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This dissertation reports work where physics methods are applied to financial

and economical problems. Some material in this thesis is based on 3 published

papers [1, 2, 3] which divide this study into two parts. The first part studies stock

market data (chapter 1 to 5). The second part is devoted to personal income in the

USA (chapter 6).

We first study the probability distribution of stock returns at mesoscopic time

lags (return horizons) ranging from about an hour to about a month. While at

shorter microscopic time lags the distribution has power-law tails, for mesoscopic

times the bulk of the distribution (more than 99% of the probability) follows an

exponential law. The slope of the exponential function is determined by the variance

of returns, which increases proportionally to the time lag. At longer times, the

exponential law continuously evolves into Gaussian distribution. The exponential-

to-Gaussian crossover is well described by the analytical solution of the Heston

model with stochastic volatility.



After characterizing the stock returns at mesoscopic time lags, we study the

subordination hypothesis with one year of intraday data. We verify that the inte-

grated volatility Vt constructed from the number of trades process can be used as

a subordinator for a driftless Brownian motion. This subordination will be able to

describe ≈ 85% of the stock returns for intraday time lags that start at ≈ 1 hour

but are shorter than one day (upper time limit is restricted by the short data span

of one year). We also show that the Heston model can be constructed by subordi-

nating a Brownian motion with the CIR process. Finally, we show that the CIR

process describes well enough the empirical Vt process, such that the corresponding

Heston model is able to describe the log-returns xt process, with approximately the

maximum quality that the subordination allows (80%− 85%).

Finally, we study the time evolution of the personal income distribution. We

find that the personal income distribution in the USA has a well-defined two-income-

class structure. The majority of population (97–99%) belongs to the lower income

class characterized by the exponential Boltzmann-Gibbs (“thermal”) distribution,

whereas the higher income class (1–3% of population) has a Pareto power-law (“su-

perthermal”) distribution. By analyzing income data for 1983–2001, we show that

the “thermal” part is stationary in time, save for a gradual increase of the effective

temperature, whereas the “superthermal” tail swells and shrinks following the stock

market. We discuss the concept of equilibrium inequality in a society, based on the

principle of maximal entropy, and quantitatively show that it applies to the majority

of population.
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Chapter 1

Introduction

The interest of physicists in interdisciplinary research has been constantly growing

and the area of what is today named socio-economical physics is 10 years old [4]. This

new area in physics has started as an exercise in statistical mechanics, where complex

behavior arises from relatively simple rules due to the interaction of a large number

components. The pioneering work in the modern stream of economical physics was

initiated by Mantegna [5] and Li [6] in the early nineties followed most notably by

Mantegna and Stanley [7] and thereafter by a stream of papers [8] that attempt to

identify and characterize universal and non-universal features in economical data

in general. This statistical mechanical mind frame arises in direct analogy with

statistical mechanics of phase transitions, where materials (such as a ferromagnetic

and a liquid), that are different in nature, can belong to the same universality class

due to their behavior near the critical point (point at which abruptly the phase

changes, say from liquid to solid in water, for instance). These universality classes

are identified by critical exponents for quantities that diverge at the critical point,

for instance the specific heat C ≈ ε−α, where ε is the reduced temperature and

α the critical exponent [9]. Therefore, the area of economical physics has grown

from, and it is still in great part concerned with, “power-law tails” with universal

exponents. This constitutes the empirical stream of socio-economical physics, where
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modelling and characterizing the empirical data with methods and tools borrowed

from traditional physical problems is attempted [15, 16, 17, 18].

Soon after Mantegna and Li initiated the modern empirical stream of econom-

ical physics, simulations appeared. Once again, as in the case of empirical work,

these were based into fundamental statistical mechanical models such as the Ising

model. This literature attempted to construct from simple rules complex behav-

ior that could then mimic the market and explain the price formation mechanism

[10, 11, 12, 13, 14].

This dissertation belongs to the empirical stream of socio-economical physics.

We study here two distinct problems. First, we use daily and intraday stock data

to describe the essential nature of the stochastic process of price returns at different

time ranges. Second, we use yearly income data to study the time evolution of the

distribution of income in the USA.

1.1 Stock returns

The study of stock returns has a long history dating back to Bachalier in 1900, which

was the first to model stock dynamics with a Brownian motion [19]. He proposed

that the absolute price change ∆St = ST−ST−t, where t is the return horizon, should

follow a Gaussian random walk. The clear drawback of such a hypothesis is that the

prices of stocks could become negative. It was apparently Renery [19, 20, 21], who

introduced the geometrical Brownian motion for the stock price by assuming that

log-returns (xt = ln(ST ) − ln(ST−t) ≈ ∆St/St), and not absolute returns, should
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follow a Brownian motion. The geometric Brownian motion became popular and

accepted as a main stream idea with the work of Osborne [22] (see also [19] for

historical notes) and Samuelson (cited in [19]).

It was not until the 1960’s, that the hypothesis of Gaussian random walks was

challenged by Mandelbrot [23] and Fama [24, 25] with studies on daily cotton prices.

Since then, Brownian motion has been consistently questioned for a variety of assets.

Today asset log-returns that follow Brownian motion for all return horizons t are

considered an exception.

In his pioneering work, Mandelbrot introduced, as an alternative model for

stock returns, the stable Lévy distribution. This distribution has the drawback that

it can present infinite variance. Despite the unwanted mathematical properties that

such a process presents, it was not founded into economical reasoning. In 1973 Clark

[26] proposed, as an alternative to Mandelbrot’s model, to use subordination [27]

to construct the distribution of assets returns. Subordination has a direct financial

implication, it can be liked with financial information arrival. Clark suggests that

prices react to financial information and that if this financial information is taken

into account, the gaussian random walk is recovered. He showed that the information

arrival can be captured by volume of trades and that if one takes returns conditional

on the volume, these should be Gaussian.

Note that in fact, Mandelbrot and Clark do not contradict themselves, as

Clark first implied. Mandelbrot’s Lévy stable distribution can also be constructed

by subordination, if one chooses the right subordinator for the Brownian motion.

Therefore, the problem is reduced to finding the right subordinator if one accepts
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the subordination hypothesis.

In physics, the concept of subordination can be found in the construction of

non-Shannon entropies, in the limit of the continuous-time random walk, in inter-

face growth models and other statistical mechanical problems [28, 29, 30, 31, 32].

The mathematical- “physical” idea of subordination is that if the stochastic process

is analyzed at the correct reference frame, it will always look like a simple gaussian

diffusion. But since we are dealing with stochastic processes, the reference frame is

moving randomly as well; just enough for the actual process in observation to be

described by Brownian motion. For further mathematical development of subordi-

nation, see section 5.3.

After Clark, the concept of subordination has been extensively used to con-

struct asset return models [33, 34, 35, 36]. Most recently a series of studies have used

high-frequency data to verify Clark’s subordination hypothesis by either assuming

that the volume [38, 39] or the trading activity (number of trades) [40, 41] is respon-

sible for price changes. Strong evidence is found for both; nonetheless number of

trades appears better suited, since it has been extensively tested for a large number

of companies [41].

Contemporary to Clark, a series of empirical studies indicated that the variance

(variance = volatility2) of stock returns is not constant (see [43] and references

therein). This resulted in models for stock returns such as Engle’s ARCH and

Bollerslev’s GARCH that attempted to account for the changing variance in the

assets returns by modelling both in a discrete framework [44]. At the same time,

models with stochastic volatility were introduced. These models generally assume
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a mean reverting continuous stochastic differential equation for the volatility [45,

46, 48, 67]. Notice that stochastic volatility models, GARCH and subordination,

are not entirely orthogonal to each other. Stochastic volatility models can also

be constructed by subordination [37] (see also section 5.3) or as limits of discrete

GARCH type models [47].

In 1993 Heston [48] introduced an exactly solvable stochastic volatility model

that is also a limit process for the GARCH(1,1) model [47]. The Heston model

become widely used for option pricing and in the study of asset returns. We use

a modified version of the Heston model as developed in Ref. [49] to describe the

general shape of probability density distribution (PDF) for the log-returns and the

time evolution of such PDF.

1.2 Outline of the dissertation

The outline of this thesis is as follows. In chapter 2, we introduce the Heston model

for stock returns as developed in Refs. [2, 49]. We summarize the procedure for

finding the closed form solution of the probability distribution for the log-returns,

starting from the correlated stochastic differential equations as given in Ref. [49].

We also introduce subordination and show how to construct the Heston model using

a Cox-Ingersoll-Ross (CIR) subordinator [71].

In chapter 3, we present the data we use in this thesis. We show the typical

features of the stock data and how we constructed such data.

In chapter 4, we study the time evolution of the empirical distribution function
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(EDF) for the stock returns at mesoscopic time lags t (1 hour < t < 20 days). We

show that in the short-time limit t << 1/γ, the EDF progressively tends to the

double exponential distribution and for the long-time limit t >> 1/γ, the EDFs

progressively tends towards a Gaussian, where 1/γ is the characteristic time for

such limits. Furthermore, we show that the Heston model introduced in chapter 2

presents these fundamental features.

In chapter 5, we study the hypothesis of subordination. We first start by

pointing out the effect of the discrete nature of absolute price changes in the log-

returns. Thereafter, we verify the subordination hypothesis using both tick-by-

tick data (this data records all trades in a given day, see chapter 3) as well as

5 minutes log-returns and number of trades (ticks) data. We find that if we use

the integrated variance (Vt), which is proportional to the number of trades (Nt),

as our subordinator, we are able to explain approximately the central 85% of the

probability distribution for the log-returns xt between 1 hour and 1 day. Finally, we

show the quality of modelling the subordinator Vt with the CIR process introduced

in section 5.3 and discuss the implication of such model for the log-returns xt.

The last chapter of this thesis presents work on the time evolution of the

distribution of income. We show the evolution of the distribution of personal income

in the United States from 1983 to 2001. We show that the bulk of the distribution

(excluding very small income and very large income), is described by the Exponential

distribution with average income changing from year to year in approximately the

same rate as inflation. We conclude that the inflation-discounted income of the

majority of the population is approximately the same throughout time and therefore

6



well approximated by a system in thermal equilibrium. We also show that the top

3% earners have income that changes over time even when inflation is accounted

for. This chapter is self contained and does not require any other part of the thesis

to be read.
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Chapter 2

Heston model for asset returns

The Heston model was introduced by Heston [48] and belongs to the class of stochas-

tic volatility models, which have received a great deal of attention in the financial

literature specially in connection with option pricing [45].

Empirical verification of the Heston model was done for both stocks [1, 2, 49,

63, 64] and options [46, 65, 66, 67], and good agreement with the data has been

found in these studies. The version of the Heston model for stock returns used in

[1, 2, 49], as well as in this thesis, was modified from the original solution by Heston

and has evolved into a different formula with 3 parameters. One parameter for the

variance (θ), one parameter representing the characteristic relaxation time to the

Gaussian distribution (1/γ) and another that gives the general shape of the curve

(α).

The outline of this chapter is as follows. First, we present the modified Heston

model used in this work by showing its evolution from solving the related stochastic

differential equations (SDE). Thereafter, we introduce subordination and we show

the development of the modified Heston model through subordination.
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2.1 Heston model-SDE and symmetrization

The formal way of presenting the Heston model is given by two stochastic differential

equations (SDE), one for the stock price St and another for the variance vt.

dSt = µSt dt + σtSt dW
(1)
t , (2.1)

dvt = −γ(vt − θ) dt + κ
√

vt dW
(2)
t , (2.2)

where the subscript t indicates time dependence, µ is the drift parameter, W
(1)
t and

W
(2)
t are standard random Wiener processes, σt is the time-dependent volatility and

vt = σ2
t is the variance. In general, the Wiener process in (2.2) may be correlated

with the Wiener process in (2.1):

dW
(2)
t = ρ dW

(1)
t +

√
1− ρ2 dZt, (2.3)

where Zt is a Wiener process independent of W
(1)
t , and ρ ∈ [−1, 1] is the correlation

coefficient. Note that (2.1) and (2.2) are well known in finance. These represent,

respectively, the log-normal geometric Brownian motion stock process introduced by

Renery, Osborne and Samuelson [19] (used by Black-Melton-Scholes (BMS) [68, 70]

for option pricing. See Ref. [69] for a practical application of BMS to physics) and

the Cox-Ingersoll-Ross (CIR) mean-reverting SDE first introduced for interest rate

models [71, 72].

In order to solve (2.1) and (2.2) together with (2.3), we first change variables

from stock price St to mean removed (demean) log-return xt = ln(St/S0)−µt (2.4).

All further results and solutions are constructed for the demean log-return xt, which

we will simply refer to as log-return or return:
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dxt = −vt

2
dt +

√
vt dW

(1)
t . (2.4)

After performing the change of variables from price to return, we solve the

Fokker-Planck equation (2.5) [62] implied by SDEs (2.2) and (2.4), for the transition

probability Pt(x, v | vi) to find the return x and the volatility v at time t given the

initial demean log-return x = 0 and variance vi at t = 0. For simplicity, we drop

the explicit time dependence notation for the returns xt and call them x.

∂

∂t
P = γ

∂

∂v
[(v − θ)P ] +

1

2

∂

∂x
(vP ) (2.5)

+ ρκ
∂2

∂x ∂v
(vP ) +

1

2

∂2

∂x2
(vP ) +

κ2

2

∂2

∂v2
(vP ).

The general analytical solution of (2.5) for Pt(x, v | vi) with initial condition

Pt=0(x, v| vi) = δ(x)δ(v − vi) can be found by taking a Fourier transform x− > px

and a Laplace transform v− > pv (see [49] for details),

Pt(x | vi) =

+∞∫

0

dv Pt(x, v | vi) =
∫ dpx

2π
eipxxP̃t,px(0 | vi), (2.6)

where the hidden variable v is integrated out, so pv = 0. Therefore we have

Pt(x | vi) =
∫ +∞

−∞
dpx

2π
eipxx−vi

p2
x−ipx

Γ+Ω coth (Ωt/2)

× e−
2γθ

κ2 ln(cosh Ωt
2

+ Γ
Ω

sinh Ωt
2 )+ γΓθt

κ2 . (2.7)

where

Γ = γ + iρκpx (2.8)
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and

Ω =
√

Γ2 + κ2(p2
x − ipx). (2.9)

The marginal probability density Pt(x | vi) could then be compared to empirical

stock returns directly. Nevertheless, vi has to be treated as an extra parameter. In

order to avoid this, we assume that vi has the stationary distribution of the CIR

stochastic differential equation (2.2), Π∗(v),

Π∗(v) =
αα

Γ(α)

vα−1

θα
e−αv/θ, α =

2γθ

κ2
. (2.10)

Using equation (2.10) we arrive at the probability distribution of the demean

log-returns Pt(x),

Pt(x) =
∫ ∞

0
dvi Π∗(vi) Pt(x | vi) (2.11)

where the final solution is

Pt(x) =
1

2π

∫ +∞

−∞
dpx eipxx+Ft(px) (2.12)

with

Ft(px) =
γθ

κ2
Γt (2.13)

− 2γθ

κ2
ln

[
cosh

Ωt

2
+

Ω2 − Γ2 + 2γΓ

2γΩ
sinh

Ωt

2

]

where as before

Γ = γ + iρκpx (2.14)
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and

Ω =
√

Γ2 + κ2(p2
x − ipx). (2.15)

The operation of removing the initial volatility dependence of the marginal

probability density Pt(x | vi) using equation (2.11) was first introduced in Ref. [49].

This removes an additional degree of freedom and therefore simplifies the final

marginal probability density.

In order to further simplify the original Heston model, we assume that equa-

tions (2.1) and (2.2) are uncorrelated. That amounts in taking ρ = 0 in expression

(2.13). This approximation was shown to be acceptable for some companies and

indexes in the US market [1, 2, 49] but might not be good for different markets [64]

or for option pricing [45, 48].

In order to arrive at the probability density function used in this work, we need

to further simplify the equation for Pt(x, ρ = 0) (2.12) into a zero skew symmetrical

function.

We replace in (2.12) px → px + i/2 and ρ = 0 to find

Pt(x) = e−x/2
∫ +∞

−∞
dpx

2π
eipxx+Ft(px), (2.16)

where α = 2γθ/κ2,

Ft(px) =
αγt

2
− α ln

[
cosh

Ωt

2
+

Ω2 + γ2

2γΩ
sinh

Ωt

2

]
, (2.17)

and

Ω =
√

γ2 + κ2(p2
x + 1/4) ≈ γ

√
1 + p2

x(κ
2/γ2). (2.18)
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Finally, we drop the e−x/2 term in (2.16). Notice that both taking e−x/2 ≈ 1

and p2
x + 1/4 ≈ p2

x are needed to produce a new characteristic function eFt(px) that

correctly goes to unity when px = 0. The final functional form for Pt(x) is

Pt(x) =

+∞∫

−∞

dpx

2π
eipxx+Ft̃(px), (2.19)

Ft̃(px) =
αt̃

2
− α ln

[
cosh

Ωt̃

2
+

Ω2 + 1

2Ω
sinh

Ωt̃

2

]
, (2.20)

t̃ = γt, α = 2γθ/κ2, Ω =
√

1 + (pxκ/γ)2, σ2
t ≡ 〈x2〉 = θt. (2.21)

We have expressed the original Heston model for the probability density of

log-returns x, in a highly symmetrical form with three parameters, θ, α and γ.

The parameter θ can be found by calculating the variance of demean log-returns

σ2
t ≡ 〈x2

t 〉 = θt (2.21) of Pt(x) (2.19). The remaining two parameters, α and γ, are

responsible for the general shape of the curve and the relaxation rate of Pt(x) to

a Gaussian distribution [2, 49]. The parameter α is also responsible to define the

analyticity at zero return. If α = 1, value used in this thesis, the short-time-limit

is a double exponential distribution (see next subsection). This distribution is not

analytical at zero but becomes when time progresses. For α > 1 the distribution is

always analytical with a center that is Gaussian and when α < 1 the distribution

starts non-analytic at zero (going to zero as a power-law with exponent 2α− 1 [49])

and then evolves into a analytic distribution with Gaussian center.

Notice that the average for the log-returns x from equation (2.19) is 〈x〉 =

0. This average is not consistent with SDE (2.4), but with the simplified dxt =

√
vtdW

(1)
t , where the drift term vt/2 is set to zero. Therefore, x in equation (2.19)
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does only approximately represent demean log-returns x = ln(St/S0) − µt. This

difference arises because we took e−x/2 ≈ 1 and p2
x + 1/4 ≈ p2

x in equation (2.17) in

order to derive equation (2.20).

The log-returns x in equation (2.19) can be exactly given by x = ln(St/S0)−

µt−ω(t), where the extra term, ω(t), removes the non zero average of x = ln(St/S0)−

µt.

The extra term ω(t) arises because the average of the stock price at time t

needs to be given by µ only. Hence

〈St〉 = S0e
µt〈eYt〉, 〈eYt〉 ≡ 1, (2.22)

where Yt is the stochastic process

St = S0
eµt+Xt

< eXt >
= S0e

µt−ln(<eXt>)+Xt ⇒ ω(t) = −ln(< eXt >)

xt = ln(St)− ln(S0)− µt = Xt + ω(t) ⇒ Yt = Xt + ω(t). (2.23)

Empirically, the correction represented by ω(t) or by working with equation

(2.16) instead of equation (2.19) is small, and it can be safely neglected. We choose

to work with x = ln(St/S0)− µt− ω(t), and we call x in (2.19) the log-return.

2.1.1 Short and long time limits of the Heston model

The short time lag limit of the modified Heston model (2.19) can be found by

assuming Ωt ¿ 2 in expression (2.7). We also take ρ = 0 and ipx → 0, since

we interested in the short-time-limit of the symmetric modified Heston model of
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equation (2.19). When taking the limit Ωt ¿ 2 in (2.7), the resulting PDF is the

Fourier inverse of the characteristic function of a Gaussian with random variance

vi and zero drift. Since vi is a Gamma random variable with distribution (2.10),

the final characteristic function for the short-time-limit distribution of the modified

Heston model is

P̃t(px) =
∫ ∞

0
dvie

−vipxt

2 Π∗(vi) = (1 +
θtp2

x

2α
)−α. (2.24)

The probability distribution can be found analytically [49] as

Pt(x) =
21−α

Γ(α)

√
α

πθt
yα−1/2Kα−1/2(y), (2.25)

where K is the modified Bessel function and

y =

√
2αx2

θt
. (2.26)

For α = 1, we recover the Laplace (symmetrical double exponential) distribu-

tion

Pt(x) =
e−y

√
2θt

, y =

√
2αx2

θt
. (2.27)

Notice that the short time limit is not a Gaussian with variance vi, only be-

cause of the assumed randomization of vi (2.24). Therefore, this randomization has

substantial effect in the limiting distributions, which can be checked empirically [2]

(empirical results will be presented in chapter 4).

The long time lag t limit for the modified Heston model can be found by taking
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the limit Ωt À 2 in the characteristic function (2.20). The resulting characteristic

function is

P̃t(px) = 〈eipxx〉 = e
αγt
2

(
1−
√

1+x2
0p2

x

)
, x0 = κ2/γ2. (2.28)

The characteristic function in equation (2.28) is the characteristic function for

the zero skew Normal Inverse Gaussian (NIG) model. NIG was first introduced

by Barndorff-Nielsen to describe the distribution of sand particles sizes [73] and

was subsequently used in other physical problems such as turbulence [74]. In 1995,

Barndorff-Nielsen also introduced NIG for stock returns [35]. NIG can also be

obtained as a limit of the Generalized Hyperbolic distribution [33, 75], as well as

by subordinating a Brownian motion to the inverse gaussian distribution [33] (next

section will introduce the idea of subordination).

NIG is part of the wide class of Lévy pure jump models [33], and the fact that

it is recovered as a limit of the simplified Heston stochastic volatility model (2.19),

is another consequence of the randomization of vi. Notice that if we take the long

time limit before the randomization of vi in the full Heston model given in Eq. (2.7),

we will not find NIG as the long time limit.

The central limit theorem can be invoked for NIG and therefore for Heston

[15, 27, 35, 49]. That is, as time progresses, the distribution Pt(x) of returns x will

become increasingly Gaussian. The characteristic time scale for the central limit

theorem to act is t0 = 2/(αγ). For t À t0 the probability distribution is essentially

Normal with mean zero and variance θt.
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Notice that for long time lags t, there are two characteristic time limits. Heston

tends to NIG for times t À 1/γ and then NIG tends to a Normal distribution

for times t À 1/αγ. If α ≥ 1, NIG and Heston regimes can not be effectively

distinguished. It is only in the case α < 1, that there will be a distinguished NIG

regime.

In summary, the most important limits for Pt(x) that we use in this study are:

Exponential (if α = 1) at short time lags and Gaussian at long time lags,

Pt(x) ∝





exp(−|x|
√

2/θt), t̃ = γt ¿ 1,

exp(−x2/2θt), t̃ = γt À 1.

(2.29)

2.2 Heston model and subordination

Subordination is a form of randomization in which one constructs a new proba-

bility distribution, by assuming one or more parameters of the original probability

distribution to be random [27],

PNew(y, z) =
∫ ∞

−∞
dθP (y, θ)Q(θ, z). (2.30)

In the case of subordination, a Markov process Y (N) is randomized by in-

troducing a non-negative process N(t), called a randomized operational time. The

resulting process Y (N(t)) does not need to be Markovian in general [27]. We restrict

ourselves to subordination of a Brownian motion with drift θ and standard devia-

tion σ (2.31). We also assume in what follows, that t is time lag in usual units of

time, unless otherwise indicated. The probability density Pt(y) for the time changed
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Brownian motion Y (N) can be written

Pt(y) =
∫ ∞

0
dN

1√
2πσ2N

e
−(y−θN)2

2σ2N Pt(N). (2.31)

The moments of a Brownian subordinated process are related to the moments

of the subordinator. If we use Pt(y) in (2.31), the first 4 moments can be calculated

as

〈y〉 = θ〈N〉N (2.32)

〈(y − 〈y〉)2〉 = σ2〈N〉N + θ2〈(N − 〈N〉N)2〉N (2.33)

〈(y − 〈y〉)3〉 = 3σ2θ〈(N − 〈N〉N)2〉N + θ3〈(N − 〈N〉N)3〉N (2.34)

〈(y − 〈y〉)4〉 = 3σ4(〈(N − 〈N〉N)2〉N + 〈N〉2N) + 6θ2σ2(〈(N − 〈N〉N)3〉N +

〈N〉N〈(N − 〈N〉N)2〉N) + θ4〈(N − 〈N〉N)4〉N , (2.35)

where 〈〉 refers to taking the expected value and 〈〉N refers to taking the expected

value with respect to N . The time t dependence of the moments of Y are given by

the moments of the randomized operational time N . Furthermore, even though the

subordinator has odd moments, odd moments in the resulting process Y are only

different from zero, if the Gaussian in equation (2.31) has a drift θ 6= 0. For the

present work, we assume that the odd moments are all zero since the empirical prob-

ability distribution of log-returns are quite well described by zero skew probability

distributions and because we work with mean zero returns [2]. By assuming zero

odd moments probability distribution, we simplify the even moments. The second

and fourth moments for Y depend only on the first and second moments of the
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subordinator N (2.33,2.35).

In the case of the modified Heston model (2.19), the subordination takes the

following terms. We assume that the log-returns x follow a Brownian motion with

zero drift and variance Vt. The variance Vt is our “random operational time”, since it

changes randomly. We will show in chapter 5 that the variance Vt can be estimated

(at least partially) using the number of trades Nt that occur in a the time interval

t. The variance Vt is then a constant times Nt, Vt = σ2Nt.

The variance Vt is given by Vt =
∫ t
0 ds vs, where the instantaneous variance

vt appearing in the SDE (2.2) is integrated in the interval 0 → t. For this reason,

Vt is also know as integrated variance. The Laplace transform for the conditional

probability density Pt(Vt| vi) is analytically known [33, 71]. Therefore, subordination

becomes a useful tool to construct asset models with stochastic variance having the

CIR process as a subordinator [37].

The Laplace transform of the subordinator of the modified Heston model (2.20)

can be read off immediately,

P̃ (px) = 〈eipxx〉 ⇒ P̃ (px) =
∫ ∞

0
dVte

− p2
xVt
2 P (Vt) (2.36)

where the integral with respect to Vt defines a Laplace transform of the probabil-

ity density P (Vt), for which the Laplace conjugated variable is calculated at p2
x/2.

Therefore we arrive at

Pt(Vt) =

+∞∫

0

dpVt epVtx+Ft̃(pVt ), (2.37)
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Ft̃(pVt) =
αt̃

2
− α ln

[
cosh

Ωt̃

2
+

Ω2 + 1

2Ω
sinh

Ωt̃

2

]
, (2.38)

t̃ = γt, α = 2γθ/κ2, Ω =
√

1 + 2(κ/γ)2pVt . (2.39)

The only difference between the characteristic exponent (2.38) and the char-

acteristic exponent for the Heston model (2.20) is in Ω, where pVt replaces p2
x/2 as

the Laplace variable for Vt.

The first and second moments for the integrated CIR process (2.38) are

〈Vt〉 = θt (2.40)

〈(Vt − 〈Vt〉)2〉 =
2θ2

αγ2
(e−γt − 1 + γt). (2.41)

The time dependence of the variance (2.41) shows that the CIR process is not

independent and identically distributed (IID). That is expected since we have a mean

reverting SDE (2.2) for the instantaneous variance vt with exponential relaxation to

the mean [62, 71, 72].

We have shown that subordinating a zero drift gaussian to the integrated

Vt, given by equation (2.37) is equivalent to solving for the transition probability

densities for the uncorrelated (ρ = 0 in equation (2.3)) system of SDEs dxt =

√
vtdW

(1)
t and dvt = −γ(vt − θ)dt + κ

√
vtdW

(2)
t (2.2). However, it is not clear how

to use subordination in order to produce a stochastic process that is equivalent to

the correlated (ρ 6= 0) system of SDEs [37].

20



Chapter 3

General characteristics of the data and methods

We use 2 databases for this study. Daily closing prices are downloaded from Yahoo

[50] and intraday data is constructed using the TAQ database from the NYSE [51].

The TAQ database records every transaction that occurred in the market (tick-by-

tick data), where the average number of transactions in a day for a highly traded

stock, such as Intel, is 20000 (from 1993 to 2001). That is equivalent, in terms of

data quantity, to approximately 77 years of daily data.

Our data has the time that the transaction occurred, the price the transaction

was realized and the volume of the transaction (number of shares that exchanged

hands). The TAQ database does not account for splits or dividends whereas Yahoo

gives the prices corrected for splits and dividends. However we do need to correct

for splits and dividends because the TAQ database is used only when constructing

intraday returns. The splits and dividends are realized overnight and therefore will

not show up if we calculate intraday returns.

After downloading the TAQ data, we remove any trade that is recorded as an

error and also restrict the data to trades that took place inside the conventional 6.5

hours trading day from 9: 30 AM to 4: 00 PM. Any trade that happen before 9: 30

AM and after 4: 00 PM is ignored. We choose to restrict to business hours because

we want our data set to agree with Yahoo daily data in the limit of one day that is

21



 

16

17

18

19

P
ric

e 
of

 IN
T

C

0 9 19 28 37 47 56

0

500

1000

 

 

N
um

be
r 

of
 ti

ck
s 

(t
ra

de
s)

Length of day in hours

0 1 2 3 4 5 6
0

1/4 M

0.5 M

3/4 M

1 M

Days from 01/02/1997

V
ol

um
e 

(1
 M

ill
io

n)

Figure 3.1: Intraday stock price and number of trades constructed from the TAQ

database at each 5 minute interval from Thursday, 2nd of January 1997 to Thursday

9th of January 1997 for Intel (upper panel). Volume of trades during each day is

shown in the lower panel. Days are separated by an effective overnight time interval

that is constructed from the data, such that the open-to-close variance and the

close-to-close variance of the log-returns follow the same ∝ t line (see Fig. 4.1).

defined from the open bell (9: 30 AM) to close bell (4: 00 PM).

We define as the daily open price, the price of the first trade that happened

after or at 9: 30 AM. We also define the daily close price, the price of the trade

that happened right before or at 4: 00 PM. A typical time series for intraday prices,

number of trades and volumes for 1 particular week is shown in Fig. 3.1.

Notice that the intraday volume and trading activity (number of trades) can
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be well described by a parabola (Fig. 3.3). This typical intraday pattern [52, 53] has

also been found for high-frequency volatility proxies, such as the root mean square

return for all ticks that happen in a certain interval of time [54, 55, 56, 57, 58, 59].

The statistics for such a pattern for the number of trades of Intel in the year 1997

is shown in Fig. 3.3. Notice that the probability density for different parts of the

day will clearly have different widths and averages. Therefore, mixing all parts of

the day will result in a wider probability density for number of trades and other

intraday quantities [53]. We do not study the consequences of such a mixture, we

only are careful to work with intraday time lags that divide equally all day [2].

In such a way, all parts of the daily trend are equally represented. Since we are

working with prices quoted at every 5 minutes (Five minutes close prices) and the

day from open to close has only 78 such intervals, we work with returns that are

t = 5, 10, 15, 30, 65, 130, 195, 390 minutes long.

Another important characteristic of daily and intraday data is shown in Fig.

3.2. The cumulative number of trades from 1993 to 2001 (
∑i=12/31/2001

i=01/01/1993 Ni) increase

almost exponentially. The behavior of the commutative number of trades shows

that the average number of trades change from year to year. The same type of

behavior is found for the square of the demean log-returns (the variance of the

returns). Therefore, the probability density for the returns, volume and number

of trades is only approximately stationary throughout the years. When studying

returns (chapter 4), we assume the data as stationary, and we take data from 1993

to 1999. When studying subordination using the number of trades (chapter 5), we

reduce the non-stationary effect of the data by working with one year of data.
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In order to study intraday returns, we construct from the tick-by-tick data, 5

minutes close prices. The 5 minute close price is defined in analogy with the day

close price. The 5 minutes volume ( or number of trades (ticks)) is the sum of all

traded volume ( or number of trades (ticks)) in a 5 minutes interval.

When constructing intraday returns time series, we do not include nights or

weekends. Effectively our largest intraday return is from open to close (time lag of

390 min = 6.5 hours). A common procedure, not adopted here, is to assume the open

of the next day as the close of the present day [60, 61]. This will include returns that

are effectively overnight, where no trades are present. The result of such practice

is illustrated in Fig. 3.4. Clearly, the tails of the distribution of returns including

overnight time lags are considerably enhanced, if compared with the distribution of

intraday returns that do not include overnight time lags.

When working with high-frequency (intraday) data recording errors are in-

evitable. In order to remove errors in the tick-by-tick data as well as our 5 min-

utes close time series, created from the tick-by-tick data, we use Yahoo database

as our benchmark. We assume that the daily Yahoo database does not have er-

rors. Our filtering technique consists of two parts. First, we calculate the log-

return between the maximum and minimum price of a given day for the Yahoo

data (rHL). We then calculate the log-return (r5min = ln(ST ) − ln(ST−5min)) for

the 5 minutes price data in the same day and compare to rHL. We replace any

log-return |rt| > rHL with the return immediately preceding it. We also replace

the number of trades and volume of the “corrupted” 5 minute interval by the im-

mediately preceding ones. The second filtering procedure consists of requiring that
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the largest and smallest 5 minutes log-return (r5min) in a given day, be between

the maximum and the minimum of all the time series formed by the yahoo open

to close return data (min(rOC) < r5min < max(rOC)). Once again, if the condi-

tion min(rOC) < r5min < max(rOC) is not satisfied, we replace the “corrupted”

log-return, volume and number of trades by the immediately preceding one.

The typical effect of such a simple error removal algorithm is to change less

than 1% (on the order of 0.1%) of the data.

The same filtering procedure is used for tick-by-tick data, except that instead of

replacing the “corrupted” log-return and volume, we just ignore it. In fact ignoring

or replacing by the nearest value is found to be equivalent (for tick-by-tick or 5

minutes data) for the purpose of this work: the probability density and moments

are the same.
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Chapter 4

Mesoscopic returns

The actual observed empirical probability distribution functions (EDFs) for different

assets have been extensively studied in recent years [1, 15, 49, 60, 61, 64, 77, 78,

79, 80, 81]. We focus here on the EDFs of the returns of individual large American

companies from 1993 to 1999, a period without major market disturbances. By

‘return’ we always mean ‘log-return’, the difference of the logarithms of prices at

two times separated by a time lag t.

The time lag t is an important parameter: the EDFs evolve with this parame-

ter. At micro lags (typically shorter than one hour), effects such as the discreteness

of prices and transaction times, correlations between successive transactions, and

fluctuations in trading rates become important (for discreteness effects see chapter

5)[15, 16]. Power-law tails of EDFs in this regime have been much discussed in the

literature before [60, 61]. At ‘meso’ time lags (typically from an hour to a month),

continuum approximations can be made, and some sort of diffusion process is plau-

sible, eventually leading to a normal Gaussian distribution. On the other hand,

at ‘macro’ time lags, the changes in the mean market drifts and macroeconomic

‘convection’ effects can become important, so simple results are less likely to be

obtained. The boundaries between these domains to an extent depend on the stock,

the market where it is traded, and the epoch. The micro-meso boundary can be
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defined as the time lag above which power-law tails constitute a very small part of

the EDF. The meso-macro boundary is more tentative, since statistical data at long

time lags become sparse.

The first result is that we extend to meso time lags a stylized fact1 known

since the 19th century [82] (quoted in [19]): with a careful definition of time lag t,

the variance of returns is proportional to t.

The second result is that log-linear plots of the EDFs show prominent straight-

line (tent-shape) character, i.e. the bulk (about 99%) of the probability distribution

of log-return follows an exponential law. The exponential law applies to the central

part of EDFs, i.e. not too big log-returns. For the far tails of EDFs, usually associ-

ated with power laws at micro time lags, we do not have enough statistically reliable

data points at meso lags to make a definite conclusion. Exponential distributions

have been reported for some world markets [1, 49, 64, 77, 78, 79, 80, 81] and briefly

mentioned in the book [15] (see Fig. 2.12). However, the exponential law has not

yet achieved the status of a stylized fact. Perhaps this is because influential work

[60, 61] has been interpreted as finding that the individual returns of all the major

US stocks for micro to macro time lags have the same power law EDFs, if they are

rescaled by the volatility.

The Heston model is a plausible diffusion model with stochastic volatility,

which reproduces the timelag-variance proportionality and the crossover from ex-

1Stylized facts is a term that comes from the economical literature. It refers to facts that can

not be proved right. For instance, the variance of returns is proportional to t for a good quantity

of stocks but there might be stocks where this is not a fact.
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ponential distribution to Gaussian. This model was first introduced by Heston,

who studied option prices [48]. Later Drăgulescu and Yakovenko (DY) derived a

convenient closed-form expression for the probability distribution of returns in this

model and applied it to stock indexes from 1 day to 1 year [49]. The third result

is that the DY formula with three lag-independent parameters reasonably fits the

time evolution of EDFs at meso lags.

4.1 Data analysis and discussion

We analyzed the data from Jan/1993 to Jan/2000 for 27 Dow companies, but show

results only for four large cap companies: Intel (INTC) and Microsoft (MSFT)

traded at NASDAQ, and IBM and Merck (MRK) traded at NYSE (please see the

appendix for more companies). We use two databases, TAQ to construct the in-

traday returns and Yahoo database for the interday returns (see Chapter 3). The

intraday time lags were chosen at multiples of 5 minutes, which divide exactly the

6.5 hours (390 minutes) of the trading day. The interday returns are as described

in [1, 49] for time lags from 1 day to 1 month = 20 trading days.

In order to connect the interday and intraday data, we have to introduce an

effective overnight time lag Tn. Without this correction, the open-to-close and close-

to-close variances would have a discontinuous jump at 1 day, as shown in the inset of

the left panel of Fig. 4.1. By taking the open-to-close time to be 6.5 hours, and the

close-to-close time to be 6.5 hours + Tn, we find that variance 〈x2
t 〉 is proportional

to time t, as shown in the left panel of Fig. 4.1. The slope gives us the Heston
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parameter θ in Eq. (2.21). Tn is about 2 hours (see Table 4.1).

In the right panel of Fig. 4.1, we show the log-linear plots of the cumulative

distribution functions (CDFs) vs. normalized return x/
√

θt. The CDFt(x) is defined

as
∫ x
−∞ Pt(x

′) dx′, and we show CDFt(x) for x < 0 and 1 − CDFt(x) for x > 0. We

observe that CDFs for different time lags t collapse on a single straight line without

any further fitting (the parameter θ is taken from the fit in the left panel). More than

99% of the probability in the central part of the tent-shape distribution function

is well described by the exponential function. Moreover, the collapsed CDF curves

agree with the DY formula (2.29) Pt(x) ∝ exp(−|x|
√

2/θt) in the short-time limit

for α = 1 [49], which is shown by the dashed lines.

Table 4.1: Fitting parameters of the Heston model with α = 1 for the 1993–1999

data.

γ 1/γ θ µ Tn

1
hour

hour 1
year

1
year

hour

INTC 1.029 0: 58 13.04% 39.8% 2: 21

IBM 0.096 10: 25 9.63% 35.3% 2: 16

MRK 0.554 1: 48 6.57% 29.4% 1: 51

MSFT 1.284 0: 47 9.06% 48.3% 1: 25

Because the parameter γ drops out of the asymptotic Eq. (2.29), it can be

determined only from the crossover regime between short and long times, which is

illustrated in the left panel of Fig. 4.2. We determine γ by fitting the characteristic

function P̃t(k), a Fourier transform of Pt(x) with respect to x. The theoretical

32



characteristic function of the Heston model is P̃t(k) = eFt̃(k) (2.20). The empirical

characteristic functions (ECFs) can be constructed from the data series by taking

the sum P̃t(k) = Re
∑

xt
exp(−ikxt) over all returns xt for a given t [83]. Fits of ECFs

to the DY formula (2.20) are shown in the right panel of Fig. 4.2. The parameters

determined from the fits are given in Table 4.1.

In the left panel of Fig. 4.3 we compare the empirical PDF Pt(x) with the DY

formula (2.20). The agreement is quite good, except for the very short time lag of 5

minutes, where the tails are visibly fatter than exponential. In order to make a more

detailed comparison, we show the empirical CDFs (points) with the theoretical DY

formula (lines) in the right panel of Fig. 4.3. We see that, for micro time lags of the

order of 5 minutes, the power-law tails are significant. However, for meso time lags,

the CDFs fall onto straight lines in the log-linear plot, indicating exponential law.

For even longer time lags, they evolve into the Gaussian distribution in agreement

with the DY formula (2.20) for the Heston model. To illustrate the point further,

we compare empirical and theoretical data for several other companies in Fig. 4.4.

In the empirical CDF plots, we actually show the ranking plots of log-returns

xt for a given t. So, each point in the plot represents a single instance of price

change. Thus, the last one or two dozens of the points at the far tail of each plot

constitute a statistically small group and show large amount of noise. Statistically

reliable conclusions can be made only about the central part of the distribution,

where the points are dense, but not about the far tails.
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4.2 Conclusions

We have shown that in the mesoscopic range of time lags, the probability distribution

of financial returns interpolates between exponential and Gaussian law. The time

range where the distribution is exponential depends on a particular company, but

it is typically between an hour and few days. Similar exponential distributions have

been reported for the Indian [77], Japanese [78], German [79], and Brazilian markets

[64, 80], as well as for the US market [1, 49, 81] (see also Fig. 2.12 in [15]). The DY

formula [49] for the Heston model [48] captures the main features of the probability

distribution of returns from an hour to a month with a single set of parameters.
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Chapter 5

Number of trades and subordination

The concept of subordination has important fundamental and practical implications.

From a fundamental point of view, it gives a relation between microstructure of the

market and price formation that can be exploited in simulations and modelling

[42, 55, 84, 85]. From a practical point of view, the subordinator can be identified

with the integrated variance Vt [56, 86]. This would imply a direct measure of the

mean square return which could impact pricing and hedging both of options on a

particular stock as well as variance swaps and options on the variance.

In this chapter we verify and model the subordination hypothesis as given by

Eq. (2.36). We will restrict our study to intraday Intel data in the year 1997. We

restrict to a year of data because of the nonlinear drift of the number of trades:

we would like to minimize this effect (see Fig. ??). We chose Intel because it has

been studied by us in Ref. [2] (chapter 4) and it can be modelled well with the

Heston model introduced in chapter 4. It is true that it is a highly traded stock,

and that is an advantage, since that are a lot of trades in a day and therefore the

statistics is better. Therefore smaller stocks should be also checked in the future.

The year of 1997 represents most of what one finds for other years, except perhaps

2000 and 2001 which we did not verified because of technical problems (to large

data set requires especial computing techniques that should be implemented in the
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future).

We begin by showing the influence of the discrete nature of the absolute price

change in the intraday log-return data. This is rarely pointed out, even though there

is a vast literature on intraday log-returns [15, 60, 61, 68, 87]. This discreteness

has to be accounted for when considering subordination, or even when studying

intraday returns. It implies that a continuous probability density is only a convenient

approximation for some return horizons.

In section 5.2, we verify when and for what range of data does subordination

apply. We assume that the integrated volatility Vt is the random subordinator of a

driftless Brownian motion and that Vt is proportional to the number of trades Nt

in an interval of time t. We also use tick-by-tick data to check for subordination by

constructing the probability density of the log-returns xN after N trades (2.36).

In section 5.3, we model the integrated variance Vt with the CIR process

introduced in Eq. (2.38). We present the level of agreement between the data and

the theoretical CIR model and we link these results to the distribution of log-returns

xt.

In the last section, we present a summary of our findings.

5.1 Discrete nature of stock returns

On a tick-by-tick level, price changes are discrete. There is a minimal price change

for bid and offers that is set by internal rules of the stock exchange. In the case

of Intel in the year of 1997, the minimal price change was $1/8 for the first part of
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the year and after June, 24th it became $1/16 [88, 89]. Nevertheless, empirically

we find that the smallest price change on realized transactions is h = $1/64 (Fig.

5.1). This difference is a direct consequence of the mechanism of trading, and we

will not study it here (see Ref. [90, 91])1. We note that the minimal price change

set by law is clear in Fig. 5.1, since the most probable price changes are indeed 0,

±4h = $1/16 and ±8h = $1/8, according to the rules of the NASDAQ exchange in

1997.

Our goal in this section is to identify the discrete nature of absolute price

changes 2 after N trades (mNh = Sn−Sn−N) in the log-returns after N trades (xN =

ln(Sn) − ln(Sn−N)) and in log-returns after a time-lag t (xt = ln(ST ) − ln(ST−t)),

since these log-returns are the quantities that we ultimately want to model. We

want to point out that the discrete nature of the log-returns for intraday work is

generally overlooked but it can influence in the analysis of short returns.

We will refer to minimal price change h = $1/64 as “quantum of price” or

simply “quantum” in analogy with quantum mechanics.

1One of the possible reasons for the different between empirical h and quoted price h is the bid

and ask spread. That is the difference in price between the buy and sell quote. Since we work with

transaction prices, these prices will tend to jump between the bid and ask. And this gap is not

quantized by law. Another point to remember is that this quantum set by law only make sense

for limit orders (where the buyer of seller quotes his preference price) and not market orders (the

buyer or seller buys at the first available price). TAQ does not distinguish between order types.
2Absolute price change is used here as an opposite to relative price changes. We do not refer

to the absolute value. What we refer as absolute price changes are also known as the P&L of the

trade.
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Figure 5.1: Dimensionless absolute returns mN = (Sn − Sn−N)/h for N trades in

log linear and linear scale (center and bottom panels respectively). In the top panel

we show the difference of the PDFs for mN and mN−1 to illustrate the oscillatory

nature of the discrete PDF for absolute returns: it evolves from a “pulse” like shape

for N = 1 to a “constant wave” for N = 4000.

The discrete nature of the price change can be used to model the price dynam-

ics starting from a microscopic approach as recently suggested in [55, 57, 92, 93].

We are interested in the limit where the quantum effect is not noticeable and there-

fore quantities such as number of trades and returns can be treated as continuous

random variables.

Fig. 5.1 shows the probability density for the dimensionless absolute price

return mN = (Sn − Sn−N)/h after N trades in steps of one quantum h. The nature

of the tick-by-tick distribution (N = 1) is considerably different from N = 4000.
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panel shows the probability density of the dimensionless log-returns xN/h condi-

tioned on mN , P (xN/h|mN). The values concentrated about a multiple of h (upper

panel), spread about their respective h value. The vertical color coded lines (lower

panel) indicate the h value from which each, equally color coded, P (xN/h|mN) orig-

inated. The discreteness of mN is removed by taking log-returns since the spread of

P (xN/h|mN) is larger than h.
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More than 50% of the returns are zero for N = 1, and most of the other returns

have a probability of less than 1% except ±4h and ±8h. The probability has a

clearly oscillatory nature where multiples of 4h are maxima (Fig. 5.1, top panel).

After 4000 trades the probability distribution for mN has changed into a two level

system (Fig. 5.1). The probability of the most probable mN in N = 1 have now

approximately the same probability. Therefore, the zero return has (after 4000

trades) a comparable probability to the other probability maxima.

The quantum nature of the price changes is removed by working with log-

returns, except for the zero return. Notice that intraday log-returns can be approx-

imated by the ratio [94]

xN = ln Sn − ln Sn−N ≈ Sn − Sn−N

Sn−N

=
mN

Sn−N/h
. (5.1)

The log-returns can also be written

m0,Nh = 0

mi,Nh = SiN − S(i−1)N , i = 1, 2, 3...

xi,N =
mN∑j=i−1

j=0 mj,N + C
,C = S0/h, i = 1, 2, 3, ..., (5.2)

where S0 is the first open of the year (in the case of Intel 1997, S0 = $131.75).

The effect of taking log-returns is illustrated in Fig. 5.2. For each absolute

return mN , there is a potentially different denominator Sn−N/h (5.1) composed by

a random walk with integer valued steps about a level C (5.2). Clearly the values

of the ratio xN will not be integer. Therefore, the ratio of mN in Eq. (5.2) spreads
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the concentrated discrete absolute returns multiple of h, around the multiple.

The lower panel of Fig. 5.2 shows the probability density of xN/h conditioned

on mN . The conditional probability density P (xN/h|mN) illustrates a spread for

each mN that is larger than h. This spread is enough to mix the discreteness with

exception of mN = 0.

The quality of such a mixture can be seen in Fig. 5.3 and Fig. 5.4. Even

though the cumulative density function for xN is practically continuous (even for

N = 1) with exception of xN = 0, the stepwise nature of mN can be easily recognized

up to N = 1000 (Fig. 5.4). The oscillations in the cumulative density functions for

xN are centered about the discrete steps of the cumulative density function of mN .

The discrete quantum effect at mN = 0 is quite persistent, but it can be

neglected for returns xN with large number of trades N (for instance N = 4000).

Empirically, it appears that the criteria for neglecting the mN = 0 effect is that the

probability of having mN = 0 is of the same order of magnitude as the probability of

having any other mN (Fig.5.1). For Intel 1997 this transition starts approximately

at N = 1000.

The effect of data discreteness is also present in the log-return xt of time lag t.

From the log-return xt, we can construct xN by conditioning on the number of trades

N present in t (Nt). The opposite is also true, by conditioning on t we can construct

xt from xN . Therefore some of the discrete effects that are present in xN will be

present in xt. As an example consider 5 minute log-returns. The average number of

trades is 〈Nt=5min〉 = 200±184. Because of the reciprocity in constructing the PDF

for xt from xN (and vice-versa) by conditioning, this shows that in the composition
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Figure 5.3: Cumulative probability density for both dimensionless log-returns, xN/h

(black line), and dimensionless absolute returns, mN (blue symbols). Even though

the discreteness of mN is removed with exception of xN = 0, the signature of such

discreteness is still visible. Notice the stepwise nature of the black line.
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Figure 5.4: Cumulative probability density for both dimensionless log-returns, xN/h,

and dimensionless absolute returns, mN . When N increases the CDF becomes pro-

gressively less oscillatory and the discrete nature of the underlying absolute returns

becomes less clear.
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of xt=5min, there is a wide range of xN for which the discrete features can not be

ignored (clear oscillations and large probability for xt = 0). If we approximate the

PDF of Nt=5min by a Gaussian distribution, we would have in xt=5min, with the

highest probability, Nt=5min = 200. Therefore some fraction of xN = 200 will be

sampled when we construct the probability of xt=5min by conditioning, these returns

clearly have a lot of discrete features (Fig. 5.4) and these features will pass to

xt=5min.

Fig. 5.5 shows the oscillatory stepwise cumulative probability density and also

the special nature of xt=5min = 0 for the cumulative probability density of xt=5min.

Compare this figure with Fig. 5.3 and Fig. 5.4. These features originate from xN

and represent small flat portions in the probability density function.

Finally, from the sequence of Figs. 5.3 and 5.4 and the correspondence between

xN and xt, we can conclude that the discrete effects become negligible for a time

lag t > 1 hour.

5.2 Verifying subordination with intraday data

The hypothesis of subordination introduced by Clark [26] has had a strong eco-

nomical implication, and following his work there is a vast body of theoretical and

empirical work which addresses the issue [38, 39, 40, 41, 42]. Similar to the work

of Refs. [40, 41], we verify for subordination considering integrated variance Vt,

constructed from the number of trades Nt, to be the subordinator of a Brownian

motion.
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Due to the discrete nature of the distribution of intraday returns presented

in section (5.1), we can only talk about subordination as formulated in equation

(2.36) after the discrete effects become small. In what follows, we will take all time

lags even those where the discrete effects are large. Nevertheless, we will see that

the best subordination will take place for time lags for which discrete effects can be

ignored.

The first implication of subordination can be verified with the use of moments

given by equations (2.33) and (2.35). Figs. 5.7 and 5.8 show the linear time relation

for both the variance of xt and the mean of Nt as expected from equation (2.33).

Furthermore, since we are assuming a Brownian motion with stochastic variance

given by the number of trades, log-returns xN after N trades should be Gaussian

distributed with variance 〈x2
N〉 = σ2

NN . Fig. 5.6 shows the linear relation of 〈x2
N〉

vs. N . The implied consistency between the slope values in Figs. 5.6, 5.7 and 5.8

required by subordination is

〈x2
t 〉 = θt = σ2

N〈Nt〉 = σ2
Nηt ⇒ θ = σ2

Nη. (5.3)

Using expression (5.3), the difference between θ measured (Fig.5.7) and θ =

ησ2
N from Fig. 5.6 and Fig. 5.8 is less than 1%.

In order to find a time and a return range where subordination takes place, we

look at the data in 3 different ways. First, using tick-by-tick data, we construct the

distribution of the log-return xN after N trades. xN should be Normal distributed

with mean zero and standard deviation σN

√
N . We also present the N dependence
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a function of N for the normalized log-returns xN in Fig. 5.9. For a Gaussian
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of trades (ticks) N increase the skewness and excess kurtosis become zero. The

probability density for xN can be well approximated by a Gaussian for N > 2500,

since both skewness and excess kurtosis are small.
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of the skewness (〈x3
N〉/(〈x2

N〉3/2)) and excess kurtosis (〈x4
N〉/(〈x2

N〉2) − 3) of xN in

Fig. 5.10.

Second, using t minute returns xt and the number of trades Nt in the same t

interval, we construct the time series

εt =
xt√
Vt

, Vt = σ2
NNt, (5.4)

where Vt is the integrated variance in an interval t and σN is the proportionality

constant that converts number of trades Nt into variance. If indeed subordination

holds, εt is Normal distributed with mean zero and standard deviation one, due to

the central limit theorem [27, 41].

Finally, we check subordination by numerically calculating the probability mix-

ture equation (2.36). We construct the probability density function of the number

of trades Nt inside a time interval t by binning the time series of Nt. The choice

for binwidth is according to Ref. [95]. However, the result appears independent of

binwidth as long as the binwidth chosen is not too large. The cumulative probability

density function for the measured xt and the non-parametric reconstructed x′t are

shown in Fig. 5.13.

The distributions in Fig. 5.9, Fig. 5.11 and Fig. 5.13(solid line) show an

agreement of approximately 85% of the data with the subordination hypothesis for

time lags above t > 1 hour or N > 2500 (Fig. 5.10). However, the subordination is

clearly bad for times close to one day (t = 6.5 hours), where we do not have enough

data (253 points) to draw meaningful conclusions.
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the parameter σN in equation (5.4) is found using Fig. 5.6. Notice that the Gaussian
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Figure 5.13: Cumulative distribution of the stock returns xt compared to the re-

constructed cumulative distribution function (black lines) by randomizing the vari-
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least square error between the empirical xt distribution and reconstructed variance
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56



Notice the clear disagreement above 2 standard deviations (STD) as well as

at zero in Fig. 5.9 and Fig. 5.11. The deviations at zero are due to the discrete

nature of the data (section 5.1) while the deviations above 2 STD show that the

subordination hypothesis can not explain the large changes in returns [42].

For Fig. 5.11 and Fig. 5.13(solid line), σ2
N = 2 × 10−8 is found to give the

best agreement between the measured data and the reconstructed data. For Fig.

5.9, Fig. 5.12 and Fig. 5.13(dashed line), σ2
N = 2.39 × 10−8 is found from Fig.

5.6. Notice that the higher σN in Fig. 5.12 and Fig. 5.13 (dashed lines) seems to

indicate an overestimation of σN , since the curves constructed by subordination are

generally above the data.

The lower value of σ2
N for Fig. 5.11 and Fig. 5.13 (solid line) leads to a

violation of relation (5.3). The difference between measured θ in Fig. 5.7 and the

one calculated from ησ2
N is now of approximately 16%. In order to verify the origin

of such difference, we remove 8% of the largest log-return xt data on both tails

(ignore 8% of the largest xt on the positive and negative tail for all time lags t

used), a total of 16% of the data. We find now a θ ≈ 8.01× 10−7. This new θ does

not violate relation (5.3) with σ2
N = 2 × 10−8 and reconfirms that subordination

with Vt = σ2
NNt is unable to explain large changes (> 85%) in the log-returns xt.

This reconfirmation arises because we had to ignore 16% of the data in the tails

to reduce θ. Dropping 16% of the tails is equivalent to looking only at the center

≈ 85% of the data and saying that subordination is only valid of it.
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5.3 Models for the subordinator

Having verified that a Brownian motion subordinated to the number of trades Nt

via Vt can describe approximately 85% of the return data for time lags larger than

1 hour (or, if one ignores discreetness effects such as the zero return effect, larger

than 30 minutes), we can model Vt instead of modelling xt.

In this section, we verify the quality of modelling Vt with a CIR process as

given in section (2.2). We present the quality of the CIR fit for Intel in the year

1997. We also show that the quality of the Heston fit to xt with parameters from

the Vt CIR fit is consistent with the quality of the subordination: we are able to

model most of the central 85% of the xt distribution.

Due to previous studies with intraday log-returns [2] (see also chapter 4), we

assume α = 1 for the simplified CIR model in equation (2.38). The parameter θ

is found from the relation θ = ησ2
N (5.3). The remaining parameter γ is found by

fitting the empirical PDF (Vt) for time lags t = 1: 05 hours and t = 2: 10 hours

simultaneously. The regular quality of such a fit is shown in Figs. 5.14 and 5.15.

The theoretical CIR lines are above the data (Fig. 5.15). Furthermore, the time

dependence of the theoretical PDF and CDF only approximately follow the data.

For times below 1 hour the probability maximum of the empirical distribution is to

the left of the theoretical distribution and for times above 1 hour to the right.

The results shown in Figs. 5.14 and 5.15 indicate that the CIR is only approx-

imately valid. The quality can be further assessed by constructing the variance of

the Vt as a function of the time lag t. Fig. 5.16 shows that the theoretical variance
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given in equation (2.41) is only approximately correct. Nevertheless from equation

(2.33), we know that the variance of Vt corresponds to the kurtosis of xt. This indi-

cates that even though Vt can not be modelled well (not even the second moment)

the implication of that is only important to the fourth and higher moments in the

log-returns xt.

To verify the quality of the parameters found by fitting the subordinator, Vt,

in explaining the log-returns, xt, we present Figs. 5.17 and 5.18. The empirical PDF

(5.17) and CDF (5.18) for xt show that the corresponding Heston model (dashed

black lines), constructed with parameters found by fitting CIR to the probability

density of Vt, is able to fit only the center of the empirical distributions of xt (≈

80%− 85%) at t = 65, 130 minutes (Fig. 5.18).

To recheck the consistency of the subordination approach, we fit the empirical

PDF of xt directly with the Heston model (2.20). We proceed in similar fashion to

the fitting procedure in chapter 4. We assume α = 1 and take θ = 8.01 × 10−7.

The parameter θ was found from the relation θ = σ2
Nη (5.3), where η is found from

Fig. 5.6 and σ2
N is given such that the subordination in Figs. 5.11 and 5.13 is

the best possible. Finally, we fit the empirical PDFs (Fig. 5.17) for the parameter

γ. Therefore, we are effectively only fitting γ, since all the other parameters are

the same used in the Vt fit (Fig. 5.14). We find that the γ found from fitting the

empirical PDF of xt directly, is of the same order of magnitude as with the one found

by fitting the empirical PDF of Vt (0.05 from xt and 0.06 from Vt). This shows, that

the subordination indeed captures most of the information for the center of the

distribution, since fitting Vt or xt for γ is equivalent.
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Notice that the agreement of the theoretical Heston model curves, constructed

with parameters from the Vt fit, is practically identical to the agreement found in

Fig. 5.13(solid lines) between the CDF of xt and the CDF constructed by subordi-

nation using the non-parametric binned probability density of Vt as the variance of

a Gaussian random walk (2.36). The information content in the number of trades

and therefore in the integrated variance distribution is almost all captured by CIR,

even with a regular fit quality (Fig. 5.15). This last point implies that even if we

had a better fit to the distribution of Vt, the increase in the fitting quality of the

log-returns will not be substantial.

A substantial increase in the fitting quality of the empirical PDF and CDF of

the log-returns in Figs. 5.17 and 5.18 is attained if one fits the empirical PDF of xt

directly with θ = 9.53 × 10−7 given in Fig. 5.7. This amounts to take σ2
N as given

by Fig. 5.6 and η by Fig. 5.8, such that relation (5.3) is still valid. The parameter

γ = 0.02 for the black solid lines in Fig. 5.18 is also considerably different from

γ = 0.06, found by fitting the empirical PDF of Vt and using θ = 8.01× 10−7 such

that σ2
N is the best fit value for the subordination in Figs. 5.13(solid line) and 5.11.

The substantial increase in the fitting quality for xt, reemphasizes that the number of

trades are only able to describe the center of the distribution of log-returns (section

5.2).
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5.4 Conclusion

We have studied the discrete nature of the probability distribution of absolute re-

turns that arises from the minimal discrete price change for bid and offers allowed

by the stock exchange. We have shown that such discrete nature implies that the

probability distributions of log-returns for intraday time lags are only approximately

continuous. The continuous approximation becomes good for returns with time lags

longer than 1 hour.

We have shown that, using the integrated volatility Vt = σ2
NNt derived from

the number of trades Nt as the subordinator of a driftless Brownian motion (2.36),

we are able to describe the center (≈ 85%) of the distribution of log-returns xt for

time lags t > 1 hour and smaller than t < 1 day. The upper limit is restricted by

the number of data points we have, since we are working with only one year of data.

We also have shown that the CIR process is only able to approximately de-

scribe the distribution function for Vt. However, this approximate description is

already enough for the corresponding Heston model to fit the log-returns xt with

approximately the maximum quality that the subordination allows (≈ 80%− 85%).

Finally, a direct fit to the log-returns xt with the Heston model results in a

considerable increase in the fitting quality. This reemphasizes that the process of

subordination, as implied by the empirical probability density of Vt, is only able to

explain the center of the distribution of returns.
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Chapter 6

Income distribution

Attempts to apply the methods of exact sciences, such as physics, to describe a so-

ciety have a long history [96]. At the end of the 19th century, Italian physicist, engi-

neer, economist, and sociologist Vilfredo Pareto suggested that income distribution

in a society is described by a power law [97]. Modern data indeed confirm that the

upper tail of income distribution follows the Pareto law [98, 99, 100, 101, 102]. How-

ever, the majority of the population does not belong there, so characterization and

understanding of their income distribution remains an open problem. Drăgulescu

and Yakovenko [103] proposed that the equilibrium distribution should follow an

exponential law analogous to the Boltzmann-Gibbs distribution of energy in statis-

tical physics. The first factual evidence for the exponential distribution of income

was found in Ref. [104]. Coexistence of the exponential and power-law parts of the

distribution was recognized in Ref. [105]. However, these papers, as well as Ref.

[106], studied the data only for a particular year. Here we analyze temporal evo-

lution of the personal income distribution in the USA during 1983–2001. We show

that the US society has a well-defined two-income-class structure. The majority

of population (97–99%) belongs to the lower income class and has a very stable in

time exponential (“thermal”) distribution of income. The upper income class (1–

3% of population) has a power-law (“superthermal”) distribution, whose parameters
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significantly change in time with the rise and fall of the stock market. Using the

principle of maximal entropy, we discuss the concept of equilibrium inequality in a

society and quantitatively show that it applies to the bulk of the population.

6.1 Data analysis and discussion

Most of academic and government literature on income distribution and inequality

[107, 108, 109, 110] does not attempt to fit the data by a simple formula. When fits

are performed, usually the log-normal distribution [111] is used for the lower part of

the distribution [100, 101, 102]. Only recently the exponential distribution started

to be recognized in income studies [112, 113], and models showing formation of two

classes started to appear [114, 115].

Let us introduce the probability density P (r), which gives the probability

P (r) dr to have income in the interval (r, r+dr). The cumulative probability C(r) =

∫∞
r dr′P (r′) is the probability to have income above r, C(0) = 1. By analogy

with the Boltzmann-Gibbs distribution in statistical physics [103, 104], we consider

an exponential function P (r) ∝ exp(−r/T ), where T is a parameter analogous to

temperature. It is equal to the average income T = 〈r〉 =
∫∞
0 dr′r′P (r′), and we

call it the “income temperature.” When P (r) is exponential, C(r) ∝ exp(−r/T ) is

also exponential. Similarly, for the Pareto power law P (r) ∝ 1/rα+1, C(r) ∝ 1/rα

is also a power law.

We analyze the data [116] on personal income distribution compiled by the

Internal Revenue Service (IRS) from the tax returns in the USA for the period 1983–
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2001 (presently the latest available year). The publicly available data are already

preprocessed by the IRS into bins and effectively give the cumulative distribution

function C(r) for certain values of r. First we make the plots of log C(r) vs. r (the

log-linear plots) for each year. We find that the plots are straight lines for the lower

97–98% of population, thus confirming the exponential law. From the slopes of these

straight lines, we determine the income temperatures T for each year. In Fig. 6.1,

we plot C(r) and P (r) vs. r/T (income normalized to temperature) in the log-linear

scale. In these coordinates, the data sets for different years collapse onto a single

straight line. (In Fig. 6.1, the data lines for 1980s and 1990s are shown separately

and offset vertically.) The columns of numbers in Fig. 6.1 list the values of the

annual income temperature T for the corresponding years, which changes from 19

k$ in 1983 to 40 k$ in 2001. The upper horizontal axis in Fig. 6.1 shows income r

in k$ for 2001.

In Fig. 6.2, we show the same data in the log-log scale for a wider range of

income r, up to about 300T . Again we observe that the sets of points for different

years collapse onto a single exponential curve for the lower part of the distribution,

when plotted vs. r/T . However, above a certain income r∗ ≈ 4T , the distribution

function changes to a power law, as illustrated by the straight lines in the log-log

scale of Fig. 6.2. Thus we observe that income distribution in the USA has a well-

defined two-class structure. The lower class (the great majority of population) is

characterized by the exponential, Boltzmann-Gibbs distribution, whereas the upper

class (the top few percent of population) has the power-law, Pareto distribution. The

intersection point of the exponential and power-law curves determines the income
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r∗ separating the two classes. The collapse of data points for different years in the

lower, exponential part of the distribution in Figs. 6.1 and 6.2 shows that this part

is very stable in time and, essentially, does not change at all for the last 20 years,

save for a gradual increase of temperature T in nominal dollars. We conclude that

the majority of population is in statistical equilibrium, analogous to the thermal

equilibrium in physics. On the other hand, the points in the upper, power-law

part of the distribution in Fig. 6.2 do not collapse onto a single line. This part

significantly changes from year to year, so it is out of statistical equilibrium. A

similar two-part structure in the energy distribution is often observed in physics,

where the lower part of the distribution is called “thermal” and the upper part

“superthermal” [117].

Temporal evolution of the parameters T and r∗ is shown in Fig. 6.3. We

observe that the average income T (in nominal dollars) was increasing gradually,

almost linearly in time, and doubled in the last twenty years. In Fig. 6.3, we

also show the inflation coefficient (the consumer price index CPI from Ref. [118])

compounded on the average income of 1983. For the twenty years, the inflation

factor is about 1.7, thus most, if not all, of the nominal increase in T is inflation.

Also shown in Fig. 6.3 is the nominal gross domestic product (GDP) per capita

[118], which increases in time similarly to T and CPI. The ratio r∗/T varies between

4.8 and 3.2 in Fig. 6.3.

In Fig. 6.4, we show how the parameters of the Pareto tail C(r) ∝ 1/rα change

in time. Curve (a) shows that the power-law index α varies between 1.8 and 1.4, so

the power law is not universal. Because a power law decays with r more slowly than
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an exponential function, the upper tail contains more income than we would expect

for a thermal distribution, hence we call the tail “superthermal” [117]. The total

excessive income in the upper tail can be determined in two ways: as the integral

∫∞
r∗ dr′r′P (r′) of the power-law distribution, or as the difference between the total

income in the system and the income in the exponential part. Curves (c) and (b)

in Fig. 6.4 show the excessive income in the upper tail, as a fraction f of the total

income in the system, determined by these two methods, which agree with each

other reasonably well. We observe that f increased by the factor of 5 between 1983

and 2000, from 4% to 20%, but decreased in 2001 after the crash of the US stock

market. For comparison, curve (e) in Fig. 6.4 shows the stock market index S&P

500 divided by inflation. It also increased by the factor of 5.5 between 1983 and

1999, and then dropped after the stock market crash. We conclude that the swelling

and shrinking of the upper income tail is correlated with the rise and fall of the

stock market. Similar results were found for the upper income tail in Japan in Ref.

[99]. Curve (d) in Fig. 6.4 shows the fraction of population in the upper tail. It

increased from 1% in 1983 to 3% in 1999, but then decreased after the stock market

crash. Notice, however, that the stock market dynamics had a much weaker effect

on the average income T of the lower, “thermal” part of income distribution shown

in Fig. 6.3.

For discussion of income inequality, the standard practice is to construct the so-

called Lorenz curve [107]. It is defined parametrically in terms of the two coordinates

x(r) and y(r) depending on the parameter r, which changes from 0 to ∞. The

horizontal coordinate x(r) =
∫ r
0 dr′P (r′) is the fraction of population with income
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below r. The vertical coordinate y(r) =
∫ r
0 dr′r′P (r′)/

∫∞
0 dr′r′P (r′) is the total

income of this population, as a fraction of the total income in the system. Fig. 6.5

shows the data points for the Lorenz curves in 1983 and 2000, as computed by the

IRS [110]. For a purely exponential distribution of income P (r) ∝ exp(−r/T ), the

formula y = x+(1−x) ln(1−x) for the Lorenz curve was derived in Ref. [104]. This

formula describes income distribution reasonably well in the first approximation

[104], but visible deviations exist. These deviations can be corrected by taking

into account that the total income in the system is higher than the income in the

exponential part, because of the extra income in the Pareto tail. Correcting for

this difference in the normalization of y, we find a modified expression [106] for the

Lorenz curve

y = (1− f)[x + (1− x) ln(1− x)] + fΘ(x− 1), (6.1)

where f is the fraction of the total income contained in the Pareto tail, and Θ(x−1)

is the step function equal to 0 for x < 1 and 1 for x ≥ 1. The Lorenz curve (6.1)

experiences a vertical jump of the height f at x = 1, which reflects the fact that,

although the fraction of population in the Pareto tail is very small, their fraction f

of the total income is significant. It does not matter for Eq. (6.1) whether the extra

income in the upper tail is described by a power law or another slowly decreasing

function P (r). The Lorenz curves, calculated using Eq. (6.1) with the values of f

from Fig. 6.4, fit the IRS data points very well in Fig. 6.5.

The deviation of the Lorenz curve from the diagonal in Fig. 6.5 is a certain

measure of income inequality. Indeed, if everybody had the same income, the Lorenz
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curve would be the diagonal, because the fraction of income would be proportional

to the fraction of population. The standard measure of income inequality is the

so-called Gini coefficient 0 ≤ G ≤ 1, which is defined as the area between the

Lorenz curve and the diagonal, divided by the area of the triangle beneath the

diagonal [107]. It was calculated in Ref. [104] that G = 1/2 for a purely exponential

distribution. Temporal evolution of the Gini coefficient, as determined by the IRS

[110], is shown in the inset of Fig. 6.5. In the first approximation, G is quite close

to the theoretically calculated value 1/2. The agreement can be improved by taking

into account the Pareto tail, which gives G = (1 + f)/2 for Eq. (6.1). The inset in

Fig. 6.5 shows that this formula very well fits the IRS data for the 1990s with the

values of f taken from Fig. 6.4. We observe that income inequality was increasing

for the last 20 years, because of swelling of the Pareto tail, but started to decrease

in 2001 after the stock market crash. The deviation of G below 1/2 in the 1980s

cannot be captured by our formula. The data points for the Lorenz curve in 1983

lie slightly above the theoretical curve in Fig. 6.5, which accounts for G < 1/2.

Thus far we discussed the distribution of individual income. An interesting

related question is the distribution of family income P2(r). If both spouses are

earners, and their incomes are distributed exponentially as P1(r) ∝ exp(−r/T )1,

then

P2(r) =
∫ r

0
dr′P1(r

′)P1(r − r′) ∝ r exp(−r/T ). (6.2)

Eq. (6.2) is in a good agreement with the family income distribution data from

1Even thought the income of women is generally lower that men, this seems not to make a

difference in temperature significant enough to be noticed.
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the US Census Bureau [104]. In Eq. (6.2), we assumed that incomes of spouses

are uncorrelated. This assumption was verified by comparison with the data in

Ref. [106]. The Gini coefficient for family income distribution (6.2) was found to

be G = 3/8 = 37.5% [104], in agreement with the data. Moreover, the calculated

value 37.5% is close to the average G for the developed capitalist countries of North

America and Western Europe, as determined by the World Bank [106].

On the basis of the analysis presented above, we propose a concept of the

equilibrium inequality in a society, characterized by G = 1/2 for individual in-

come and G = 3/8 for family income. It is a consequence of the exponential

Boltzmann-Gibbs distribution in thermal equilibrium, which maximizes the entropy

S =
∫

dr P (r) ln P (r) of a distribution P (r) under the constraint of the conservation

law 〈r〉 =
∫∞
0 dr P (r) r = const. Thus, any deviation of income distribution from

the exponential one, to either less inequality or more inequality, reduces entropy

and is not favorable by the second law of thermodynamics. Such deviations may

be possible only due to non-equilibrium effects. The presented data show that the

great majority of the US population is in thermal equilibrium.

Finally, we briefly discuss how the two-class structure of income distribution

can be rationalized on the basis of a kinetic approach, which deals with temporal

evolution of the probability distribution P (r, t). Let us consider a diffusion model,

where income r changes by ∆r over a period of time ∆t. Then, temporal evolution

of P (r, t) is described by the Fokker-Planck equation [119]

∂P

∂t
=

∂

∂r

(
AP +

∂

∂r
(BP )

)
, A = −〈∆r〉

∆t
, B =

〈(∆r)2〉
2∆t

. (6.3)
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For the lower part of the distribution, it is reasonable to assume that ∆r is in-

dependent of r. In this case, the coefficients A and B are constants. Then, the

stationary solution ∂tP = 0 of Eq. (6.3) gives the exponential distribution [103]

P (r) ∝ exp(−r/T ) with T = B/A. Notice that a meaningful solution requires

that A > 0, i.e. 〈∆r〉 < 0 in Eq. (6.3). On the other hand, for the upper tail of

income distribution, it is reasonable to expect that ∆r ∝ r (the Gibrat law [111]),

so A = ar and B = br2. Then, the stationary solution ∂tP = 0 of Eq. (6.3) gives

the power-law distribution P (r) ∝ 1/rα+1 with α = 1 + a/b. The former process

is additive diffusion, where income changes by certain amounts, whereas the latter

process is multiplicative diffusion, where income changes by certain percentages.

The lower class income comes from wages and salaries, so the additive process is

appropriate, whereas the upper class income comes from investments, capital gains,

etc., where the multiplicative process is applicable. Ref. [99] quantitatively studied

income kinetics using tax data for the upper class in Japan and found that it is

indeed governed by a multiplicative process. The data on income mobility in the

USA are not readily available publicly, but are accessible to the Statistics of Income

Research Division of the IRS. Such data would allow to verify the conjectures about

income kinetics.

The exponential probability distribution P (r) ∝ exp(−r/T ) is a monotonous

function of r with the most probable income r = 0. The probability densities shown

in Fig. 6.1 agree reasonably well with this simple exponential law. However, a

number of other studies found a nonmonotonous P (r) with a maximum at r 6= 0

and P (0) = 0. These data were fitted by the log-normal [100, 101, 102] or the gamma
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distribution [113, 114, 120]. The origin of the discrepancy in the low-income data

between our work and other papers is not completely clear at this moment. The

following factors may possibly play a role. First, one should be careful to distinguish

between personal income and group income, such as family and household income.

As Eq. (6.2) shows, the latter is given by the gamma distribution even when the

personal income distribution is exponential. Very often statistical data are given for

households and mix individual and group income distributions (see more discussion

in Ref. [104]). Second, the data from tax agencies and census bureaus may differ.

The former data are obtained from tax declarations of all the taxable population,

whereas the latter data from questionnaire surveys of a limited sample of population.

These two methodologies may produce different results, particularly for low incomes.

Third, it is necessary to distinguish between distributions of money [103, 120, 121],

wealth [114, 122], and income. They are, presumably, closely related, but may

be different in some respects. Fourth, the low-income probability density may be

different in the USA and in other countries because of different Social Security or

more general policies. All these questions require careful investigation in future

work. We can only say that the data sets analyzed in this paper and our previous

papers are well described by a simple exponential function for the whole lower class.

This does not exclude a possibility that other functions can also fit the data [123].

However, the exponential law has only one fitting parameter T , whereas log-normal,

gamma, and other distributions have two or more fitting parameters, so they are

less parsimonious.
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Appendix A

Supplemental material to chapter 4

We present in this appendix further comparisons between the empirical log-return

data and the theoretical Heston model for 6 other components of the Dow Jones.

Fitting procedure to the Heston model is described in chapter 4. The parameters

for the fit are given in table A.1.
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Table A.1: Fitting parameters of the Heston model with α = 1 for the 1993–1999

data.

γ 1/γ θ µ Tn

1
min

hour 1
year

1
year

hour

AA 0.00301 5: 32 8.26% 20.2% 1: 24

BA 0.00121 13: 46 7.45% 14.6% 3: 11

C 0.0029 5: 45 11.44% 33.1% 2: 25

DIS 0.00519 3: 13 6.61% 15.0% 1: 58

JPM 0.0013 12: 49 8.95% 25.7% 1: 26

KO 0.00315 5: 18 6.10% 22.2% 1: 08
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Figure A.1: Comparison between AA (top), BAC (center), C (bottom) and the DY

formula (2.20) (lines) for CDF.
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[103] A. A. Drăgulescu and V. M. Yakovenko, Statistical mechanics of money, Eur.

Phys. J. B 17, 723 (2000).
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[122] J.-P. Bouchaud and M. Mézard, Wealth condensation in a simple model of

economy, Physica A 282, 536 (2000); S. Solomon and P. Richmond, Power

laws of wealth, market order volumes and market returns, Physica A 299, 188

(2001); A. Y. Abul-Magd, Wealth distribution in an ancient Egyptian society,

Phys. Rev. E 66, 057104 (2002).
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