023 0025 3% 1006 1076
840 20 47 0022 0071 0113 19 1016 0957
505 MD=2. 769 453 33 0005 0021 0030 2% 1385 1205
936 00 -42 0007 008 0205 L2 143 1032
MD=3. 655 39 19 0009 0018 0020 <+ 1102 1044
839 01 -02 0013 0033 0046 T2 1015 0904
5000 30:7 MD=2. 1.92

-87.7 373 312 0.001 0.004 0.010 1.656  1.379

N P NP DD FP N PFP NP DM EFEP NP NP DNNMNPEFEPEP NP NP DDDEDNNMNPEPEPDNDEPREDNDNPEPEPEDNDPR

951 28 521 0003 0028 1931 %0 1133 2075

MD=3. 756 16 15 0003 0005 0006 12 1012 1010
836 09 32 0005 0014 0019 %% 1010 o978

505 MD=2. 870 240 177 0001 0003 0004 /7 1486 1406
941 06 -11 0002 0016 0037 % o986 0772

MD=3. 749 15 13 0003 0004 0004 L2 1050 1049
823 03 -03 0003 0007 0007 L 1000 1031

1000 307 MD=2. 907 305 261 0001 0002 0004 L9 1604 1516
949 21 658 0001 0013 1115 3% 1158 2054

MD=3. 774 05 02 0002 0003 0003 ‘9 1010 1016
836 04 27 0003 0007 0009 2% o972 o972

505 MD=2. 893 187 128 0001 0001 0002 18 1621 1426
939 03 -14 0001 0007 0017 3 1002 0781

MD=3. 774 03 02 0002 0002 0002 9 1012 1020
818 01 01 0001 0004 0004 12 0980 0985

Note: A: covariate estimation approach; CS: class separation; CE: covariate effect; N: sample
size; MP: latent class mixing proportion; M1: misspecified model; M2: correctly specified model.
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4.3.2 Results of repeated measures ANOVA for Simulation |1
4.3.2.1 Repeated measures ANOVA results for the percent relative bias

A repeated measures ANOVA was used for both the misspecified model and the
correctly specified model to examine the impact of factors and/or combination of factors
on percent relative bias for the covariate effect estimate under the three estimation
approaches. Percent relative bias was modeled as functions of the manipulated factors of
estimation approach, sample size, latent class mixing proportion, class separation and
covariate effect size. Estimation approach was used as the only within-replications factor
in both the misspecified model and the correctly specified model. Results for up to 3-
way interactions as well as the main effects were reported in Table 4.34 only if they were
both statistically significant (p-value < .05) and had medium effect size of 7? >0.06
(Cohen, 1988). The sphericity assumption was checked and the Huynh-Feldt correction
was considered to adjust the degrees of freedom when the sphericity assumption was not
adequately satisfied. In addition, post hoc tests were performed for the significant main
effect with at least three groups.

The ANOVA results presented in Table 4.34 showed that except for mixing

proportion which had a significant main effect on percent relative bias for only the
correctly specified model (2 =0.06), all the other factors had significant effects on

percent relative bias of covariate effect estimates for both of the misspecified model and
the correctly specified model. More two-way interaction effects were identified
significant for the misspecified model than for the correctly specified model. For example,

significant two-way interaction effects for the misspecified model included A x MP

(A?=0.06), Ax CS (#* =0.19), A x CE (/? =0.08), N x CE (#* =0.11), and those
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for the correctly specified model included only N x CE (/2 =0.18) and CS x CE

(A% =0.11). No significant three-way interaction effect was identified in the ANOVA

analysis for either of the estimated models.

Table 4.34

ANOVA Results of Manipulated Factors on Percent Relative Bias for x;

M1 M2
Source FValue p- n? FValue p- n?

Within-Replications ' '

AT 94.049 .000  0.50 1806.783 .000  0.93

AXMP 11.036 .010  0.06

AXCS 36.332 .000  0.19

AxCE 15336  .004  0.08

Between-Replications

N~ 19.311 .018  0.08 10934 040  0.10

MP 19.100 .022  0.06

CE 170.328 .001  0.25 113.132  .002  0.33

CS 281.290 .000  0.41 40278  .008  0.12

NxCE 25285 .012  0.11 20.388  .017  0.18

CSxCE 38235  .009  0.11

Note: * the Huynh-Feldt correction was used to adjust the degrees of freedom if necessary.
A: covariate estimation approach; CS: class separation; CE: covariate effect; N: sample size; MP:
latent class mixing proportion; M1: misspecified model; M2: correctly specified model.

Tukey’s HSD procedure was used for comparing pairs of means for the main effects
of sample size for both of the models. The means for groups in homogeneous subsets
were displayed below in Table 4.35 which showed that when sample size increased,
percent relative bias of the covariate effect estimates for x, tended to depart from the
desired value of O for both of the models. Percent relative bias values decreased from -

19.1 to -36.3 for the misspecified model and decreased from -9.8 to -22.3 for the

117



correctly specified model when the sample size increased from 500 to 10000, with
significant change in relative bias found for both models when sample size increased
from 500 to 1000 and for the correctly specified model when sample size increased also
from 5000 to 10000, which suggested that covariate effect estimation was more accurate
when sample size was small. It was also observed that relative bias values were closer to
0 for the correctly specified model than for the misspecified model at each level of
sample size, suggesting that at the same sample size level, covariate effect estimates were
less biased for the correctly specified model than for the misspecified model.

Table 4.35

Pairwise Comparisons among Levels of N for Percent Relative Bias for the Two Models

Subset
N Sample Size M1 M2
1 2 1 2
1 8 -19.1 9.8
2 8 -27.8 -27.8 -16.0 -16.0
3 8 -34.5 -21.3 -21.3
4 8 -36.3 -22.3

Significant two-way interaction effects were examined using graphs presented in
Figures 4.37 — 4.42. Interaction effect on percent relative bias between estimation
approach and mixing proportion for the misspecified model was depicted in Figure 4.37
where the three-step ML approach always showed relative bias values closer to 0 at both
mixing proportion levels. When latent class mixing proportion was at 30:70 (i.e., MP = 1),
the three-step ML approach resulted in less biased covariate effect estimates than at the
mixing proportion level of 50:50, although no obvious difference in relative bias was
observed for either the conventional three-step approach or the one-step approach

between levels of mixing proportion. Figure 4.38 depicted the interaction effect of
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estimation approach and class separation on percent relative bias for the misspecified
model. It may be observed that all three estimation approaches had relative bias values
closer to 0 at class separation of MD = 3.5 than at MD = 2.0, suggesting that when class
separation increased, covariate effect estimates tended to be more accurate for any of
these estimation approaches. Figure 4.38 also showed that for the misspecified model,
percent relative bias values from using the three-step ML approach were lower than the
other two approaches at each class separation levels, and that the conventional three-step
approach always resulted in values wither larger distance from 0 than either of the other
two methods. In terms of the interaction effect between estimation approach and
covariate effect for the misspecified model, it was observed in Figure 4.39 that for all
estimation approaches examined, relative bias values were closer to 0 when covariate
effect size was large. In addition, the one-step approach lead to the least biased covariate
effect estimates at CE = 2 whereas the three-step ML approach performed best in
covariate effect estimation at CE =1. The two-way interaction effect of sample size and
covariate effect on both models were displayed in Figures 4.41 and 4.42. It looked like
percent relative bias values were closer to 0 at CE = 2 than at CE = 1 at each sample size
level for the misspecified model but closer to 0 at CE = 1 than at CE = 2 for the correctly
specified model. Also, percent relative bias magnitudes were relatively stable across all
sample size levels for both of the models at CE = 2, indicating sample size did not have
much influence on parameter estimates when covariate effect was large. Figure 4.40
showed the interaction effect between class separation and covariate effect for the
correctly specified model. Obviously, relative bias values were closer to 0 at CE = 1 at

each class separation level and, when covariate effect was large at CE = 2, percent
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relative bias values were very similar between class separation levels. In fact, both
Figures 4.40 and 4.42 showed that for the correctly specified model percent relative bias
values were closer to 0 when covariate effect was small either across class separation

levels or across levels of sample size.

—— MP=1 ce@ees MD=2.0
Estimation Approach oo MP=2 Estimation Approach — m -MD=35
0.00 T T | 0.00 T T
Al A2 Ad Al A2 &4
-10.00 -
3—10.00 r ° ___-.——’
@ @ -2000 | - -
2 2000 | :
2 -20, £ -30.00
g &
£-30.00 | £ -4000 |
g ] 4
5 = -50.00 -
& 4000 | &
-60.00 | .
-
-50.00 © 7000 *
Figure 4.37. AXMP on percent relative bias for Model 1 Figure 4.38. AxCS on percent relative bias for Model 1
—e— CE=1 —e&— CE=1
Estimation Approach -4+ CE=2 sk CE=2
0.00 - - ) 500
Al A2 A4
41000 ST n 0.00 N
2 g 8 | MD=2.0 MD=3.5
32000 | 9 =00
2 £-1000 |
E -30.00 [ E
= = -15.00 -
8 -4000 | S
5 5 -20.00 -
® 5000 ~
-25.00 ¢ B ceveercrrcnncontencencancnsansens. -
-60.00 - -30.00 -
Class Separation
Figure 4.39. AxCE on percent relative bias for Model 1 Figure 4.40. CSxCE on percent relative bias for Model 2
—— CE=1 —e—CE=1
Sample Size <o CE=2 oo feer CE=2
0.00 T T T | 15.00
N=500 N=1000 N=5000 N=10000 10.00
[, 71000 w 500 \
f -20.00 ﬁ 0.00 . . )
»(Eﬂ 2 -500 [ N=500 N=5000 N=10000
E -30.00 - i -10.00 |
§ 4000 § oo r
£ B—
-50.00 - e VROl
ool IR Re— -
-60.00 - -35.00 -
Sample Size
Figure 4.41. NxCE on percent relative bias for Model 1 Figure 4.42. NxCE on percent relative bias for Model 2

120



4.3.2.2 Repeated measures ANOVA results for the variance of the covariate effect
estimates

Following the same criteria used before for identifying significant factors and/or
combination of factors in repeated measures ANOVA analysis, all manipulated factors
showed significant main effects on variances for both the misspecified model and the
correctly specified model (see Table 4.36). While moderate two-way interaction effects
for MP x CS (/? =0.08), MP x CE (/% =0.08), and CS x CE (5? =0.09) were found
only for the correctly specified model, significant two-way interaction effects were found
for Ax N, Ax MP, A xCS, A xCE, and N x CE for both models. Significant three-way
interaction effects were identified for A x N x CE and A x CS x CE for both of the two

models. In addition, A x N x CS showed a significant three-way interaction effect

(A% =0.09) only for the misspecified model while the three-way interactions of A x MP

x CS (A% =0.07) and A x MP x CE (52 =0.07) were found significant only for the

correctly specified model.
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Table 4.36

ANOVA Results of Manipulated Factors on the Variance of Covariate Effect Estimates

M1 M2

Source F Value p-value n’ F Value p-value n?
Within-Replications
AT 401.489 <.000 0.16 67.347 <000 0.17
AxN 114277 <.000 0.14 8.273 011  0.06
AxMP 160.672 <.000 0.07 38957 <000 0.10
AXCS 298.451 <.000 0.12 45035 <000 0.12
AxCE 246.873 <.000 0.10 46.842 <000 0.12
AxNxCE 48.796  <.000 0.06 8.354 010 0.06
AxCSxCE 170571 <000 0.07 30.242 001 008
AxNxCS 70.053 <000 0.09
AxMPxCS 28.886 001 007
AxMPxCE 26.233 001 007
Between-Replications
N~ 281.726 <.000 0.17 12799 032 0.11
MP 375.695 <.000 0.08 39.275 008 0.12
CS 771.055 <.000 0.16 43.041 007 0.3
CE 813.944 <000 0.17 52.386 005  0.15
NxCE 98.751  .002  0.06 9.703 047 0.09
MPxCS 25.979 015  0.08
MPxCE 26.814 014 0.08
CSxCE 29.377 012 0.09

Note: * the Huynh-Feldt correction was used to adjust the degrees of freedom if necessary.
A: covariate estimation approach; CS: class separation; CE: covariate effect; N: sample size; MP:
latent class mixing proportion; M1: misspecified model; M2: correctly specified model.

Results of pairwise comparisons were only conducted for the main effect of
sample size which has four levels. Pairs of means for sample size for both the
misspecified model and the correctly specified model were compared using Tukey’s HSD

procedure and the results were presented in Table 4.37. The means for groups in
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homogeneous subsets suggested that for both models when sample size increased,
variance of covariate effect estimates increased.

Table 4.37

Pairwise Comparisons among Levels of N for Variance of Covariate Effect Estimates for

the Two Models

Subset
N Sample Size M1 M2
1 2 3 1 2
1 8 0.399 0.306
2 8 0.156 0.142 0.142
3 8 0.076 0.088
4 8 0.066 0.050

Figures 4.43 — 4.47 on the next page displayed all the significant two-way
interaction effects for the misspecified model. The patterns for these effects were easy to
follow. For the interaction effect of sample size and covariate effect (see Figure 4.43),
variance values decreased at both covariate effect levels when sample size increases, and
variance was larger at CE = 2 than at CE = 1 for all sample size levels. For the interaction
effect of estimation method and sample size, Figure 4.44 showed that variances of
covariate effect estimates tended to decrease for all estimation approaches when sample
size increased. The decrease in variance between sample size levels was more obvious for
the three-step ML approach than for the other approaches, and variance values seemed
close between the conventional method and the one-step method at each sample size level.
When sample size was at 10000, variance values for all the three approaches were close
to each other. Figure 4.45 — Figure 4.47 showed how the interaction effects between
estimation approach and mixing proportion, class separation or covariate effect impacted

variances of covariate effect estimates. Similar patterns may be noticed in these graphs
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where low variance values were found for all estimation approaches at MP =2, MD = 3.5,

or CE = 1. With the new three-step approach, variance values differed greatly between

levels of mixing proportion, class separation and covariate effect. In addition, the

conventional three-step approach and the one-step approach had close variance values at

and between levels of MP, CS and CE.
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For the significant two-way interaction effect found for the correctly specified
model, graphs were also created and displayed on the next page in Figures 4.48 — 4.55.
For the interaction effect of sample size and covariate effect (see Figure 4.48), the
observation was a little different from Figure 4.43 in that the decrease of variance values
corresponding to the increase of sample size was not as obvious as that was observed for
the misspecified model. However, the same interaction effect for both models did show
that variance values were large at CE = 2 for all sample size levels. Figure 4.49 and
Figure 4.50 were for the interaction effects of MP x CS and MP x CE respectively.
Variance values were small at MD = 3.5 and at CE = 1 for both mixing proportion levels.
Also, at these two factor levels, variance values seemed close between levels of mixing
proportion. The interaction effect of class separation and covariate effect (Figure 4.51)
showed that variance values were low at MD = 3.5 for both covariate effect levels, and a
large discrepancy in variance between class separation levels was found at CE = 2.
Figures 4.52 — 4.55 showed how the same within- and between-replication interaction
effects examined in the misspecified model affected variances of covariate effect
estimates under the correctly specified model, and a comparison between these figures
and the figures for the misspecified model suggested that overall all these four interaction
effects impacted variances in the same ways no matter which of the two models was

considered.
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Significant three-way interaction effects for the misspecified model were displayed
in Figures 4.56 — 4.61, and significant three-way interaction effects for the correctly
specified model were displayed in Figures 4.62 — 4.69. For the interaction effect of A x N
x CS for the misspecified model, Figures 4.56 and 4.57 showed that variance values
decreased when sample size increased for all estimation methods at both class separation
levels and that this decrease was most obvious for the three-step ML approach. It was
also observed that the conventional approach and the one-step approach were close in
variance of parameter estimates at each level of sample size. Significant three-way
interaction effects identified for both models were: A x N x CE and A x CS x CE.
Figures 4.58 and 4.59 showed the interaction effect of estimation approach and sample
size at each covariate effect level for the misspecified model. Similar graphics were also
created for the correctly specified model displayed in Figures 4.62 and 4.63. The
common observation from these two pairs of plots was that variances decreased when
sample size increased for all estimation methods at both covariate effect levels. In terms
of the interaction effect of A x CS x CE, it was observed that at both levels of covariate
effect variances were low at MD = 3.5 for all estimation methods. Also, the conventional
approach and the one-step approach had close variance values at each level of class
separation, and for the new three-step approach, variances were much smaller at MD =
3.5 at both levels of covariate effect.

Three-way interaction effects identified for the correctly specified model were
shown in Figures 4.66 — 4.69. It was observed that variances were low for all estimation

methods at MP = 2 for both class separation levels and covariate effect levels.
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4.3.2.3 Repeated measures ANOVA results for the standard error efficacy of the
covariate effect estimates

Table 4.38 below provided a listing of the ANOVA results of manipulated factors
on the standard error efficacy of the covariate effect estimates related to x,. The
identified significant factors and combination of the factors were shown for both of the
two models, and it was observed that none of the factors or combined factors was
recognized significant for the correctly specified model. For the misspecified model,
interaction effects of A x MP, A x CS, A x CE, Ax MP x CS, A x MP x CE, and A x
CS x CE are reported because they were both statistically significant (p-value < .05) and
had an effect size of 7% >0.06.
Table 4.38

ANOVA Results of Manipulated Factors on the Standard Error Efficacy for x,

M1 M2
Source F Value p-value n? F Value p-value n?

Within-Replications Effects’

A 8.433 .018 0.10
AxMP 8.560 017 0.10
AxCS 8.504 .018 0.10
AxCE 6.376 .033 0.08
AxMPxCS 8.628 017 0.10
AxMPxCE 6.564 031 0.08
AxCSxCE 6.441 .032 0.08
Between-Replications Effects

CS 10.440 .048 0.13

Note: * the Huynh-Feldt correction was used to adjust the degrees of freedom if necessary.
A: covariate estimation approach; CS: class separation; CE: covariate effect; N: sample size; MP:
latent class mixing proportion; M1: misspecified model; M2: correctly specified model.
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Six interaction effects were graphed for the misspecified model and displayed in
Figures 4.70 — 4.78. Figures 4.70 — 4.72 showed the two-way interaction effects for A x
MP, A x CS and A x CE, respectively. These three interaction effects resulted in graphs
that looked similar to each other although they involved different between-replications
factors. It was observed that standard error efficacy values were close to 1 for MP = 2,
MD = 3.5, and CE = 1 for all estimation approaches. Standard error efficacy values were
close to 1 for the conventional approach and the one-step approach for all levels of
mixing proportion, class separation, and covariate effect, and standard error efficacy

values departed substantially from 1 at MP = 1, MD = 2.0, and CE = 2 for the three-step

ML approach.
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Three-way interaction effects are presented graphically in Figures 4.73 — 4.78 for
the misspecified model. For the interaction effect of A x MP x CS, the two-way
interactions of A x MP were plotted for each CS level. Similarly, for the interaction
effect of A x MP x CE, interaction effect of A x MP were plotted for each CE level, and
A x CE were plotted for each CS level for the three-way interaction effect of A x CS x
CE. Similar to what was observed for the two-way interaction effects, the three-way
interaction effects examined the two-way interaction effects for a third factor condition. It
was observed that standard error efficacy values were close to 1 for all the estimation
approaches at MP = 2 for both levels of class separation and for both levels of covariate
effect. Efficacy values for the three-step ML approach at MP = 1 were much higher than
1, suggesting more chances of making Type Il errors with the three-step ML approach
when mixing proportion was at 30:70. However, standard error efficacy values were
close to 1 for all three estimation approaches at CE = 1 for both class separation levels. It
was observed again that standard error efficacy values were further away from the
desired value of 1 for the three-step ML approach at MP = 1 across levels of class
separation and covariate effect, and at large covariate effect across levels of class

separation.
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Chapter 5: Discussion

5.1 Discussion of the Simulation Results

The focus of the current research was on evaluating the performance of various
methods for estimating covariate effects on the latent class membership using Monte
Carlo simulations. The procedures that were compared were the conventional three-step
approach, the one-step ML approach, the PC approach, and the new three-step ML
approach for Simulation 1. The PC approach was not included in Simulation 11 because of
its poor performance observed from Simulation I. Although the two Monte Carlo
simulations both examined how well different estimation approaches performed in terms
of estimating covariate effects on the latent class membership, they differed mainly in
how the data were generated and what models were used for the data analyses.
Specifically, Simulation | examined the performance of four estimation methods under
the correctly specified measurement model (i.e., the unconditional GMM) where two
covariates related to latent class membership were included in the analysis. Simulation Il
examined the performance of three estimation methods under both the correctly specified
model as well as a misspecified model. For the correctly specified model, one covariate
entered the latent class part of the model whereas the other two covariates were
incorporated in the growth part of the model as they were generated, which made the
model more complex compared with the model used in Simulation I. In terms of the
misspecified model, data were generated under a correctly specified measurement model
but fit with a model where only the covariate linked to latent class membership entered
the analysis. This type of misspecification corresponds to real data analytic scenarios in

which practitioners may not know whether the GMM should have covariates or not, or
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what covariates should be included in the model. This misspecified model was
considered because we wanted to see how well estimation methods performed for a
misspecified model under the simulated conditions. Therefore, in Simulation 11 we were
looking at how well the investigated estimation approaches performed under the
manipulated conditions when models were becoming more complicated and when the
model was misspecified.

5.1.1 Convergence rate

Although convergence was not the focus of this research per se, it was still useful to
get an idea of how well the estimation approaches under investigation performed in terms
of converging to a consistent, local solution. Since non-convergence or multiple local
maxima are common problems with using EM algorithm for fitting finite mixture models,
the choice of an estimation method with fewer convergence issues might be the first
concern before researchers start any applied study using mixture models.

Convergence rate results from Simulation | suggested that when class separation
was very large, all estimation approaches had 100% convergence rates at each simulated
condition. Convergence rates for the PC method and the three-step ML method were
above 95% across all conditions. When class separation was as large as MD = 2.0
convergence rates for all estimation methods were high at or above 99% when sample
size was 5000 and 10000. Compared with the other three methods, the one-step approach
was more sensitive to class separation, sample size, and covariate effects. For example,
low convergence rates were observed for the one-step method when class separation was
very poor at MD = 1.0 and sample size was small when both of the covariates had small

effects or the continuous covariate has small effect. However, convergence rates
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improved greatly for the one-step approach under the worst conditions of low class
separation and low covariate effects when sample size increased to 5000, suggesting that
convergence problem for the one-step approach could be mitigated with large sample size
(e.g., 5000) under the worst condition where the continuous variable had small effect and
class separation was poor.

Results from Simulation Il showed that the convergence rates for the three
estimation methods were higher at any manipulated condition when the model used for
the analysis was correctly specified than when the model was misspecified, suggesting
that model specification might be an important factor to impact model convergence. For
the correctly specified model, the convergence rates were improved for all three
estimation methods across levels of covariate effects and mixing proportion when sample
size and class separation increased. When class separation was very large at MD = 3.5,
convergence rates were high and very close between the two models for both the one-step
and the new three-step ML approaches across other conditions. Also, when the model
was correctly specified, the convergence rates were generally higher for the one-step
method than for the three-step ML method when covariate effect was large, which
suggested again that the one-step approach is sensitive to covariate effect size. In fact, the
convergence rates were much higher for the one-step approach than for the other
approaches with both models when class separation was large.

5.1.2 Different approaches for covariate effect estimation

Performance of various approaches for estimating covariate effects on the latent

class membership was investigated under the same manipulated factors for the two

simulations. However, due to the poor performance of the PC method found in
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Simulation | and the very low convergence rates from low class separation found in a
pilot study for Simulation I1, only three estimation methods and two levels of class
separation were considered for the second simulation. In addition, because only one
covariate was related to latent class membership, only two levels of covariate effect were
manipulated in Simulation Il. Also, for the first simulation, performance of the estimation
approaches was investigated using the true model, and for the second study, both a
misspecified model and the true model were fit to the same data. For the two true models
used, we wanted to see how well the selected approaches performed in covariate effect
estimation in terms of recovery and standard error efficacy under similar manipulated
conditions when a model got more complicated. In other words, we were really interested
in knowing how the estimation methods interacted with the other manipulated factors
under each model in terms of covariate effect estimate accuracy. For the misspecified
model used in Simulation Il, we wanted to see how well the selected methods performed
in covariate effect estimation under the manipulated factors when a simple model was
used for data analyses. Therefore, in this research the estimation approaches were
examined in terms of covariate effect estimation on the latent class membership under
three different models, using both descriptive statistics and repeated ANOVAs. Percent
relative bias, variance of covariate effect estimates and standard errors of the covariate
effect estimates were used as criteria for evaluating the estimation approaches under
investigation.
5.1.2.1 Findings from Simulation |

Results of both the descriptive statistics and the repeated measures ANOVA for

Simulation | showed that estimation approach had a large impact on the accuracy of
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parameter estimates of interest. When class separation was very large, all of the four
approaches tended to have less biased parameter estimates at each combined manipulated
condition. The PC method and the conventional three-step approach lead to more biased
parameter estimates, which was consistent with previous findings by Vermunt (2010). It
was also found that covariate estimates related to both the dichotomous and the
continuous variables for the PC approach were more biased than for the conventional
three-step approach across all combined manipulated conditions. Consistent with the
findings of Asparouhov and Muthén (2013), when class separation was very large, the
one-step and the three-step ML approaches resulted in very close and more accurate
covariate effect estimates across all levels of covariate effects. It was also found that
parameter estimate related to the dichotomous covariate was severely affected by poor
class separation and small covariate effect related to the dichotomous variable when the
three-step ML approach was used. Corresponding to what was found about percent
relative bias, the one-step ML approach and the three-step ML method had more
variability in covariate effects estimation than the conventional three-step method or the
PC method, and that for all covariate effects levels, the conventional three-step method
and the PC method always showed the least variability across all class separation levels.
In terms of standard error efficacy of the covariate effect estimates, results showed that
the efficacy values for both covariates were the closest to 1 when class separation was
very large and the furthest from 1 when class separation was poor for all the estimation
methods. Standard error efficacy values greater than 1 for the PC method meant more
chances of committing Type Il errors from using this method. It was also found that when

the covariate effects were small for both auxiliary variables, all estimation approaches
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lead to standard error efficacy values close to 1 when class separation was as large as MD
= 3.5. Standard error bias from using either the conventional three-step approach or the
new three-step ML approach were close to 1 when class separation was large.

5.1.2.2 Findings from Simulation Il

Results of both the descriptive statistics and the repeated measures ANOVA for
Simulation Il indicated that for both the misspecified and the correctly specified models,
the conventional three-step approach not only consistently underestimated the covariate
effect of the variable related to the latent class membership but the parameter estimates
were the most biased.

For the misspecified model, the three-step ML approach resulted in the least biased
parameter estimates. With respect to variances, the values tended to decrease for all
estimation approaches when sample size increased, and the decrease in variance values
between sample size levels was more obvious for the three-step ML approach than for the
other approaches. It was also interesting to find that for both the misspecified model and
the correctly specified model, sample size did not have much influence on accuracy of
parameter estimates when the covariate effect was large.

In terms of parameter estimation from the misspecified model, results showed that
when class separation increased, covariate effect estimates were less biased for the one-
step ML and the three-step ML approaches but not for the conventional approach.
However, the standard error efficacy values for the conventional approach and the one-
step ML approach were much closer to 1 than the three-step ML approach when mixing
proportion was 30:70 and the dichotomous covariate had large effect, suggesting more

chances of committing Type Il errors from using the three-step ML approach under this
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condition. For the correctly specified model, the three-step ML method had the least
biased covariate effect estimates when the dichotomous covariate had small effect
whereas the one-step ML approach lead to the least biased parameter estimates when the
dichotomous has large effect. For the correctly specified model, parameter estimates from
the conventional approach were more biased when covariate effect was large. Variances
were small when sample size was large, mixing proportion was 30:70, or class separation
was very large for the correctly specified model.

The similarities between the two models make a lot of sense in that for the
misspecified model, the covariate effect estimated was related to the variable that entered
the latent class part of the model, so the misspecified model was in some sense ‘partly’
correct with missing only the information from the two other covariates that were
supposed to be incorporated into the measurement part of the model. Different from
ANOVA results of Simulation I, significant main or interaction effects on variance of
covariate effect estimates were not found for the correctly specified model, suggesting
that when a model was misspecified, many factors might affect bias and standard error
efficacy of the covariate effect, and thus, its corresponding hypothesis test.

5.2 Recommendations for Applied Researchers

Many factors may influence a researcher’s choice of a particular estimation method
used for his or her study. The following general recommendations are provided with
respect to the consideration of model convergence issues and other factors based on the
findings from the current research.

In terms of model convergence concerns, it is recommended that class separation be

examined before continuing the research. When class separation is large enough,
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convergence issues may not be a big concern for any of the estimation methods
investigated. However, with low class separation, convergence problems might occur
with any estimation approach. For example, Simulation I showed that when class
separation was poor and a continuous covariate had low effect, convergence rate for the
one-step ML approach was low except when sample size was as large as 5000,
suggesting that convergence problem for the one-step approach under the worst condition
(i.e., the continuous variable has small covariate effect and the class separation is poor)
approach could be mitigated when large sample size is used.

Model specification is another very important factor for convergence. The model
used for data analysis should take into account the theories in the related field, or when
there is not enough theory behind the proposed model, selection of a certain model could
be made by comparing fit indexes. In terms of the model selection, in a recent simulation
study, Liu and Hancock (2014) proposed the idea of using an unrestricted multivariate
normal mixture strategy to assess class enumeration. It was found that the theoretically
compelling completely unrestricted multivariate normal mixture model was superior to
the linear GMM when the nature of the growth curve was not certain and the sample size
was sufficiently large.

In addition to convergence issues, the choice of an estimation method also depends
on the accuracy of parameter estimates from using a method, which has to also take into
account the characteristics/structure of the data to be analyzed. Based on the findings
from this research, the PC method is not recommended, especially when class separation
is low. It is also recommended that when covariate effect for a categorical variable is

large, the one-step ML method might be a better choice whereas with small covariate
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effect, the three-step approach performs better in parameter estimation. It should be
reminded that large class separation is always important for more accurate parameter
estimates when the new three-step ML approach is to be used. It should also be added
that in Simulation I parameter estimates related to the dichotomous variable were
severely affected by small covariate effect from that variable for the 3-step ML approach
when class separation was poor. However, in Simulation Il it was found that the three-
step ML approach lead to less biased parameter estimates than the one-step approach
when covariate effect was small for all levels of class separation. The reason is that in
Simulation 11, levels of class separation were both large. Therefore, results from both
simulations in terms of influence of covariate effect on the three-step ML approach were
consistent.
5.3 Implications, Limitations and Future Research

The idea of the current study was stimulated by Vermunt (2010). The study is
comprehensive in that instead of looking at only LCA, we examined the approaches for
covariate effect estimation under the very complex growth mixture modeling framework.
Since as nearly every application in longitudinal research incorporates some covariate
information and applied researchers want to know how covariates help explain group
membership, it is important that the estimation of the relation between covariates and the
latent class membership is accurate when an estimation approach is used.

Like all other studies, the current research has limitations. First, in terms of the
experimental design, the manipulated conditions in this research may not generalize to all
possible real-life conditions. Second, using only replications that had converged solutions

may have impacted generalizability of the inferences drawn from the research, especially
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when convergence rates were low for some conditions. In addition, increasing the number
of iterations in order to obtain the aimed number of converged replications might have
made the results inaccurate in the current study.

Third, in terms of the models used in the study, they were not representative of all
possible models present in the real world situation in terms of model complexity or model
specification. The current research represents a step forward from previous studies by
considering more covariates of different types and by considering covariates incorporated
into the different parts of a growth mixture model. The situations manipulated in this
research were much simpler than real life situations where more often researchers might
be faced with a large number of covariates and no information was provided as to which
part of the model each covariate is supposed to enter. However, the results could be
suggestive of what may happen in these more complex situations. It should be reminded
also that the misspecified model selected for Simulation 1l was in fact an under-specified
model which did not include the information from the measurement part, which explains
why estimation methods and other manipulated factors interacted similarly between the
two models used in Simulation Il in terms of impacts on outcome measures. For Future
research, more misspecified models should be examined and significant tests should also
be conducted to see how estimation methods impact covariate effect estimation under
different model specifications.

Fourth, the current study used the converged replications across all estimation
approaches for the analyses, which means that the replications that did not converge for

any one estimation approach were not used for the other approaches. It would be
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interesting to examine why some particular replications worked for one estimation
approach but not for the others.

Fifth, results from the current research showed that the PC approach performed
poorly almost across all simulated conditions. It should be noted, however, that the
current research used only the default random draws from Mplus. It would be interesting
to see what the results are like when the number of random draws is increased.

Finally, more estimation should be explored so that the strength of association
between covariate effects and growth trajectories could be examined. With that, more
interesting research could be done to better understand how covariates are related to

different parts of a growth mixture model.
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Appendix A
Suppose X; and X, be random variables with means p; and i, variances o/, o,
and covariance o,, respectively. Let 1 and 3, be constants. The algorithm used for

growth trajectory related covariate effect control for Simulation 11 is described below:

X
Let X= (le , the covariance matrix xof X is:

2

_ B o E(X,-u,)’ E(X, —u)(X, 1)) _ o o,
T =E{(X-u)(X-u)} (E(Xl—ul)(xz—uz) E(X, —u,) j [ j

BEB= (4, ﬂz)(al “fj(ﬂ j

Oy O
2.2 2 2
= froy + BP0y + B0y, + B0,

= ﬂlzo'f + 1322522 +24,5,01,

145



References

Asparouhov, T., & Muthén, B. O. (2013). Auxiliary variables in mixture modeling: 3-step
approaches using Mplus. Retrieved from
https://www.statmodel.com/download/3stepOct28.pdf

Asparouhov, T., & Muthén, B. O. (2006). Comparison of estimation methods for complex
survey data analysis. Retrieved from
http://pages.gseis.ucla.edu/faculty/muthen/articles/Article_110.pdf

Bakk, Z., Tekle, F. B., & Vermunt, J. K. (2013). Estimating the association between
latent class membership and external variables using bias-adjusted three-step
approaches. Sociological Methodology. Advance online publication.

Doi: 10.1177/0081175012470644

Bandeen-Roche, K., Miglioretti, D. L., Zeger, S. L., & Rathouz, P. J. (1997). Latent
variable regression for multiple discrete outcomes. Journal of the American
Statistical Association, 92, 1375-1386.

Bandalos, D. L., & Leite, W. L. (2013). Use of Monte Carlo Studies in structural
equation modeling research. In G. R. Hancock & R. O. Mueller (Eds.), Structural
equation modeling: A second course (2nd ed.) (pp. 564-666). Greenwich, CT:
Information Age Publishing.

Bauer, D. J. (2007). 2004 Cattell award address: Observations on the use of growth

mixture
models in psychological research. Multivariate Behavioral Research, 42, 757-

786.

146


http://pages.gseis.ucla.edu/faculty/muthen/articles/Article_110.pdf
http://pages.gseis.ucla.edu/faculty/muthen/articles/Article_110.pdf
http://www.infoagepub.com/products/Structural-Equation-Modeling-2nd-Edition
http://www.infoagepub.com/products/Structural-Equation-Modeling-2nd-Edition

Bauer, D. J., & Curran, P. J. (2003). Over-extracting latent trajectory classes: Much ado
about nothing? Psychological Methods, 8, 384-393.

Bolck, A., Croon, M. A., & Hagenaars, J. A. P. (2004). Estimating latent structure models
with categorical variables: One-step versus three-step estimators. Political
Analysis, 12, 3-27.

Bollen, K. A., & Curran, P. J. (2006). Latent curve models: A structural equation
perspective. Hoboken, NJ: Wiley.

Brown, E. C. (2003). Estimates of statistical power and accuracy for latent trajectory
class enumeration in the growth mixture model (Unpublished doctoral
dissertation). University of South Florida, Gainesville.

Choi, J., Harring, J. R., & Hancock, G. R. (2009). Latent growth modeling for logistic
response functions. Multivariate Behavioral Research, 44, 620-645.

Clark, S., & Muthén, B. (2009). Relating latent class analysis results to variables not
included in the analysis. Retrieved from
http://www.statmodel.com/download/relatinglca.pdf

Clogg, C. C. (1995). Latent class models: Recent developments and prospects for the
future. In G. Arminger, C. C. Clogg, & M. E. Sobel (Eds.), Handbook of
statistical
modeling for the social and behavioral sciences (pp.311-352). New York, NY:
Plenum.

Codd, C. L., & Cudeck, R. (2014). Nonlinear random-effects mixture models for repeated

measures. Psychometrika, 79, 60-83.

147


http://www.unc.edu/~curran/pdfs/Bauer&Curran(2003b).pdf

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.).
Hillsdale, NJ: Lawrence Erlbaum Associates.

Colder, C. R., Campbell, R. T., Ruel, E., Richardson, J. L., & Flay, B. R. (2002). A finite
mixture model of growth trajectories of adolescent alcohol use: Predictors and
consequences. Journal of Consulting and Clinical Psychology, 70, 976-985.

Coder, C. R., Mehta, P., Balanda, K, Campbell, R. T., Mayhew, K. P., Stanton, W. R.,
Pentz, M. A., & Flay B. R. (2001). Identifying trajectories of adolescent smoking:
An application of latent growth mixture modeling. Health Psychology, 20, 127-
135.

Dayton, C. M., & Macready, G. B. (1988). Concomitant-variable latent-class models.
Journal of the American Statistical Association, 83, 173-178.

Demirtas, H., Amatya, A., & Doganay, B. (2014). BinNor: An R package for concurrent
generation of binary and normal data. Communications in Statistics-Simulation
and Computation, 43, 569-579.

Dempster, A. P., Laird, N. M, & Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), 39, 1-38.

Depaoli, S. (2013). Mixture class recovery in GMM under varying degrees of class
separation: Frequentist versus Bayesian estimation. Psychological Methods, 18,
186-219.

Dias, J. G., & Vermunt, J. K. (2008). A bootstrap-based aggregate classifier for model-

based clustering. Computational Statistics, 23, 643-659.

148



D’Unger A. V., Land, K. C., & McCall, P. L. (2002). Sex differences in age patterns of
delinquent/criminal careers: Results from Poisson latent class analyses of the
Philadelphia cohort study. Journal of Quantitative Criminology, 18, 349-375.

Ellickson, P. L., Martino, S. C., & Collins, R. L. (2004). Marijuana use from adolescence
to young adulthood: Multiple developmental trajectories and their associated
outcomes. Health Psychology, 23, 299-307.

Everitt, B. S. (1981). A Monte Carlo investigation of the likelihood ratio test for the
number of components in a mixture of normal distributions. Multivariate
Behavioral Research, 16, 171-180.

Feng, X., Shaw, D. S., & Silk, J. S. (2008). Development trajectories of anxiety
symptoms among boys across early and middle childhood. Journal of Abnormal
Psychology, 117, 32-47.

Fergusson, D. M., & Horwood, L. J. (2002). Male and female offending trajectories.
Development and Psychopathology, 14, 159-177.

Fraley, C., & Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and
density estimation. Journal of the American Statistical Association, 97, 611-631.

Goodman, L. A. (2007). On the assignment of individuals to latent classes. Sociological
Methodology, 37, 1-22.

Grimm, K. J., & Ram, N. (2009). Nonlinear growth models in Mplus and SAS. Structural
Equation Modeling, 16, 676-701.

Hagenaars, J. A. (1993). Loglinear models with latent variables. London: Sage

Publications.

149



Hancock, G. R., Harring, J. R., & Lawrence, F. R. (2013). Using latent growth models to
evaluate longitudinal change. In G. R. Hancock & R. O. Mueller
(Eds.), Structural equation modeling: A second course (2nd ed.) (pp. 307-340).
Charlotte, NC: Information Age Publishing, Inc.

Harring, J. R. (2009). A nonlinear mixed effects model for latent variables. Journal of
Educational and Behavioral Statistics, 34, 293-318.

Harring, J. R. (2012). Finite mixtures of nonlinear mixed effects models. In J. R. Harring

&G.R.

Hancock (Eds.), Advances in longitudinal methods in the social and behavioral
sciences.
Charlotte, NC: Information Age Publishing, Inc.

Heybroek, L. (2011). Life satisfaction and retirement: A latent growth mixture modeling
approach. Retrieved from
http://www.melbourneinstitute.com/downloads/conferences/HILDA_2011/HILD
All_final%?20papers/Heybroek.Lachlan_4B_fpaper.pdf

Hipp, J. R., & Bauer, D. J. (2006). Local solutions in the estimation of growth mixture

models.

Psychological Methods, 11, 36-53.

Huang, D. Y. C., Brecht, M. L., Hara, M., & Hser, Y. 1. (2010). Influences of a Covariate
on Growth Mixture Modeling. Journal of Drug Issues, 40, 173-194.

Huang, D. Y. C., Murphy, D. A., & Hser, Y. I. (2012). Developmental trajectory of
sexual risk behaviors from adolescence to young adulthood. Youth and Society,

44, 479-499.

150


http://www.melbourneinstitute.com/downloads/conferences/HILDA_2011/HILDA11_final%20papers/Heybroek.Lachlan_4B_fpaper.pdf
http://www.melbourneinstitute.com/downloads/conferences/HILDA_2011/HILDA11_final%20papers/Heybroek.Lachlan_4B_fpaper.pdf

Jo, B., Wang, C. P., & Lalongo, N. S. (2010). Using latent outcome trajectory classes in
causal inference. Stat Interface, 2, 403-412.

Jung, T., & Wickrama, K. A. S. (2008). An introduction to latent class growth analysis
and growth mixture modeling. Social and Personality Psychology Compass, 2,
302-317.

Kohli, N. (2011). Estimating unknown knots in piecewise linear-linear latent growth

mixture
models (Unpublished doctoral dissertation). University of Maryland, College

Park.

Li, L., & Hser, Y. (2011). On inclusion of covariates for class enumeration of growth
mixture models. Multivariate Behavioral Research, 46, 266-302.

Li, M., Harring, J. R., & Macready, G. B. (2014). Investigating the feasibility of using
Mplus in the estimation of growth mixture models. Journal of Modern Applied
Statistical Methods, 13, 484-513.

Liu, J. (2012). A systematic investigation of within-subject and between-subject
covariance structures in growth mixture models (Unpublished doctoral
dissertation). University of Maryland, College Park.

Liu, M., & Hancock, G. R. (2014). Unrestricted mixture models for class identification in
growth mixture modeling. Educational and Psychological Measurement.
Advance online publication. Doi:10.1177/0013164413519798

Liu, M., Hancock, G. R., & Harring, J. R. (2011). Using finite mixture modeling to deal
with systematic measurement error: A case study. Journal of Modern Applied

Statistical Methods, 10, 249-261.

151



Lubke, G. H., & Muthén, B. (2005). Investigating population heterogeneity with factor
mixture models. Psychological Methods, 10, 21-39.

Lubke, G., & Muthén, B. O. (2007). Performance of factor mixture models as a function
of model size, covariate effects, and class-specific parameters. Structural
Equation Modeling, 14, 26-47.

Lubke, G., & Neale, M. C. (2006). Distinguishing between latent classes and continuous
factors: Resolution by maximum likelihood? Multivariate Behavioral Research,
41, 499-532.

Magnusson, D. (1966). Test Theory. Reading, Mass: Addison Wesley.

Mahalanobis, P. C. (1936). On the generalized distance in statistics. Proceedings of the
National Institute of Science of India, 12, 49-55.

Mann, H. M. (2009). Testing for differentially functioning indicators using mixtures of
confirmatory factor analysis models. Unpublished doctoral dissertation,

University of
Maryland, College Park.

Masyn, K., & Brown, E. C. (April, 2001). Latent class enumeration in general growth
mixture modeling. Presented at the annual meeting of the American Educational
Research Association, Seattle, WA.

McArdle, B. H. (1988). The structural relationship: Regression in biology. Canadian
Journal of Zoology, 66, 2329-2339.

McCutcheon, A. C. (1987). Latent class analysis. Beverly Hills, CA: Sage Publications.

McDermott, S., & Nagin, D. S. (2001). Same or different?: Comparing offender groups

and covariates over time. Sociological Methods and Research, 29, 282-318.

152


http://pages.gseis.ucla.edu/faculty/muthen/articles/Article_100.pdf
http://pages.gseis.ucla.edu/faculty/muthen/articles/Article_100.pdf

Mclintosh, C. N. (2013). Pitfalls in subgroup analysis based on growth mixture models: A
commentary on van Leeuwen et al. Quality of Life Research, 22, 2625-2629.

McLachlan, G. J., & Peel, D. (2000). Finite mixture models. New York, NY: Wiley.

McLachlan, G. J., & Krishnan, T. (2008). The EM algorithm and extensions. New York,
NY: Wiley.

Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55, 107-122.

Muthén, B. O. (2001). Latent variable mixture modeling. In G. A. Marcoulides & R. E.
Schumacker (Eds.), New developments and techniques in structural equation
modeling (pp. 1-33).Mahwah, NJ: Erlbaum.

Muthén, B. O. (2003). Statistical and substantive checking in growth mixture modeling:
Comment on Bauer and Curran (2003). Psychological Methods, 8, 369-377.

Muthén, B. O. (2004). Latent variable analysis: Growth mixture modeling and related

techniques
for longitudinal data. In D. Kaplan (Ed.), Handbook of quantitative methodology

for the
social sciences (pp. 345-368). Newbury Park, CA: Sage Publications.

Muthén, B. O., & Asparouhov, T. (2012). Bayesian structural equation modeling: A more
flexible representation of substantive theory. Psychological Methods, 17, 313-
335.

Muthén, B. O., & Asparouhov, T. (2009). Growth mixture analysis: Analysis with non-
Gaussian random effects. In G. Fitzmaurice, M. Davidian, G. Verbeke, & G.
Molenberghs (Eds.), Longitudinal Data analysis (pp. 143-165). Boca Raton, FL:

Chapman & Hall/CRC Press.

153



Muthén, B. O., & Curran, P. J. (1997). General longitudinal modeling of individual
differences in experimental designs: A latent variable framework for analysis and
power estimation. Psychological Methods, 2, 371-402.

Muthén, B. O., & Mutheén, L. (2000). Integrating person-centered and variable-centered
analysis: Growth mixture modeling with latent trajectory classes. Alcoholism:
Clinical and Experimental Research, 24, 882-891.

Muthén, B. O., & Shedden, K. (1999). Finite mixture modeling with mixture outcomes

using the
EM algorithm. Biometrics, 55, 463-469.

Muthén, L. K., & Muthén, B. O. (2012). Mplus user’s guide (7" ed.). Los Angeles, CA:
Muthén & Muthén.

Nagin, D. S. (1999). Analyzing developmental trajectories: A semi-parametric, group-
based approach. Psychological Methods, 4, 139-177.

Nagin, D. S. (2005). Group-based modeling of development. Cambridge, MA: Harvard
University Press.

Nagin, D. S., Farrington, D. P., & Moffitt, T. E. (1995). Life-course trajectories of
different types of offenders. Criminology, 33, 111-139.

Nagin, D. S., & Land, K. C. (1993). Age, criminal careers, and population heterogeneity:
Specification and estimation of a nonparametric, mixed Poisson model.
Criminology, 31, 327-362.

Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of
classes in latent class analysis and growth mixture modeling: A Monte Carlo

simulation study. Structural Equation Modeling, 14, 535-569.

154



Peteras, H., & Masyn, K (2010). General growth mixture analysis with antecedents and
consequences of change. In A. Piquero, & D. Weisburd (Eds.), Handbook of
quantitative criminology. New York, NY: Springer-Verlag.

Pinquart, M., & Schindler, 1. (2007). Changes of life satisfaction in the transition to
retirement: A latent-class approach. Psychology and Aging, 22, 442-455.

Roeder, K., Lynch, K., & Nagin, D. (1999). Modeling uncertainty in latent class
membership: A
case study in criminology. Journal of the American Statistical Association, 94,
766-776.

Rolfe, M. (2010). Bayesian models for longitudinal data (Unpublished doctoral
dissertation). Queensland University of Technology.

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York, NY:
John Wiley & Sons, Inc.

Simon, M., Ercikan, K., & Rousseau, M.(2012). Introduction. In M. Simon, K. Ercikan,
& M. Rousseau (Eds), Improving large-scale assessment in education: Theory,
issues, and practice. New York, NY: Taylor and Francis Routledge.

Tofighi, D., & Enders, C. K. (2008). Identifying the correct number of classes in growth
mixture models. In Hancock, G. R. & Samuelsen, K. M. (Eds.), Advances in
latent variable mixture models. Greenwich, CT: Information Age.

Tolvanen, A. (2008). Latent growth mixture modeling: A simulation study (Unpublished

doctoral

dissertation). University of Jyvaskyla.

155



Tueller, S. J., Drotar, S., & Lubke, G. H. (2011). Addressing the problem of switched
class labels in latent variable mixture model simulation studies. Structural
Equation Modeling, 18, 110-131.

Tueller, S. J., & Lubke, G. H. (2010). Evaluation of structural equation mixture models:
Parameter estimates and correct class assignment. Structural Equation Modeling,
17, 165-192.

Van der Heijden, P. G. M., Dessens, J., & Bockenholt, U. (1996). Estimating the
concomitant variable latent class model with the EM algorithm. Journal of
Educational and Behavioral Statistics, 21, 215-229.

Vermunt, J. K. (2010). Latent class modeling with covariates: Two improved three-step
approaches. Political Analysis, 18, 450-469.

Wang, C. P., Brown, C. H., & Bandeen-Roche, K. (2005). Residual diagnostics for

growth
mixture models: Examining the impact of preventive intervention on multiple
trajectories of aggressive behavior. Journal of the American Statistical
Association, 100, 1054-1076.

Wang, M., & Bodner, T. E. (2007). Growth mixture modeling: Identifying and predicting
unobserved subpopulations with longitudinal data. Organizational Research

Methods, 10,

635-656.
Willett, J. B., Singer, J. D., & Martin, N. C. (1998). The design and analysis of

longitudinal studies of development and psychopathology in context: Statistical

156



models and methodological recommendations. Development and
Psychopathology, 10, 395-426.
Yang, M., & Dunson, D. B. (2010). Bayesian semiparametric structural equation models

with latent variables. Psychometrika, 75, 675-693.

157



