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The asymptotic exit problems for diffusion processes with small parameter

were considered in the classic work of Freidlin and Wentzell. In 2000, a math-

ematical theory of stochastic resonance for systems with random perturbations

was established by Freidlin in the frame of the large deviation theory.

This dissertation concerns exit problems and stochastic resonance for a class

of random perturbations approximating white noise. The tools used in the proofs

are the large deviation theory and the Markov property of the processes. The

first problem considered is the exit problem and stochastic resonance for random

perturbations of random walks. It turns out that a specific random walk can be

chosen which approximates the large deviation asymptotics of the Wiener pro-

cess in the best way. Analogous results concerning exit problems and stochastic

resonance for this type of random perturbations were obtained under appropri-

ate assumptions and compared with those of white noise type perturbation. The



second problem I consider is the exit problems for random perturbations of a

Gaussian process ηµ,ε
t which satisfies the equation µη̇µ,ε

t = −ηµ,ε
t +

√
εẆt, η

µ,ε
0 =

y, 0 < µ << 1, 0 < ε << 1. One can check that
∫ t

0
ηµ,ε

s ds converges to
√
εWt

uniformly on [0, T ] in probability as µ ↓ 0. Results concerning asymptotic exit

problems for this type of random perturbation were obtained under appropriate

assumptions. Since ηµ,ε
t is not a Markov process, this creates some difficulties for

the proof. A new Markov process was constructed and the Markov property of

the new process was used in the proof.
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Chapter 1

Introduction and a Review of Large

Deviations

1.1 Introduction

This thesis is concerned with exit problems and stochastic resonance caused by

random perturbations of dynamical systems. If a non-perturbed system has

several asymptotically stable equilibrium points (or attracting compacts), the

perturbed system could make transitions between the equilibrium points (or at-

tracting compacts) in large time intervals. This could cause stochastic resonance.

Two important tools are used in the proofs. First, the asymptotics of probabil-

ities of large deviations allows the analysis of the long time behavior of random

processes. In general, a large deviation principle can be described by an action

functional. A review of large deviation theory will be given in §1.2. Second, the

property of Markov processes plays an important role in the proof of the main

results concerning exit problems and stochastic resonance.

Over the last two decades, stochastic resonance has continuously attracted
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considerable attention. The models with stochastic resonance and its modifica-

tions are used in various areas of physics, chemistry, neurophysiology and engi-

neering. We mention here a famous model, initially suggested in [1] and [2], as

an example exploiting stochastic resonance (see [4]). Let the time evolution of

the “earth temperature”, denoted by Xε
t , be described by the following equation:

Ẋε
t = −B′

(Xε
t ) + f(t/T ) +

√
εẆt, Xε

0 = x ∈ R1, 0 < ε << 1. (1.1)

Here the potential B(x) has two wells, lim|x|→∞B(x) = ∞, f(t) is a 1-periodic

function, T = T (ε) is a large parameter for 0 < ε << 1 and Ẇt is a standard

white noise.

If ε = 0, the solution of the equation cannot be transferred from one well to

another because the periodic term f(t/T ) has a small amplitude. The trajectory

may have small oscillations near the bottom of the well containing the initial

point, but it stays inside the well forever. If ε > 0 but f ≡ 0, the solution of the

equation will make transitions between the wells. The transition times, say τ ε
12

and τ ε
21, are random variables and there is no periodicity in the transitions. If both

terms f(t/T ) and
√
εẆt are included in the equation, the trajectory of Xε

t , under

certain relations between ε and T (ε), will be close in an appropriate topology to

a periodic function of large period T (ε). This explains the phenomenon of large

amplitude periodicity of the earth’s temperature and this effect is called stochastic

resonance.

A survey of applications of stochastic resonance is given by L. Gammaitoni,

P.Hanggi and P. Jung in [3]. About 500 papers are cited in [3]. In many papers

the main tools used to study stochastic resonance are digital or analog simula-

tions. However, there were no papers where a satisfactory mathematical theory

of stochastic resonance was given until the publication of paper [4] by Freidlin. In
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[4], a mathematical theory of stochastic resonance is established in the framework

of a large deviation theory.

Let us recall some results from [4]. Consider a dynamical system in Rd:

Ẋt = b(Xt), X0 = x ∈ Rd. (1.2)

Here b(x) = (b1(x), . . . , bd(x)) is a vector field in Rd and b(x) is Lipschitz con-

tinuous. Assume for brevity that the system has a finite number of asymptotic

stable equilibrium points K1, . . . , Kl. Each trajectory of (1.2), besides the tra-

jectories belonging to the separatrix surfaces, is attracted to one of the points Ki

as t → ∞. Let i(x) be the index such that the trajectory starting at x ∈ Rd is

attracted to Ki(x).

Now consider the system with a small additive white noise type perturbation,

Ẋε
t = b(Xε

t ) +
√
εσ(Xε

t )Ẇt, Xε
0 = x ∈ Rd, 0 < ε� 1, (1.3)

where Ẇt is a standard d-dimensional white noise and σ(x) is a d × d matrix.

Notice that Xε
t is a Markov process.

To analyze the qualitative behavior of the perturbed system in large time in-

tervals, the action functional for the family of processesXε
t , denoted by ε−1SX

[0,T ](ϕ),

is introduced. The physical meaning of the action functional is that exp{ε−1SX
[0,T ](ϕ)}

is, roughly speaking, the main term of the probability that Xε
t , 0 < t ≤ T , be-

longs to a small neighborhood of a function ϕ : [0, T ] → Rd as ε ↓ 0.

From the action functional, one can introduce a function V (x, y):

V (x, y) = inf
ϕ∈C0T (Rr)

{SX
[0,T ](ϕ) : ϕ0 = x, ϕT = y, T > 0}.

In particular, if b(x) is of potential-type and σ(x) is a unit matrix, then V (x, y)

can be expressed through the potential.
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Define Vij = V (Ki, Kj), where Ki and Kj are the stable equilibrium points

of the field b(x), i, j ∈ {1, ..., l}. Using the numbers Vij, a hierarchy of cycles

can be constructed and it defines the sequence of transition of Xε
t between the

stable equilibrium points as ε ↓ 0: Cycles of rank 0 are the equilibrium states

L = {1, . . . , l} themselves. For each i ∈ L, define “the closest” j = J(i) ∈ L such

that Vij = mink∈L\{i} Vik. Such a closest state is unique in the generic system.

Starting from any i ∈ L, one can consider the sequence i, J(i), J2(i), . . . , Jn(i), . . .

where Jn+1(i) = J(Jn(i)). Since L is finite, the sequence, starting from some

m ∈ L, is periodic: i, J(i), . . . , Jn−1(i), Jn(i) → Jn+1(i) → . . . , Jm(i) = Jn(i).

This sequence i, J(i), . . . , Jn−1(i), Jn(i) → Jn+1(i) → . . . , Jm(i) = Jn(i) is called

the cycle of rank 1 (1-cycle) generated by the state i ∈ L. From any 1-cycle C,

one can define a 1-cycle which follows C. The 1-cycles form cycles of second rank

(2-cycles). The second rank cycles form 3-cycles. Since L is finite, a hierarchy

of cycles up to rank m∗ can be constructed so that the m∗-cycles contain all the

stable equilibrium points of L. The values of Vij together with the hierarchy of

cycles define, for each cycle, a rotation rate, an exit rate and a main state. In

the generic case, all of these notions are defined in a unique way.

The exit rate of a cycle gives the asymptotics (non-random) of the logarithms

of the transition times from this cycle to the next closest cycle. The rotation rate

characterizes the rate of convergence to the sub-limiting distribution inside the

cycle. The main state m∗ = M(C) of a cycle C defines the attracting point such

that Xε
t spends most of its time in the basin of Km∗ until it leaves the basin of

∪i∈CKi. Notice that the hierarchy of cycles and the main states are not random

although the transitions between the stable points are caused by the random

perturbations.
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Let T = T (ε) be a large parameter such that limε↓0 ε lnT (ε) = λ > 0. Let

Xε
0 = x ∈ Rd not belong to a separatrix. For any λ > 0, except for a finite

number of values, there exists a cycle C such that for any α > 0, Xε
t will come

into the basin of ∪i∈CKi before time αT (ε) with probability close to 1 as ε ↓ 0.

However, Xε
t does not have enough time to leave that basin before the time

AT (ε), α < A < ∞ with probability close to 1 as ε ↓ 0. Moreover, the rotation

time for the cycle C is o(T (ε)) as ε ↓ 0, so thatXε
tT (ε), 0 < t ≤ A <∞, approaches

the sub-limiting distribution concentrated at Kµ(x,λ) as ε ↓ 0, where µ(x, λ) is the

main state of the cycle C.

The state Kµ(x,λ) is called the metastable state. Such a metastable state is

unique in the generic system In general, the metastable state depends on λ and

x. For any A > 0, Xε
t spends most of its time around the state Kµ(x,λ) in the

time interval [0, AT (ε)] with probability close to 1 as ε ↓ 0.

Let Λ(G) be the Lebesgue measure of a set G ⊂ R1 and let ρ(., .) be the

Euclidean metric in Rr. Under appropriate assumptions, for any δ > 0 and

A > 0,

Λ{t ∈ [0, A] : ρ(Xε
tT (ε), Kµ(x,λ)) > δ} → 0

in Px probability as ε→ 0.

Now consider a system where the characteristics of the system and its pertur-

bations are changing slowly in time:

Ẋε
t = b(t/T,Xε

t ) +
√
εσ(t/T,Xε

t )Ẇt, Xε
0 = x ∈ Rd, 0 < ε << 1. (1.4)

Here T = T (ε) � eλ/ε, λ > 0, is a large parameter as ε ↓ 0 so that the coefficients

of (1.4) are changing very slowly. Therefore, the positions of the equilibrium

points Ki(t) as well as their number now depend on time. The numbers Vij(t)
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and the function µt(x, λ) also depend on time. This implies the trajectory Xε
tT (ε)

first approaches the metastable state for the system with frozen dependence on

time, and then evolves together with the metastable state. Therefore, the process

Xε
tT (ε), 0 < t < A <∞, will be close to a function Φ(t) = Φ(t, x, λ) = Kt

µ(x,λ).

Now, let b(t, x) and σ(t, x) be 1-periodic in t. Furthermore, suppose that the

unperturbed system has only a finite number of stable equilibrium points. Then

Φ(t) is also periodic. Thus, the trajectory of Xε
tT (ε) will be close to a periodic

function as ε ↓ 0. This effect is called stochastic resonance.

In this thesis, we are especially interested in the following problems:

1. Let n ≥ 1 be a fixed integer. We replace Wt in (1.3) by a random walk

ξδ
t and let σ be the unit matrix. In the case d = 1, the random walk ξδ,1

t , t ∈

Nδ = {0, δ, ...kδ, ...}, can jump to 0,±
√
δ, . . . ,±n

√
δ such that ξδ,1

t+δ−ξ
δ,1
t = ±i

√
δ

with probability 1
2
pi, i = 1, . . . , n. The probability that ξδ,1

t jumps to 0 is p0 and

p0 + p1 + . . . + pn = 1. It can be shown that, using the same idea as in [7], the

random walk ξδ,1
t converges when δ ↓ 0 and

∑n
i=1 i

2pi = 1 to a one-dimensional

Wiener process Wt uniformly on [0, T ] with probability 1. The random walk

ξδ
t = (ξδ,1

t , ..., ξδ,d
t ), t ∈ Nδ, on a d-dimensional lattice Zd√

δ
(
√
δ is the step of the

lattice), with components independent and identically distributed, converges to

a d-dimensional Wiener process as δ ↓ 0 and
∑n

i=1 i
2pi = 1.

Such a replacement is, roughly speaking, equivalent to replacing the differ-

ential equation by an appropriate difference equation. For convenience, one can

construct a continuous and time non-homogeneous process Xδ,ε
t based on the dif-

ference equation. It is of interest to study the asymptotic behavior of Xδ,ε
t as

δ, ε ↓ 0. In 2002, the case when n = 1 was discussed by Freidlin in [6]. A large
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deviation principle for the family of processes Xδ,ε
t , as δ, ε ↓ 0, δ/ε = µ2 = O(1),

was established in an explicit way in [6]. It turns out it is related to but different

from those in the case of white noise. Exit problems and stochastic resonance

are also discussed briefly in [6].

In this thesis, we construct a continuous, time non-homogeneous process

Xδ,ε
t , t ∈ [0, T ] as in [6]. For t = kδ where k is an integer and t ∈ [0, T ], Xδ,ε

t is

defined by the following equation:

Xδ,ε
t+δ −Xδ,ε

t =

∫ t+δ

t

b(Xδ,ε
s )ds+

√
ε(ξδ

t+δ − ξδ
t ), X

δ,ε
0 = x. (1.5)

For t ∈ [kδ, (k + 1)δ], Xδ,ε
t is defined as the linear function connecting the points

Xδ,ε
kδ and Xδ,ε

(k+1)δ. It can be shown that Xδ,ε
t converges to Xε

t uniformly on [0, T ]

in probability when δ ↓ 0 and
∑n

i=1 i
2pi = 1.

However, the large deviations for Xδ,ε
t are different from those in the case of

white noise. In §2.1, the action functional for the family of processes Xδ,ε
t , 0 ≤

t ≤ T , as δ, ε ↓ 0, δ/ε = µ2 = O(1) in the uniform topology is established. The

parameters p0, . . . , pn are chosen so that the action functional for this type of

perturbation approximates the action functional for the white-noise-type pertur-

bation in the best way. The tools used in the proof are the limit theorem on large

deviations for Markov processes ([8]) and the contraction principle ([5]).

In §2.2, we describe the exit problem of the process Xδ,ε
t from a bounded do-

main, as δ, ε ↓ 0, δ/ε = µ2. The case when δ, ε ↓ 0, δ/ε = o(1) is also considered.

Results regarding exit problems for Xδ,ε
t are obtained following the ideas of The-

orems 4.2.1 and 4.4.1 of [5] in which exit problems for Xε
t as ε ↓ 0 are described.

In §2.3, we formulate results concerning stochastic resonance for Xδ,ε
t following

the same idea as in [4]. An example for n = 2 is given in §2.4.

2. In Chapter 3, we study the large deviation principle and exit problem
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for another type of random perturbation approximating white noise. Consider

a mean-zero Gaussian process ηµ,ε
t . Here ηµ,ε

t = (ηµ,ε,1
t , ..., ηµ,ε,d

t ), t ∈ [0, T ], with

each component identically and independently distributed, satisfying

µη̇µ,ε
t = −ηµ,ε

t +
√
εẆt, η

µ,ε
0 = y ∈ Rd.

Here Wt is a standard d-dimensional Wiener process and µ is a positive constant.

This process ηµ
t is called the Ornstein-Uhlenbeck process. Now, let us replace

√
εẆt in (1.3) with ηµ,ε

t and let σ be a unit matrix. Then (1.3) becomes

Ẋµ,ε
t = b(Xµ,ε

t ) + ηµ,ε
t , Xµ,ε

0 = x ∈ Rd. (1.6)

It is of interest to consider the exit problem for Xµ,ε
t as µ, ε ↓ 0. We want

to formulate the results of exit problems for Xµ,ε
t following the same ideas as

Theorems 4.2.1 and 4.4.1 of [5], where properties of Markov processes plays an

important role in the proofs. However, since Xµ,ε
t is not a Markov process, we

should consider the 2d-dimensional Markov process (Xµ,ε
t , ηµ,ε

t ) in the proof, where
Ẋµ,ε

t = b(Xµ,ε
t ) + ηµ,ε

t ,

µη̇µ,ε
t = −ηµ,ε

t +
√
εẆt,

Xµ,ε
0 = x ∈ Rd, ηµ,ε

0 = y ∈ Rd, 0 < ε� 1.

(1.7)

In §3.1, we establish a large deviation principle for the family of processes

(Xµ,ε
t , ηµ,ε

t ) as ε ↓ 0. In §3.2, we describe the exit problem for the processes Xµ,ε
t

from a bounded domain as µ, ε ↓ 0 under appropriate assumptions. Although we

follow the same ideas of Theorems 4.2.1 and 4.4.1 of [5], we underline that the

proof needs some modification. A detailed proof is given in §3.2.
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1.2 A Review of Large Deviations

The large deviation principle for stochastic processes is an essential tool used

to analyze the long time behavior of stochastic processes. Here, we give a brief

review of this principle. For more details, one may consult [5] and [8].

The first results regarding the large deviation principle were obtained by

Craḿer in 1937 [9] and Chernoff in 1952 [10], also proved classical limit theo-

rems for sums of independent random variables. Following the ideas of Freidlin

and Wentzell ([5],[8]), we consider stochastic processes and families of measures

in infinite-dimensional spaces.

Let {ξt}t≥0 be a stochastic process on a probability space (Ω,F ,P) taking

values in a measurable phase space (X,B), where B is the σ-field on X. Let X

be a space of functions ϕ : [0, T ] → X. Let C(X ) be the σ-field generated by the

cylinder sets {ϕ ∈ X : (ϕt1 , ...ϕtn) ∈ C}, ti ∈ [0, T ], C ∈ Bn. Denote by µξ the

measure on the space (X , C(X )) generated by the process ξt.

In this thesis, X will usually be C[0,T ](X), the space of continuous functions

defined in [0, T ] with values on a metric space (X, ρ). Here we define ρ0T to be

the uniform metric,

ρ0T (φ, ϕ) = sup
0≤t≤T

ρ(φt, ϕt).

It is known that C(X ) = B[0T ](X ), where B[0T ](X ) is the σ-field of the Borel

sets of (X , ρ0T ) (see [11]). For more details of stochastic processes and Markov

processes, one may consult [17] and [18].

Suppose that we have a family of stochastic processes {ξε
t }t≥0, ε > 0, such that

ξε → ϕ as ε→ 0 in probability. This deterministic function ϕ can be regarded as

the “most probable path” for ξε as ε ↓ 0. For any measurable set A ⊂ X which is

of positive distance from ϕ, P (ξ ∈ A) → 0 as ε ↓ 0. The large deviation principle
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for the family {ξε
t }t≥0, ε > 0, describes the rate of convergence of P (ξ ∈ A) → 0

as ε ↓ 0.

In general, a large deviation principle can be described by an action func-

tional. Let (X , ρX ) be a metric space. Let µε be a family of probability measures

depending on ε > 0 defined on the σ-algebra of Borel subsets of X . Let λ(ε) be

a positive real-valued function going to +∞ as ε ↓ 0, and let S(x) be a function

on X assuming values in [0,∞]. We say that λ(ε)S(x) is an action functional for

µε as ε ↓ 0 if the following assertions hold:

(1) The set Φ(s) = {x : S(x) ≤ s} is compact for every s > 0.

(2) For any δ > 0, γ > 0 and x ∈ X there exists an εo > 0 such that

µε{y : ρ(x, y) < δ} ≥ exp{−λ(ε)[S(x) + γ]}

for all ε ≤ εo.

(3) for any δ > 0, γ > 0, there exists an εo > 0 such that

µε{y : ρ(y,Φ(s)) ≥ δ} ≤ exp{−λ(ε)(s− γ)}

for ε ≤ εo.

The function S(x) is called the normalized action function and λ(ε) is the

normalizing coefficient. If the above assertions (1)− (3) are satisfied we say that

{µε}ε>0 obeys a large deviation principle with the action function S. If X is a

space of functions, we use the term action functional. If µε
ξ is the measure on

X generated by the process {ξε
t }, then the action functional for the family of

processes is the action functional for µε
ξ.

The concept of large deviation principle can also be given in a different form

(see [5]).
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The following Theorem (named “the contraction principle” in [5]), gives the

relationship between the action functionals of two families of random processes

connected by a continuous operator and plays an important role in the proofs in

this thesis.

Theorem 1.1 : Let λ(ε)Sµ(x) be the action function for a family of measures

µε on a metric space (X , ρX ) as ε ↓ 0. Let G be a continuous mapping of

X into Y with metric ρY and let a measure υε on Y be given by the formula

υε(A) = µε(G−1(A)). The asymptotics of the family of measures υε as ε ↓ 0 is

given by the action function λ(ε)Sυ(x), where Sυ(y) = min{Sµ(x) : x ∈ G−1(y)}

(the minimum over the empty set is set equal to +∞).

Now, we review action functionals for some families of processes which will

be useful in this thesis.

1. Consider Xε
t defined in (1.3) and let σ be a unit matrix. By [5], the

action functional for the family Xε
t as ε ↓ 0 in the space C[0,T ](R

d) is equal to

ε−1S[0,T ](ϕ), where

S[0,T ](ϕ) =


1
2

∫ T

0
|ϕ̇s − b(ϕs)|2ds, if ϕ is absolutely continuous and ϕ0 = x,

+∞, otherwise.

2. Consider in R1 a family of discrete Markov processes Xh
t , 0 ≤ t ≤ T with

time jump size τ = τ(h). For each h > 0, Xh
(k+1)τ = Xh

kτ + hU where the random

variable U has distribution Pkτ,Xh
kτ

. Let us consider two different cases of the

asymptotic problems for the processes Xh
t as τ, h ↓ 0. The first case is when

τ = h (or τ and h are of the same order) and it is called the case of very large

deviation; the second case is when τ = o(h), h ↓ 0 and it is called the case of not
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very large deviation. In §3.2 and §4.2 − 4.3 of [8], Wentzell describes the Large

Deviation Principle for the process Xh
t as τ, h ↓ 0 in uniform topology for both

of these two cases. We formulate the following Theorems without giving proofs.

(One may find proofs in Theorems 3.2.3′ and 4.4.1 of [8].)

Define the cumulant Gτ,h of the process Xh
t by

Gτ,h(t, x; z) := τ−1 lnEτ,h
t,x exp{z(Xh

t+τ − x)},

Let k(h) be a real valued function tending to +∞ as h → 0. Let the following

conditions be satisfied for the cumulant Gτ,h(t, x; z) and some function G0(t, x; z):

I1: k(h)−1Gτ,h(t, x; k(h)z) → G0(t, x; z) as h→ 0, uniformly with respect to t, x

and every bound set of values of z.

I2: ∇z(k(h)
−1Gτ,h(t, x; k(h)z)) → ∇zG0(t, x; z) as h→ 0, uniformly with respect

to t, x and every bound set of values of z.

I3: For every bounded set K, let∣∣∣∣ ∂2

∂zi∂zj

(k(h)−1Gτ,h(t, x; k(h)z))

∣∣∣∣ ≤ constant <∞

for all sufficiently small h, for all t, x and z ∈ K.

Theorem 1.2 : Let Xh
t be the family of Markov processes described above.

Let τ and h be of the same order. Suppose k(h) →∞ as h→ 0. Let the condi-

tions I1-I3 be satisfied for the cumulant Gτ,h(t, x; z) and some function G0(t, x; z).

Let L0(t, x;u) be the corresponding Legendre transformation of G0(t, x; z). That

is L0(t, x;u) = supz(uz − G0(t, x; z)). Suppose the functions G0(t, x; z) and

L0(t, x;u) satisfy the following conditions:

12



A1: G0(t, x; z) ≤ Ḡ0(z) for all t, x, z, where Ḡ0 is a downward convex non-

negative function, finite for all z, and such that G0(t, x; 0) ≡ Ḡ(0) = 0.

Let L(u) be the corresponding legendre transformation of Ḡ(z).

A2: L0(t, x;u) <∞ for any u such that L(u) is finite.

A3: 4L0(h, δ
′
) = sup|t−s|≤h,|x−y|≤δ′ ,L0(t,x;u)<∞

L0(s,y;u)−L0(t,x;u)
1+L0(t,x;u)

→ 0 for all δ
′
, h ↓

0.

A4: The set {u : L0(u) <∞} has at least one interior point uo and supt,x L0(t, x;uo)

<∞.

A5: The set of points u of the closure Ū of the set {u : L0(u) < ∞} for which

L0(u) = ∞ is closed.

A6: For any compact UK ⊆ {u : L0(u) < ∞}, the function L0(t, x;u) is contin-

uous in u uniformly with respect to t, x and u ∈ UK .

A7: For any compact UK consisting entirely of interior points of {u : L0(u) <

∞}, the first derivative of Lµ
0(u), dL0(t,x;u)

du
, is bounded and continuous with

respect to u uniformly with respect to t, x, u ∈ UK .

Then the action functional for the family of processes Xh
t as h ↓ 0 in the uniform

topology is k(h)S[0,T ](ϕ), where

S[0,T ](ϕ) =


∫ T

0
L0(s, ϕ(s); ϕ̇(s))ds, if ϕ is absolutely cont. and ϕ0 = x,

+∞, otherwise.

Theorem 1.3 : Let a family of Markov processes Xh
t be as described above.

Suppose τh−2 → ∞, τh−1 → 0 as h → 0. Let the conditions I1-I3 be satisfied

13



for the cumulant Gτ,h(t, x; z) and some function G0(t, x; z). Let the function

G0(t, x; z) be finite and bounded for all t, x and all sufficiently small |z|, let

dG0(t,x;z)
dz

|z=0 ≡ 0 and let the matrix

(Aij(t, x)) = (
∂2G0

∂zi∂zj

(t, x, 0)))

be bounded, uniformly positive definite and uniformly continuous with respect

to t, x. Put (Aij(t, x)) = (Aij(t, x))−1. Put

H0(t, x;u) =
1

2

∑
i,j

Aij(t, x)u
iuj

Then the action functional for the family of processesXh
t as h→ 0 is τh−2S[0,T ](ϕ)

uniformly with respect to the initial point where

S[0,T ](ϕ) =


∫ T

0
H0(s, ϕ(s); ϕ̇(s))ds, if ϕ is absolutely continuous and ϕ0 = x,

+∞, otherwise.

1.3 Main Results

We describe the main results of this dissertation in this section.

1. Consider the family of processes Xδ,ε
t defined in (1.5).

Theorem 1.4 : Let n ≥ 1 be an integer. Let p0, . . . , pn satisfy
∑n

i=1 pii
2k =

(2k − 1)!! for k = 1, . . . , n. The action functional for the family Xδ,ε
t as δ, ε ↓

0, δ/ε = µ2, in the space C[0,T ](R
d), is equal to ε−1Sµ

[0,T ](ϕ), where

Sµ
[0,T ](ϕ) =


∫ T

0

∑d
i=1 L

µ
0(ϕ̇i

s − bi(ϕi))ds, if ϕ is absolutely continuous and ϕ0 = x,

+∞, otherwise.

where

Lµ
0(u) =

u2

2
+

[
(2n+ 1)!!−

∑n
i=1 pii

2n+2

(2n+ 2)!

]
u2n+2µ2n +O(µ2n+2), 0 < µ << 1.

14



Theorem 1.5 : The action functional for the family of processes Xδ,ε
t as δ, ε ↓

0, δ/ε ↓ 0 in the space C[0,T ](R
d) is ε−1S[0,T ](ϕ), the same as the action functional

for Xε
t when ε ↓ 0.

Consider the system

Ẋt = b(Xt), X0 = x ∈ Rd,

where the vector field b(x) is Lipschitz continuous.

Assumption 1: The vector field b(x), x ∈ Rd, has an asymptotically stable

equilibrium at a point O ∈ Rd.

Let G ⊂ Rd be a bounded domain with boundary ∂G.

Assumption 2: The domain G is attracted to O ∈ G: limt↑∞Xt = O for

each trajectory of Ẋt = b(Xt), X0 = x ∈ G.

Assumption 3: The domainG has a smooth boundary ∂G and (b(x)·n(x)) <

0, x ∈ ∂G where n(x) is the exterior normal of the boundary of G.

Now, consider the continuous process Xδ,ε
t defined in equation (1.5) and the

process Xε
t in equation (1.3) with σ as a unit matrix. Let Xε

0 = Xδ,ε
0 = x ∈ G.

Denote by τ = τ ε (τ δ = τ δ,ε) the first exit time from G for the process Xε
t (Xδ,ε

t ):

τ ε = min{t : Xε
t ∈ ∂G}, τ δ,ε = min{t : Xδ,ε

t ∈ ∂G}.

Define V µ(x) = infϕ∈C[0,T ](R
d){Sµ

[0,T ](ϕ) : ϕ0 = O,ϕT = x, T > 0} and V µ
o =

minx∈∂G V
µ(x). Define V (x) = infϕ∈C[0,T ](R

d){S[0,T ](ϕ) : ϕ0 = O,ϕT = x, T > 0}

and V µ
o = minx∈∂G V

µ(x). Here ε−1Sµ
[0,T ](ϕ) is the action functional for Xδ,ε

t

as δε ↓ 0, δ/ε = µ2 = O(1) in the space C[0,T ] and ε−1S[0,T ](ϕ) is the action

functional for Xε
t when ε ↓ 0 in the space C[0,T ] .

Theorem 1.6: Let Assumptions 1-3 be satisfied. Then for any initial point

15



x ∈ G and h > 0

lim
ε,δ↓0;δε−1=µ2

ε lnExτ
δ,ε = V µ

o ,

lim
ε,δε−1↓0

ε lnExτ
δ,ε = lim

ε↓0
ε lnExτ

ε = Vo.

lim
ε,δ↓0;δε−1=µ2

Px(e
V

µ
o −h

ε < τ δ,ε < e
V

µ
o +h

ε ) = 1,

lim
ε,δε−1↓0

Px(e
Vo−h

ε < τ δ,ε < e
Vo+h

ε ) = lim
ε↓0

Px(e
Vo−h

ε < τ ε < e
Vo+h

ε ) = 1,

If minx∈∂G V
µ(x) (minx∈∂G V (x)) is achieved just at one point xµ

∗ ∈ ∂G (x∗ ∈

∂G), then

lim
ε,δ↓0;δε−1=µ2

Px(|Xδ,ε
τδ,ε − xµ

∗ | > h) = 0

lim
ε,δε−1↓0

Px(|Xδ,ε
τδ,ε − x∗| > h) = lim

ε↓0
Px(|Xε

τε − x∗| > h) = 0.

Theorem 1.7: Let p0, . . . , pn satisfy
∑n

i=1 pii
2k = (2k−1)!!, k = 1, . . . , n. Let

b(x) be of potential type, that is, there exists U(x) such that∇U(x) = −b(x). We

assume that U(x) is smooth enough, U(O) = 0, and that U(x) > 0,∇U(x) 6= 0

for x 6= 0. Then

V µ(x) = 2U(x) + Vn(x)µ2n +O(µ2n+2), 0 < µ << 1

where Vn(x) is given by the equation

Vn(x) = 22n+2Bn

∫ 0

−∞
|∇U(Zt)|2n+2dt.

HereBn =
(2n+1)!!−

∑n
i=1 pii

2n+2

(2n+2)!
and Zt is the solution of the equation Żt = ∇U(Zt), Z0 =

x ∈ G, t < 0.

2. Consider the process Xµ,ε
t defined in (1.6). We are interested in the asymp-

totic behavior of τX = min{t : Xµ,ε
t ∈ ∂G} and the exit point Xµ,ε

τX when ε ↓ 0.

Since Xµ,ε
t is not a Markov process, this creates some difficulties to obtain results
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concerning τX and the exit point. The 2d-dimensional Markov process (Xµ,ε
t , ηµ,ε

t )

should be considered in the proof.

Let b(x) be of potential type, that is, there exists U(x) such that ∇U(x) =

−b(x). We assume U(x) is smooth enough and U(O) = 0 and U(x) > 0,∇U(x) 6=

0 for x 6= 0. In this case, we notice that the unperturbed system (Xµ
t , η

µ
t ) has an

asymptotically stable point at (O ×O).

Theorem 1.8: The action functional for the family of processes (Xµ,ε
t , ηµ,ε

t )

in the space C[0,T ](R
2d) as ε ↓ 0 is ε−1Sµ

[0,T ](ϕ, φ), where

Sµ
[0,T ](ϕ, φ) =

1

2

∫ T

0

|(ϕ̇t − b(ϕt) + µ
d

dt
|ϕ̇t − b(ϕt)|2dt,

if ϕ̇t is absolutely continuous, φt = ϕ̇t − b(ϕt) and ϕ0 = x, φ0 = y. Otherwise

Sµ
[0T ](ϕ, φ) = ∞ for the remaining functions in C[0,T ](R

2d).

Define V µ(x) = infϕ,φ∈C[0,T ](R
d){Sµ

[0,T ](ϕ, φ) : ϕ0 = O, φ0 = O,ϕT = x, T > 0}

and V µ
o = minx∈∂G V

µ(x).

Theorem 1.9: Let assumptions 1-3 be satisfied. Let b(x) be of the potential

type and let all the assumptions concerning the potential are satisfied. Let N

be any positive constant such that the unperturbed system (Xµ
t , η

µ
t ), (Xµ

0 , η
µ
0 ) =

(x, y) with x ∈ G, |y| < N , never leaves the domain G×Rd. Then, for any x ∈ G,

|y| ≤ N and α > 0, there exists a µ∗ such that for any µ < µ∗,

lim
ε↓0

ε lnEx,yτ
X < V µ

o + α, lim
ε↓0

ε lnEx,yτ
X > V µ

o − α,

lim
ε↓0

Px,y(e
V

µ
o −α

ε < τX < e
V

µ
o +α

ε ) = 1.

If minx∈∂G V
µ(x) (minx∈∂G V (x)) is achieved at just one point xµ

o ∈ ∂G (xo ∈ ∂G),
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then

lim
ε↓0

Px,y(|Xµ,ε
τX − xµ

o | < α) = 1.
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Chapter 2

Stochastic Resonance for Random-walk

Perturbations Approximating White

Noise

2.1 Large Deviations

Recall from the introduction that we constructed a continuous d-dimensional

stochastic process Xδ,ε
t in (1.5) when replacing the Wiener process Wt in (1.3)

with the random walk ξδ
t . Our goal in this section is to establish a large deviation

principle for the family of processes Xδ,ε
t as δ, ε ↓ 0. We describe this large

deviation principle by means of an action functional in the space C[0,T ](R
d).

Let δ, ε ↓ 0 and δ/ε = µ2, where µ > 0 is a fixed constant. First, let us consider

the one-dimensional case and assume b(x) ≡ 0. Then Xδ,ε
mδ − x is the sum of m

independent random variables, ηδ
k =

√
ε(ξδ

(k+1)δ − ξδ
kδ). Here ηδ

k = ±i
√
δε, with

probability 1
2
pi for i = 1, . . . , n, and ηδ

k = 0 with probability po. Furthermore, we

assume
∑n

i=0 pi = 1,
∑n

i=1 i
2pi = 1.

In order to calculate the action functional for Xδ,ε
t as δ, ε ↓ 0, δ/ε = µ2, which
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is the case of very large deviation, we apply Theorem 1.2 (see §1.2): One should

first calculate the cumulant Gµ,ε of the process Xδ,ε
t where

Gµ,ε(z) = Gδ,ε(t, x; z) =
1

δ
lnE exp{zηδ

i }.

Then one should find Gµ
0(z) := limε↓0 εG

µ,ε
0 (zε−1). Let Lµ

0(u) be the Legendre

transform of Gµ
0(z). If conditions A1–A7 in Lemma 1.2 are satisfied, the action

functional for the family of processes Xδ,ε
t , as δ, ε ↓ 0, δ/ε = µ2 in the space

C[0,T ](R
1), is equal to ε−1Sµ,0

[0,T ] where

Sµ,0
[0,T ](ϕ) =


∫ T

0
Lµ

0(ϕ̇s)ds, if ϕ is absolutely continuous and ϕ0 = x,

+∞, otherwise.
(2.1)

Before we start the calculations, let us mention, without proof, some proper-

ties of convex functions and the Legendre transformation. (see Theorem 2.6.5 of

[12] or §1.1.2 [8].)

Lemma 2.1 : LetG(z) be a downward convex, lower semi-continuous function

of z ∈ R1, taking values in (−∞,∞]. The Legendre transform is the function

L(u), u ∈ R1, defined by the formula L(u) = supz(zu−G(z)). This transform is

also downward convex and lower semi-continuous. Furthermore,

(1) if the function L(u) is differentiable at a point u, then

L(u) = (L
′
(u))u−G(L

′
(u));

(2) if, in addition, the function G is differentiable at the point z = L
′
(u), then

G
′
(L

′
(u)) = u;
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(3) if the function G is differentiable k ≥ 2 times at a point z, then the function

L(u) is also k times differentiable at the point G
′
(z) and

L
′′
(u)|u=G

′
(z) = (G

′′
(z))−1.

�

Now, let us calculate the cumulant Gµ,ε(z) and Gµ
0(z). In our case,

Gµ,ε(z) :=
1

δ
lnE exp{zηδ

i } =
1

δ
ln{p0 +

n∑
j=1

pi

2
(ejz

√
δε + e−jz

√
δε)};

Gµ
0(z) := lim

ε↓0
εGµ,ε

0 (zε−1) =
1

µ2
ln{p0 +

n∑
j=1

pi

2
(ejzµ + e−jzµ)}.

We summarize some properties of Gµ
0(z) in the following:

G1: Gµ
0(0) = 0; Gµ

0(z) is an even and non-negative function; Gµ
0(z) is finite for

all z ∈ R.

G2: The first derivative of Gµ
0(z) is

(Gµ
0)

′
(z) =

∑n
i=1 pii(e

izµ − e−izµ)

µ(2p0 +
∑n

i=1 pi(eizµ + eizµ))
.

It is easily checked that limz↑±∞(Gµ
0)

′
(z) = ±n

µ
and (Gµ

0)
′
(z) is an odd

function. Furthermore, 
(Gµ

0)
′
(z) < 0, z < 0;

(Gµ
0)

′
(z) = 0, z = 0;

(Gµ
0)

′
(z) > 0, z > 0.
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G3: The second derivative of Gµ
0(z) is

(Gµ
0)

′′
(z) =

4 + 2
∑n

i=1 p0pii
2(eizµ + e−izµ)

(2p0 +
∑n

i=1 pi(eizµ + e−izµ))2

+

∑
1≤i<j≤n pipj(i− j)2(e(i+j)zµ + e−(i+j)zµ)

(2p0 +
∑n

i=1 pi(eizµ + e−izµ))2

+

∑
1≤i<j≤n pipj(i+ j)2(e(i−j)zµ + e−(i−j)zµ)

(2p0 +
∑n

i=1 pi(eizµ + e−izµ))2
, z ∈ R

≥ 4

(2p0 +
∑n

i=1 pi(eizµ + e−izµ))2

> 0.

G4: From property G3, Gµ
0(z) is a downward convex and even function.

G5: From property G3, (Gµ
0)

′
(z) is monotone increasing for z ∈ R.

Now, let us summarize some properties of Lµ
0(u), the Legendre transformation

of Gµ
0(z).

L1: Lµ
0(0) = supz(−G

µ
0(z)) = − infz G

µ
0(z) = 0; Lµ

0(u) is an even function be-

cause

Lµ
0(−u) = sup

z
(−uz −Gµ

0(z)) = sup
z

(−uz −Gµ
0(−z)) = Lµ

0(u).

L2: By Lemma 2.1, Lµ
0(u) is downward convex and lower semi-continuous be-

cause Gµ
0(z) is a downward convex and continuous function.

L3: For u ∈ (−n/µ,+n/µ) Lµ
0(u) is twice differentiable and (Lµ

0)
′′
(u) > 0 . The

reason is the following:

Since limz↑±∞(Gµ
0)

′
(z) = ±n/µ and (Gµ

0)
′
(z) is a continuous and monotone

increasing function for z ∈ R (see Properties G2 and G5), there exists a zo

such that (Gµ
o )

′
(z)|z=zo = u for any u ∈ (−n/µ,+n/µ). Following part (3)
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of Lemma 2.1, (Lµ
0)

′′
(u) exists and (Lµ

0)
′′
(u) = ((Gµ

0)
′′
(zo))

−1 > 0 for any

u ∈ (−n/µ,+n/µ) .

L4: Following part (2) of Lemma 2.1 and Property L3, for any u ∈ (−n/µ,+n/µ)

(Lµ
0)

′
(u) exists and (Gµ

0)
′
(z)|z=(Lµ

0 )′ (u) = u . Furthermore, it follows from

Property G2 that for u ∈ (−n/µ,+n/µ), (Lµ
0)

′
(−u) = −(Lµ

0)
′
(−u) and

(Lµ
0)

′
(u) < 0, u ∈ (−n/µ, 0);

(Lµ
0)

′
(u) = 0, u = 0;

(Lµ
0)

′
(u) > 0, u ∈ (0, n/µ).

L5: For |u| = n/µ, Lµ
0(u) = 1

µ2 ln 2
pn

; for |u| < +n/µ, Lµ
0(u) ≤ 1

µ2 ln 2
pn

; for

|u| > +n/µ, Lµ
0(u) = ∞.

Proof: Since Lµ
0(0) = 0 and Lµ

0(u) is an even function, it is sufficient to

prove property L5 for u > 0. Let u > 0.

Lµ
0(u) = sup

z

{
uz − 1

µ2
ln

(
p0 +

n∑
i=1

pi

2
(eizµ + e−izµ)

)}

=
1

µ2
sup

z

{
ln eµ2uz − ln

(
p0 +

n∑
i=1

pi

2
(eizµ + e−izµ)

)}
=

1

µ2
ln sup

z
f(z).

where

f(z) =
eµ2uz

p0 +
∑n

i=1(pi/2)(eizµ + e−izµ)

and the first derivative of f(z) is

f
′
(z) =

µenµ2uz [µup0 + µu
∑n

i=1(pi/2)(eizµ + e−izµ)−
∑n

i=1(pi/2)i(eizµ + e−izµ)]

[p0 +
∑n

i=1(pi/2)(eizµ + e−izµ)]
2 .
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Notice that f
′
(z) ≥ 0 for µu ≥ n. Therefore, for u ≥ n/µ,

Lµ
0(u) =

1

µ2
ln sup

z
f(z)

=
1

µ2
ln lim

z↑∞
f(z)

=
1

µ2
ln lim

z↑∞

eµ2uz

p0 +
∑n

i=1(pi/2)(eizµ + e−izµ)
.

It can be easily checked that Lµ
0(n/µ) = (1/µ2) ln(2/pn) and Lµ

0(u) = ∞

for u > +n/µ.

To show Lµ
0(u) ≤ Lµ

0(n/µ) = (1/µ2) ln(2/pn) for 0 < u < +n/µ, it is

sufficient to show Lµ
0(u) is non-decreasing function for u > 0. Notice that

for any 0 < u1 ≤ u2,

Lµ
0(u2)− Lµ

0(u1) = sup
z∈R

(u2z −Gµ
0(z))− sup

z∈R
(u1z −Gµ

0(z))

= sup
z≥0

(u2z −Gµ
0(z))− sup

z≥0
(u1z −Gµ

0(z)) ≥ 0.

This completes the proof.

L6: When n = 1, i.e., p0 = 0, p1 = 1, the Legendre transform was calculated

explicitly in [6]:

Lµ
0(u) =


1

2µ2 [(1 + µu) ln(1 + µu) + (1− µu) ln(1− µu)], if |u| ≤ 1
µ
,

+∞, if |u| > 1
µ
.

Lemma 2.2 : The action functional for Xδ,ε
t as δ, ε ↓ 0, δ/ε = µ2 in C[0,T ](R

1)

is ε−1Sµ,0
[0,T ] where Sµ,0

[0,T ] is given by the formula (2.1).

Proof: This is an application of Lemma 1.2. Let us verify that the conditions

A1 − A7 in Lemma 1.2 are satisfied. Notice that Gµ
0(z) is independent of t and

x. Let the function Ḡµ
0(z) in the conditions A1 − A7 be Ḡµ

0(z) ≡ Gµ
0(z), then
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Lµ
0(u) ≡ Lµ

0(u). It is easily checked that conditions A1 − A5 are satisfied. In

particular, {u : Lµ
0(u) < ∞} = {u : |u| ≤ n/µ}. In condition A4, we can take

u0 = 0. Condition A7 is satisfied because (Lµ
0)

′′
(u) exists for |u| < n/µ. To

show that condition A6 is satisfied, it is sufficient to show the function Lµ
0(u) is

left continuous at u = n/µ. Notice that Lµ
0(u) is a lower semi-continuous and

non-decreasing function for u > 0 (see the proof of L5), it is easily verified that

limu↑n/µ L
µ
0(u) = Lµ

0(n/µ). This completes the proof.

�

Consider now the d-dimensional stochastic process Xδ,ε
t with b(x) = 0. Since

the components of this process are independent, the action functional for the

family Xδ,ε
t as δ, ε ↓ 0, δ/ε = µ2 in C[0,T ](R

d) is equal to

ε−1S̃µ,0
0T (ϕ) = ε−1

d∑
i=1

Sµ,0
[0,T ](ϕ

i), ϕt = (ϕ1
t , ..., ϕ

d
t ) ∈ C[0,T ](R

d).

To calculate the action functional in the case when b(x) 6= 0, note that the

map R : ϕ 7→ X in C[0,T ](R
d) defined by the equation

Xt = x+

∫ t

0

b(Xs)ds+ (ϕt − ϕ0)

is continuous and R−1(X) = ϕ is defined uniquely, if we assume that ϕ0 = 0.

Thus, the following theorem can be derived from the contraction principle:

Theorem 2.1 : The action functional for the family Xδ,ε
t as δ, ε ↓ 0, δ/ε = µ2,

in the space C[0,T ](R
d), is equal to ε−1Sµ

[0,T ](ϕ), where

Sµ
[0,T ](ϕ) =


∫ T

0

∑d
i=1 L

µ
0(ϕ̇i

s − bi(ϕi))ds, ifϕ is absolutely continuous and ϕ0 = x,

+∞, otherwise.
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Now we will look for Lµ
0(u) in the form: Lµ

0(u) = L0(u) +L1(u)µ+L2(u)µ2 +

..., 0 < µ << 1. We will choose parameters p0, . . . , pn so that the action functional

for this type of perturbations approximates the action functional for the white

noise type perturbation in the best way.

Recall from property L4 that (Gµ
0)

′
(z)|z=(Lµ

0 )′ (u) = u for any u ∈ (−n/µ,+n/µ).

Together with the expression of (Gµ
0)

′
(u)(see Property G2), we have

uµ(2p0 +
n∑

i=1

pi(e
iz∗µ + e−iz∗µ)) =

n∑
i=1

ipi(e
iz∗µ − e−iz∗µ). (2.2)

where z∗ := (Lµ
0)

′
(u). Now let us look for z∗ = (Lµ

0)
′
(u) in the form z∗ =∑

k ckµ
k, 0 < µ << 1.

First, we state the following lemma which is useful.

Lemma 2.3 : Let z∗ be defined as above. Then, for µ > 0 and |µu| <

|(npn/2)|,

|z∗| <
∣∣∣∣ 2u

n2pn

∣∣∣∣ .
Proof: Recall from Property L4 that (Lµ

0)
′
(u) is an odd function for u ∈

(−n/µ, n/µ) and (Lµ
0)

′
(u) > 0 when u ∈ (0, n/µ). Therefore, to prove the lemma,

it is sufficient to prove z∗ < 2u/(n2pn) when µu < (npn)/2, u > 0, µ > 0.

Let u > 0, µ > 0 and µu < npn

2
. Recall from Property G5 that (Gµ

0)
′
(z) is a

monotone increasing function for z ∈ R. Hence,

z∗ <
2u

n2pn

⇔ (Gµ
0)

′
(z∗) < (Gµ

0)
′
(

2u

n2pn

)
.

Recall from Property L4 that (Gµ
0)

′
(z)|z=(Lµ

0 )′ (u) = u for any u ∈ (−n/µ,+n/µ).
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It implies (Gµ
0(z∗))

′
= u. Hence,

(Gµ
0)

′
(z∗) < (Gµ

0)
′
(

2u

n2pn

)
⇔ u < (Gµ

0)
′
(

2u

n2pn

)
.

For convenience, let us denote z̃ := 2u
n2pn

. From above argument and the expres-

sion of (Gµ
0)

′
(u)(see Property G2), it is sufficient to prove the following inequality:

uµ ≤
∑n

i=1 ipi(e
iz̃µ − e−iz̃µ)

(2p0 +
∑n

i=1 pi(eiz̃µ + e−iz̃µ))
.

Notice that

npn(enz̃µ − e−nz̃µ)

enz̃µ + e−nz̃µ
≤

∑n
i=1 ipi(e

iz̃µ − e−iz̃µ)

(2p0 +
∑n

i=1 pi(eiz̃µ + e−iz̃µ))
.

Hence, to prove this lemma it is sufficient to show uµ ≤ npn(enz̃µ−e−nz̃µ)
enz̃µ+e−nz̃µ . Now, let

us prove it.

uµ ≤ npn(enz̃µ − e−nz̃µ)

enz̃µ + e−nz̃µ

⇔ uµenz̃µ + uµe−nz̃µ ≤ npne
nz̃µ − npne

−nz̃µ

⇔ (npn + uµ)e−nz̃µ ≤ (npn − uµ)enz̃µ

⇔
1 + uµ

nPn

1− uµ
nPn

≤ e2nz̃µ

⇔ 1

2nµ

[
ln

(
1 +

uµ

nPn

)− ln(1− uµ

nPn

)]
≤ z̃.

To prove the above inequality, notice that

1

2nµ

[
ln(1 +

uµ

nPn

)− ln(1− uµ

nPn

)

]
=

1

2nµ

∞∑
k=1

2( uµ
npn

)2k−1

2k − 1

=
1

n

u

npn

∞∑
k=1

( u
npn

)2k−2µ2k−2

2k − 1

≤ 1

n

u

npn

∞∑
k=1

(
u

npn

)2k−2µ2k−2

≤ 1

n

u

npn

∞∑
k=1

(
1

2
)2k−2 < 2

u

n2pn

= z̃.
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The above inequality holds because |µu| < |npn

2
|. This completes the proof.

�

Lemma 2.4 : Consider z∗ = (Lµ
o )

′
(u) as in Lemma 2.3. Let n ≥ 1 be a fixed

integer. Assume p0, . . . , pn satisfy
∑n

i=1 pii
2k = (2k − 1)!!, k = 1, . . . , n. Then

z∗ = u+

(
(2n+ 1)!!−

∑n
i=1 pii

2n+2

(2n+ 1)!

)
u2n+1µ2n +O(µ2n+2), 0 < µ << 1.

Proof : When n = 1 it is easily seen that p0 = 0 and p1 = 1. From Lemma

2.3, for 0 < µ < |1/u|,

z∗ = (Lµ
0)

′
(u) =

1

2µ
(ln(1 + uµ)− ln(1− uµ))

= u
∞∑

k=1

(uµ)2k−2

2k − 1

= u+
1

3
u3µ2 +

[
∞∑

k=1

(uµ)2k−2

2k + 3

]
u5µ4.

Since |uµ| < 1, there exists α < 1 such that |uµ| ≤ α < 1. It can be easily

checked that
∑∞

k=1
(uµ)2k−2

2k+3
is bounded by some constant M = M(n). Therefore,

Lemma 2.4 holds for n = 1. It is now sufficient to prove this lemma for n ≥ 2.

For convenience, we denote

c2n :=
(2n+ 1)!!−

∑n
i=1 pii

2n+2

(2n+ 1)!
; b2k :=

n∑
i=1

pii
2k, k = 1, 2, ....

Step 1. Applying Taylor’s formula, we have

eiz∗µ − e−iz∗µ = 2
∞∑

k=0

(iz∗)2k+1

(2k + 1)!
µ2k+1; eiz∗µ + e−iz∗µ = 2

∞∑
k=0

(iz∗)2k

(2k)!
µ2k.

Substituting the above equalities into equation (2.2) and taking into account that∑i=n
i=0 pi = 1 and

∑i=n
i=0 i

2pi = 1, equality (2.2) becomes

u+ u
∞∑

k=1

(
n∑

i=1

pii
2k

)
(z∗)2k

(2k)!
µ2k = z∗ +

∞∑
k=1

(
n∑

i=1

pii
2k+2

)
(z∗)2k+1

(2k + 1)!
µ2k. (2.3)
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Step 2. Assume that z∗ =
∑∞

k=0 akµ
k. We are to find all the coefficients ak for

k = 0, 1, 2, ... by induction.

Let us substitute z∗ = a0 + a1µ + a2µ
2 + ... into equation (2.3) to determine

the coefficients of µ0 and µ on both sides of the equation:

On the left side of equation (2.3), the coefficient of µ0 is u while the coefficient

of µ1 is 0.

On the right side of the equation (2.3), the coefficient of µ0 is
∑n

i=1 pii
2a0

while the coefficients of µ1 is
∑n

i=1 pii
2a1.

Taking into account that
∑n

i=1 pii
2 = 1, we have a0 = u and a1 = 0.

Assume that we already have a2j−1 = 0, j = 1, ..., N where N is any positive

integer. Let us show a2N+1 = 0. We substitute z∗ = u +
∑∞

k=2N+1 a2k+1µ
2k+1 +∑∞

k=1 a2kµ
2k into equation (2.3) to determine the coefficients of µ2N+1 on both

sides of the equation:

On the left side of equation (2.3), the coefficient of µ2N+1 is 0.

On the right side of equation (2.3), the coefficient of µ2N+1 is
∑n

i=1 pii
2a2N+1.

This implies a2N+1 = 0.

In conclusion, we can have a2N+1 = 0, N = 1, 2, . . ..

Substituting z∗ = u+
∑∞

k=1 a2kµ
2k into equation (2.3) to determine the coef-

ficients of µ2N on both sides of the equation, we find the following:

The coefficient of µ2N on the left side of equation (2.3) is

u

(2N)!

 N∑
k=1

b2k

α1+α2+...α2k=N−k∑
α1,...,α2k is integer

0≤α1,...,α2k≤N−k

(a2α1a2α2 · · · a2α2k
)


 ;
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The coefficient of µ2N on the right side of equation (2.3) is

a2Nµ
2N +

1

(2N + 1)!

 N∑
k=1

b2k+2

α1+α2+...α2k+1=N−k∑
α1,...,α2k+1 is integer

0≤α1,...α2k+1≤N−k

(a2α1 · · · a2α2k
a2α2k+1

)


 .

Therefore

a2N =
u

(2N)!

 N∑
k=1

b2k

α1+α2+...α2k=N−k∑
α1,...,α2k is integer

0≤α1,...,α2k≤N−k

(a2α1a2α2 · · · a2α2k
)




− 1

(2N + 1)!

 N∑
k=1

b2k+2

α1+α2+...α2k+1=N−k∑
α1,...,α2k+1 is integer

0≤α1,...α2k+1≤N−k

(a2α1 · · · a2α2k
a2α2k+1

)


 .

Step 3. Let p0, . . . , pn satisfy
∑n

i=1 pii
2k = (2k − 1)!! for k = 1, . . . , n. The

coefficients a2, ..., 22n will then have an explicit expression. Let us find a2k for

k = 1, 2, ...n by induction.

From the expression for a2N in step 2, we have a2 = b2
2!
u3 − b4

3!
u3.

Let n be any integer such that n ≥ 2. We have b2 = 1 and b4 =
∑n

i=1 pii
4 = 3!!.

Hence, a2 = b2
2!
u3 − b4

3!
u3 = 0.

Assume that a2k = 0 for k = 1, 2, ..., K where K < n. Then

a2(K+1) =

(
b2(K+1)

2(K + 1)!
−

b2(K+1)+2

(2(K + 1) + 1)!

)
u2(K+1)+1

=

(
(2(K + 1) + 1)

∑n
i=1 pii

2(K+1) −
∑n

i=1 pii
2(K+1)+2

(2(K + 1) + 1)!

)
u2(K+1)+1

=

 0, if K + 1 < n,(
(2n+1)!!−

∑n
i=1 pii

2n+2

(2n+1)!

)
u2n+1, if K + 1 = n.

By mathematical induction, we conclude that

a2k = 0, k = 1, ...n− 1, and a2n =

(
(2n+ 1)!!−

∑n
i=1 pii

2n+2

(2n+ 1)!

)
u2n+1.
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Step 4. Let p0, . . . , pn satisfy
∑n

i=1 pii
2k = (2k − 1)!! for k = 1, . . . , n. Assume

z∗ = u+ c2nu
2n+1µ2n + C(u, µ)µ2n+2. Let us find an expression for C = C(u, µ).

Let us substitute z∗ = u+c2nu
2n+1µ2n+Cµ2n+2 into the both sides of equation

(2.3). Taking into account that
∑n

i=1 pii
2k = (2k − 1)!!, k = 1, ..., n, we find the

following: The left side of equation (2.3) is equal to

u+ u
∞∑

k=1

(
n∑

i=1

pii
2k)

(z∗)2k

(2k)!
µ2k

= u+ u
n∑

k=1

(2k − 1)!!

(2k)!
(z∗)2kµ2k + u

∞∑
k=n+1

(
n∑

i=1

pii
2k)

(z∗)2k

(2k)!
µ2k

= u+ u
n−1∑
k=1

1

(2k)!!
(z∗)2kµ2k + u

1

(2n)!!
(z∗)2nµ2n + u

∞∑
k=n+1

b2k

(2k)!
(z∗)2kµ2k.

The right side of equation (2.3) is equal to

z +
∞∑

k=1

(
n∑

i=1

pii
2k+2)

(z∗)2k+1

(2k + 1)!
µ2k

= u+ c2nu
2n+1µ2n + Cµ2n+2 +

∞∑
k=1

b2k+2

(2k + 1)!
(z∗)2k+1µ2k

= u+ c2nu
2n+1µ2n + Cµ2n+2

+
∞∑

k=1

b2k+2

(2k + 1)!
(z∗)2k(u+ c2nu

2n+1µ2n + Cµ2n+2)µ2k

= u+ c2nu
2n+1µ2n + Cµ2n+2 + u

∞∑
k=1

b2k+2

(2k + 1)!
(z∗)2kµ2k

+
∞∑

k=1

b2k+2

(2k + 1)!
(z∗)2kc2nu

2n+1µ2n+2k + C
∞∑

k=1

b2k+2

(2k + 1)!
(z∗)2kµ2n+2k+2

= u+ c2nu
2n+1µ2n + Cµ2n+2

+u
n−1∑
k=1

(2k + 1)!!

(2k + 1)!
(z∗)2kµ2k + u

b2n+2

(2n+ 1)!
(z∗)2nµ2n + u

∞∑
k=n+1

b2k+2

(2k + 1)!
(z∗)2kµ2k

+c2n

∞∑
k=1

b2k+2

(2k + 1)!
(z∗)2ku2n+1µ2n+2k + C

∞∑
k=1

b2k+2

(2k + 1)!
(z∗)2kµ2n+2k+2.
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Now, let us equate the left and right sides. The terms u and u
∑n−1

k=1
(2k+1)!!
(2k+1)!

(z∗)2kµ2k

can be canceled, therefore, the left side of equation (2.3) is equal to

u
1

(2n)!!
(z∗)2nµ2n + u

∞∑
k=n+1

b2k

(2k)!
(z∗)2kµ2k

=
1

(2n)!
(z∗)2nuµ2n + u

∞∑
k=0

b2n+2k+2

(2n+ 2k + 2)!
(z∗)2n+2k+2µ2n+2k+2.

The right side of equation (2.3) is equal to

c2nu
2n+1µ2n + Cµ2n+2 + u

b2n+2

(2n+ 1)!
(z∗)2nµ2n + u

∞∑
k=n+1

b2k+2

(2k + 1)!
(z∗)2kµ2k

+c2n

∞∑
k=1

b2k+2

(2k + 1)!
(z∗)2ku2n+1µ2n+2k + C

∞∑
k=1

b2k+2

(2k + 1)!
(z∗)2kµ2n+2k+2

= c2nu
2n+1µ2n + Cµ2n+2 + u

b2n+2

(2n+ 1)!
(z∗)2nµ2n

+u
∞∑

k=0

b2n+2k+4

(2n+ 2k + 3)!
(z∗)2n+2k+2µ2n+2k+2

+c2nu
2n+1

∞∑
k=0

b2k+4

(2k + 3)!
(z∗)2k+2µ2n+2k+2 + C

∞∑
k=1

b2k+2

(2k + 1)!
(z∗)2kµ2n+2k+2.

Let us add (−c2nu
2n+1µ2n − u b2n+2

(2n+1)!
(z∗)2nµ2n) to both sides. Then the left side

is equal to

c2n((z∗)2n − u2n)uµ2n + u
∞∑

k=0

b2n+2k+2

(2n+ 2k + 2)!
(z∗)2n+2k+2µ2n+2k+2

= c2n
(z∗)2n − u2n

z∗ − u
(c2nu

2n+1µ2n + Cµ2n+2)uµ2n

+u
∞∑

k=0

b2n+2k+2

(2n+ 2k + 2)!
(z∗)2n+2k+2µ2n+2k+2

= (c2n)2 (z∗)2n − u2n

z∗ − u
u2n+2µ4n + u

∞∑
k=0

b2n+2k+2

(2n+ 2k + 2)!
(z∗)2n+2k+2µ2n+2k+2

+C(c2n)
(z∗)2n − u2n

z∗ − u
uµ4n+2.
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The right side is equal to

C(µ2n+2 +
∞∑

k=1

b2k+2

(2k + 1)!
(z∗)2kµ2n+2k+2)

+u
∞∑

k=0

b2n+2k+4

(2n+ 2k + 3)!
(z∗)2n+2k+2µ2n+2k+2 + c2nu

2n+1

∞∑
k=0

b2k+4

(2k + 3)!
(z∗)2k+2µ2n+2k+3.

Now, let us equate the left and right sides. It can be checked that C =

C(u, µ) = A/B where A = A1 + A2 + A3 + A4 and

A1 = c22n

(
(z∗)2n − u2n

z∗ − u

)
u2n+2µ2n−2, A2 = u

∞∑
k=0

(
b2n+2k+2

(2n+ 2k + 2)!

)
(z∗)2n+2k+2µ2k

A3 = −u
∞∑

k=0

(
b2n+2k+4

(2n+ 2k + 3)!
)(z∗)2n+2k+2µ2k, A4 = −c2nu

2n+1

∞∑
k=0

b2k+4

(2k + 3)!
(z∗)2k+2µ2k,

B = 1 +
∞∑

k=1

b2k+2

(2k + 1)!
(z∗)2kµ2k − c2n

(
(z∗)2n − u2n

z∗ − u

)
uµ2n.

Step 5. Assume 0 < µ ≤ |npn

2u
|. Let us show that |C| is bounded for

0 < µ ≤ |npn

2u
| and n ≥ 2. Before we start to estimate C, we need to verify some

inequalities.

I1. Applying Lemma 2.3 and taking into account that n2pn ≤ 1, it can be checked

that for 0 < µ ≤ |npn

2u
|∣∣∣∣(z∗)2n − u2n

z∗ − u

∣∣∣∣ =
∣∣(z∗ + u)((z∗)2n−2 + (z∗)2n−4u2 + ...+ u2n−2)

∣∣
≤ (|z∗|+ |u|)(|(z∗)|2n−2 + |(z∗)|2n−4u2 + ...+ u2n−2)

≤
(

2

n2pn

+ 1

)
|u|

[(
2

n2pn

)2n−2

+

(
2

n2pn

)2n−4

+ ...+ 1

]
|u|2n−2

≤ 3

n2pn

(
( 2

n2pn
)2n − 1

2
n2pn

− 1

)
|u|2n−1

=
3( 2

n2pn
)2n

2− n2pn

|u|2n−1 ≤ 3

(
2

n2pn

)2n

|u|2n−1.
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I2. Notice that b2n+2 =
∑n

i=1 i
2n+2pi ≤ n2

∑n
i=1 i

2npi = n2b2n. Then

|c2n| = |(2n+ 1)b2n − b2n+2

(2n+ 1)!
| ≤ ((2n+ 1) + n2)b2n

(2n+ 1)!

=
1

(2n)!!

(
1 +

n2

2n+ 1

)
=

1

(2n)!!

(n+ 1)2

2n+ 1
≤ 1

(2n)!!
2n ≤ 1.

I3. Taking into account inequality I1 and I2, it can be checked that for 0 < µ ≤

|npn/(2u)| and n ≥ 2,∣∣∣∣c2n
(z∗)2n − u2n

z∗ − u
uµ2n

∣∣∣∣ ≤ 3

(
2

n2pn

)2n

|u|2nµ2n

≤
(

2

n2pn

)2n (npn

2

)2n

≤ 3
1

n2n
≤ 1

2
.

I4. Applying Lemma 2.3, it can be checked that for any integer N ≥ 0 and

0 < µ ≤ |npn

2u
|,

∞∑
k=0

[
b2N+2k

(2N + 2k)!

]
(z∗µ)2k =

1

2

n∑
i=1

pii
2N(eiz∗µ + e−iz∗µ)

≤ b2N(enz∗µ + e−nz∗µ)

≤ b2N

[
e

n 2
n2pn

|uµ|
+ e

−n 2
n2pn

|uµ|
]

≤ b2N

[
e

n 2
n2pn

|npn
2
|
+ e

−n 2
n2pn

|npn
2
|
]

= b2N(e+ e−1).

Now, let us estimate A = A1 + A2 + A3 + A4 and B for 0 < µ ≤ |npn/(2u)|
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and n ≥ 2. Applying inequalities I1-I4, we have

|A1| =

∣∣∣∣c22n

(z∗)2n − u2n

z∗ − u
u2n+2µ2n−2

∣∣∣∣
≤ 3

(
2

n2pn

)2n

|u|2n−1u2n+2µ2n−2

= 3

(
2

n2pn

)2n

(uµ)2n−2|u|2n+3

≤ 3

(
2

n2pn

)2n (npn

2

)2n−2

|u|2n+3 =
12

n2n+2p2
n

|u|2n+3.

|A2| =

∣∣∣∣∣u
∞∑

k=0

(
b2n+2k+2

(2n+ 2k + 2)!

)
(z∗)2n+2k+2µ2k

∣∣∣∣∣
= |u|(z∗)2n+2

∞∑
k=0

(
b2n+2k+2

(2n+ 2k + 2)!

)
(z∗µ)2k

≤ |u|(z∗)2n+2

∞∑
k=0

(
b2n+2k+2

(2k + 2)!

)
(z∗µ)2k

≤ |u|(z∗)2n+2(e+ e−1)b2n+2

≤

[(
2

n2pn

)2n−2

(e+ e−1)b2n+2

]
|u|2n+3.

|A3| =

∣∣∣∣∣u
∞∑

k=0

(
b2n+2k+4

(2n+ 2k + 3)!

)
(z∗)2n+2k+2µ2k

∣∣∣∣∣
≤

[(
2

n2pn

)2n−2

(e+ e−1)b2n+4

]
|u|2n+3.

|A4| =

∣∣∣∣∣c2nu
2n+1

∞∑
k=0

b2k+4

(2k + 3)!
(z∗)2k+2µ2k

∣∣∣∣∣
≤ (z∗)2u2n+1

∞∑
k=0

b2k+4

(2k + 3)!
(z∗µ)2k

≤

[(
2

n2pn

)2

(e+ e−1)b4

]
|u|2n+3.
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|B| =

∣∣∣∣∣1 +
∞∑

k=1

b2k+2

(2k + 1)!
(z∗)2kµ2k − c2n

(z∗)2n − u2n

z∗ − u
uµ2n

∣∣∣∣∣
≥

∣∣∣∣∣1 +
∞∑

k=1

b2k+2

(2k + 1)!
(z∗)2kµ2k

∣∣∣∣∣−
∣∣∣∣c2n

(z∗)2n − u2n

z∗ − u
uµ2n

∣∣∣∣
≥ 1−

∣∣∣∣c2n
(z∗)2n − u2n

z∗ − u
uµ2n

∣∣∣∣ ≥ 1

2
.

From above inequalities, we conclude that for µ ≤ npn

2|u| and n ≥ 2, there exists

a function, say M(n), depending on n such that

|C| = |A|
|B|

≤ |A1|+ |A2|+ |A3|+ |A4|
|B|

< M(n)|u|2n+3.

Therefore, it can be concluded that

z∗ = u+

(
(2n+ 1)!!−

∑n
i=1 pii

2n+2

(2n+ 1)!

)
u2n+1µ2n +O(µ2n+2), 0 < µ << 1.

This completes the proof.

�

Remark: From Lemma 2.4, it can be verified that

(Gµ
0)

′
(z) = z −

(
(2n+ 1)!!−

∑n
i=1 pii

2n+2

(2n+ 1)!

)
z2n+1µ2n +O(µ2n+2), 0 < µ << 1.

We sketch the proof here. Step 1: For any z ∈ R, there exists a unique u ∈

(−n/µ, n/µ) such that z = (Lµ
0)

′
(u) (see Property L4 and G2). Furthermore, by

equation (8), we have the two inequalities |uµ| < n(en|zµ| − e−n|zµ|) and |u| <

2n2zen|zµ|. Step 2: From Lemma 2.4, it is known that

(Lµ
0(u))

′
= u+

(
(2n+ 1)!!−

∑n
i=1 pii

2n+2

(2n+ 1)!

)
u2n+1µ2n + C(u, µ)µ2n+2,

where |C(u, µ)| < M(n)|u|2n+3 provided µ ≤ npn

2|u| . Here M(n) is some func-

tion depending on n. Taking into account the two inequalities in step 1 and
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(Gµ
0)

′
(z)|z=(Lµ

0 )′ (u) = u, it can be checked that

(Gµ
0)

′
(z) = z −

(
(2n+ 1)!!−

∑n
i=1 pii

2n+2

(2n+ 1)!

)
z2n+1µ2n + C̃(z, µ)µ2n+2

where |C̃(z, µ)| < M̃(n)|z|2n+3 provided |µ| is small enough. Here M̃(n) is some

function depending on n. This completes the proof.

Lemma 2.5 : Let n ≥ 1 be an integer. Let p0, . . . , pn satisfy
∑n

i=1 pii
2k =

(2k − 1)!! for k = 1, . . . , n. Then

Lµ
0(u) =

u2

2
+

(
(2n+ 1)!!−

∑n
i=1 pii

2n+2

(2n+ 2)!

)
u2n+2µ2n +O(µ2n+2), 0 < µ << 1.

(2.4)

Proof: Recall that z∗ = (Lµ
0)

′
(u). Recall from property L1 that Lµ

0(0) = 0

and Lµ
0(u) is an even function.

Recall from the proof of Lemma 2.4 that

z∗ = (Lµ
0)

′
(u) = u+

(
(2n+ 1)!!−

∑n
i=1 pii

2n+2

(2n+ 1)!

)
u2n+1µ2n + C(u, µ)µ2n+2

where |C(u, µ)| < M(n)|u|2n+3 for µ ≤ npn/(2|u|).

From all the above arguments, this lemma can be easily derived.

�

So far, we have considered the case δ, ε ↓ 0, δε−1 = µ2 = constant > 0.

Consider now the case ε, δε−1 ↓ 0. Notice that

Gµ
0(u) :=

1

µ2
ln

{
p0 +

n∑
i=1

pi

2
(eiuµ + e−iuµ)

}

=
u2

2
+O(µ2), µ→ 0.
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Therefore, when µ2 = δ/ε ↓ 0, G0(u) = u2/2. Using Lemma 1.3, we can derive

the following result:

Theorem 2.2 : The action functional for the family Xδ,ε
t as δ, ε ↓ 0, δ/ε ↓ 0

in the space C[0,T ](R
d) is equal to ε−1S[0,T ](ϕ), where

S[0,T ](ϕ) =


∫ T

0
|ϕ̇s − b(ϕs)|2ds, if ϕ is absolutely continuous and ϕ0 = x,

+∞, otherwise.

Notice that ε−1S[0,T ](ϕ) is the action functional for the family Xε
t in C[0,T ](R

d)

as ε ↓ 0.

2.2 Exit Problem for Xδ,ε
t

Consider the system:

Ẋt = b(Xt), X0 = x ∈ Rd.

where the vector field b(x) is Lipschitz continuous.

Assumption 1: The vector field b(x), x ∈ Rd have an asymptotically stable

equilibrium at a point O ∈ Rd.

Let G ⊂ Rd be a bounded domain with boundary ∂G.

Assumption 2: The domain G is attracted to O ∈ G: limt↑∞Xt = O for

each trajectory of Ẋt = b(Xt), X0 = x ∈ G.

Assumption 3: The domainG has a smooth boundary ∂G and (b(x)·n(x)) <

0, x ∈ ∂G where n(x) is the exterior normal of the boundary of G.

Now, consider the continuous process Xδ,ε
t defined in the equation (1.5) and

the process Xε
t in the equation (1.3) with σ as a unit matrix. Let Xε

0 = Xδ,ε
0 =

x ∈ G. Denote by τ = τ ε(τ δ = τ δ,ε) the first exit time from G for the process
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Xε
t (X

δ,ε
t ): τ ε = min{t : Xε

t ∈ ∂G}, τ δ,ε = min{t : Xδ,ε
t ∈ ∂G}. To describe

the asymptotic behavior of τ ε and τ δ,ε, let us introduce the functions V (x, y),

V µ(x, y):

V (x, y) = inf
ϕ∈C0T (Rd)

{S[0,T ](ϕ) : ϕ0 = x, ϕT = y, T > 0},

V µ(x, y) = inf
ϕ∈C0T (Rd)

{Sµ
[0,T ](ϕ) : ϕ0 = x, ϕT = y, T > 0}.

Here S[0,T ](ϕ) is the action functional for Xε
t in the space C[0,T ](R

d) as ε ↓ 0 and

Sµ
[0,T ](ϕ) is the action functional forXδ,ε

t in the space C[0,T ](R
d) as δ, ε ↓ 0, δ

/
ε = µ2.

Define V (x) := V (O, x) and V µ(x) := V µ(O, x). The functions V (x) and V µ(x)

are non-negative and equal to zero only at x = 0. Furthermore, if the functions

V (x) and V µ(x) are continuously differentiable, they can be found as the solutions

of corresponding Hamilton-Jacobi equations:

1

2
|∇V (x)|2 + (b(x) · ∇V (x)) = 0, V (O) = 0, V (x) > 0 x 6= O;

1

µ2

d∑
k=1

ln

[
p0 +

n∑
i=1

pi

2

(
eiµ

∂V µ(x)

∂xk + e−iµ
∂V µ(x)

∂xk

)]
+ (b(x) · ∇V µ(x)) = 0, (2.5)

V µ(O) = 0, V µ(x) > 0 if x 6= O.

The Hamilton-Jacobi equation for V (x) can be found in §4.2 of [5]. Equation

(2.5) for V µ(x) can be derived following the same idea as in [4] (see also §4.2 of

[5] and [6]). We briefly discuss the one dimensional case here. Define

Ṽ (t1, t2, O, x) = inf
ϕ∈C[t1,t2](R

1)
{Sµ

t1t2(ϕ) : ϕt1 = O,ϕt2 = x}.

From §4.23 of [13], we can have the Hamilton-Jacobi equation for Ṽ (t1, t2, O, x):

∂Ṽ (t1, t2, O, x)

∂t2
+Gµ

0(
∂Ṽ (t1, t2, O, x)

∂x
) + (b(x) · ∂Ṽ (t1, t2, O, x)

∂x
) = 0. (2.6)

We have to add the condition Ṽ (t1, t2, O,O) = 0, Ṽ (t1, t2, O, x) > 0 if x 6= O.

Notice that the infimum for V µ(x) is only attained for functions defined on a

39



semiaxis infinite from the left: there exists a function ϕ(t), −∞ ≤ t ≤ t2 such

that ϕ(−∞) = O,ϕ(t2) = x and Sµ
−∞,t2(ϕ) = V µ(x) (see §4.2 of [5]). Hence, we

have V µ(x) = limt1↓−∞ Ṽ (t1, t2, O, x). It can be checked that (see §4.2 of [5] and

[4], [6]) if V µ(x) is smooth enough, then

Gµ
0(
dV µ(x)

dx
) + (b(x) · dV

µ(x)

dx
) = 0.

In general, the equation (2.5) can have just generalized solutions. Since

Lµ
0(z) = ∞ if ||z|| = max1≤k≤d |zk| > n/u, the function V µ(x) can be equal

to ∞. For example, if the point O is separated from ∂G by a smooth surface Γ

with exterior normal ν(x), x ∈ Γ, and b(x) · ν(x) < −1/µ, then V0
µ = +∞ and

Xδ,ε
t never leaves the domain G starting inside the region bounded by Γ if ε is

small enough and δε−1 = µ2.

Define Vo = minx∈∂G V (x) and V µ
o = minx∈∂G V

µ(x).

Theorem 2.3: Let p0, . . . , pn satisfy
∑n

i=1 pii
2k = (2k − 1)!!, k = 1, . . . , n.

Let Assumptions 1-3 be satisfied. Then for any initial point x ∈ G and h > 0

lim
ε,δ↓0;δε−1=µ2

ε lnExτ
δ,ε = V µ

o ,

lim
ε,δε−1↓0

ε lnExτ
δ,ε = lim

ε↓0
ε lnExτ

ε = Vo,

lim
ε,δ↓0;δε−1=µ2

Px(e
V

µ
o −h

ε < τ δ,ε < e
V

µ
o +h

ε ) = 1,

lim
ε,δε−1↓0

Px(e
Vo−h

ε < τ δ,ε < e
Vo+h

ε ) = lim
ε↓0

Px(e
Vo−h

ε < τ ε < e
Vo+h

ε ) = 1,

If minx∈∂G V
µ(x) (minx∈∂G V (x)) is achieved just at one point xµ

∗ ∈ ∂G (x∗ ∈

∂G), then

lim
ε,δ↓0;δε−1=µ2

Px(|Xδ,ε
τδ,ε − xµ

∗ | > h) = 0

lim
ε,δε−1↓0

Px(|Xδ,ε
τδ,ε − x∗| > h) = lim

ε↓0
Px(|Xε

τε − x∗| > h) = 0.
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Proof: Taking into account Theorems 2.1 and 2.2, the proof of this theorem

is a modification of the proof of theorems 4.4.1 and 4.4.2 from [5].

�

Assumption 4: Assume b(x) = −∇U(x) + l(x), where the function U(x)

and the vector field l(x) are smooth enough, ∇U(x) · l(x) = 0 for x ∈ G, U(O) =

0, U(x) > 0 and ∇U(x) 6= 0 for x 6= O.

1. Let Assumptions 1-4 be satisfied. Then V (x) = 2U(x) (see Theorem 4.3.1

of [5]).

2. We look for the solution of V µ(x) under the condition V µ(O) = 0 in the

form: V µ(x) = V (x) + µ2V1(x) + . . . , 0 < µ << 1.

Let p0, . . . , pn satisfy
∑n

i=1 pii
2k = (2k − 1)!!, k = 1, . . . , n. Let Assumptions

1-4 be satisfied. Then we have

V µ(x) = 2U(x) + Vn(x)µ2n +O(µ2n+2), 0 < µ << 1,

where Vn(x) is given by the equation

Vn(x) = 22n+2

[
(2n+ 1)!!−

∑n
i=1 pii

2n+2

(2n+ 2)!

] ∫ 0

−∞

d∑
k=1

[
∂U

∂xk
(Zt)

]2n+2

dt. (2.7)

Here Zt is the solution of the equation

Żt = ∇U(Zt) + l(Zt), Z0 = x ∈ G, t < 0.

Let us prove the above statement. For convenience, denoteBn :=
(2n+1)!!−

∑n
i=1 pii

2n+2

(2n+2)!
.

Step 1: Recall from the remark of Lemma 2.4 that

(Gµ
0)

′
(z) = z − (2n+ 2)Bnz

2n+1µ2n +O(µ2n+2), 0 < µ << 1.
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Hence

Gµ
0(z) =

1

2
z2 −Bnz

2n+2µ2n +O(µ2n+2), 0 < µ << 1.

Applying this equality to equation (2.5), we have

(∇U(x)·∇V µ(x))−(l(x)·∇V µ(x)) =
1

2
|∇V µ(x)|2−Bn|∇V µ(x)|2n+2µ2n+O(µ2n+2),

(2.8)

V µ(O) = 0, V µ(x) > 0 x 6= O, 0 < µ << 1.

Step 2: We look for the solution of (2.8) under the condition V µ(O) = 0 in

the form: V µ(x) = V0(x) + µ2V1(x) + . . ., 0 < µ << 1. Substituting this series

into (2.8), we have

(−∇U(x) · ∇V0(x)) + (l(x) · ∇V0(x)) +
1

2
|∇V0(x)|2 = 0, V0(O) = 0.

It can be checked that V0(x) = 2U(x). Substituting the series V µ(x) = 2U(x) +

V1(x)µ
2 + ... into (2.8), we find that the functions Vk(x) for 1 ≤ k ≤ n satisfy the

following equations:

((−∇U(x)+l(x))·∇Vk(x))+
∑

i+j=k,0≤i<j≤k

(∇Vi(x)·∇Vj(x)) = 0, Vk(O) = 0, k < n,

and

((−∇U(x)+l(x))·∇Vn(x))+
∑

i+j=n,0≤i<j≤n

(∇Vi(x)·∇Vj(x)) = 22n+2Bn|∇U(x)|2n+2

Vn(O) = 0.

Let us solve for V1(x). When n = 1, the function V1(x) satisfies

((∇U(x) + l(x)) · ∇V1(x)) =
4

3
|∇U(x)|4, V1(O) = 0. (2.9)
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Solving this first order partial differential equation can be reduced to solving

ordinary differential equations (see [19]): Let Zt be the solution of the equation

Żt = ∇U(Zt) + l(Zt), Z0 = x ∈ G, t < 0.

Notice that

dU(Zt)

dt
= ∇U(Zt)(∇U(Zt) + l(Zt)) = |∇U(Zt)|2 > 0 Z0 = x ∈ G, t < 0.

Thus, we have limt↓−∞ Zt = O. On the other hand, we notice that

dV1(Zt)

dt
= ∇V1(Zt)(∇U(Zt) + l(Zt)) = 0.

Therefore the solution of (2.9) can be written in the form

V1(x) =
4

3

∫ 0

−∞
|∇U(Zt)|4dt.

When n > 1, the function V1(x) satisfies the equation

((∇U(x) + l(x)) · ∇V1(x)) = 0, V1(O) = 0.

By the same arguments above, we have V1(x) ≡ 0.

Now, let us find the functions Vk(x) for 1 < k ≤ n. Using mathematical

induction, it turns out that:

((∇U(x) + l(x)) · ∇Vk(x)) = 0, Vk(O) = 0, k < n;

((∇U(x) + l(x)) · ∇Vn(x)) = 22n+2bn|∇U(x)|2n+2, Vn(O) = 0.

Solving these two equations, we have Vk(x) ≡ 0, k < n and

Vn(x) = 22n+2bn

∫ 0

−∞
|∇U(Zt)|2n+2dt.

This completes the proof.

�
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2.3 Stochastic Resonance for Xδ,ε
t

Consider the system:

Ẋt = b(Xt), X0 = x ∈ Rd,

where the vector field b(x) is Lipschitz continuous.

Assumption 5: Assume that a finite number of asymptotically stable equi-

librium points K1, . . . , Kl ∈ Rd exist such that any trajectory of the system

Ẋt = b(Xt), X0 = x, except for the trajectories belonging to the separatrix

surfaces, is attracted to one of the points Ki as t→∞.

Now, consider the continuous process Xδ,ε
t defined in equation (1.5) and the

process Xε
t in equation (1.3) with σ as a unit matrix.

Lemma 2.6: For any h > 0, we have

lim
δ,ε↓0,δ/ε=µ2

P ( max
0≤t≤T

|Xδ,ε
t −Xt| > h) = 0.

The proof is a modification of the proof in §2.1 of [5]. We omit it.

Let i(x) be the index of the point such that the trajectory of Xt starting at

x ∈ Rd is attracted to Ki(x). Let x ∈ Rd not belong to a separatrix. From Lemma

2.6, the trajectory of the process Xδ,ε
t starting from Xδ,ε

0 = x will be attracted to

the asymptotically stable point Ki(x) as δ, ε ↓ 0, δ/ε = µ2.

However, because of the small perturbations, the process Xδ,ε
t , Xδ,ε

0 = x will

make transitions between the attractor points in large time intervals. To describe

the sequence of transitions of Xδ,ε
t as δ, ε ↓ 0, δ/ε = µ2, a hierarchy of cycles

related to the processes Xδ,ε
t is introduced (see §6.6 of [5] and [4]).
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Define Vij := infϕ∈C0T (Rd){Sµ
[0,T ](ϕ) : ϕ0 = Ki, ϕT = Kj, T > 0} where

ε−1Sµ
[0,T ](ϕ) is the action functional for the family Xδ,ε

t as δ, ε ↓ 0, δ/ε ↓ 0 in

the space C[0,T ](R
d). From Vij, a hierachy of cycles can be constructed: Cycles

of rank 0 are states of L = {1, . . . , l} themselves. For each i ∈ L, define “the

closest” j = J(i) ∈ L such that Vij = mink∈L\{i} Vik. Such a closest state is

unique in a generic system. Starting from any i ∈ L, one can consider the se-

quence i, J(i), J2(i), . . . , Jn(i), . . . where Jn+1(i) = J(Jn(i)). Since L is finite,

the sequence, starting from some m ∈ L, is periodic: i, J(i), . . . , Jn−1(i), Jn(i) →

Jn+1(i) → . . . , Jm(i) = Jn(i). This sequence i, J(i), . . . , Jn−1(i), Jn(i) → Jn+1(i)

→ . . . , Jm(i) = Jn(i) is called the cycle of rank 1 (1-cycle) generated by the state

i ∈ L. Denote by D(1) the set of 1-cycles generated by any i ∈ L.

Now let us define notions of main state, stationary distribution rate, rotation

rate and exit rate for 0-cycles and 1-cycles. Later, we define the cycles of rank

greater than 1 and introduce the same notions for the higher rank cycles.

For a 0-cycle C which contains one point i ∈ L, we define the main state

M(C) = i, stationary distribution rate mC(i) = 0, rotation rate R(C) = 0 and

the exit rate E(C) = ViJ(i) as follows. For a 1-cycle C, we define the main

state M(C) = k∗ ∈ C such that Vk∗J(k∗) = maxi∈C ViJ(i). We assume that the

maximum is attained just for one point k∗. The stationary distribution rate

mC(i) for any i ∈ C is defined as mC(i) = ViJ(i) − Vk∗J(k∗). The rotation rate is

defined as R(C) = maxi∈C ViJ(i). The exit rate E(C) for the 1-cycle C is defined

as E(C) = mini∈C,j /∈C(mC(i) + Vij). Assume that there exist just one i = i∗ ∈ C

and just one j = j∗ /∈ C for which the maximum and the minimum are attained.

Now we define by induction the cycles of higher ranks as well as their main

states, stationary distribution rate, rotation rate and exit rate.
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Suppose we already introduced the cycles of rank k (k-cycles). Let C(k) be

the set of all k-cycles. For any cycle C ∈ C(k), suppose the main state M(C)

and mC(i), R(C), E(C) are well defined. Then for any C1 ∈ C(k), define the exit

point i∗ ∈ C1 and the entrance point j∗ ∈ L\C1 such that mini∈C1,j /∈C1(mC1(i) +

Vij) is attained at i = i∗, j = j∗. The k-cycle, say C2 ∈ C(k), containing the

entrance point j∗ is called the k-cycle following after C1. We denote it J(C1).

Such a closest k-cycle is unique in the generic system. Consider the sequence

C1, J(C1), J
2(C1), . . . , J

n(C1), . . . where Jn+1(C1) = J(Jn(C1). Since Ck has

finite number of k-cycles, the sequence, starting from some m ∈ L, is periodic:

C1, J(C1), . . . , J
n−1(C1), J

n(C1) → Jn+1(C1) → . . . , Jm(C1) = Jn(C1). This

sequence C1, J(C1), . . . , J
n−1(C1), J

n(C1) → Jn+1(C1) → . . . , Jm(C1) = Jn(C1)

is called the cycle of rank k + 1 (1-cycle) generated by the k-cycle C1. Let us

denote by C(k+1) the set of all (k+ 1)-cycles generated by any k-cycles belonging

to C(k).

Now, let us define the main state M(C) and mC(i), R(C) and E(C) for any

(k + 1)-cycle C ∈ C(k+1).

First, let us recall the notion of i-graph for a finite set L = {1, . . . , l} (see page

177 of [5]). A system of directed arrows connecting some of the points j ∈ L is

called an i-graph if any point j ∈ L \ {i} is the initial point of exactly one arrow

and starting from any point j ∈ L \ {i} there exists a sequence of arrows leading

from it to i.

Denote by Gi(L), i ∈ L the set of all i graphs for the finite set L. The

main state M(C) for the (k + 1)-cycle C is defined as M(C) = j∗(C) such that

minj∈C ming∈Gj(C)

∑
(m→n)∈g Vmn is attained at j = j∗. We assume that such a

j∗ is unique. Define the rotation rate R(C) for the k + 1-cycle C as R(C) =
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max
i:C

(k)
i ∈C

E(C
(k)
i ) where C

(k)
i are the k-cycles which form the (k + 1)-cycle C

and E(C
(k)
i ) is the exit rate for the k-cycle C

(k)
i . The stationary distribution rate

mC(i), i ∈ C for the (k + 1)-cycle C is defined as

mC(i) = min
g∈Gi(C)

∑
(m→n)∈g

Vmn − min
g∈Gj∗(C)

∑
(m→n)∈g

Vmn

where j∗ = M(C) is the main state of C. The exit rate for the (k+ 1)-cycle C is

defined as E(C) = mini∈C,j /∈C(mC(i) + Vij). We assume the minimum is attained

at unique points i = i∗ and j = j∗.

Since L is finite, a hierarchy of cycles up to rank k∗ can be constructed so

that the k∗-cycle contain all the stable equilibrium points of L.

Assumption 6: The system Xδ,ε
t is a generic system such that the hierachy,

the main state, stationary distribution rate, rotation rate and the exit rate of

each cycle are defined in a unique way.

Notice that the hierarchy of cycles and the main states are not random al-

though the transitions between the stable points are caused by random pertur-

bations.

Denote by D(i) ⊂ Rd the domain attracted to the equilibrium point i, i ∈

{1, . . . , l}. Let D(C) = ∪i∈CD(i) where C is some cycle. Let τµ
C be the exit time

from D(C): τµ
C = inf{t : Xδ,ε

t /∈ D(C)}. It follows from Theorem 6.6.2 of [5] and

Theorem 2.1.1 of [4] that

lim
δ,ε↓0,δ/ε=µ2

ε lnEτµ
C = E(C), (2.10)

and for any γ > 0,

lim
δ,ε↓0,δ/ε=µ2

Px(e
εE(C)−γ) < τµ

C < eε(E(C)+γ)) = 1 (2.11)
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uniformly for any Xδ,ε
0 = x ∈ F where F is a compact subset of D(C).

Now, let us describe the long-time behavior of Xδ,ε
t as δ, ε ↓ 0, δ/ε = µ2.

For any initial point x ∈ D(i), i ∈ {1, . . . l}, with probability 1, the trajectory

of Xδ,ε
t , 0 < δ, ε << 1, δ

/
ε = µ2, first is attracted to a small neighborhood of

the equilibrium point i(x). Put the 0-cycle C(0)(x) = i. At time τ ε
C(0)(x)

, the

trajectory Xδ,ε
t leaves D(C(0)(x)) for a neighborhood of the equilibrium point

J(C(0)(x)), and then it leaves D(J(C(0)(x))) for a neighborhood of J2(C(0)(x))

and so on. With probability 1, it then rotates in the 1-cycle C(1)(x) generated by

the state C(0)(x). For time greater than τ ε
C(1)(x)

� E(C(1)(x)), with probability 1,

the trajectory leaves D(C(1)(x)) for a small neighborhood of J(C(1)(x)), the 1-

cycle following after C(1)(x), and then it leaves D(J(C(1)(x))) for a neighborhood

of J2(C(1)(x)) and so on. Then it rotates along C(2)(x), the 2-cycle generated

by C(1)(x), and then along a 3-cycle C(3)(x) which is generated by C(2)(x), and

so on up to the highest rank k∗-cycle C(k∗)(x) which includes all the equilibrium

points in L.

The transition times are described in equations (2.10) and (2.11) and they are

described in terms of the action functional for the family Xδ,ε
t as δ, ε ↓ 0, δ/ε = µ2.

Notice that C(j)(x) ⊂ C(j+1)(x) for j = 1, . . . , k∗ − 1 where C(j+1)(x) is the

(j + 1)-cycle generated by the j-cycle C(m∗)(x). Furthermore, it can be checked

that for any initial point x ∈ D(i),

E(C(0)(x)) < E(C(1)(x)) < E(C(2)(x)) < . . . < E(C(k∗)(x)) = ∞

and the sequence of the rotation rates for each cycle is also an increasing sequence

and R(C(j)(x)) < E(C(j)(x)), j = 1, . . . , k∗.

Let T = T (ε) be a large parameter such that limε↓0 ε lnT (ε) = λ > 0. For any
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x ∈ Rd, except for the points belonging to a separatrix, and any λ > 0, except for

a finite number of values, there exists a cycle C(m∗)(x) such that E(C(m∗)(x)) <

λ < E(C(m∗+1)(x)) where C(m∗+1)(x) is the (m∗ + 1)-cycle generated by the m∗-

cycle C(m∗)(x). This implies that Xδ,ε
t will leave the m∗-cycle C(m∗)(x) and come

into the basin of D(C(m∗+1)(x)) before time T (ε), but Xδ,ε
t does not have enough

time to leave that basin before the time AT (ε), 0 < A <∞ with probability 1 as

δ, ε ↓ 0, δ/ε = µ2.

There also exists a state Kh(x,λ) in the cycle C(m∗+1)(x). For any A > 0, Xδ,ε
t

spends most of its time around the state Kh(x,λ) in the time interval [0, AT (ε)]

with probability 1 as δ, ε ↓ 0, δ/ε = µ2. The state Kh(x,λ) is called the metastable

state. The following statements precisely define the metastable state Kh(x,λ),

h ∈ C(m∗+1)(x).

If λ > R(C(m∗+1)(x)), then h(x, λ) = M(C(m∗+1)(x)) the main state of the

cycle C(m∗+1)(x).

If λ < R(C(m∗+1)(x)) = maxC(m∗)(x)∈C(m∗+1)(x) E(C(m∗)(x)), then the trajectory

does not have enough time to rotate through all them∗-cycles in C(m∗+1)(x) before

time AT (ε), 0 < A <∞ with probability 1 as ε ↓ 0. Let Ĉ(m∗)(x) be the first m∗-

cycle such that λ < E(Ĉ(m∗)(x)). If λ > R(Ĉ(m∗)(x)), then h(x, λ) = M(Ĉ(m∗)(x))

the main state of the cycle Ĉ(m∗)(x).

If λ < R(Ĉ(m∗)(x)) = maxC(m∗−1)(x)∈Ĉ(m∗)(x) E(C(m∗−1)(x)), then the trajectory

does not have enough time to rotate through all the m∗ − 1-cycles in Ĉ(m∗)(x)

before the time AT (ε), 0 < A <∞ with probability 1 as ε ↓ 0. Let Ĉ(m∗−1)(x) be

the first m∗ − 1-cycle such that λ < E(Ĉ(m∗−1)(x)). If λ > R(Ĉ(m∗−1)(x)), then

µ(x, λ) = M(Ĉ(m∗−1)(x)) the main state of the cycle Ĉ(m∗−1)(x).

If λ < R(Ĉ(m∗−1)(x)), then we consider the (m∗−2)-cycles in Ĉ(m∗−1)(x)) and
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so on until we come to a (m∗ − n)-cycle Ĉ(m∗−n)(x)) such that R(Ĉ(m∗−n)(x)) <

λ < E(Ĉ(m∗−n)(x)). Then h(x, λ) = M(Ĉ(m∗−n)(x)), the main state of the cycle

Ĉ(m∗−n)(x). The metastable state Kh(x,λ) is well defined.

Denote by Λ(G) the Lebesgue measure of a set G ⊂ R1 and ρ(·, ·) the Eu-

clidean metric in Rd. The following lemma can be proved following the same idea

as Theorem 1 of [4].

Lemma 2.7: Let Assumptions 5-6 be satisfied and let T = T (ε) be a large

parameter such that limε↓0 ε lnT (ε) = λ > 0. Let x ∈ Rd not belong to a

separatrix. Then, for any h > 0 and A > 0,

Λ{t ∈ [0, A] : ρ(Xδ,ε
tT (ε), Kh(x,λ)) > h} → 0

in probability as δ, ε ↓ 0, δ/ε = µ2.

�

Now consider a system Xδ,ε
t with time dependent coefficient when replacing

equation (1.5)) with

Xδ,ε
t+δ −Xδ,ε

t =

∫ t+δ

t

b
( s
T
,Xδ,ε

s

)
ds+

√
ε(ξδ,n

t+δ − ξδ,n
t ), Xε

0 = x. (2.12)

Here T = T (ε) � e
λ
ε , λ > 0, is a large parameter as ε ↓ 0 so that the coefficients

of b(t, x) are changing very slowly. Without loss of generality, we suppose:

Assumption 7: Assume b(t, x) is a step function in t where 0 ≤ t < 1 and

that points 0 = t0 < t1 < . . . < tm = 1 exists such that

b(t, x) = bk(x), tk−1 ≤ t ≤ tk, k ∈ {1, . . . ,m}.

Here each bk(x) is a vector field taking values in Rd and is Lipschitz continuous

in x. Suppose each vector field bk(x) has lk asymptotically stable equilibrium

points K
(k)
1 , . . . , K

(k)
lk

.
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For any x ∈ Rd, except for the points belonging to a separatrix, and any

λ > 0, except for a finite number of values, the trajectory Xδ,ε
tT (ε), 0 ≤ t < 1, first

approaches the metastable state of the system (2.12) with b(t, x) = b1(x) and then

evolves together with the metastable states. Put π1(x, λ) = h1(x, λ), πk(x, λ) =

hk(πk−1(x, λ), λ), k ∈ {2, . . . ,m} where hk(x, λ) is the metastable state for the

system (2.12) with b(t, x) = bk(x) and initial point Xδ,ε
0 = x ∈ Rd. Define a step

function φ(t) = φ(t, x, λ), 0 ≤ t ≤ 1, where φ(t, x, λ) = K
(j)

πj(x,λ)
for tj−1 ≤ t <

tj, j ∈ {1, . . . ,m}. The following lemma can be proved following the same idea

as Theorem 2 of [4]:

Lemma 2.8: Let Assumptions 6-7 be satisfied and let T = T (ε) be a large

parameter such that limε↓0 ε lnT (ε) = λ > 0. Let x ∈ Rd not belong to a

separatrix. Then, for any h > 0 and 0 < A < 1,

Λ{t ∈ [0, A] : ρ(Xδ,ε
tT (ε), φt) > h} → 0

in probability as δ, ε ↓ 0, δ/ε = µ2.

�

Assumption 8: Let b(t, x) be 1-periodic in t: b(t + 1, x) = b(t, x). For

0 ≤ t < 1, the function b(t, x) satisfies the conditions in Assumption 7.

Let L∗ be the set of all the equilibrium stable points: L∗ = {1, 2, . . . , l∗} where

l∗ is a finite number.

Theorem 2.5: Let Assumptions 6 and 8 be satisfied and let T = T (ε) be a

large parameter such that limε↓0 ε lnT (ε) = λ > 0. Then for any x ∈ D(i), there

exists a periodic function φ(t) with period N = N(i, λ, l∗) ≤ l∗ such that for any

51



h > 0, A > 0,

Λ{t ∈ [0, A] : ρ(Xδ,ε
tT (ε), φt) > h} → 0

in probability as ε → 0. Here l∗ is the number of the equilibrium stable points

of the unperturbed system.

The argument for this theorem is in the following (see [4]):

First, consider the process Xδ,ε
tT (ε), 0 ≤ t < 1. Put

π1(x, λ) = h1(x, λ), . . . , πk(x, λ) = hk(πk−1(x, λ), λ), . . . , πn(x, λ) = hn(πn−1(x, λ), λ).

Let φ(t) = φ(t, x, λ), 0 ≤ t < 1 where

φ(t, x, λ) = K
(j)

πj(x,λ)
, tj−1 ≤ t < tj, j ∈ {1, . . . , n}.

Then the trajectory of the process Xδ,ε
tT (ε) for 0 ≤ t < 1 will be close to the step

function φ(t), 0 ≤ t < 1, as δ, ε ↓ 0, δ/ε = µ2. For 1 ≤ t < 2, the trajectory of the

process Xδ,ε
t will evolve together with the metastable state of Xδ,ε

t for 0 ≤ t < 1.

Put

πn+1(x, λ) = h1(πn(x, λ), λ), . . . , πn+k(x, λ) = hk(πn+k−1(x, λ), λ), . . . ,

π2n(x, λ) = hn(π2n−1(x, λ), λ).

Let φ(t) = φ(t, x, λ), 1 ≤ t < 2 where

φ(t, x, λ) = K
(j)

πn+j(x,λ)
, tj−1 ≤ t− 1 < tj, j ∈ {1, . . . , n}.

Then the trajectory of the process Xδ,ε
tT (ε) for 1 ≤ t < 2 will be close to the

function φ(t), 1 ≤ t < 2 as δ, ε ↓ 0, δ/ε = µ2. Keeping this pattern, we conclude

that the trajectory of the process Xδ,ε
tT (ε), t > 0 will be close to a function φ(t) as

δ, ε ↓ 0, δ/ε = µ2.
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Let us show that the function φ(t) is periodic in t with period less than l∗.

Consider the sequence

π0(x, λ) = i(x), πn(x, λ) = hn(πn−1(x, λ), λ), π2n(x, λ) = hn(π2n−1(x, λ), λ), . . . .

Since the unperturbed system has only a finite number l∗ of asymptotically sta-

ble equilibrium points, the sequence π0(x, λ), πn(x, λ), π2n(x, λ), . . . starting from

some N = N(i, λ, l∗) ≤ l∗ is periodic. Therefore, φ(t) is a periodic function with

period N ≤ l∗.

In conclusion, for any Xδ,ε
0 = x ∈ D(i) and λ > 0, besides a finite number

of values, the trajectory of Xδ,ε
tT (ε) will be close to a periodic function φ(t) as

δ, ε ↓ 0, δ/ε = µ2. This effect is called stochastic resonance.

2.4 Example

Example 1: (see [5]) Consider (1.4) in the one-dimensional case:

Ẋε
t = b(

t

T
,Xε

t ) +
√
εẆt, X

ε
0 = x ∈ R1, 0 < ε� 1.

Let b(t, x) be 1-periodic in t and

b(t) =

 −B′
1(x), 0 ≤ t ≤ t1 < 1,

−B′
2(x), t1 ≤ t < 1.

The potentials B1(x) and B2(x) are given in Figure 2.1. There are three stable

attractors k1 = {x1}, k2 = {x2}, k3 = {x3} for each of the fields −B′
1(x) and

−B′
2(x). We define V (x, y) = infφ∈C0T

{S[0,T ](φ), φ0 = x, φT = y} and Vij =

V (x, y) for x ∈ Ki, y ∈ Kj. In this case, V i(x, y), i = 1, 2, for each of these fields

can be expressed through the potential: for x and y from the same well, we have
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V i(x, y) = 2(Bi(y)−Bi(x))∨ 0 (see §4.3 of [4], [5]). Hence, the values of V 1
ij and

V 2
ij can be calculated:

V 1
12 = 16, V 1

13 = 22, V 1
21 = 8, V 1

23 = 6, V 1
31 = 12, V 1

32 = 4.

V 2
12 = 16, V 2

13 = 20, V 2
21 = 6, V 2

23 = 4, V 2
31 = 12, V 2

32 = 6.

There are two 1-cycles for each of the field −B′
1(x) and −B′

2(x), C
1
1 = {1} and

C1
2 = {2 → 3 → 2}. The 2-cycles contain all the states. But the main states of

cycle C1
2 are different for the fields −B′

1(x) and −B′
2(x). The main state of C1

2 for

−B′
1(x) is M1(C

1
2) = 2 and M1(C

1
2 = 3 for −B′

2(x). Let λ = limε↓0 ε lnT (ε) > 0.

Let Xε
0 = x. Denote by hi(x, λ), i = 1, 2, the function of main states calculate

for each drift −B′
i(x) respectively. If x ∈ D(1), the basin D(1) of x1, then

hi(x, λ) = 1 for i = 1, 2. If x ∈ D(2), then

h1(x, λ) =

 2, λ < 8,

1, λ > 8.
h2(x, λ) =


2, λ < 4,

3, 4 < λ < 8,

1, λ > 8.

If x ∈ D(3), then

h1(x, λ) =


3, λ < 8,

2, 4 < λ < 8.

1, λ > 8.

h2(x, λ) =

 3, λ < 8,

1, λ > 8.

This means if x ∈ D(1), Xε
tT (ε), 0 ≤ t < A <∞, Xε

0 = x, will be close to x1 for any

λ > 0. No periodic oscillations will be observed in this case. If x ∈ D(2) ∪D(3)

and 4 < λ < 8, then Xε
tT (ε), 0 ≤ t < A <∞, Xε

0 = x, will be close to a 1-periodic

function φ(t) as ε ↓ 0 with probability close to 1:

φ(t) =

 x2, t ∈ [0, t1),

x3, t ∈ [t1, 1).
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If λ < 4, then Xε
tT (ε), 0 ≤ t < A < ∞ as ε ↓ 0 will be stay near the attractor of

the initial point with probability close to 1. If λ > 8, then Xε
tT (ε), 0 ≤ t < A <∞

as ε ↓ 0 will be stay near the attractor of x1 with probability close to 1.

Example 2: Let Wt in Example 1 be replaced by a one-dimensional random

walk ξδ
t with n = 2. More precisely, the random walk ξδ

t , t ∈ Nδ = {0, δ, ...kδ, ...},

can jump to 0,±
√
δ,±2

√
δ such that ξδ

t+δ − ξδ
t = ±

√
δ with probability 1

2
p1 = 1

6
,

ξδ
t+δ − ξδ

t = ±
√
δ with probability 1

2
p1 = 1

12
. The probability that ξδ

t jumps to 0

is p0 = 1
2
. It can be verified that p0 = 1

2
, p1 = 1

3
, p2 = 1

6
satisfy p0 + p1 + p2 = 1,∑2

i=1 pii
2 = 1 and

∑2
i=1 pii

4 = 3.

Consider the processes Xδ,ε
t with same construction as in (1.5)). From Theo-

rem 2.1 and Lemma 2.5, the action functional for the family of processes Xδ,ε
t as

δ, ε ↓ 0, δ/ε = µ2 in the space C[0,T ] is ε−1Sµ
[0,T ](ϕ), where

Sµ
[0,T ](ϕ) =


∫ T

0
Lµ

0(ϕ̇s − b(ϕs))ds, ifϕ is a.c. and ϕ0 = x,

+∞, otherwise.

where Lµ
0 = u2

2
+ 1

180
u6µ4 +O(µ4), 0 < µ << 1. Define

V µ(x, y) = inf
φ∈C0T

{Sµ
[0,T ](φ), φ0 = x, φT = y}.

We have (see §4.3 of [4] and [5]),

V µ(x, y) = 2(B(y)−B(x)) ∨ 0 +
16

45
µ2

∫ 0

−∞
(B

′
(φs))

6ds+O(µ4), 0 < µ << 1.

where φs satisfies φ̇s = B
′
(φs), φ0 = y and limt↓−∞ φt = x.

Hence, values for V µ
ij , i, j = 1, 2, 3 can be calculated and they are different

from Vij in example 1. Different hµ(x, λ) will be obtained also. The corresponding

conditions providing stochastic resonance can be obtained from hµ(x, λ).
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Chapter 3

Exit Problem for Perturbation ηµ,εt

Approximating White Noise

3.1 Large Deviations for (Xµ,ε
t , ηµ,εt )

Consider a mean-zero Gaussian process ηµ,ε
t . Here ηµ,ε

t = (ηµ,ε,1
t , ..., ηµ,ε,d

t ), t ∈

[0, T ], with each component identically and independently distributed, satisfies

the following equation

µη̇µ,ε
t = −ηµ,ε

t +
√
εẆt, η

µ,ε
0 = y ∈ Rd.

Here Wt is a standard d-dimensional Wiener process and µ ∈ R1 is a positive con-

stant. According to the contraction principle (see Theorem 1.1), a large deviation

principle for the family of processes ηµ,ε
t as ε ↓ 0 can be established:

Theorem 3.1: The action functional for the family of processes ηµ,ε
t in the

space C[0,T ](R
d) as ε ↓ 0 is (1/ε)Sη

[0,T ](ϕ, φ) where

Sη
[0,T ](ϕ) =


1
2

∫ T

0
|µφ̇t + φt|2dt, if φt is absolutely continuous andφ0 = y

+∞, otherwise
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�

Let us replace
√
εẆt in (1.3) with ηµ,ε

t and let σ be a unit matrix. Then (1.3)

becomes

Ẋµ,ε
t = b(Xµ,ε

t ) + ηµ,ε
t , Xµ,ε

0 = x ∈ Rd.

Since Xµ,ε
t is not a Markov process, we consider the 2d-dimensional Markov

process (Xµ,ε
t , ηµ,ε

t ) which satisfies
Ẋµ,ε

t = b(Xµ,ε
t ) + ηµ,ε

t ,

µη̇µ,ε
t = −ηµ,ε

t +
√
εẆt,

Xµ,ε
0 = x ∈ Rd, ηµ,ε

0 = y ∈ Rd, 0 < ε� 1.

(3.1)

Our goal in this section is to establish a large deviation principle for the family

of processes (Xµ,ε
t , ηµ,ε

t ) as ε ↓ 0.

Let ϕt, φt be two functions belonging to the space C[0,T ](R
d). Define the

functional Sµ
[0,T ](ϕ, φ) on the space C[0,T ](R

2d) as

Sµ
[0,T ](ϕ, φ) =

1

2

∫ T

0

|(ϕ̇t − b(ϕt) + µ
d

dt
(ϕ̇t − b(ϕt))|2dt. (3.2)

If ϕ̇t is absolutely continuous, φt = ϕ̇t − b(ϕt) and ϕ0 = x, φ0 = y. While

Sµ
0T (ϕ, φ) = ∞ for the remaining functions in C[0,T ](R

2d).

Theorem 3.2: The functional Sµ
[0,T ](ϕ, φ) is the action functional in the space

C[0,T ](R
2d) for the family of processes (Xµ,ε

t , ηµ,ε
t ) as ε ↓ 0.

Proof: Let ψt be a continuous function on [0, T ] with values in Rd. In

C[0,T ](R
d) we consider the map Bx,y : ψ → (u, v), where (u, v) = (ut, vt) is the

solution of the equation ut = x+
∫ t

0
b(us)ds+

∫ t

0
vsds

µvt = µy −
∫ t

0
vsds+ ψt, t ∈ [0, T ].
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It is easy to prove that the solution of the above equation exists and is unique for

any continuous function ψ and for any x, y ∈ Rd. And it is also easily checked

that Bx,y is continuous map from the space C[0,T ](R
d) (with uniform metric) into

the space C[0,T ](R
2d) (with uniform metric). The map Bx,y has the inverse

(B−1
x,y(u, v))t = ψt = µ(u̇t − b(ut)) + ut − x−

∫ t

0

b(us)ds− µy.

with vt = u̇t−b(ut) and u0 = x and v0 = y. According to the contraction principle

(see Lemma 1.1), the action functional for the family of processes (Xµ,ε
t , ηµ,ε

t ) =

Bx,y(
√
εWt) in the space C[0,T ](R

2d) has the form ε−1Sµ
[0,T ](ϕ) where

Sµ
[0,T ](ϕ, φ) =

1

2

∫ T

0

| d
dt

(B−1
x,yϕ)t|2dt

=
1

2

∫ T

0

|(ϕ̇t − b(ϕt) + µ
d

dt
(ϕ̇t − b(ϕt)|2ds.

if φt = ϕ̇t − b(ϕt) and ϕ0 = x, φ0 = y and the function (B−1
x,y(ϕ, φ))t = µ(ϕ̇t −

b(ϕt)) + ϕt − x −
∫ t

0
b(ϕs)ds − y is absolutely continuous. It is clear that this

function is absolutely continuous if and only if ϕ̇t is absolutely continuous. Also

Sµ
[0,T ](ϕ, φ) = ∞ for the remaining functions in C[0,T ](R

2d). This completes the

proof.

�

3.2 Exit Problem for Xµ,ε
t

Consider the system:

Ẋt = b(Xt), X0 = x ∈ Rd,

where the vector field b(x) is Lipschitz continuous.
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Assumption 1: The vector field b(x), x ∈ Rd has an asymptotically stable

equilibrium at a point O ∈ Rd.

Assumption 2: Assume b(x) has a potential U(x) such that ∇U(x) = −b(x)

with U(O) = 0 and U(x) > 0,∇U(x) 6= 0 for x 6= O.

Let G ⊂ Rd be a bounded domain with boundary ∂G.

Assumption 3: The domain G is attracted to O ∈ G: limt↑∞Xt = O, for

each trajectory of Ẋt = b(Xt), X0 = x ∈ G.

Assumption 4: The domainG has a smooth boundary ∂G and (b(x)·n(x)) <

0, x ∈ ∂G, where n(x) is the exterior normal of the boundary of G.

Now, let us consider the process Xµ,ε
t , t ∈ [0, T ] . Let Xµ,ε

0 = x ∈ G. Denote

by τX the first exit time of the process Xµ,ε
t from G: τX = min{t : Xµ,ε

t ∈ ∂G}.

Our goal in this section is to consider the asymptotic behavior of τX and the exit

point of Xµ,ε
t from G when ε ↓ 0. We follow the same idea as Theorems 4.2.1,

4.4.1 and 4.4.2 in [5] where properties of Markov processes play an important

role in the proof. Since Xµ,ε
t is not a Markov process, we must consider the

2d-dimensional Markov process (Xµ,ε
t , ηµ,ε

t ) in the proof.

First, consider the system (Xµ
t , η

µ
t ): Ẋµ

t = b(Xµ
t ) + ηµ

t , X
µ
0 = x ∈ Rd

µη̇µ
t = −ηµ

t , η
µ
0 = y ∈ Rd.

It is easy to prove that the system (Xµ
t , η

µ
t ) has an asymptotic stable equilibrium

at (O,O) ∈ R2d under the assumptions concerning b(x) (see [15]). Indeed, since

there exists a potential U(x) such that∇U(x) = −b(x). Define V (x, η) = µη2/2+

B(x). It can be checked that d
dt
V (Xµ

t , η
µ
t ) < 0 except for the point (O,O). By

Theorem 2.3 in [25], (Xµ
t , η

µ
t ) has an asymptotic stable equilibrium at (O,O).
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Now, consider the system (Xµ,ε
t , ηµ,ε

t ) with Xµ,ε
0 = x ∈ G, ηµ,ε

0 = y ∈ Rd.

Notice that τX = min{t : Xµ,ε
t ∈ ∂G} = min{t : (Xµ,ε

t , ηµ,ε
t ) ∈ ∂G × Rd}. Let

x, y, z ∈ Rd. We introduce the function V µ(x, y, z):

V µ(x, y, z) = inf
ϕ,φ∈C[0,T ](R

d)
{Sµ

[0,T ](ϕ, φ) : ϕ0 = x, φ0 = y, ϕT = z, T > 0}.

Here Sµ
[0,T ](ϕ, φ) is the action functional for (Xµ,ε

t , ηµ,ε
t ) in the space C[0,T ](R

2d)

as ε ↓ 0. Define V µ(x) := V µ(O,O, x). It turns out that

V µ(x) = inf
ϕ,φ∈C0T (Rd)

{Sµ
[0,T ](ϕ, φ) : ϕ0 = O, φ0 = O,ϕT = x, T > 0}

= inf
ϕ,φ∈C0T (Rd)

{1

2

∫ T

0

|(ϕ̇t − b(ϕt)) + µ
d

dt
(ϕ̇t − b(ϕt))|2ds :

φt = ϕ̇t − b(ϕt), ϕ0 = O, φ0 = O,ϕT = x, T > 0}

= inf
ϕ,ϕ̇∈C0T (Rd)

{1

2

∫ T

0

|(ϕ̇t − b(ϕt)) + µ
d

dt
(ϕ̇t − b(ϕt))|2ds,

ϕ0 = O, ϕ̇0 = O,ϕT = x, T > 0}

The function V µ(x) is non-negative and equal to zero just at x = O under the

assumption that O is the only asymptotically stable point of b(x). Let us define

V µ
o = minx∈∂G V

µ(x). We formulate the following Lemma without proof. For

detailed proof, please see [16].

Recall from Chapter 2 that V (x) = infϕ∈C0T (Rd){1
2

∫ T

0
|ϕ̇t − b(ϕt)|2dt : ϕ0 =

O,ϕT = x, T > 0} and Vo = minx∈∂G V (x).

Lemma 3.1: Let V µ(x) and V µ
o be defined as above. Assume that minx∈∂G V

µ(x)

is achieved just at one point xµ
o ∈ ∂G and minx∈∂G V (x) is achieved just at one

point xo ∈ ∂G. Then limµ↓0 V
µ(x) = V (x), limµ↓0 V

µ
o = Vo and limµ↓0 x

µ
o = xo.

Theorem 3.3: Let N be any positive constant such that (Xµ
t , η

µ
t ) with Xµ

0 =

x ∈ G, ηµ
0 = y, |y| < N never leaves the domain G× [−N,N ]. Let Assumptions
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1-4 be satisfied. For any x ∈ G, |y| ≤ N and α > 0, there exists a µ∗ such that

for any µ < µ∗,

(1)

lim
ε↓0

ε lnEx,yτ
X < V µ

o + α, lim
ε↓0

ε lnEx,yτ
X > V µ

o − α.

(2)

lim
ε↓0

Px,y(e
V

µ
o −α

ε < τX < e
V

µ
o +α

ε ) = 1.

(3) If minx∈∂G V
µ(x) is achieved just at one point xµ

o ∈ ∂G and minx∈∂G V (x) is

achieved just at one point xo ∈ ∂G, then

lim
ε↓0

Px,y(|Xµ,ε
τX − xµ

o | < α) = 1.

For convenience, let us first prove this theorem for the one dimensional case.

(Hence G is a one dimensional bounded domain and b(x) is automatically of

potential-type). We follow the same idea as Theorems 4.2.1, 4.4.1 and 4.4.2 in

[5].

Define

V η(x) = inf
φ∈C[0,T ]

{Sη
[0,T ](φ) : φ0 = O, φT = x}.

where 1/εSη
[0,T ](φ) is the action functional for the family of processes ηµ,ε

t in the

space C[0,T ] as ε ↓ 0. From Theorem 3.4.3 in [5] together with Theorem 3.1, it is

easily check that V η(x) = x2µ.

Let M be some positive constant which will be determined later. Define

V η
o = minx∈∂[−M,M ] V

η(x). Hence V η
o = M2µ.

Define Γ := {(x, y) ∈ R2 : (x, y) ∈ Eδ(O × O)}; γ := {(x, y) ∈ R2 : (x, y) ∈

E δ
2
(O × O)}. Here Eδ(O × O) and Eδ/2(O × O) are the δ and δ/2 spheres of
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O × O, respectively. Let us introduce an increasing sequence of Markov times

τ0, σ0, τ1, σ1, τ2, ... and a Markov chain Zn = (Xµ,ε
τn
, ηµ,ε

τn
) in the following way:

τ0 = 0 and

σn := inf{t > τn : (Xµ,ε
t , ηµ,ε

t ) ∈ Γ};

τn := inf{t > σn, (X
µ,ε
t : ηµ,ε

t ) ∈ γ ∪ (∂G× (−M,M)) ∪ (G× ∂[−M,M ])}

If at a certain step, the process (Xµ,ε
t , ηµ,ε

t ) does not reach the set Γ any more, we

set the corresponding Markov time and all subsequent ones equal to +∞. Notice

that infinite τn and σn can be avoinded if we change the field b(x) outside G in an

appropriate way. The sequence Zn = (Xµ,ε
τn
, ηµ,ε

τn
) forms a Markov chain on the set

γ ∪ (∂G× (−M,M))∪ (G× ∂[−M,M ]). Notice that Zn is not defined if τn = ∞

but this can happen only after exit to (∂G× (−M,M))∪ (G×∂[−M,M ]). Now,

let us prove some lemmas which will be useful.

Lemma 3.2: Let F1 and F2 be two compact sets in R1 and let T and α be

positive numbers. For each fixed µ > 0, there exist εo = εo(µ) and β = β(µ) > 0

such that for any x ∈ F1, y ∈ F2 and ε < εo,

Px,y{ρC[0,T ]
((Xµ,ε

t , ηµ,ε
t ), (Xµ

t , η
µ
t )) > α} ≤ exp{−ε−1β}.

Here (Xµ
t , η

µ
t ) is the trajectory of the dynamic system Ẋµ

t = b(Xµ
t ) + ηµ

t , X0 = x ∈ Rd

µη̇µ
t = −ηµ

t , η
µ
0 = y ∈ Rd.

Proof: Put

G(x, y) = {ϕ, φ ∈ C[0,T ](R
d) : ϕ0 = x, φ0 = y, ρC[0,T ]

((ϕ, φ), (Xµ
t , η

µ
t )) > α}

Then ∪x∈F1,y∈F2G(x, y) is a closed set and Sµ
[0,T ] attains its infimum h on this

closed set.

63



Notice that

S[0,T ](ϕ, φ) =
1

2

∫ T

0

|(ϕ̇t − b(ϕt) + µ
d

dt
(ϕ̇t − b(ϕt))|2dt

if ϕ̇t is absolutely continuous and φt = ϕ̇t − b(ϕt) and ϕ0 = x, φ0 = y, while

Sµ
[0T ](ϕ, φ) = ∞ for the remaining functions in C[0,T ]. The functional vanishes

only on trajectories of the dynamical system (Xµ
t , η

µ
t ). Therefore, h > 0.

For any h
′
< h, the sets ∪x∈F1,y∈F2G(x, y) and ∪x∈F1,y∈F2Φx,y(h

′
) are disjoint.

Let us denote the distance between them by α
′
and α

′
> 0. Therefore, for any

γ > 0, we have

Px,y(ρC[0,T ]
((Xµ,ε

t , ηµ,ε
t ), (Xµ

t , η
µ
t )) > α)

= Px,y((X
µ,ε
t , ηµ,ε

t ) ∈ G(x, y))

≤ Px,y(ρC[0,T ]
((Xµ,ε

t , ηµ,ε
t ),Φx,y(h

′
) ≥ α

′
) ≤ exp{−ε(h′ − γ)}

for sufficiently small ε and for any x ∈ F1, y ∈ F2. Hence this lemma holds for

β = h
′ − γ.

�

Lemma 3.3: Let Assumptions 1-4 be satisfied. Let M < ∞ be a positive

constant. Let x ∈ G, |y| < M . Then, for each µ > 0, we have

(1) For any α > 0, there exist positive constants a and To such that for any

function (ϕt, φt) assuming its values in the set ((G ∪ ∂G) × [−M,M ]) \

Eα(O × O) for t ∈ [0, T ] with ϕo = x, φ0 = y, we have the inequality

Sµ
[0,T ](ϕ, φ) > a(T − To).

(2) For any α > 0 there exists positive constant a and To such that for all

sufficiently small ε > 0 and any (x, y) ∈ ((G∪∂G)× [−M,M ]) \ Eα̂(O×O)
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we have the inequality

Px,y(ζα > T ) ≤ exp{−ε−1a(T − To)},

where ζα = inf{t : (Xδ,ε
t , ηµ,ε

t ) /∈ ((G ∪ ∂G)× [−M,M ]) \ Eα(O ×O).

(3) For any α > 0 and any c > 0, there exists T large enough such that for all

sufficiently small ε > 0 and any (x, y) ∈ ((G∪∂G)× [−M,M ])\Eα̂(O×O),

we have the inequality

Px,y(ζα > T ) ≤ exp{−ε−1c}.

Proof: (1) Let Eα′ (O,O) be a neighborhood of (O,O) such that the trajecto-

ries of the dynamical system (Xµ
t , η

µ
t ) issuing from Eα′ (O,O) never leave Eα(O,O).

We denote by T (α, x, y) the time spent by (Xµ
t , η

µ
t ) with (Xµ

0 , η
µ
0 ) = (x, y) until

reaching Eα′ (O,O). Since G× R is attracted to O × O, we have T (α, x, y) <∞

for x ∈ G∪ ∂G and y ∈ R. The function T (α, x, y) is upper semi-continuous in x

and y (because (Xµ
t (x), ηµ

t (y)) depends continuously on x and y). Consequently,

it attains its largest value To = maxx∈G∪∂G,|y|≤M T (α, x, y) <∞.

The set of functions from C[0,To] assuming their values in ((G∪∂G)×[−M,M ])\

Eα(O×O) is closed in C[0To](R
d). The functional Sµ

[0,To](ϕ, φ) attains its minimum

on this closed set and this minimum is different from zero.

Then for all such functions Sµ
[0,To](ϕ, φ) ≥ A > 0. By the additivity of S, we

have

Sµ
[0,T ](ϕ, φ) ≥ A[T/To] > A(T/To − 1) = a(T − To).

(2) Since G is attracted to O and (b(x) · n(x)) < 0 on the boundary of G, it

follows that the same properties will be enjoyed by the β-neighborhood of G for
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sufficiently small β > 0. Let β < α
2
. Then, by assertion (1), there exists constants

To and A such that Sµ
[0,To](ϕ, φ) > A for functions (ϕ, φ) such that (ϕ, φ) do not

get into Eα
2
(O×O), ϕ do not leave the closed β-neighborhood of G and φ does not

leave [−(M +β), (M +β)] during the time [0, To]. For (x, y) ∈ G× (−M,M), we

have that either the functions (ϕ, φ) in the set Φx,y(A) = {(ϕ, φ) : ϕ0 = x, φ0 =

y, Sµ
[0,To](ϕ, φ) ≤ A} get into Eα

2
(O×O) or ϕ leaves the closed β-neighborhood of

G or φ leave [−(M + β), (M + β)] during the time [0, To]. Then the trajectories

of (Xµ,ε
t , ηµ,ε

t ) for which ζα > To are at distance not smaller than β from this set

Φx,y(A). Hence for sufficiently small ε and all (x, y) ∈ G× (−M,M), we have

Px,y(ζα > To) ≤ exp(−ε−1(A− γ))

where γ is an arbitrary small number.

Now, we use the Markov property of (Xµ,ε
t , ηµ,ε

t ): For any (x, y) ∈ ((G∪∂G)×

[−M,M ]) \ Eα(O ×O),

Px,y(ζα > (n+ 1)To)

= Ex,y[ζα > nTo;P(Xµ,ε
nTo

,ηµ,ε
nTo

)(ζα > To)]

≤ Px,y(ζα > nTo) sup
x∈G,|y|<M

Px,y(ζα > To).

and we obtain by induction that for any (x, y) ∈ ((G∪∂G)×[−M,M ])\Eα(O×O),

Px,y(ζα > T ) ≤ Px,y(ζα > (
T

To

)To)

≤

[
sup

x∈G,|y|≤M

Px,y(ζα > To)

] T
To

≤ exp{−ε−1(
T

To

− 1)(A− γ)}

≤ exp{−ε−1a(T − To)}.

Hence a = (A− γ)To where γ is an arbitrary small number.
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(3) For any c > 0, we can choose T large enough such that a(T − To) > c

such that for all sufficiently small ε > 0 and any (x, y) ∈ ((G∪∂G)× [−M,M ]) \

Eα̂(O ×O), we have the inequality

Px,y(ζα > T ) ≤ exp{−ε−1c}.

This completes the proof.

�

Lemma 3.4: Let |x1|, |x2|, |y1|, |y2| ≤ 1. Then, there exists a smooth function

(ϕt, φt), t ∈ [0, T ], T = |x1 − x2| with φt = ϕ̇t − b(ϕt) and (ϕ0, φ0) = (x1, y1),

(ϕT , φT ) = (x2, y2) such that for µ smaller than min{T, 1}, we have

Sµ
[0,T ](ϕ, φ) ≤ L|x2 − x1|.

Here L is some constant.

Proof: 1. Since b(x) is Lipschitz continuous, we have that |b′(x)| is bounded

for x ∈ G ∪ ∂G (see [20]). That is, there exists a constant, say C1, such that

|b(x)−b(y)| < C1|x−y|. This implies |b′| < C1. Also, we assume max|x|≤1 |b(x)| <

C2. Define y∗1 = y1 + b(x1) and y∗2 = y2 + b(x2). Let us put

ϕt = x1 + y∗1t+ at2 + bt3, ϕ0 = x1, ϕT = x2, ϕ̇0 = y∗1, ϕ̇T = y∗2

We can solve for the coefficients to get

a =
−(y∗2 + 2y∗1)

T
+ 3

(x2 − x1)

T 2
, b =

(y∗2 + y∗1)

T 2
− 2(x2 − x1)

T 3
.

Define φt = ϕ̇t−b(ϕt). It can be verified that φ0 = y1 and φT = y2. Furthermore,

since T = |x1 − x2|, it can be checked that |a| ≤ 3C2+6
T

and |b| ≤ 2C2+4
T 2 and∫ T

0

|ϕ̇t|2dt =

∫ T

0

|y∗1 + 2at+ 3bt2|2dt

≤ 2

∫ T

0

(|y∗1|2 + 4|a|2t2 + 9|b|2t4)dt ≤ L1T,
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∫ T

0

|ϕ̈|2dt =

∫ T

0

|2a+ 6bt|2dt

≤ 2

∫ T

0

(4|a|2 + 36|b|2t2)dt ≤ L2

T
,

|ϕt| ≤ |x1|+ |y∗1|T + |a|T |2 + |b|T 3 ≤ L3(max{T, 1}) = L4

where L1, L2 and L3 are some constants and L4 = L3(max{T, 1}).

2. Hence, for µ ≤ min{T, 1}, we have

Sµ
[0,T ](ϕ, φ) =

1

2

∫ T

0

|(ϕ̇t − b(ϕt) + µ
d

dt
(ϕ̇t − b(ϕt)|2dt

≤ 2

∫ T

0

|ϕ̇t|2dt+ 2

∫ T

0

|b(ϕt)|2 + 2µ2

∫ T

0

|ϕ̈t|2dt

+2µ2

∫ T

0

|b′(ϕt)ϕ̇t|2dt

≤ 2

∫ T

0

|ϕ̇t|2dt+ 2( max
|x|≤L4

|b(x)|)2T

+2µ2

∫ T

0

|ϕ̈t|2dt+ 2µ2(C1)
2

∫ T

0

|ϕ̇t|2dt

≤ 2L1T + 2( max
|x|≤L4

|b(x)|)2T + 2µ2 (L2)

T
+ 2µ2(C1)

2(L1)T

≤ LT = L|x2 − x1|.

Here L is some constant. This completes the proof.

�

Lemma 3.5: Let C and M be positive constants. Let |x1|, |x2| ≤ C and

|y1| ≤ M . Then there exists a smooth function (ϕt, φt), t ∈ [0, T ], T = |x1 − x2|

with φt = ϕ̇− b(ϕ), (ϕ0, φ0) = (x1, y1), ϕT = x2 such that for µ < 1,

Sµ
[0,T ](ϕ, φ) ≤ L|x2 − x1|

Here L is some constant depending on M and C.
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Proof: 1. Since b(x) is Lipschitz continuous, we assume |b(x) − b(y)| <

C1|x − y|. This implies that |b′| < C1. Also, we assume max|x|≤C |b(x)| < C2.

Define y∗1 = y1 + b(x1). Put

ϕt = x1 + at+ b

∫ t

0

e−
s
µds, ϕ0 = x1, ϕT = x2, ϕ̇0 = y∗1.

We can solve for the coefficients to get

a = y∗1 − b, b =
x2 − x1 − y∗1T

−(T + µe−
T
µ )
.

Define φt = ϕ̇t − b(ϕt). It can be verified that φ0 = y1. Furthermore, since

T = |x1 − x2|, it can be checked that |b| ≤ 1 + |y∗1| ≤ 1 + M + C2 and |a| ≤

|y∗1|+ |b| ≤ 1+2M +2C2. Notice that ϕ̇t = a+ be−t/µ and ϕ̈t = − 1
µ
be−t/µ. Hence∫ T

0

|ϕ̇t|2dt = 2

∫ T

0

(|a|2 + |b|2)dt ≤ (L1M
2 + L2)T,∫ T

0

|ϕ̇t + µϕ̈t|2dt =

∫ T

0

|a|2dt ≤ (L3M
2 + L4)T,

|ϕt| = |x1 + at+ b

∫ t

0

e−
1
µ

sds| ≤ C + (1 + 2M + 2C2)2C + (1 +M + C2) ≤ C∗

where L1, L2, L3, L4 and C∗ are some constants depending on M and C.

2. Hence,

Sµ
[0,T ](ϕ, φ) =

1

2

∫ T

0

|(ϕ̇t − b(ϕt) + µ
d

dt
(ϕ̇t − b(ϕt)|2dt

≤
∫ T

0

|ϕ̇t + µϕ̈t|2dt+ 2

∫ T

0

|b(ϕt)|2 + 2µ2

∫ T

0

|b′(ϕt)ϕ̇t|2dt

≤
∫ T

0

|ϕ̇t + µϕ̈t|2dt+ 2( max
|x|≤C∗

|b(x)|)2T + 2(C1)
2

∫ T

0

|ϕ̇t|2dt

≤ 2(L3M
2 + L4)T + 2( max

|x|≤C∗
|b(x)|)2T + 2(C1)

2(L1M
2 + L4)T

≤ LT = L|x2 − x1|.

Here L is some constant depending on M and C. This completes the proof.
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�

We now pass to the proof of part (3) of Theorem 3.3. Let β > 0. We write

hµ = min{V µ(x) : x ∈ ∂G, |x− xµ
o | ≥ β} − V µ(xµ

o ).

Since xµ
o is the only minimum of V µ, we have hµ > 0. By Lemma 3.1, we have

limµ↓0 x
µ
o = xo and limµ↓0 V

µ
o = Vo. Following the same idea in Lemma 3.1, it can

be checked that we can pick µ1 small enough such that for any µ smaller than µ1,

there exists an h > 0 independent of µ such that h < min{hµ, 1} and V µ
o < Vo + 1.

Lemma 3.6: For any (x, y) ∈ γ and for any µ smaller than some µ2(δ), we

choose M large enough (say M2µ > Vo + 2) such that

Px,y(Z1 ∈ (G× ∂(−M,M))) ≤ exp{−ε−1(Vo + 1.55)}

for ε sufficiently small. (We recall that Γ := {(x, y) ∈ R2 : (x, y) ∈ Eδ(O × O)};

γ := {(x, y) ∈ R2 : (x, y) ∈ E δ
2
(O×O)}. Here Eδ(O×O) and E δ

2
(O×O) are the δ

and δ
2

neighborhood of O×O, respectively. Here δ is a sufficiently small number

and Z1 = (Xµ,ε
τ1
, ηµ,ε

τ1
).)

Proof: 1. The choice of µ and M : To make it clear about the choice

of δ, µ and M , let us first prove a statement which will be useful later. We

claim that for δ small enough and for any (x̃, ỹ) ∈ Γ there exists a function

(ϕ
(1)
t , φ

(1)
t ), 0 ≤ t ≤ T1 = δ with φ

(1)
t = ϕ̇

(1)
t − b(ϕ

(1)
t ), (ϕ

(1)
0 , φ

(1)
0 ) = (O × O)

and (ϕ
(1)
T1
, φ

(1)
T1

) = (x̃, ỹ) ∈ Γ such that Sµ
[0,T1](ϕ

(1)
t , φ

(1)
t ) < 0.2h < 0.2 provided

µ < µ2 = min{µ1,
δ
2
}. To prove this statement, let us first assume δ is smaller

than 1. We notice that |ϕ(1)
0 |, |φ(1)

0 |, |ϕ(1)
T1
|, |φ(1)

T1
| ≤ δ < 1. By Lemma 3.4, for δ

small enough, we can construct such a function (ϕ
(1)
t , φ

(1)
t ) with Sµ

[0,T1](ϕ
(1)
t , φ

(1)
t ) ≤

LT1 = Lδ < 0.2h < 0.2.
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For any µ smaller than µ2, let us choose M large enough such that

V η
o = inf

φ∈C[0,T ]

{
∫ T

0

|φt + µφ̇t|2dt;φ0 = O, |φT | = M,T > 0} = M2µ ≥ Vo + 2.

2. For any (x, y) ∈ γ and for any µ smaller than µ2 and large M (say

M2µ > Vo + 2), we have

Px,y(Z1 ∈ (G× ∂[−M,M ])

= Ex,yPXµ,ε
σo ,ηµ,ε

σo
(Z1 ∈ (G× ∂[−M,M ])

≤ sup
(x,y)∈Γ

Px,y(Z1 ∈ (G× ∂[−M,M ])

≤ sup
(x,y)∈Γ

[Px,y(τ > T ) + Px,y(τ ≤ T, Z1 ∈ G× ∂[−M,M ]))]

By Lemma 3.3, there exists T > 0 such that

Px,y(τ > T ) ≤ exp{−ε−1c}

for any (x, y) ∈ Γ and ε smaller than some εo. As c we take, say, Vo + 1.6. Now,

let us estimate the probability Px,y(τ ≤ T, Z1 ∈ (G× ∂[−M,M ])).

Consider the closure of the ε-neighborhood of [−M,M ]: [−(M − ε), (M − ε)].

(Here ε will be determined later.) For any given T , we claim that no function

(ϕt, φt), 0 ≤ t ≤ T with φt = ϕ̇t−b(ϕt), (ϕ0, φ0) ∈ Γ and Sµ
[0,T ](ϕt, φt) ≤ Vo +1.65

hits R × [−(M − ε), (M − ε)]. Otherwise, let us assume |φt1 | = M − ε for some

t1 ≤ T . Then Sµ
[0,t1](ϕt, φt) ≤ Sµ

[0,T ](ϕt, φt) ≤ Vo + 1.65.

As we have proved in part 1, for δ smaller than µ2, there exists a function

(ϕ
(1)
t , φ

(1)
t ), 0 ≤ t ≤ T1 = δ with φ

(1)
t = ϕ̇

(1)
t − b(ϕ

(1)
t ), (ϕ

(1)
0 , φ

(1)
0 ) = (O × O) and

(ϕ
(1)
T1
, φ

(1)
T1

) = (ϕ0, φ0) ∈ Γ such that Sµ
[0,T1](ϕ

(1)
t , φ

(1)
t ) ≤ 0.2;

For ε small enough, we claim that there exists a function (ϕ
(2)
t , φ

(2)
t ), 0 ≤

t ≤ T2 = ε with φ
(2)
t = ϕ̇

(2)
t − b(ϕ

(2)
t ), (ϕ

(2)
0 , φ

(2)
0 ) = (ϕt1 , φt1), |φ

(2)
T2
− φ

(2)
0 | = ε,
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|φ(2)
T2
| = M such that Sµ

[0,T2](ϕ
(2)
t , φ

(2)
t ) ≤ 0.1. The proof is in the following: Let

us define (ϕ
(2)
t , φ

(2)
t ) as the solution of the following equations:

φ
(2)
t = φ

(2)
0 +

φ
(2)
T − φ

(2)
0

ε
t, 0 ≤ t ≤ T2 = ε

ϕ̇
(2)
t = φ

(2)
t + b(ϕ

(2)
t ), ϕ

(2)
0 = ϕt1

Then

Sµ
[0,T2](ϕ

(2), φ(2)) =
1

2

∫ T2

0

|ϕ̇(2) − b(ϕ(2)) + µ
d

dt
(ϕ̇(2) − b(ϕ(2)))|2dt

=
1

2

∫ T2

0

|φ(2)
t + µφ̇

(2)
t |2dt ≤

∫ T2

0

(|φ(2)
0 |2 + t2 + 1)dt

≤ |M |2T2 + (T2)
3 + T2 ≤ 0.1

provided T2 = ε is small enough. This completes the proof of the statement.

Out of pieces ϕ(1), ϕ, ϕ(2) we build a new function: (ϕ̂t, φ̂t) = (ϕ
(1)
t , φ

(1)
t ) for

0 ≤ t ≤ T1; = (ϕt−T1 , φt−T1) for T1 ≤ t ≤ T1 + t1; = (ϕ
(2)
t−t1−T1

, φ
(2)
t−t1−T1

) for

T1 + t1 ≤ t ≤ T1 + t1 + T2; Then (ϕ̂0, φ̂0) = (O,O), |φ̂T1+t1+T2| = M and

Sµ
[0,T1+t1+T2](ϕ̂, φ̂) ≤ Vo+1.65+0.2+0.1 < Vo+1.95. Notice that Sη

[0,T1+t1+T2](φ̂) =

Sµ
[0,T1+t1+T2](ϕ̂, φ̂), Contradicting with V η

o ≥M2µ > Vo + 2 !

This implies that all functions from ∪(x,y)∈ΓΦx,y(V
µ
o +1.65) pass at a distance

not smaller than ε from R× ∂[−M,M ]. Then we obtain that for µ smaller than

µ2 and M large enough (say M2µ > Vo + 2)) and all (x, y) ∈ Γ

Px,y(τ ≤ T, Z1 ∈ G× ∂[−M,M ]))

≤ Px,y(ρC[0,T ]
((Xµ,ε

t , ηµ,ε
t ),Φx,y(Vo + 1.65)) ≥ ε)

≤ exp{−ε−1(Vo + 1.65− 0.05)}.

for sufficiently small ε.
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Consequently, for any (x, y) ∈ γ,

Px,y(Z1 ∈ (G× ∂[−M,M ])

≤ sup
(x,y)∈Γ

[Px,y(τ > T ) + Px,y(τ ≤ T, Z1 ∈ G× ∂[−M,M ]))]

≤ exp{−ε−1(Vo + 0.6) + exp{−ε−1(Vo + 1.65− 0.05)}

≤ exp{−ε−1(Vo + 1.55)}

for ε sufficiently small. This completes the proof.

�

Lemma 3.7: Let us choose the same small µ and large M as in Lemma 3.6.

For any (x, y) ∈ γ, we have

Px,y(Z1 ∈ (∂G× (−M,M)) ∪ (G× ∂[−M,M ])) ≥ exp{−ε−1(V µ
o + 0.45h)}

for ε sufficiently small.

Proof: Choose a point x1 outside of G ∪ ∂G at a small distance ε from xµ
o

(ε will be determined later). We claim that, for any point (x, y) ∈ γ and for any

small µ we choose (for the choice of µ, please see the Part 1 of the proof of Lemma

3.6), there exists T > 0 and a function (ϕt, φt), 0 ≤ t ≤ T with φt = ϕ̇t + b(ϕt),

(ϕ0, φ0) = (x, y), ϕT = x1 such that Sµ
[0,T ](ϕ, φ) ≤ V µ

o + 0.4h.

To prove this statement, let us first construct a function (ϕ(1), φ(1)) in the

following way: Choose a function (ϕ
(1)
t , φ

(1)
t ), 0 ≤ t ≤ T1 with φ

(1)
t = ϕ̇(1)−b(ϕ(1)),

(ϕ
(1)
0 , φ

(1)
0 ) = (O,O), ϕ

(1)
T1

= xµ
o ∈ ∂G such that Sµ

[0,T1](ϕ
(1), φ(1)) ≤ V µ

o +0.1h. This

function (ϕ, φ) always exists because of the definition of V µ
o .

We cut off its first portion up to the point z1 = (ϕ
(1)
t1 , φ

(1)
t1 ) of the last intersec-

tion of (ϕ
(1)
t1 , φ

(1)
t1 ) with Γ. That is, we introduce the new function (ϕ

(2)
t , φ

(2)
t ) =
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(ϕ
(1)
t1+t, φ

(1)
t1+t), 0 ≤ t ≤ T2 = T1 − t1. We have φ(2) := ϕ̇

(2)
t − b(ϕ

(2)
t ), (ϕ

(2)
0 , φ

(2)
0 ) =

z1 ∈ Γ, ϕ
(2)
T2

= xµ
o and Sµ

[0,T2](ϕ
(2), φ(2)) ≤ V µ

o + 0.1h.

Moreover, by Lemma 3.4, for the small µ we chose in Lemma 3.6, there exists

a function (ϕ
(3)
t , φ

(3)
t ), 0 ≤ t ≤ T3 = δ with φ(3) := ϕ̇

(3)
t + b(ϕ

(3)
t ), (ϕ

(3)
0 , φ

(3)
0 ) =

(O,O), (ϕ
(3)
T3
, φ

(3)
T3

) = z1 ∈ Γ and Sµ
[0,T3](ϕ

(3), φ(3)) ≤ LT3 = Lδ ≤ 0.2h (see Part 1

of the proof of Lemma 3.6).

With the same idea, by Lemma 3.4, for the choice of small µ in Lemma 3.6

and for any (x, y) ∈ γ, there exists a function (ϕ
(5)
t , φ

(5)
t ), 0 ≤ t ≤ T5 = δ

2
with

φ
(5)
t := ϕ̇

(5)
t + b(ϕ

(5)
t ) (ϕ

(5)
0 , φ

(5)
0 ) = (x, y) ∈ γ, (ϕ

(5)
T5
, φ

(5)
T5

) = (O,O) such that

Sµ
[0,T5](ϕ

(5), φ(5)) ≤ LT5 = L δ
2
≤ 0.1h.

Recall that M is chosen large enough such that M2µ ≥ Vo + 2. We claim

that for such large M , ‖φ(1)
t ‖C[0,T1]

< M . Otherwise, we assume there exists a

to = min{t : |φ(1)
t | = M} with to ≤ T1. Then

Sµ
[0,T1](ϕ

(1), φ(1)) =
1

2

∫ T1

0

|ϕ̇(1) − b(ϕ(1)) + µ
d

dt
(ϕ̇(1) − b(ϕ(1)))|2dt

=

∫ T1

0

|φ(1)
t + µφ̇

(1)
t |2dt ≥

∫ to

0

|φ(1)
t + µφ̇

(1)
t |2dt

≥ M2µ ≥ Vo + 2.

This contradicts with Sµ
[0,T1](ϕ

(1), φ(1)) ≤ V µ
o + 0.1h < Vo + 1.1! Hence |φ(1)

T1
| < M

and |φ(2)
T2
| = |φ(1)

T1
| < M .

Now, we construct another function (ϕ
(4)
t , φ

(4)
t ). We claim that for ε small

enough, there exists a function (ϕ
(4)
t , φ

(4)
t ), 0 ≤ t ≤ T4 = ε with φ(4) := ϕ̇

(4)
t +

b(ϕ
(4)
t ), (ϕ

(4)
0 , φ

(4)
0 ) = (xµ

o , φ
(2)
T2

), ϕ
(4)
T4

= x1 and Sµ
[0,T4](ϕ

(4), φ(4)) ≤ 0.1h. Since G is

a bounded domain, there exists a constant C such that |ϕ(4)
0 |, |ϕ(4)

T4
| < C. Also,
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notice that |φ(4)
0 | < M . This statement can be proved by applying Lemma 3.5.

We construct the function (ϕt, φt) out of the pieces (ϕ(1), φ(5)), (ϕ(3), φ(3)),

(ϕ(2), φ(2)) and (ϕ(4), φ(4)): (ϕt, φt) = (ϕ
(5)
t , φ

(5)
t ) for 0 ≤ t < T5; = (ϕ

(3)
t−T5

, φ
(3)
t−T5

)

for T5 ≤ t < Tt + T3; = (ϕ
(2)
t−T5−T3

, φ
(2)
t−T5−T3

) for T5 + T3 ≤ t < T5 + T3 + T2;

= (ϕ
(4)
t−T5−T3−T2

, φ
(4)
t−T5−T3−T2

) for T5 + T3 + T2 ≤ t ≤ T := T5 + T3 + T2 + T4. Then

for µ smaller than µ2 we have constructed a function (ϕt, φt), 0 ≤ t ≤ T with

(ϕ0, φ0) = (x, y), ϕT = x1 and

Sµ
[0,T ](ϕ, φ) < V µ

o + 0.4h.

Now, we choose positive α > 0 smaller than δ
4

and ε. Then for µ < µ2 and

for all (x, y) ∈ γ, we obtain

Px,y(ρC[0,T ]
((Xµ,ε

t , ηµ,ε
t ), (ϕt, φt)) < α) ≥ exp{−ε−1(V µ

o + 0.4h+ 0.05h)}

for ε sufficiently small.

On the other hand, if the trajectory of Xµ,ε
t passes at a distance smaller than

α from the curve ϕt it hits the α-neighborhood of ϕT = x1. Hence Xµ,ε
t intersects

∂G on the way, not hitting γ after reaching Γ. If φµ,ε
t hits ∂[−M,M ] before

Xµ,ε
t hit ∂G, then Z1 ∈ (G × ∂[−M,M ]). If not, then Z1 ∈ (∂G × (−M,M)).

Consequently, for any (x, y) ∈ γ,

Px,y(Z1 ∈ (∂G× (−M,M)) ∪ (G× ∂[−M,M ])) ≥ exp{−ε−1(V µ
o + 0.45h)}

for ε sufficiently small.

�

Remark: For any α > 0 and any (x, y) ∈ Γ, there exists a Tx,y > 0 and a func-

tion (ϕt, φt) such that φt = ϕ̇t+b(ϕt), (ϕ0, φ0) = (x, y) and ϕt reaches the exterior
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of the ε-neighborhood of G at time T (x, y) such that Sµ
[0,T (x,y)](ϕ, φ) ≤ V µ

o + α

provided µ is smaller than some µ3(α). Such a function can be constructed in

the same way as in Lemma 3.7. Let us choose a small µ < µ3 and large M (say,

M2µ > V0 + 2 +α). Then, by the same arguments as in the proof of Lemma 3.7,

we have max0≤t≤T (x,y) |φt| < M .

Lemma 3.8: Let us choose the same µ and M as in Lemma 3.6. Then for

any (x, y) ∈ γ, we have

Px,y(Z1 ∈ (∂G \ Eβ(xµ
o ))× (−M,M)) ≤ exp{−ε−1(V µ

o + 0.55h)}

for ε sufficiently small.

Proof: We recall that Z1 = (Xµ,ε
τ1
, ηµ,ε

τ1
), where

τ1 = inf{t > σ0 : (Xµ,ε
t , ηµ,ε

t ) ∈ γ ∪ (∂G× (−M,M)) ∪ (G× ∂[−M,M ])}

We introduce the notation

τ := inf{t > 0 : Xµ,ε
t ∈ γ ∪ (∂G× (−M,M) ∪ (G× ∂[−M,M ]))}.

Let us use the strong Markov property of (Xµ,ε
t , ηµ,ε

t ) with respect to the Markov

time σ0. Since (Xδ,ε
σ0
, ηδ,ε

σ0
) ∈ Γ, we obtain that for any (x, y) ∈ γ,

Px,y(Z1 ∈ (∂G \ Eβ(xµ
o )× (−M,M)))

= Ex,yPXµ,ε
σo ,ηµ,ε

σo
(Z1 ∈ (∂G \ Eβ(xµ

o )× (−M,M)))

≤ sup
(x,y)∈Γ

Px,y(Z1 ∈ (∂G \ Eβ(xµ
o )× (−M,M))).

We estimate the latter probability.

By Lemma 3.3, for any c > 0 there exists T > 0 such that

Px,y(τ > T ) ≤ exp{−ε−1c}
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for any (x, y) ∈ Γ and ε smaller than some εo. As c we take, say, Vo + 1.6.

To obtain the estimate needed to prove Lemma 3.8, it remains to estimate the

probability Px,y(τ ≤ T, Z1 ∈ ((∂G \ Eβ(xµ
o ))× (−M,M))).

Consider the closure of the ε-neighborhood of ∂G\Eβ(xµ
o ). We denote it by K.

We claim that no function (ϕt, φt), 0 ≤ t ≤ T hits K ×R where φt = ϕ̇t − b(ϕt),

(ϕ0, φ0) ∈ Γ and Sµ
[0,T ](ϕt, φt) ≤ V µ

o + 0.65h. Otherwise, let us assume ϕt1 ∈ K

for some t1 ≤ T . Then Sµ
[0,t1](ϕt, φt) ≤ Sµ

[0,T ](ϕt, φt) ≤ V µ
o + 0.65h.

Moreover, by Lemma 3.4, for the small µ we chose in Lemma 3.6, there exists

a function (ϕ
(1)
t , φ

(1)
t ), 0 ≤ t ≤ T1 with φ

(1)
t = ϕ̇

(1)
t − b(ϕ(1)

t ), (ϕ
(1)
0 , φ

(1)
0 ) = (O×O)

and (ϕ
(1)
T1
, φ

(1)
T1

) = (ϕ0, φ0) ∈ Γ such that Sµ
[0,T1](ϕ

(1)
t , φ

(1)
t ) ≤ 0.2h (see part 1 of the

proof of Lemma 3.6).

For the small enough µ and large enough M we chose in Lemma 3.6, we

claim that |φt1| < M . To prove it, we build a new function out of the pieces

(ϕ(1), φ(1)), (ϕ, φ), : (ϕ̃t, φ̃t) = (ϕ
(1)
t , φ

(1)
t ) for 0 ≤ t ≤ T1; = (ϕt−T1 , φt−T1) for

T1 ≤ t ≤ T1 + t1. Then φ̃t = ˙̃ϕt − b(ϕ̃), (ϕ̃0, φ̃0) = (O,O) and S[0,T1+t1](ϕ̃t, φ̃t) ≤

V µ
o + 0.85h < Vo + 1.85. By the same argument we use in the proof in Lemma

3.7, it can be proved that |φt1| = |φ̃T1+t1 | < M .

For ε small enough, we claim that there exists a function (ϕ
(2)
t , φ

(2)
t ), 0 ≤ t ≤

T2 = ε with φ
(2)
t = ϕ̇

(2)
t − b(ϕ

(2)
t ), (ϕ

(2)
0 , φ

(2)
0 ) = (ϕt1 , φt1), ϕ

(2)
T2
∈ ∂G \ Eβ(xµ

o ) such

that Sµ
[0,T2](ϕ

(2)
t , φ

(2)
t ) ≤ 0.1h. Notice that |φ(2)

0 | < M . This statement can be

proved by applying Lemma 3.5.

Out of pieces (ϕ(1), φ(1)), (ϕ, φ), (ϕ(2), φ(2)) we build a new function: (ϕ̂t, φ̂t) =

(ϕ
(1)
t , φ

(1)
t ) for 0 ≤ t ≤ T1; = (ϕt−T1 , φt−T1) for T1 ≤ t ≤ T1+t1; = (ϕ

(2)
t−t1−T1

, φ
(2)
t−t1−T1

)
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for T1 + t1 ≤ t ≤ T1 + t1 + T2. Then (ϕ̂0, φ̂0) = (O,O), ϕ̂T1+t1+T2 ∈ (∂G \ Eβ(xµ
o ))

and Sµ
[0,T1+t1+T2](ϕ̂, φ̂) ≤ V µ

o + 0.65h+ 0.2h+ 0.1h. Contradiction!

This implies that all functions from ∪(x,y)∈ΓΦx,y(V
µ
o +0.65h) pass at a distance

not smaller than ε from (∂G\Eβ(xµ
o ))×R. Then we obtain that for all (x, y) ∈ Γ

that

Px,y(τ ≤ T, Z1 ∈ (∂G \ Eβ(xµ
o )× (−M,M)))

≤ Px,y(ρC[0,T ]
((Xµ,ε

t , ηµ,ε
t ),Φx,y(V

µ
o + 0.65h) ≥ ε)

≤ exp{−ε−1(V µ
o + 0.65h− 0.05h)}.

for sufficiently small ε. Hence, for any (x, y) ∈ γ,

Px,y(Z1 ∈ (∂G \ Eβ(xµ
o ))× (−M,M))

≤ sup
(x,y)∈Γ

Px,y(Z1 ∈ (∂G \ Eβ(xµ
o ))× (−M,M))

≤ sup
(x,y)∈Γ

[Px,y(τ > T ) + Px,y(τ ≤ T, Z1 ∈ (∂G \ Eβ(xµ
o )× (−M,M)))]

≤ exp{−ε−1(Vo + 1.6) + exp{−ε−1(V µ
o + 0.65h− 0.05h)}

≤ exp{−ε−1(V µ
o + 0.55h)}

for ε sufficiently small. The last inequality is because V µ
o + 0.6h < Vo + 1.6. This

completes the proof.

�

Now, let us prove part (3) of Theorem 3.3. Recall that

τX = min{t : Xµ,ε
t ∈ ∂G} = min{t : (Xµ,ε

t , ηµ,ε
t ) ∈ ∂G×R},

τ := inf{t > 0 : Xµ,ε
t ∈ γ ∪ (∂G× (−M,M) ∪ (G× ∂[−M,M ]))}.

Let us define

τX,η = inf{t > 0 : (Xµ,ε
t , ηµ,ε

t ) ∈ (∂G× (−M,M)) ∪ (G× ∂[−M,M ])}.
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Then, for any x ∈ G and |y| ≤ N

Px,y(|Xµ,ε
τX − xµ

o | > β) = Px,y(|Xµ,ε
τX − xµ

o | > β, (Xµ,ε
τX,η , η

µ,ε
τX,η) ∈ ∂G× (−M,M))

+Px,y(|Xµ,ε
τX − xµ

o | > β, (Xµ,ε
τX,η , η

µ,ε
τX,η) ∈ G× ∂[−M,M ])

≤ Px,y(|Xµ,ε
τX,η − xµ

o | > β, (Xµ,ε
τX,η , η

µ,ε
τX,η) ∈ ∂G× (−M,M))

+Px,y((X
µ,ε
τX,η , η

µ,ε
τX,η) ∈ G× ∂[−M,M ])

1. Let us first estimate the probability Px,y(|Xµ,ε
τX,η − xµ

o | > β, (Xµ,ε
τX,η , η

µ,ε
τX,η) ∈

∂G× (−M,M)).

It follows from Lemma 3.7 and 3.8 that, for any small µ < µ2, large enough

M (say M2µ > Vo + 2) and any (x, y) ∈ γ

Px,y(Z1 ∈ (∂G \ Eβ(xµ
o ))× (−M,M))

≤ Px,y(Z1 ∈ (∂G× (−M,M)) ∪ (G× ∂[−M,M ])) exp(−ε−10.1h).

for ε sufficiently small. We denote by ν the smallest n for which Zn ∈ (∂G ×

(−M,M))∪ (G×∂[−M,M ]). Using the strong Markov property, for any (x, y) ∈

γ, we find that

Px,y(|Xµ,ε
τX,η − xµ

o | > β, (Xµ,ε
τX,η , η

µ,ε
τX,η) ∈ ∂G× (−M,M)))

=
∞∑

n=1

Px,y(ν = n, Zn ∈ (∂G \ Eβ(xµ
o ))× (−M,M))

=
∞∑

n=1

Ex,y(Z1 ∈ γ, ..., Zn−1 ∈ γ)PZn−1(Z1 ∈ (∂G \ Eβ(xµ
o ))× (−M,M))

≤
∞∑

n=1

Ex,y(Z1 ∈ γ, ..., Zn−1 ∈ γ)

×PZn−1(Z1 ∈ (∂G× (−M,M)) ∪ (G× ∂[−M,M ]))e−ε−10.1h

=
∞∑

n=1

Px,y(ν = n) exp(−ε−10.1h)

= exp(−ε−10.1h).
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For any x ∈ G and |y| ≤ N , we have

Px,y(|Xµ,ε
τX,η − xµ

o | > β, (Xµ,ε
τX,η , η

µ,ε
τX,η) ∈ ∂G× (−M,M))

≤ Px,y((X
µ,ε
τ , ηµ,ε

τ ) ∈ (∂G× (−M,M)) ∪ (G× ∂[−M,M ]))

+Px,y((X
µ,ε
τ , ηµ,ε

τ ) ∈ γ, |Xµ,ε
τX,η − xµ

o | > β, (Xµ,ε
τX,η , η

µ,ε
τX,η) ∈ ∂G× (−M,M))

The first probability converges to zero because of Lemma 3.2 and the assumption

that (Xµ
t , η

µ
t ) never leaves the domain G × [−N,N ] with x ∈ G and |y| < N .

Using the strong Markov property, it turns out that the second term

≤ sup
(x,y)∈γ

Px,y(|Xµ,ε
τµ,ε − xµ

o | > β, , (Xµ,ε
τX,η , η

µ,ε
τX,η)

≤ exp(−ε−10.1h) ↓ 0

as ε tends to 0.

2. Let us now estimate the probability Px,y((X
µ,ε
τX,η , η

µ,ε
τX,η) ∈ G× ∂[−M,M ]).

Since Vo + 1.55 > V µ
o + 0.55h, it follows from Lemma 3.6 that, for any small

µ < µ2, large enough M (say M2µ > Vo + 2) and any (x, y) ∈ γ,

Px,y(Z1 ∈ G× ∂[−M,M ]) ≤ exp{−ε−1(Vo + 1.55)} ≤ exp{−ε−1(V µ
o + 0.55h)}.

Consequently, it follows from Lemma 3.6 and 3.7 that

Px,y(Z1 ∈ G× ∂[−M,M ])

≤ Px,y(Z1 ∈ (∂G× (−M,M)) ∪ (G× ∂[−M,M ])) exp(−ε−10.1h).

for ε sufficiently small. By the same idea as in part 1, it can be obtained that for

any x ∈ G and |y| ≤ N

Px,y((X
µ,ε
τX,η , η

µ,ε
τX,η) ∈ G× ∂[−M,M ]) → 0. (3.3)
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as ε tends to 0. This complete the proof of part (3) of theorem 3.3 provided

µ < µ2.

�

Lemma 3.9: Let the assumptions 1-3 be satisfied. Then for any x ∈ G,

|y| ≤ N and α > 0, there exists a µ4 > 0 such that for any µ smaller than µ4, we

have

lim
ε↓0

ε lnEx,yτ
X ≤ V µ

o + α.

Proof: 1. We choose positive numbers δ, ε, T1, T2 and M∗ such that the

following three conditions are satisfied:

First, for any (x, y) lying in the ball Γ (recall that Γ is the δ-neighborhood

of O × O and δ small enough), there exists T2 > 0 and a function (ϕt, φt)

with φt = ϕ̇t − b(ϕt), (ϕ0, φ0) = (x, y) where ϕt reaches the exterior of the

ε-neighborhood of G at time T (x, y) ≤ T2 and (ϕt, φt) does not hit the δ
2
-

neighborhood of O × O after exit from G × R and S[0,T (x,y)](ϕ, φ) ≤ V µ
o + α

2

provided µ is smaller than some µ3 = µ3(α). For the construction of this func-

tion (ϕt, φt), please refer to the remark of lemma 3.7.

Second, we choose M∗ large enough such that for any x ∈ G, |y| > M∗,

the trajectory of Xµ
t reaches the exterior of the ε-neighborhood of G before time

T = 1 provided µ < 1
2
, where (Xµ

t , η
µ
t ) is the unperturbed system starting at

points (x, y). To prove this, we notice that since G is a bounded domain, there

exists a constant C such that G ⊂ [−C,C]. From the equation Ẋµ
t = b(Xµ

t ) + ηµ
t , X

µ
0 = x ∈ Rd

µη̇µ
t = −ηµ

t , η
µ
0 = y ∈ Rd.
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we can solve for (Xµ
t , η

µ
t ), finding that ηµ

t = ye−
1
µ

t and

|Xµ
t | =

∣∣∣∣x+

∫ t

0

b(Xµ
s )ds+

∫ t

0

ηµ
s ds

∣∣∣∣
= x+

∫ t

0

b(Xµ
s )ds+ y(1− µe−

1
µ

t)

≥ |y|(1− µe−
1
µ

t)− |x| −
∫ t

0

|b(Xµ
s )|ds

≥ M∗(1− µ)− C −
∫ t

0

|b(Xµ
s )|ds

≥ M∗

2
− C −

∫ t

0

|b(Xµ
s )|ds

provided µ < 1
2
. We claim that for M∗ large enough we have Xµ

1 > C + ε.

Otherwise, we assume that |Xµ
t |C[0,1]

≤ C+ ε and we assume max|x|≤C+2ε |b(x)| <

C1. Then |Xµ
1 | ≥ M∗

2
− C − C1 > C + ε for M∗ large enough, contradiction.

Third, all trajectories of (Xµ
t , η

µ
t ), the unperturbed system, starting at points

(x, y) ∈ (G ∪ ∂G)× [−(N +M∗), (N +M∗)] hit the δ/2-neighborhood of O ×O

before time T1 (let us take T1 larger than 1) and after T1, they don’t leave the

neighborhood. This assumption is true because O × O is an asymptotically

stable equilibrium position, G× (−(N +M), (N +M)) is attracted to O×O and

(b(x) · n(x))|x∈∂G < 0.

2. From the construction of the (ϕt, φt) and the definition of an action func-

tional, we obtain that for any (x, y) ∈ Γ and any µ smaller than µ4 = min{µ3,
1
2
}

Px,y(ρ[0,T (x,y)](X
µ,ε
t , ηµ,ε

t ), (ϕt, φt)) < ε) ≥ exp{−ε−1(S[0,T (x,y)](ϕt, φt) +
α

2
)}

≥ exp{−ε−1(V µ
o + α)}

for ε sufficiently small. Since ϕT (x,y) does not belong to the ε-neighborhood of G,

then for any (x, y) ∈ Γ and for µ smaller than some µ4,

Px,y(τ
X < T2) ≥ Px,y(τ

X < T (x, y)) ≥ exp{−ε−1(V µ
o + α)}.
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for ε sufficiently small.

Denote by σ the first entrance time for (Xµ,ε
t , ηµ,ε

t ) of Γ: σ := min{t :

(Xµ,ε
t , ηµ,ε

t ) ∈ Γ}. Using the strong Markov property of (Xµ,ε
t , ηµ,ε

t ), for any

(x, y) ∈ G× [−(N +M∗), (N +M∗)] and for any µ smaller than µ4, we obtain

Px,y(τ
X < T1 + T2) ≥ Px,y(σ < T1, τ

X < T1 + T2)

= Px,y(σ < T1)P(Xµ,ε
σ ,ηµ,ε

σ )(τ
X < T2)

≥ Px,y(σ < T1) inf
(x,y)∈Γ

Px,y(τ
X < T2)

≥ Px,y(σ < T1) exp{−ε−1(V µ
o + α)}

≥ 1

2
exp{−ε−1(V µ

o + α)}

for ε sufficiently small. Here we use the fact that the trajectories of (Xµ,ε
t , ηµ,ε

t )

converge in probability to (Xµ
t , η

µ
t ) uniformly on [0, T1] as ε ↓ 0 for (x, y) ∈

G× [−(N +M∗), (N +M∗)].

For any x ∈ G and |y| > (N +M∗), and for any µ smaller than µ4, we obtain

that for any c > 0

Px,y(τ
X < T1 + T2) ≥ Px,y(τ

X < 1)

≥ Px,y(ρ[0,1](X
µ,ε
t , ηµ,ε

t ), (Xµ
t , η

µ
t )) <

ε

2
)

≥ exp{−ε−1c}

for ε sufficiently small. Let us take c = α
2
.

Consequently, for any (x, y) ∈ G×R and for any µ smaller than µ4,

Px,y(τ
X < T1 + T2) ≥ min{1

2
exp{−ε−1(V µ

o + α)}, exp{−ε−1α

2
}}

≥ 1

2
exp{−ε−1(V µ

o + α)}
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provided ε small enough.

3. For any (x, y) ∈ G × [−N,N ] and for any µ smaller than µ4, using the

Markov property of (Xµ,ε
t , ηµ,ε

t ), we obtain,

Ex,yτ
X,η ≤

∞∑
n=0

(n+ 1)(T1 + T2)Px,y(n(T1 + T2) < τX < (n+ 1)(T1 + T2))

= (T1 + T2)
∞∑

n=0

Px,y(τ
X > n(T1 + T2))

≤ (T1 + T2)
∞∑

n=0

( sup
(x,y)∈G×R

Px,y(τ
X > T1 + T2))

n

= (T1 + T2)
∞∑

n=0

(1− inf
(x,y)∈G×R

Px,y(τ
X ≤ T1 + T2))

n

= (T1 + T2)( inf
(x,y)∈G×R

Px,y(τ
X ≤ T1 + T2))

−1

≤ 2(T1 + T2) exp{1

ε
(V µ

o + α)}

for ε small enough. This completes the proof.

�

Lemma 3.10: Let the assumptions 1-3 be satisfied. We choose the same µ4

as in Lemma 3.9. Then for any (x, y) ∈ G× [−N,N ], α > 0 and for any µ < µ4,

we have

lim
ε↓0

ε lnEx,yτ
X > V µ

o − α.

for ε small enough.

Proof: Recall that

τX = min{t : Xµ,ε
t ∈ ∂G} = min{t : (Xµ,ε

t , ηµ,ε
t ) ∈ ∂G×R}

τX,η = inf{t > 0 : (Xµ,ε
t , ηµ,ε

t ) ∈ (∂G× (−M,M)) ∪ (G× ∂[−M,M ])}
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Here M is a positive constant large enough (say M2µ > Vo +2). Since τX > τX,η,

it is sufficient to show limε↓0 ε lnEx,yτ
X,η > V µ

o − α

Recall that we introduced the Markov times τk and σk and Zn is a Markov

chain in the phase space γ ∪ (∂G× (−M,M)) ∪ (G× ∂[−M,M ]) where γ is the

δ/2-neighborhood of O ×O. Then

Px,y(Z1 ∈ (∂G× (−M,M)) ∪ (G× ∂[−M,M ]))

≤ sup
(x,y)∈Γ

Px,y(τ1 = τX,η)

= sup
(x,y)∈Γ

Px,y(τ1 = τX,η < T ) + Px,y(τ1 = τX,η ≥ T ).

In order to estimate the first probability, we note that for large M(say M2µ >

Vo + 2), the trajectories of (Xµ,ε
t , ηµ,ε

t ) starting from (x, y) ∈ Γ, t ≤ T , for which

τ1 = τX,η < T , are at a positive distance from the set {(ϕ, φ) ∈ C[0,T ] : (ϕ0, φ0) =

(x, y) ∈ Γ, S[0,T ](ϕ, φ) < V µ
o − θ

2
} provided θ > 0 is arbitrary and δ sufficiently

small enough. Then,

Px,y(τ1 = τX,η < T ) ≤ exp{−ε−1(V µ
o − θ)} (3.4)

for ε sufficiently small.

Following Lemma 3.3, T can be chosen large enough such that

sup
(x,y)∈Γ

Px,y(τ1 = τX,η > T ) ≤ 1

2
exp{−ε(V µ

o − θ)}. (3.5)

With the two above equations (3.4) and (3.5), we obtain that for any (x, y) ∈ Γ

and for small µ and large M , we have

Px,y(Z1 ∈ (∂G× (−M,M) ∪ (G× ∂[−M,M ])) ≤ exp{−ε−1(V µ
o − θ)}.
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Denote by ν the smallest n for which Zn ∈ (∂G×(−M,M)∪(G×∂[−M,M ])).

Then for any (x, y) ∈ Γ,

Px,y(ν > n) ≥ (1− exp(−ε−1(V µ
o − θ)})n−1.

It is obvious that τX,η = (τ1 − τ0) + (τ2 − τ1) + ...+ (τν − τν−1). Therefore,

Ex,yτ
X,η =

∞∑
n=1

Ex,y(ν ≥ n, τn − τn−1)

≥
∞∑

n=1

Ex,y(ν ≥ n, τn − σn−1)

≥
∞∑

n=1

Px,y(ν ≥ n) inf
(x,y)∈Γ

Ex,yτ1

The last infimum is greater than some positive constant t1 independent of ε

because the trajectory of the system will spend some time going from Γ to γ.

Then for any (x, y) ∈ γ and for sufficiently small δ, and for the small µ and

the large M , we have

Ex,yτ
X,η ≥ t1

∞∑
n=1

min
(x,y)∈γ

Px,y(ν ≥ n)

≥ t1

∞∑
n=1

(1− exp(−ε−1(V µ
o − θ)))n−1

= t1 exp{ε−1(V µ
o − θ)}

For any x ∈ G, |y| < N , taking into account that Px,y(τ
X,η > τ1) → 1 as

ε ↓ 0, we have

Ex,yτ
X,η = Ex(τ

X,η ≤ τ1, τ
X,η) + Ex,y(τ

X,η > τ1, τ
X,η)

≥ Px,y(τ
X,η > τ1)E(Xµ,ε

τ1
,ηµ,ε

τ1
)(τ

X,η)

≥ t1
2

exp{ε−1(V µ
o − θ)}

This completes the proof.
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Following from Lemma 3.9 and Lemma 3.10, the first part of Theorem 3.3

can be proved provided µ < µ4.

Let us prove the second part of Theorem 3.3 for any small µ < µ4. Notice

that for any α > 0 and x ∈ G, |y| < N and any µ < µ4, if

limε↓0Px,y(τ
X > eε−1(V µ

o +α)) > 0

then we will have

lim
ε↓0

ε lnEx,yτ
X ≥ V µ

o + α.

which contradicts Lemma 3.10. Therefore, for any α > 0 and x ∈ G, |y| < N we

have

lim
ε↓0

Px,y(τ
X < exp{ε−1(V µ

o + α)}) = 1. (3.6)

Now, let us show that for any α > 0 and x ∈ G, |y| < N , limε↓0 Px,y(τ
X <

eε−1(V µ
o −α)) = 0 provided µ < µ4. Let us choose the same large M(say M2µ >

Vo + 2). Since τX,η ≤ τX , then Px,y(τ
X < eε−1(V µ

o −α)) ≤ Px,y(τ
X,η < eε−1(V µ

o −α)).

Hence, it is sufficient to show limε↓0 Px,y(τ
X,η < eε−1(V µ

o −α)) = 0.

For any α > 0 and x ∈ G, |y| < N , using the same notation we introduced in

the proof of Lemma 3.10, we notice that

Px,y(τ
X,η < eε−1(V µ

o −α)) ≤ Ex,y(τ1 < τX,η,

∞∑
n=1

P(Xµ,ε
τ1

,ηµ,ε
τ1

)(ν = n, τX,η < eε−1(V µ
o −α)))

+Px,y(τ
X,η = τ1)

The last probability Px,y(τ
X,η = τ1) converges to zero as ε ↓ 0 according to Lemma

3.3. Let us estimate the remaining term. Let mε,µ = [C exp{ε−1(V µ
o − α)}]. We
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choose the constant C later. For (x, y) ∈ γ, we have

∞∑
n=1

P(Xµ,ε
τ1

,ηµ,ε
τ1

)(ν = n, τX,η < eε−1(V µ
o −α))

≤ Px,y(ν < mε,µ) +
∞∑

n=mε, u

P(Xµ,ε
τ1

,ηµ,ε
τ1

)(ν = n, τn < eε−1(V µ
o −α))

≤ Px,y(ν < mε,µ) + Px,y(τmε, u < eε−1(V µ
o −α)). (3.7)

Using the equality Px,y(ν = 1) < exp{−ε−1(V µ
o −θ)}, which holds for any (x, y) ∈

γ, θ > 0 and sufficiently small ε, then

Px,y(ν < mε,µ) ≤ 1− (1− exp{−ε−1(V µ
o − θ)})mε,µ → 0

as ε→ 0, for any C, α > 0 and θ sufficiently small.

Now, let us estimate the second probability of (3.7), Px,y(τmε, u < eε−1(V µ
o −α)).

For the fixed µ we chose, there exists a λ > 0 such that Px,y(τ1 > λ) ≥ 1
2

for all

(x, y) ∈ γ and ε > 0. For the number Sm of successes in m Bernoulli trials with

probability of success 1
2
, we have the inequality

Px,y(Sm >
m

3
) > 1− ε

for m larger than some mo. Since τm = (τ1 − τ0) + (τ2 − τ1) + ...+ (τm − τm−1),

using the strong Markov property of the process, we obtain that

Px,y(τmε,µ < eε−1(V µ
o −α)) = Px,y

(
τmε,µ

mε,µ

<
1

C

)
< ε

for λ/3 > 1/C and ε sufficiently small, mε,µ is sufficiently large. Consequently,

we have proved limε↓0 Px,y(τmε, u < eε−1(V µ
o −α)) = 0 for any x ∈ G, |y| < N . This

completes the proof of part (2) of Theorem 3.3.

�
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In conclusion, let us choose µ∗ = min{µ2, µ4}. For any µ < µ∗, Theorem 3.3 is

proved. For the multi-dimensional case, Theorem 3.3 can be proved in the same

way.
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