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Noise is usually considered detrimental to the performance of a system and

the effects of noise are usually mitigated through design and/or control. In this

dissertation, noise-influenced phenomena and qualitative changes in responses of

nonlinear systems with noise are explored.

Here, the author considers a range of nonlinear dynamical systems, including

an array of nonlinear, coupled oscillators, a vertically excited pendulum, the Duffing

oscillator, and a Rayleigh-Duffing mixed type oscillator. These systems are studied

analytically and numerically via stochastic direct numerical integration, and analyti-

cally via the Fokker-Planck equation. The array of nonlinear, coupled oscillators is

also experimentally studied. The topics covered in this dissertation are as follows: i)

the destruction and formation of energy localizations in an array of oscillators, ii)

a technique to stabilize an inverted pendulum by using noise, iii) a noise-utilizing

control scheme, iv) the effects of noise on the response of a nonlinear system that

exhibits chaotic behavior, v) and the effects of phase lag on the information rate of

a Duffing oscillator. The understanding gained through this dissertation efforts can

be of benefit to a variety of nonlinear systems, including structural systems at the

macro-scale, micro-scale, and nano-scale.
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Chapter 1

INTRODUCTION

1.1 Problem of Interest

In this dissertation, the author has studied the effects of mechanical noise on

several nonlinear oscillators. Unless otherwise stated, in this dissertation, “noise”

refers to white Gaussian noise, which is a random process. Noise can enter into the

dynamics of a system through multiple ways: thermal noise (especially, noticeable

in micro-systems and nano-systems), noise in feedback controller (which can come

from sensor noise or actuator noise), biological noise (e.g., neuronal interactions),

and many others not to be considered here. Since noise is typically considered to

be undesirable, it is either ignored or controlled in a manner in which its effect is

suppressed [Poznyak and Taksar (1996)]. Since noise is a prevalent source of energy,

it is not surprising that many systems are affected by it. Many physical systems have

dynamics that are influenced by noise. For nonlinear systems, this energy can have

counter-intuitive effects. The well-known stochastic resonance is one such example

of this.

Since so many systems have been shown to exhibit stochastic resonance (literally

thousands of papers have been written about stochastic resonance), other types of

noise-influenced phenomena are also possible. Although, there has been much less

work done in studying the effects of noise, if it is not a form of stochastic resonance.

One of the primary goals of this research is to explore what kinds of phenomena

may be produced in nonlinear oscillators when they are subjected to noise. This is a

difficult problem because nonlinear oscillators have very rich dynamics, even without

the presence of noise. Hysteresis, high-frequency stabilization, energy localizations,
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and chaos may occur in nonlinear oscillators.

The author has studied several nonlinear systems, including the nonlinear

pendulum, the Rayleigh-Duffing mixed type oscillator, the Duffing oscillator, as well

as an array of Duffing oscillators. Direct numerical simulations of these stochastic

systems are performed, by using the Euler-Maruyama or the Euler-Heun method.

The Fokker-Planck equation is also analyzed to study the system dynamics. An

experimental arrangement of the array of Duffing oscillators is also studied.

The problems of interest for this work are instances where noise can have a

beneficial effect on a nonlinear system, similar to, but broader than that associated

with the phenomenon of stochastic resonance. The motivation is to develop systems

that are not only robust to noise, but can also actually use noise that is already

present in the systems’ environment. By using noise (energy) that is already prevalent

in the environment, one can understand how to exploit this energy to achieve a

better system performance.

1.2 Prior Work

In each chapter of this dissertation, literature pertaining to the particular

systems considered in that chapter are discussed. To put this dissertation in a

broader context, stochastic resonance and related observations are discussed in this

section.

Stochastic resonance, in its classical form, needs three ingredients to occur:

1) a bistable potential, 2) a noise source, and 3) a weak, periodic signal [Gam-

maitoni, Hänggi, Jung, and Marchesoni (1998)]. Although this phenomenon was

first formulated to explain the occurrence of ice ages [Benzi, Sutera, and Vulpiani

(1981); Benzi, Parisi, Sutera, and Vulpiani (1982)], it has been shown to be a nearly

ubiquitous. In its first description, the bistable potential was the earth’s state (“ice

age” or “non-ice age”). If one considers the state of being in an ice age and the
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state of being in a non-ice age as two equilibrium positions of the climate system,

then, the stability of the climate (“ice age” versus “non-ice age”) is explained by

the fact that when the earth is in an ice age, it reflects more sunlight, keeping

the earth cooler. Conversely, when the earth is not in an ice age, it absorbs more

sunlight, keeping the earth warmer. The noise source in this example was random

fluctuations in weather patterns. The weak signal was the variation of solar energy

influx, caused by the orbital eccentricity of the earth. This signal has a period of

105 years (which is also the average length of the periodicity of ice ages), and it is

quite weak, amounting to only a 0.1% change in solar energy influx [Gammaitoni,

Hänggi, Jung, and Marchesoni (1998)]. In essence, the very weak signal is “boosted”

by random fluctuations in weather patterns, to cause a shift between an ice age state

and a non-ice age state.

Since the initial formulation of stochastic resonance, many physical and biolog-

ical systems have been shown to be either strongly influenced by noise or “tuned” to

noise. During the subsequent thirty years, the phenomenon of stochastic resonance

has been studied in many different fields. It has been shown to be an important phe-

nomenon in climatic systems [Benzi et al. (1981, 1982)], biological systems [Hänggi

(2002); Levin and Miller (1996); Douglass, Wilkens, Pantazelou, and Moss (1993);

Dussutour, Beekman, Nicolis, and Meyer (2009)], physical systems [McNamara,

Wiesenfeld, and Roy (1988); Pérez-Madrid and Rubi (1995)], mechanical systems

[Almog, Zaitsev, Shtempluck, and Buks (2007)], and chemical systems [Guderian,

Dechert, Zeyer, and Schneider (1996); Leonard and Reichl (1994)]. For nanome-

chanical oscillators, experimental validation to show that thermal energy can cause

a stochastic resonance effect has been carried out [Badzey and Mohanty (2005)].

Several literature reviews have been written on this phenomenon [Gammaitoni et al.

(1998); Wiesenfeld and Moss (1995)].

The classical form of stochastic resonance is explained in the context of a system
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with a bistable potential, for instance, the Duffing equation with negative linear

stiffness and positive cubic stiffness. However, the definition for stochastic resonance

can also be expanded to encompass more exotic varieties of this phenomenon, for

example, phenomenon exhibited by monostable oscillators such as in the cases of

neuron firing [Levin and Miller (1996); Douglass, Wilkens, Pantazelou, and Moss

(1993); Collins, Chow, Capela, and Imhoff (1996)]. The neuron model considered is

a model with a monostable potential and a threshold; if the threshold is reached,

the neuron will fire before entering a relaxation period.

The prevalence of stochastic resonance in biological systems seems to indicate

that evolution prefers the utilization of noise, which seems reasonable given that it

is a free source of energy. Although many researchers have studied a wide variety

of systems, a few will be discussed briefly here. Some of the first work in biological

stochastic resonance was on the cricket sensory system [Levin and Miller (1996)].

Since this work, more complex biological systems have been studied as well. Randomly

vibrating insoles have been shown to ameliorate impaired balance control [Priplata,

Niemi, Harry, Lipsitz, and Collins (2003)]. Hairs in the cochlea have also been

shown to have enhanced sensitivity, with the addition of noise [Morse, Allingham,

and Stocks (2003); Jaramillo and Wiesenfeld (1998)]. However, arguably the most

profound versions of biological stochastic resonance are several studies on the blood

pressure regulatory system and vision [Hidaka et al. (2000)]. Researchers believe that

a weak periodic signal introduced to a venous blood pressure receptor is optimized

by adding noise to the arterial blood pressure receptor. With this formulation, these

researchers believe that the stochastic resonance effect is happening in the brain

stem. Similarly, by stimulating one eye with a subthreshold periodic optical signal

and the other eye with noise, researchers observed that stochastic resonance also

happens in the visual processing area of the human brain [Mori and Kai (2002)].

Since these biological sensory systems may be modeled as nonlinear oscillators
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(or coupled oscillator arrays), it is very important to discover what types of other

phenomena are possible under the effects of noise. At the very least, new sensory

technology is feasible.

Another type of stochastic resonance has also been exhibited by the foraging

of ants [Dussutour, Beekman, Nicolis, and Meyer (2009)]. In this situation, ants will

walk randomly. However, an ant will produce a pheromone trail, after finding a good

food source, as it walks back to the nest. This weak signal, which dissipates over

time, can be “boosted” if more ants take the same trail. This foraging technique has

even been implemented as an optimization scheme, called Ant Colony Optimization

[Dorigo and Blum (2005)]. This ability to “tune” the signal-to-noise ratio of the

system is a distributed process, as there is no higher intelligence guiding the ants.

From the examples given, it is clear that noise enhanced performance (e.g.,

stochastic resonance) is a prevalent phenomenon in the physical world. Noise is a free

source of energy, which biological systems harness to boost weak signals, synchronize

brain patterns, and even forage for food. For mechanical systems, it is necessary to

know what other types of noise-influenced dynamics are also possible.

1.3 Objectives

The principal objective of this work is to understand how noise influences the

dynamics of several nonlinear systems, and to use this understanding to suggest

designs of systems that utilize noise in an advantageous way. To better understand

the effects of noise in combination with nonlinearity, it is intended to understand

if noise can be used to move a system from one solution state to another, with

the solution state not necessarily being an equilibrium position (as is the case with

stochastic resonance).

To reach the objective, several nonlinear systems are studied, in order to find

possible phenomenological effects of noise on nonlinear oscillators. These phenomena

5



include the following:

i) Instabilities caused by addition of noise;

ii) Effects of noise on energy localizations (e.g., intrinsic localized modes);

iii) Bifurcation of dynamic response into aperiodic motion, caused by addition

of noise;

iv) Noise-induced energy attenuation.

In addition, a novel noise-utilizing control scheme, as well as the effects of

phase lag on the information rate, are also studied. While the focus of the current

work is directed towards macro-scale experiments, extensions to micro-scale devices

(such as a microelectromechanical system (MEMS) array of oscillators or a MEMS

sensor) is conceivable.

1.4 Outline

The rest of this dissertation is organized in the following manner. In Chapter 2,

the inverted pendulum and Rayleigh-Duffing mixed type oscillator will be discussed

[Perkins and Balachandran (2012, 2013)]. For the pendulum system, white Gaussian

noise can cause a instability to occur. Similarly for the Rayleigh-Duffing system,

white Gaussian noise can cause a transition to an aperiodic state to occur. A

novel, noise-utilizing control scheme is also discussed, using the pendulum system

as an example. In Chapter 3, the effects of phase lag on the information rate of a

bistable Duffing oscillator undergoing stochastic resonance are described [Perkins and

Balachandran (2015)]. In Chapter 4, preliminary results for energy localization in an

array is discussed [Perkins and Balachandran (2012)]. In Chapter 5, noise-induced

energy attenuation in a coupled oscillator array subjected to an impulse is examined

[Perkins, Chabalko, and Balachandran (2013)]. In Chapter 6, the effects of noise and

cubic coupling on intrinsic localized modes is explored [Balachandran, Perkins, and

Fitzgerald (2014)]. In Chapter 7, experimental results showing the effect of noise on
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the ILM hysteresis curve is presented, as well as simulation results [Perkins, Kimura,

Hikihara, and Balachandran (2015)]. In Chapter 8, concluding remarks and future

work are presented. Appendices containing derivations and programs used for this

study are included.
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Chapter 2

NOISE-INDUCED QUALITATIVE CHANGES AND

NOISE-UTILIZING CONTROL SCHEME

In this chapter, the vertically excited pendulum is used as an example to

illustrate the beneficial effects of noise. The upright equilibrium position of this

system can be stabilized passively with a high-frequency excitation by utilizing the

system nonlinearities and a bifurcation. After introducing white Gaussian noise into

the pendulum pivot motion, the stability of the system prior to this bifurcation is

analyzed. It is shown that white Gaussian noise has the potential to stabilize the

unstable equilibrium point. Considering the bi-stable pendulum, a control scheme is

introduced which utilizes only noise to switch between the two stable equilibrium

points. This system is studied on the basis of an Itō scheme and direct numerical

simulations are carried out by using the Euler-Maruyama method, and also with a

semi-analytical formulation based on the Fokker-Planck equation. The results of the

work can provide a basis to develop noise-utilizing controllers.

Additionally, the Rayleigh-Duffing system will be used to illustrate how the

addition of noise to a deterministic input can push the system from a periodic

attractor in the case without noise to a “broken-egg attractor” in the case with

noise. This sytem was chosen in honor of Dr. Y. Ueda, whose pioneering work

on the “broken egg attractor”, helped establish a better understanding of chaos.

These representative examples serve to illustrate a range of possible noise-influenced

responses near bifurcation points. This work could allow the use of noise to be used

as an energy-efficient control strategy.

The rest of this chapter is organized as follows. In the next section, a brief

literature review of the pertinent systems is given. In Section 2.2, the equations gov-
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Table 2.1: Nomenclature describing the quantities governing the pendulum.

θ Pendulum angular displacement from upright position
φ1 Pendulum position in state space
φ2 Pendulum velocity in state space
g Acceleration due to gravity
a Forcing amplitude of pendulum system, ã

l
Ω Forcing frequency
l Length of pendulum arm or rod
µ Coefficient of viscous damping
ω2

g/l
Ω2

Ẇ (t) White Gaussian noise (derivative of Wiener process)
σ Noise amplitude
F Forcing amplitude of Rayleigh-Duffing system
ν, γ Rayleigh-Duffing mixed type equation parameters

erning the simple pendulum are derived. Euler-Maruyama simulations are presented

in the following section. The Fokker-Planck equation and method of moments are

shown in the subsequent section. By using the Euler-Maruyama method and the

moment evolution equations, the behavior of this nonlinear system is explored and

compared to that observed in the absence of noise. In Section 3, a noise-utilizing

control scheme is then described and implemented. In Section 4, the Rayleigh-Duffing

mixed type oscillator is presented and the response of this oscillator is examined.

By using the Euler-Maruyama method and the aforementioned histograms of the

Poincaré sections, the behaviour of this nonlinear system is explored and compared

to that observed in the absence of noise. Concluding remarks are collected together

in the final section.

2.1 Introduction and Background

Under only the influence of gravity, the upright position of the pendulum

is an unstable equilibrium point. Control of the inverted pendulum is a classical

problem in control theory. By using full-state feedback (angular displacement and

angular velocity), lateral motions of the pivot can be used to control this system

[Ogata (2001)]. Another method to stabilize the upright position of the pendulum is
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achieved by driving the system harmonically in the vertical direction [Stephenson

(1908)]. This second method is fundamentally different from the classical one, since

it is based on an open-loop control scheme in which one exploits nonlinearities to

stabilize the upright position. This method of control of the inverted pendulum is a

specific problem in the field of vibration control [Meerkov (1977); Thomsen (2002);

Yabuno, Miura, and Aoshima (2004)]. A treatment of the different responses of

the parametrically excited pendulum is given in reference [Xu, Wiercigroch, and

Cartmell (2005)], and the different responses include regular oscillations, rotations,

and chaos.

For the inverted pendulum stabilized by a high-frequency excitation, in reference

[Zhi-Long, Xiao-Ling, and Zi-Qi (2008)], it is shown that noise increases the largest

Lyapunov exponent of the system, destabilizing the upward position. In another study

[Wihstutz (1999)], perturbation methods are discussed for determining the Lyapunov

exponents of linear systems. For the linearized pendulum equation, degenerate real

noise is shown to stabilize the system [Wihstutz (2003)]. However, white noise alone

cannot stabilize the upright position [Kao and Wihstutz (2000)]. For a pendulum

in chaotic motion, noise addition can turn the motion into a regular motion, which

terminates at the stable downward position [Lepik and Hein (2005)].

Here, the deterministic system with sinusoidal forcing is first presented, and

then a white Gaussian noise component is included in the input. The pendulum

system is integrated via an Itō scheme, and this allows for a numerical study by using

the Euler-Maruyama method [Higham (2001)]. By using this method, one obtains an

approximate solution of the system. This method is an extension of the Euler method

for ordinary differential equations, which has been adapted to perform integrations of

stochastic differential equations (SDEs). In addition, a Method of Moments analysis

is also used to study the averaged dynamics of the system. Through this analysis, an

approximation is obtained for the solution of the Fokker-Planck equation (a partial

10



differential equation) for the system, which governs the evolution of the probability

density function of the states of the pendulum [Gardiner (1985)]. The moment

evolution equations (an infinite set of ordinary differential equations) are derived

from the Fokker-Planck equation [Socha (2007)] and truncated. As a part of the

development, Taylor expansions of the harmonic terms are performed. A numerical

solution of this truncated, finite set of ordinary differential equations provides an

averaged (approximate) solution to the variables in state space.

The second system studied here is a Rayleigh-Duffing mixed type oscillator,

which is a system studied by Dr. Y. Ueda in the 1960s. This system was shown to

have a chaotic attractor in the form of a broken egg [Abraham and Ueda (2001)].

Since this system has had an important influence on developing an understanding of

chaos, as a tribute to Dr Y. Ueda, this system was chosen to explore the effects of

noise on the response of this oscillator.

In the case of the Rayleigh-Duffing mixed type oscillator, to visualize the

influence of noise on the response, the Poincaré sections of this system are presented

in the form of a two-dimensional histogram. By using this means of visualization,

the stochastic dynamics of the system is believed to be portrayed in a meaningful

way. This approach might serve as a useful tool in exploring the response of other

Figure 2.1: Planar pendulum subjected to vertical excitation. The symbols in this
figure are listed in Table 2.1.
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systems with noise component inclusions.

2.2 Pendulum Stabilization

2.2.1 System Equations

Under the influence of gravity, the equation of motion for a vertically and

harmonically forced simple pendulum with a massless rod of length l and pendulum

mass m takes the form:

d2θ

dt2
− g

l
sin θ − ãΩ2

l
sin θ cos Ωt = 0 (2.1)

After nondimensionalizing equation (2.1) and including a viscous damping

term, the following is obtained

θ̈ + µθ̇ − ω2 sin θ − a sin θ cos t = 0 (2.2)

The nondimensionalized equation of motion with harmonic and stochastic

forcing is given by

Figure 2.2: Dynamic potential approximation for the pendulum determined by using
the method of multiple scales, as presented in Appendix A. A solid line is used to
depict the multiple scales approximation and a dashed curve is used to depict a
further approximation obtained with 3rd order Taylor expansions of the harmonic
terms. a) a = 0.08, ω = 0.06, b) a = 0.08, ω = 0.047, and c) a = 0.2, ω = 0.06
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θ̈ + µθ̇ − ω2 sin θ − a sin θ[cos t+ σẆ (t)] = 0 (2.3)

It is remarked that the noise excitation is multiplicative, due to the vertical

nature of the excitation. By using the method of multiple scales [Nayfeh and

Balachandran (1995)], for a system subjected to low-amplitude, high-frequency

forcing, the dynamic potential function of the forced pendulum system can be

approximated as

U(θ) = ω2 cos θ − a2

8
cos 2θ (2.4)

where the details on the construction of this function are provided in Appendix A.

This function will be used to determine the stability of the deterministic pendulum, in

the presence of the high-frequency forcing. Several graphs of this dynamic potential

are presented in Figure 2.2. In subsequent sections, this function will be used to

determine parameter values for which the top position is either stable or unstable.

2.2.2 Numerical Results

This pendulum is subjected to a deterministic forcing a cos t and a stochastic

input aσẆ (t), which is multiplicative with respect to the sine of the angular dis-

placement. The term, Ẇ (t), denotes white noise, which is defined as the derivative

of Brownian motion. Since Brownian motion (or in the physics literature, the Wiener

process) has independent increments, its derivative does not exist with probability

one [Chorin and Hald (2009)]. Thus, Ẇ (t) is a “mnemonic” derivative. To write the

equations with more formality, the stochastic differential equations is converted into

Langevin form. For facilitating the analysis, the equation of motion is first cast into

a state-space form. In the subsequent notation, φ1 and φ2, respectively, correspond

to the pendulum position and velocity in state space:
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{
φ̇1 = φ2

φ̇2 = −µφ2 + ω2 sinφ1 + a sinφ1 cos t+ aσ sinφ1Ẇ (t)
(2.5)

Next, the system of Langevin equations from this system of stochastic differen-

tial equations is written as

{
dφ1 = φ2dt

dφ2 = [−µφ2 + ω2 sinφ1 + a sinφ1 cos t]dt+ aσ sinφ1dW
(2.6)

Notice that in this differential form, one no longer has the derivative of Brownian

motion (which does not exist) but a differential white noise which does exist. This

system is integrated as an Itō integral. It should be noted that since there is

parametric excitation, the Itō and Stratonovich integrations of this equation are

not the same in general. Integrating equation (2.5) as a Stratonovich integral, the

system is written as

{
dφ1 = φ2dt

dφ2 = [−µφ2 + ω2 sinφ1 + a sinφ1 cos t]dt+ aσ sinφ1 ◦ dW
(2.7)

where ◦ denotes integration in the Stratonovich sense. The Euler-Maruyama method

can be used to obtain numerical solutions for equation (2.6), while the Euler-Heun

method can be used to obtain numerical solutions for equation (2.7).

In each of the graphs shown in Figures 2.3 and 2.4, the simulations were

initiated with a small initial displacement. As can be seen in Figures 2.3(a) and

2.4(a), for the considered parameter values, the upright position of the pendulum

is not stable, as mentioned in the previous subsection. However, by adding a low

amplitude noise, the pendulum is caused to stay in the upright position as seen in

Figures 2.3(b) and 2.4(b). If one is operating just below the bifurcation point (i.e.,

if the amplitude level of the sinusoidal forcing is too low to stabilize the upright

position), noise can help stabilize this pendulum system in the upright position, for

at least finite time intervals.
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Figure 2.3: Euler-Maruyama results for ω = 0.06, µ = 0.1, and a = 0.08. a) With no
noise, the pendulum falls from the upright position (θ = 0 radians) to the bottom
position (θ = π radians). b) With a low level of noise, the pendulum remains in the
upright position for the finite duration considered. These results are to be compared
with those presented later in Figure 2.6.

As shown in Figure 2.5, with a deterministic forcing, the upright position can

be stabilized. By considering only noise of amplitude σ = 2.0 in the forcing, the

pendulum still settles to the downward position. However, if the upright position

is stabilized with a driving amplitude of a = 0.2, noise of the same amplitude as

previously used can cause the pendulum to enter periods of complete rotations.

In other words, if only the downward position is stable, white noise alone cannot

stabilize the upright position (which is also noted in the study of [Kao and Wihstutz

(2000)]); however, if a sinusoidal forcing stabilizes the upright position, the noise

causes motions between the two stable equilibrium points (periods of rotations).

This could be useful for energy harvesting applications, as the noise can cause large

movements in the bi-stable system.
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Figure 2.4: Euler-Heun results for ω = 0.06, µ = 0.1, and a = 0.08. a) With no noise,
the pendulum falls from the upright position (θ = 0 radians) to the bottom position
(θ = π radians). b) With a low level noise, the pendulum remains in the upright
position for the finite duration considered. Notice that in this case, the simulation
results are qualitatively similar to those found in Figure 2.3.

2.2.3 Fokker-Planck Equation and Method of Moments Analysis

In the preceding subsection, the use of white noise to stabilize the unstable

upright position of the pendulum was demonstrated. In this subsection, the aim

is to obtain an approximate solution on the basis of a formalism based on the

Fokker-Planck equation [Gardiner (1985)]. The solution of this partial differential

equation is the time evolution of the probability density function, which is a function

of the variables in state space and of time. The Fokker-Planck equation can be

written as

∂tp = −Σj∂j[Aj(x, t)p] + 1
2
Σj,k∂j∂k[B(x, t)BT (x, t)]j,kp (2.8)
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Figure 2.5: Results with and without deterministic components in the input. a)
With only deterministic forcing, the upright position is stable, and the pendulum
approaches the top position. b) With only noise, in this case with σ = 2.0, the
upright position is unstable, and the pendulum approaches the bottom position. c)
With a forcing amplitude that stabilizes the upright position and the same noise
level, the pendulum is sent into periods of full rotations.

where, x is the vector of variables in state space, p = p(x, t) is the probability density

function, Aj(x, t) is the vector containing the deterministic parts of equation (2.6),

and B(x, t) is the vector containing the stochastic parts of equation (2.6). The

Fokker-Planck equation for the pendulum can then be straightforwardly constructed

as

∂tp = −∂φ1(φ2p)− ∂φ2([−µφ2 + ω2 sinφ1 + a sinφ1 cos t]p)+
1
2
∂2
φ2

(a2σ2 sin2 φ1p)
(2.9)

To find an approximate solution for equation (2.8), the Method of Moments is

employed [Socha (2007)]. To briefly explain this method, first consider the general

moment equation:
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< g >=

∫ ∫
gpdx1dx2 (2.10)

Then, obtaining the moment as it evolves through time, it is found that

d < g >

dt
=

∫ ∫
g
dp

dt
dx1dx2 (2.11)

Now, replacing g with the rth moment of position and the sth moment of

velocity of the pendulum, the result is

d < φr1φ
s
2 >

dt
=

∫ ∫
φr1φ

s
2

dp

dt
dφ1dφ2 (2.12)

After substitution and rearrangement, the moment evolution equation for the

pendulum is obtained:

d
dt
< φr1φ

s
2 >= r < φr−1

1 φs+1
2 > −µs < φr1φ

s
2 >

+(ω2s+ as cos t) < φr1 sinφ1φ
s−1
2 >

+a2σ2

2
s(s− 1) < φr1 sin2 φ1φ

s−2
2 >

(2.13)

On substitution of different values of r and s, this moment evolution equation gives

an infinite set of ODEs. For instance, the ODE corresponding to the time derivative

of the second moment of velocity (i.e., r = 0, s = 2) is expressed in terms of the fourth

moment of position because of the sin2 φ1 term. The following two approximations

are made, in order to solve this infinite set of ODEs: i) a 3rd degree Taylor expansion

is used to approximate sinφ1 about the upright equilibrium point (an expansion

about φ1 = 0 radians) to obtain approximate solutions about this point, and ii)

moments of order 3 and higher are neglected via the cumulant neglect method [Socha

(2007)]. It should be noted that the states are not considered to be independent (i.e.,

< φr1φ
s
2 >6=< φr1 >< φs2 >). These approximations yield a set of 5 ODEs, from the

Fokker-Planck PDE. The numerical results obtained with this reduced-order system

are presented in Figure 2.6.

18



Figure 2.6: The average displacement obtained from the moment evolution equation
is presented here. a) Without noise, the pendulum moves away from the unstable
equilibrium point. b) With noise, the average displacement of the pendulum stays
near the previously unstable equilibrium point. These cases may be compared with
those in Figures 2.3 and 2.4.

In Figure 2.6(a), the average displacement of the pendulum is shown to move

from the unstable equilibrium position, θ = 0 radians, when there is no noise. It

is noted that since the Taylor expansion is to 3rd degree about the point φ1 = 0

radians, the solution is only valid in the range of −1.0rad < θ < 1.0rad. Since this is

a truncated model, the instability happens in a shorter amount of time, as compared

to the Euler-Maruyama simulation in Figure 2.3(a). In Figure 2.6(b), the solution is

stabilized (for at least a finite time) about the unstable equilibrium position, similar

to that discussed in the previous section and shown in Figure 2.3(b).

2.3 Noise-utilizing Controller

Here, a novel controller for the bi-stable pendulum is presented, which could

be extended with ease to other multi-stable systems. The controller is defined with

the following logic: if the system is in an undesirable well, the noise amplitude

is positive; and if the system is in the desired well, the noise amplitude is set to

zero. To steer the system response to the upward position, the controller Cup is

implemented; and to steer the system response to the bottom position, the controller

Cdown is implemented. The control scheme is written symbolically for the pendulum
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as follows, where ∧ is the “AND” operator and ∨ is the “OR” operator:

Cup =


σ > 0, if [

φ2
2

2
+ ω2 cosφ1 − a2

8
cos 2φ1 < U(φ∗1)]

∧[(mod(|φ1|, 2π) < φ∗1)

∨(mod(|φ1|, 2π) > (2π − φ∗1))]

σ = 0, otherwise

(2.14)

Cdown =


σ > 0, if [

φ2
2

2
+ ω2 cosφ1 − a2

8
cos 2φ1 < U(φ∗1)]

∧[(mod(|φ1|, 2π) > φ∗1)

∧(mod(|φ1|, 2π) < (2π − φ∗1))]

σ = 0, otherwise

(2.15)

Here, φ∗1 is the value of φ1 such that 0 < φ∗1 < π and U(φ∗1) = Max(U). For the

pendulum system, with parameters such that the upright and downward positions

are both stable (say, a = 0.08, ω = 0.047, µ = 0.01), this controller can be used

to move the system from one well to the other. For the case presented in Figure

2.7, φ∗1 = 0.808871 and U(φ∗1) = 0.0015, as seen from Figure 2.2(b). For the case

presented in Figure 2.8, φ∗1 = 1.38981 and U(φ∗1) = 0.0053, as seen from Figure 2.2(c).

This control scheme utilizes noise to move the system to a desired stable equilibrium

position, while ensuring that the system does not have enough energy to leave the

desired position’s dynamic potential well. The simulation results shown in Figures

2.7 and 2.8 were obtained by using the Euler-Maruyama method, as described in the

second section, together with the described controller.

2.4 Qualitative Changes in Aperiodic Behavior of Rayleigh-Duffing

System

In the previous section, the effects of noise on the response of a vertically-excited

pendulum were discussed. Here, in honor of Dr. Y. Ueda, the effects of noise on the

Rayleigh-Duffing oscillator are explored. This oscillator is described by
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Figure 2.7: For a = 0.08 and ω = 0.047, whose dynamic potential is shown in Figure
2.2(b). a) The system is stable about the upright position. b) With the controller,
the pendulum is pushed to the bottom position. c) The system is stable about the
bottom position. d) With the controller, the pendulum is pushed to the upright
position (mod 2π).

d2x

dt2
− ν(1− γ(

dx

dt
)2)
dx

dt
+ x3 = Fsin(Ωt) + σẆ (t) (2.16)

As before, the system has a superposition of deterministic and stochastic

forcing (Fsin(Ωt) and σẆ (t), respectively). For the parameter values ν = 0.2,

γ = 4.0, F = 0.3, and Ω = 1.1, the deterministic counterpart of this system (i.e., the

system without noise) exhibits the broken-egg chaotic attractor [Higham (2001)].

As discussed in Section 2.2, this equation can be written in Langevin form, and

using this form, an Euler-Maruyama simulation can be implemented. By keeping the

other parameters at the aforementioned values, but reducing the forcing constant to

F = 0.166, it is found that the motion of the oscillator is periodic.
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Figure 2.8: For a = 0.2, ω = 0.06, whose dynamic potential is shown in Figure
2.2(c). a) The system is stable about the upright position. b) With the controller,
the pendulum is pushed to the bottom position. c) The system is stable about the
bottom position. d) With the controller, the pendulum is pushed to the upright
position (mod 2π).

It is noted that in Figure 2.9, a two-dimensional histogram is taken of the

Poincaré sections of the Euler-Maruyama simulation. The clock frequency used to

construct the Poincaré section is taken to be the forcing frequency. In the histograms

presented, the color coding shows how many points from the Poincaré sections lie

within each small box of the state space in a given amount of time, where x refers to

position and v refers to velocity. On top of this histogram, the broken-egg attractor

with the parameter values given above is graphed also for direct comparison. As

noise is added to the Rayleigh-Duffing mixed type oscillator, the oscillator progresses

from periodic motion to something that appears to be “quasiperiodic” or “chaotic,”

in an average sense. This method of visualization might be useful for other systems

that have stochastic components. Since there are many attracting sets between
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the parameter values F = 0.166 and F = 0.3, the response of the oscillator is best

thought of in an average sense: the noise pushes the response between many different

attracting sets, which are close to each other. In an average sense, in going from

Figure 2.9(b) to Figure 2.9(c), the noise pushes the system response to what also

looks like a broken-egg form; the noise breaks the egg shape form observed in Figure

2.9(b). It is recalled that in the absence of noise, the response is periodic as noted in

Figure 2.9(a). For relatively large levels of noise, the state of the system begins to

fill a portion of the state space, centered about the origin.

2.4.1 Lyapunov Exponent

Although the graphs from Figure 2.9 seem to imply that noise might push

the system into a chaotic regime, a calculation of the largest Lyapunov exponent

elucidates this more clearly. A calculation method for the largest Lyapunov exponent

which is robust to noise was used to approximate this metric from the data presented

in Figure 2.9 [Rosenstein et al. (1993)]. Calculations carried out with this method

yield λ1 ≈ 0 for the case of no noise, which is consistent with the fact that the system

exhibits a stable limit cycle. For the case of σ = 0.05, this calculation gave that

λ1 ≈ 0.38 > 0. Thus, it seems reasonable that noise does push this system into a

region of chaotic behavior.

2.5 Concluding Remarks

In this chapter, several aspects of the influence of noise on the dynamics of

a planar pendulum subjected to a vertical forcing is explored. Through numerical

simulations, it has been shown that a low level of noise can help stabilize the upright

position, when the forcing amplitude is close to the critical value at the bifurcation

point of the deterministic system. Also, it is shown that noise can be used to
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Figure 2.9: Illustration of the broken-egg attractor along with the different responses
on the Poincaré section constructed by using the forcing frequency as the clock
frequency: a) With no noise, the motion of the oscillator is periodic, as illustrated
by the discrete set of points. b) With a low level of noise, a curve in the state space
is traced. c) With the noise level at σ = 0.05, the Poincaré sections are, on average,
on an egg-like shape which encircles the broken-egg attractor. d) With higher levels
of noise, the oscillator’s response fills a large, sparsely populated area.

push the pendulum system into periods of rotation. The author believes that this

aspect of noise could be utilized to harvest energy from this system by storing

the rotational energy. After deriving the Fokker-Planck equation and the moment

evolution equation, the author numerically found an approximate solution to the

moment evolution equation. Through this analysis, it has been shown that the

average displacement of the pendulum can be stabilized (at least over a finite time

interval) about the unstable upright position. This has been done by using white
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noise before the onset of the bifurcation associated with the upright position in the

deterministic case.

Through studies of the Rayleigh-Duffing mixed type oscillator, it has been

shown that the addition of noise can promote an early appearance of dynamic

response in an average sense, which previously did not exist in the corresponding

noise-free case. Poincaré sections were constructed for the numerically obtained

responses from the Euler-Maruyama simulation. A two-dimensional histogram was

used to visualize this data and compare it to the broken-egg chaotic attractor that

is known to occur in this system. It is noted that the noise inclusion caused the

system response to progress from a periodic motion to a motion that appears to

be “quasiperiodic” or “chaotic”. The histograms can be taken to show the average

dynamics of the system. For the deterministic case, the histogram is simply the

same as that obtained with the usual constructions of Poincaré sections. As noise is

added, the system dynamics moves between different attracting sets (there appear

to be many attracting sets between F = 0.166 and F = 0.3). Eventually, the noise

overpowers the attracting sets, and the system response fills a portion of the state

space. These results suggest that an optimal level of noise may exist, which can be

used to control/confine the system response to different attracting sets.

The author believes that the noise-utilizing controller can be used for many

other systems with two or more equilibrium solutions. Since the influence of noise is

quite prevalent at the micro-scale, this controller might be implemented through a

converse method: if the system is in an undesirable position, one should not filter

the noise; if the system is in a desirable position, one can filter the noise from the

system. In many situations, noise is considered to be undesirable. As shown in this

study, there are several ways through which noise can influence the dynamics of

the pendulum in an advantageous manner. By understanding the noise-influenced

dynamics of the pendulum, parameters could be designed to utilize these stochastic
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components.
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Chapter 3

EFFECTS OF PHASE LAG ON THE INFORMATION RATE OF A

BISTABLE DUFFING OSCILLATOR

To utilize noise for systems, which are transmitting or receiving information,

the information rate is a necessary metric to consider. The phase lag, which is the

difference between the sender (applied forcing) and receiver (the oscillator) phases,

has a significant effect on the information rate. However, this phase lag is a nonlinear

function of the noise level. Here, the effects of phase lag on the information rate for

a Duffing oscillator are examined and comparative discussions are made with phase

lag from linear response theory. The phase lag is shown to be an important variable

in calculating the information rate.

The rest of this chapter is organized as follows. In the next section, a brief

literature review of pertinent information theory is discussed. In Section 3.2, the

equations governing the nondimensionalized bistable Duffing oscillator are discussed.

Euler-Maruyama simulations are presented in the following section, as well as the

approach used to convert the continuous system response into a binary signal. The

Fokker-Planck equation and cumulant neglect method are presented in the subsequent

section. By using the Euler-Maruyama method and the moment evolution equations,

the information rate is used to assess the influence of noise on the system response.

By considering the phase lag as a parameter in calculating the information rate, a

relationship amongst the phase lag, noise amplitude, and information rate is shown.

Concluding remarks are collected together in the final section.
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Table 3.1: Nomenclature describing the quantities governing the bistable Duffing
oscillator.

x Oscillator displacement
x1 Oscillator position in state space
x2 Oscillator velocity in state space
c Viscous damping
ζ Damping ratio
k1 Linear stiffness
k3 Nonlinear stiffness
K̂ Nondimensionalized stiffness
Ω Forcing frequency
Ω̂ Nondimensionalized forcing frequency
ωn Natural frequency
Ẇ (t) White Gaussian noise (derivative of Wiener process)
σ̂ Nondimensionalized noise amplitude

3.1 Introduction and Background

Stochastic resonance has been classically identified as a peak in the signal-to-

noise ratio [Gammaitoni et al. (1998)], when a response measure is plotted against

the amplitude of noise. This phenomenon, which has been used to describe the effects

of noise on the recurrence of ice ages [Benzi et al. (1981)], was first studied in the

context of a bistable Duffing oscillator [Gammaitoni et al. (1998)] and also shown to

have an important effect on the response of a monostable Duffing oscillator [Stocks,

Stein, and McClintock (1993)]. Recently, stochastic resonance has been studied

in a macroscale, distributed parameter system, a post-buckled beam [Wiebe and

Spottswood (2014)]. The integrate-and-fire model for neurons exhibit the behavior

shown by a monostable Duffing oscillator [Wiesenfeld and Moss (1995)].

Since Shannon’s seminal information theory work [Shannon and Weaver (1948)],

information theoretic techniques have been applied to many different systems. A

binary channel has been studied by using information capacity [Chapeau-Blondeau

(1997)]. In experimental work, mutual information has been used to show broadband

stochastic resonance in a neuron [Levin and Miller (1996)]. The channel capacity

has also been used to detect the occurrence of stochastic resonance in a neuron
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model [Kish, Harmer, and Abbott (2001)], where it was noted that the location of

the channel capacity maximum occurs at a higher noise amplitude than does the

maximum of the signal-to-noise ratio (SNR). In the present chapter, a similar result

is obtained. Furthermore, for different phase lags, the peak is found to occur at

different noise amplitudes. For a neuron model, aperiodic stochastic resonance has

been measured by using mutual information [Bulsara and Zador (1996)]. Also,this

measure was used to study a neuron undergoing adaptive stochastic resonance

[Mitaim and Kosko (2004)]. Simulations have also been carried out with a bistable

dynamic system by using an Euler discretization scheme, revealing a single peak in

the channel capacity [Godivier and Chapeau-Blondeau (1998)]. After converting

input and output signals to binary sequences, experimental data from a Schmitt

trigger have been shown to exhibit extrema when studied with Conditional and

Kullback entropies [Neiman, Shulgin, Anishchenko, Ebeling, Schimansky-Geier, and

Freund (1996)]. For weak forcing and noise variance, the behavior of the normal form

equation was examined by using mutual information [Nicolis and Nicolis (2000)].

The Fisher information measure has also been used to study responses of a parallel

array of sensors [Chapeau-Blondeau et al. (2006)]. Entropy measures for several

dynamical systems, including a linear oscillator, are discussed in reference [Sobczyk

(2001)].

3.2 System Equations

The equation of motion governing a bistable Duffing oscillator with mass m,

viscous damping c, linear stiffness k1, nonlinear stiffness k3, forcing amplitude F ,

and forcing frequency Ω can be written as

mẍ+ cẋ− k1x+ k3x
3 = F sin(Ωt) (3.1)
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where all of the parameters assume positive values and an overdot indicates differen-

tiation with respect to time t. After dividing equation (3.1) by m and introducing a

nondimensional time τ = ωnt , the resulting equation takes the form

ω2
n

d2x

dτ 2
+ 2ζω2

n

dx

dτ
− ω2

nx+
k3

m
x3 =

F

m
sin(

Ω

ωn
τ) (3.2)

Dividing through by ω2
n and introducing primes to indicate differentiation with

respect to the nondimensional time τ , the result is

x′′ + 2ζx′ − x+
k3

k1

x3 =
F

k1

sin(
Ω

ωn
τ) (3.3)

Finally, after substituting the nondimensional parameters K̂ = k3

k1
, F̂ = F

k1
, and

Ω̂ = Ω
ωn

, the equation becomes

x′′ + 2ζx′ − x+ K̂x3 = F̂ sin(Ω̂τ) (3.4)

After including nondimensional noise, the stochastic differential equation (SDE)

for the nondimensionalized bistable Duffing equation is modified to

x′′ + 2ζx′ − x+ K̂x3 = F̂ sin(Ω̂τ) + σ̂Ẇ (τ) (3.5)

3.3 Numerical Results

In equation (3.5), the oscillator is subjected to a deterministic forcing F̂ sin(t)

and a stochastic input σ̂Ẇ (τ). Writing in state-space form, one obtains

{
dx1

dτ
= x2

dx2

dτ
= −2ζx2 + x1 − K̂x3

1 + F̂ sin(Ω̂τ) + σ̂Ẇ (τ),
(3.6)

where x1 and x2 correspond to the position and velocity, respectively. The white noise

term, Ẇ (t), is defined as the derivative of Brownian motion. Since Brownian motion

30



(or in the physics literature, the Wiener process) has independent increments, as also

mentioned in the previous chapter, its derivative does not exist with probability one

[Chorin and Hald (2009)]. For this reason, Ẇ (t) is a “mnemonic” derivative. Hence,

writing equation (3.6) in differential form, one has

{
dx1 = x2dτ

dx2 = [−2ζx2 + x1 − K̂x3
1 + F̂ sin(Ω̂τ)]dτ + σ̂dW

(3.7)

In this form, one no longer has the derivative of Brownian motion but a

differential white noise which does exist. This system is integrated as an Itō integral,

and the Euler-Maruyama method can be used to obtain numerical solutions for

equation (3.7) [Higham (2001)]. These simulations were performed on a desktop

computer, with a 4.00 GHz processor, by using MATLAB. Although this code was

not optimized for speed, it took approximately 7.6 hours of wall time to run the 200

Euler-Maruyama simulations for each of the 100 noise amplitudes considered and to

do the subsequent averaging. A sample code for the Euler-Maruyama simulation

and the cumulant neglect method is given in Appendix B.

The information rate R is defined as

R = H(x)−Hy(x), (3.8)

where the Shannon entropy is H(x) = −Σipilog2pi and the conditional entropy is

Hy(x) = −Σi,jp(i, j)log2pi(j), where pi(j) = p(i,j)
Σjp(i,j)

. Since the Duffing oscillator

response is a continuous time response, one needs to convert the oscillator’s position

response into a binary output, before the associated information rate can be computed.

A natural choice is to represent displacements below zero with“0” and displacements

above zero with “1”. With this choice, the positive piece of an input sine wave from

0 to π would be considered as one instance of “1”. Thus, averaging over this range

is sufficient to convert the continuous signal into a binary signal. However, given the
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inherent delay in an input-output relationship, care must be exercised in choosing a

phase lag for the continuous output signal, before converting it into a binary one.

In this chapter, phase lag constants for different noise amplitudes are considered

and their effects are examined. An example of this process for the no noise and no

phase lag case is presented in Figure 3.1. In the first part of this figure, the forcing

input, in black color, and the output response, in grey color, are both plotted. In the

middle part of this figure, the binary conversion scheme is implemented as previously

discussed. In the bottom part of this figure, the binary displacements have been

averaged over sections of one half period of the forcing frequency. After this was

done, if the averaged binary displacement over that length of time was above “0”, it

was converted to a bit value of “1”. If the averaged binary displacement over that

length of time was below “0”, it was converted to a bit value of “0”. By shifting

the half period sections to be averaged (i.e., by changing the phase lag), different

averages and subsequent bit values can be obtained and studied.

In Figures 3.2 and 3.3, the computed mean information rate for 200 simulations

is shown, over a noise level range. The effects of different phase lag values can be seen

in both figures. In Figure 3.4, the maximal information rate is plotted against the

noise amplitude, along with the phase lag amount that maximizes the information

rate. Interestingly, the phase lag graph is not monotonic. When a case with no

phase lag is considered, a double peak can be observed in the information rate, as

shown in Figure 3.5. The position of the peak in Figure 3.4 may be compared with

the that shown in Figure 3.10; this will be discussed later.

3.4 Fokker-Planck Equation and Method of Moments Analysis

In the preceding subsection, the influence of white noise was measured by using

Shannon’s information rate. In this section, an approximate solution is obtained

on the basis of a Fokker-Planck formalism. The solution of this partial differential
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Figure 3.1: Euler-Maruyama simulation of bistable Duffing oscillator, with no noise.
Black color (with black Xs in the bottom graph) is used for the input signal, and
grey color (with grey circles in the bottom graph) is used for the oscillator response
signal. The middle graph shows the result of converting the positions to zeros or
ones, as described in the text. The bottom graph has been averaged and converted
to discrete bits. There is no phase lag in this case.
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Figure 3.2: The mean information rate has been computed for 200 simulations, for
a range of noise levels. Different phase lags give drastically different values for the
information rate. This same information is presented as a contour plot, in order
to show that the backbone of the peak falls along the phase lag axis, as the noise
amplitude is increased. The parameters used for these simulations are as follows:
ζ = 2, K̂ = 50, F̂ = 0.35, and Ω̂ = 1.
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Figure 3.3: The parameters used for these simulations are as follows: ζ = 2, K̂ =
55, F̂ = 0.35, and Ω̂ = 1. The results presented in this figure, which have been
obtained for a higher nonlinear stiffness value, can be compared with those shown in
Figure 3.2.
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Figure 3.4: Plot of information rate versus noise amplitude. By carrying out a direct
search for the largest information rate (R) values, the “best” amount of phase lag
was found for each noise amplitude.
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Figure 3.5: Plot of information rate versus noise amplitude for zero phase lag. Two
peaks can be seen in this information rate plot. In Figures 3.2 and 3.3, a double
peak feature can be observed when the phase lag is zero.
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equation is the time evolution of the probability density function, which is a function

of the variables in state space and time. The Fokker-Planck equation can be written

as

∂tp = −Σj∂j[Aj(x, t)p] + 1
2
Σj,k∂j∂k[B(x, t)BT (x, t)]j,kp (3.9)

where x is the vector of variables in state space, the subscripts used with the partial

signs indicate the corresponding partial derivatives, p = p(x, t) is the probability

density function (PDF), Aj(x, t) is the vector containing the deterministic parts of

equation (3.7), and B(x, t) is the vector containing the stochastic parts of equation

(3.7) [Gardiner (1985)]. The Fokker-Planck equation for the bistable Duffing oscillator

can then be constructed as

∂tp = −∂x1(x2p) + ∂x2([2ζx2 − x1 + K̂x3
1 − F̂ sin(Ω̂τ)]p)

+ σ̂2

2
∂2
x2
p

(3.10)

To find an approximate solution for equation (3.10), the cumulant neglect

method is employed [Socha (2007)]. As also discussed in Chapter 2, the general

moment equation is first written as

< g >=

∫ ∫
gpdx1dx2 (3.11)

Then, obtaining the moment as it evolves through time, it is found that

d < g >

dt
=

∫ ∫
g
dp

dt
dx1dx2 (3.12)

Next, replacing g with the rth moment of position and the sth moment of

velocity of the Duffing oscillator, the result is

d < xr1x
s
2 >

dt
=

∫ ∫
xr1x

s
2

dp

dt
dx1dx2 (3.13)
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After substitution and rearrangement, the moment evolution equation for the

nondimensionalized Duffing oscillator is obtained:

d
dt
< xr1x

s
2 >= r < xr−1

1 xs+1
2 > −2ζs < xr1x

s
2 >

+s < xr+1
1 xs−1

2 > −K̂s < xr+3
1 xs−1

2 >

+F̂ sin(Ω̂τ)s < xr1x
s−1
2 >

+ σ̂2

2
s(s− 1) < xr1x

s−2
2 >

(3.14)

On substitution of different values of r and s, this moment evolution equation

leads to an infinite set of ordinary differential equations (ODEs). For instance, the

ODE corresponding to the time derivative of the second moment of velocity (i.e.,

r = 0, s = 2) is expressed in terms of the third moment of position. In order to

truncate this infinite set of ODEs, the following approximation is made: cumulants

of order 3 and higher are set equal to zero [Socha (2007)]. It should be noted that

the states are not considered to be independent (i.e., < xr1x
s
2 >6=< xr1 >< xs2 >).

From the Fokker-Planck PDE, these approximations yield the following set of five

ODEs:



µ̇1 = µ2

µ̇2 = F̂ sin(Ωτ)− 2ζµ2 + µ1 − K̂(3µ1µ3 − 2µ3
1)

µ̇3 = 2µ4

µ̇4 = µ5 + F̂ sin(Ωτ)µ1 − 2ζµ4 + µ3 − K̂(3µ2
3 − 2µ4

1)

µ̇5 = σ̂2 + 2F̂ sin(Ωτ)µ2 − 4ζµ5 + 2µ4−
2K̂(3µ3µ4 − 2µ3

1µ2)

(3.15)

The numerical results obtained with this reduced-order system are presented in

Figure 3.6. The initial conditions used to create Figures 3.6, 3.7, 3.8,and 3.9 are

µ1 =

√
1/K̂, µ2 = 0, µ3 =

√
dt, µ4 = 0, and µ5 = 0, where dt is the step size of

the Euler-Maruyama simulations. For the numerical results presented in the third

section, 200 simulations were used to calculate the conditional entropy. Since the

solution of the system of equations (3.15) is a time-varying probability distribution

function, the probability of receiving a “1” is the area under the curve above zero,
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Figure 3.6: After solving the system of five ODEs obtained from the cumulant neglect
method, the first five moments are used to plot the PDF of the displacement for the
Duffing oscillator. The mean of the PDF plotted in the bottom plot is shown in the
upper plot, as a reference.

while the probability of receiving a “0” is the area under the curve below zero. This is

analogous to the procedure used for the direct numerical simulations in the previous

section.

Figure 3.7 has been created by plotting the information rate against the

noise amplitude and different phase lag constants. This graph, the Fokker-Planck

counterpart of Figure 3.2, shows that after a certain point, the information metric

quickly increases, in a range centered about approximately π
2

radians. After this

initial sharp peak, the information metric decreases gradually. It is noted that the

portion of this graph pertaining to the no phase lag case shows a double peak, similar

to that seen in Figure 3.5. However, the maximum information as a function of the
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Figure 3.7: Plot of the information metric versus the noise amplitude and phase
lag. The truncation of the moment evolution equations at order 3 (thus, enforcing
a Gaussian aspect to the system) changes the shape of the graph. However, many
qualitative similarities remain. This same information is presented as a contour plot,
in order to show that the backbone of the peak decreases along the phase lag axis,
as the noise amplitude is increased. The parameters used for these simulations are
the same as those used for the Euler-Maruyama simulations related to Figure 3.2:
ζ = 2, K̂ = 50, F̂ = 0.35, and Ω̂ = 1.
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Figure 3.8: Plot of the information metric versus the noise amplitude and phase lag.
The parameters used for these simulations are as follows: ζ = 2, K̂ = 55, F̂ = 0.35,
and Ω̂ = 1. This graph obtained for a higher nonlinear stiffness value can be
compared with Figure 3.7.
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Figure 3.9: Plots to illustrate how the maximum information rate at each noise
amplitude is dependent on the amount of phase lag. The bottom graph is the case of
zero phase lag, which can be compared to Figure 3.5. Although the shape is different,
the same qualitative double peak is observed.
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Figure 3.10: Phase lag estimated from the Kramer’s rate, as obtained from equation
(3.16), which is depicted by dashed lines; and from equation (3.17), which is depicted
by solid lines. The parameters used are as follows: ζ = 2, K̂ = 50, F̂ = 0.35, and
Ω̂ = 1.
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noise level is not monotonic. The maximum information metric versus the noise

amplitude is shown in Figure 3.9.

For reference, the phase lag for the SNR peak from linear response theory of a

two-state system is given as

φ̄ = arctan(
Ω

2rk
), (3.16)

where the Kramer’s rate rk = ω0ωb

2πc
e−∆V/σ, with ω2

0 = V ′′(xm)/m and ω2
b = |V ′′(xb)/m|

(V being the potential function, xm being the minimum of the potential, and xb being

the position of the barrier) [Gammaitoni et al. (1998)]. For the nondimensionalized

system given by equation (3.5), equation (3.16) can be used to generate the graph

depicted as a dashed curve in Figure 3.10. This approach gives a monotonic phase

lag for the SNR, while the phase lag results obtained from both the direct numerical

simulations and Fokker-Planck formalism are not monotonic.

With further analysis of the linear response theory and taking into account

intra-well motions, the phase lag can be written as

φ̄ = arctan
( Ω

Ωr
(Ω2

rrk + Ω2σ)

Ωrr2
k + Ω2σ

)
, (3.17)

where Ωr is the relaxation rate of the system [Dykman, Mannella, McClintock,

and Stocks (1992)]. This formulation for the phase lag associated with stochastic

resonance does produce a peak when the phase lag is plotted against the noise

amplitude, as shown by the curve plotted with solid line in Figure 3.10. Revisiting

the dependence of phase lag on noise amplitude, but now plotting phase lag against

noise amplitude and information rate, a more complicated relationship is noted.

3.5 Concluding Remarks

In this chapter, the focus is on how phase lag affects the use of the information

rate as a metric for stochastic resonance. Through numerical simulations via the
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Euler-Maruyama method and a formalism based on the Fokker-Planck equation, it

has been shown that different noise amplitudes require different phase lag amounts

to attain the maximal information rate at each noise amplitude. For maximizing

the mutual information, it is seen that the relationship between noise amplitude and

phase lag is not monotonic. Interestingly, for a phase lag of zero, a double-peak

is seen in the information rate. Hence, if one is not considering phase lag, tuning

the noise amplitude in order to maximize the information rate could allow for more

flexibility.

The prediction from linear response theory by using the Kramer’s Rate is

either monotonic (equation (3.16)) or single peaked (equation (3.17)) in the plot of

phase lag versus noise amplitude. When considering the system from an information

theoretic approach, the peak location for the noise amplitude appears to be shifted

more to the right. When studying the bistable Duffing oscillator as an information

encoding medium, it is found that the phase lag is both important, and the peak is

different than that predicted by linear response theory from SNR considerations.

By understanding the relationship that both the phase lag and noise amplitude

have with the information rate, better tuning techniques can be developed to maximize

the amount of information sent through a noisy channel. If the delaying effects of

sending the signal through a noisy channel are known a priori, this could be used to

glean more information.
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Chapter 4

NOISE-INFLUENCED TRANSIENT ENERGY LOCALIZATION IN

AN OSCILLATOR ARRAY

The effects of noise on transient energy localization in a coupled array of nonlin-

ear oscillators are examined. Results obtained through simulations of deterministic

systems are compared to those obtained through Euler-Maruyama scheme based

simulations of the corresponding stochastic systems. To complement the numerical

studies as in previous chapters, a Fokker-Planck formalism is also used to analyze the

response of the system in the presence of noise. Transient localization phenomena

are explored by using time-domain and time-frequency analysis, and the insights

gained are discussed. The intent of this study is to further the understanding of

related behavior and use it for the benefit of a nonlinear system.

Through the current study, it is shown that noise suppresses a traveling wave

by transferring energy to low-frequency components. In the next section, a brief

literature review is given which discusses some aspects of energy localizations. In

Section 4.2, the nonlinear oscillator array is described. Euler-Maruyama simulations

and wavelet analysis are shown in Section 4.3. In Section 4.4, the Fokker-Planck

equation is simulated in order to study the system. In the discussion section,

concluding remarks, as well as observations pertinent to a system of coupled bistable

Duffing oscillators, are made. This system is seen to exhibit noise-induced transitions,

which the author plans to further study in the future.
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4.1 Introduction and Background

Energy localizations, which can result as a consequence of intrinsic localized

modes in micro-resonator arrays [Dick et al. (2008)], can lead to damage due to

undesirable response levels. On the other hand, these localizations can also be

beneficial, with applications in energy harvesting, sensing, and other applications

(e.g., [Dick, Balachandran, Yabuno, Numatsu, Hayashi, Kuroda, and Ashida (2009b);

Chakraborty and Balachandran (2011)]). In the study [Benzi et al. (1981)], Benzi

described the mechanism through which a combination of stochastic effects and

deterministic forcing may enhance the system response at a particular frequency. The

enhanced performance was shown to be absent when either the stochastic input or

the deterministic forcing is separately applied. In the author’s recent studies [Perkins

and Balachandran (2012)], an energy localization was provoked by the addition of

noise to an array of nonlinear oscillators under specific conditions. Though the effects

of noise have been examined for nonlinear oscillator arrays subjected to harmonic

inputs [Lindner, Bennett, and Wiesenfeld (2006); Jung, Behn, Pantazelou, and Moss

(1992); Ramakrishnan and Balachandran (2010)], effects of noise on transient energy

localizations could be of importance as well.

In this chapter, the author primarily studies the system of nonlinearly coupled

monostable oscillators illustrated in Figure 4.1. This system is excited from one end

with a sinc pulse, which is depicted in Figure 4.2. The sinc pulse is defined as

sinc(t) =

{
sin(2πf1(t−t0))

2πf1(t−t0)
, t 6= t0

1, t = t0
(4.1)

This excitation method has been utilized to take advantage of the localized

pulse-like behavior of the sinc function while proving a “soft start” to the system.

The additional frequency content in the sinc function is an adequate tradeoff for the

“soft start” property.
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Figure 4.1: An array of nonlinear coupled oscillators. Each mass is coupled to
adjacent masses by linear and nonlinear springs. In addition, each mass is attached
to a local restraint through a combination of linear springs, nonlinear springs, and
linear dampers. The parameters used in the subsequent simulations (except for
Figure 4.12) are as follows: modd = 1.00,meven = 0.80, ci = 0.01, k0,i = 45.00, k1,i =
1, k2,i = 50.00, andk3,i = 0.00.
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Figure 4.2: The sinc pulse which lasts for one second has energy content spread over
a broad range of frequencies.

The Euler-Maruyama algorithm [Higham (2001)] is used to numerically simulate

the considered systems, and along with it, the Fokker-Planck equation [Gardiner

(1985)] is used to develop the moment evolution equations and study them. The

moment evolution equations are derived by utilizing the method of moments [Socha
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(2007)]. Morlet wavelet analysis [Chabalko et al. (2005)] is used to measure the effects

of the noise and characterize the system response in the time-frequency domain.

4.2 Nonlinear Oscillator Array

The equations of motion for the considered oscillator array, which is shown in

Figure 4.1, can be written in the form



m1ẍ1 + c1ẋ1 + (k0,1 + k0,2 + k1,1)x1 − k0,2x2 + k2,1x
3
1 + k3,1x

3
1+

k3,2 (x1 − x2)3 = Fsinc(t) + σẆ (t)
...

miẍi + ciẋi − k0,ixi−1 + (k0,i + k0,i+1 + k1,i)xi − k0,i+1xi+1 + k2,ix
3
i + k3,i (xi − xi−1)3 +

k3,i+1 (xi − xi+1)3 = σẆ (t)
...

mnẍn + cnẋn − k0,nxn−1 + (k0,n + k0,n+1 + k1,n)xn − k2,nx
3
n+

k3,n (xn − xn−1)3 = σẆ (t)

(4.2)

where the constants are defined in Table 4.1. The boundary oscillators are coupled

to adjacent oscillators on one side and fixed restraints on the other side. The internal

oscillators are coupled to adjacent oscillators and also attached to local restraints

through spring-damper combinations.

By appropriately choosing the k2,i and k3,i terms, the system becomes an

array of monostable oscillators or an array of bistable Duffing oscillators. The

Fokker-Planck equation for the ith oscillator of this system can be written as follows:

∂tp = −

(
∂xi,1xi,2p+ 1

mi
∂xi,2p

(
− cixi,2 + k0,1xi−1,1 − (k0,i + k0,i+1 + k1,i)xi,1 + k0,i+1xi+1,1

− (k2,i + k2,i+1 + k3,i)x
3
i,1 + (3k2,ixi−1,1 + 3k2,i+1xi+1,1)x2

i,1 −
(
3k2,ix

2
i−1,1 + 3k2,i+1x

2
i+1,1

)
xi,1

+
(
k2,ix

3
i−1,1 + k2,i+1x

3
i+1,1

)
+ δ1,iFsinc(t)

))
+ σ2

2m2
i

∂2

∂(xi,2)2p

(4.3)
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Table 4.1: Nomenclature describing the quantities governing the array of oscillators.

xi position of ith oscillator
xi,1 position of ith oscillator in state space
xi,2 velocity of ith oscillator in state space
mi mass of ith oscillator
k0,i linear coupling spring on left side of ith oscillator
k1,i linear spring constant of ith oscillator
k2,i nonlinear coupling spring on left side of ith oscillator
k3,i nonlinear spring constant of ith oscillator
ci damping coefficient of ith oscillator
F forcing amplitude

Ẇ (t) white noise (derivative of Wiener process)
σ noise amplitude

sinc sinc pulse which lasts for one second

Further details of this construction and analysis of the Fokker-Plank equation

is included in Section 4.4.

4.3 Euler-Maruyama Simulations

In order to numerically simulate the system of monostable oscillators, the

governing equations need to be put in an appropriate form. First, to realize the

system of monostable oscillators, the k2,i terms are set equal to a positive number,

and the k3,i terms are set equal to zero. The oscillators are initialized at their

equilibrium position and the first oscillator is excited by a delayed sinc function. In

state-space form, the equations of motion are given by
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ẋ1,1 = x1,2

ẋ1,2 =

(
− c1x1,2 − (k0,1 + k0,2 + k1,1)x1,1 + k0,2x2,1−

k3,1x
3
1,1 − k3,2 (x1,1 − x2,1)3 + Fsinc(t) + σẆ (t)

)
/m1

...

ẋi,1 = xi,2

ẋi,2 =

(
− cixi,2 + k0,ixi−1,1 − (k0,i + k0,i+1 + k1,i)xi,1 + k0,i+1xi+1,1−

k3,i

(
x3
i,1 − xi−1,1

)3 − k3,i+1 (xi,1 − xi+1,1)3 + σẆ (t)

)
/mi

...

ẋn,1 = xn,2

ẋn,2 =

(
− cnxn,2 + k0,nxn−1,1 − (k0,n + k0,n+1 + k1,n)xn,1−

k3,n (xn,1 − xn−1,1)3 − k3,n+1x
3
n,1 + σẆ (t)

)
/mn

(4.4)

This system of Langevin equations can then be converted to differential form

suitable for numerical simulations as
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dx1,1 = x1,2dt

dx1,2 =

[(
− c1x1,2 − (k0,1 + k0,2 + k1,1)x1,1 + k0,2x2,1−

k3,1x
3
1,1 − k3,2 (x1,1 − x2,1)3 + Fsinc(t)

)
dt+ σdW

]
/m1

...

dxi,1 = xi,2dt

dxi,2 =

[(
− cixi,2 + k0,ixi−1,1 − (k0,i + k0,i+1 + k1,i)xi,1 + k0,i+1xi+1,1−

k3,i

(
x3
i,1 − xi−1,1

)3 − k3,i+1 (xi,1 − xi+1,1]3
)
dt+ σdW

]
/mi

...

dxn,1 = xn,2dt

dxn,2 =

[(
− cnxn,2 + k0,nxn−1,1 − (k0,n + k0,n+1 + k1,n)xn,1−

k3,n (xn,1 − xn−1,1)3 − k3,n+1x
3
n,1

)
dt+ σdW

]
/mn

(4.5)

With this system of equations in differential form, the Euler-Maruyama method

is used to simulate the system. As mentioned previously in this dissertation, this

is an extension of Euler’s method for ordinary differential equations (ODEs) to an

implementation for stochastic differential equations (SDEs). Representative results

obtained from a simulation are shown in Figure 4.3. The time evolutions of the

displacement responses of all 16 oscillators are shown in the upper portion of the

figure by using a color scale for the displacement range. The oscillators begin at

their equilibrium positions, denoted by green color. An excitation wave is applied

to the first oscillator, and the wave can be seen traveling through the array of

oscillators. Since the array is nonlinear, the wave motion cannot be described just

by a wave speed. The wave defines a boundary of influence where an oscillator does

not experience the excitation until the wave has reached it. A second wave, slightly
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Figure 4.3: Time evolutions of the displacement responses for a system of 16
nonlinearly coupled monostable oscillators is shown in the upper portion of the figure.
Displacement amplitude is expressed by using a color scale. In the lower portion of
the figure, the time history of the displacement response of oscillator 8 is shown. For
the results of the left column σ = 0.00, and for those in the right column σ = 0.10.
In each panel, a traveling wave can be identified traversing the system.

delayed, of negative displacement follows the first wave. The waves reflect off the

boundary at oscillator 16, and continue through the system. The individual nodes

continue to oscillate after the wave has passed through them. The wave disperses as

it reflects and travels through the system. An individual time history of oscillator 8

is shown in the lower portion of Figure 4.3. The oscillator can be identified to be in

a zero energy state, until the oscillator encounters the wave. The crest of the wave

can be identified at a time close to 2 seconds. The oscillator continues to ring; the

reflected wave passes and revisits it, just after 5 seconds.

4.3.1 Continuous Wavelet Transform

The continuous wavelet transform allows simultaneous signal characterization

in time and frequency domains. The wavelet coefficients are computed by convolving

the input signal with a so-called mother wavelet as described in reference [Teolis

(1998)] and shown below, wherein the asterisk denotes the complex conjugate of the
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corresponding quantity.

W (a, τ) =

∫ ∞
−∞

f(t)Ψ∗(a, t− τ)dt (4.6)

The mother wavelet Ψ(a, t) is chosen to have properties which match features

of the signal being analyzed. The Morlet wavelet has been chosen since it matches

well to signals with sinusoidal oscillations. The wavelet is defined as a complex

sinusoid shaped by a Gaussian window as shown below.

Ψ(a, t) =
1√
a
eiωΨt/ae−(t/a)2/2 (4.7)

The center frequency of the wavelet is adjustable through ωΨ, which was taken to be

5.5 as described in reference [Chabalko et al. (2005)]. The real part, imaginary part,

and magnitude of the mother wavelet are shown in Figure 4.4. The author notes

the complex sinusoidal behavior of the real and imaginary parts. The magnitude of

the wavelet can be identified by the Gaussian window. Here, the magnitude of the

wavelet coefficient |W (a, τ)| is used to characterize oscillations in time and frequency.

These coefficients provide a measure of transient matching of the wavelet to the

signal. The magnitude of the coefficients is large when the scaled (a), and shifted

(τ) wavelet matches the signal, and the coefficients are small otherwise. The scaling

parameter a can be related to a harmonic frequency f by utilizing the ∆t of the

signal being analyzed through the relation f = ωΨ

2π∆ta
. As the scale a decreases, the

frequency equivalent of the wavelet increases and vice-versa.

A validation example of a wavelet matching a transient harmonic signal is

shown in Figure 4.5. In this case, the first two pulses are transient 30 Hz sinusoids,

and the second two pulses are transient 55 Hz sinusoids. The magnitudes of the

wavelet coefficients, plotted in the lower portion of Figure 4.5, reveal the time and

frequency localization of each pulse.
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Figure 4.4: Real part, imaginary part, and magnitude of the mother Morlet wavelet.
The wavelet can be used to describe signals with sinusoidal components, and it allows
for identification of transient frequency content.

Figure 4.5: A time series with transient frequency content, along with the magnitudes
of the wavelet coefficients shown below. The blue color is used to denote the lowest
value and the red color is used to denote the highest value. The Morlet wavelet is
able to characterize the transient signal in time and frequency space.
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4.3.2 Analyses of Euler-Maruyama Simulation Results

The system of monostable oscillators, excited by a sinc pulse, was subjected

to two different levels of noise. In the first case, no noise was included in the input

signal; this case can be considered as a control case. The wave traversed the system

of oscillators several times. The magnitudes of the wavelet coefficients for oscillators

1, 8 and 16 of this case (σ = 0.00) are shown in the top row of Figure 4.6. The wave

can be identified as a transient fluctuation just above 1 Hz in each of the oscillator

responses. Oscillator 8 is less responsive to the wave, although this may be due to

the phase of the wave as it traverses oscillator 8. The results obtained for the next

case, for which σ = 0.10, are shown in the second row of Figure 4.6. In this case, the

magnitudes of the wavelet coefficients show increased energy at lower frequencies.

The response in the 1 Hz range of oscillator 8 is significantly reduced, as compared

to that observed in the previous case. The response at oscillator 16 in the 1 Hz

range is reduced as well. For all three oscillators, low frequency (0.00 − 0.20) Hz

energy can be identified in the responses, as shown in the lower portion of each plot.

These frequency ranges can be compared to the lowest and highest linear natural

frequencies for this array, which have been computed to be 0.27 Hz and 2.26 Hz,

respectively.

This effect can be examined in more detail by analyzing the difference in the

magnitudes of the wavelet coefficients between the control case and the case with

σ = 0.10, as shown in Figure 4.7. To this end, the time integral of the amplitude

of the wavelet coefficients was computed over all oscillators. Subtracting out the

control case from the σ = 0.10 case, the difference in the amplitudes of each case is

seen only as a function of frequency:

G = Σoscillator

∫
time

(|Wσ=.1| − |Wσ=0|)dt (4.8)
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Figure 4.6: Amplitudes of the coefficients of the Morlet wavelets of the first, 8th, and
last oscillators show that noise attenuates the traveling wave, while increasing the
amplitudes of low frequency components.

This allows the attenuation across the 1.00 − 2.00 Hz band to be characterized,

without any ambiguities from phase shifting. It is noted that a large amount of

energy appears in the low-frequency range. The attenuations in the 1.00 − 2.00

Hz range due to the noise can be clearly identified through the negative values. It

appears that noise attenuates energy from the higher natural frequencies, while

increasing energy near the first natural frequency.

4.4 Fokker-Planck Formalism

As previously mentioned, the Fokker-Planck equation is a partial differential

equation whose solution is the time evolution of the probability density function.

This probability density function is a function of all of the variables in state space

and time. The general form can be written as follows [Gardiner (1985)]
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Figure 4.7: Time integral of the amplitude of the wavelet coefficients over all
oscillators. An expanded view of the marked region is shown in the insert.

∂tp = −Σj∂j[Aj(x, t)p] + 1
2
Σj,k∂j∂k[B(x, t)BT (x, t)]j,kp (4.9)

The complete Fokker-Planck equation for this coupled oscillator system would require

2n+ 1 variables (i.e. one for each position, one for each velocity, and one for time).

For brevity, the Fokker-Planck equation is written only for the ith oscillator. By

inserting the equations for the ith oscillator in equation 4.5 into equation 4.9, equation

4.3 is found. The method of moments is used to find the moment evolution equation

for this system, which is an infinite set of ODEs. As before, first consider the general

moment equation, where p = p(x1, x2, t) is the probability density function at time t :

〈z〉 =

∫∫
zpdx1dx2 (4.10)
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Then, obtaining the moment as it evolves through time, it is found that

d 〈z〉
dt

=

∫∫
z
dp

dt
dx1dx2 (4.11)

Now, considering the rth moment of position and sth moment of velocity of the

ith oscillator, the result is

d 〈xrvs〉
dt

=

∫∫
xrvs

dp

dt
dx1dx2 (4.12)

After substitution and rearrangement, the moment evolution equation for the

ith oscillator is obtained as

d
dt
〈xrivsi 〉 = r

〈
xr−1
i vs+1

i

〉
+ s

mi

[(
ci (〈vi−1〉+ 〈vi+1〉) + k0,i 〈xi−1〉+ k0,i+1 〈xi+1〉+[

k3,i 〈xi−1〉3 + k3,i+1 〈xi+1〉3
]

+ δ1,iFsinc(t)

)〈
xriv

s−1
i

〉
−2ci 〈xrivsi 〉 − [k0,1 + k0,i+1 + k1,i]

〈
xr+1
i vs−1

i

〉
−

[k3,i + k3,i+1]
〈
xr+3
i vs−1

i

〉
+ 3 [k3,i 〈xi−1〉+ k3,i+1 〈xi+1〉]

〈
xr+2
i vs−1

i

〉
+3
[
k3,i 〈xi−1〉2 + k3,i+1 〈xi+1〉2

] 〈
xr+1
i vs−1

i

〉 ]
+ σ2

2m2
i
s (s− 1)

〈
xriv

s−2
i

〉
(4.13)

From this moment evolution equation, one obtains an infinite set of ODEs

parameterized by r and s. In order to solve this infinite set of ODEs, the following

three approximations are made: i) the Fokker-Planck equation for the ith oscillator

can be written considering only the neighboring two oscillators, ii) the states of

the ith oscillator can be considered independent from the states of the neighboring

oscillators (for instance, < xriv
s
ix

u
i+1 >=< xriv

s
i >< xui+1 >), and iii) moments of

order 7 and higher are set equal to zero (which truncates the infinite set of ODEs).

These approximations yield a set of 27n ODEs, from the previous SDEs. This

reduced-order system has been numerically solved and the obtained time histories
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of the displacement responses of all the oscillators are presented in Figure 4.8.The

oscillator motions are started at their equilibrium positions and the initial wave can

be identified propagating through the array. After reaching oscillator 16, the wave

reflects and continues propagating through the array. The results are similar to those

obtained through the Euler-Maruyama simulations for σ = 0.00 and shown in Figure

4.3.

Figure 4.8: Time histories of the responses for the array of oscillators with no noise,
obtained by using moment evolution equations.

The first six moments were computed from the method of moments. It is found

that the 5th and 6th moments had near zero values, while the other moments had

non-zero values. The probability distribution function of oscillator displacement

can be modeled after the Pearson distribution (e.g., [Andreev et al. (2005)]). This

distribution can be determined from the first four central moments µ1, µ2, µ3, and

µ4, as obtained by solving the differential equation

p′(x) = p(x)
(x− µ1)− a

b0 + b1(x− µ1) + b2(x− µ1)2
(4.14)

where
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a = b1 =
−µ3 (µ4 + 3µ2

2)

A

b0 =
−µ2 (4µ2µ4 − µ2

3)

A

b2 =
− (2µ2µ4 − 3µ2

3 − 6µ3
2)

A

A = 10µ2µ4 − 18µ3
2 − 12µ2

3

(4.15)

Based on the above formulation, the Pearson distributions associated with

the response of oscillator 8 has been determined for two different noise levels. The

probability density function for the displacement response of oscillator 8 as a function

of time in the absence of noise is shown in the left portion of Figure 4.9. Initially, the

probability distribution for the displacement response of the oscillator is very narrow,

because of the small variance of the distribution. As time progresses, the position

of the oscillator may admit some uncertainty; however, the large central peak of

the probability distribution is indicative of the high likelihood of the displacement

position of the oscillator. The position of the oscillator is less certain when noise

is added to the system, as indicated by the results shown in the right portion of

Figure 4.9. In this case, the initial position of the oscillator has small variance as

before. However, as time progresses, the probability distribution of the position of

the oscillator becomes more diffuse. This characteristic diffusion effect can be seen

for many Fokker-Planck systems. The presence of noise causes the second, third,

and fourth moments to increase in time.

Similar to the wavelet analyses conducted in Section 4.3, wavelets calculated

from the Fokker-Planck formalism are presented in Figure 4.10, with the associated

analysis presented in Figure 4.11. Qualitatively similar attenuation of the traveling

wave can be seen from the wavelet analyses performed on the Euler-Maruyama simu-

lation results and that performed on the results from the Fokker-Planck formalism.
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Figure 4.9: Probability density variation for displacement response of oscillator 8 with
respect to time. The displacement can be characterized by a Pearson distribution.
In the case of no noise, the displacement is highly localized (left). In the case of
noise (σ = 0.10), the displacement is less certain as shown by the large amount of
diffusion in the distribution as time evolves (right). The first moment (the mean
value) for the control case in Figure 4.9 may be directly compared to the response
history of oscillator 8 in Figure 4.3.

Figure 4.10: Wavelets calculated from the first moment obtained from the method
of moments analysis. The traveling wave is slightly attenuated, which is similar to
the results obtained from the Euler-Maruyama simulations.
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Figure 4.11: The difference in the integrals of the amplitudes of the wavelet coefficients
is shown, in the same manner as presented in Figure 4.7. The scaling is smaller than
that seen with the Euler-Maruyama simulations, although the qualitative attenuation
in the 1.00− 2.00 Hz range and the low frequency amplification is still discernible.
The author plans to further study the response behavior in the 0.25− 1.00 Hz range,
as this is notably different from that seen in Figure 4.7.

4.5 Concluding Remarks

A system of nonlinearly coupled monostable Duffing oscillators has been studied

in this effort. The variation of response with respect to noise level was considered,

including the control case of no noise. The system was numerically simulated with

the Euler-Maruyama method and analytically cast to a reduced-order model of ODEs

by using the method of moments. Solutions from both methods yielded qualitatively

similar behavior. In each case, an initial wave was shown to be attenuated with the

addition of Gaussian white noise. In the cases studied, energy at low frequencies

was identified. Time-frequency analyses was carried out by employing the Morlet

wavelet and used to characterize the system response and identify transient energy
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attenuation.

The probability distribution for the position of an oscillator was characterized

by using the Pearson distribution. This distribution showed the mean position

response of the oscillator as a function of time. When noise was present, the spread

of the distribution was observed to increase significantly as time progressed. These

results could be useful to develop shielding for systems which are robust to small

noise levels, but for which wave impulses could be detrimental. The apparent energy

transfer from noise into low frequency bands could also be exploited for energy

harvesting. This work is part of an ongoing effort, as a part of which, macroscopic

experimental systems of oscillators are being studied.

In a related study, an additional phenomenon was also found by the author.

For a system of linearly coupled bistable Duffing oscillators (i.e., k1 < 0, k2 = 0,

k3 > 0), a wave-like, switching phenomenon could be produced with the addition of

noise. The oscillators are initialized in their left stable equilibrium position, and the

first oscillator is excited with a sinc pulse during the first second, as before. The pulse

is seen to have little effect on the other oscillators, as it travels through the array,

as shown in Figure 4.12. By adding Gaussian white noise, a switching, wave-like

propagation is observed, where oscillators settle into their right stable equilibrium

positions. This noise-induced switching phenomenon, which is akin to the stochastic

resonance phenomenon, is to be further studied by the author and this phenomenon

may be relevant to the dynamics of neuron chains.
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Figure 4.12: The sinc pulse alone does not cause all of the oscillators to switch
from their left well to their right well. By using noise (applied to all oscillators),
the switching, wave-like phenomenon is seen to progress through the entire array.
For a moderate amount of noise, the switching behavior can only go through a
portion of the array. A higher noise level induces all oscillators to switch wells.
The parameters used in this simulation are as follows: mi = 1.00, ci = 0.60, k0,i =
1.50, k1,i = −1.50, k2,i = 0.00, andk3,i = 5.00.
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Chapter 5

NOISE-ENHANCED RESPONSE OF NONLINEAR OSCILLATOR

ARRAY

In this chapter, a set of coupled monostable Duffing oscillators will be studied.

Noise-enhancement possibilities in the context of an array of monostable Duffing

oscillators are explored. For the coupled oscillators, it is shown that an appropriately

chosen noise addition can be used to localize energy as well as shift energy localization

locations.

The rest of this chapter is organized as follows. In the next section, a brief

literature review of intrinsic localized modes is presented. In Section 5.2, the

equations governing the array of coupled monostable Duffing oscillators are derived.

The Euler-Maruyama simulations and the Method of Moments analysis are both

presented in this section and discussed along with the results obtained. Concluding

remarks are collected together in Section 5.3.

5.1 Introduction and Background

In the literature, intrinsic localized modes (ILMs) are known as discrete

breathers or Anderson localizations; they are energy localizations that can occur in

spatially extended, perfectly periodic, discrete systems [Anderson (1958); Campbell,

Flach, and Kivshar (2004)]. ILMs occurring in pure anharmonic lattices are similar

to energy localizations occurring in harmonic lattices with a defect [Sievers and

Takeno (1988)]. They can be considered to be a forced nonlinear vibration mode

of an oscillatory system [Dick, Balachandran, and Mote (2008)]. Here, an array

of monostable Duffing oscillators is studied, as it has relevance to microelectrome-
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Table 5.1: Nomenclature describing the quantities governing the array of oscillators.

xi Displacement of ith oscillator
xi,1 Displacement of ith oscillator in state space
xi,2 Velocity of ith oscillator in state space
mi Mass of ith oscillator
k0,i Linear coupling spring on left side of ith oscillator
k1,i Linear spring constant of ith oscillator
k3,i Nonlinear spring constant of ith oscillator
Ki k0,i + k0,i+1 + k1,i

ci Viscous damping term of ith

F Forcing amplitude
Ω Forcing frequency
Ẇ (t) White Gaussian noise (derivative of Wiener process)
σ Noise amplitude

chanical systems (MEMS), which are relevant for a host of engineering applications

including communications and signal processing. However, the oscillator array struc-

ture considered here is different from previous studies carried out in the author’s

group [Dick et al. (2008)]. At the micro-scale, stochastic effects can play a significant

role in determining the system dynamics and ILMs have been studied in the context

of micro-scale systems [Dick et al. (2008); Sato et al. (2003a)]. ILMs can have adverse

effects on the performance of a micromechanical device; for example, they could

inhibit information flow or, in some cases, damage the microelectromechanical array

and the associated electronic circuitry. However, if these energy localizations are

better understood, they have the potential to lead to new technologies. The energy

localization phenomenon in the coupled oscillator array of this study does not have

the large amplitude characteristic of an ILM; however, this work is relevant to realize

energy localization in coupled oscillator arrays.

With each of the systems considered, the deterministic system will first be

studied, and then a stochastic noise component will be included in the input. In

both cases, the system is numerically studied by using the Euler-Maruyama method

[Higham (2001)]. By using this method, one obtains an approximate solution of the

system. This method is an extension of the Euler method for ordinary differential
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equations, which has been adapted to perform integrations of stochastic differential

equations (SDEs). In addition, a Method of Moments analysis is also used to study

the averaged dynamics of the system. Through this analysis, the author obtains

an approximation to the Fokker-Planck equation (a partial differential equation)

for the system, which governs the evolution of the probability density function of

the states of each oscillator in the array. The moment evolution equations (an

infinite set of ordinary differential equations) are derived and truncated from the

Fokker-Planck equation. Numerically solving this truncated, finite set of ordinary

differential equations gives an averaged (approximate) solution to the variables in

the state space.

5.2 Monostable Duffing oscillator array

Consider the array of monostable Duffing oscillators, which is depicted in

Figure 5.1 and described by the following equations, with the variable and parameter

descriptions, following that provided in Section 5.1:



m1ẍ1 + c1ẋ1 + (k0,1 + k0,2 + k1,1)x1 − k0,2x2 + k3,1x
3
1

= Fsin(Ωt) + σẆ (t)
...

miẍi + ciẋi − k0,ixi−1 + (k0,i + k0,i+1 + k1,i)xi − k0,i+1xi+1 + k3,ix
3
i

= Fsin(Ωt) + σẆ (t)
...

mnẍn + cnẋn − k0,nxn−1 + (k0,n + k0,n+1 + k1,n)xn + k3,nx
3
n

= Fsin(Ωt) + σẆ (t)

(5.1)

5.2.1 Euler-Maruyama simulations

In system (5.1), these n oscillators all have the same deterministic and stochastic

forcing (Fsin(Ωt) and σẆ (t), respectively). The term, Ẇ (t), denotes white noise,

68



Figure 5.1: Array of n coupled monostable Duffing oscillators.

which is defined as the derivative of Brownian motion. Since Brownian motion (or in

the physics literature, the Wiener process) has independent increments as previously,

its derivative does not exist with probability one [Chorin and Hald (2009)]. Thus,

Ẇ (t) is a “mnemonic” derivative. To write the equations with more formality, this

system of stochastic differential equations are converted into Langevin form. For

facilitating the analysis, the equations of motion are first cast into a state-space

form. In the subsequent notation, the xs first subscript refers to the oscillator and

the second subscript is used to denote the corresponding state:



ẋ1,1 = x1,2

ẋ1,2 =

(
− c1x1,2 − (k0,1 + k0,2 + k1,1)x1,1 + k0,2x2,1

−k3,1x
3
1,1 + Fsin(Ωt) + σẆ (t)

)
/m1

...

ẋi,1 = xi,2

ẋi,2 =

(
− cixi,2 + k0,ixi−1,1 − (k0,i + k0,i+1 + k1,i)xi,1 + k0,i+1xi+1,1

−k3,ix
3
i,1 + Fsin(Ωt) + σẆ (t)

)
/mi

...

ẋn,1 = xn,2

ẋn,2 =

(
− cnxn,2 + k0,nxn−1,1 − (k0,n + k0,n+1 + k1,n)xn,1

−k3,n+1x
3
n,1 + Fsin(Ωt) + σẆ (t)

)
/mn

(5.2)

69



Next, in differential form, this system of Langevin equations is written as



dx1,1 = x1,2dt

dx1,2 =

[(
− c1x1,2 − (k0,1 + k0,2 + k1,1)x1,1 + k0,2x2,1

−k3,1x
3
1,1 + Fsin(Ωt)

)
dt+ σdW

]
/m1

...

dxi,1 = xi,2dt

dxi,2 =

[(
− cixi,2 + k0,ixi−1,1 − (k0,i + k0,i+1 + k1,i)xi,1 + k0,i+1xi+1,1

−k3,ix
3
i,1 + Fsin(Ωt)

)
dt+ σdW

]
/mi

...

dxn,1 = xn,2dt

dxn,2 =

[(
− cnxn,2 + k0,nxn−1,1 − (k0,n + k0,n+1 + k1,n)xn,1

−k3,nx
3
n,1 + Fsin(Ωt)

)
dt+ σdW

]
/mn

(5.3)

Notice that in this differential form, one no longer has the derivative of Brownian

motion (which does not exist) but a differential white noise which does exist. Now, the

Euler-Maruyama method can be used to obtain numerical solutions of the following

system:
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x1,1(j + 1) = x1,1(j) + x1,2(j)dt

x1,2(j + 1) = x1,1(j) +

[(
− c1x1,2(j)− (k0,1 + k0,2 + k1,1)x1,1(j) + k0,2x2,1(j)

−k3,1x
3
1,1(j) + Fsin(Ωt)

)
dt+ σδWj

]
/mi

...

xi,1(j + 1) = xi,1(j) + xi,2(j)dt

xi,2(j + 1) = xi,1(j) +

[(
− cixi,2(j) + k0,ixi−1,1(j)− (k0,i + k0,i+1 + k1,i)xi,1(j)

+k0,i+1xi+1,1(j)− k3,ix
3
i,1(j) + Fsin(Ωt)

)
dt+ σδWj

]
/mi

...

xn,1(j + 1) = xn,1(j) + xn,2(j)dt

xn,2(j + 1) = xn,1(j) +

[(
− cnxn,2(j) + k0,nxn−1,1(j)− (k0,n + k0,n+1 + k1,n)xn,1(j)

−k3,nx
3
n,1(j) + Fsin(Ωt)

)
dt+ σδWj

]
/mi

(5.4)

In this form, j is associated with the time step in the solver. The quantity,

δWj, is the incremental noise; it has mean equal to zero and standard deviation

equal to
√
dt. In these simulations, the forcing frequency was ramped up, starting at

the highest linear natural frequency and progressing to a value 0.5% higher than the

highest linear natural frequency for the system of oscillators, in a manner similar to

that carried out in the group’s previous studies [Dick et al. (2008); Ramakrishnan

and Balachandran (2010)]. Thirty-two oscillators were simulated, while varying the

noise intensity as a system parameter.

In Figure 5.2a), the forcing frequency profile is provided. The frequency

is ramped from the highest natural frequency to 0.5% above the highest natural

frequency over two seconds. After this time, the frequency is held constant until

40 seconds is reached, where the forcing is turned off completely. In Figure 5.2b),
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Figure 5.2: a) The forcing frequency profile. b) Without noise, two energy localiza-
tions form. c) With noise, three energy localizations form.

two energy localizations are shown. In Figure 5.2(c), with the addition of noise, an

additional energy localization forms. In Figure 5.2, one of the localizations is more

spatially distributed than the other: the localization at oscillators 15-16 has denser

energy than the localization at oscillators 20-23. Further research is necessary in order

to determine whether the noise has a deterministic effect on where an ILM forms.

This is an important question if noise can be used to control the formation of ILMs

at different locations in a micro-oscillator array. The present results can be compared

to those previously obtained by Ramakrishnan and Balachandran [Ramakrishnan

and Balachandran (2010)], for micro-cantilever arrays, in which each oscillator pair

had two different types of oscillators. Although the oscillator systems of references

[Dick et al. (2008); Ramakrishnan and Balachandran (2010)] are different from the

current one, the author believes that noise can produce the following two differing

effects in array systems; that is, attenuation of energy localizations and creation of

energy localizations. If fully understood, noise might be harnessed to create and/or

destroy energy localizations in an array. These phenomena will be further discussed

in Chapter 7.

5.2.2 Fokker-Planck equation and Method of Moments analysis

In the preceding subsection, the use of noise to realize energy localization

through a direct numerical simulation was demonstrated. In this subsection, the aim
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is to obtain an approximate solution on the basis of a formalism based on the Fokker-

Planck equation [Gardiner (1985)]. The solution of this partial differential equation

is the time evolution of the probability density function, which is a function of the

variables in state space and of time. As previously mentioned, the Fokker-Planck

equation can be written as

∂tp = −Σj∂j[Aj(x, t)p] + 1
2
Σj,k∂j∂k[B(x, t)BT (x, t)]j,kp (5.5)

where p is the probability density function and x is the vector of variables in state

space. The Fokker-Planck equation for the ith oscillator can be constructed as

∂tp = −[∂xi,1xi,2p+ 1
mi
∂xi,2p(−cixi,2 + k0,ixi−1,1 − [k0,i + k0,i+1 + k1,i]xi,1

+k0,i+1xi+1,1 − k3,ix
3
i,1 + Fsin(Ωt))] +D ∂2

∂2
xi,2
p

(5.6)

To find an approximate solution for this equation, the Method of Moments is

employed [Sobczyk (2001)], in a manner similar to previous chapters.

After substitution and rearrangement, the moment evolution equation for the

ith oscillator is obtained as

d
dt
< xrvs >= r < xr−1 >< vs+1 > − sc

m
< xr >< vs >

+
sk0,i

m
< xr >< vs−1 >< xi−1 > − sKi

m
< xr+1 >< vs−1 >

+
sk0,i

m
< xr >< vs−1 >< xi+1 > − sk3,i

m
< xr+3 >< vs−1 >

+ sFsin(Ωt)
m

< xr >< vs−1 > +s(s− 1)D < xr >< vs >

(5.7)

The x’s and v’s without subscripts refer to the position and velocity of the ith

oscillator, and K(i) = k0(i) + k0(i + 1) + k1(i). This moment evolution equation

gives an infinite set of ODEs, as different values of r and s are substituted. The

following three approximations are made, in order to solve this infinite set of ODEs:

1) the Fokker-Planck equation is written for the ith oscillator, considering only

the neighboring two oscillators, 2) the states are assumed to be independent (i.e.,

73



Figure 5.3: The numerical solution to the Fokker-Planck equation, using the same
parameters as in Figure 5.1. a) For no noise, two energy localizations form. b) Using
the same noise level as in Figure 5.1(b), there are still only two localizations.

< xrvs >=< xr >< vs >), and 3) moments of order 4 and higher are neglected.

These approximations yield a set of 6n ODEs, from the previous SDE. The numerical

results obtained with this reduced-order system are presented in Figure 5.3.

Note that in using the Fokker-Planck equation, it is customary to use σ =
√

2D;

thus, this is indeed the same noise level as that used to generate the results shown in

Figure 5.1. Also, the same initial conditions were used to generate the results shown

in Figure 5.2 as well as that shown in Figure 5.3. It seems that on average, the third

energy localization does not occur. However, through the previous Euler-Maruyama

simulations, the localization is shown to occur sometimes. By taking higher order

moments, the third energy localization observed in Figure 5.2c) might be better

predicted by the Method of Moments analysis.

5.3 Concluding remarks

The present work is intended to be an exploration into coupled oscillator

systems, to illustrate the influence of noise on the response of nonlinear oscillators.

In one of the considered cases, preliminary efforts were undertaken to understand

the effects of noise on the response of a homogeneous array of monostable Duffing
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oscillators. The Euler-Maruyama method was employed to simulate this stochastic

system. For the coupled oscillator array, the Fokker-Planck equation was derived for

a representative oscillator. Assumptions regarding independence of moments and a

truncation approximation were made in order to find a numerical approximation for

the solution of the Fokker-Planck equation. The results suggest that a white noise

addition can create an energy localization in the array, but in an average sense, this

usually does not happen. In other studies in the author’s group, with a different

set of coupled oscillators, it was shown that noise can be used to attenuate an

energy localization [Ramakrishnan and Balachandran (2010)]. Between the present

and previous studies, it is shown that noise can be used to facilitate as well as to

suppress energy localizations in coupled oscillator array systems. However, a fuller

presentation of this effect with respect to the hysteresis curve will be explored in

Chapter 7.
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Chapter 6

INFLUENCE OF CUBIC COUPLING NONLINEARITIES ON

RESPONSE LOCALIZATION

In this chapter, the response localization in coupled arrays of nonlinear os-

cillators with cubic coupling nonlinearities is studied. For illustration, an array of

micro-scale oscillators with intersite or coupling nonlinearities is considered and

attention is focused on intrinsic localized modes. Free oscillations and forced os-

cillations of this system are considered, and the interplay between noise and cubic

coupling nonlinearities is studied through numerical studies. These studies help

elucidate the role of coupling nonlinearities on energy localization in micro-scale

oscillators.

The rest of this chapter has been structured as follows. In Section 6.1, a

brief literature review of pertinent intrinsic localized mode research is presented. In

Section 6.2, a micro-cantilever array model is presented along with a special case of

a homogeneous oscillator array, which forms the basis for the work presented in the

sections that follow. Next, in Section 6.3, numerical studies are conducted with the

undamped and unforced system to understand the formation of intrinsic localized

modes by examining the restricted normal modes of the system. Following that, in

Section 6.4, numerical studies are conducted to examine the influence of noise on

the system behavior. Different strengths of noise intensities are considered and the

influence of the coupling nonlinearities on the system response is examined. Finally,

based on the findings, conclusions are drawn and presented in the last section.
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6.1 Introduction and Background

Localization of responses in oscillator arrays has been of interest for a number

of years (e.g. [Sievers and Takeno (1988); Sato, Hubbard, and Sievers (2006)]), with

particular attention devoted to the roles of nonlinearity and discreteness. Discrete

breathers (DBs) or intrinsic localized modes (ILMs), which are spatially localized

and time-periodic solutions of the considered system, constitute one example of

localization phenomenon. This phenomenon has been often been described as a

natural paradigm for response localization in several systems. Experimental evidence

for these energy localizations has also been produced in different physical systems,

including photonic lattices [Fleischer, Segev, Efremidis, and Christodoulides (2003)],

Josephson junction arrays [Ustinov (2003)], micro-scale cantilever arrays [Sato et al.

(2003b); Dick et al. (2008)], and macro-scale cantilever arrays [Kimura and Hikihara

(2009)]. Extensive analytical and numerical studies have also been conducted to

understand the occurrence of intrinsic localized modes [Sato, Hubbard, and Sievers

(2006); Dick, Balachandran, and Mote (2008, 2009a); Kimura and Hikihara (2009);

Kimura, Matsushita, and Hikihara (2013)]. There have also been some recent studies

where the focus has been on the influence of noise on such localization. These studies

include cases with onsite cubic nonlinearities [Cubero, Cuevas, and Kevrekidis (2009)]

and both onsite and intersite cubic nonlinearities [Ramakrishnan and Balachandran

(2010, 2011)]. Symmetric response distributions about a primary center oscillator

location were considered in these studies. Apart from energy localization, a variety

of other nonlinear phenomena are also exhibited by micro-scale and nano-scale

oscillators [Rhoads, Shaw, and Turner (2010)].

In the group’s prior efforts, in an array of micro-scale oscillators with linear

(intersite) coupling and onsite cubic nonlinearity in each oscillator, it has been shown

that ILMs can be interpreted as nonlinear vibration modes [Dick et al. (2008)]

and that the fundamental frequency relationships between the adjacent oscillators
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in an oscillator array can have an influence on the energy localization. Following

these early efforts, in [Ramakrishnan and Balachandran (2010)], it was shown that

white noise addition to a deterministic input can be used to strengthen as well

as attenuate localizations. In a related study, Ramakrishnan and Balachandran

[Ramakrishnan and Balachandran (2011)] examined the case where cubic coupling

or intersite nonlinearities were present. The present work can be considered as an

extension of these prior efforts. Here, a cantilever array of homogeneous oscillators

is considered with cubic onsite nonlinearities in each oscillator and linear intersite

coupling and cubic intersite coupling are considered. Dissipation is also considered.

Numerical studies are considered to understand the influence of the cubic coupling

nonlinearities and frequency relationships that could lead to internal resonances in

the system. The influence of noise on the localization behavior is also investigated.

In the free-oscillation case, it is shown that the intersite nonlinearities can help

in tailoring the response localization. In the cases with noise, where some of the

first results of its kind are reported, it is shown that the presence of cubic coupling

nonlinearities can help in attenuating intrinsic localized modes.

6.2 Micro-cantilever array to homogeneous oscillator array

Following the work of Sato et al. [Sato et al. (2006)], for an oscillator cell i,

the cell dynamics is governed by the equations

maẍa,i +
ma

τ
ẋa,i + k2axa,i + k4ax

3
a,i + kI (2xa,i − xb,i − xb,i−1)

+ k4I

[
(xa,i − xb,i)3 + (xa,i − xb,i−1)3] = maα (6.1)
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mbẍb,i +
mb

τ
ẋb,i + k2bxb,i + k4bx

3
b,i + kI (2xb,i − xa,i+1 − xa,i)

+ k4I

[
(xb,i − xa,i)3 + (xb,i − xa,i+1)3] = mbα (6.2)

In Equations (6.1) and (6.2), the subscripts a and b correspond to the different

cantilever lengths, ma and mb are their respective masses, τ is a time constant,

k2a and k2b are the associated linear spring stiffness constants, k4a and k4b are the

associated cubic spring stiffness constants, and kI is the linear stiffness coupling

constant. The entire array is subjected to a uniform forcing through acceleration α

that can be achieved by distributed base actuation. It is important to note that this

actuation, which can be realized through piezoelectric actuators, does not directly

apply a force to the cantilevers but rather causes an acceleration of the cantilever

array’s base [Sato et al. (2006); Dick et al. (2008)].

Considering a special case of a homogeneous oscillator array; that is, an array

with similar cantilevers for example, and setting ma = mb = m, k2a = k2b = k, and

k4a = k4b = k3 and dividing throughout by m, the system given by Equations (6.1)

and (6.2) is rewritten as

ẍi +
1

τ
ẋi + α1xi + β1x

3
i + α2 (2xi − xi+1 − xi−1) + β2

[
(xi − xi+1)3 + (xi − xi−1)3]
= F cos(Ωt) + σẆ (t) (6.3)

where
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α1 =
k

m
; α2 =

kI
m

β1 =
k3

m
; β2 =

k4I

m

α = F cos(ωt) + σẆ (t) (6.4)

Here, α1 and β1 are the onsite linear and cubic coefficients, respectively, and α2 and

β2 are the intersite linear and cubic coefficients, respectively. The base acceleration

α has been replaced with an excitation that includes a deterministic component and

a noise component, which are further discussed in Section 6.4. The system given by

Equation (6.3) is the uniform or homogeneous oscillator case.

6.3 Undamped homogeneous oscillator array: Restricted normal

modes and influence of cubic intersite nonlinearities

The construction of the restricted modes follows the same approach as used in

the group’s prior work [Dick et al. (2009a)]. First, a symmetric group of uniform

oscillators with cubic intersite coupling is isolated. Dropping the damping and

external forcing terms, the resulting system is recognized to be a Hamiltonian system

with a quartic potential function. Both the onsite and intersite potential function

components are anharmonic in this case. For the considered localization, it is assumed

that x+1 = x−1, and that the influence of the ±2 oscillators are negligible. Then,

the resulting system takes the form

ẍ0 + α1x0 + β1x
3
0 + 2α2(x0 − x1) + 2β2(x0 − x1)3 = 0 (6.5a)
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ẍ1 + α1x1 + (β1 + β2)x3
1 + α2(2x1 − x0) + β2(x1 − x0)3 = 0 (6.5b)

Assuming a harmonic solution where both oscillators (the center oscillator and an

adjancent oscillator) are responding with the same frequency, one can propose the

solution

x0 = A cos(ωt) (6.6a)

x1 = B cos(ωt) (6.6b)

where A and B are the amplitudes of the oscillator responses, and ω is the response

frequency. After substituting (6.6) into (6.5), ω2 is eliminated. The higher harmonics

are ignored. Then to parametrize (A ,B) as being a half period out of phase, (R , θ)

is introduced and the oscillator amplitudes are expressed as

A = R sin θ (6.7a)

B = R cos θ (6.7b)

where R2 is a measure of the system’s total energy and θ is a phase term. The ratio

of the amplitudes is

p =
A

B
= tan θ. (6.7c)

Making use of (6.7) and the equations prior to it, a polynomial in p is obtained as.

p4 + γ3p
3 + γ2p

2 + γ1p+ γ0 = 0 (6.8)
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Figure 6.1: Roots of Equation (6.8) from the restricted mode approach for a uniform
array of oscillators with parameters α1 = 1.0, β1 = 1.0, α2 = 0.1, and β2 = 0.1. Note
that there are only two completely real roots for any particular R value.

where the coefficients γi’s are defined by

γ3 =
3 (β1 − 4β2)R2

2 (4α2 + 3β2R2)
(6.9a)

γ2 =
3

2
− 4α2

4α2 + 3β2R2
(6.9b)

γ1 =
3 (β2 − β1)R2

2 (4α2 + 3β2R2)
(6.9c)

γ0 = −1

2
. (6.9d)

For the numerical studies, the following parameters provided in reference [Sato et al.

(2006)] for a micro-oscillator are used: α1 = 1.0, β1 = 1.0, α2 = 0.1, and β2 = 0.1.

In Figure 6.1, the real roots of Equation (6.8) are plotted with respect to R. It is

noted that there are only 2 roots that are completely real for a given value of R, and

that the other two form a complex conjugate pair. For the chosen parameter values,

there is a one-to-one frequency relationship between an oscillator and an adjacent

oscillator. In addition, given the cubic coupling nonlinearities and structure of the

equations, one-to-one internal resonances are possible in this system (e.g. [Nayfeh

and Balachandran (1989)]). Of course, other oscillator designs may be conducive for

other internal resonances (e.g., [Vyas et al. (2009)]).

To construct the profile of the ILM for an amplitude of 1, the equation is solved
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for (R, θ) such that B = 1. Numerically, this is performed by solving

1 = R cos(tan−1 p)

where p is a root of equation (6.8) that is a function of R. The root is chosen so

that the resulting profile has the lowest energy. Only two of the roots are feasible

solutions since there are always two roots with imaginary parts. The numerical

solution to the above expression is R = 1.027, and substituting this value back into

equation (6.7) leads to A = −0.233 and B = 1.00 . The amplitude of the adjacent

oscillator is found by taking the |A| value, and solving using the other root of p

0.233 = R sin(tan−1 p)

This yields R = 0.291 and a corresponding pair A = 0.262 and B = 0.174 . This

second B value is the amplitude of the next oscillator over. The obtained localization

profile is shown in Figure 6.2 along with the profile for the case when β2 = 0 and

there are no intersite or coupling cubic nonlinearities. For the considered case,

the cubic coupling does have a significant affect on the responses of the oscillators

adjacent to the center oscillator. The amplitudes of the adjacent oscillators are found

to increase compared to the case without the coupling nonlinearities. The cubic

coupling nonlinearities may be used as a means to tailor the response localization;

for example, if one needs to emphasize the localization in the center oscillator, the

coupling would need to be weak.

6.4 Influence of noise on localization

Next, the effects of noise on an ILM are considered. A forced and damped

system is considered, with the forcing including a harmonic forcing and a noise term.
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Figure 6.2: Profile of the ILM predicted from the restricted mode approach for a
uniform array of oscillators with parameters α1 = 1, β1 = 1, and α2 = 0.1 . The
cubic intersite coupling is β2 = 0.1 for the solid line, and β2 = 0 for the dashed line.

It is mentioned that in an earlier study (e.g. [Cubero et al. (2009)]), a harmonic

forcing with a staggering factor is considered wherein the forcing amplitude F sign

assumes a negative value for the odd number oscillators and a positive value for the

even numbered oscillators. Here, the same forcing amplitude is used for all oscillators

as in the prior work of the author’s group [Ramakrishnan and Balachandran (2010,

2011)]. A staggering factor was not found to be necessary to produce a sustained

response localization here. In the equation of motion (6.3), the noise amplitude will

be such that σ 6= 0, in order to include the presence of noise. Since the derivative

of white noise does not exist, an Euler-Maruyama scheme is used to integrate the

system for varying noise amplitudes. By averaging multiple simulations with only

different noise vectors, an averaged response for the system is obtained. Here, 50

separate simulations have been carried out to generate the results presented for the

parameters provided in Table 6.1. The linear and nonlinear onsite and intersite

parameter values match those used in the previous section, and the forcing frequency

Ω is chosen such that the frequency location is above that corresponding to the jump

point from the lower branch of the frequency response curve. This choice is critical

so that the initial response state without the noise addition has a sufficiently large
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Table 6.1: Values used in the Euler-Maruyama simulations.

Parameter Value
α1 1.0
α2 0.1
β1 1.0
β2 0.0 or 0.1
F 0.2

1/τ 0.01
Ω 1.75

amplitude. With the addition of noise, the ILM displacement profile is found to have

a decreased amplitude.

Figures 6.3, 6.4, and 6.5 have been generated for the case in which the intersite

coupling nonlinearities are absent (i.e. β2 = 0). While Figure 6.3 corresponds to

the no noise case, the other two cases correspond to noise of different strengths.

The oscillatory responses corresponding to the localization can be seen for a pure

harmonic forcing case. In the cases with noise, as the noise strength is increased,

the ILM profile is attenuated. While the ILM is still present for σ = 0.3, it is well

attenuated at the higher leverl of σ = 0.6. Figures 6.6, 6.7, and 6.8 are counterparts

of Figures 6.3, 6.4, and 6.5 when the intersite coupling nonlinearities are present

(i.e. β2 6= 0). Comparing Figure 6.3 and Figure 6.6, the effect of cubic coupling

on the ILM profile can be observed. The considered nonlinear coupling acts to

increase the participation of the adjacent oscillators in the ILM profile, consistent

with what was observed in the free-oscillation case discussed in Section 6.3. The

intersite nonlinearity also has the effect of decreasing the maximum amplitude of

the ILM displacement. This effect is highlighted in Figures 6.9 and 6.10, for the case

of σ = 0 .

It should be noted that the ILM is destroyed for the case of σ = 0.6, for either

β2 = 0 (Figure 6.5) or β2 = 0.1 (Figure 6.8). In this case, only synchronous motion

is observed. For the displacement profiles (Figures 6.9 and 6.10), this synchronous

motion appears as a manifestation of displacements in all oscillators. Comparing the
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Figure 6.3: With β2 = 0 and σ = 0, responses of oscillators in array for only the
deterministic input. The oscillation with the highest relative amplitude corresponds
to the oscillator in the middle of the localization.
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Figure 6.4: With β2 = 0 and σ = 0.3, averaged time histories of oscillator responses.
50 Euler-Maruyama simulations have been averaged.The oscillation with the highest
relative amplitude corresponds to the oscillator in the middle of the localization.

cases with and without cubic coupling, it is seen that noise destroys the ILM with

cubic coupling more easily than the case without cubic coupling.

Comparing the case of σ = 0.3 in Figures 6.9 and 6.10, it is seen that the ILM

for the case with cubic coupling is almost destroyed, while the case without cubic

coupling still has a discernible energy localization. In designing an oscillator array,
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Figure 6.5: With β2 = 0 and σ = 0.6, averaged time histories of oscillator responses.
50 Euler-Maruyama simulations have been averaged. The ILM has been destroyed.
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Figure 6.6: With β2 = 0.1 and σ = 0, responses of oscillators in array for only the
deterministic input.The oscillation with the highest relative amplitude corresponds
to the oscillator in the middle of the localization.

this effect of noise on an ILM could be exploited. For instance, with cubic coupling,

noise could be used to reset the array to an ILM-free state. Also, nonlinear coupling

may be used to create ILMs with lower response localization at the center oscillator

and adjacent ones. The results presented in this section are consistent with the

group’s prior efforts (e.g., [Ramakrishnan and Balachandran (2011)]) and others in

the literature (e.g., [Cubero et al. (2009)]), wherein it has been noted that ILMs
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Figure 6.7: With β2 = 0.1 and σ = 0.3, averaged time histories of oscillator responses.
50 Euler-Maruyama simulations have been averaged.The oscillation with the highest
relative amplitude corresponds to the oscillator in the middle of the localization.

0 5 10 15 20 25

4

8

12

16

O
sc
ill
at
or

p
os
it
io
n

0 5 10 15 20 25
=2

=1

0

1

2

Time

D
is
p
la
ce
m
en
t

Figure 6.8: With β2 = 0.1 and σ = 0.6, averaged time histories of oscillator responses.
50 Euler-Maruyama simulations have been averaged. The ILM has been destroyed.

exist in the presence of noise and they can be destroyed for sufficiently high noise

levels. Moment evolution equations derived through a Fokker-Planck formalism was

used in the earlier work of Ramakrishnan and Balachandran [Ramakrishnan and

Balachandran (2011)], and certainly, that approach could be pursued here as well

with the current system.
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Figure 6.9: With β2 = 0, profiles of ILM with varying levels of noise amplitude, σ.
Note that for σ = 0.3, an ILM can still be seen, and the displacement is considerably
different than that for the same case in Figure 6.10. For σ = 0.6, there is no ILM,
but only synchronous motion.
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Figure 6.10: With β2 = 0.1, profiles of ILM for varying levels of noise amplitude, σ.
Note that for σ = 0.3, the ILM profile is very different from that seen for the case
corresponding to Figure 6.9. For σ = 0.6, there is no ILM, but only synchronous
motion.
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6.5 Concluding remarks

A numerical study of energy localization in nonlinear oscillator arrays with cubic

onsite nonlinearities and intersite coupling nonlinearities has been presented here.

The responses of both unforced conservative systems and forced dissipative systems

have been considered, and it is shown that the cubic coupling nonlinearities can be

used to tailor the response levels at the center and adjacent oscillators in spatially

symmetric intrinsic localized modes. The influence of noise is also considered, and it

is shown that a high level of noise could be used to attenuate an intrinsic localized

mode regardless of the presence of the cubic coupling nonlinearities. In addition,

the studies suggest that the interplay between the cubic coupling nonlinearities and

noise could be beneficial for controlling this response attenuation associated with a

localization. In the context of micro-oscillator arrays, this could be important to

note, since excessive amplitude levels could be determinental to the micro-oscillator

system. The results presented in this work do not by any means present a full picture

of the possibilities, and additional parametric studies are recommended to explore

the responses for different system parameters as well as the forcing parameters.

Furthermore, a better understanding of localization phenomenon could be helpful

for energy distribution and harnessing systems.
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Chapter 7

EFFECTS OF NOISE ON INTRINSIC LOCALIZED MODES:

EXPERIMENTAL AND NUMERICAL STUDIES

As mentioned in previous chapters, intrinsic localized modes are energy lo-

calizations which can occur in arrays of coupled oscillators. They are caused by

nonlinearity and discreteness. The effects of noise on intrinsic localized modes are

not completely understood. Building on the efforts of the previous chapter, the

author further studies the effects of noise on intrinsic localized modes, by varying

the sinusoidal excitation frequency, noise amplitude, and sinusoidal amplitude. It

is found that depending on the parameter values, intrinsic localized modes can be

destroyed or created by utilizing noise.

The rest of this chapter is organized as follows. In the next section, some

pertinent literature is given for intrinsic localized modes. In Section 7.2, the equations

governing the array of nonlinear oscillators are given, and the experimental setup

is explained. Euler-Maruyama simulations are presented in Section 7.3, showing

the effects of noise for different sinusoidal excitation frequencies and amplitudes.

The experimental results are then discussed in Section 7.4. Concluding remarks are

collected together in Section 7.5.

7.1 Introduction and Background

Intrinsic localized modes (ILMs) are energy localized vibrations that are due to

nonlinearity and discreteness [Sievers and Takeno (1988)]. Such energy localizations,

which are also called discrete breathers (DBs), have been identified in many physical

systems, ranging from nano- to macro-scale [Flach and Gorbach (2008)]. For example,
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xn Oscillator position in state space
ẋn Oscillator velocity in state space
γ Viscous damping coefficient
K Linear stiffness coefficient
χ0 Coefficient in magnetic force expression due to permanent magnet
χ1 Coefficient in magnetic force expression due to electromagnet
d0 Equilibrium distance between magnets
Ω Forcing frequency
ωn Natural frequency
A Forcing amplitude
Ẇ (t) White Gaussian noise (derivative of Wiener process)
σ Nondimensionalized noise amplitude in simulation
σvolt Noise amplitude in experiment

Sato et al. have reported that ILMs can be excited and manipulated in a micro-

mechanical cantilever array [Sato et al. (2003a, 2006)]. Similar experiments have

been performed in a macro-mechanical cantilever array [Kimura and Hikihara (2009,

2012)] in which a restoring force of each cantilever can individually be tuned. The

experimental results imply that ILMs can survive under the presence of a noise,

which might come from electronic circuits, ambient air flow, thermal fluctuation, and

so on

On the other hand, noise will play a crucial role when the system size diminishes

to nano-scale because the signal-to-noise ratio becomes small. Recently, numerical

simulations on the stochastic resonance in the Fermi-Pasta-Ulam-β (FPU-β) lattice

have been reported [Miloshevich, Khomeriki, and Ruffo (2009)]. In addition, it

has been shown that noise helps the spontaneous formation of ILMs in a hard

φ4 lattice [Cubero, Cuevas, and Kevrekidis (2009)]. The effects of noise on ILMs

are not completely understood. In [Cubero et al. (2009)], staggered forcing was

utilized to produce a phenomenon similar to stochastic resonance. The Fokker-Planck

equation has been used to study the effects of noise on arrays of coupled oscillators in

[Ramakrishnan and Balachandran (2011); Perkins et al. (2013)]. In [Ramakrishnan

and Balachandran (2010)], white noise was shown to destroy an ILM in an array

of linearly coupled oscillators. On the other hand, in [Perkins and Balachandran
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(2012)], white noise was shown to create an ILM in an array of linearly coupled

oscillators.

7.2 System Equations and Experimental Setup

7.2.1 Experimental arrangement of coupled oscillators

Here, the coupled oscillator array is an array of cantilevers, which has been

used in prior work of the authors Kimura and Hikihara (2009, 2012). The array

schematic is illustrated in Figure 7.1.

In this cantilever array, eight cantilevers are arranged with equal separation

between them. Strain gauges placed close to the fixed end of each cantilever are

used to get a measure of the responses of the different cantilever oscillators. The

cantilevers are coupled at the top through a coupling rod. Each cantilever has a

permanent magnet at the free end at the bottom and an electromagnet placed below

the permanent magnet. These magnets create a nonlinear restoring force for each

cantilever, and this restoring force can be estimated by using Coulomb’s law for

magnetic charges.

If the displacement of the nth cantilever, xn, is sufficiently small relative to the

length of the cantilever, Coulomb’s law for magnetic charges can be used to obtain

the force Kimura and Hikihara (2012)

F (xn) =
mpme

4πµ0

xn

(x2
n + d2

0)
3
2

=χ(IEM)
xn

(x2
n + d2

0)
3
2

,

≈(χ0 + χ1IEM)
xn

(x2
n + d2

0)
3
2

,

(7.1)

where mp and me correspond to the magnetic charge of PM and EM, respectively.
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Table 7.1: Parameter values Kimura and Hikihara (2012)

Symbol Value Symbol Value
ω0 2π×35.1 rad/s γ 1.5 s−1

K 284 s−2 χ0 −4.71× 10−5 m3/s2

d0 3.0 mm χ1 −9.14× 10−3 m3/s2A

Noting that me is the magnetic charge of the electromagnet, the coefficient of the

force can be adjusted by varying the current flowing in the electromagnet. In

the current work, the coefficient χ(IEM) is approximated as the linear function,

χ0 + χ1IEM, where IEM is the associate current, as shown in the restoring force

equation (7.1). The experimentally estimated parameter values are listed in Table

7.1. In the experiments, the forcing amplitude is determined by making use of the

measurements of the accelerometer, which is attached to the base of the array.

The coupling rod, which is located at the top of the array, deforms with

relatively small amplitudes since the position of the rod is close to the fixed end of

each cantilever. Hence, the coupling force can be assumed to be linear with respect

to the relative displacements of adjacent cantilevers. The external forcing (both

sinusoidal excitation and noise) is applied to the support where all of cantilevers’

bases are fixed. This arrangement allows for a spatially uniform force to be applied

to the cantilever array. Further details on the experimental arrangement are shown

in Figure 7.2. The cantilever array is excited by the magnetic actuator, and the

generated actuator force is proportional to the current instead of the voltage. A V/I

converter is inserted between the actuator and the input signal source so that the a

current input is provided to the actuator. The input signal is generated by using

two function generators, one (AFG3051C, Tektronix) for the sinusoidal or harmonic

input and the other (AFG3022B, Tektronix) for the noise input. Low-pass filters are

used to filter out high frequency components above a chosen bandwidth. For the

low-pass filter used with the noise source, the cut-off frequency is set at 234 Hz. The

individual displacements of cantilever ends are determined from corresponding strain
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gauge measurements, after conditioning by using a strain gauge amplifier. For the

actuator induced acceleration, a tri-axis accelerometer system with module circuit

(MM-2860, Sunhayato) and a micro-electromechanical accelerometer (MMA-7260QT,

Freescale Semiconductor) is used. The accelerometer and strain gauge data are

sampled with a sampling frequency of 10 kHz and recorded by using an eight-channel

data logger (GL820, Graphtec).

The noise used in this effort is white noise, which is generated by the previously

mentioned function generator (AFG3022B, Tektronix). As already noted previously,

this input is band limited by sending the white noise signal through a low-pass filter.

In addition, the frequency characteristics of the V/I converter and the magnetic

actuator do alter the power spectral density of the noise input. The power spectral

densities recorded at the output of each circuit component are shown in Figure

7.3. As shown by the curve with the label “OSC OUT,” the output of the function

generator exhibits an almost flat power spectral density characteristic, which is

indicative of white noise. The curve labeled “LPF OUT” is the filtered output, and

as expected there is a roll off past the chosen cut-off frequency of 234 Hz. The curve

labeled “V/I OUT” represents the current converted by the V/I converter, where

in the conversion the input voltage is multiplied by a frequency independent factor;

the curves labeled “LPF OUT” and “V/I OUT” have almost the same profiles. The

curve labeled “ACC. OUT” represents the acceleration applied to the support of the

cantilever array. The shape of this curve strongly reflects the frequency characteristics

of the magnetic actuator. However, in the frequency range from 20 Hz to 70 Hz, the

power spectral density is kept almost constant. Since the first natural frequency of

the cantilever system is about 35 Hz (see the curve labeled “DISP. OUT(ch1)”), the

acceleration input can be considered as being “white noise” like, in the range of the

first system natural frequency.
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7.2.2 System equations for coupled oscillators

After reducing the governing system equations of motion, for the nth cantilevered

oscillator, the equation of motion is given by Kimura and Hikihara (2012):

ẍn =− ω2
0xn − γẋn + F (xn) + A cos (ωt)

−K (xn − xn+1)−K (xn − xn−1) ,

(7.2)

where n is the index number for the cantilevers ranging from 1 to 8, γ is the damping

coefficient for a cantilevered oscillator, K is the linear stiffness coupling coefficient,

the restoring force is given by equation (7.1), and the harmonic excitation with

amplitude A and frequency ω is shown. As shown in Figure 7.1, the cantilever array

is fixed at its ends. With respect to Eq. (7.2), these boundary conditions mean

x0 = x9 = 0. For the case with noise input as well, the governing equation for the

nth cantilever oscillator takes the form

ẍn =− ω2
0xn − γẋn + F (xn) + A cos (ωt)

−K (xn − xn+1)−K (xn − xn−1) + σẆ ,

(7.3)

where compared to Eq. (7.2), σẆ is the additional term.

7.3 NUMERICAL RESULTS

The numerical results reported in this section have been obtained by integrating

the equations of motion Eq. (7.3). This system of stochastic differential equations

(SDEs) are integrated with the Euler-Maruyama scheme, as discussed in reference

Higham (2001). The integration procedure starts with the differential form of the

equations as discussed in the previous chapters. First, a shooting method was
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applied to the deterministic equations of motion, in order to find satisfactory initial

conditions to be used in the SDE studies. The amplitude profile produced by using

the shooting method is shown in Figure 7.4, which is plotted as the solid curve with

“+” marks correspoding to specific simulation runs.

It should be noted that the curves plotted in Figures 7.4 and 7.7 are only for

reference purposes, and the symbols pertain to the actual obtained data from either

simulations or experiments. The arrow, in each of these two figures, denotes that

the oscillator response dropped from the ILM energy level to the low energy level

seen in the deterministic case (i.e., σ = 0). Figure 7.4 was generated by averaging

100 Euler-Maruyama simulations, with distinct noise vectors.

The following points should be kept in mind when comparing the simulation

results of Figure 7.4 and the experimental results of Figure 7.7. First, the noise

intensity in the experiment is a complicated function of several frequency-response

relationships (see Figure 7.3), while for the simulations, an assumption of white

Gaussian noise is used. For this reason, noise input amplitudes used for experiments

and simulations cannot be directly compared. Second, since the simulations deal with

averaged dynamics, data points that lie between the ILM state and the low energy

state represent cases where noise “eventually” pulled the ILM state to the low energy

state. On the basis of the frequency-response curve with hysteresis for an uncoupled

cantilever system (i.e., one low amplitude stable branch and high amplitude stable

branch), it can be said that in an “ILM state” for a coupled system, the system

response of a cantilever oscillator is on the top branch of the curve. Similary, the

“low energy state” is a system response of an oscillator on the bottom branch of the

hysteresis curve. In the experimental data, data points lie near the ILM curve or the

low energy curve, since the response is allowed to approach a steady state. Third,

response amplitudes in the simulation results shown in Figure 7.4 are found from the

average response peaks; while the response amplitudes in the experimental results
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shown in Figure 7.7 are found from the FFT amplitude of the response. FFTs were

used in order to capture the amplitude of only the desired frequency component (i.e.,

the response at the amplitude of the forcing frequency component). In Figure 7.5,

the averaged dynamics of the array is illustrated, where the darkness of the color

plotted corresponds to the amplitude level. The ILM is destroyed in this case, as

shown by the time response.

The creation of ILMs appears to be more complicated. The “breathing” effect,

which lended ILMs their other name (i.e., “discrete breathers”), is observed in the

frequency range above 36.5 Hz (not shown in Figure 7.7). In this range, if noise

is added to an ILM-free state (i.e., when there are no ILMs present in the system

response), an ILM might form. In Figure 7.6, the simulation results reveal an ILM

at oscillator 4 in the beginning, with the addition of noise causing this ILM to move

to oscillator 5. In addition, another ILM is seen at oscillator 2. In Figure 7.12, the

experimental results are shown for a case, in which one starts from an ILM-free state.

With the addition of noise, an ILM is formed at oscillator 5, and then can be seen

moving to a location between oscillators 4 and 5. This complicated phenomenon

needs to be explored further.

7.4 EXPERIMENTAL RESULTS

The experimental results are presented in this section. The procedure employed

to obtain the set of experimental results shown in Figures 7.7 and 7.8 is as follows.

First, an ILM was induced at oscillator 3, with σvolt = 0.0 units and ω = 2π × 33.5

rad/s. Then, the frequency was gradually adjusted to the frequency values presented

in Figure 7.7. These values chosen were in the range extending from 32.9 Hz (below

the hysteresis range) to 36.5 Hz (below the jump in the hysteresis curve to the

upper branch), and they were chosen in increments of 0.3 Hz. The frequency change

was carried out quasi-statically and the responses were recorded at the frequency
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locations mentioned. After the frequency was adjusted as explained, noise of different

amplitudes were added to the deterministic forcing, as explained in Section 2.2.1.

Throughout, the amplitude of the sinusoidal forcing was set at A = 2.6 units. The

results obtained from this procedure are plotted in Figure 7.7. As mentioned in

Figure 7.2, the data logger is used to record the acceleration signal instead of the

strain response signal from the 8th cantilever. Thus, while 8 oscillators are in the

experimental array, only 7 are presented in the subsequent figures. The 8th oscillator

is not near the ILM, and so its motion is not pertinent to the dynamics of the ILM.

In the experiments, it was found that when the forcing frequency, ω, was near

the “jump down” point of the hysteresis curve, even a relatively low amplitude level

of noise destroyed the ILM. A typical example of noise destroying an ILM is presented

in Figure 7.8. In the center of the hysteresis region, the ILM seems to be robust to

noise. This can be noted from the response at points in the right portion of Figure

7.7, where the response remains near the upper branch of the hysteresis curve for the

deterministic case. When the coupled oscillator array is forced with a frequency at

the “upward jump” location in the hysteresis curve, it was experimentally observed

that ILM movements may occur. This phenomenon was observed in a narrow band

for a frequency below the frequency location for the “upward jump” point in the

hysteresis curve, which was discussed at the end of Section 7.2.1.

To obtain the results shown in Figures 7.9 and 7.10, the forcing amplitude and

forcing frequency are set at A = 1.5 units and ω = 2π × 36.6 rad/s. In Figure 7.9, it

can be seen that only one ILM is present for σvolt = 0.0 units. In Figure 7.10, with

the addition of noise with σvolt = 10.0 units, the ILM is observed to be destroyed.

For the results shown in Figures 7.11 and 7.12, the forcing amplitude and forcing

frequency are set at A = 1.9 units and ω = 2π× 36.6 rad/s. In Figure 7.11, it can be

seen that no ILM is present for σvolt = 0.0 units. In Figure 7.12, with the addition

of noise with σvolt = 10.0 units, a moving ILM is created. It was observed that if the
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noise is switched off, the ILM could disappear or become pinned. Near the “jump

down” point of the hysteresis curve, the dynamics of the array under the influence of

noise is very complicated. More work will need to be performed to better understand

the noise-influenced dynamics in this region.

7.5 CONCLUDING REMARKS

The effects of noise on the response of an array of coupled nonlinear oscillators

has been studied through experiments and numerical studies. In particular, the

chosen system was an array of cantilever oscillators and the focus was on how noise

influenced periodic oscillations in the form of intrinsic localized modes. If one were to

use a classical nonlinear oscillator frequency response curve with stable low amplitude

and stable high amplitude branches, as a reference, then, near the “downward jump”

point in the hysteresis curve, noise seems to destroy the pinned intrinsic localized

modes. For high noise levels, the ILM behavior over a wider band of frequencies are

effected. However, over the middle portion of the upper branch in the hysteresis

curve (away from the jump locations), the ILM behavior appears to be robust to

noise additions.

The complex dynamics noted towards the end of Sections 7.3 and 7.4 could

possibly be used to develop a control scheme. It was noted that noise could be

used to both create as well as destroy ILMs. There seem to be particular choices of

sinusoidal forcing amplitude and the noise level, which promote this noise-influenced

phenomena. However, with the current experimental arrangement, it is difficult to

explore these dynamics precisely. This is in part due to the difficulty in realizing the

right combination of deterministic and noise components in the system input.
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Figure 7.1: Schematic configuration of cantilever array, actuator, and sensors,
studied by the author at Kyoto University. (a) Side view of a cantilever. mp and me

are magnetic charges of the permanent magnet and electromagnet, respectively. (b)
Front view of the cantilever array.
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Figure 7.2: Block diagram of experimental setup. The data logger is used to record
the acceleration signal instead of the strain response signal from the eighth cantilever.
The capability to impose a combination of deterministic and noise excitations is also
shown. The introduction of noise in the input was a new feature introduced by the
author in the experimental arrangement at Kyoto University.
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Figure 7.3: Power spectral density of noise input at different stages. All the data
were recorded for 10 s at a sampling frequency of 10 kHz. The curves are obtained
by averaging 10 data sets.
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Figure 7.4: For every point on the plot, an ILM state was used as an initial condition,
as found by the shooting method. After this, the noise intensity was set to the values
shown in the legend. The forcing amplitude for all cases was A = 2.6 units, which
is comparable to that used to generate the results in Figure 7.7. The arrow in this
figure highlights the “falling” point of the hysteresis curve, for the deterministic case.

Figure 7.5: Averaged dynamics of the array for A = 2.6 units, ω = 2π × 33 rad/s,
and σ = 0.4 units. Noise destroys the ILM in this case. This result may be compared
to the experimental finding shown in Figure 7.8.
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Figure 7.6: Averaged dynamics of the array for A = 1.9 units, ω = 2π × 36.6 rad/s,
and σ = 0.23 units. Noise causes movement of ILM at oscillator 4 to oscillator 5,
and creation of a new ILM at oscillator 2. This simulation result may be compared
to the experimental finding presented in Figure 7.10.
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Figure 7.7: For every point marked in this plot, an ILM state was first induced
with no noise. Then, the frequency of the sinusoidal excitation was adjusted to the
considered frequency. After this, the noise level was set to the values in the legend.
For all cases, the sinusoidal excitation amplitude was set at A = 2.6 units. Arrows
are used to highlight the “falling” or “jump down” location in the hysteresis curve
for the deterministic case.
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Figure 7.8: Typical example of noise destroying an ILM in the experiments. For this
case, A = 2.6 units, ω = 2π × 33.5 rad/s, and σvolt = 8.0 units.

Figure 7.9: Experimental results for A = 1.5 units, ω = 2π × 36.6 rad/s, and
σvolt = 0.0 units, an ILM is present.
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Figure 7.10: Experimental results for A = 1.5 units, ω = 2π × 36.6 rad/s, and
σvolt = 10.0 units. Starting from a state with an ILM (as in Figure 7.9), the ILM
has been destroyed.

Figure 7.11: Experimental results for A = 1.9 units, ω = 2π × 36.6 rad/s, and
σvolt = 0.0 units. No ILM is present.
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Figure 7.12: Experimental results for A = 1.9 units, ω = 2π × 36.6 rad/s, and
σvolt = 10.0 units. Starting from a state with no ILMs (as in Figure 7.11), ILM
movements can be observed as time evolves.
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Chapter 8

Summary and Recommendations for Future Work

8.1 Summary

In this dissertation work, several noise-influenced phenomena were brought to

light. Also, new methods have been constructed to control and visualize the effects

of noise. The phenomena discovered in this work could be used to design systems,

wherein noise could be utilized in an advantageous manner. The methods, although

used for oscillating systems in the context of this dissertation, could be implemented

to study other systems as well. The key aspects and findings of this dissertation are

the following:

1) Noise can influence bifurcations in a significant manner, including causing

them to occur. In the pendulum system, the system was deterministically forced,

with parameters which were near the bifurcation location of the upright position.

An addition of white Gaussian noise caused the system to remain at the upright

position [Perkins and Balachandran (2013)].

Similarly, for the Rayleigh-Duffing mixed type oscillator, the system was

deterministically forced, with parameters which were near the chaotic bifurcation

point for the broken egg attractor. An addition of white Gaussian noise, in this case,

caused the system to become quasiperiodic or chaotic [Perkins and Balachandran

(2012)]. A novel histogram plotting technique was used to elucidate the effects of

noise on this system. This noise-induced transition could be used in a manner which

is complementary to finding (2).

2) Noise can be utilized in a novel control scheme, wherein one employs noise to

move the system to a desired location, after which a classical control scheme is used
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to trap the system at this location [Perkins and Balachandran (2013)]. The advantage

of this control scheme is that the control energy cost is only that of maintaining

the system at the location; the noise energy is utilized during the possible large

excursions. In systems that are noisy and in which energy consumption is expensive,

this could be a useful means of control.

3) Although the effects of noise are often measured with the signal-to-noise

ratio, the information metric is also a useful and necessary metric as well, when

considering the oscillator to be receiving information. The phase lag has a significant

effect on the information rate. Although often modeled as having a linear relationship,

the phase lag is shown to be a nonlinear function of the noise level. The effects of

phase lag are shown to be important in calculating the information rate [Perkins

and Balachandran (2015)]. Since the information rate is important in the field of

neuronal stochastic resonance, this could be a useful result in sending signals between

neurons.

4) Several noise-influenced phenomena were observed for a nonlinear oscillator

array.

a) When an array of coupled, nonlinear oscillators is subjected to an impulse,

it was shown that noise can attenuate higher frequency components of the traveling

wave [Perkins et al. (2013)]. A novel metric was defined in this work to elucidate the

effects of this phenomenon. This attenuating phenomenon could be further studied

to design arrays that use noise to attenuate energy in certain bands.

b) By studying intrinsic localized mode response as a function of input frequency,

a hysteresis curve can be observed. From this starting point, the effects of noise on

the ILM has been studied. Near the “jump down point” of the hysteresis curve, the

ILM is easily destroyed with noise. Near the “jump up point” of the hysteresis curve

for a single Duffing oscillator, complicated dynamics is possible for the array. Here,

an ILM might be moved, created, or destroyed. The area between these points is
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more robust to noise [Perkins et al. (2015)].

This work, which was both experimental and numerical, has several implications

to ILM research. Noise may be used to actively destroy ILMs, if the system is operated

near the “jump down point”. However, if robustness to noise is desired, the system

may be operated in the middle area of the hysteresis curve. If better understood,

noise could be used to move ILMs, if the system was operated near the “jump up

point” of the hysteresis curve.

c) The effects of noise and cubic coupling was also studied. In this work, it was

found that cubic coupling allows noise to more easily destroy an ILM [Balachandran

et al. (2014)]. By using this work and the hysteresis work discussed in (4b), systems

may be designed, in which one adjusts coupling, forcing amplitude, forcing frequency,

and noise amplitude to control ILMs.

Taking stochastic resonance as a starting point, the author has shown several

noise-influenced phenomena which may be utilized to enhance the system dynamics.

Optimization schemes could be devised, to find parameter values which best exploit

the noise. An experimental setup, which can exhibit chaotic motion, might also

be constructed to test both the noise-utilizing control scheme, as well as the noise-

induced transition into chaos.

8.2 Recommendations for Future Work

An experimental coupled oscillator array is presented in Figure 8.1; this experi-

mental system was designed and constructed by the author. Permanent magnets

attached to the oscillators and on a plate above the oscillators provide a nonlinear

spring characteristic effect.

The frequency-response curve for this experimental system is shown in Figure

8.2. The points plotted in this curve are the maximal experimental strains measured

at each frequency for each oscillator, when performing a quasi-static frequency sweep.
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It should be noted that the experimental frequency-response curve has a hardening

character and that the upper curve is concave down, which is different from that

observed with the experimental setup presented in Chapter 7.

Although the experimental setup is different than that presented in Chapter 7,

similar phenomena can be observed, when the system is forced near the frequency

location of the “jump down” point of the frequency-response curve. In Figure 8.3, the

ILM can be observed at the fourth oscillator. This energy localization is persistent,

when there is no noise. However, in Figure 8.4, the energy localization is destroyed

after noise is added to the system.

The effects of noise on this experimental arrangement are suggested for further

studies in the future. The differences in frequency-response curves between the

experimental systems of Chapter 7 and 8 in terms of softening and hardening

character, and their influence on noise-induced phenomena, require further attention.

Additionally, the modified basin of attraction for the pendulum system in

Chapter 2 should be studied further. The dynamic stabilization of the upper

equilibrium position requires high frequency and large amplitude oscillations. For

this reason, the basin of attraction for the upper equilibrium position is a function

of the frequency and amplitude of the forcing. In the system presented in Chapter 2,

the basin of attraction is also a function of the noise amplitude. If this was better

understood, noise-utilizing devices could be designed.

The author is currently studying the effects of noise on the single monostable

Duffing oscillator’s frequency-response curve. A continuation method of the cumulant

equations for this system is now being undertaken as well. The effects of noise on

nonlinear phenomena, such as the hysteresis behavior, could allow novel control

schemes that utilize noise. For energy harvesting systems, an understanding of how

noise effects the dynamics in the hysteresis region could allow an optimization of

system parameters, to enable more energy to be harvested. A full understanding of
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noise on this system could elucidate the role of noise for more complex systems.

Studies on the effect of noise on the different types of intrinsic localized modes

(namely, the symmetric modes and and the anti-symmetric modes) could also produce

fruitful results. It is possible that noise could be used to cause stability changes

between these mode types. Also, studies with an array with nonlinear coupling

springs could provide interesting findings.

Since deterministic nonlinear systems may exhibit complicated dynamics, the

effects of noise on these systems is not trivial to predict. Understanding how noise

effects the dynamics of these systems could allow better control of the system, as

well as providing insight into how noise may be utilized in useful ways.
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Figure 8.1: An experimental coupled oscillator array is shown. Permanent magnets
attached to the oscillators and on a plate above the oscillators lead to a nonlinear
hardening characteristic in the model.

Figure 8.2: The nonlinear hardening effect may be observed from a quasi-static
frequency sweep. On the x-axis, the difference between the harmonic forcing frequency
and the first natural frequency of the system is shown. The points plotted are maximal
experimental strains at each frequency for each oscillator. Since the oscillators are
coupled, not all oscillators “jump down” from the frequency-response curve at the
same time. The blue and green curves are the upper and lower branches of the
predicted frequency-response curve.
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Figure 8.3: When operating near the “jump down” point of the hysteresis curve
(ω = 2π × 29.5 rad/s), the oscillator remains at the high energy level when no noise
is present.

Figure 8.4: When operating near the “jump down” point of the hysteresis curve
(ω = 2π × 29.5 rad/s), the oscillator “falls” to the lower energy level when noise is
added.
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A.1 Method of Multiple Scales to Derive an Approximation for Equa-

tion of Motion of Vertically Excited Pendulum

In this appendix, the derivation for an approximation for the equation of

motion for a system subjected to a high-frequency, low-amplitude excitation and

weak damping is provided, and this approximation is used to construct the associated

dynamic potential for the pendulum system. This approximation is obtained by

using the method of multiple scales Nayfeh and Balachandran (1995). The authors

start with equation (2.2) and carry out the substitutions

ω2 = εω̂2, a = εâ, µ = εµ̂ (1)

where ε is an ordering parameter. The approximation sought is of the form

θ(t, ε) = θ0(T0, T1, T2, ...) + εθ1(T0, T1, T2, ...) + ε2θ2(T0, T1, T2, ...) + ...

where the different time scales are

T0 = t, T1 = εt, T2 = ε2t (2)

The derivatives are then

d
dt

= D0 + εD1 + ε2D2...
d2

dt2
= D2

0 + 2εD0D1 + ε2(D2
1 + 2D0D2) + ...

Re-writing equation (2.2) with these expansions, results in the following:

(D2
0 + 2εD0D1 + ε2D2

1 + 2ε2D0D2 + ...)(θ0 + εθ1 + ...)

+εµ̂(D0 + εD1 + ...)(θ0 + εθ1 + ...)− ε2ω̂2 sin (θ0 + εθ1 + ...)

−εâ sin (θ0 + εθ1 + ...) cosT0 = 0

(3)

Collecting terms according to ε, leads to the following hierarchy of equations:

O(1) : D2
0θ0 = 0 (4)
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O(ε) : 2D0D1θ0 +D2
0θ1 + µ̂D0θ0 − â sin θ0 cosT0 = 0 (5)

O(ε2) : D2
0θ2 + (D2

1 + 2D0D2)θ0 + 2D0D1θ1 + µ̂D0θ1 + µ̂D1θ0

−ω̂2 sin θ0 − â cos θ0θ1 cosT0 = 0
(6)

The solution of equation (4) is θ0 = c1(T1, T2)t0 + c0(T1, T2). Since the first

term is secular, the coefficient c1 is chosen to be zero. Hence, θ0 = c0(T1, T2), which is

only a function of the slow time scales. After substituting this solution into equation

(5), the solution of equation (5) is determined to be θ1 = −â sin θ0 cosT0. Next,

substituting for θ0 and θ1 into equation (6), it is found that

D2
0θ2 = [−(D2

1 + 2D0D2)θ0 − µ̂D1θ0 + ω̂2 sin θ0 − â2

4
sin 2θ0]

−[2â cos θ0D1θ0 + µ̂â sin θ0] sinT0 − [ â
2

4
sin 2θ0] cos 2T0

(7)

Setting the sources of secular terms equal to zero, it is found that

(D2
1)θ0 + µ̂D1θ0 − ω̂2 sin θ0 +

â2

4
sin 2θ0 = 0 (8)

This leads to

θ̈0 + µθ̇0 − ω2 sin θ0 +
a2

4
sin 2θ0 = 0 (9)

Since θ = θ0 +O(ε), equation (2.2) can be approximated as

θ̈ + µθ̇ − ω2 sin θ +
a2

4
sin 2θ = 0 (10)

Hence, for f(θ) = ω2 sin θ − a2

4
sin 2θ, the dynamic potential of the forced

pendulum system can be approximated as

U(θ) = −
∫
f(θ)dθ = ω2 cos θ − a2

8
cos 2θ
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B.1 Sample Code

In this section, a sample code which is used to calculate and average the output
of an Euler-Maruyama scheme is presented. Additionally, a code that is used for the
calculating of the cumulant solutions of a nonlinear oscillator array is also shown.
This latter code also contains a Shooting Method on the cumulant equations. Section
B.1.1 is a simplified example of the procedure used to solve equation (3.7). Section
B.1.2 is a simplified example of the procedure used to solve equation (3.15).

B.1.1 Euler-Maruyama Code

close all

clear all

clc

%Specify parameters to be used in equations of motion

s.parameters.k1 = 1;

s.parameters.k3 = 1;

s.parameters.zeta = .1;

s.parameters.K = s.parameters.k3/s.parameters.k1;

force = 1;

omega = 1;

%Specify parameters for noise amplitude and averaging

numnoise = 1;

numaverages = 100;

%Specify time inputs

s.time.dt = 2^-10;

s.time.nPoints = 2^18;

indexVec = [1:s.time.nPoints];

s.time.timeVec = [0:indexVec(end-1)]*s.time.dt;

t = s.time.timeVec;

%Specify initial conditions

s.parameters.IC(1) = 4;

s.parameters.IC(2) = 0;

s.parameters.W = omega;

s.parameters.F = force;

%Set the noise amplitude and noise seed

%(for the noise vector calculation)

s.parameters.sigma = .1; %noise amplitude

s.parameters.noiseSeed = 100;

117



%Precalculate the noise vector

stdNoise = sqrt(s.time.dt);

s.noise.noiseVec = ...

generateWhiteNoise(s.time.nPoints,stdNoise,s.parameters.noiseSeed);

for i1 = 1:numaverages

solEM = nan(s.time.nPoints,2);

%Find Euler-Maruyama solution

solEM = defineEM(s);

%Store the position vector for each solution, to be

%averaged later

sol(:,i1) = solEM(:,1);

end

%Average the solutions and plot the resulting averaged dynamics

ave_sol = nan(s.time.nPoints,1);

for i2 = 1:s.time.nPoints

ave_sol(i2) = mean(sol(i2,:));

end

figure

plot(s.time.timeVec,ave_sol)

xlabel(’time’)

ylabel(’average displacement’)
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function solutionWithNoise = defineEM(s)

indexVec = [1:s.time.nPoints];

dt = s.time.dt;

timeVec = [0:indexVec(end-1)]*dt;

%Load parameters

zeta = s.parameters.zeta;

K = s.parameters.K;

F = s.parameters.F;

W = s.parameters.W;

sigma = s.parameters.sigma;

seed = s.parameters.noiseSeed;

%Get noise values

stdNoise = sqrt(dt);

noiseVec = s.noise.noiseVec;

x1 = nan(indexVec(end),1);

x2 = nan(indexVec(end),1);

x1(1) = s.parameters.IC(1);

x2(1) = s.parameters.IC(2);

for i1 = 1:s.time.nPoints-1

x1(i1+1) = x1(i1)+x2(i1)*dt;

x2(i1+1) = x2(i1)+(-2*zeta*x2(i1)-x1(i1)-K*(x1(i1))^3+...

F*cos(W*timeVec(i1)))*dt+sigma*noiseVec(i1);

end

solutionWithNoise = [x1 x2];

%Generate noise vector

%noiseVec = generateWhiteNoise(numberOfElements,StandardDeviation)

function noiseVec = generateWhiteNoise(nMax,stdNoise,seed)

s1 = RandStream.create(’mt19937ar’,’seed’,seed);

noiseVec = randn(s1,nMax,1);
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noiseVec = noiseVec*stdNoise;

B.1.2 Cumulant Code

close all

clear all

clc

%Uncoupled case, because k1 and k3 are set to zero

%number of oscillators

s.parameters.nOscillators = 2;

%mass

s.parameters.m = 1*ones(s.parameters.nOscillators,1);

%damping

s.parameters.c = .2*ones(s.parameters.nOscillators,1);

%linear nominal

s.parameters.k0 = 1*ones(s.parameters.nOscillators,1);

%linear coupling

s.parameters.k1 = 0*ones(s.parameters.nOscillators+1,1);

%nonlinear nominal

s.parameters.k30 = 1*ones(s.parameters.nOscillators,1);

%nonlinear coupling

s.parameters.k3 = 0*ones(s.parameters.nOscillators+1,1);

%forcing amplitude

s.parameters.a = 1;

%number of cumulant equations, from truncation procedure implemented

%on FPE

s.parameters.nEq = 5;

nOscillators = s.parameters.nOscillators;

nEq = s.parameters.nEq;

%Specify size of z

z = zeros(nOscillators*nEq,1);

%Specify time vector

timeVec = linspace(0,50*(2*pi)/1,5000);

%Set initial conditions

ic = nan(s.parameters.nOscillators,nEq,1);

for i3 = 1:s.parameters.nOscillators

ic(i3,:,1) = [0 0 0 0 0];
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end

ic_local(:,:)=ic(:,:,1);

for i5 = 1:s.parameters.nOscillators*s.parameters.nEq

z(i5,1) = ic_local(i5);

end

s.parameters.sigma = .1*ones(s.parameters.nOscillators,1);

s.parameters.w = 1;

[t,sol] = ode15s(@defineCumulants,timeVec,z,[],s);

%Find peaks of forcing vector

[pks,locs] =

findpeaks(s.parameters.a*cos(s.parameters.w*timeVec));

%Perform Shooting Method to find fixed points of Poincare sections

iterates = 20;

p = nan(nEq*nOscillators,iterates);

n = nan(iterates-1,1);

p(:,1) = sol(locs(end-1),:);

zee = zeros(nEq*nOscillators,nEq*nOscillators+1);

shootingTime=linspace(0,(2*pi)/s.parameters.w,400);

for i0 = 1:(iterates-1)

zee(:,1)=p(:,i0);

zee(:,2:end) = eye(nOscillators*nEq,nOscillators*nEq);

[tShooting,y] ...

= ode15s(@defineCumulantShootingMethod,shootingTime,zee,[],s);

%Shooting method iterate step

p(:,i0+1) = p(:,i0) -...

(reshape(y(end,(nEq*nOscillators+1):end),...

nEq*nOscillators,nEq*nOscillators)...

-eye(nEq*nOscillators))\(y(end,1:(nEq*nOscillators))’...

-p(:,i0));

%Find difference between iterates

n(i0) = norm(p(:,i0+1)-p(:,i0));

zee = zeros(nOscillators*nEq,nOscillators*nEq+1);

end

%Calculate floquet multipliers (eigs of
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%reshape(y(end,(2*regOscillators+1):end),

%2*regOscillators,2*regOscillators))

theta = linspace(0,2*pi,300);

floq = eigs(reshape(y(end,(nEq*nOscillators+1):end),...

nEq*nOscillators,nEq*nOscillators));

%Plot first cumulant of first oscillator (mean displacement)

figure

plot(t,sol(:,1))

xlabel(’time’)

ylabel(’mean displacement’)

function dz = defineCumulants(t,z,s)

%Load parameters

nOscillators = s.parameters.nOscillators;

m = s.parameters.m;

c = s.parameters.c;

k0 = s.parameters.k0;

k1 = s.parameters.k1;

k30 = s.parameters.k30;

k3 = s.parameters.k3;

a = s.parameters.a;

sigma = s.parameters.sigma;

nEq = s.parameters.nEq;
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w = s.parameters.w;

% dz=zeros((nEq*nOscillators),1);

z = reshape(z,nEq*nOscillators,1);

dz = zeros(nEq*nOscillators,1);

%Differential equations for position

%(z(1:8)) and velocity (z(9:16)).

i1 = 1;

dz(i1,1) = z(i1+nOscillators);

dz(i1+nOscillators,1) = a*cos(w*t)+ k1(i1+1)*z(i1+1) - ...

k0(i1)*z(i1) + 2*k30(i1)*z(i1)^3 - ...

c(i1)*z(i1+nOscillators) - ...

3*k30(i1)*z(i1)*z(i1+2*nOscillators);

dz(i1+2*nOscillators,1) = 2*z(i1+3*nOscillators);

dz(i1+3*nOscillators,1) = z(i1)*(a*cos(w*t) + k1(i1+1)*...

z(i1+1) + 2*k30(i1)*z(i1)^3) ...

- k0(i1)*z(i1+2*nOscillators) - ...

3*k30(i1)*z(i1+2*nOscillators)^2 ...

- c(i1)*z(i1+3*nOscillators) +...

z(i1+4*nOscillators);

dz(i1+4*nOscillators,1) = sigma(i1)^2 + 2*((a*cos(w*t) + ...

k1(i1+1)*z(i1+1) + 2*k30(i1)*z(i1)^3)*z(i1+nOscillators)...

- k0(i1)*...

z(i1+3*nOscillators) - 3*k30(i1)*z(i1+2*nOscillators)*...

z(i1+3*nOscillators) - c(i1)*z(i1+4*nOscillators));

for i1 = 2:nOscillators - 1

dz(i1,1) = z(i1+nOscillators);

dz(i1+nOscillators,1) = a*cos(w*t) + k1(i1)*z(i1-1) + ...

k1(i1+1)*z(i1+1) - k0(i1)*z(i1) + 2*k30(i1)*z(i1)^3 -...

c(i1)*z(i1+nOscillators) ...

- 3*k30(i1)*z(i1)*z(i1+2*nOscillators);

dz(i1+2*nOscillators,1) = 2*z(i1+3*nOscillators);

dz(i1+3*nOscillators,1) = z(i1)*(a*cos(w*t) ...

+ k1(i1)*z(i1-1) + ...

k1(i1+1)*z(i1+1) + 2*k30(i1)*z(i1)^3) ...

- k0(i1)*...

z(i1+2*nOscillators) ...

- 3*k30(i1)*z(i1+2*nOscillators)^2 -...

c(i1)*z(i1+3*nOscillators) ...

+ z(i1+4*nOscillators);
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dz(i1+4*nOscillators,1) = sigma(i1)^2 + 2*((a*cos(w*t) + ...

k1(i1)*z(i1-1) + k1(i1+1)*z(i1+1) + 2*k30(i1)*z(i1)^3)*...

z(i1+nOscillators) - k0(i1)*z(i1+3*nOscillators)...

- 3*k30(i1)...

*z(i1+2*nOscillators)*z(i1+3*nOscillators) - c(i1)*...

z(i1+4*nOscillators));

end

i1 = nOscillators;

dz(i1,1) = z(i1+nOscillators);

dz(i1+nOscillators,1) = a*cos(w*t) + k1(i1)*z(i1-1) ...

- k0(i1)*z(i1) ...

+ 2*k30(i1)*z(i1)^3 - c(i1)*z(i1+nOscillators) ...

- 3*k30(i1)*z(i1)*...

z(i1+2*nOscillators);

dz(i1+2*nOscillators,1) = 2*z(i1+3*nOscillators);

dz(i1+3*nOscillators,1) = z(i1)*(a*cos(w*t) + k1(i1)*z(i1-1)+ ...

2*k30(i1)*z(i1)^3) - k0(i1)*z(i1+2*nOscillators) - 3*k30(i1)*...

z(i1+2*nOscillators)^2 - c(i1)*z(i1+3*nOscillators) + ...

z(i1+4*nOscillators);

dz(i1+4*nOscillators,1) = sigma(i1)^2 + 2*((a*cos(w*t)...

+ k1(i1)*z(i1-1) ...

+ 0 + 2*k30(i1)*z(i1)^3)*z(i1+nOscillators) - k0(i1)*...

z(i1+3*nOscillators) - 3*k30(i1)*z(i1+2*nOscillators)*...

z(i1+3*nOscillators) - c(i1)*z(i1+4*nOscillators));

function dz = defineCumulantShootingMethod(t,z,s)

%Shooting method for coupled oscillator experiment

%Load parameters

nOscillators = s.parameters.nOscillators;

c = s.parameters.c;

k0 = s.parameters.k0;

k1 = s.parameters.k1;

k30 = s.parameters.k30;

k3 = s.parameters.k3;

w = s.parameters.w;

a = s.parameters.a;

sigma = s.parameters.sigma;

nEq = s.parameters.nEq;

% dz=zeros((nEq*nOscillators),1);

z = reshape(z,nEq*nOscillators,(nEq*nOscillators)+1);
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dz = zeros(nEq*nOscillators,(nEq*nOscillators)+1);

var = zeros(nEq*nOscillators,nEq*nOscillators);

alpha = zeros(nOscillators,nOscillators);

beta = zeros(nOscillators,nOscillators);

gamma = zeros(nOscillators,nOscillators);

delta = zeros(nOscillators,nOscillators);

epsilon = zeros(nOscillators,nOscillators);

zeta = zeros(nOscillators,nOscillators);

eta = zeros(nOscillators,nOscillators);

iota = zeros(nOscillators,nOscillators);

%differential equations for position (z(1:8))

%and velocity (z(9:16)).

i1 = 1;

dz(i1,1) = z(i1+nOscillators);

dz(i1+nOscillators,1) = a*cos(w*t) + k1(i1+1)*z(i1+1) -...

k0(i1)*z(i1) + 2*k30(i1)*z(i1)^3 ...

- c(i1)*z(i1+nOscillators) - ...

3*k30(i1)*z(i1)*z(i1+2*nOscillators);

dz(i1+2*nOscillators,1) = 2*z(i1+3*nOscillators);

dz(i1+3*nOscillators,1) = z(i1)*(a*cos(w*t) + ...

k1(i1+1)*z(i1+1) + 2*k30(i1)*z(i1)^3) ...

- k0(i1)*z(i1+2*nOscillators) ...

- 3*k30(i1)*z(i1+2*nOscillators)^2 ...

- c(i1)*z(i1+3*nOscillators) ...

+ z(i1+4*nOscillators);

dz(i1+4*nOscillators,1) = sigma(i1)^2 + 2*((a*cos(w*t) + ...

k1(i1+1)*z(i1+1) + 2*k30(i1)*z(i1)^3)*z(i1+nOscillators) - ...

k0(i1)*z(i1+3*nOscillators) ...

- 3*k30(i1)*z(i1+2*nOscillators)*...

z(i1+3*nOscillators) - c(i1)*z(i1+4*nOscillators));

for i1 = 2:nOscillators - 1

dz(i1,1) = z(i1+nOscillators);

dz(i1+nOscillators,1) = a*cos(w*t) + k1(i1)*z(i1-1) + ...
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k1(i1+1)*z(i1+1) - k0(i1)*z(i1) + 2*k30(i1)*z(i1)^3 -...

c(i1)*z(i1+nOscillators) ...

- 3*k30(i1)*z(i1)*z(i1+2*nOscillators);

dz(i1+2*nOscillators,1) = 2*z(i1+3*nOscillators);

dz(i1+3*nOscillators,1) = z(i1)*(a*cos(w*t) ...

+ k1(i1)*z(i1-1) + ...

k1(i1+1)*z(i1+1) + 2*k30(i1)*z(i1)^3) - k0(i1)*...

z(i1+2*nOscillators) ...

- 3*k30(i1)*z(i1+2*nOscillators)^2 - ...

c(i1)*z(i1+3*nOscillators) + z(i1+4*nOscillators);

dz(i1+4*nOscillators,1) = sigma(i1)^2 ...

+ 2*((a*cos(w*t) + ...

k1(i1)*z(i1-1) + k1(i1+1)*z(i1+1) + 2*k30(i1)*z(i1)^3)*...

z(i1+nOscillators) - k0(i1)*z(i1+3*nOscillators) ...

- 3*k30(i1)*z(i1+2*nOscillators)*z(i1+3*nOscillators)...

- c(i1)*...

z(i1+4*nOscillators));

end

i1 = nOscillators;

dz(i1,1) = z(i1+nOscillators);

dz(i1+nOscillators,1) = a*cos(w*t) + k1(i1)*z(i1-1) ...

- k0(i1)*z(i1) ...

+ 2*k30(i1)*z(i1)^3 - c(i1)*z(i1+nOscillators) ...

- 3*k30(i1)*z(i1)*z(i1+2*nOscillators);

dz(i1+2*nOscillators,1) = 2*z(i1+3*nOscillators);

dz(i1+3*nOscillators,1) = z(i1)*(a*cos(w*t) ...

+ k1(i1)*z(i1-1) + ...

2*k30(i1)*z(i1)^3) - k0(i1)*z(i1+2*nOscillators) ...

- 3*k30(i1)*...

z(i1+2*nOscillators)^2 - c(i1)*z(i1+3*nOscillators) + ...

z(i1+4*nOscillators);

dz(i1+4*nOscillators,1) = sigma(i1)^2 + 2*((a*cos(w*t) ...

+ k1(i1)*z(i1-1) ...

+ 0 + 2*k30(i1)*z(i1)^3)*z(i1+nOscillators) - k0(i1)*...

z(i1+3*nOscillators) - 3*k30(i1)*z(i1+2*nOscillators)*...

z(i1+3*nOscillators) - c(i1)*z(i1+4*nOscillators));
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%Construct DxF*cos(w*t) (variational matrix)

for i7 = 2:(nOscillators)

delta(i7,i7) = 2*k1(1)*z(i7-1);

end

for i7 = 1:nOscillators-1

delta(i7,i7) = delta(i7,i7)+2*k1(1)*z(i7+1);

end

for i7 = 2:(nOscillators)

beta(i7,i7) = k1(1)*z(i7-1);

end

for i7 = 1:nOscillators-1

beta(i7,i7) = beta(i7,i7)+k1(1)*z(i7+1);

end

for i6 = 1:nOscillators

alpha(i6,i6) = -k0(1)+6*k30(1)*z(i6)^2-3*k30(1)...

*z(i6+2*nOscillators);

for i7 = 1:(nOscillators-1)

alpha(i7,i7+1) = k1(1);

alpha(i7+1,i7) = k1(1);

end

beta(i6,i6) = beta(i6,i6) + a*cos(w*t)+8*k30(1)*z(i6)^3;

for i7 = 1:(nOscillators-1)

beta(i7,i7+1) = k1(1)*z(i7);

beta(i7+1,i7) = k1(1)*z(i7+1);

end

gamma(i6,i6) = 12*k30(1)*z(i6)^2*z(i6+nOscillators);

for i7 = 1:(nOscillators-1)

gamma(i7,i7+1) = 2*k1(1)*z(i7+nOscillators);

gamma(i7+1,i7) = 2*k1(1)*z(i7+1+nOscillators);

end

delta(i6,i6) = delta(i6,i6) ...

+ 2*a*cos(w*t)+4*k30(1)*z(i6)^3;

epsilon(i6,i6) = -3*k30(1)*z(i6);

zeta(i6,i6) = -k0(1)-6*k30(1)*z(i6+2*nOscillators);

eta(i6,i6) = -6*k30(1)*z(i6+3*nOscillators);
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iota(i6,i6) = 2*(-k0(1)-3*k30(1)*z(i6+2*nOscillators));

end

var = [zeros(nOscillators,nOscillators),

eye(nOscillators,nOscillators),...

zeros(nOscillators,nOscillators),

zeros(nOscillators,nOscillators),...

zeros(nOscillators,nOscillators);...

alpha,-c(1)*eye(nOscillators,nOscillators),epsilon,...

zeros(nOscillators,nOscillators),

zeros(nOscillators,nOscillators);...

zeros(nOscillators,nOscillators),

zeros(nOscillators,nOscillators),...

zeros(nOscillators,nOscillators),

2*eye(nOscillators,nOscillators),...

zeros(nOscillators,nOscillators);...

beta,zeros(nOscillators,nOscillators),zeta,

-c(1)*eye(nOscillators,...

nOscillators),eye(nOscillators,nOscillators);...

gamma,delta,eta,iota,-2*c(1)*eye(nOscillators,nOscillators)];

dz(:,2:end) = var*z(:,2:end);

dz = reshape(dz,nEq*nOscillators+(nEq*nOscillators)^2,1);
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