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Modern scientific workflows are becoming complex with the incorporation of non-traditional

computation methods, and advances in technologies enabling on-the-fly analysis. These work-

flows exhibit unpredictable runtime behaviors and have dynamic requirements. For example,

such workflows must maintain overall performance and throughput while dealing with undesired

events, adapting to failures, and supporting data-driven adaptive analysis. A fixed, predetermined

resource assignment common to HPC machines is inefficient for overall performance, throughput,

and data-driven adaptive analysis. While solutions exist to enable elastic resource management,

there is no support that can manage the workflows at runtime to determine when the resource

assignment and/or the runtime state of tasks (i.e. stopping, starting, changing the task parameters

for adapting analysis, or changing how data is sent/received by the workflow tasks) needs to be

revised, and perform the feasible changes at runtime accordingly.



This dissertation provides a flexible and portable model, DYFLOW, with strategies to auto-

mate the management of scalable and adaptive workflows. The model gathers runtime statistics,

tracks the occurrence of important events, and finalizes a plan of action to execute in response to

events that occurred, by mediating between suggested actions with respect to the running state

of the workflow tasks and resource availability. Further, the model supports a wide range of con-

structs and tunable parameters that allow users to express events of interest, select prospective

responses, and set various preferences to set the service expectation, e.g., throughput, perfor-

mance, resilience to failures, or quality of results. To showcase that the DYFLOW model supports

adaptive functionality desired for emerging workflows, several examples of problematic behavior

are demonstrated where DYFLOW accommodates the specific requirements and automates the

runtime management process for scientists while delivering the quality of service desired.
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Chapter 1: Introduction

Large-scale scientific workflows are often built from a complex set of coupled tasks that

can include simulations, data analysis, and visualization, among others. With advances in com-

puting power on state-of-art HPC systems, the traditional file-based approach of coupling tasks

and exchanging data is becoming a significant performance bottleneck – I/O performance is un-

able to keep up with the volume and velocity of the data generated. To bridge this gap, a new

model of in situ analysis has emerged as a promising alternative for workflow coupling [47].

In situ analysis minimizes the number and size of disk I/O operations by replacing disk storage

with in-memory staging (buffering), on-the-fly execution of analysis, on-node, and off-node data

transfers. But, unlike loosely coupled workflows where the workflow tasks run discretely and

exchange data through files, managing in situ workflows is challenging as the tasks run in par-

allel, share resources, interfere with each other’s performance, have different rates of data flow,

and sometimes fail [24] which may require revising resource assignment at runtime. On-the-fly

execution approach further opens opportunities for adapting analysis methods and/or tasks based

on the state of the simulation. As workflow tasks become more dynamic in their structure, be-

havior and requirements for the experiment, scientists can no longer rely on the static workflow

management support offered by existing systems and tools.

Unfortunately, resource and job management support on most systems designed for HPC,
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e.g. compute clusters, is usually static and doesn’t support on demand resource acquisition and

release. Thus, predetermining an efficient resource assignment becomes challenging for a work-

flow with changing runtime resource requirements, resulting in over-provisioning of resources

or loss of workflow performance or failures due to under-provisioning. While there are attempts

to support elastic resource management [1, 23], they are not sufficient to cater to the runtime

challenges of dynamic workflows [24]. Orchestration services are required that could manage

the workflows at runtime to determine when the resource assignment and run status of tasks (i.e.

stopping, starting or changing the task parameters for adapting analysis) need to be revised, and

perform the feasible changes at runtime accordingly. Management of adaptive workflows often

results in a chicken or the egg dilemma, as the inflexibility to change resource assignments or

manipulate job runtime state on HPC clusters prevents scientists from availing themselves of the

benefits of on-the-fly analysis. On the other hand, lack of widespread use of in situ approach

slows the research and development of technologies supporting adaptive workflows.

Therefore, this dissertation offers a flexible orchestration model, called DYFLOW, that au-

tonomously manages adaptive workflows, supervising the workflows to monitor and respond to

the important events and meet desired Quality of Service (QoS) goals (e.g., maintaining through-

put, performance, the accuracy of the result, resilience to failures, etc.). DYFLOW provides

scientists the means to transparently express and control the events that are relevant to their

workflow. Managing in situ workflows is complex where requirements could be specific, so

often proposed orchestration solutions rely on interactive commands from a human-in-the-loop.

An orchestration model, such as DYFLOW, that can reliably automate the management of dy-

namic workflows based on criteria (policies) set by scientists can significantly minimize the effort

required by scientists to improve undesirable runtime behavior, especially for long-running ex-
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periments. For complex workflows, expressing policies can often involve a team of scientists and

other experts, a key advantage that can manage the workflows at runtime so that team members

can easily use, collaborate, and validate any changes performed in response to the dynamic events

that are important for a computational experiment.

DYFLOW is a four-stage conceptual model that categorizes dynamic management as Mon-

itor, Decision, Arbitration, and Actuation stages. These stages are responsible for monitoring

the workflows and gathering meaningful data, identifying the occurrence of events and generat-

ing relevant responses, mediating amongst the suggested responses for these events, and applying

suitable actions to change the workflow state. DYFLOW contains programmable constructs that

are made available to the user through an easy-to-use interface. These constructs support rich

features to enable users to set policies to define events and select appropriate responses to those

events, and set preferences (optional) to assist in mediating between events and responses. For

instance, these features include methods to collect, process, group and reduce runtime measure-

ment data, methods to analyze processed data to observe patterns, and various runtime actions to

manipulate resource assignments, change workflow tasks runtime states, or manage flow of data

between workflow tasks.

DYFLOW is not a standalone workflow management system (WMS), but an additional

service that dynamically manages workflow tasks at runtime and employs the basic services pro-

vided by an existing WMS. Extensive research in workflow management and task scheduling

has resulted in numerous systems that focus on different aspects of managing workflows, and

this research has designed and built DYFLOW leveraging these prior systems and their insights.

DYFLOW uses these services for interacting with the system resource manager, setting the ini-

tial resource assignments, and applying the final actions on workflow tasks at runtime. It also
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utilizes support from application profilers, e.g., TAU [51], for acquiring real-time monitoring

information. As a demonstration, DYFLOW has been implemented using an existing workflow

management system, Cheetah/Savanna [26]. Some of the work in this dissertation has been pub-

lished [42, 53].

In addition to the scientific workflow community, this research draws substantial guidance

from cloud/enterprise service orchestration runtimes. Elastic scaling of resources to handle per-

formance fluctuations is a critical capability in today’s cloud stacks [61], yet they have proven dif-

ficult to incorporate into traditional, batch-oriented scientific workflows. By staying focused on

the dynamic management components that are most relevant for scientific end users, DYFLOW

offers a platform for further study of the connections between content-driven in situ scientific

workflow control and the quality-of-service service compositions of cloud-based systems.

To demonstrate the effectiveness of the DYFLOW model, several example cases of prob-

lematic workflow behaviors are presented where DYFLOW adapts to the specific requirements of

the workflow and automates the runtime management process for scientists. From experiments

performed on different HPC platforms, the dissertation illustrates that DYFLOW incurs minimal

overhead.

1.1 Thesis statement

Is it possible to orchestrate adaptive scientific workflows at runtime based on user-

specific requirements? By designing a flexible and portable model with runtime strategies, I

have demonstrated that the orchestration of adaptive workflows can be automated based on user-

specified requirements to meet the desired quality of service. Using examples from several in-
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teresting runtime scenarios, I have shown that the model meets user expectations while incurring

minimal overhead.

1.2 Motivating example

In many large-scale scientific simulations, analysis codes identify features that emerge over

the course of the simulation, and the memory footprint, compute requirements, and total runtime

for such analytics can be challenging to predict statically. Determining efficient resource as-

signments is a fundamental challenge on large-scale parallel systems, even if a workflow does

not exhibit large runtime variability. A scientist must decide how to assign resources to each

workflow task to match their data flow rates.

In practice, scientists usually either choose to over-provision based on a worst-case scenario

or make a best-guess choice and hope for the best. Such a decision can result in premature ter-

mination of the workflow due to under-provisioning or wasting expensive compute resources due

to over-provisioning. Over-provisioning is more frequently observed as (1) it avoids situations

where tasks are vulnerable to interference from other co-located tasks, and (2) it enables meeting

the potentially very high resource requirements of tasks at peak times during the workflow run.

These undesirable situations can be avoided with on-demand resource assignment along with an

orchestration service such as DYFLOW that can detect and respond to events and circumstances

that can benefit from changes in resource assignment.

Figure 1.1 illustrates scenarios constructed from a molecular dynamics in situ workflow

(LAMMPS) where a simulation was performed with three analysis tasks. The scenarios represent

three categories of experiments where the initial resource assignments (shown on the X-axis) lead

5



Figure 1.1: A comparison of under-provisioning, desired, and over-provisioning scenarios con-
structed using an in situ workflow on a standard Linux cluster (Deepthought2) with and without
DYFLOW orchestration support.
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to under-provisioned, correctly provisioned and over-provisioned outcomes. The figure demon-

strate that a higher rate of work is achievable with DYFLOW when elastic resource support is

available on a parallel system to add or release resources at runtime as necessary. The rate of

work done is defined as the number of simulation timesteps completed by workflow tasks for

every node hour consumed. The x-axis shows the initial number of nodes assigned to the exper-

iment, while the y-axis shows the normalized rate, i.e., the timesteps completed per node hour

used. In the under provisioning case, the rate of work done gradually increases as more CPUs are

added. In the over provisioning case, the rate of work done decreases as more CPUs are added

because the additional CPUs added are mostly idle and the work done every node hour consumed

decreases. With DYFLOW a steady rate is achieved that is close to the user expectation of the

desired pace of progress (expressed as policy settings) irrespective of the initial resource assign-

ment as the resources are adjusted (i.e., assigned and released) on the fly. Each of the experiments

ran for 30 minutes of wall-clock time. This scenario repeated the experiments using DYFLOW

and compared the rate of work done, i.e., the number of timesteps completed by the workflow

6



tasks, for every node hour used by the experiment (shown on the Y-axis). For clarity, the graph

has normalized the rate to the properly provisioned scenario without orchestration. DYFLOW

continuously streams the monitoring data from the workflow tasks to determine the pace of the

experiment and adds additional nodes or releases nodes (in increments of up to two nodes at

a time) to increase, decrease or redistribute (co-locating the tasks) the number of processes as-

signed to the tasks to meet the user expectation set in the policy statements. As is evident from

the graph, DYFLOW maintains a steady rate of work done per node hour used, which is close to

the rate desired by the user, irrespective of the initial resource assignment.

DYFLOW uses one core on each node to monitor tasks. The impact of monitoring on

workflow tasks is low. Since on-demand support for resource acquisition and release is not com-

monplace on large parallel systems, this experiment has emulated this feature by allocating spare

nodes in advance. In practice, the overheads could be slightly higher, as there will be variability

imposed in obtaining additional nodes due to delays in acquiring the nodes from the cluster’s re-

source manager. To minimize the delay, DYFLOW can initiate the resource requests in advance

by making predictions about future resource requirements.

1.3 Background

Scientific Workflows: A scientific workflow is defined as a set of tasks where tasks may

be dependent on one another. A task in the workflow could be a parallel (i.e., data-parallel or

communication intensive) or a serial program. A typical example of these tasks include simula-

tion, analysis, or visualization. Simulation tasks are often large-scale parallel tasks that model

a scientific phenomenon. Analysis and visualization tasks are often post-processing techniques
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applied to simulation data to extract meaningful information or make observations.

The data dependencies or coupling of scientific workflow can be modeled as a directed

graph, where vertices represent the tasks and edges represent the data from the parent and the

dependent task(s). Scientific workflows are coupled in two ways; loose coupling where data

exchanges are supported through files, or tight coupling where data is exchanged through in-

memory staging areas (an in-situ approach). In loosely-coupled workflows, the tasks can run

discretely, such that a task Tj that depends on the data from a running task Ti can be scheduled/run

when the task Ti finishes. However, in tightly coupled workflows the data to be exchanged is

available while the experiment runs, so all the dependent tasks must run in parallel to generate

the end result. These workflows are susceptible to various runtime events and situations.

With advances in computing technology, modern workflows are adopting in situ techniques

to overcome the I/O bottlenecks of file-based coupling. As analysis techniques derived from non-

traditional HPC methods, such as machine learning and graph algorithms, are gaining popularity,

the requirements of modern scientific workflows increasingly show the need for dynamic control.

In situ analysis: in situ analysis and technologies are emerging as a promising replacement

for temporary disk writes that have been done traditionally for exchanging data between different

applications. At its core, in situ technologies use in-memory buffering or node-to-node data

transfers to enable consumption/exchange of data while it is being generated, without the need

to be written to disk. This means the applications can be run in parallel by means of in-memory

coupling, which can be of either a synchronous or asynchronous nature. On-the-fly coupling

this way has several advantages. For instance, this approach not only improves performance

by limiting the number of I/O operations, but decreases the end-to-end runtime and increases

resource utilization by co-locating the workflow tasks Further, by supporting on-the-fly analysis,
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this approach provides early insights into the simulation data which could be useful, for instance,

to correct the course of the simulation.

There are currently two modes of data staging, (1) off-node staging - dedicated servers or

compute nodes on the cluster are allocated to store and manage the generated data in memory,

for instance using DATASPACES [21]; or (2) on-node staging - data is stored on the same nodes

where it is generated in the cluster or external libraries are used to manage and distribute the

data, for instance the in-memory staging options provided by the Adaptable I/O system (ADIOS

v2) [28] or the FlexPath library from ADIOS v1 [17]. Such advances in in situ technologies en-

able running workflow pipelines that can involve multiple analysis workflow components running

in parallel with the simulation, resulting in huge performance benefits.

The implementation of DYFLOW built for this dissertation relies on ADIOS2 for in situ

interactions because (1) ADIOS2 does not use additional resources (or dedicated nodes), (2) it

has a simple interface that makes it easy to incorporate into workflow applications, (3) it supports

both synchronous and asynchronous coupling, and (4) it is open source, and its modular design

is relatively flexible to modify for experimental purposes.

Job scheduling on HPC systems: Supercomputers are the most common and preferred

systems for HPC applications. A supercomputer is a massively parallel shared resource, and the

jobs are scheduled using a centralized batch system. There are generally two types of computing

units/nodes on these machines; login and compute nodes. Login nodes are directly accessible to

a user upon login which can be used to build and compile applications. The compute nodes are

where the user programs are run. The batch system on these systems is responsible for decid-

ing how to assign the compute nodes’ resources amongst user applications and when to launch

the user jobs. Some popular batch systems used on modern supercomputers are SLURM [54],
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PBS [48] and IBM Spectra LSF [38]. The users submit their jobs by means of a job script that

defines what jobs are to be run and how many resources these jobs would require. The submitted

job scripts are initially queued by the batch system, and whenever the resources are available, the

batch system selects a job script that can be scheduled. The decision about which job script to be

scheduled at any time is based on predetermined strategies, for instance, a first come, first served

strategy with job priorities or scheduling based on multiple job queues. Once the job is launched,

a user cannot change or control how the jobs are run, except for cancelling the jobs.

Each cluster enforces policies which govern when, how and what jobs can be launched and

under what conditions. These policies can restrict how many jobs from the same or different

users can be assigned to a node, how long a job can run, which running jobs can be preempted

and for what reasons, etc. These policies are decided and set up by cluster administrators.

Each batch system also has a resource manager agent that is responsible for determining

the resource assignments, monitor the running jobs and collect the statistics of all the running

jobs like the exit status and maximum/minimum resource usage. These statistics are saved to

a database, which can be queried by users or system administrators anytime through scheduler

commands.

Flux [1] is a next generation resource and job scheduler system that provides an abstraction

for scientist to launch and manage their jobs across different clusters in a portable way. Un-

like traditional job schedulers, Flux support many customizable features. To support efficient

co-scheduling of jobs, Flux allows users to determine how to configure their jobs on compute re-

sources at various levels of heterogeneity such as within (or across) nodes, cores, sockets, GPUs,

etc. Flux also provides various an in-memory key-value store and control API support for users

to store the job’s metadata, output and status. Users can also choose the type of scheduling policy
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that is efficient for their workflows. There are ongoing efforts to support an elastic model in Flux

to dynamically grow or shrink resource assignment of a running workflow task. This feature is

not yet widely available.

1.4 Related Work

Support for elastic computing: Many HPC applications rely on the MPI library for scal-

ing and inter-process communication. MPI-based applications cannot easily grow and shrink

without restart. However, there are increasing efforts to incorporate elastic resource manage-

ment support into process management on HPC clusters [14] and into MPI [44] in the future.

With limitations in current MPI support, projects such as Perarnau et al. [49] and Vallee et

al. [59] introduce container-based solutions to support dynamic resource management. S. Iserte

et al. [30] demonstrated the benefits of resource adaptation by building an API to support runtime

flexibility for standalone MPI-based embarrassingly parallel applications to change the number

of processes. Other solutions rely on checkpoint and restart to enable applications to adapt to a

different number of resources [27]. The implementation for this dissertation also relies on the

checkpoint-restart approach for elastic resource assignment.

Existing scientific workflow management systems on clusters: To cope with the increas-

ing complexity of HPC workflows, many modern workflow management systems (WMSs) have

emerged [2, 4, 6, 46, 60] that provide support via scripting languages to ease workflow design,

and manage workflow execution and data access across multiple architectures. The user inter-

faces in these systems include command line-based scripting languages, XML-based, e.g. [46],

or GUI-based drag and drop features, e.g. [6]. Some systems describe a workflow using directed

11



acyclic graphs (DAG), for instance Pegasus [19] and ParSec [11], and are capable of running

large-scale, multi-stage workflows with support for monitoring workflows with some dynamism.

However, many emerging scientific workflows require more than a centralized WMS to achieve

high efficiency and support complex coordination requirements. RADICAL [58] is a recent effort

that integrates components of different WMSs together. It is based on defining different building

blocks supported by RADICAL [58], which does not require uniform interfaces so can be easily

adapted to existing workflow management tools to support scalability and interoperability across

various HPC platforms. RADICAL also supports resource management and execution of large

scale ensemble runs, and generates various statistics related to pre-defined events on the building

blocks.

Some legacy and modern workflow systems allow for dynamic user steering of workflows;

that is, they provide the capability for a human-in-the-loop to alter a workflow at runtime. Sys-

tems [36,46,60] allow for programmatic workflow tuning must wait for a task in the workflow to

complete before taking actions to modify the workflow execution. In these systems, monitoring,

at most, is limited to tracking the start and end times of the workflow jobs, and they do not pro-

vide support for monitoring and adapting workflows based on dynamic conditions or events that

arise from the workflow jobs at runtime.

Workflow management on the cloud: Cloud architecture is a collection of various com-

puting resources, for instance, processing units, storage and servers that are owned and managed

by private organisations for commercial purposes. Cloud computing enables its clients to access

and utilize these resources by means of three types of services; Infrastructure as a service (Iaas),

Software as a Service (SaaS) and Platform as a Service (PaaS). Since scientific workflows require

infrastructure support, the rest of the discussion will be focused on IaaS. IaaS enables clients to
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access storage, networking, servers and other computing resources on on-demand basis and pay

only for the resources they utilize. Clients use these resources to run multiple virtual machines

(VMs) on which they can lauch their jobs. Examples of IaaS resources include Amazon EC2 [3]

and Microsoft Azure [43].

Cloud computing is emerging as a flexible alternative to on-premise cluster machines for

running scientific workflows, as the resources can be acquired or released elastically and users

pay for only the resources used at runtime. Many state-of-the-art workflow management sys-

tems (WMS), for instance Pegasus and Kepler, have incorporated support for scientists to utilize

these features of cloud computing by managing and adapting cloud resources according to their

workflow needs. To manage resources for the workflows, these WMS employs resource pro-

visioning and resource scheduling methods. The resource provisioning methods determine the

number of resources that the workflow jobs will require at runtime. Resource scheduling methods

are responsible for managing how the resources are assigned to the workflow tasks at runtime.

Resource provisioning and scheduling also support Quality of Service (QoS) constraints like

deadlines or budgets set by a user. Depending on user requirements, the aim of these methods

is to optimize resource utilization, time or cost. There is a large body of research to design

effective resource scheduling strategies for cloud. Several studies [40, 61] present an overview

and classification of these strategies. Scheduling strategies can be static, dynamic or hybrid (a

combination of both static and dynamic strategies). Static scheduling methods schedule tasks

based on the assumption that precise estimates of the timing and communication cost of the tasks

and the resources are available before execution, while dynamic scheduling methods can be em-

ployed when no prior information is available and the cost can only be estimated at runtime.

Hybrid methods are employed when the cost estimates are known, but the resources cannot be
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assigned before execution. These strategies can be further classified as meta-heuristic methods

and heuristic methods. Some examples of meta-heuristic approaches include Particle Swarm Op-

timization (PSO) [50], Genetic Algorithms [39], and Cat Swarm Optimization [9]. Examples of

heuristic approaches include Deadline constraint scheduling [52], Heterogeneous Earliest Finish

Time (HEFT)-based scheduling [5], Priority Impact scheduling [62], and Compromised-Time-

Cost (CTC) scheduling [37].

Container-based solutions, such as Kubernetes1, extend this automation by allowing users

to define and customize performance metrics to adapt resources (scaling up and down) at runtime.

However, all these solutions are limited to loosely-coupled workflows, where data exchanges are

done through files and dependent workflow tasks run at different times.

There has been a lot of emphasis on integration of HPC and cloud services to provide the

benefits of elastic resource management. Cloud technology has also significantly advanced to

achieve comparable performance to on-premise HPC clusters. However, cloud services are not

cost-effective for running large-scale workflows compared to on-premise HPC clusters [7]. More-

over, support for in situ workflows is limited on clouds. There are some recent efforts [8, 15] to

enable in situ processing of scientific workflows by integrating HPC clusters and cloud services.

However, the dynamic orchestration support desired for in situ workflows is not available in these

systems.

Dynamic management approaches on HPC systems: Recent studies [18, 29, 64] have

demonstrated the benefits of dynamic resource management on HPC clusters. For instance,

Dayal et al. [18] introduced queue monitoring policies that increased or decreased the number

of component processes based on the work pending in the queue compared to the work queue

1Kubernetes website: https://kubernetes.io
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for a component with which data is exchanged. GoldRush [64] and LandRush [29] attempt to

improve overall runtime performance by utilizing otherwise wasted idle CPU and GPU resources

available on nodes that have been allocated to simulations that are waiting on other resources

(e.g., large I/O operations), so instead can run an analysis task by using careful task scheduling

and switching methods. Another related system is ActiveSpaces [22], which attempts to bring

computation to staging nodes and sends processed results instead of sending raw data to appli-

cations to minimize the amount of data that must be transmitted over the network. The work in

this dissertation focuses on providing portable and extensible strategies that manage both tightly

and loosely coupled workflows at runtime and are not tied to any specific workflow management

system.

1.5 Outline

The rest of the document is organized as follows. Chapter 2 delves into the process of

expressing the complex requirements of in situ workflows from the perspective of a team of

scientists, discussing examples of challenging in situ workflow scenarios with dynamic needs.

Following this, Chapter 3 discusses the details of the DYFLOW model and showcases how users

can use the DYFLOW interface to express their workflow requirements. Chapter 4 probes deeper

into the complexities of the arbitration protocol used to mediate the policy responses. The details

of the prototype implementation of DYFLOW are presented in Chapter 5. Chapter 6 provides

evidence of the benefits of applying the flexible orchestration approach to different scenarios with

dynamic needs, and Chapter 7 discusses conclusions and future directions.
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Chapter 2: Requirements for achieving desired orchestration

This chapter focuses on the various orchestration requirements for adaptive scientific work-

flows from the perspective of a team of scientists, by looking at the requirements of two real-life

use cases with problematic behavior. Both scenarios are based on workflow containing tightly

coupled tasks, i.e., all the tasks run simultaneously and depend on other running tasks for input

data. The data sharing is enabled via in-situ services. In the first scenario, the tasks are co-located

on the same compute nodes. Variability in the resource usage behavior of one or more tasks could

affect the performance of other tasks as tasks share the resources of the compute node. The event

of interest for this scenario is tracking significant memory bandwidth usage imposed by external

interference from co-located workflow tasks or background tasks, and responding in a timely way

to decrease the pressure on memory bandwidth. In the second scenario, the tasks are located on

geographically distant machines. When the remote network connection used to transfer data (i.e,

a timestep) to a task is congested, the overall workflow throughout could be affected. The event

of interest for this scenario is tracking the slowdown in network transfer times and responding in

a timely way to maintain throughput with an acceptable loss in accuracy.

16



2.1 Coupled tasks sharing compute nodes - simulation, analysis, and machine

learning applications (MemContScenario):

In some instances, background tasks are run periodically to access and collect data. These

tasks could be part of the workflow or service required for the experiment that shares resources

with workflow tasks. For example, a workflow can have a machine learning task that is invoked

periodically to train models to make better predictions, or these tasks could be the server instances

of off-node in situ data management services like Dataspaces [21]. Co-locating workflow tasks

on the same compute nodes is helpful in improving resource utilization and the overall workflow

performance by improving data locality, i.e., consuming the data where it is generated. However,

these background tasks can be highly unpredictable in their resource usage behavior and poten-

tially affect other tasks that share resources on the same compute node, thereby degrading the

performance of the workflow.

The specific workflow of interest contains a large-scale simulation (XGC), a particle sub-

selector (ParSub), and a particle path analyzer (ParAnlz). XGC [35] is a gyrokinetic Particle-

In-Cell code used for studying plasma turbulence in fusion devices such as Tokamaks and ITER

reactors, where the reaction is confined through magnetic pressure. At each time step, the parti-

cle states are updated based on the underlying physics, and then the updated particles’ locations

are statistically determined and mapped to the grid cells. The output of each timestep is sent to

the ParSub component to filter the particles of interest in the simulation based on user-specified

criteria. The selection criteria used in our workflow is uniformly distributed random selection, as

the particles are equally likely to be in a plane of reference. The selected particles are then sent
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to the last component ParAnlz, the main analysis component, which keeps track of the changes

in the position of the particles using particle position vectors to compute particle trajectories. As

a proxy to a set of background tasks that utilize shared resources, instances of the STREAM [41]

benchmark were run with the fusion workflow tasks. The STREAM benchmark is run at a ran-

dom time to create high memory bandwidth utilization.

2.2 Coupled tasks located on geographically distant machines (NetContSce-

nario):

In some studies, a team of scientists collaborating from remote locations or different orga-

nizations may need to stream the output of an experiment running on a cluster to a set of local

machines for visualization or analysis due to cluster access restrictions. Sometimes a scientist

may need to upload experiment data to a cloud provider or a specialized data analysis machine

for further analysis. Streaming data in real-time saves time and storage and avoids data replica-

tion. There could be variability in network speed between the cluster and the clients observed at

different times. Slow network speed could become a bottleneck to the experiment, and signifi-

cantly impact the overall throughput.

This workflow also has three main components; A large simulation (LAMMPS), a common

neighbor analysis computation (CNA), and a visualization (Viz) task that generates images from

the CNA output. LAMMPS [56] is a widely-used molecular dynamics simulation code, used

for applications ranging from engineering nanomaterials to designing new alloys to exploring

protein folding. The common neighbor analysis is one of the LAMMPS methods that is used
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to study the structure of solids under pressure. On HPC clusters, typically only login nodes

can perform data transfers to remote clients (the visualization task), hence the workflow uses an

additional task (DMZ) that runs on the login node that streams data from the CNA task and sends

it to the Viz task on the remote machine. The transfer is done in lock-step mode, where after

receiving a simulation timestep the Viz task sends an acknowledgment to DMZ and requests the

next timestep.

2.3 Gathering data to observe dynamic events

The first requirement relates to gathering data that will enable tracking the events of in-

terest. This section presents insights into the process to identify data that could be collected at

runtime to recognize the occurrence of an event.

Identifying the relevant data to gather requires an understanding of what data is available at

runtime. Modern profilers provide useful runtime statistics about an application while it runs on

a cluster through code instrumentation, such as resource usage, data transfer volume and speed,

and more. The generated information could be periodically saved in a database and to be queried

in real-time. Modern profilers like TAU also support direct streaming of these statistics in real

time. However, the code instrumentation could slow down the application as it is constantly inter-

rupted by profilers to record statistics. On Linux systems, the operating system creates temporary

files that record a few useful application usage statistics such as the number of memory pages ac-

cessed, amount of physical memory allocated to an application, number of packets transferred

on a network connection, and so on. This information can be retrieved periodically in real-time

with minimal to no overhead from the running application. Libraries like PAPI [12] and LIK-
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WIID [57] enable access to hardware counter data for capturing the performance of different

components of a compute node at runtime, measuring per-core metrics (e.g., L1, L2, L3 cache

misses and references for each core/thread) and so-called ”uncore” metrics [16] (e.g., read and

write events received by a memory controller on a node, thermal power usage of a node). State-

of-the-art profilers also integrate support from these libraries to access hardware counter data.

For GPU usage statistics, NVIDIA Cupti [45] can be utilized. Finally, the application code could

be modified to output any specific data required for event identification.

NetContScenario: First, the case of the molecular dynamics workflow is demonstrated.

For this scenario, we wanted to measure the end-to-end transfer time of a timestep from the

DMZ task to the Viz task to track slow transfer times. On Linux systems, the ’/proc/net/dev’

file provides the number of bytes that are transferred to and from the login node by a running

process. These measures are available for transfers using the cluster’s internal high-bandwidth

interconnect or a WAN interconnect. Using these measures, an estimate of the time spent to

transfer the amount of requested data can be performed indirectly. However, computing this

separately for every timestep is not straightforward. The TAU tracing and profiling toolkit [51]

supports code instrumentation to time methods, loops, and other blocks of code. We apply this

feature to DMZ and instrument the method that transfers a timestep and returns when the Viz

component sends an acknowledgment requesting the next timestep. This value is recorded by

TAU after the instrumented method returns.

MemContScenario: Now, the complex use case of fusion workflow where we focus on

memory usage patterns to recognize high memory bandwidth usage is demonstrated. Memory

usage can be classified into two categories; (a) physical memory usage, which directly relates to a

node’s memory capacity, and (b) Memory bandwidth, which measures the rate of data exchanged
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between memory and processors over some time.

Memory capacity is a straightforward measure of the total physical memory usage of the

processes on a compute node (provided by many modern profilers) relative to the total physical

memory available on a compute node. Resident Set Size (RSS) is a measurement statistic main-

tained by the operating system (i.e. Linux) to keep track of physical memory usage and is based

on the page frames allocated to a given process at any given time. This information is available

as a Linux temporary file /proc/⟨process id⟩ for each running process.

On the other hand, memory bandwidth is complicated to measure. Even though modern

processors provide some support via hardware counters that enables capturing the performance

of different components, there are no direct measures for memory bandwidth. Further, there is

a lot of variability and reliability in the support and performance of hardware counters across

computer system architectures.

To evaluate the slowdown observed by a process due to memory transactions, we begin by

measuring the cache miss rate (on most processors, this is for the last-level L3 cache since L3

misses must access the main memory). However, by itself, this measure has a lot of inherent

variability during a run and more information is required to distinguish an acceptable momentary

variation from a change due to memory congestion pressure. Based on extensive experimentation,

we found two additional useful measures that helped to disambiguate normal and problematic

cases; The memory stall percentage measures the percentage of CPU cycles that were stalled/idle

waiting for load operations to complete, and the instructions per cycle give the total number of

instructions completed per cycle. When using these three measures simultaneously, we have been

able to correctly detect changes in memory pressure (while avoiding false positives).

This set represents a concise measurement that could be collected together (with high pre-
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Table 2.1: Hardware counter for memory bandwidth computations on Deepthought2
Hardware counter Description

LLC REFERENCES #cache requests to last level cache.
LLC MISSES #cache misses in last level cache.

CLK UNHALTED CYCLES #cycles used for execution.
CYCLE ACTIVITY: STALLS LDM PENDING #cycles stalled waiting for memory loads.

INSTRUCTION RETIRED #instructions completed.

cision) from the cluster used in the experiments. When a workflow task experiences high memory

bandwidth usage, the load stall percentage and cache miss percentage increase, while the instruc-

tions per cycle decrease. These three measures are not directly available through profilers or

tracing libraries, but can be computed using hardware counters available on many modern archi-

tectures, as I now describe.

load stall percentage =
#cycles stalled waiting for memory loads

#cycles used for execution ∗ 100

cache miss percentage = #cache misses in last level cache
#cache requests to last level cache ∗ 100

instructions per cycle =
#instructions completed

#cache requests to last level cache

Table 2.1 describes several counters that can be collected on a standard Linux cluster,

Deepthought2 that relate to last level cache accesses and misses, total CPU cycles utilized, total

memory cycles when execution was stalled for memory load operations to finish, and the number

of instructions completed.

This data can be collected using the PAPI [12] library support integrated into the TAU pro-

filer [51] that provides the difference between the current and last values read from the hardware
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counters. PAPI provides cross-platform support infrastructure for accessing the same logical cat-

egories of counters on different chip architectures. The counter values were read every second

for this workflow to observe the events in a timely way without imposing large overheads on the

running task.

Requirement 1. While analysts (e.g., application developers, system experts, performance engi-

neers, or data analysts for data-driven events) determine what information is useful to identify

runtime events, a separate program needs to be developed that can collect the desired data at a

given frequency, for example querying a database, real-time streaming or reading a file. Addi-

tionally, for a multithreaded or multiprocess task, the raw data must be further processed, i.e.,

filtered and aggregated based on all the processes of a task running on a compute node, and

summarized into a single meaningful metric. For instance, to estimate the memory bandwidth

utilization per node, the values read from every process of a task running on a compute node are

aggregated.

2.4 Defining events of interest from the metric values

Events can be described as extreme values, special values, or changes in the values from

the computed metric. For some events, a straightforward condition to identify events from the

metric values is to compare the measurement collected at any instance against a threshold. For

instance, a condition comparing the resident set size measurement at any time against the total

memory available on the compute node can detect high physical memory usage.

However, event identification based on measurements at a single point in time is not al-

ways reliable for defining events. The computed measurements can often be noisy and show
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Figure 2.1: The graph shows raw load stall percentage data obtained by monitoring XGC in
comparison to when it was smoothed by computing a rolling average over 30 samples. The X-
axis represents time elapsed in minutes, and the Y-axis represents the load stall percentage. The
metric is computed based on the raw counter data collected at a frequency of 1 second.

significant variation over short time periods. For example, Figure 2.1 shows that raw load stall

percentage measurements have high jitter, i.e., the frequent presence of both low and high val-

ues over short time intervals. The presence of such a jitter makes it unreliable to differentiate

between low-pressure and high-pressure situations for the memory bandwidth metric. Based on

this observation, I now discuss the process used to identify if events of interest have occurred for

the two use cases.

MemContScenario: Post-processing of the metric values, such as a smoothing function ap-

plied over a time interval, is often performed to mitigate the effects of measurement noise and

enable better analysis of changes in behavior as workflow tasks to run, assuming the workflow

runs for a long time compared to the measurement frequency. Hence, to deal with the unreliability

of single point-in-time measurements, I evaluated a range of statistical functions for smoothing.

From experimentation, I have found that an average computed for the most recent N measure-

ments to be effective in capturing the events of interest. Figure 2.1 shows the effect of smoothing

by using a rolling average computed for 30 values. I realized that choosing the value of the in-

terval size M is important. A short window size may not eliminate the jitter effect, and a large

window size may over-smooth the data, making it difficult to recognize changes in the metric.
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For the memory bandwidth measure, I further observed that different tasks have different

patterns of resource usage and thus have a relative threshold that defines high or low-pressure

situations. For instance, it is difficult to distinguish between a task that experiences a maximum

30% cache miss percentage, 40% load stalls, and 0.7 IPC value in isolation, as compared with

another task that may show similar metrics when run at the same time on a node with other

memory bandwidth-intensive applications.

Since comparing absolute values against the metric value (smoothed) was not a reliable

predictor of resource pressure, I looked for changes in these measurements that indicate changes

in usage patterns. For this, I compute the percentage change in the measurements. The percentage

change measure captures the amount of change in the measurements for the maximum variation

observed in the measurements. Let, SVti represents the smoothed metric value computed at

time ti and SVti−r
represents the smoothed metric value that was computed in the past, i.e.,

at time ti−r. The value r represents the size of the interval used in the computation. RVmax

and RVmin represent the global maximum and minimum observed over the individual point in

time measurements, respectively. Based on these values, the percentage change at any time ti

(change percentageti) can be computed as follows.

change percentageti =
SVti − SVti−r

RVmax −RVmin

∗ 100

The term SVti − SVti−r
gives the current change in the pattern with respect to the past,

and the term (RVmax − RVmin) gives the maximum variation in the values observed up to time

ti. This metric can be compared against a threshold value (δ) to determine a significant increase

or decrease in usage compared to the recent past. In the case of load stall percentage and cache
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miss percentage, change percentageti > δ is used to indicate a substantial increase in resource

usage, and change percentageti < −δ is used to indicate a substantial decrease in usage. The

appropriate δ value can be set by a performance analyst based on experimentation. The δ value

can vary depending on the underlying system and sensitivity (i.e., performance degradation) of

the workflow tasks to external interferences.

Figure 2.2 showcases how the behavior of the load stall percentage, cache miss percent-

age, and instructions per cycle measures change due to external interference related to memory

bandwidth usage. Since XGC is the most sensitive task to bandwidth pressure, in the rest of

the discussion I will focus on XGC. The graph shows the percentage difference in the values

of the three measurements when memory bandwidth was stressed by external interference after

360 seconds, with respect to the situation when memory bandwidth usage was low. To elabo-

rate, the comparison is performed on two types of experiment arrangements; (1) tasks share the

compute nodes and memory bandwidth usage is low (LMB), and (2) tasks share the compute

nodes and memory bandwidth becomes high after instances of the STREAM benchmark start

around 6 minutes into the experiment (HMB). The load stall percentage and cache miss per-

centage measurements show an increase, while instructions per cycle show a decrease, as the

STREAM benchmark starts and stresses available memory bandwidth.

I evaluated the effect of smoothing with varying window sizes, ranging from 5 to 120

samples, where a sample is collected every second from different tasks. A window size of 30

(i.e., N = 30 ) smoothed the data without losing the pattern. Next, I examined different values

for r by varying the interval size from 30 to 120. While large interval sizes were able to detect

the change in memory bandwidth usage more often, they also take longer to begin detecting

the change. An interval size of 30 (i.e., r = 30) provided a reasonable tradeoff between the
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Figure 2.2: A time series graph that shows the percentage difference in memory bandwidth pres-
sure measurements for XGC on compute node 0. The X-axis shows the elapsed time in seconds
since the experiment start. The Y-axis shows the percentage difference as MHMB(t)−MLMB(t)

MLMB(t)
∗100.

Here, MLMB(t) and MHMB(t) represents measurement M observed at time t when memory
bandwidth usage was low (LowMem) vs when memory bandwidth usage was high (HighMem),
respectively.The measurement values were smoothed using a rolling average of 30 values before
computing the percentage difference.

Figure 2.3: A time series graph that shows the change percentage computations for the three
memory bandwidth pressure measurements. The measurement data is shown for XGC on com-
pute node 0 when STREAM was started after 360 seconds. The X-axis shows the elapsed time
in seconds since experiment start. The Y-axis shows the percentage change.

delay in detection and the number of times the event is notified. This particular function and

tuning process is representative of what I would expect a performance engineer to do to provide

a decision module for a particular application, and the specific parameter values are not expected

to be universal.

Figure 2.3 shows the change percentage metric values when the memory bandwidth usage

was high, i.e., arrangement HMB. The dynamic actions were disabled for this run. All three mea-

surements show at least a 10% change during high memory bandwidth usage. However, cache
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miss percentage should also have greater variability (more than 20%) to detect high memory

bandwidth usage. The thresholds (δ) are chosen in the experiments based on these observations.

As the graph shows, the metric correctly indicates the increase and decrease in usage as posi-

tive or negative values depending on the measurement at various times during execution. Values

close to 0 indicate no change. XGC spends its initial three minutes (about 180 seconds) in a

setup phase. This time shows a sharp increase followed by a decrease in memory bandwidth us-

age. These initial events for the tasks are ignored by the Arbitration stage of DYFLOW to allow

the workflow state to stabilize after startup. After this, an increase in memory bandwidth usage is

observed at about 392 seconds, approximately 32 seconds after the STREAM benchmark starts.

The opposite change indicating a decrease in memory bandwidth usage is observed around 960

seconds, approximately 60 seconds after STREAM completes.

NetContScenario: Similar to the MemContScenario, the end-to-end transfer time data also

requires smoothing, as this data is also susceptible to jitter (e.g., a suddenly slow remote transfer).

To avoid bottlenecks as a consequence of a congested connection, a scientist may prefer to sus-

pend the transfer. With the raw observation, the policies may react to one slow transfer and turn

off the transfer, where future transfers could have been performed fast enough. After analyzing

standard smoothing techniques, the most effective technique for our experiments was achieved

by computing a rolling average where a higher weight is given to the new observations. For this

technique, the smoothed values represent the most recent transfer times while minimizing the

effects of anomalies.

To calculate weights, I assign a score to the values out of M , such that the latest value gets

a score of M , the next value gets a score M−1, and so on. The weights are calculated by dividing

the score by M . In our experiments, a maximum window size of M = 5 was reasonable to get
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the desired estimate of the transfer times.

Requirement 2. The event expression can be complex and may depend on various parameters

that need to be determined by the appropriate expert (e.g., a performance engineer or data an-

alyst) based on the QoS requirements of the workflow and underlying platform. For example,

the number of metric values to use for processing the metric values, or the thresholds to identify

the events of interest, may vary depending on the size of the input instance or the HPC system

employed for running the workflow. Thus, flexible approaches are required that can ease the

expression of events for the experts and support tunable parameters for setting or adjusting the

settings as necessary.

2.5 Determining relevant responses for the events

Once the conditions that define events of interest are known, a response needs to be de-

termined. Response refers to the action to perform to change the workflow configuration when

an event of interest occurs. The following are runtime control categories that can be used as

responses to an event of interest.

Dataflow level: This category refers to actions that manage the data distribution between writer

(publisher) and reader (subscriber) tasks. For example, when a reader task is relatively slow,

it may be useful to change the frequency at which a writer publishes data.

Task level: This category refers to actions that a task developer can provide to control the running

parameters of the task while it is running. For example, using a faster but lower-precision

computational method over a higher precision, but slower computation method may be a
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good strategy when performance is lower than expected or desired for a specific task (e.g., a

physical simulation).

System level: This category refers to actions that change the resource assignment of running

workflow tasks at runtime. As an example, the number of CPUs or GPUs assigned to a task

can be changed. Depending on changes in resource usage patterns, a task can be assigned

more resources or required to shed resources to give the resources to other tasks.

Workflow level: This category refers to actions that change which tasks will run at runtime. For

instance, scientists may want to start an analysis task only when interesting features emerge

in the data produced by a simulation task (i.e. as determined by another analysis task).

There could be another action category that can deal with ensemble workflows (described

in Section 7.3). This category requires further exploration and is beyond the scope of this disser-

tation.

MemContScenario: The potential responses to deal with high memory bandwidth usage

include reducing memory bandwidth congestion by reassigning a task to other resources (i.e. a

different cluster node) or enabling the simulation to publish fewer timesteps for analysis (decima-

tion in time). The latter response is not feasible for this workflow, as the accuracy of the positions

and trajectories of particles computed by the PAnlz task can be affected by missing intermediate

timesteps.

NetContScenario: Multiple options may be applicable as a response to an event. Based

on the QoS requirements of the workflow, the best response could be a trivial choice or may

depend on information only available at runtime. For instance, for network slowdown events, a

scientist may want to choose between compressing data with different methods, publishing fewer
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timesteps, or forgoing the transfer completely. For this example, some loss in accuracy may be

acceptable for visualization. However, for a scientist who wants to minimize data loss, the best

response may depend on the amount of time it takes to transfer the data for a timestep. For

instance, the scientist may prefer to use lossless compression instead of other responses, hoping

to get the desired transfer time when the connection is slow.

Requirement 3. To respond to events, solutions are required that support various controls that

can manipulate running workflow tasks by changing resource assignments, managing dataflow,

changing task parameters, or managing the tasks to be executed at any time.

2.6 Validating a response at runtime

Large-scale workflows that couple multiple tasks are vulnerable to various dynamic uncer-

tainties related to performance-driven, science-driven, or system-driven events such as failures.

For such workflows, a team of research scientists may manage different components of the exper-

iments and determines the event and responses. For instance, physicists and data scientists will

best understand the behavior of analysis and visualization tasks and be able to identify the events

relevant for science-driven functionality. The task developers who program and design tasks can

identify events that lead to performance bottlenecks at runtime. The system or performance en-

gineer can identify the common triggers for all the experiments performed on the system, such

as failure events.

While experts can describe different runtime events and responses to these events, that may

be insufficient to ensure a consistent workflow state at runtime. For example, one or more events

can occur near in time, and responses to events may involve incompatible actions, i.e., actions
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can contradict when applied to the same task, actions can conflict over resources, or can result in

an undesired state when performed simultaneously on different tasks. Therefore, there is a need

for screening that accounts for such situations to formulate a plan validating that the set of actions

applied to the running workflow tasks is always valid, compatible, and feasible with the available

resources.

MemContScenario: The three metrics, Instructions Per Second, Load Stall Percentage, and

Last Level Cache Miss Percentage, together indicate changes in memory bandwidth pressure.

However, analysis of any one of these metrics in isolation may incorrectly signify memory band-

width pressure changes. A scientist may want to set a runtime dependency of these metrics on

one another to respond to changes in memory bandwidth pressure.

NetContScenario: As an example, I posit a scientist that has a set of preferences for data

quality based on satisfying a key quality-of-service measure. For instance, when lossless com-

pression does not provide the desired compression ratio, the scientist may want to achieve the

desired transfer time by incrementally compromising on accuracy using lossy compression until

a tolerable error limit is reached. Other actions, such as publishing fewer timesteps, may be taken

when compression is not effective in meeting time constraints. To achieve this, the current choice

of compression algorithm or algorithm parameters needs to be updated based on the outcome of

the previous choice.

Requirement 4. When multiple events occur near the same time, conflicts could emerge be-

tween the different event responses. While some of these conflict situations can be handled by

pre-programmed conditions or a decision tree that mediates between events and responses, there

could be conflicts that arise based on the runtime state of workflow tasks and the resources. For
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these situations, the pre-selected response may not be an appropriate or effective choice. More-

over, modifying a decision tree to integrate new events or update the event parameters could be

susceptible to inconsistencies and undesired outcomes at runtime. Thus, a runtime service is

desired that can dynamically validate and select the most suitable set of actions from the pro-

posed responses. Such a dynamic service will also enable different team members to collaborate

efficiently.
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Chapter 3: Flexible orchestration service: DYFLOW

DYFLOW is a four-stage conceptual model that categorizes dynamic management as Mon-

itor, Decision, Arbitration, and Actuation stages. Each stage independently manages one as-

pect of dynamic management and exposes features that enable users to express events that are

important for the workflow and determine the actions to perform in response to those events. The

stages exist simultaneously and function continuously on the input received from the previous

stage. The Monitor is the first stage and does the bulk of the processing. It is responsible for

gathering runtime data from the running workflow tasks, necessary to identify dynamic events.

Since collected data is usually large and raw, the Monitor stage further simplifies and reduces

the data into meaningful metric values that get transferred to the next stage. The second stage

is the Decision. This stage processes the incoming values to identify if an event of interest has

occurred, and then determine the actions needed in response to the event. The selected responses

get passed on to the third stage, Arbitration. The Arbitration stage constructs a plan of action

that is feasible and consistent with the workflow specifications on receiving the input from the

Decision stage. The last stage is Actuation, which executes the plan of action sent by the Ar-

bitration stage. To perform the requested actions, it sends signals to workflow tasks or invokes

services of the underlying workflow management system. The stages provide users with features

to express how the workflow tasks will be monitored, what defines interesting events, and what
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Figure 3.1: Diagram illustrating the DYFLOW model

are the preferences to orchestrate the workflow in response to the events. In chapter 5, I will

describe an implementation of this model along with the user interface (section 5.3) that enables

users to set these features. The detailed description of the DYFLOW stages is described next.

3.1 Monitor

The Monitor stage enables users to define monitoring requirements. Fulfilling Require-

ment 1 (as described in Chapter 2), the Monitor stage allows users to define sensors. Each sensor

defines the data to procure for runtime assessment, the input method to employ for real-time pro-

curement of this data, and the translation operations necessary to convert the procured raw data

into metrics for identifying events of interest.

At runtime, this stage continuously gathers the user-desired statistics from a variety of

sources. The data, if collected frequently (in time), can be huge, for instance, a value could

be generated per process/thread assigned to any task. This stage further reduces the collected
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data using pre-defined or custom operations and translates the data into meaningful metrics. The

resultant metrics are accumulated across the distributed set of resources and delivered to the

Decision stage. The Monitor stage also manages the background activities of the user-defined

settings to oversee correctness. These include setting (or resetting) connections to input streams

or databases when the workflow tasks start (or restart), gathering the sensor outputs, and sending

the information to the Decision stage for evaluation and updating the monitoring settings based

on the changes performed on the workflow at runtime.

Sensors support abstract features that provide a set of commands for users to express wide-

ranging needs that vary from simple metrics like the maximum memory consumed by a task

to complex metrics computed from workflow measurements. These features can accommodate

the needs of scientists to express various monitoring, such as those described in requirements

discussed in Chapter 2. I describe these features next.

Source: Depending on the workflow, the required statistics could be organized in a specific for-

mat and available through a given medium. This feature enables users to determine how data

of interest get generated and exchanged at runtime for a sensor. For instance, the desired

data can be generated by an online profiler, generated by a running task, or generated by the

operating system, and is available through a database service, a streaming service, or files.

Based on this information, the model will collect the data in a distributed way. For example,

for the MemContScenario (Section 2.1) and the NetContScenario(Section 2.2), the source

will include streaming data using the TAU profiler and ADIOS2 support. The design of the

Monitor stage is extensible to support a variety of collection methods.

Preprocessing: Preprocessing operations distill the collected data into a single value per process

36



before it can be processed into the desired metric. This feature can be useful when the input

read from each process/thread is sizeable, for instance, a vector or multidimensional array.

Examples of preprocessing operations include sum, average, standard deviation, variance,

minimum, or maximum. Custom operations can also be provided as required.

Group-by and reduction: These operations dictate metric formulation. Group-by takes the data

from the monitored tasks (i.e. a single value for every process of the monitored tasks) and

organizes it based on the granularity, while a reduction operation summarizes the grouped in-

formation into a metric. Examples of granularity levels include node-task, task-level, node-

workflow, and workflow-level. The node-task granularity groups data from every process

belonging to the same task that shares the compute node. The node-workflow granularity

groups the information from all the processes belonging to the same workflow and sharing a

compute node. With task-level granularity, the groups define the data from all the processes

belonging to the same task, while with workflow-level granularity, the groups define data

from all the tasks belonging to the same workflow. The design of the Monitor stage is exten-

sible to support other granularity levels.

A granularity-based grouping enables expressing metrics from the collected data that can

capture events in different scopes. The grouped values can be reduced and summarized into

simplified values using operations such as sum, average, standard deviation, variance, min-

imum, maximum, or user-provided. For instance, in the MemContScenario, the data can be

grouped at node-task level granularity (i.e., grouping the data collected from every process

of a task assigned to a compute node). The grouped values can be reduced to a metric using

the aggregation operation, such that there would be one metric value for each node assigned
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to that task. Similarly, for the NetContScenario, the metric can be generated by grouping

at task level granularity (i.e., grouping data from every process of a task) and reducing the

grouped values by choosing the data from the first process of the task (i.e., MPI rank 0). The

resulting metric would be a single value for the task of interest.

Join: A sensor can join its output with another sensor to compute a complex metric that relies

on multiple data inputs. The join operation can be an operation such as sum, multiplication,

division, or one that is user-provided. For instance, in the MemContScenario( section 2.1),

Instructions Per Cycle (IPC), a metric used for measuring CPU performance, is computed by

dividing the number of instructions completed by the number of CPU cycles used.

Sensors act as portable functions invoked using inputs that vary across workflow tasks and archi-

tectures. For example, workflow tasks may have separate paths to the inputs from which the data

is being read, the variable name, the variable type, and so on. Similarly, the hardware counter

information used for defining metrics can differ across architectures.

3.2 Decision

Once a metric is defined, a set of guidelines must be determined that clarifies what evalua-

tion criteria should be employed to capture the events of interest from the metric values.

As per Requirement 2 and Requirement 3, the Decision stage in the model allows users to

define policies that provide abstract features that simplify setting these guidelines and supporting

a broad range of policies. The Decision stage guidelines include:

Sensor(s) to use: Defines the sensor output(s) to employ for the policy with the desired granular-

ity level(s).
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History and pre-analysis: The policy could maintain a history of sensor outputs, like a sliding

window of a specified size, and perform a preliminary analysis to capture a pattern. Exam-

ples of analysis functions include average, sum, minimum, maximum, mean, median, mode,

standard deviation, kurtosis, skewness, exponential average, and variation. For instance, in

the MemContScenario, a user could identify the events based on the running average rather

than the last observed value of the IPC metric. Similarly, in the NetContScenario, a user

could identify the events based on the exponentially weighted average rather than the last

observed value of the time to send the timestep.

Evaluation condition: The evaluation condition compares the input against a threshold (i.e., a

numeric value, a boolean value, or an interval, meaning a pair of values) and the result de-

termines if an event of interest has occurred. The comparison condition could be less than,

greater than, equal, not equal, greater than equal, less than equal, is in the interval, or is not in

the interval. The evaluation could use the instantaneous or pre-analyzed output from a single

sensor, or a value derived from a set of sensor outputs.

Suggested action: The suggested actions represent the high-level operations applied to one or

more tasks in response to the event of interest. These high-level operations should be con-

cise and easy to understand, as they encapsulate different low-level operations required to

perform the desired action. The high-level actions correspond to various dataflow, work-

flow, task, and system-level actions. For example, a SWITCH operation could represent the

following low-level operations; signaling a running task to stop, estimating resources for

launching the replacement task, acquiring the required resources, and initiating the replace-

ment task if enough resources are available. Other possible high-level actions include ADD-
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CPU, RMCPU, STOP, START, and RESTART. These correspond to increasing or decreasing

the number of CPUs assigned to the task to increase or decrease the number of processes,

stopping a running task, and starting a task or restarting the current task. Each high-level op-

eration supports additional parameters to guide the action, e.g., the desired number of CPUs

to increase or decrease or user settings to apply (i.e., using a shell script) before starting or

restarting tasks.

Evaluation frequency: Every policy has a defined frequency in time to decide when to trigger the

evaluation condition. The evaluation condition is executed if new inputs were received since

the last trigger. Evaluation frequency helps in avoiding events that have transitory effects.

Like sensors, policies act as portable and reusable functions. The inputs to these policies vary

with different workflows and tasks. For example, evaluation thresholds or the tasks to which the

policy action would apply can differ across the monitored tasks.

3.3 Arbitration

As per Requirement 4, the Arbitration stage works by collating the suggestions sent by

different policies within a short window of time and then determining which of these suggestions,

if any, will be applied to modify the current state of the workflow. Formulating a plan of action

involves the following. The first responsibility of the Arbitrator stage is to eliminate invalid or

futile suggestions. The suggestions that conflict with the past actions applied to the workflow

tasks or data streams are considered invalid. Futile suggestions refer to the repeating application

of identical actions on workflow tasks or data streams.
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The second responsibility of the Arbitration stage is to determine the dependent actions for

the suggested actions. To give an example of dependencies, when a task is stopped or restarted

all the (tightly) coupled tasks dependent on it need to be signaled, stopped, or restarted.

The third responsibility of the Arbitration stage is to screen the high-level actions suggested

by the Decision stage to resolve conflicts. Conflicts can be direct or indirect. A direct conflict

results when high-level actions apply to the same task and lead to contradictory or inconsistent

behavior. For example, one action may request to add more CPUs to a task, while other requests

to stop the same task or release some of its CPUs. An indirect conflict results when the suggested

actions do not conflict directly but are inconsistent with one another and lead to an undesirable

workflow state at runtime when applied simultaneously. For instance, the user may set multiple

policies in response to performance events. One policy may suggest signaling the simulation task

to output fewer timesteps to memory buffers when memory usage is high, while another policy

may suggest switching to a faster and lower precision analysis when the rate of progress is slower

than expected. If both policies are triggered simultaneously, then the overall experimental output

could lose significant accuracy. Resolution of conflicts results in selecting a set of high-level

actions.

The fourth responsibility of the Arbitration stage is to map the high-level actions to low-

level operations. These low-level operations represent the API calls to a resource manager or

underlying workflow management service or operating system.

The fifth responsibility of the Arbitration stage is to determine the feasibility of the op-

erations and create the final plan of action. The Arbitration stage is also in charge of resource

management, as a feasible final plan is dependent on the available resources. This stage main-

tains information about the total allocated resources, resource health, and the current resource
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assignment to workflow tasks. The stage issues requests for additional resources whenever nec-

essary and resolves conflicts and incompatibilities among low-level operations when resources

are insufficient to meet all requirements. For instance, if tasks A and B want to increase their

number of processes while the available resources cannot allow both operations, then one of the

requests would be denied. A final executable plan with revised resource assignments consists of

all the selected low-level operations sequenced in the order in which to apply them. Ordering is

required to avoid execution inconsistencies. For example, if any operation reduces the number of

processes of a task releasing resources, it should precede others that will use those resources.

The Arbitration stage can function automatically to formulate a plan of action while han-

dling conflict resolution. However, users have the flexibility to define rules to guide the plan

of action suitable for their workflows by dictating the conflict resolution parameters. The rules

allow users to set priorities, constraints, and dependencies.

Policy priorities: Users can set explicit priorities to deal with situations where different policy

responses have high-level conflicts. In the absence of user priorities, the Arbitration stage

automatically determines the policy priorities based on default criteria described in Chap-

ter 4. To illustrate how explicit policy priorities are useful to meet specific requirements

of the workflow. Suppose, two events; one related to performance, and the other related to

data accuracy, occur at nearly the same time. One event suggests adding more resources to

Task1, while another suggests switching Task1 with Task2. If data accuracy is an important

requirement for the workflow, then users can make this requirement explicit using policy

priorities.

Policy constraints: Users can set constraints to establish relationships between policies. The
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relationships refer to incompatibilities where suggested actions do not explicitly conflict, or

where there are interdependencies across different policies. The constraint PX ”depends-on”

PY establishes a dependency of PX on PY and instructs the Arbitration stage to accept policy

PX’s suggestions only if policy PY provides suggestions at the same time. On the other hand,

the constraint PX ”incompatible-with” PY instructs the Arbitration stage to reject suggestions

of the policy with the least priority of the two policies if both provide suggestions at the same

time.

Task priorities: Like policies, users can set explicit priorities of tasks based on their relevance.

Task priorities are used by the Arbitration stage to decide which task gets preference over

others when low-level operations compete for resources. In the absence of user priorities,

the Arbitration stage automatically determines the task priorities based on default criteria

described in Chapter 4. Explicit task priorities are useful, for instance, in large-scale exper-

iments where users may prefer a task, such as a simulation, to run without interruption and

never release resources.

Task inter-dependencies: Determine the dependent tasks and their parent tasks and if the depen-

dency is tight (i.e., the dependent task runs concurrently with the parent task it depends on

and gets data via an in situ medium) or loose (i.e., the dependent task runs uncoupled from

the parent and gets data from files on disk). This information helps in identifying dependent

operations. Task interdependencies are required when the underlying workflow management

system does not compute a dependency graph.

Workflow setup time: This allows users to override the default time used by the Arbitration stage

to disable accepting suggestions from the Decision stage to allow the workflow to settle
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during the initial launch and after any dynamic changes are applied.

3.4 Actuation

The plan of action consists of low-level operations that invoke the services of an underlying

workflow management service, send signals to running tasks, or interact directly with the cluster

resource manager. The Actuation stage in our model serves as an abstract implementation for

all the low-level operations invoked by the Arbitration stage in the final plan of action. Some

examples of such low-level abstract operations include starting a task with a resource assignment,

sending signals to a task, terminating a task, requesting or releasing resources via the cluster

resource manager, inquiring about resources’ health, or inquiring about the task runtime status.

3.5 Limitations of the DYFLOW model

There are several limitations of this model. First, the model assumes that a workflow

consists of simulation, analysis, and visualization tasks. The model does not support ensemble

experiments. In ensemble experiments, a set of workflow instances are executed in parallel. Each

instance has variation in input parameters, the configuration of the workflow tasks, the boundary

conditions, and so on. For such experiments, further exploration of the DYDLOW model is

required to understand what features are required for metric formulation, what dynamic actions

are required for runtime modification, and what methods are required for arbitration.

Second, the quality of service delivered by DYFLOW at runtime depends on the user set-

tings. Hence, it is the user’s responsibility to ensure that the expression of requirements is in

accordance with user expectations. Users also need to decide on an initial resource assignment.
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Third, the model is limited by the support provided by resource managers (i.e. cluster

scheduleres) for on-demand resource acquisition and release. While cloud services allow a run-

ning task to expand and shrink the number of processors, amount of memory, etc., on-premise

cluster machines do not generally enable such functionality. Besides the resource managers,

elastic support from parallel communication libraries, such as MPI, is also not available in prac-

tice. Hence, the model by default relies on a checkpoint-restart mechanism to adapt the resource

assignments based on the resource requirements of tasks at runtime.

Last, the Arbitration stage provides default prioritization criteria for ranking policies and

tasks. These criteria rank the policies and tasks on a reasonable but limited set of parameters.

Further criteria need to be explored that can be turned on and off by users based on their re-

quirements. The Arbitration stage can also be trained to automatically enable and disable various

criteria based on the types of workflows encountered, using prior experience to learn from earlier

runs.

3.6 Meeting requirements of MemContScenario and NetContScenario

In this section, I give an overview of how DYFLOW model can be used to describe the

orchestration for the two scenarios described in Chapter 2.

3.6.1 Expressing dynamic requirements of MemContScenario

Using the features of the DYFLOW model, the requirements of MemContScenario can be

expressed as sensors, policies, and arbitration rules corresponding to observing and responding

to changes in memory bandwidth that indicate high usage.
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A sensor can be defined to collect each of the five measurements: the total last level cache

references, the total last level cache misses, instructions completed, CPU cycles used, and cycles

stalled waiting for load operations. The metric computations can be performed by grouping and

summing the raw data from every process (of the monitored task) per compute node for each of

these computations. Next, the three metric values can be obtained by using join sensor features

with a percentage operation. For example, the sensor corresponding to the total last-level cache

misses can be joined with the sensor corresponding to the total last-level cache references.

Three policies can be set to evaluate the events representing changes in cache miss percent-

age, instructions per cycle, and load stall percentage that indicates high memory usage. These

policies can evaluate the metric values collected from the three of the five sensors (joined) that

return the cache miss percentage, instructions per cycle, and load stall percentage, respectively.

Each of these policies can be set to maintain a history of the last 30 measurement values for

computing the change percentage operation (as a user-provided operation, as discussed in Chap-

ter 2), at node-level granularity. The evaluation conditions and thresholds for indicating high

usage event could be checking if percentage change is greater than the threshold value Th1 (i.e.,

Th1 = 20) for cache miss percentage, greater than the threshold value Th2 (i.e., Th2 = 10) for

load stall percentage, and less than the threshold value Th3 (i.e., Th3 = −10) for instructions per

cycle. When the events evaluate to be true, the possible response could be unpacking (moving)

the lowest priority task from the compute nodes shared by the workflow tasks.

To be certain that the response is taken when all three events occur together, a dependency

constraint can be set on each of these policies such that a policy suggestion will be acceptable only

if the other two policies are also evaluated to be true at the same time. The policies are applied

to XGC and PAnalz tasks as they are sensitive to external interference. XGC tasks have the
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highest preference, while PAnalz tasks have the lowest preference of the three workflow tasks.

STREAM , the proxy for a memory-bandwidth intensive background task, is assigned the lowest

priority.

3.6.2 Expressing dynamic requirements of NetContScenario

Similar to the MemContScenario, I now describe how to configure sensors, policies, and

arbitration rules to manage the flow of data from the DMZ task to the Viz task. A sensor can

be set to track the transfer times for data streamed from the TAU profiler. compute the weighted

average of

Four policies can be set to act on this sensor’s output. Each of these policies can maintain

a history of the last 5 inputs collected from a sensor that measures the transfer time (not shown)

and computes the exponential average operation discussed in Chapter 2. The first policy, say,

”LossLessComp”, can suggest applying BLOSC lossless compression [10] to the data for each

timestep when the evaluation condition, i.e., transfer time metric value is greater than the thresh-

old representing T1 seconds. The next two policies, say, ”LossyComp1” and ”LossyComp2”

could suggest applying the SZ [20] lossy compression scheme with different accuracy parame-

ters to the data for each timestep when the transfer time metric value is greater than T2 seconds

and T3, respectively. The last policy, say, ”StopTransfer” can suggest stopping streaming and

writing the timesteps to disk when the transfer time metric value is greater than T4 seconds. The

actions of the three policies, ”LossLessComp”, ”LossyComp1”, and ”LossyComp2” could result

in direct conflicts which could be detected by the framework. Incompatible constraints can be set

for these policies with the ”StopTransfer” policy to express indirect conflict.
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These threshold values can be set based on the quality of service desired, e.g., quality

of results or runtime performance. For instance, two configurations can be defined. The first

configuration, say configA, is set from the perspective of a performance analyst who prefers

performance to the accuracy of results. The second configuration, say configB, is set from the

perspective of a data analyst who prefers accuracy to throughput. In configA, the policy thresh-

olds are set as T1 = 60, T2 = 90, T3 = 120 and T4 = 250. As these policies can be triggered

simultaneously, priorities can be set explicitly to define the preferred order that is focused on per-

formance. Hence, the priorities can be assigned from lowest to highest in the order, ”LossLess-

Comp”, ”LossComp1”, ”LossyComp2” and ”StopTransfer”. In configB, the policy thresholds are

set as T1 = T2 = T3 = T4 = 60. In this configuration, the priorities are assigned from high-

est to lowest in the order, ”LossLessComp”, ”LossComp1”, ”LossyComp2” and ”StopTransfer”,

respectively, as preference is given to the quality of results.

3.7 Experimental demonstration

In this section, I demonstrate how the DYFLOW model can meet the requirements of the

MemContScenario and the NetContScenario based on the setting discussed above. A subset of

the user configuration file for these scenarios is provided in Appendix B. The implementation of

DYFLOW used in this demonstration is described later in Chapter 5.
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3.7.1 Showing that DYFLOW meets the dynamic requirements of MemCon-

tScenario

I compared three types of experiment arrangements; (1) none of the tasks share a compute

node with other tasks and resources are over-provisioned (arrangement one), (2) tasks share

the compute nodes and memory bandwidth usage is low (arrangement two), (3) tasks share the

compute nodes and memory bandwidth becomes high after instances of the STREAM bench-

mark, the proxy for a memory-bandwidth intensive background task, start around 6 minutes into

the experiment (arrangement three). Table 3.1 shows the experiment settings on a standard

Linux cluster(Deepthought2). For arrangement three, I ran the STREAM benchmark with dif-

ferent settings to create memory bandwidth contention. The impact of running the STREAM

benchmark was noticeable when 20 GB was allocated for every STREAM process. Beyond this

limit, the physical memory usage of the nodes is reached, which causes tasks to fail.

In this experiment, the evaluation of the policies is performed every 2 second. The policies

trigger a response when the evaluation is true for at least 50% of the nodes used. The policies

were applied to theXGC and PAnalz tasks as they are sensitive to external interference. XGC

tasks have the highest preference, while PAnalz tasks have the lowest preference of the three

workflow tasks. STREAM is assigned the lowest priority.

Table 3.2 shows the end-to-end overhead incurred in the three arrangements. the over-

provisioning arrangement is the most expensive, both in terms of the overall experiment runtime

and resource usage. By co-locating reader tasks on the same nodes as writer tasks, the overall

runtime was approximately 35% faster and uses 20% fewer resources when there was no resource

(memory bandwidth) pressure. The overhead of actively monitoring the workflow tasks (at a 1
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Table 3.1: Runtime settings of the fusion workflow on Deepthought2

Task Setting Over-provisioned
(arrangement one)

Shared (arrangement
two)

Shared (arrangement
three)

XGC Processes 96 (12 per compute
node)

96 (12 per compute
node)

96 (12 per compute
node)

PSelect Processes 16 (16 per compute
node)

16 (2 per compute
node)

16 (2 per compute
node)

PAnal Processes 16 (16 per compute
node)

16 (2 per compute
node)

16 (2 per compute
node)

Stream Processes — — 32 (4 per compute
node)

— Compute Nodes 10 8 8
— Total Timesteps 80 80 80

Table 3.2: End-to-end overheads for MemContScenario

Arrangement Description Total runtime
Over-provisioned (No Stream) No orchestration 41 mins

Shared resources (No Stream) No orchestration 26.05 mins
Using Orchestration 26.07 mins

Shared resources
(20GB per Stream process)

Using Orchestration (Dynamic actions disabled) 28.48 mins
Using Orchestration 26.63 mins

Shared resources (Beyond
20GB per Stream process)

Using Orchestration (Dynamic actions disabled) Failure
Using Orchestration 26.72 mins

second frequency) and coordinating data streams was negligible compared to the cost of the

running tasks. When extensive memory bandwidth pressure was induced (arrangement three), the

policies respond to this event at around 390 seconds and a suggestion is made to reassign a task

to other resources. Since additional resources were not available for reassignment, the STREAM

task (with the lowest priority) was killed. The response time, i.e., from the time the event was

detected to when the action was applied, was about 12 microseconds. By facilitating dynamic

readjustment of the resource assignments in response to undesirable events, the policy-driven

orchestration allows scientists to reliably co-locate tasks and reap benefits in both decreased

execution time and lower resource usage from data locality.
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Table 3.3: Run setting of LAMMPS workflow

TASK Proceses Compute nodes Timesteps
Lammps 100 (20 per compute node) 5 30

CNA 100 (20 per compute node) 5 30
DMZ 1 (login node) 0 30
Viz 1 (remote machine) 0 30

Figure 3.2: The Gantt chart compares the transfer times of the first fifteen timesteps observed by
DMZ for two configurations when orchestration was enabled. For each configuration, the chart
shows the different action(s) that were performed to achieve the user-desired transfer time. The
X-axis shows the time elapsed in seconds since the experiment start.

Table 3.4: End-to-end overheads for molecular dynamics use case

Description Total runtime
No orchestration 70 mins

Orchestration with ConfigA 18.38 mins
Orchestration with ConfigB 24 mins

3.7.2 Showing that DYFLOW meets the dynamic requirements of NetContSce-

nario

Table 3.3 shows the experiment settings for the use case. Based on this setting, I set the

maximum time to transfer a timestep to be 60 seconds. The experiment was run for a maximum

of 30 minutes, where the tasks generate and transfer 30 timesteps. For simplicity, I show the

results when all these dataflow controls operate on a memory buffer that holds one timestep on

each end of the reader-writer communication.
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Figure 3.2 shows the total time taken by the DMZ task, i.e., to read a new timestep, transfer

the timestep (and receive the acknowledgment) to the Viz task, for the first few timesteps (shown

as different colors) that were observed in the two configurations as a result of applying the policy

actions. The initial transfer time per timestep was greater than 60 seconds.

For configA, ”LossLessComp”, ”LossyComp1” and ”LossyComp2” trigger. Based on user

preference (a performance engineer that wants to minimize delay), the Arbitration stage selects

the suggestion to compress the data using SZ compression, with accuracy 2e − 7, which results

in a greater loss in accuracy but the fastest transfer time possible with the suggested responses.

After this, the desired transfer time was obtained and no further actions were performed during

this experiment.

For configB, all the policies are triggered at the same time. First, the policy ”LossyComp”

is accepted based on preference. After applying the action, the Arbitration stage stops accepting

further suggestions for 2 minutes, allowing the workflow tasks to stabilize. When this period

is over, the transfer time estimate was still slower than desired and all the policies respond to

this event. This time, the Arbitration stage rejects the ”LossLessComp” suggestion (identifying

it as an ineffective response this time) and accepts the suggestion of the next preferred policy,

”LossyComp1”, which eventually obtains the desired transfer time. For this configuration, the

policy suggestions are tried in decreasing order of the preference (as could be set by a data

scientist to minimize the loss in accuracy) until the desired transfer time is achieved.

The average response time, i.e., between the time the event was generated, and the action

was applied, was 10 microseconds. Table 3.4 summarizes the overall workflow execution times

observed when no orchestration was performed and when orchestration was performed using the

two policy configurations. The experiment shows that policy-driven orchestration can be easily
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controlled to achieve the trade-offs needed to achieve the user’s QoS goals.
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Chapter 4: Arbitration Protocol

The Arbitration stage is the third stage of the DYFLOW model that determines how the

suggestions from the Decision stage will be translated into a plan of action that would be executed

in response to runtime events, i.e., the operations that will be invoked to change the resource

assignment or the execution status of the workflow tasks. This chapter discusses in-depth the

functionality of this stage.

An arbitration protocol governs how the plan of action is formulated at any instance from

the collected suggestions. The detailed Arbitration protocol is described in Algorithm 1. The

algorithm takes the following inputs; incoming suggestions indexed by the policy IDs (Asugg)

collected from the decision stage for determining a plan of action, the free (healthy) resources

(Rfree), the resources assigned to tasks(Rasgn), task priorities (Tpri), task dependencies (Tdep),

policy priorities (Ppri), task dependencies(Tdep, policy constraints (Pconst) and the tasks waiting

to acquire resources (Twaiting).

The protocol begins with validation of the input suggestions. This step is performed to

eliminate futile or invalid suggestions. Such suggestions could refer to reapplying an identical

action to any task or data stream consecutively or applying an action that conflicts with the last

action applied to any task or data stream. The validation is based on two assumptions. First,

the policies that need to change the runtime state by repeating the identical actions from the past
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that are ineffective, and stable. For instance, repeatedly requesting to compress the data with SZ

algorithm with an accuracy 1e− 7 is futile. Second, when the suggested action conflicts with the

latest state of any task or data stream, the last applied action should not be overridden by a lower

priority policy. For instance, a lower priority policy requesting to increase CPUs should not be

allowed when CPUs were removed recently by a higher priority policy.

Algorithm 1 Arbitration Protocol
Input:
Asugg ← Incoming suggestions indexed by policy IDs
Rfree← list of healthy and unassigned resources
Rasgn← list of resources assigned to any task
Tpri, Ppri← Task and policy priorities set by user
Tdep← Set of all tasks that dependent on a task for input
Pconst← list of constraints for any policy IDs
Twaiting ← Priority queue of waiting tasks
Output:

1: function ARBITRATION( )
2: Avalid, Ppri ← validate suggestions(Asugg , Ppri)
3: Atotal ← dependent actions(Avalid, Tdep)
4: Afilter ← resolve conflicts(Atotal, Asugg , Ppri, Pconst)
5: Sop ← low level operations(Atotal)
6: Sop ← resource distribution(Sop, Ppri, Tpri, Rfree, Rasgn, Twaiting)
7: opfinal ← order operations in the set Sop and assign resources. Save the selected policies and their suggestions in history.
8: end function

After validation, the Arbitration module identifies the dependent actions with respect to the

selected suggestions to determine a complete list of suggestions. Next, the total suggestions are

filtered for conflicts. This step selects a subset of all the selected suggested actions from different

policies so that none of the actions in the subset generate any conflict (direct or indirect) with one

another. Conflict resolution is performed using policy priorities.

After conflict resolution, the high-level actions are translated into low-level operations.

These operations are function calls in the Actuation module that are wrapper methods enclosing

the underlying workflow management system methods or signals to send to running tasks.

Though the translated operations represent a tentative plan of action, the feasibility of this

plan with respect to the available resources needs to be determined. The additional resources

(e.g., CPU cores) required to execute the plan are estimated based on resources requested or

55



freed by mapped operations.

When the resources requested for the mapped operations cannot be fulfilled by available

(free) resources from the allocated set, it is desirable to initiate a request to allocate more re-

sources. However, resource manager support for on-demand resource allocation and deallocation

is not commonplace on large clusters or supercomputers. Hence, when the available resources are

insufficient to perform all the operations, the Arbitration module revises the resource assignments

giving preference to high-priority operations to acquire the requested resources. This provides

the higher priority tasks a chance to maintain their desired performance over the lower priority

tasks in under-provisioned scenarios. To produce the executable plan, the selected operations are

ordered, and the revised resource assignment is determined. Ordering is important to enforce

applying a correct sequence of operations to the workflow tasks.

In the following subsections, I discuss each of these steps in more detail.

4.1 Policy and task priority computation

At various stages in the Arbitration protocol, the policy and task priorities are utilized

to determine the preferences when the actions suggested by multiple policies conflict or when

multiple tasks compete for resources. Users can set these preferences explicitly. However, in the

absence of explicit policy priorities expressed by the user, the Arbitration stage will automatically

assign priorities to policies and tasks.
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4.1.1 Default policy prioritization criteria

If a policy is not marked (invalidated), the following guidelines are used to automatically

assign priorities to policies.

Granularity: Every policy depends on the inputs from sensors. The Monitor module service

provides these inputs at various granularity. Granularities are ordered from low to high as

node-task, task-level, node-level, and workflow-level. A policy whose sensor output(s) are

evaluated at a higher granularity level is preferred over ones with lower granularity levels.

For instance, a policy based on workflow-level granularity is preferred over the task-level

granularity of the sensor output(s). This is based on the assumption that higher granularity-

based metrics are usually required for decisions that involve inputs from multiple workflow

tasks.

Estimated cost of responses (cost): The measure we use to estimate the cost of the suggestion is

the number of tasks that actions apply to and the number of dependent actions that are needed

to apply these suggestions. This measure reflects how many of the running tasks need to be

acted on for this suggestion. Higher preference is given to a policy that will affect fewer

tasks. This criterion is used when priorities cannot be resolved by granularity. Also, the cost

estimate changes depending on the number of tasks running at any time.

Number of resources requested (resources): This criterion is used when the above two criteria

cannot resolve conflicts. A policy suggestion may request resources such as additional CPUs.

A policy that requires fewer resources or sheds resources is given preference over other poli-

cies.
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Number of sensors used for evaluation (sensors): This criterion prefers a policy that operates on

numerous sensor outputs, under the assumption that a policy that relies on multiple sensors

is more reliable than one that relies on fewer sensors.

Pick according to the default order: If none of the above criteria resolves the conflicts amongst

policies, the order in the user specification file is used to determine priorities from high to

low (i.e., the first policy listed gets the highest priority, while the last listed policy gets the

lowest priority).

4.1.2 Default task scoring criteria

The following guidelines are used to automatically assign priorities (or scores) to tasks.

Number of dependent tasks: A task has higher priority over another if it has a larger number of

dependent tasks (direct descendants) running at a given time, as any operation on this task

affects more running tasks. For instance, a simulation task will likely be given higher priority

over other tasks when competing for resources and would be selected last to shed resources.

Number of ancestor tasks: When tasks have the same number of dependent tasks, then priority

is determined based on the number of ancestor tasks running at that time. Higher priority is

given to a task that has fewer ancestors. This criterion assumes that tasks near the beginning

of the workflow pipeline (closer to the source data) do most of the processing and consume

a larger volume of data than the ones near the end of the workflow, and so they are more

important.

Pick according to the default order: When the above two criteria cannot be applied, the tasks are
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assigned priority (high to low) based on the order in the specification file.

4.2 Validating Suggestions

To determine which suggestions are valid concerning the past, the Arbitration stage main-

tains a short history of all the changes that were applied to any task and associated data streams.

The changes include the runtime status and all actions and action parameters along with the poli-

cies that suggested those actions. The implementation discussed in Chapter 5 maintains a history

of the past five actions. This was sufficient for the experiments performed in this dissertation.

Algorithm 2 describes the validate suggestions method that takes as input the sugges-

tions and policy priorities.

Initially, all the suggestions are accepted as valid. Then, for each policy whose suggestions

were received by the Arbitration protocol, the suggested actions are evaluated sequentially in the

order received. For any suggested action, the task and data stream (if any) it applies to and the

action parameters defined are compared with the last applied action history for the same task or

data stream (i.e., the current state). If the identical action is repeated for a task (or data stream), all

the suggestions of the policy under consideration are removed from the output and the policy is

marked as invalid for the future and the priority level set to the lowest. Reapplying the identical

action incurs a cost without any benefit. Changing the priority of the policy with the repeated

suggestion to the lowest is performed to avoid the rejection of other policies with conflicting

suggestions to override or change the state of the same task (or data stream) going forward.

There can be exceptions where repeated actions are necessary. For instance, resources may be

added or removed multiple times to achieve the desired performance or other QoS metrics. For
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such actions, the validation is skipped in this step by the Arbitration stage. Users can also enable

or disable the validation for certain actions in the specification file.

If the action under consideration for a task or data stream is inconsistent with the last

applied action to that task/data stream, then the action is only accepted if the priority of the

current policy is higher than or equal to the previously performed action. Example of inconsistent

actions include STOP-START, STOP-RESTART, RMCPU- ADDCPU. To resolve conflicts, the

priorities of the current policy and the policy for which the last action was applied are compared.

If the current policy has a lower priority, then the suggestion is rejected. To give an example,

assume there are two policies with conflicting actions; PolicyA (with high preference) suggested

starting task1 with new parameters, while PolicyB suggests stopping task1 in response to events

based on the quality of results and performance, respectively. Due to preference, the PolicyA

suggestion was accepted in the past. PolicyB should not be allowed to override this change in the

future, unless the priority of PolicyA gets lowered by the Arbitration stage (during validation for

repeated suggestions in the previous step). This validation is performed after the elimination of

futile suggestions to make a decision based on the updated priorities. The valid suggestions and

updated priorities are output for further steps in the Arbitration protocol.

4.3 Identifying dependent actions

In the case of coupled workflows, tasks depend on one another for input. A parent task is the

producer of data, while the dependent tasks are the consumers of data. In in situ workflows, the

workflow tasks run in parallel and the data may be streamed employing direct (e.g. ADIOS2 [28])

or indirect (e.g. Dataspaces [21]) runtime connections between tasks. If a running parent task
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Algorithm 2 Validate suggestions
Input:
Asugg ← list of incoming suggestions indexed by policy IDs
Ppri← Policy priorities set by user or determined by Arbitration stage
Output:
Avalid← list of validated suggestions indexed by policy IDs
Ppri← Updated policy priorities

1: function validate suggestions(Asugg , Ppri)
2: Add all actions as valid, Avalid← Asugg

3: for Policy p in keys of Avalid do
4: if p is marked invalid then
5: Remove suggestion by policy p in Avalid

6: else if
7: thenAp ← set of all actions suggested by policy p in Avalid

8: for tuple (action, task, stream, params) in Ap do
9: if (action, params) are identical to the last applied action and parameters for task and/or stream (with exception to actions

disabled for this step) then
10: Set policy p to the lowest priority in Ppri and mark invalid
11: Remove all actions suggested by policy p in Avalid

12: end if
13: end for
14: end if
15: end for
16: for Policy p in keys of Avalid do
17: Ap ← set of all actions suggested by policy p in Avalid

18: for tuple (action, task, stream, params) in Ap do
19: if (action, params) directly conflict with last applied action and parameters for task and/or stream such that the priority of p is

greater than priority of the policy associated with last action then
20: Remove all actions suggested by policy p in Avalid

21: end if
22: end for
23: end for
24: return Avalid, Ppri

25: end function

stops or restarts with new parameters or a revised resource assignment, actions need to be taken on

dependent task(s) to avoid the dependent task failing or wasting resources waiting for data. When

a parent task is stopped prematurely (i.e., before completing all the timesteps it was configured

for), the dependent task may also need to terminate.

When data is directly streamed through the tasks, and a parent task restarts (i.e., stops and

restarts), the connections between tasks in the workflow should be closed and re-established.

Otherwise, the dependent task may terminate assuming that no further input is available on the

streaming connection. To avoid these situations, DYFLOW will also stop or restart the dependent

tasks accordingly.

Similarly, when a dependent task is started or restarted, the parent task needs to be notified
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to avoid overwriting buffers while the dependent task restarts. DYFLOW offers data flow controls

that can be utilized to manage the data streams between the parent and dependent tasks. For

this scenario, DYFLOW will force the parent task to keep the buffers while the dependent task

starts/restarts. In the DYFLOW implementation (discussed in Chapter 5), this is enabled through

control messages sent to the stream actuator service that intercepts the streaming service calls

and controls their functionality according to the message instructions.

Algorithm 3 describes the dependent actions method which takes the map of validated

policies and suggestions, and the policy priorities. Initially, all the suggestions are added to the

output suggestions. For each policy suggestion, if an action stops or restarts a task, say Task1,

then for all the output dependencies of Task1 (i.e. all the tasks that directly consume the output

of the task1 or are dependent on the children of Task1), the same action is added to the output

suggestions. Similarly, when a task is started or restarted, all the parent tasks for Task1 (i.e., the

task whose output is consumed by Task1) a data control action to hold buffers in the parent task

is added to the output suggestions. The newly added actions are associated with the same policy

ID that was responsible for this addition.

4.4 Resolving high-level conflicts

High-level conflicts are resolved based on policy constraints and priorities. Algorithm 4

describes the resolve conflict method that takes as input the validated suggestions (including

dependent actions), the original list of suggestions received, policy priorities and policy con-

straints.

All the valid suggestions are initially added to the resultant filtered suggestions. First,
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Algorithm 3 Dependent actions
Avalid← list of validated suggestions indexed by policy IDs
Ppri← Updated policy priorities
Tdep← Task dependencies
Output:
Atotal← Updated list of validated suggestions indexed by policy IDs.

1: function dependent actions(Avalid, Ppri, action set)
2: Atotal ← Afilter

3: for Policy p in keys of Afilter do
4: Ap ← set of all suggestions of policy p in Avalid

5: for tuple (action1, task1, stream, params) in Ap do
6: for each (tightly-coupled) dependency d of task1 in Tdep do
7: if a thenction1 restarts task1
8: add action, restart task d, to Atotal and associate this action with policy p
9: end if
10: if a thenction1 stops task1
11: add action, stop task d, to Atotal and associate this action with policy p
12: end if
13: end for
14: if a thenction1 starts or restarts task1
15: for each (tightly-coupled) parent d of task1 in Tdep do
16: add data control action to hold buffers of input from d to Atotal and associate this action with policy p.
17: Update Atotal with added actions
18: end for
19: end if
20: end for
21: end for
22: return Atotal

23: end function

the indirect conflicts are resolved based on the policy constraints established by the user. The

indirect conflicts refer to incompatibilities and dependencies constraints amongst policies that

were established by the user. For each policy in the valid suggestions, the policy constraints are

verified, and all the suggested actions of the policy are rejected when any of the constraints are

not met. A dependency constraint is satisfied if all the policies that a given policy depends on

have made suggestions at the same time, i.e, it belongs to the original suggestions. Contrarily, an

incompatibility constraint is satisfied if none of the policies that a given policy is incompatible

with are present in the original suggestions. When the dependency constraint is violated, the

suggested actions of the policy under consideration are removed from the filtered suggestions.

However, when an incompatibility constraint is violated, the suggested actions of the policy with

lower preference are removed from the filtered suggestions.

The filtered suggestions in the previous step are then evaluated for direct conflicts. Direct
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conflicts refer to those actions that, when applied to a particular task or data stream, have con-

tradictory effects. Examples include STOP-START, STOP- RESTART, or RMCPU– ADDCPU.

Conflict resolution is performed based on policy priorities. First, the suggestions (policies) are

sorted based on policy priorities, such that the higher priority policies are given preference. For

each policy suggestion, the actions are registered in a temporary action set that records the set

of actions suggested for each task and/or data stream along with the policy ID that suggested

the action. If a given action is identical in action set, then the action is removed from the sug-

gestions of the current policy (as the existing action in the action set was suggested by a higher

priority policy). If a given action conflicts with any action present in the action set for a particular

task and/or data stream, then the actions which have higher policy priority are accepted, and the

conflicting policy’s suggestions (with lower precedence) are discarded from the action set and

the filtered suggestions. The filtered suggestions are output for further steps in the Arbitration

protocol.

4.5 Translating to low level actions

The filtered suggestions represent the high-level actions that are an abstraction of a set of

low-level operations that represent the services used to invoke function calls to a resource man-

ager or underlying workflow management system. As an example, to restart a task, the task needs

to be signaled, stopped, and start again with new parameters or a changed resource assignment.

Similarly, MPI-based tasks that depend on inter-and intra- task communication cannot grow and

shrink without a restart. So, an ADDCPU TaskA action is translated as signal TaskA, stop

TaskA, and start TaskA with a new resource assignment.
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Algorithm 4 Conflict resolution
Input:
Atotal← list of validated suggestions (including dependent actions) indexed by policy IDs
Asugg ← list of original (incoming) suggestions received by Arbitration stage indexed by policy IDs
Ppri← Updated policy priorities
Pconst← Policy constraints
Output:
Afilter ← list of filtered suggestions indexed by policy IDs

1: function resolve conflict(Atotal, AsuggPpri, Pconst)
2: Afilter ← Avalid

3: for Policy p in keys of Atotal do
4: Incomp ← Set of IDs of policies incompatible with p in Pconst

5: Depp ← Set of policy IDs of all the policies, the policy p depends on in Pconst

6: for Dp ∈Depp do
7: if Dp not in keys of Asugg then
8: Remove suggestion by policy p in Afilter

9: end if
10: end for
11: for Ip ∈ Incomp do
12: if Ip in keys of Asugg then
13: if priority of Ip is less than priority of p then
14: Remove suggestion by policy p in Afilter

15: else
16: Remove suggestion by policy Ip in Afilter

17: end if
18: end if
19: end for
20: end for
21: action set← ϕ
22: Sortedp ← sorted set of keys of Afilter based on priorities (high to low).
23: for Policy p in keys of Sortedp do
24: Ap ← set of all suggested action of policy p in Atotal

25: for tuple (action1, task1, stream1, params1) in Ap do
26: if (action1, params1) then is identical to any action for task1 and stream1 in action set
27: Remove the action1 from Ap and update Afilter

28: else if (action1, params1) doesn’t conflict with any action for task1 and stream1 in action set then
29: Add action1 (with params1) and policy p on task1 and stream1 in action set
30: else if priority of p is greater than the policy of the conflicting action then
31: remove all the suggested action of conflicting policy from Atotal and Afilter

32: Add action1 (with params1) and policy p on task1 and stream1 in action set
33: else
34: Remove suggestions of p from Afilter

35: end if
36: end for
37: end for
38: return Afilter

39: end function

Algorithm 5 describes the low level operations method that takes as input the filtered

suggestions and outputs low-level operations. For each policy suggestion, the low-level services

required are added to the output.
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Algorithm 5 Low level operations
Input:
Afilter ← list of filtered suggestions indexed by policy IDs.
Output:
Sop← set of low level actions.

1: Sop ← ϕ
2: function low level operations(Afilter)
3: for Policy p in keys of Afilter do
4: Ap ← Set of all suggestions of policy p from Afilter

5: for (action1, task1, stream1, params1) in Ap do
6: add the all the low-level operations corresponding to action1 in Sop. Each added operation associates with policy ID, p
7: end for
8: end for
9: return Sop

10: end function

4.6 Determining resource distribution

After the low-level operations are determined, the operations must be accepted based on

the available resources. If too few resources are available than required for conducting the low-

level operations, then extra resources must be allocated. Since support for on-demand resource

allocation is not supported on most HPC machines, the resources need to be redistributed amongst

the workflow tasks such that operations demanding resources for higher priority tasks are given

preference. This step may result in stopping the lowest priority tasks and putting them in the wait

queue.

Algorithm 5 describes the resource distribution method that takes the low-level opera-

tions, the queue of waiting tasks, and outputs low-level operations acceptable based on resources

available. For any operation, the resources required are calculated. If an operation frees re-

sources, the resources are added tentatively to a list of free resources. Similarly, if an operation

requires additional resources, the request is added to the required resources. The calculated re-

sources required are then compared to the tentative list of free resources. If the free resources

available are less than required, then a request to allocate more resources is initiated (which is
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not possible for most HPC systems). If the request cannot be satisfied, then the current resource

assignment will be readjusted by forcing the lower priority tasks to shed resources.

First, the operations are sorted based on policy priorities. For any operation applied to any

task, say taskA, that requests additional resources, one or more running tasks with the lowest

priorities are selected as victims that can relinquish the resources they currently hold to enable

the high-priority operation to be performed.

Victim selection and operation priorities are derived from the task priorities. A running

task becomes a victim if its priority is lower than the desired operation and has more resources to

shed than other candidate tasks. By always using the lower priority task with more resources as

the victim, we avoid scenarios where the resources are repeatedly handed back and forth between

tasks (higher priority and a task gets killed repeatedly) selected as victims. If victim task(s) are

not available, the operation is not executed.

Whenever an operation is removed from the plan, all the other operations for the same

high-level actions are also removed. The victim tasks are put on a waiting list to be assigned

resources when available. This process repeats until the available resources can be reassigned to

meet the requirements of the revised plan. On the other hand, if resources are freed by the plan,

the waiting tasks are provided the opportunity to start with preference given to higher priority

tasks.

The selected operations represent the final actions that will be performed at runtime (by the

Actuation stage). These operations along with the list of free resources and the queue of waiting

tasks are returned as the output.
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Algorithm 6 Determining resources distribution
Input:
Sop← list of low-level operations indexed by policy IDs
Tpri← Task priorities
Ppri← Policy priorities
Rfree← list of healthy and unassigned resources
Rasgn← list of resources assigned to any task
Twaiting ← Priority queue of waiting tasks

Output:
Sop← Tentative action plan

1: function resource distribution(Sop, Tpri, Ppri, Rfree, Rasgn, Twaiting)
2: tempfree ← Rfree

3: Ndes ← ϕ
4: for each operation o in Sop do
5: if o defines an operation that releases resource then
6: Add the set of released resources (e.g., CPUs, GPUs) to tempfree
7: else if o defines an operation that requires resources then
8: add the number of resources required (e.g., CPUs, GPUs) to Ndes

9: end if
10: end for
11: if Ndes > Count(tempfree) then
12: allocate additional resources required and update Rfree

13: end if
14: sort operations in Sop based on policy priorities
15: while Ndes > Count(tempfree) do
16: V ← find a victim task that can shed resources for the next operation O i (in Sop) that request resources on priority basis (i.e.,

priority of V is less than the priority of task associated with O i)
17: if V exists then
18: Rrelleftarrow resources assigned to V from Rasgn

19: Sop ← add operation to stop V (and dependents) in Sop

20: add V (and dependents) to Twaiting

21: tempfree ← tempfree ∪Rrel

22: else
23: drop operations with same policy ID as Oi from Sop. Update Ndes and tempfree.
24: end if
25: end while
26: while Ndes < Count(tempfree) and a task (with highest priority) from Twaiting can be started do
27: update Sop, Twaiting and tempfree.
28: end while
29: Return Sop, Twaiting

30: end function

4.7 Ordering operations to generate a final plan of action

Before the final operations can be forwarded to the Actuation stage, the operations must be

ordered, so they are applied in a valid sequence. For instance, tasks need to be signaled before

they can be stopped. Ordering is done by first performing all the operations that signal the tasks,

The operations are ordered as follows; first, the operations that control data flow between the

tasks are performed, then the operations that signal a task are performed, followed by operations

that stop the task. Last, the operations that start a task are added.
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The operation that controls data flow are messages to standalone data stream manager pro-

cesses that govern how data will flow between readers and writers. They are performed first to

make sure the data-flow control is effective before a reader/writer task starts or restarts. Similarly,

a task must be signaled before it is stopped, so the task has an opportunity to save its state and

terminate gracefully. All the operations to stop the tasks are performed before the operations that

start the tasks so that the released resources can be reassigned.

For all the selected policies in the final plan of action, the high-level actions are stored in

history. This history is later utilized for validation.

4.8 Recording Arbitration choices for users

The Arbitration protocol maintains records about the input suggestions (and policies), the

choices made at various steps, and the total time to formulate the plan. The Arbitration stage

further records the time that was taken to apply the changes at the runtime. These statistics can

be accessed by the user at the end of the experiment for evaluation.
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Chapter 5: DYFLOW Implementation

DYFLOW’s functionality is accessible as a Python library that implements the different

dynamic management stages. Figure 5.1 shows an overview of the implementation architecture.

The DYFLOW library is designed as an independent module so that it is not limited by the ser-

vices of the underlying workflow management system. This allows scientists to use the services

of DYFLOW without having to employ a specific workflow management system.

5.1 Reusing existing support

Underlying Management system DYFLOW utilizes a base workflow management system

that communicates with the cluster resource manager and performs the actions on the workflow

tasks. The current implementation utilizes the functionality of an existing workflow management

service, Cheetah/Savanna. The Cheetah and Savanna tools support the investigation of various

resource allocation trade-offs as part of broader co-design studies and have been developed un-

der the Department of Energy CODAR (Co-designing of Online Data Analysis and Reduction)

project [26]. Cheetah is a composition tool used to specify the workflow; Savanna is a runtime

environment that runs on launch/service cluster nodes, communicates with the cluster scheduler,

allocates the required resources, and spawns the workflow tasks on the allocated resources. Chee-

tah/Savanna is a Python code that is easy to extend, and offers the necessary services required
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Figure 5.1: Overview of the DYFLOW implementation built on top of the Cheetah/Savanna
workflow system. Arrows represent the exchange of data using JSON messages (in red), function
calls (in black), or file/stream reads (in blue)

by DYFLOW. However, the DYFLOW implementation can be modified to utilize the services of

other workflow management systems if desired.

Middleware service for in-situ workflows In in situ workflows, the workflow tasks run

in parallel, communicate, and depend on one another for data. The data is often communicated

between the reader and writer task through middleware services that support data sharing, uti-

lizing on-node and off-node memory buffers (details are provided in Section 1.3). For in situ

coupling of workflows, DYFLOW supports operations from the Adaptable Input Output System

(ADIOS) middleware service1. ADIOS2 is a state-of-art unified I/O framework that encompasses

a variety of transformations (e.g., compression methods) and data transport methods. It has been

developed as part of the United States Department of Energy’s Exascale Computing Program

for efficiently managing scientific data. ADIOS2 uses a publish/subscribe methodology to make

1ADIOS2 website: https://csmd.ornl.gov/software/adios2
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data exchanges and supports both disk-based I/O and in situ methods for application coupling.

ADIOS2 supports in-memory coupling (asynchronous or synchronous) using various transport

engines. For example, Sustainable Staging Transport (SST) enables dynamic connections be-

tween workflow tasks and provides high-performance data movement. SST allows readers and

writers to have a different number of processes. The Strong Staging Coupler (SSC) engine is

based on MPI methods to enable data movement. The data is read and written in lock step,

and SSC requires both readers and writers to have the same number of processes. The Dataman

engine is designed for wide-area network transfers, where a writer task sends data to a remote

reader task. The implementation can be extended in the future to support other services.

Profilers DYFLOW utilizes existing support to gather monitoring data. To measure run-

time performance, modern profilers, such as TAU [51], HPCToolkit [55], SCOREP [32] or DAR-

SHAN [13], enable users to access runtime statistics that can be collected indirectly via system

support or directly through code instrumentation. The system-generated information includes

memory footprint, CPU utilization, and network bandwidth, while code instrumentation can mea-

sure time spent in various code sections. Our implementation employs TAU, an online profiler

that collects performance data via code instrumentation and event-based sampling.

5.2 Implementation details

Users provide two inputs; the first input is a specification file for Cheetah/Savanna that de-

scribes the workflow and experiment setup with initial resource requirements; the second input

is the DYFLOW specification file (in XML) that describes the orchestration requirements. Chee-

tah/Savanna incorporates the orchestration functionality by invoking the bootstrap module in the
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DYFLOW library. An Actuation module in DFYLOW calls the services of Cheetah/Savanna

whenever necessary.

Bootstrap The Bootstrap module parses an XML file with the user orchestration specification

of the workflow and initiates threads corresponding to Monitor, Decision, and Arbitration mod-

ules, providing them with user-specified configuration information. For instance, the Monitor

module receives the sensor information while the Decision module gets the policy details de-

scribed in the specification file. All communication between the service threads occurs through

shared queues and JSON 2 formatted messages. The Actuation module is a wrapper for the plugin

inside Savanna that executes all the low-level services required by DYFLOW.

Monitor The Monitor module is a client-server service. A client(s) is a hybrid MPI and Python

threads-based service that can run on a compute node or a launch node of a cluster. The server

runs on the launch node within the DYFLOW library and connects to the client(s) using PyZMQ 3.

The server manages the client(s), and its activities include:

• start (or restart) client(s) with the sensors along with the tasks to monitor,

• update the client(s) whenever the runtime status of monitored tasks is changed,

• filter the out-of-order messages from the client(s), and

• send updates from the client(s) to the Decision module.

A client(s) manages and executes the sensors by connecting to workflow tasks, collecting

the monitoring data, and sending the sensor outputs to the server. The flexibility to launch multi-

2JavaScript Object Notation(JSON):https://www.json.org/json-en.html
3Python ZeroMQ website: https://zeromq.org/languages/python
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ple clients on the compute or the launch nodes benefits the Monitor module to address requisite

scaling needs. Running the server on the launch node maintains its availability in the event of

computing resource failures.

The Monitor supports sensors that can stream user data through ADIOS2, stream data

generated by the TAU [51] profiler using ADIOS2, scan disks for files, and read error status.

Additional sensor types, such as querying a database or reading additional file formats (e.g.,

HDPF5, NetCDF), can be easily supported in the future.

Decision The Decision thread collects the incoming sensor messages from the queue, while

discarding the out-of-order updates. It then routes the messages to appropriate policies. After

this, the updates are post-processed for each policy and/or stored to maintain history as per the

user specification. The evaluation of these updates is triggered according to its defined frequency

interval. Policy responses (if any) are collected and sent as a single JSON message to the Arbitra-

tion module, and the Decision thread resumes processing the incoming messages. Each response

from the Decision module includes a policy identifier and associated high-level action(s).

Arbitration When the Arbitration thread is nearly ready to process the suggestions from the

Decision module, it starts accumulating incoming requests for a small interval of time. This in-

terval attempts to accommodate the delay in communication of monitoring information or policy

responses and enables the Arbitration module to gather responses for all the events that occurred

over a given interval. An interval of one second was chosen to meet this requirement, which was

derived based on experimentation and works for the scenarios used in this dissertation. After

this interval is done, the Arbitration module formulates an action plan that will be executed at
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runtime.

Once the plan is finalized, the Arbitration module waits for the Actuation module to execute

the plan. If the Actuation module returns successfully, the Arbitration module discards new deci-

sion messages for a sufficient time, allowing the workflow state to settle down after the changes.

In the experiments, a duration of two minutes is used to allow the workflow state to adjust to

the new resource assignment. This duration was derived based on experimentation, and it works

for the scenarios in this dissertation. The duration may depend on the workflow, middleware

technology for task coupling, the types of actions used as responses, or the underlying system.

DYFLOW allows users to override this setting as necessary in the specification. This temporary

suspension of listening to incoming messages from the Decision module allows for the latest

suggestions received by the Arbitration module to reflect the events that occurred on the revised

runtime state of the workflow. The suspension time depends on the actions performed at runtime.

For instance, when tasks undergo resource reassignment (i.e., by being gracefully stopped and

restarted with new resource assignments), the state of the workflow is considered stable when

restarted tasks reconnect to the other running tasks and complete at least one timestep. If the Ar-

bitration module responds earlier than this settlement period, then the state may not be a useful

representation of the last changes applied.

The Arbitration thread constantly collects updates on the runtime state of the workflow

tasks and the resource health from the Actuation module. Any changes in the runtime state of the

workflow tasks are informed to the Monitor server thread to set or reset sensor settings.

DataFlow Module For in situ workflows, controlling dataflow between workflow tasks is an

important feature to deal with undesirable events. We will refer to the flow of data as send-
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ing/receiving of snapshots. A snapshot is a view of the output state of a workflow task, which is

regularly communicated to other tasks that depend on this input. For instance, in many physical

simulations a snapshot is the simulation state which is output at every simulation time step.

Libraries such as ADIOS2 enable direct communication between reader and writer tasks.

The library also supports in-memory buffers to temporarily store unconsumed timesteps. How-

ever, these libraries cannot adapt to changes at runtime. For instance, if a reader gets disconnected

at runtime (e.g., restarted with more resources), the middleware libraries, such as ADIOS2, do not

know when a reader task will reconnect, so the writing task can overwrite buffers. Another exam-

ple would be employing work shedding to mitigate back pressure between the reader and writer

tasks. to avoid throughput or performance loss. DYFLOW caters to these requirements by sup-

porting an additional module focused on meeting the needs of in situ scientific workflows. This

additional functionality enables runtime actions to indirectly manage a set of memory buffers of a

given size on both ends of the reader/writer communication. For instance, the actions allow users

to deal with back pressure development due to a slow reader task or a slow network connection,

reliably start and stop tasks, deal with high/low resource usage events, or deal with failures.

The following runtime actions are available for users to control data flow:

• Enabling work shredding for slow readers: Round Robin distribution of snapshots to sev-

eral instances of the reader tasks;

• Changing write frequency: Writing at a given frequency, every nth snapshot in the writer’s

buffers is sent to receivers, and others are discarded (not buffered);

• Changing read frequency: Reading at a given frequency, a given reader can consume every

nth snapshot in its receiving buffer discarding others;
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• Enabling reader restart: Preventing snapshots to be overwritten if buffers are full waiting

for readers to consume the snapshot

• Checkpointing writer data: checkpointing every nth snapshot in the writer buffer to disk;

• Stopping streaming: forcing the writer to save all the snapshots in the buffer to disk and

forgo streaming;

• Compressing writer data: compressing snapshots with a compression algorithm before

buffering in the writer.

Figure 5.2 shows the design of the extensions that provide runtime knobs to control the

data flow between tasks. A standalone StreamArbitrator process starts on the workflow launch

nodes (e.g., cluster login nodes) for every data stream and informs the writers and readers on how

to send and receive the data. On Linux systems, an environment variable LD PRELOAD lets

users load a specific library before any other shared library, for instance, the standard C library.

Using the LD PRELOAD functionality, we have developed a StreamActuator library stub that

intercepts the streaming service call to request or send data from/to reader and writer tasks. The

StreamActuator functionality is adapted for each of the ADIOS engines enabling in situ analysis

(i.e., SST, SSC, and DataMan). For every method invocation, the StreamActuator (e.g., only

the process with rank 0 for MPI programs) communicates with the StreamArbitrator through

message passing enabled through the ZMQ network library [63]. A StreamArbitrator thread runs

on the cluster launch node for every data stream.

The StreamArbitrator threads are started at the start of the experiment. StreamArbitrator

receives the high-level actions to coordinate the data flow between readers and writers from the

global Arbitration module (in the DYFLOW library). As an example, the StreamArbitrator may
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request the writer to checkpoint every 10 timesteps, or compress the data stream. Internally,

the StreamArbitrator maintains state information about active writers and readers, such as the

program name, the process identifier, number of time steps completed, current time step number,

flags, and parameters to apply the global Arbitrator instructions for the writer and reader. All

the interactions between StreamActuator, StreamArbitrator, and the global Arbitration module

are performed using ZMQ messages. The current implementation intercepts the ADIOS2 library

calls.

StreamActuator requests instructions on how to perform the requested streaming operation.

Intercepting method calls this way eliminates the need to modify the application software (only

LD PRELOAD, the Linux environment variable described previously, needs to be set). When

an active StreamArbitrator is available, the StreamActuator broadcasts a response (an integer)

to all the other processes (e.g., using MPI calls) and then applies the received instructions and

invokes the original data call accordingly. Otherwise, all the processes proceed with the original

streaming service call immediately.

For the set of evaluations in this dissertation, I implemented StreamActuator using MPI, but

it is designed so that the transport has a well-defined interface. For workflows that are not MPI

dependent, the StreamActuator could potentially support ZMQ [63], RabbitMQ [25], Kafka [33],

or other similar publish/subscribe technologies.

Actuation The Actuation stage serves as an abstract implementation for all the low-level opera-

tions invoked by Arbitration in the final plan of action. This abstraction acts as a plugin that ports

DYFLOW across cluster architectures and builds on the services supported by the underlying

workflow management systems.
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Figure 5.2: High-level design of Data flow module that arbitrates the flow of data between work-
flow tasks

5.3 User interface

The user interface contains three sections corresponding to the Monitor, the Decision, and

the Arbitration stages. The user interface is exposed in XML so should have a small learning

curve, since XML is straightforward to use and has a simple syntax. The detailed XML schema

is provided in Appendix A.

Figure 5.3 shows an example XML demonstrating the settings for sensors, policies, and

arbitration rules. The monitor section begins with a ”⟨ monitor⟩” tag that defines all the sen-

sor functions and the workflow tasks to monitor using sensors. A ”⟨sensor⟩” tag defines a new

sensor, where its ”id” attribute sets the sensor name, and the ”type” attribute sets the source of

the sensor. A ”⟨group-by⟩” tag contains the set of metrics to compute for this sensor based on

various grouping criteria and reduction operations. The ”⟨monitor-task⟩” tag applies a set of sen-

sors (indicated by the ”⟨use-sensor⟩” tag) to a workflow task (set in the ”name” attribute). The

”var-source” tag sets the file or stream to use for monitoring. The ”distributed” attribute is set

to true when the task is multi-process. The variable to be read is set in the ”var” attribute of the
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Figure 5.3: An example XML specification illustrating the setting of sensors, policies, and rules
for changing the frequency of output generated by the writer task when the physical memory
usage of the reader task is high

<DYFLOW>
<monitor>

<sensors>
<sensor id=”Sensor1” type=”TAUADIOS2”>

<group−by><group granularity=”TASK” reduction−operation=”MAX” /></group−by>
</sensor>

</sensors>
<monitor−tasks>

<monitor−task name=”Task2” workflowId=”W1” var−source=”tau−t2.bp” distributed=”true”>
<apply−sensor sensor−id=”Sensor1” var=”RSS”>

<parameter key=”var−type” value=”long int” />
</apply−sensor>
</monitor−task>

</monitor−tasks>
</monitor>

<decision>
<policies>

<policy id=”HIGH−MEM” >
<eval operation=”GT” threshold=”190” />
<sensors−to−use>

<use−sensor sensor−id=”Sensor1” granularity=”TASK” />
</sensors−to−use>

<actions> READ−FREQ </actions>
<action−params action=”READ−FREQ”>

<param key=”N” value=”5”/>
</action−params>
<frequency seconds=”5”/>

</policy>
</policies>
<apply−policies>
<apply−on workflowId=”W1” >

<apply−policy policy−id=”HIGH−MEM” eval−task=”Task2”>
<act−on−task task−name=”Task2” action=”READ−FREQ” data−stream=”tau−t1.bp”/>

</apply−policy>
</apply−on>
</apply−policies>

</decision>

<arbitration>
<rules>

<rules−for workflowId=”W1”>
<workflow−setup seconds=”120” />
<task−dependencies>

<task−dep task−name=”Task2” depends−on=”Task1” type=”INSITU” data−stream=”tau−t1.
bp” />

</task−dependencies>
</rules−for>

</rules>
</arbitration>
</DYFLOW> 80



”⟨use-sensor⟩” tag and other details such as the type of the variable are set using the ”⟨param⟩”

tag. For example, in fig. 5.3, a sensor, ”Sensor1”, is set that will stream data from TAU using

ADIOS2 middleware service. To compute the metric, the sensor will take the maximum over all

the values collected from the processes of a task (i.e., TASK granularity). The sensor is applied

to monitor task ”Task2” at runtime and tracks the Resident Set Size (RSS) variable, which gives

the physical memory usage of any process (in GBs).

The decision section (beginning with a ”⟨decision⟩” tag) sets various policies and describes

the workflow tasks to which the policies will be applied. Every ”⟨policy⟩” tag defines a new

policy, with its name set in the ”id” attribute. The sub-tag ”⟨eval⟩” sets the evaluation condition,

and ”⟨sensors-to-use⟩” is used to specify the sensor input(s) and the metric granularity of the

sensor to use. The ”⟨action⟩”, ”⟨history⟩” and ”⟨frequency⟩” set the response (i.e. the action(s) to

perform), the sliding window on the incoming values, and the frequency at which the evaluation

will be performed. The ”⟨apply-on⟩” contains the settings for applying policies to workflow tasks.

The ”⟨apply-policy⟩” tag is used to specify the policy (specified in the ”policy-id” attribute) to be

applied to a task (specified by the ”eval-task” attribute). For any task under evaluation, ”⟨act-on-

task⟩” tag can be used to set the target task (or data stream) on which the response will be applied.

Figure 5.3 shows an example policy that acts on the ”Sensor1” data and every 5 second checks if

the sensor output(RSS metric) is greater than 190 (or 190 GBs). If memory usage is high, then

the action is applied to read every fifth timestep and discard others. This policy is set to evaluate

”Task2” and the target for the response is set as ”Task2” itself (and Task2’s input ”tau-t1.bp”).

The arbitration section (beginning with an ”⟨arbitration⟩” tag), along with the ”⟨rules⟩”

tag, is used to set the rules for the workflow that corresponds to setting priorities and constraints.

The ”⟨task-priorities⟩” and ”⟨policy-priorities⟩” tags can be used to set explicit task and policy
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priorities or unset the default prioritization criteria used by the Arbitration stage. The ”⟨policy-

constraints⟩” tag can be used to establish constraints between policies. The arbitration section, in

Figure 5.3, shows the settings to express the in situ dependency of ”Task2” and ”Task1”.

5.4 Limitations of the DYFLOW Implementation

The current DYFLOW implementation has several limitations. First, DYFLOW depends

on the underlying workflow management systems for various services. For instance, to begin

the experiment, DYFLOW requires services from the workflow management system to set up

the experiment and launch tasks with an initial resource assignment. At runtime, DYFLOW

requires services that can stop a task, start a task, send signals to a running task and provide

task runtime status. The support provided by the underlying workflow management systems

limits the capabilities achievable by DYFLOW. For instance, DYFLOW needs services that can

take action on a remote workflow task. The current implementation integrates with a specific

workflow management system, Cheetah/Savanna. To use the DYFLOW service, users either

have to run their workflow with the Cheetah/Savanna system or invest in development efforts to

extend DYFLOW with other workflow management systems.

Second, for tightly coupled workflows, DYFLOW depends on the ADIOS2 middleware

service for in situ data communication. Thus, the DataFlow module only supports managing

ADIOS2 library calls in the current implementation. The implementation is designed based on

the assumption that the middleware streaming services cannot require support for adapting to

runtime changes. For instance, ADIOS2 assumes that the connection between the reader and

writer tasks will be establish when the tasks start, and that tasks will remain connected throughout
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the experiment. Similar to the limitations of MPI, ADIOS2 does not support the ability to shrink

and expand the connections between reader and writer processes to adapt the communication

pattern with changes in resource requirements of the tasks.

Third, DYFLOW supports limited data collection methods. For instance, it supports sensors

that can scan files on disk to track the output files generated, sensors that rely on the TAU online

profiler to collect various runtime statistics, and sensors that can directly stream the results from

a running task. To support other kinds of sensors, additional data collection methods need to be

built in DYFLOW.

Last, the DYFLOW implementation assumes that the workflow tasks can handle signals

so that they terminate gracefully by checkpointing the simulation state and restarting without

generating failures. A user is required to provide this support.
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Chapter 6: DYFLOW Evaluation

This chapter demonstrates examples from scientific workflows, highlighting some dynamic

capabilities achievable through DYFLOW. In these examples, DYFLOW flexibly enables modi-

fication of the workflow state in response to science-driven events, reassignment of computation

resources in response to performance-driven events or resource usage changes, and resilience

from failure. The experiments show the capabilities of DYFLOW based on the implementation

discussed in Chapter 5. The results show that DYFLOW accommodates varied dynamic workflow

requirements and incurs a low cost to carry out the desired changes to the workflow execution.

6.1 Clusters

To show the costs incurred by DYFLOW, I conducted these experiments utilizing a standard

Linux cluster and a state-of-the-art high-end supercomputer. The specifications of these clusters

are described below.

Summit: A high-end supercomputer with 4, 608 nodes, where each node consists of 2 IBM

Power9 CPUs (i.e., 42 cores and each core is 4-way hyper-threaded), 6 NVIDIA Volta GPUS,

512 GB of DDR4 memory and an additional 96 GB of High Bandwidth Memory (HBM2).

All the nodes are interconnected using Mellanox EDR 100G InfiniBand.

Deepthought2: A standard Linux cluster with 448 nodes, where each node has 20 cores (with
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2 hardware threads/core) and 128 GB of DDR3 memory running at 1866 MHz. Each node

has dual Intel Ivy Bridge E5-2680v2 processors running at 2.80 GHz and the nodes are

interconnected with Mellanox FDR Infiniband.

6.2 Responding to science-driven events

When data is processed on-the-fly, there could be events triggered by the changes that oc-

cur in the data and underlying science. For instance, when interesting features emerge in data,

a new analysis may be required or when error accumulation is high, an alternate algorithm may

be initiated. Handling such events could be crucial for the quality and correctness of the in-

formation derived from the experimental results. This section demonstrates the utilization of

DYFLOW to orchestrate science-driven events by employing a loosely coupled workflow with

two tasks, XGC1 and XGCa, to simulate nuclear fusion reactions. XGC1 [34] and XGCa are

gyro-kinetic particle-in-cell codes developed to study complex multiscale simulations of turbu-

lence and transport dynamics of the fusion processes in state-of-the-art fusion reactors, called

Tokamaks, including D3D, JET, KSTAR, and the next-generation ITER reactors.

XGC1 is highly complex and computation-intensive software that often takes several days

to simulate a short time interval of fusion reactions in the reactors. On the other hand, XGCa

uses a simplified physical model that can simulate fusion reactions for a longer physical time

within a fixed amount of wall clock time. A complete simulation of Tokamak reactors requires

a femtosecond-scale resolution, which is very expensive to complete in a reasonable time frame

with XGC1; therefore, scientists have to resort to a coarser scale in the micro- to millisecond

range in practice. An alternative employed to maintain the precision of the fully converged sim-
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ulation is alternating the simulation between XGC1 and XGCa such that XGCa pushes the sim-

ulation forward at a faster rate [31]. The scientists choose the alternation frequency to enable the

experiment to move forward quickly in simulation time with confidence that the statistics (if not

exact values) of the result will be the same as that produced with XGC1 alone.

The scientists start the simulation with XGC1 and switch to XGCa to speed up the compu-

tation. To check the correctness of this setup, the scientist also wants to rely on the error analysis

of XGCa so that XGC1 takes over the simulation whenever the error accumulation is too high.

The properties of the fusion simulation output that could define an error estimation function are

ongoing research by fusion scientists. Hence, for this simulation scenario, the simulation tasks

run alternately, each for a fixed number of timesteps, until they jointly complete the desired total

number of timesteps. We also employ a proxy error function to show the capabilities of DYFLOW

that enable the switching of tasks at runtime.

Monitoring requirements: To accommodate these requirements, two sensors were de-

fined in the DYFLOW specification, as shown in the sample XML in fig. 6.1. The first sensor,

NSTEPS, is set to track progress, i.e., the number of global timesteps completed during the sim-

ulation to determine when to alternate between the two tasks. Both XGC1 and XGCa write an

output file once a fixed number of global simulation timesteps are complete. The source type,

’DISKSCAN’, corresponds to this collection method. It scans the disk to count how many output

files are generated and returns the count multiplied by a fixed number (representing the frequency

of output). The metric for this sensor computes the total number of timesteps completed by the

workflow. The second sensor, ERROR, is defined to compute the error in the output from XGCa.

The XGCa output is available in ADIOS2 format, so the source type for this sensor is ’ADIOS2’.

In absence of the appropriate definition of this ERROR sensor, I use the NSTEPS sensor output
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Figure 6.1: XML example illustrating the sensor for switching on error and restarting the experi-
ment for the desired number of timesteps

<monitor>
<sensors>

<sensor id=”NSTEPS” type=”DISKSCAN”>
<group−by>

<group granularity=”WORKFLOW” reduction−operation=”SUM” />
</group−by>

</sensor>

<sensor id=”ERROR” type=”ADIOS2”>
<preprocess operation=”...” />
<group−by><group granularity=”TASK” reduction−operation=”...”/></group−by>

</sensor>
</sensors>

<monitor−tasks>
<monitor−task name=”XGC1” workflowId=”Fusion1” var−source=”xgc−particle*.bp” distributed=”
false”>

<apply−sensor sensor−id=”NSTEPS” >
<parameter key=”frequency” value=”3” />

</apply−sensor>
</monitor−task>
...

</monitor−tasks>
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Figure 6.2: XML example illustrating the user policies for switching on error and restarting the
experiment for the desired number of timesteps

<decision>
<policies>
<policy id=”STOP ON COND” >

<eval operation=”GT” threshold=”500” />
<sensors−to−use><use−sensor id=” NSTEPS” granularity=”WORKFLOW” /></sensors−to−use

>
<action> STOP </action>
<frequency seconds=”5”/>

</policy>

<policy id=”RESTART UNTIL COND” >
<eval operation=”LT” threshold=”500” />
<sensors−to−use><use−sensor id=”NSTEPS” granularity=”WORKFLOW”/></sensors−to−use

>
<action> RESTART </action>
<frequency seconds=”5”/>

</policy>

<policy id=”SWITCH ON ERROR” >
<eval operation=”EQ” threshold=”374” />
<sensors−to−use><use−sensor id=” NSTEPS” granularity=”WORKFLOW” /></sensors−to−use

>
<action> SWITCH </action>
<frequency seconds=”5”/>

</policy>
</policies>

<apply−policies>
<apply−policy workflowId=”Fusion1” policyId=”RESTART UNTIL COND” eval−task=”XGCA”>

<act−on−tasks action=”RESTART” task=”XGC1”>
<param key=”restart−script” value=”restart−xgc1.sh”/>

</act−on−tasks>
</apply−policy>

<apply−policy workflowId=”Fusion1” policyId=”SWITCH ON COND” eval−task=”XGCA”>
<act−on−task action=”SWITCH” task=”XGC1”>

<param key=”start−script” value=”restart−xgc1.sh”/>
</act−on−task>

</apply−policy>
<apply−policy workflowId=”Fusion1” policyId=”STOP ON COND” eval−task=”XGCA”>

<act−on−task action=”STOP” task=”XGCA”>
</act−on−task>

</apply−policy>
...
</apply−policies>

<decision>
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Figure 6.3: XML example illustrating the user specification (arbitration preferences) for switch-
ing on error and restarting the experiment for the desired number of timesteps

<arbitration>
<rules>

<rule−for workflowId=”Fusion1” >
<workflow−setup seconds=”120” />
<task−priorities>

<task−prio task=”XGC1” priority=”0” />
<task−prio task=”XGCA” priority=”1” />

</task−priorities>
<policy−priorities>

<policy−prio policy−id=”STOP ON COND” priority=”0” />
<policy−prio policy−id=”RESTART UNTIL COND” priority=”1” />
<policy−prio policy−id=”SWTICH ON ERROR” priority=”2” />

</policy−priorities>
</rule−for>

</rules>
</arbitration>

at workflow granularity to generate a proxy error condition. The proxy error condition causes

termination of XGCa after the 374th timestep of the simulation completes, as a proxy for error

estimation to show the functionality of DYFLOW for this scenario.

Policy settings: The following dynamic events can occur at runtime; (1) start XGC1 or

XGCa alternately if the desired number of timesteps are not completed, (2) stop the experiment

whenever the desired number of timesteps are done to avoid computing more than the desired

number of steps, (3) switch to XGC1 when error accumulation is high. To register these dynamic

events, I set three policies (settings shown in Figure 6.2) as follows. RESTART UNTIL COND

enables the start of XGC1 when XGCa stops running (and vice versa) when the output NSTEPS

from the workflow is less than 500. STOP ON COND enables stopping XGC1 (or XGCa)

if the output of NSTEPS is greater than 500. SWITCH ON ERROR stops XGCa and starts

XGC1 when a high error accumulates in the simulation output generated by XGCa. I ap-

plied RESTART UNTIL COND and STOP ON COND to both XGC1 and XGCa. The policy,
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Table 6.1: A single run configuration of XGC1 and XGCa

TASK(S) SETTING Summit Deepthought2
XGC1 XGCa PROCESSES 192 (14 per compute node) 192 (4 per compute node)
XGC1 XGCa THREADS PER PROCESS 10 10
XGC1 XGCa TIMESTEPS PER RUN 100 100
XGC1 XGCa PARTICLES PER PROCESS 250K 250K
XGC1 XGCa TOTAL COMPUTE NODES 13 48

SWITCH ON ERROR, was only applied to XGCa. Before starting XGC1, a user script, restart-

xgc.sh, runs to set XGC1 inputs to restart from the last saved output of XGCa (XGCa doesn’t

require a restart file as it always starts based on XGC1 output).

Note: Another way to restart the task, alternatively, is to set a sensor to track the error status

of the tasks. Based on this sensor, a policy can be set to start another task when the error status

is ”0” for a running task, indicating that the running task terminated normally. This sensor was

supported in the later version of the implementation than used in this experiment.

Arbitration settings: Figure 6.3 show the arbitration preferences. Both tasks have pri-

ority 0 (the highest priority) since they run alternately. Keeping the task priorities equal fur-

ther prevents the Arbitration stage from starting a task using resources of the running task on

”RESTART UNTIL COND”’s suggestion. I prioritize the policies so that STOP ON COND has

the highest priority as it signifies experiment completion to avoid situations where conflicts arise

between restarting a task or stopping a task. SWITCH ON COND is assigned higher priority over

RESTART UNTIL COND to resolve conflicts in determining which task to launch.

Table 6.1 shows the initial setup for the experiments on both clusters. The setup represents

a single-run configuration of the workflow tasks. DYFLOW will rerun the tasks until 500 overall

simulation timesteps are completed.

Summit: Figure 6.4 shows the individual timestamps and durations of the workflow tasks

and all the events. The timestamps in the figure are relative to the start of the experiment. The
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Figure 6.4: Gantt-chart showing the experiment performed on Summit for the XGC1-XGCa
workflow to demonstrate running iterative experiments and terminating tasks based on runtime
events.

green bars show the times XGC1 runs, the blue bars show the times XGCa runs, and the red

intervals show the dynamic adjustment period. On average, XGC1 runs 2.5x slower than XGCa

to simulate 100 timesteps. The simulation starts with XGC1 while XGCa waits in the queue

due to their loosely coupled dependency. Because of RESTART UNTIL COND, XGCa starts

three times with the same resources when XGC1 terminates as resources become available. The

response time from the occurrence of the event to finalizing the plan and executing it for these

events is ≈ 0.1-0.2 seconds. Similarly, XGC1 starts when XGCa finishes (when 200 global

simulation steps are complete). The response time, in this case, is 8 seconds - 4 seconds of

this time is due to the delay enforced by the frequency settings of the policy in evaluating the

sensor output. The time to start XGC1 is greater than that of XGCa due to running the user

restart script. Because of SWITCH ON COND, XGCa stops after completing 74 steps (i.e., 374

global simulation steps complete at this point) with a response time of ≈ 13 seconds. From

STOP ON COND, XGCa stops after completing 502 global timesteps with a response time of 2

seconds.

Deepthought2: In a similar experiment on Deepthought2 (as shown in Figure 6.5), the
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Figure 6.5: Gantt-chart showing the experiment performed on Deepthought2 for the XGC1-
XGCa workflow to demonstrate running iterative experiments and terminating tasks based on
runtime events.

response times are as follows: 0.8 − 0.2 seconds for starting XGCa, 11 seconds for starting

XGC1, 24 seconds for switching to XGC1 from XGCa, and 42 seconds to stop XGCa. The

time to start XGC1 is affected by running the user restart script when XGCa was not stopped

by DYFLOW. As XGCa was stopped gracefully, the response time varies depending on how far

XGCa was in processing the current timestep when it received the stop signal.

Without DYFLOW, a scientist could list the order in which the jobs will run to complete

the desired number of steps in the bash script. For input settings where error accumulation is

known to be low, such a script is feasible. In general, error accumulation should be monitored

via an additional task, and additional mechanisms need to be created to reconfigure the script

revising the order in which the tasks will complete the remaining simulation timesteps after the

error accumulation was found to be high. In practice, scientists run the entire simulation using

XGC1. With the input used in our experiments this takes approximately 25% more time on each

cluster compared to the run using DYFLOW.
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6.3 Managing resource assignments to improve throughput/performance

Two runtime scenarios are commonly encountered by scientists due to changes in the re-

source requirements of the workflow at runtime; (a) Under-provisioning: one or more tasks are

assigned fewer resources than required to attain the desired performance, slowing the overall

workflow performance (for instance, the simulation task waits for analysis tasks to read data for a

timestep), such that the experiment may not finish in the allotted time, and (b) Over-provisioning:

one or more tasks are assigned more resources than required to attain desired performance, so

there are times when resources are under-utilized.

For the experiments, I utilized a workflow based on a Gray-Scott simulation. Gray-Scott

is a mathematical model that simulates reaction-diffusion systems and is used to study chemical

species that can produce a variety of patterns (stripes, spots, periodicity) often seen in nature.

There are many applications found in biology, geology, physics, ecology, etc. that undergo similar

chemical reactions, and Gray-Scott can be employed as a simplified system to represent them.

Hence, there are also a variety of concurrent data analysis functions that may be useful, based on

the target of the study. These experiments are based on an earlier implementation of DYFLOW

that did not support dataflow control actions.

For this study, I used several data analysis tasks, the most computationally intensive of

which is a 3D Fast Fourier Transform (FFT) of the output arrays from the Gray-Scott model.

Some other analyses are inexpensive to compute, such as computing the norm of a set of output

vectors (PDF Calc), while others are complicated and can vary in computation cost in a data-

dependent way (e.g., Isosurface and Rendering compute and render the iso-surfaces of the output

vectors). This combination of very regular and highly variable analyses means it is easy for a
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Figure 6.6: XML illustrating the setting of sensors for changing the number of CPUs when the
pace of the task is outside a desired interval.

<monitor>
<sensors>

<sensor id=”PACE” type=”TAUADIOS2”>
<group−by><group granularity=”TASK” reduction−operation=”MAX”/></group−by>

</sensor>
</sensors>
<monitor−tasks>

<monitor−task name=”Isosurface” workflowId=”GS−WORKFLOW” var−source=”tau−iso.bp”
distributed=”true”>

<apply−sensor sensor−id=”PACE” var=”looptime”>
<parameter key=”var−type” value=”double” />

</apply−sensor>
</monitor−task>
...

</monitor−tasks>
</monitor>

user to make poor resource allocation decisions that lead to either under-or over-provisioning,

depending on what analysis process(es) are used for a particular scientific study.

The time taken to complete an iteration of the Gray-Scott simulation (a single iteration of

the outermost loop in the application) represents the pace at which the tasks are progressing. The

pace is used as a performance metric. Representative settings in DYFLOW for managing the

under- and over-provisioning scenarios are shown in Figures 6.6 to 6.8.

Monitoring requirements: I defined a sensor, PACE, that expresses the monitoring metric

to use (shown in fig. 6.6). This information is generated through the TAU code instrumentation

facility and collected in real-time using ADIOS2. The sensor returns a metric representing the

time taken to complete an iteration, or timestep, of the task. The metric is the maximum of values

received from all the processes of the monitored workflow task to obtain the maximum time spent

in completing a timestep.

Policy setup: I set two policies, INC ON PACE and DEC ON PACE, to identify the under-
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Figure 6.7: XML illustrating the setting of policies for changing the number of CPUs when the
pace of the task is outside a desired interval.

<decision>
<policies>

<policy id=”INC ON PACE” >
<eval operation=”GT” threshold=”36” />
<history window=”10” operation=”AVG ”/>
<sensors−to−use>

<use−sensor sensor−id=”PACE” granularity=”TASK” />
</sensors−to−use>
<actions> ADDCPU </actions>
<frequency seconds=”5”/>

</policy>

<policy id=”DEC ON PACE” >
<eval operation=”LT” threshold=”22” />
<history window=”10” operation=”AVG ”/>
<sensors−to−use>

<use−sensor sensor−id=”PACE” granularity=”TASK”/>
</sensors−to−use>
<actions> RMCPU </actions>
<frequency seconds=”5”/>

</policy>
</policies>

<apply−policies>
<apply−on workflowId=”GS−WORKFLOW”>

<apply−policy policy−id=”INC ON PACE” eval−task=”Isosurface”>
<act−on−task task−name=”Isosurface” action=”ADDCPU” >

<param key=”N” value=”20”/>
</act−on−task>

</apply−policy>
</apply−on>
...
</apply−policies>

</decision>
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Figure 6.8: XML illustrating the setting of arbitration preferences for changing the number of
CPUs when the pace of the task is outside a desired interval.

<arbitration>
<rules>

<rules−for workflowId=”GS−WORKFLOW”>
<workflow−setup seconds=”120” />
<task−priorities>

<task−prio task−name=”GrayScott” priority=”0” />
<task−prio task−name=”Isosurface” priority=”1” />
<task−prio task−name=”Rendering” priority=”2” />
<task−prio task−name=”FFT” priority=”3” />
<task−prio task−name=”PDF Calc” priority=”4” />

</task−priorities>
<task−dependencies>

<task−dep task−name=”Isosurface” depends−on=”GrayScott” type=”INSITU” data−stream
=”gs.bp”/>

<task−dep task−name=”FFT” depends−on=”GrayScott” type=”INSITU” data−stream=”gs.
bp”/>

<task−dep task−name=”PDF Calc” depends−on=”GrayScott” type=”INSITU” data−stream=
”gs.bp” />

<task−dep task−name=”Rendering” depends−on=”Isosurface” type=”INSITU” data−stream
=”iso.bp”/>

</task−dependencies>
</rules−for>

</rules>
</arbitration>
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and over-provisioning events (shown in fig. 6.7). These policies increase or decrease the number

of CPUs assigned to any monitored task (i.e., by 20, the minimum number of processes assigned

to any task in these experiments) if the average pace is slower or faster than the desired values

(i.e., thresholds) respectively. Policy evaluations are performed based on the average computed

over a sliding window of 10 values. This avoids making decisions based on outlier instances

of high or low timestep timings. The policies evaluate the sensor output every 5 seconds which

was derived based on experimentation. The interval between evaluations impacts the response

time of DYFLOW. A large interval can lead to missing or delaying the response to important

events. On the other hand, a small interval may lead to responding to short-lived behaviors. For

rectifying the effects of runtime performance of the analysis tasks on the simulation to maximize

the simulation performance, these policies are only applied to the analysis tasks.

Arbitration settings: Figure 6.8 shows the arbitration preferences. Since these policies

will not result in high-level conflicts, there was no need to set policy priories or constraints in the

XML. In our experiments, the task priorities are explicitly assigned high to low (0 to 4) based on

the order; Gray-Scott, Isosurface, Rendering, FFT, PDF Calc.

6.3.1 Responding to under-provisioning to achieve desired performance

I first show an experimental setting in which the resources were under-provisioned. Ta-

ble 6.2 provides the initial configuration for the under-provisioning experiment on Summit and

Deepthought2 that runs for up to 30 minutes.

The XML settings in figs. 6.6 to 6.8 are applied to this scenario. For the threshold for

INC ON PACE, I used a value of 36 seconds based on the desire that the workflow complete
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Table 6.2: Initial configuration for Gray-Scott workflow that results in resource under- provi-
sioning

TASK(S) SETTING SUMMIT DEEPTHOUGHT2

GRAY-SCOTT PROCESSES 340 (34 per compute node) 320 (16 per compute node)
GRID/PROCESS 42× 140× 175 88× 88× 140

ISOSURFACE, RENDERING, FFT, PDF CALC PROCESSES 20 (2 per compute node) 20 (1 per compute node)

ALL WORKFLOW TASKS TOTAL STEPS 50 50
TOTAL COMPUTE NODES 10 20

TIME LIMIT 30 MINS 30 MINS

50 timesteps in the total allotted experiment time of 30 minutes; therefore, the tasks spend a

maximum of 36 seconds per timestep. If any workflow task takes more time per timestep, then

it needs more processes to complete the experiment on time. For DEC ON PACE, the threshold

value is 24 seconds which utilizes a variant percentage, such that if the task is more than a third

faster than the maximum time per time step (i.e., two-thirds of 36, or 24), then it can use fewer

resources.

Summit: Figure 6.9 shows all the dynamic events, giving the timestamps and dura-

tions. Figure 6.10 shows the average time per timestep as the Decision module receives them.

Gray-Scott was started along with all the analysis tasks; Isosurface, Rendering, PDF Calc, and

FFT. 2 mins into the experiment, the Arbitration module considers the suggestion from policy

INC ON PACE to increase the number of processes for all the analysis processes because the

average time per timestep was above the threshold of 36 seconds. The Arbitration module only

enables the action to increase the number of processes of the highest priority task, Isosurface,

from 20 to 40 by acquiring the extra resources from PDF Calc, as it is the lowest priority task.

Due to the runtime dependency on Isosurface, Rendering was also restarted. The Arbitration

module took 107 seconds to finalize the plan and wait for the Actuation to finish executing it.

After waiting for 2 mins, the Arbitration module again considered the actions suggested. At
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Figure 6.9: Gantt-chart showing the experiment performed on Summit with the Gray-Scott
workflow to demonstrate correcting under-provisioning of resources along with the response
times of DYFLOW
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Figure 6.10: Average time per timestep information obtained from the Gray-Scott workflow
tasks used by DYFLOW to improve performance on Summit.

this time, policy INC ON PACE suggests increasing the number of processes for the analysis as

the average time per timestep was above the threshold of 36 seconds. Only the action to increase

the processes of Isosurface from 40 to 60 processes is enabled by acquiring the extra resources

from FFT Calc. As previously noted, Rendering was restarted due to its runtime dependency

on Isosurface. The Arbitration module took 36 seconds to finalize the plan and wait for the

Actuation module to apply the plan. The longer response time was due to waiting for tasks to

stop gracefully. After these changes, the average time per timestep for all the tasks was within

the desired interval.
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Deepthought2: In a similar experimental on Deepthought2 (shown in Figure 6.11), when

the average time per timestep was above the threshold of 36 seconds for Isosurface, Isosur-

face was restarted by acquiring resources from PDF Calc and FFT Calc while Rendering was

restarted due to its runtime dependency. After this action, the average time was under the desired

threshold for all the tasks. The time to finalize the action plan and execute the same was 87

seconds. The longer response time was due to waiting for tasks to stop gracefully.
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Figure 6.11: Gantt-chart showing the experiment performed on Deepthought2 with the Gray-
Scott workflow to demonstrate correcting under-provisioning of resources along with the re-
sponse times of DYFLOW

Without using DYFLOW, the experiment exceeds the allocation time limit, and the work-

flow tasks terminate prematurely due to timeout (requiring approx. 10-12% additional time to

finish on both clusters).

6.3.2 Responding to over-provisioning to achieve desired throughput

I now show an experimental setting where the resources were over-provisioned. Table 6.3

shows the details of the initial configuration for these experiments on Summit and Deepthought2

that simulate a small input instance with an allotted time of 15 minutes.

I use the same XML settings shown in Figures 6.6 to 6.8 for this scenario while adjusting
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Table 6.3: Initial configuration for Gray-Scott workflow that results in over-provisioning

TASKS SETTING SUMMIT DEEPTHOUGHT2

GRAY-SCOTT PROCESSES 320 (16 per compute node) 340 (34 per compute node)
GRID/PROCESS 88× 88× 140 42× 140× 175

ISOSURFACE PROCESSES 60 (6 per compute node) 60 (3 per compute node)

RENDERING PROCESSES 20 (2 per compute node) 20 (1 per compute node)

FFT, PDF CALC PROCESSES 0 0

All tasks
TOTAL STEPS 50 50

TOTAL COMPUTE NODES 10 20
TIME LIMIT 15 MINS 15 MINS
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Figure 6.12: Gantt-chart showing the experiment performed on Summit with Gray-Scott work-
flow to demonstrate correcting over-provisioning of resources with low overhead

the threshold based on input settings. For the threshold for INC ON PACE, I used a value of

18 seconds based on the desire that the workflow complete 50 timesteps in the total allotted

experiment time of 15 minutes. For DEC ON PACE, the threshold value is 12 seconds which

utilizes a variant percentage, such that if the task is more than a third faster than the maximum

time per time step (i.e., two-thirds of 18, or 112), then it can use fewer resources.

Summit: Figure 6.12 shows the dynamic events with their timestamps and duration. Fig-

ure 6.13 shows the average time per timestep for updates as they were received by the decision

policies on Summit. Gray-Scott was started with two analysis applications; Isosurface and Ren-
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dering. PDF Calc and FFT are put in a waitlist. 2 mins into the experiment, the Arbitration

starts receiving suggestions from the Decision module. At this point, the Decision module ob-

serves that the average time per timestep for the monitored application, i.e. Isosurface, is below

12 seconds based on policy DEC ON PACE. Therefore, the Decision module suggests that

the Arbitration module reduce the number of processes of Isosurface by 20 (as suggested by the

policy settings). The Arbitration module then selects FFT from the waitlist and starts FFT with

the freed resources. FFT was selected over PDF Calc based on priority. Once the workflow

settles, the workflow state is re-examined and Decision observes that Isosurface and FFT are

running faster than necessary. The Decision module again suggests the Arbitration module re-

duce by 20 the number of processes for both tasks. The Arbitration module assigns 20 processes

of Isosurface to the waiting process PDF Calc. Since FFT only had 20 processes, the suggestion

from Decision was rejected. Once these changes were applied by the Actuation module, the av-

erage times per timestep were in the desired range for all the tasks, and no further actions were

suggested throughout the experiment. Due to the runtime reassignment, we see an increase in

throughput while the experiment still ran in under 15 minutes (7 minutes 14 seconds on Summit).

The response time on Summit was 2.4 and 3.6 seconds for the two dynamic events (less than 2%

of the execution time). In this scenario, the timesteps were completed in a small amount of time

by each task, so the wait time that allows tasks to stop gracefully was low. Due to the runtime

reassignment, we see an increase in throughput while the experiment still ran in under 15 minutes

(7 minutes 14 seconds on Summit).

Deepthought2 Figure 6.14 shows the Gantt chart of the experiment on Deepthought2.

Only one dynamic change was performed, where FFT was started with 20 processes shed by

Isosurface as the average time per timestep for the monitored application, i.e. Isosurface, is
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Figure 6.13: Average time per timestep information obtained from the Gray-Scott workflow
applications used by the dynamic strategies to improve throughput on Summit.

below 12 seconds based on policy DEC ON PACE. The response time, in this case, was 8.3

seconds. The entire experiment finished in 9 minutes 2 seconds (under 15 minutes) with more

analysis tasks.
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Figure 6.14: Gantt-chart showing the experiment performed on Deepthought2 with Gray-Scott
workflow to demonstrate correcting over-provisioning of resources with low overhead

6.4 Adapting in response to failures

Handling failures gracefully is desirable for large-scale scientific workflows. Workflow

tasks can be exposed to different runtime failures. For instance, a node or network hardware
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failure can occur, or memory corruption due to software errors can result in software failure. For

in situ workflows, loss of data is often another type of failure. For example, the workflow can

lose timestep information when tasks reset, i.e., stopping and restarting at runtime (as occurred

in Figure 6.10), or buffer overwrites can occur when buffer capacity is exceeded. Identifying the

cause of failure in these scenarios usually requires deep analysis. More specifically, there are

cases when the failure events are generated by a task or by the flow of data between tasks. This

makes failure diagnosis challenging. Therefore, the focus of this section is limited to demonstrat-

ing the capability of DYFLOW to help workflows achieve resilience to some types of hardware

failures. During resource reassignment, the Arbitration module ensures the exclusion of prob-

lematic resources. For this, the Arbitration module continually collects the status of allocated

resources from the Actuation module, which relies on either the underlying job scheduler or the

workflow management system to provide this information.

The experiment in this section shows a form of resilience to node failure(s) in the cluster

using the LAMMPS-based molecular dynamics in situ workflow, where the simulation is tightly

coupled and co-located with three analysis tasks at runtime. Here, we focused on a scenario

where a set of tools are integrated for analyzing solids as they break and melt under stress. In

particular, LAMMPS is coupled with three analysis processes that compute the radial distribu-

tion function (RDF Calc), perform common neighbor analysis (CNA Calc), and compute central

symmetry (CS Calc).

A representative XML input for DYFLOW that enables the workflow tasks to restart after

failure is shown in Figure 6.15.

Monitor settings: To become aware of failures, I define a sensor, STATUS, that reads the

error files generated by job schedulers when tasks fail to get the error number returned. The
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Figure 6.15: XML example illustrating the user specification for restarting tasks on failure

<DYFLOW>
<monitor>
<sensors>
<sensor id=”STATUS” type=”ERRORSTATUS”>

<group−by><group granularity=”TASK” reduction−operation=”FIRST”/></group−by>
</sensor>

</sensors>
...

</monitor>

<decision>
<policies>
<policy id=”RESTART ON FAILURE” >
<eval operation=”GT” threshold=”128” />
<sensors−to−use><use−sensor sensor−id=”STATUS” granularity=”TASK”/></sensors−to−use>
<actions> RESTART </actions>
<frequency seconds=”30”/>
</policy>

</policies>
...
</decision>

<arbitration>
<rules>
<rules−for workflowId=”Lammps”>
<workflow−setup seconds=”120” />
<task−dependencies>

<task−dep task−name=”RDF Calc” depends−on=”LAMMPS” type=”INSITU” data−stream=”
lammps−out.bp”/>

<task−dep task−name=”CS Calc” depends−on=”LAMMPS” type=”INSITU” data−stream=”lammps
−out.bp”/>

<task−dep task−name=”CNA Calc” depends−on=”LAMMPS” type=”INSITU” data−stream=”
lammps−out.bp”/>

</task−dependencies>
</rules−for>
</rules>
</arbitration>
</DYFLOW>
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Table 6.4: Initial configuration for LAMMPS workflow on Summit used for failure resilience
using 50 compute nodes

SETTING LAMMPS CNA CALC CS CALC RDF CALC
PROCESSES 1500 (30 per compute node) 200 (4 per compute node) 200 (4 per compute node) 200 (4 per compute node)

TOTAL ATOMS 65536000 65536000 65536000 65536000
TOTAL STEPS 1000 100 100 100

metric is computed at task granularity and returns the error number read by the first MPI process

(rank 0). From the cluster scheduler’s view, Savanna is the job script; therefore, I read the exit

status saved by Savanna after the workflow task completes or fails.

Decision settings: I define a policy RESTART ON FAILURE to detect failures that

restarts the workflow tasks when the error number is greater than 128 (the standard exit codes for

system signals). A user can provide a bash script to run before the restart, which modifies the

input settings of the tasks to enable them to resume the processing from the last checkpointed

output instead of starting from the beginning.

Arbitration settings: The task priorities are not set in this case and will be automatically

assigned by the Arbitration module. The task priorities are determined based on the criteria

defined in Section 4.1.2. The LAMMPS task will be given the highest priority because of depen-

dencies. All the analysis tasks have the same number of ancestors and dependents so they will be

assigned priorities based on the specification order in the workflow configuration file.

Summit: Table 6.4 shows the initial configurations of LAMMPS on Summit utilizing 50

compute nodes for 30 mins. The LAMMPS simulation provides the output after processing

10 timesteps for the analyses. Figure 6.16 shows the timestamps and durations of the dynamic

events. 10 mins into the experiment, one of the allocated nodes were taken out of service, causing

the entire workflow to fail. The Arbitration module restarts all the tasks by excluding the failed

node from the resource assignment and replacing it using one of the free nodes in the allocation.
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Figure 6.16: Gantt-chart showing the experiment performed on Summit with LAMMPS work-
flow to demonstrate resilience to node failures.

In this experiment, I allocated 2 additional nodes. However, if free nodes were not available,

DYFLOW will use the resources from low-priority tasks to restart the higher-priority tasks. After

restart, the simulation resumes from the last checkpoint (i.e., timestep 412), and all the tasks

repeat several timesteps. The average time lag from event generation and for the Monitor module

to collect and process data was ≈ 0.2 seconds. The time for the Arbitration module to finalize

and wait for the execution of the plan was ≈ 0.2 seconds. The additional time results from the

delay imposed by frequency settings in evaluating the sensor output.

6.5 Cost summary

I now summarize the runtime costs for the above experiments.

Response time: Cost of generating actions: On average, the interval between an event

and initiation of response was less than one second, based on results from both clusters. For

LAMMPS, the average interval was 0.2 seconds when a single variable was read. For the XGC

experiments, the number of output files generated, which corresponds to the timesteps completed

by a task, was used to switch between tasks. The average interval was 0.1 seconds when the
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disk was scanned for output files. For the Gray-Scott experiments, when a TAU-generated two-

dimensional variable was read to extract desired statistics, the average interval was approximately

0.5 seconds. These times include the time to generate metric values, the time to output sugges-

tions, and the time to formulate the plan. For these times, the time delays imposed by the decision

frequency and workflow setup time were excluded (by disabling these features temporarily) The

time interval between the event occurrence and generation of an action plan was observed to be

affected by the metric computation time (i.e., the volume of measurement data processed).

Cost of performing actions: The time taken by workflow tasks to terminate gracefully (i.e.,

the time to finish the current timestep after receiving a kill signal) dominates the response time.

For the XGC1-XGCa and Gray-Scott experiments, up to 97% of the response time was observed

to be spent waiting for tasks to terminate after receiving the signal, on both clusters for most of

the experiments. Overall, DYFLOW incurs a small cost to apply the workflow modifications at

runtime, but the cost can vary significantly with the experiment setup and environment.

Monitoring overheads: The monitoring overheads on the workflow tasks for the XGC1-

XGCa use case were negligible, since the monitoring client ran on the launch node, scanned

the disk for file generation, and did not communicate with the workflow tasks. Similarly, no

overheads occurred in the case of the LAMMPS workflow, which was configured to handle node

failures. In scenarios where TAU intercepts the runtime tasks and produces output statistics on a

stream at a given frequency (1 second for the Gray-Scott experiments), the maximum overhead

was below 0.1% of the execution time without DYFLOW orchestration. The generated data were

continuously written to the stream by TAU, overwriting the unconsumed data in buffers, to keep

the memory footprint low and avoid delay imposed by slow consumption of data.
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Chapter 7: Conclusion and Future Work

7.1 Conclusions

Contemporary scientific workflows are complex, with unpredictable runtime requirements

that require adapting resource assignments, adapting the runtime state of the workflow tasks,

and/or managing the data flow. Though existing support is provided to enable elastic resource

management to grow and shrink the assigned resources to cater to the changing resource require-

ments of running tasks, an orchestration service is required that can observe different runtime

events and autonomously trigger appropriate actions to adapt the runtime state of the workflow

accordingly. This dissertation addresses this concern through a flexible and portable model that

enables scientific workflows to employ the many benefits of dynamic orchestration on large-scale

parallel systems. The model compartmentalizes dynamic management into four stages; Monitor,

Decision, Arbitration, and Actuation. These stages can be individually configured by users to ex-

press the events, responses to events, and preferences to establish the workflow requirements and

the quality of service desired. The model supports an arbitration protocol that finalizes the actions

to perform at runtime by mediating between the responses of multiple policies and ensuring that

the workflow runtime state is always valid and consistent with user specifications.

To demonstrate the effectiveness of the model, the dissertation discusses several examples

of real-life workflow scenarios with problematic runtime requirements. The proposed model was
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applied to orchestrate these scenarios on a standard Linux cluster and a state-of-the-art super-

computing cluster. The results illustrated that the dynamic orchestration service provided by the

DYFLOW model enables users to easily employ runtime orchestration capabilities for scientific

workflows, incurring a low cost to carry-out runtime changes.

7.2 Extensions and improvements

This section describes several extensions to this work that could be performed to further

strengthen the generality and reliability of the proposed model.

Empirical evaluations The experiments in this dissertation cover interesting dynamic scenar-

ios. For instance, I demonstrated that the model can efficiently handle scenarios that require

support for adaptive analysis to improve the quality of results, require maintaining desired per-

formance or throughput by handling events based on resource-usage variations or inefficient re-

source assignments, or require dealing with failures. However, further evaluation could be per-

formed to explore more use cases to showcase the generality of the approach.

The effect of policy constraints and preferences was explored using a scenario where slow

network connections could become a performance bottleneck, to achieve higher accuracy of re-

sults over performance and vice-versa. More elaborate demonstrations could be performed that

show how policy constraints and preferences can be modified to achieve the desired effects.

Implementation support The implementation used in this dissertation relies on several tech-

nologies to collect monitoring data at runtime. For instance, the implementation heavily relies on

ADIOS2 and the TAU profiling tools. Though these technologies were sufficient for the experi-
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ments performed for the dissertation, for more general applicability additional tools and methods

to collect the runtime data should be supported. For instance, supporting sensors based on reading

data from a DataSpaces server or querying from a database would be useful for some workflow

scenarios.

The implementation extends the Cheetah/Savanna workflow tools, which are relatively new

for workflow management. Users often choose a workflow management system based on the

specific services offered by the system, for instance, the interface. Thus, the implementation of

DYFLOW could also extend popular workflow management systems, for example, Pegasus [19],

to make DYFLOW widely adopted in practice.

7.3 Future directions

This dissertation performed foundational research towards an orchestration service to flex-

ibly accommodate the various runtime needs of emerging scientific workflows. This section

discusses certain areas that may require deeper exploration.

Support for ensemble workflows Scientists sometimes require conducting experiments where

several instances of a workflow (i.e. workflow ensembles) are run simultaneously with different

coupling complexities, different parameters, or different input or boundary conditions. Parameter

sweep experiments are a form of ensemble workflows where instances of workflows are run with

variations in the input parameters for scientific analysis. For large ensembles, sophisticated re-

source management strategies are required to manage ensemble tasks at runtime. The DYFLOW

model is currently limited to managing a single instance of a workflow run. Further study is

required to explore the features that need to be supported in each of the DYFLOW stages to meet
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the requirements of ensemble runs. For instance, work is needed to support features for the ex-

pression of the events and policies, and to explore additional actions and preferences that might

be useful to manage ensembles.

Improving Arbitration decisions There are opportunities to further improve the Arbitration

stage.

Policy prioritization criteria: The default policy prioritization criteria used in the Arbitration

stage are based on granularity and cost in terms number of dependent actions, resource requests,

and sensors used. Further criteria need to be explored that incorporate both the costs and benefits

of the policy responses. Machine learning methods can be utilized so that the Arbitration can

learn the criteria where users prefer certain policies to others from similar experiments performed

by other users. This can be enabled by maintaining a database that records the user configurations.

Policy validation: The validation step in the Arbitration stage is designed to proactively rule

out responses that are futile or invalid based on the latest changes applied. Additional valida-

tion methods can be explored to rule out poor policies, such as methods based on a cost/benefit

analysis over the course of the experiment.

Resource assignment: The assignment of free resources to a task at runtime is done by first se-

lecting the available free resources (e.g., CPUs) on any node assigned to that task, and then select-

ing the first available resources in the list of free resources. Topographical-aware placement meth-

ods could be employed to provide performance benefits, especially for communication-heavy

tasks. Further, the Arbitration stage should be expanded to manage other resources available on
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modern compute nodes, such as GPUs and FPGAs.

Supporting adaptable policies When configuring policies, sometimes it is useful to have a set

of potential responses instead of only one. One of these responses can be chosen based on the

availability of resources or feasibility with respect to other suggestions received by the Arbitra-

tion stage To give an example, suppose a policy suggests balancing the overall performance of

a workflow by assigning more CPUs to a slow analysis task, but the additional CPUs are not

available at runtime to perform this action. In this scenario, instead of taking no action, it might

be useful to consider an alternative action, such as replacing the slow analysis task with a lower

precision but faster analysis task or terminating the slower analysis task and writing the data to

the disk for offline analysis. Thus, for greater flexibility, the policy specifications could allow

users to provide multiple actions in response to an event of interest.

When choosing from multiple response choices from a policy, the Arbitration stage could

be trained via machine learning models to select the most efficient response based on a cost/ben-

efit analysis from the set of feasible responses. Significant data must be collected from experi-

mentation to enable such training. The Arbitration stage can also adapt the response parameters

based on how the response affects the runtime state. For instance, one parameter to change could

be how many resources to request for add or remove task operations.

Assisting the user in creating a specification The user specification defines how the workflow

will be orchestrated at runtime. Expressing the workflow requirements may not be straightfor-

ward, and any poor choice in policy parameters, constraints, or preferences can have huge system

cost (resource usage) implications. Hence, a simulator system should be designed that enables
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the user to validate the settings in a test environment. Based on the results, users can rule out

choices that may lead to undesired decisions.

Further, helper utilities can be supported in DYFLOW that could assist users in determining

policy parameters (e.g., thresholds) and rules by providing recommendations. These suggestions

could be learned based on data stored in a database that maintains statistics from similar experi-

ments by DYFLOW users.
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Appendix A: XML Examples

A.1 Subset of settings for MemContScenario

<DYFLOW>

<monitor>

<sensors>

<sensor id=”cache−references” type=”TAUADIOS2”>

<group−by>

<group granularity=”NODE−TASK” reduction−operation=”SUM”/>

</group−by>

</sensor>

<sensor id=”cache−miss−percentage” type=”TAUADIOS2”>

<group−by>

<group granularity=”NODE−TASK” reduction−operation=”SUM”/>

</group−by>

<join−sensor sensor−id=”cache−references” join−operation=”PERCENTAGE”/>

</sensor>

...

</sensors>

<monitor−tasks>

<monitor−task name=”XGC” workflowId=”Fusion” var−source=”tau−xgc.bp” distributed=”true”>

<apply−sensor sensor−id=”cache−references” var=”LLC−REFERENCES”>
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<parameter key=”var−type” value=”long”/>

<parameter key=”var−dim” value=”none”/>

</apply−sensor>

</monitor−task>

<monitor−task name=”XGC” workflowId=”Fusion” var−source=”tau−xgc.bp” distributed=”true”>

<apply−sensor sensor−id=”cache−miss−percentage” var=”LLC−MISSES”>

<parameter key=”var−type” value=”long”/>

<parameter key=”var−dim” value=”none”/>

</apply−sensor>

</monitor−task>

</monitor−tasks>

</monitor>

<decision>

<policies>

<policy id=”high−cache−miss−per”>

<eval operation=”GT” threshold=”20”/>

<history window=”30” operation=”CUSTOM” custom−op−name=”ChangePercentage” custom−

op−path=”ChangePercentage.py”/>

<sensors−to−use>

<use−sensor sensor−id=”cache−miss−percentage” granularity=”NODE−TASK” true−for=”0.5

”/>

</sensors−to−use>

<actions> UNPACK−TASKS </actions>

<frequency seconds=”1”/>

</policy>

<policy id=”low−ipc”>

<eval operation=”LT” threshold=”−10”/>
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<history window=”30” operation=”CUSTOM” custom−op−name=”ChangePercentage” custom−

op−path=”ChangePercentage.py”/>

<sensors−to−use>

<use−sensor sensor−id=”instruction−per−cycle” granularity=”NODE−TASK” true−for=”0.5”

/>

</sensors−to−use>

<actions> UNPACK−TASKS </actions>

<frequency seconds=”1”/>

</policy>

<policy id=”high−load−stall−per”>

<eval operation=”GT” threshold=”10”/>

<history window=”30” operation=”CUSTOM” custom−op−name=”ChangePercentage” custom−

op−path=”ChangePercentage.py”/>

<sensors−to−use>

<use−sensor sensor−id=”load−stall−percentage” granularity=”NODE−TASK” true−for=”0.5”

/>

</sensors−to−use>

<actions> UNPACK−TASKS </actions>

<frequency seconds=”1”/>

</policy>

</policies>

<apply−policies>

<apply−on workflowId=”Fusion”>

<apply−policy eval−task=”XGC” policy−id=”high−cache−miss−per”>

<act−on−task action=”UNPACK−TASKS” task−name=”STREAM”/>

</apply−policy>

<apply−policy eval−task=”PAnalz” policy−id=”high−cache−miss−per”>
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<act−on−task action=”UNPACK−TASKS” task−name=”STREAM”/>

</apply−policy>

...

</apply−on>

</apply−policies>

</decision>

<arbitration>

<rules>

<rules−for workflowId=”Fusion”>

<workflow−setup seconds=”120”/>

<policy−constraint name=”high−cache−miss−per” depends−on=”low−ipc high−load−stalls−per

”/>

<policy−constraint name=”low−ipc” depends−on=”high−cache−miss−per high−load−stalls−per

”/>

<policy−constraint name=”high−load−stalls−per” depends−on=”high−cache−miss−per low−ipc

”/>

</rules−for>

</rules>

</arbitration>

</DYFLOW>

A.2 Subset of settings for NetContScenario

<?xml version=”1.0” encoding=”UTF−8”?>

<DYFLOW>

<monitor>

<sensors>
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<sensor id=”transfer−time” type=”TAUADIOS2”>

<group−by>

<group granularity=”TASK” reduction−operation=”FIRST”/>

</group−by>

</sensor>

</sensors>

<monitor−tasks>

<monitor−task name=”DMZ” workflowId=”LAMMPS” var−source=”tau−DMZ.bp” distributed=”

false”>

<apply−sensor sensor−id=”transfer−time” var=”transfer−time”>

<parameter key=”var−type” value=”long”/>

<parameter key=”var−dim” value=”none”/>

</apply−sensor>

</monitor−task>

</monitor−tasks>

</monitor>

<decision>

<policies>

<policy id=”LosslessComp”>

<eval operation=”GT” threshold=”T1”/>

<history window=”5” operation=”EXP−AVG”/>

<sensors−to−use>

<use−sensor sensor−id=”transfer−time” granularity=”NODE−TASK”/>

</sensors−to−use>

<actions> COMPRESS−BLOSC </actions>

<frequency seconds=”2”/>

</policy>
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<policy id=”LossyCompSZ−1e7”>

<eval operation=”GT” threshold=”T2”/>

<history window=”5” operation=”EXP−AVG”/>

<sensors−to−use>

<use−sensor sensor−id=”transfer−time” granularity=”NODE−TASK”/>

</sensors−to−use>

<actions> COMPRESS−SZ </actions>

<action−params action=”COMPRESS−SZ”>

<param key=”absErrBound” value=”1e7”/>

<param key=”errorBoundMode” value=”ABS”/>

</action−params>

<frequency seconds=”2”/>

</policy>

<policy id=”LossyCompSZ−2e7”>

<eval operation=”GT” threshold=”T3”/>

<history window=”5” operation=”EXP−AVG”/>

<sensors−to−use>

<use−sensor sensor−id=”transfer−time” granularity=”NODE−TASK”/>

</sensors−to−use>

<actions> COMPRESS−SZ </actions>

<action−params action=”COMPRESS−SZ”>

<param key=”absErrBound” value=”2e7”/>

<param key=”errorBoundMode” value=”ABS”/>

</action−params>

<frequency seconds=”2”/>

</policy>

<policy id=”StopTransfer”>
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<eval operation=”GT” threshold=”T4”/>

<history window=”5” operation=”EXP−AVG”/>

<sensors−to−use>

<use−sensor sensor−id=”transfer−time” granularity=”NODE−TASK”/>

</sensors−to−use>

<actions> SAVE−STEPS </actions>

<frequency seconds=”2”/>

</policy>

</policies>

<apply−policies>

<apply−on workflowId=”LAMMPS”>

<apply−policy eval−task=”DMZ” policy−id=”LosslessComp”>

<act−on−task task−name=”DMZ” action=”COMPRESS−BLOSC” data−stream=”tau−DMZ.bp”

/>

</apply−policy>

<apply−policy eval−task=”DMZ” policy−id=”LosslessComp1”>

<act−on−task task−name=”DMZ” action=”COMPRESS−SZ” data−stream=”tau−DMZ.bp”/>

</apply−policy>

<apply−policy eval−task=”DMZ” policy−id=”LosslessComp2”>

<act−on−task task−name=”DMZ” action=”COMPRESS−SZ” data−stream=”tau−DMZ.bp”/>

</apply−policy>

...

</apply−on>

</apply−policies>

</decision>

<arbitration>

<rules>
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<rules−for workflowId=”LAMMPS”>

<workflow−setup seconds=”120”/>

<policy−constraint name=”StopTransfer” incompatible−with=”LossyComp1 LossyComp2

LossLessComp”/>

<policy−priorities>

<policy−prio policy−id=”LosslessComp” priority=”P1” />

<policy−prio policy−id=”LossyComp” priority=”P2” />

<policy−prio policy−id=”LossyComp” priority=”P3” />

<policy−prio policy−id=”StopTransfer” priority=”P4” />

</policy−priorities>

</rules−for>

</rules>

</arbitration>

</DYFLOW>
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Appendix B: XML schema for user specification

B.1 Main DYFLOW schema

<?xml version=”1.0” encoding=”UTF−8”?>

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

<xs:include schemaLocation=”./Monitor.xsd”/>

<xs:include schemaLocation=”./Decision.xsd”/>

<xs:include schemaLocation=”./Arbitration.xsd”/>

<xs:element name=”DYFLOW”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”monitor”/>

<xs:element ref=”decision”/>

<xs:element ref=”arbitration”/>

</xs:sequence>

</xs:complexType>

<xs:key name=”sensor−key”>

<xs:selector xpath=”.//sensor”/>

<xs:field xpath=”@id”/>

</xs:key>

<xs:key name=”policy−key”>

<xs:selector xpath=”.//policy”/>

123



<xs:field xpath=”@id”/>

</xs:key>

<xs:keyref name=”sjoin−ref” refer=”sensor−key”>

<xs:selector xpath=”.//join−sensor”/>

<xs:field xpath=”@sensor−id”/>

</xs:keyref>

<xs:keyref name=”smap−ref” refer=”sensor−key”>

<xs:selector xpath=”.//apply−sensor”/>

<xs:field xpath=”@sensor−id”/>

</xs:keyref>

<xs:keyref name=”psmap−ref” refer=”sensor−key”>

<xs:selector xpath=”.//use−sensor”/>

<xs:field xpath=”@sensor−id”/>

</xs:keyref>

<xs:keyref name=”pmap−ref” refer=”policy−key”>

<xs:selector xpath=”.//apply−policy”/>

<xs:field xpath=”@policy−id”/>

</xs:keyref>

<xs:keyref name=”pprio−ref” refer=”policy−key”>

<xs:selector xpath=”.//policy−prio”/>

<xs:field xpath=”@policy−id”/>

</xs:keyref>

</xs:element>

</xs:schema>
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B.2 Monitor settings: configuring sensors

<?xml version=”1.0” encoding=”UTF−8”?>

<xs:schema xmlns:cmn=”Common” xmlns:xs=”http://www.w3.org/2001/XMLSchema” elementFormDefault=

”qualified”>

<xs:import schemaLocation=”./CommonTypes.xsd” namespace=”Common”/>

<xs:element name=”monitor”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”sensors” minOccurs=”0” maxOccurs=”1”/>

<xs:element ref=”monitor−tasks” minOccurs=”0” maxOccurs=”1”/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=”sensors”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”sensor” minOccurs=”0” maxOccurs=”unbounded”/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=”sensor”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”preprocess” minOccurs=”0” maxOccurs=”1”/>

<xs:element ref=”group−by” minOccurs=”1” maxOccurs=”4”/>

<xs:element ref=”join−sensor” minOccurs=”0” maxOccurs=”1”/>
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</xs:sequence>

<xs:attribute type=”xs:NCName” name=”id” use=”required”/>

<xs:attribute type=”cmn:sources” name=”type” use=”required”/>

</xs:complexType>

</xs:element>

<xs:element name=”preprocess”>

<xs:complexType>

<xs:attribute type=”cmn:prepop” name=”operation” use=”required”/>

<xs:attribute type=”xs:string” name=”custom−op−name” use=”optional”/>

<xs:attribute type=”xs:string” name=”custom−op−path” use=”optional”/>

</xs:complexType>

</xs:element>

<xs:element name=”group−by”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”group” minOccurs=”1” maxOccurs=”1”/>

</xs:sequence>

</xs:complexType>

<xs:key name=”group−key”>

<xs:selector xpath=”.//group”/>

<xs:field xpath=”@granularity”/>

</xs:key>

</xs:element>

<xs:element name=”group”>

<xs:complexType>

<xs:attribute type=”cmn:granularitylevels” name=”granularity” use=”required”/>

<xs:attribute type=”cmn:reductionop” name=”reduction−operation” use=”required”/>

126



<xs:attribute type=”xs:NCName” name=”custom−op−name” use=”optional”/>

<xs:attribute type=”xs:string” name=”custom−op−path” use=”optional”/>

</xs:complexType>

</xs:element>

<xs:element name=”join−sensor”>

<xs:complexType>

<xs:attribute type=”xs:NCName” name=”sensor−id” use=”required”/>

<xs:attribute type=”cmn:joinop” name=”join−operation” use=”required”/>

<xs:attribute type=”xs:string” name=”custom−op−name” use=”optional”/>

<xs:attribute type=”xs:string” name=”custom−op−path” use=”optional”/>

</xs:complexType>

</xs:element>

<xs:element name=”monitor−tasks”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”monitor−task” minOccurs=”0” maxOccurs=”unbounded”/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=”monitor−task”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”apply−sensor” maxOccurs=”unbounded”/>

</xs:sequence>

<xs:attribute type=”xs:NCName” name=”name” use=”required”/>

<xs:attribute type=”xs:NCName” name=”workflowId” use=”required”/>

<xs:attribute type=”xs:string” name=”var−source” use=”required”/>
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<xs:attribute type=”xs:boolean” name=”distributed” use=”required”/>

</xs:complexType>

</xs:element>

<xs:element name=”apply−sensor”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”parameter” minOccurs=”0” maxOccurs=”unbounded”/>

</xs:sequence>

<xs:attribute type=”xs:NCName” name=”sensor−id” use=”required”/>

<xs:attribute type=”xs:token” name=”var” use=”optional”/>

</xs:complexType>

</xs:element>

<xs:element name=”parameter”>

<xs:complexType>

<xs:attribute type=”xs:token” name=”key” use=”required”/>

<xs:attribute type=”xs:token” name=”value” use=”required”/>

</xs:complexType>

</xs:element>

</xs:schema>

B.3 Decision settings: configuring policies

<?xml version=”1.0” encoding=”UTF−8”?>

<xs:schema xmlns:cmn=”Common” xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

<xs:import schemaLocation=”./CommonTypes.xsd” namespace=”Common”/>

<xs:element name=”decision”>

<xs:complexType>
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<xs:sequence>

<xs:element ref=”policies” minOccurs=”1” maxOccurs=”1”/>

<xs:element ref=”apply−policies” minOccurs=”0” maxOccurs=”1”/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=”policies”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”policy” minOccurs=”0” maxOccurs=”unbounded”/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=”policy”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”eval” minOccurs=”1” maxOccurs=”1”/>

<xs:element ref=”history” minOccurs=”0” maxOccurs=”1”/>

<xs:element ref=”sensors−to−use” minOccurs=”1” maxOccurs=”1”/>

<xs:element ref=”actions” minOccurs=”1” maxOccurs=”1”/>

<xs:element ref=”action−params” minOccurs=”0” maxOccurs=”unbounded”/>

<xs:element type=”cmn:time” name=”frequency” minOccurs=”1” maxOccurs=”1”/>

</xs:sequence>

<xs:attribute type=”xs:NCName” name=”id” use=”required”/>

</xs:complexType>

</xs:element>

<xs:element name=”eval”>
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<xs:complexType>

<xs:attribute type=”xs:string” name=”threshold” use=”required”/>

<xs:attribute type=”cmn:comparison” name=”operation” use=”required”/>

<!−−<xs:attribute type=”xs:NCName” name=”operation” use=”required”/> −−>

</xs:complexType>

</xs:element>

<xs:element name=”history”>

<xs:complexType>

<xs:attribute type=”xs:decimal” name=”window” use=”required”/>

<xs:attribute type=”cmn:postop” name=”operation” use=”required”/>

<xs:attribute type=”xs:string” name=”custom−op−path” use=”optional”/>

<xs:attribute type=”xs:string” name=”custom−op−name” use=”optional”/>

</xs:complexType>

</xs:element>

<xs:element name=”sensors−to−use”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”use−sensor” minOccurs=”1” maxOccurs=”unbounded”/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=”use−sensor”>

<xs:complexType>

<xs:attribute type=”xs:NCName” name=”sensor−id” use=”required”/>

<xs:attribute type=”cmn:granularitylevels” name=”granularity” use=”required”/>

<xs:attribute type=”xs:decimal” name=”true−for” use=”optional”/>

</xs:complexType>
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</xs:element>

<xs:element name=”actions”>

<xs:simpleType>

<xs:list itemType=”cmn:action−supported”/>

</xs:simpleType>

</xs:element>

<xs:element name=”action−params”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”param” minOccurs=”1” maxOccurs=”unbounded”/>

</xs:sequence>

<xs:attribute type=”cmn:action−supported” name=”action” use=”required”/>

</xs:complexType>

</xs:element>

<xs:element name=”param”>

<xs:complexType>

<xs:attribute type=”xs:token” name=”key” use=”required”/>

<xs:attribute type=”xs:token” name=”value” use=”required”/>

</xs:complexType>

</xs:element>

<xs:element name=”apply−policies”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”apply−on” minOccurs=”0” maxOccurs=”unbounded”/>

</xs:sequence>

</xs:complexType>

</xs:element>
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<xs:element name=”apply−on”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”apply−policy” minOccurs=”0” maxOccurs=”unbounded”/>

</xs:sequence>

<xs:attribute type=”xs:NCName” name=”workflowId” use=”required”/>

</xs:complexType>

</xs:element>

<xs:element name=”apply−policy”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”act−on−task” minOccurs=”0” maxOccurs=”unbounded”/>

</xs:sequence>

<xs:attribute type=”xs:NCName” name=”policy−id” use=”required”/>

<xs:attribute type=”xs:NCName” name=”eval−task” use=”required”/>

<xs:attribute type=”xs:string” name=”threshold” use=”optional”/>

</xs:complexType>

</xs:element>

<xs:element name=”act−on−task”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”param” minOccurs=”0” maxOccurs=”unbounded”/>

</xs:sequence>

<xs:attribute type=”xs:NCName” name=”task−name” use=”required”/>

<xs:attribute type=”xs:NCName” name=”data−stream” use=”optional”/>

<xs:attribute type=”cmn:action−supported” name=”action” use=”required”/>

</xs:complexType>
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</xs:element>

</xs:schema>

B.4 Arbitration settings: establishing constraints and preferences

<?xml version=”1.0” encoding=”UTF−8”?>

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema” xmlns:cmn=”Common”>

<xs:import schemaLocation=”CommonTypes.xsd” namespace=”Common”/>

<xs:element name=”arbitration”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”rules” minOccurs=”1” maxOccurs=”1”/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=”rules”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”rules−for” minOccurs=”1” maxOccurs=”unbounded”/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=”rules−for”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”workflow−setup” minOccurs=”1” maxOccurs=”1”/>
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<XS:element ref=”” minOccurs=”0” maxOccurs=”unbounded”/>

<xs:element ref=”policy−constraint” minOccurs=”0” maxOccurs=”unbounded”/>

<xs:element ref=”policy−priorities” minOccurs=”0” maxOccurs=”unbounded”/>

<xs:element ref=”task−priorities” minOccurs=”0” maxOccurs=”unbounded”/>

<xs:element ref=”task−dependencies” minOccurs=”0” maxOccurs=”unbounded”/>

</xs:sequence>

<xs:attribute type=”xs:NCName” name=”workflowId” use=”required”/>

</xs:complexType>

</xs:element>

<xs:element name=”workflow−setup”>

<xs:complexType>

<xs:attribute type=”xs:nonNegativeInteger” name=”seconds” use=”required”/>

<xs:attribute type=”xs:nonNegativeInteger” name=”mseconds” use=”optional”/>

</xs:complexType>

</xs:element>

<xs:element name=”validation−setup”>

<xs:complexType>

<xs:attribute type=”cmn:valid−criteria” name=”type” use=”required”/>

<xs:attribute type=”cmn:action−supported” name=”action” use=”optional”/>

<xs:attribute type=”xs:boolean” name=”disable” use=”required”/>

</xs:complexType>

</xs:element>

<xs:element name=”policy−constraint”>

<xs:complexType>

<xs:attribute type=”xs:NCName” name=”name” use=”required”/>

<xs:attribute type=”cmn:listtype” name=”incompatible−with”/>

<xs:attribute type=”cmn:listtype” name=”depends−on”/>
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</xs:complexType>

</xs:element>

<xs:element name=”policy−priorities”>

<xs:complexType>

<xs:sequence>

<xs:element name=”unset−criteria” type=”cmn:policy−criteria” minOccurs=”0” maxOccurs=”4

”/>

<xs:element ref=”policy−prio” minOccurs=”0” maxOccurs=”unbounded”/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=”policy−prio”>

<xs:complexType>

<xs:attribute type=”xs:NCName” name=”policy−id” use=”required”/>

<xs:attribute type=”xs:nonNegativeInteger” name=”priority” use=”required”/>

</xs:complexType>

</xs:element>

<xs:element name=”task−priorities”>

<xs:complexType>

<xs:sequence>

<xs:element name=”unset−criteria” type=”cmn:task−criteria” minOccurs=”0” maxOccurs=”2”

/>

<xs:element ref=”task−prio” minOccurs=”0” maxOccurs=”unbounded”/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=”task−prio”>

135



<xs:complexType>

<xs:attribute type=”xs:NCName” name=”task−name” use=”required”/>

<xs:attribute type=”xs:nonNegativeInteger” name=”priority” use=”required”/>

</xs:complexType>

</xs:element>

<xs:element name=”task−dependencies”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”task−dep” minOccurs=”0” maxOccurs=”unbounded”/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=”task−dep”>

<xs:complexType>

<xs:attribute type=”xs:NCName” name=”task−name” use=”required”/>

<xs:attribute type=”cmn:listtype” name=”depends−on” use=”required”/>

<xs:attribute type=”cmn:deptype” name=”type” use=”required”/>

<xs:attribute type=”xs:string” name=”data−stream” use=”optional”/>

</xs:complexType>

</xs:element>

</xs:schema>

B.5 Declarations: pre-defined operations, actions and supported values

<?xml version=”1.0”?>

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema” targetNamespace=”Common”>

<xs:simpleType name=”granularitylevels”>
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<xs:restriction base=”xs:NCName”>

<xs:enumeration value=”TASK”/>

<xs:enumeration value=”NODE−TASK”/>

<xs:enumeration value=”NODE”/>

<xs:enumeration value=”WORKFLOW”/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name=”sources”>

<xs:restriction base=”xs:NCName”>

<xs:enumeration value=”TAUADIOS2”/>

<xs:enumeration value=”ADIOS2”/>

<xs:enumeration value=”ERRORSTATUS”/>

<xs:enumeration value=”DISKSCAN”/>

<xs:enumeration value=”TEXTFILE”/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name=”action−supported”>

<xs:restriction base=”xs:NCName”>

<xs:enumeration value=”ADDCPU”/>

<xs:enumeration value=”RMCPU”/>

<xs:enumeration value=”STOP”/>

<xs:enumeration value=”START”/>

<xs:enumeration value=”RESTART”/>

<xs:enumeration value=”STOP”/>

<xs:enumeration value=”SWITCH”/>

<xs:enumeration value=”UNPACK−TASKS”/>

<xs:enumeration value=”COMPRESS−BLOSC”/>
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<xs:enumeration value=”COMPRESS−BZIP2”/>

<xs:enumeration value=”COMPRESS−SZ”/>

<xs:enumeration value=”COMPRESS−ZFP”/>

<xs:enumeration value=”COMPRESS−MGARD”/>

<xs:enumeration value=”WRITE−FREQ”/>

<xs:enumeration value=”READ−FREQ”/>

<xs:enumeration value=”HOLD−STEPS”/>

<xs:enumeration value=”SAVE−STEPS”/>

<xs:enumeration value=”CHECKPOINT−FREQ”/>

<xs:enumeration value=”RR−DIST”/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name=”prepop”>

<xs:restriction base=”xs:NCName”>

<xs:enumeration value=”MIN”/>

<xs:enumeration value=”MAX”/>

<xs:enumeration value=”SUM”/>

<xs:enumeration value=”AVG”/>

<xs:enumeration value=”STD”/>

<xs:enumeration value=”VAR”/>

<xs:enumeration value=”FIRST”/>

<xs:enumeration value=”LAST”/>

<xs:enumeration value=”ANY”/>

<xs:enumeration value=”CUSTOM”/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name=”reductionop”>
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<xs:restriction base=”xs:NCName”>

<xs:enumeration value=”MIN”/>

<xs:enumeration value=”MAX”/>

<xs:enumeration value=”SUM”/>

<xs:enumeration value=”AVG”/>

<xs:enumeration value=”STD”/>

<xs:enumeration value=”VAR”/>

<xs:enumeration value=”FIRST”/>

<xs:enumeration value=”LAST”/>

<xs:enumeration value=”ANY”/>

<xs:enumeration value=”CUSTOM”/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name=”joinop”>

<xs:restriction base=”xs:NCName”>

<xs:enumeration value=”MIN”/>

<xs:enumeration value=”MAX”/>

<xs:enumeration value=”SUM”/>

<xs:enumeration value=”DIV”/>

<xs:enumeration value=”MUL”/>

<xs:enumeration value=”PERCENTAGE”/>

<xs:enumeration value=”CUSTOM”/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name=”postop”>

<xs:restriction base=”xs:NCName”>

<xs:enumeration value=”MIN”/>

139



<xs:enumeration value=”MAX”/>

<xs:enumeration value=”SUM”/>

<xs:enumeration value=”AVG”/>

<xs:enumeration value=”STD”/>

<xs:enumeration value=”VAR”/>

<xs:enumeration value=”EXP−AVG”/>

<xs:enumeration value=”SKEW”/>

<xs:enumeration value=”KURT”/>

<xs:enumeration value=”CUSTOM”/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name=”comparison”>

<xs:restriction base=”xs:NCName”>

<xs:enumeration value=”GT”/>

<xs:enumeration value=”LT”/>

<xs:enumeration value=”EQ”/>

<xs:enumeration value=”GE”/>

<xs:enumeration value=”LE”/>

<xs:enumeration value=”NEQ”/>

<xs:enumeration value=”IN”/>

<xs:enumeration value=”NOTIN”/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name=”policy−criteria”>

<xs:restriction base=”xs:NCName”>

<xs:enumeration value=”GRANULARITY”/>

<xs:enumeration value=”COST”/>
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<xs:enumeration value=”RESOURCES”/>

<xs:enumeration value=”SENSORS”/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name=”task−criteria”>

<xs:restriction base=”xs:NCName”>

<xs:enumeration value=”DEPENDENTS”/>

<xs:enumeration value=”ANCESTORS”/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name=”valid−criteria”>

<xs:restriction base=”xs:NCName”>

<xs:enumeration value=”REPEATITION”/>

<xs:enumeration value=”CONFLICT”/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name=”listtype”>

<xs:list itemType=”xs:NCName”/>

</xs:simpleType>

<xs:simpleType name=”deptype”>

<xs:restriction base=”xs:NCName”>

<xs:enumeration value=”INSITU”/>

<xs:enumeration value=”LOOSE”/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name=”time”>

<xs:attribute name=”seconds” type=”xs:nonNegativeInteger”/>
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<xs:attribute name=”minutes” type=”xs:nonNegativeInteger”/>

<xs:attribute name=”mseconds” type=”xs:nonNegativeInteger”/>

</xs:complexType>

</xs:schema>
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