

ABSTRACT

Title of Dissertation: A COMPREHENSIVE EVALUATION OF

 FEATURE-BASED MALICIOUS WEBSITE

 DETECTION

John F. McGahagan IV, Doctor of Philosophy, 2020

Dissertation directed by: Professor Michel Cukier

 Department of Mechanical Engineering

Although the internet enables many important functions of modern life, it is also a

ground for nefarious activity by malicious actors and cybercriminals. For example,

malicious websites facilitate phishing attacks, malware infections, data theft, and

disruption. A major component of cybersecurity is to detect and mitigate attacks enabled

by malicious websites. Although prior researchers have presented promising results –

specifically in the use of website features to detect malicious websites – malicious

website detection continues to pose major challenges. This dissertation presents an

investigation into feature-based malicious website detection. We conducted six studies on

malicious website detection, with a focus on discovering new features for malicious

website detection, challenging assumptions of features from prior research, comparing

the importance of the features for malicious website detection, building and evaluating

detection models over various scenarios, and evaluating malicious website detection

models across different datasets and over time. We evaluated this approach on various

datasets, including: a dataset composed of several threats from industry; a dataset derived

from the Alexa top one million domains and supplemented with open source threat

intelligence information; and a dataset consisting of websites gathered repeatedly over

time. Results led us to postulate that new, unstudied, features could be incorporated to

improve malicious website detection models, since, in many cases, models built with new

features outperformed models built from features used in prior research and did so with

fewer features. We also found that features discovered using feature selection could be

applied to other datasets with minor adjustments. In addition: we demonstrated that the

performance of detection models decreased over time; we measured the change of

websites in relation to our detection model; and we demonstrated the benefit of re-

training in various scenarios.

A COMPREHENSIVE EVALUATION

OF FEATURE-BASED MALICIOUS WEBSITE DETECTION

by

John F. McGahagan IV

Dissertation submitted to the Faculty of the Graduate School of the

University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

2020

Advisory Committee:

Professor Michel Cukier, Chair

Professor Jennifer Golbeck, Dean’s Representative

Assistant Professor Katrina Groth

Professor Jeffrey Herrmann

Professor Mohammad Modarres

© Copyright by

John Francis McGahagan IV

2020

ii

Acknowledgements

I would like to thank my advisor, Dr. Michel Cukier, for his guidance,

mentorship, and feedback in this pursuit. Thank you to Darshan Bhansali for his

collaboration and for sharing his data science expertise with me. I would also like to

express my gratitude to Dr. Margaret Gratian and Ciro Pinto-Coelho for their

constructive feedback on the published works derived from this dissertation. Thank you

to Robert Jenquin for his outside perspective on this work. An additional thanks to Karl

and Vicki Gumtow for their support of this academic pursuit. Thank you to Tim

McGahagan and the countless family members and friends for your support in this

journey. Last, but not least, I would like to thank my parents Diane and John McGahagan

III for their continued love, encouragement, and words of wisdom in this endeavor and in

life.

iii

Table of Contents

Acknowledgements ... ii
Table of Contents ... iii
List of Tables ... x
List of Figures .. xiii
List of Abbreviations .. xv

Chapter 1: Introduction ... 1
 Background and Motivation .. 1

 The Impact of Cybersecurity ... 1
 Websites as Attack Enablers ... 2
 The Case for New Detection Techniques 3

 The Current State of Malicious Website Detection..................... 4
 Research Scope ... 6

 Detecting Malicious Websites ... 6

 Identifying and Comparing New Features for Malicious Website

Detection ... 7
 Evaluating our Approach over Multiple Scenarios 8
 Bridging a Gap Between Research and Industry......................... 9

 Analysis on Different Datasets and Over Time 10
 Research Questions and Approach .. 10

 Research Question 1 .. 10
 Research Question 2 .. 11
 Research Question 3 .. 11

 Research Question 4 .. 12

 Research Question 5 .. 12
 Research Question 6 .. 12
 Research Question 7 .. 13

 Research Question 8 .. 13
 Research Question 9 .. 13

 Research Question 10 .. 14
 Research Question 11 .. 14
 Research Question 12 .. 14

 Research Question 13 .. 15
 Contributions ... 15
 Dissertation Outline ... 16

Chapter 2: Background and Related Research ... 18
 Introduction ... 18

 An Overview of Features for Malicious Website Detection 18
 Host Information ... 19

2.2.1.1 URL Word-Based Features .. 19
2.2.1.2 Special Characters and URL Structure Features 20
2.2.1.3 Additional Approaches with URL Features 21

 Webpage Content .. 22
2.2.2.1 Term Frequency-Inverse Document Frequency (TF-IDF)

and Its Applicability in Webpage Content 22

iv

2.2.2.2 Webpage Content - Structural Content - Tags and

Attributes... 23

2.2.2.3 Webpage Content - Defining Page Content Behavior with

JavaScript .. 25
2.2.2.4 Combining Page Structure and Behavior for More

Holistic Malicious Detection .. 26
 Communication Data Features .. 28

2.2.3.1 Communication Data Features – HTTP Headers 28
 The Methods and Models for Detection .. 29

 Heuristics ... 29
 Clustering .. 30
 Supervised Learning .. 31

 Validation .. 33
 Practical Implementation ... 36
 Performance Metrics ... 37

 Measuring Website Change... 40

 Summary ... 41
Chapter 3: Methodology ... 42

 Overview ... 42

 High Level Approach .. 43
 Step 1: Select Datasets .. 46

 Dataset 1 .. 46
 Dataset 2 .. 47
 Dataset 3 .. 48

 Step 2: Discover Features .. 48

 Extensive Feature Consideration ... 50
 Feature Selection Process .. 51

 Step 3: Build Detection Models .. 52

 Supervised Machine Learning Techniques 52
 Importance Determination ... 55

 Scenarios and Feature Transformation 56
 Step 4: Tune and Cross-Validate ... 59

 Hyperparameter Tuning and Cross-Validation 59

 Validation with Another Data Split ... 59
 Step 5: Combine Features for Improved Detection 60

 Combined Features in this Study .. 60

 Additional Detection Models .. 60
 Hyperparameter Tuning and Cross-Validation 60

 Step 6: Evaluate on Another Dataset ... 61
 Model Application to a New Dataset (Dataset 2)...................... 61
 Retrain with Features Identified in Prior Studies (Section 3.3) 61
 Leverage Two Datasets for Training and Evaluation 61

 Step 7: Explore Detection Performance Over Time 62

 Measure the Performance of a Model Trained on Dataset 1 and

Evaluated on Dataset 3 .. 62
 Investigate the Impact of Model Retraining on Performance ... 62

v

 Evaluate Website Change Over Time 62
 Summary ... 65

Chapter 4: Webpage Content Features Analysis .. 67
 Introduction ... 67
 Related Research ... 68
 Research Questions 1–4 .. 70

 Research Question 1 .. 70

 Research Question 2 .. 70
 Research Question 3 .. 71
 Research Question 4 .. 71

 Feature Consideration ... 71
 JavaScript Methods ... 71

4.4.1.1 Obfuscation Methods ... 72
4.4.1.2 Suspicious Methods.. 73
4.4.1.3 Methods that Act on the Window or DOM Objects 73

 HTML Characteristics ... 76

 Feature Collection ... 78
 Learning, Feature Selection, and Sampling Techniques in Webpage

Content Analysis ... 78

 Feature Elimination Process .. 78
 Machine Learning Models, Sampling, and Feature

Transformation .. 80
 Results ... 81

 RQ1: How do the Features Identified Compare with Prior

Research? .. 81

4.7.1.1 Features Identified in Previous Research 83
4.7.1.2 New Features Identified ... 84
4.7.1.3 Features Ranking Analysis ... 85

 RQ2: Do the Additional Features Identified Improve Malicious

Website Detection? ... 86

 RQ3: Do our Results Change with No-sampling, Under-

sampling, and Over-sampling Scenarios? 92
 RQ4: Does Hyperparameter Tuning and Cross-Validation

Improve our Results? .. 93
 Conclusion ... 95

Chapter 5: URL Features Analysis ... 97

 Introduction ... 97
 Related Research ... 98

 Research Questions ... 100
 Research Question 1 .. 100
 Research Question 3 .. 100
 Research Question 4 .. 101

 Feature Consideration ... 101

 N-gram Approach .. 101
 Character Distributions ... 102
 Specific Features ... 103

vi

 Learning, Feature Selection, and Sampling Techniques in URL Analysis

 ... 103

 Feature Selection ... 103
 Machine Learning Models, Sampling, and Feature

Transformation .. 103
 Results ... 104

 RQ1: How do the Features Identified Compare with Prior

Research? .. 104
5.6.1.1 Features Identified in Previous Research 105
5.6.1.2 New Features Identified ... 106
5.6.1.3 Features Ranking Analysis ... 106

 RQ3: Do our Results Change with No-sampling, Under-

sampling, and Over-sampling scenarios? 107
 RQ4: Does Hyperparameter Tuning and Cross-Validation

Improve our Results? .. 111

 Conclusion ... 113

Chapter 6: HTTP Features Analysis ... 114
 Introduction ... 114
 Related Research ... 114

 Research Questions ... 115
 Research Question 1 .. 116

 Research Question 2 .. 116
 Research Question 3 .. 117
 Research Question 4 .. 117

 Feature Consideration ... 117

 Extractable HTTP Features ... 117
 HTTP Feature Collection .. 119

 Learning, Feature Selection, and Sampling Techniques in HTTP Header

Analysis ... 120
 Feature Selection ... 120

 Machine Learning Models, Sampling, and Feature

Transformation .. 121
 Results ... 122

 RQ1: How do the Features Identified Compare with Prior

Research? .. 122
6.6.1.1 Features Identified in Previous Works 123

6.6.1.2 New Features Identified ... 125
6.6.1.3 Features Ranking Analysis ... 127

 RQ2: Do the Additional Features Identified Improve Malicious

Website Detection? ... 128
 RQ3: Do our Results Change with No-sampling, Under-

sampling, and Over-sampling Scenarios? 135
 RQ4: Does Hyperparameter Tuning and Cross-Validation

Improve our Results? .. 136
 Conclusion ... 137

Chapter 7: Combined Web Request Features Analysis .. 139

vii

 Introduction ... 139
 Related Research ... 140

 Research Questions 5–7 .. 143
 Research Question 5 .. 143
 Research Question 6 .. 143
 Research Question 7 .. 144

 Methodology ... 145

 Dataset Selection ... 146
 Features for Malicious Website Detection 147
 Feature Collection, Selection, and Transformation 147

7.4.3.1 Feature Collection .. 147
7.4.3.2 Feature Selection .. 148

7.4.3.3 Feature Transformation .. 149
 Sampling .. 150
 Unsupervised and Supervised Learning 150

 Hyperparameter Tuning and Cross-Validation 152

 Results ... 152
 Unsupervised Results .. 152
 Feature Selection Importance .. 154

 Sampling Scenarios ... 161
 Feature Transformation ... 163

 Hyperparameter Tuning and Cross-Validation 165
 RQ5: Is Feature Discovery Feasible for Malicious Website

Detection? .. 167

 RQ6: How do Discovered Features’ Detection Ability Compare

to Those from Prior Research? .. 171
 RQ7: Can a Discovery Approach be Applied to Several Threats

when Only Features from a Web Response are Available? 171

 Conclusions ... 172
Chapter 8: Evaluation on an Additional Dataset .. 173

 Introduction ... 173
 Related Research ... 174
 Research Questions ... 176

 Research Question 8 .. 176
 Research Question 9 .. 176
 Research Question 10 .. 177

 Feature Consideration, Dataset, Analysis Approach 177
 Feature Consideration ... 177

 Datasets ... 178
 Analysis Approach .. 178

 Results ... 178
 RQ8: How Robust are Malicious Website Detection Models

when Applied to a New Dataset? .. 178

8.5.1.1 Evaluation on Previous Models.................................... 178
8.5.1.2 Feature Correlation Investigation 179
8.5.1.3 T-SNE Analysis.. 182

viii

8.5.1.4 Statistical Tests on Dataset 1 and Dataset 2 185
 RQ9: How do the Features Identified Perform on a New

Dataset? ... 188
8.5.2.1 Retraining for Malicious Website Detection 189
8.5.2.2 Investigating Additional Features 189
8.5.2.3 Varying Ratios of Training to Testing Data 191
8.5.2.4 Identifying Training to Testing Ratio 191

 RQ10: What Aspects from Prior Experiments Can We Apply to

Our New Dataset? ... 192
8.5.3.1 Training Dataset Evaluation ... 193

 Discussion ... 195
 Conclusion ... 195

Chapter 9: A Temporal Evaluation of Feature-Based Malicious Website Detection197
 Introduction ... 197
 Related Research ... 198

 Research Questions ... 201

 Research Question 11 .. 201
 Research Question 12 .. 202
 Research Question 13 .. 202

 Approach ... 203
 Dataset Collection ... 204

 Feature Set Selection ... 205
 Analysis Approach .. 205

 Results ... 210

 RQ11: How does Detection Performance Change Over Time?

 ... 210
 RQ12: Do Websites Change Over Time? 218
 RQ13: If Websites Change Over Time, How Much do They

Change Over Time? .. 224
 Conclusion ... 229

Chapter 10: Limitations .. 230
 Dataset Selection ... 230
 Feature Challenges .. 231

 Comparison with Other Works ... 233
 Additional Limitations .. 233

Chapter 11: Conclusions ... 235

 Dissertation Summary ... 235
 Future Work .. 236

Appendices 238
Appendix A: URL Features .. 239
Appendix B: JavaScript Methods ... 240
Appendix C: HTML .. 243
Appendix D: Full Tables and Charts .. 245

Table D-1: The Count of “-“ Characters Had High Correlation with the

Target Variable .. 245

ix

Table D-2: Performance of a Several Models Built with Features from

Prior Research Versus Discovered Features 250

Table D-3: Performance of a Several Models Built with Transformed

Features from Prior Research Versus Discovered Features 251
Table D-4: Performance of a Random Forest Classifier Trained with 34

Features on Dataset 3 Snapshot 1 ... 252
Table D-5: Performance of a Random Forest Classifier Trained with 99

Features on Dataset 3 Snapshot 1 ... 252
Table D-6: Performance of a Random Forest Classifier Trained with Re-

selected Features on Dataset 3 Snapshot 1 252
Table D-7: Performance of a Random Forest Classifier Trained with 34

Features on Dataset 3 Snapshot 6 ... 252

Table D-8: Performance of a Random Forest Classifier Trained with 99

Features on Dataset 3 Snapshot 6 ... 253
Table D-9: Performance of a Random Forest Classifier Trained with Re-

selected Features on Dataset 3 Snapshot 6 253

Table D-10: Performance of a Random Forest Classifier Trained with 34

Features on Dataset 3 Snapshot 1-6 253
Table D-11: Performance of a Random Forest Classifier Trained with 99

Features on Dataset 3 Snapshot 1-6 253
Table D-12: Performance of a Random Forest Classifier Trained with Re-

selected Features on Dataset 3 Snapshot 1-6 254
Table D-13: Details of Which Features Changed Over Time, Beginning

with the First Snapshot .. 255

Table D-14: Feature Change Based on the Related T-test 257

Table D-15: Feature Change Based on the Two-Sample KS Test 257
Table D-16: Feature Change Based on the K-Sample Anderson-Darling

 ... 257

Table D-17: Feature Change Based on the Kruskal Wallis H Test 257
References 259

x

List of Tables

Table 2-1. Datasets from Prior Research (Prior Research Leveraged Various Datasets

Derived from Numerous Sources) ... 35
Table 2-2. Prior Research Occasionally Tested Detection Methods on Different

Datasets ... 36
Table 2-3. Prior Researchers Did Not Use a Standard Performance Metric 39

Table 4-1. Certain JavaScript Methods Were Considered Suspicious and Have Been

Studied in Prior Research.. 75
Table 4-2. Feature Selection Identified 26 Webpage Content Features for Detection 82
Table 4-3. 50 Webpage Content Features from Prior Research Showed Inconsistent Rank

in Sampling Scenarios... 83

Table 4-4. Identified Webpage Content Features Slightly Outperformed Features from

Prior Research ... 87
Table 4-5. Identified Webpage Content Features Slightly Outperformed Features from

Prior Research (cont.) ... 88

Table 4-6. Model Performance (50 Webpage Content Features from Prior Research / 26

Identified Webpage Content Features) with Feature Transformation 91
Table 4-7. Model Performance (50 Webpage Content Features from Prior Research / 26

Identified Webpage Content Features) with Feature Transformation (cont.) 91
Table 4-8. Cross-Validation and Hyperparameter Tuning Slightly Improved Webpage

Content Models ... 95
Table 5-1. The Top Seven URL Features Had Consistent Rank 105
Table 5-2. URL Features Produced High Detection Metrics with 41 Identified URL

Features in Sampling Scenarios .. 108

Table 5-3. URL Features Produced High Detection Metrics with 41 Identified URL

Features in Sampling Scenarios (cont.) .. 108
Table 5-4. URL Features Produced High Detection Metrics with 41 identified URL

Features in Feature Transformation Scenarios ... 110
Table 5-5. URL Features Produced High Detection Metrics with 41 Identified URL

Features in Feature Transformation Scenarios (cont.) .. 110
Table 5-6. Cross-Validation and Hyperparameter Tuning Slightly Improved URL

Models... 112

Table 6-1. The Top 8 Identified HTTP Header Features Accounted for 81.62% of

Importance .. 123
Table 6-2. The Top 3 HTTP Header Features from Prior Research Were Consistent in

Sampling Scenarios ... 123
Table 6-3. Identified HTTP Header Features Outperformed Features from Prior Research

inn Sampling Scenarios... 130
Table 6-4. Identified HTTP header Features Outperformed Features from Prior Research

in Sampling Scenarios (cont.) ... 131
Table 6-5. Identified HTTP Header Features Outperformed Features from Prior Research

in Feature Transformation Scenarios .. 134

Table 6-6. Identified HTTP Header Features Outperformed Features from Prior

Research in Feature Transformation Scenarios (cont.) .. 134

xi

Table 6-7. Cross-Validation and Hyperparameter Tuning Slightly Improved HTTP

Header Models .. 137

Table 7-1. Feature Selection Identified 22 Features Used in Prior Research and 12 that

Were New ... 155
Table 7-2. The Importance of 99 Features from Prior Research Was Inconsistent Across

Sampling Scenarios ... 160
Table 7-3. Hyperparameter Tuning and Cross-Validation Slightly Improved Detection

Performance for Discovered and A Priori Features ... 166
Table 7-4. Hyperparameter Tuning and Cross-Validation Slightly Improved Detection

Performance for Discovered and A Priori Features ... 166
Table 8-1. Applying the Best Random Forest Classifier Built in Chapter 7 from Dataset

1 to Dataset 2 Yielded Poor Detection Results ... 179

Table 8-2. The 34 Features Identified for Detection in Chapter 7 Had Different

Correlation Values for Dataset 1 and Dataset 2 ... 180
Table 8-3. The 99 Features from Prior Research Had Different Correlation Values for

Dataset 1 and Dataset 2 ... 181

Table 8-4. The KS Statistics for the Identified Features from Chapter 7 for Dataset 1 and

Dataset 2 Demonstrated that the Identified Features Were Not from the Same

Distribution ... 186

Table 8-5. Pearson's Chi Square and Cramer's Phi Showed that the Categorical Features

Had Different Levels of Association with Maliciousness for Dataset 1 and Dataset 2 . 187

Table 8-6. Retraining on the New Dataset 2 Slightly Improved Detection Ability, But

Was Not Sufficient .. 189
Table 8-7. Pearson's Correlation Between Features and Maliciousness in Dataset 2

Suggested Ability of Two New Features for Detection ... 190

Table 8-8. Incorporating Two Additional Features Greatly Improved Detection Ability

... 191
Table 8-9. Detection Performance When Incorporating Two Additional Features

Remained Consistent with 3% of Data Used for Training ... 192
Table 8-10. Incorporating Dataset 2 Into Training Did Not Improve Detection Ability on

Dataset 2 When Using Identified Features ... 193
Table 8-11. Training Models with Both Dataset 1 and Dataset 2 Slightly Improved

Detection on Both Datasets When Using Identified Features 193

Table 8-12. Training Models with Both Dataset 1 and Dataset 2 Slightly Improved

Detection on Both Datasets When Using Features from Prior Research........................ 194
Table 8-13. Over-Sampling Slightly Decreased Detection Performance When Training

Models with Both Dataset 1 and Dataset 2 and Evaluating on Dataset 1 and Dataset 2

with Identified Features .. 194

Table 8-14. Over-Sampling Slightly Decreased Detection Performance When Training

Models with Both Dataset 1 and Dataset 2 and Evaluating on Dataset 1 and Dataset 2

with Prior Features .. 194
Table 9-1. A Fraction of the Websites in the Alexa Top 1M Were Consistent Over Time

... 205

Table 9-2. The Detection Model Built from Dataset 1 with 34 Features Remained

Consistent on Dataset 3 ... 210

xii

Table 9-3. The Detection Model Built from Dataset 1 with 99 Features Remained

Consistent on Dataset 3 ... 210

Table 9-4. The Model Trained on Dataset 1 with 34 Features Performed Consistently

Poorly When Applied to Dataset 3 ... 212
Table 9-5. The Model Trained on Dataset 1 with 99 Features Performed Consistently

Poorly When Applied to Dataset 3 ... 212

xiii

List of Figures

Fig. 1-1. An example of a phishing website from Lehigh.edu (Image courtesy of

Pixabay [22].) .. 6
Fig. 1-2. A simplified view of drive-by down-load infections (Images courtesy of

Pixabay [22].) .. 7
Fig. 1-3. A simplified view of C2 (Images courtesy of Pixabay [22].) 7

Fig. 1-4. A detailed overview of this dissertation .. 17
Fig. 3-1. Methods explored in this research can be applied with other security solutions

... 43
Fig. 3-2. Defining a website with three facets ... 49
Fig. 3-3. Several sampling and feature transformation scenarios were used throughout

this research .. 58
Fig. 4-1. 150 components are created from 26 identified webpage content features ... 90
Fig. 4-2. 300 components are created from 50 identified webpage content features .. 90

Fig. 5-1. 110 components are created from 41 URL features 110

Fig. 6-1. 22 header features yielded 117 components ... 133
Fig. 6-2. 11 header features yielded 56 components ... 133
Fig. 7-1 A process for discovery and evaluation of features for malicious website

detection .. 146
Fig. 8-1. T-SNE analysis performed on the features identified in Chapter 7 from a

sample of 5,000 websites from Dataset 1 and Dataset 2 showed no clusters for malicious

websites ... 183
Fig. 8-2. T-SNE analysis performed on the webpage content features collected in

Chapter 4 from a sample of 5,000 websites from Dataset 1 and Dataset 2 showed no

clusters for malicious websites ... 183
Fig. 8-3. T-SNE analysis performed on the URL features collected in Chapter 5 from a

sample of 5,000 websites from Dataset 1 and Dataset 2 showed clusters for malicious

websites on Dataset 1 .. 184
Fig. 8-4. T-SNE analysis performed on the HTTP header features collected in Chapter

6 from a sample of 5,000 websites from Dataset 1 and Dataset 2 showed no clusters for

malicious websites .. 184
Fig. 9-1. Three step approach for temporal evaluation of feature-based malicious

website detection (Images courtesy of Pixabay [22].) .. 203
Fig. 9-2. Distribution of the number of HTML tags ... 208
Fig. 9-3. Performance consistently decreased when training on the first snapshot of

Dataset 3 and evaluating on future snapshots ... 213
Fig. 9-4. Performance temporarily increased when retraining, but still consistently

decreased over time... 214
Fig. 9-5. Model performance improved and remained more robust when training on

several snapshots of prior data ... 215
Fig. 9-6. More features changed as the time period lengthened 219
Fig. 9-7. The features that change represented more than 1/3 of total feature importance

... 220
Fig. 9-8. More than 20% of total feature importance was derived from URL features 221

xiv

Fig. 9-9. Feature importance changed more as the time gap became larger when using

the related sample t-test ... 222

Fig. 9-10. When using several tests, feature importance changed more as the time gap

increased ... 223
Fig. 9-11. The average number of features that changed over time increased with the

lengthening of the time period ... 225
Fig. 9-12. Box plot for the number of features that changed over time, per related

sample t-test .. 225
Fig. 9-13. Box plot for the number of features that changed over time, per two-sample

KS ... 226
Fig. 9-14. Box plot for the number of features that changed over time, per k-sample

Anderson-Darling ... 226

Fig. 9-15. Box plot for the number of features that changed over time, per the Kruskal

Wallis H test .. 226
Fig. 9-16. Capturing several measurements as a function of time further demonstrated

performance decrease when using 34 features for malicious website detection 227

Fig. 9-17. Capturing several measurements as a function of time further demonstrated

performance decrease when using re-selected features for malicious website detection

... 227

Fig. 9-18. Capturing several measurements as a function of time further demonstrated

performance decrease when using 99 prior features for malicious website detection ... 228

xv

List of Abbreviations

AB Adaptive Boosting

ACC Accuracy

ADASYN Adaptive Synthetic Sampling

AGD Algorithmically Generated Domain

ASCII American Standard Code for Information Interchange

AST Abstract Syntax Tree

AUC Area Under the Curve

BC Bagging Classifier

C2 Command and Control

CART Classification and Regression Trees

CPT Control Protocol Template

DDoS Distributed Denial of Service

DGA Domain Generation Algorithm

DNS Domain Name System

DOM Document Object Model

DoS Denial of Service

ET Extra Trees

FNR False Negative Rate

FPR False Positive Rate

GB Gradient Boosting

GLM Generalized Linear Model

HGD Human-Generated Domain

HTTP Hypertext Transfer Protocol

IP Internet Protocol

JSAND JavaScript Anomaly-based Analysis and Detection

KNN K-Nearest Neighbor

KS Kolmogorov-Smirnov

LR Logistic Regression

MDN Mozilla Developer Network

MIME Multipurpose Internet Mail Extensions

ML-kNN Multi-Label K-Nearest Neighbor

NN Neural Networks

OoD Out of Domain

PCA Principal Component Analysis

Prec Precision

Rec – Recall

RF – Random Forest

RFE Recursive Feature Elimination

ROC Receiver Operating Characteristic

RRP Request Response Pair

SMOTE Synthetic Minority Over-Sampling Technique

SOC – Security Operations Center

SSL Secure Sockets Layer

SVM Support Vector Machine

xvi

TCP Transmission Control Protocol

TF- IDF Term Frequency – Inverse Document Frequency

TLD – Top-Level Domain

TNR – True Negative Rate

TPR – True Positive Rate

t-SNE T-distributed Stochastics Neighbor Embedding

V – Voting

VIF – Variance Inflation Factor

XGB – XgBoost

1

Chapter 1: Introduction

 Background and Motivation

 The Impact of Cybersecurity

The internet has changed the way we live and work. Over the years, more and

more aspects of human life have become reliant on the internet. From organizing our

personal lives to banking and entertainment, the internet plays a large part in how we, as

humans, exchange information. Pew Research [1] reported that as of 2019, 90% of all

U.S. adults used the internet. As of June 2019, roughly 58.8% of the world’s population

(4.536 billion people) use the internet, up from 5.8% in December 2000 [2]. In addition

to the increasing numbers of people accessing the internet, the internet has a large

financial impact and is a common place to conduct business. Digital Commerce 360’s [3]

analysis of U.S. Department of Commerce data estimated that consumers spent $513.61

billion dollars online in 2018, up 14.2% from online spending in 2017. Although the

internet has added efficiency to our lives by facilitating communication and changing the

way we live, the emergence of the internet has also created an opportunity for criminals

and other nefarious actors to conduct malicious activity.

The threat from malicious cyber actors is so great that corporate and government

entities allocate substantial budgets toward detecting, preventing, and remediating cyber

threats. The financial impact on corporations is large, with Cavusoglu et al. [4] reporting

in their study of the financial impact on firms with breaches that firms in their sample lost

2.1% (or $1.65 billion) of their market capitalization within two days of announcement of

a cyber breach. Experts [5] have projected that more than $1 trillion dollars will be spent

on digital security globally on an annual basis. Large corporations such as Bank of

2

America and J.P. Morgan Chase spend as much as $500 million each year on

cybersecurity [6]. Breaches and incidents can be large in terms of the number of people

and accounts affected and in terms of the loss of money due to litigation and business

impact. The Yahoo! breach in 2014 resulted in theft of personal information from more

than 500 million accounts [7]. The Epsilon hack had a financial impact totaling upwards

of $4 billion [8]. Dyn, which was the victim of a DDoS attack by the Mirai botnet in 2016

[9], lost roughly 8% of its customers due to the impact of the attack [10]. Given the

potential for tremendous repercussions from cyber threats, industry and government

entities recognize the need to protect their assets and their businesses against such

attacks.

Cyber-attack goals depend on the motivations of the attacker. Attackers

commonly seek to either steal information, infect a victim’s network, or disrupt a

victims’ ability to function. Stealing personal information may enable an attacker to

misuse the victim’s identity, resulting in financial loss. Information theft also may

facilitate blackmailing of the victim. Disruption can harm the victim’s reputation or

simply stop victims from performing their functions. Infection can facilitate information

stealing and disruption.

 Websites as Attack Enablers

Malicious actors can conduct many types of attacks. The most prevalent attacks

include phishing [11], drive-by downloads [12], denial of service (DoS) [13], or other

kinds of attacks caused by infection. Phishing occurs when an attacker tries to “trick” a

victim into entering personal or sensitive information, visiting a malicious website, or

opening or interacting with a malicious email or link. Phishing detection is typically

3

focused on examining a website or email for suspicious indicators. Drive-by downloads

occur when a user visits a website and falls victim to malicious code execution that

typically occurs when the website is being rendered. JavaScript [14] on the website is a

common attack vector for drive-by downloads. DoS attacks can occur from compromised

devices or from specific malicious domains. Infection can take many forms, with the

most sophisticated form resulting in command and control (C2) [15] with a malicious

website or server. C2 activity occurs when an attacker has compromised a network or

asset in the network and is running malware on the compromised network. This malware

typically receives commands or exfiltrates data from or to the C2 infrastructure. The C2

infrastructure can specify actions to take inside the victim’s network. To communicate

with this malware, the attacker needs a malicious website or domain. For each of the

attacks we have discussed thus far, attackers also require a website or domain from which

to conduct the malicious activity. Detecting malicious websites and blocking

communication with them is a major component of cybersecurity.

 The Case for New Detection Techniques

Cyber threats and cyberattacks increase in complexity over time, making it a

challenge to detect them. There is a constant battle between attackers and defenders, both

of which are looking for an advantage. Defenders are at an inherent disadvantage, given

the need to consider all aspects of their systems and defend each one properly. An

attacker, on the other hand, has only to identify a weakness or two in order to conduct an

attack. Furthermore, defenders must account for unknown vulnerabilities that may exist

in their systems. These vulnerabilities are often in third-party software that defenders did

not create. Unfortunately, vulnerabilities are common and sometimes disclosed without

4

remediation mechanisms or patches. For example, Risk Based Security [16] reported that

22,000 vulnerabilities were disclosed in 2018 without fixes being provided, a trend that is

expected to continue.

Defenders have access to a number of tools for detecting and preventing attacks,

including anti-virus software, network intrusion detection systems, denylists, threat

intelligence, etc. Over the years, these tools have evolved to keep up with threats. For

example, the Morris Worm, an early self-propagating virus, took advantage of a security

flaw in the sendmail function in Unix [17]. Such security threats encouraged the creation

of anti-virus software. Early anti-virus software detected viruses by examining hashes of

files or strings specific to known malware. However, once anti-virus tools began

detecting viruses with hashes and strings, malware began to adapt by creating variants

with different binary signatures. At this point, detecting malware with hashes alone

became infeasible. The anti-virus community adjusted, beginning to detect malware

families instead of specific files and binaries by using signatures that applied to several

binaries instead of to a single binary. Evolution by attackers and defenders is natural and

will continue. With this research, we aimed to assist the detection community by

exploring additional mechanisms and insights for detecting malicious websites.

 The Current State of Malicious Website Detection

The techniques for detecting malicious websites have evolved over the years. A

common method that is still used today for validation involves visiting a website to

analyze the web response, analyzing the instructions executed when rendering the

webpage, and comparing the observations to known malicious behavior. Researchers also

can instrument their systems to look for other potential malicious activity that results

5

from visiting a webpage. For example, if a user fetches a webpage in Firefox and

observes an unexpected event such as an attempted registry change (on Windows) [18] or

observes an unlikely file change, this may be an indication of a malicious webpage.

Although this method can be used for validation, it faces two challenges. First, it is time

consuming and requires additional resources for visiting each website, recording effects,

and verifying whether the website is malicious. Websites can change very quickly,

making this effort more complicated. Secondly, this approach may miss malicious

websites with malicious behavior that does not match a known signature [19].

Another common technique for detecting malicious websites is to collect

“features” and use them to create signatures or models for malicious website detection.

This approach is the foundation of the research in this dissertation. In this paradigm,

features or observational characteristics – the Uniform Resource Locator (URL) [20]

structure or Hypertext Markup Language (HTML) [21] tags on the page, for example –

are extracted from a website. These features are then turned into rules, signatures, or

models to detect other malicious websites. While this approach provides less certainty

regarding a website’s maliciousness (the results are typically presented as a probability of

the website being malicious), the approach can capture commonalities that may exist

among malicious websites, thereby facilitating detection. Although using features to

detect malicious websites is increasingly common, it does have challenges. To perform

this approach, the researcher or practitioner must choose which features to collect. Prior

researchers have typically collected well-known features to detect malicious websites, but

rarely re-evaluated whether those features were still useful or whether other features

could also be used to identify malicious websites. Additionally, the most successful

6

studies tended to evaluate an approach on a dataset consisting of a single threat.

Narrowing experiments to a single type of threat served to focus the research on that

specific attack, but also required a priori knowledge of the threat, making it less

applicable when a priori knowledge is unavailable.

 Research Scope

 Detecting Malicious Websites

Although attacks can be detected in many ways, we focused this study on

detecting a fundamental enabler of malicious activities – the website. The primary ways

that websites can be misused include: 1) tricking a user into entering sensitive

information or “faking” a legitimate website (creating what is also known as a phishing

website); 2) delivering malicious content; and 3) serving as a communication point to

malware and other malicious software. These misuses are illustrated in Fig. 1-1, 1-2, and

1-3 below.

Fig. 1-1. An example of a phishing website from

Lehigh.edu (Image courtesy of Pixabay [22].)

7

Fig. 1-2. A simplified view of drive-by down-load

infections (Images courtesy of Pixabay [22].)

Fig. 1-3. A simplified view of C2 (Images

courtesy of Pixabay [22].)

 Identifying and Comparing New Features for Malicious Website Detection

Although using features that have already demonstrated potential for detecting

malicious websites is a popular approach in prior research, there has been little emphasis

on finding new features for malicious website detection. For example, the <iframe> has

been a feature used for malicious website detection since at least 2008 [23]. Similarly, the

number of “.” characters in a URL is a feature that has been used for malicious website

8

detection since at least 2007 [24]. In this research, we evaluated and identified new

features for malicious website detection.

In addition to identifying new features for malicious website detection, we also

quantified and compared the performance of the new features for detecting malicious

websites and compared it to those of features from prior research. Specifically, we

compared the rank and importance of those features (both new features and those

identified in prior research). We determined the importance of each feature by defining

by how much it contributed to and influenced the performance of the malicious website

detection models it produced. Additionally, we gathered performance metrics on

detection models built with learning algorithms [25] and with features identified in our

approach, as well as with models built from features from prior research.

 Evaluating our Approach over Multiple Scenarios

We then went on to evaluate the identified features and their respective detection

models across a variety of scenarios. Scenarios included sampling to balance our dataset,

feature transformation, and principal component analysis (PCA) [28] to create meta-

features and components. Such evaluations increased assurance that our approach,

results, and observations were not specific to a single experimental scenario and would

prove valid should future researchers replicate our study with different setups.

We explored sampling scenarios to account for our dataset imbalance and

explored feature transformation to evaluate whether combinations of features could

improve malicious website detection. We also experimented with the class weight

parameter as another method of balancing our datasets. Lastly, we performed

hyperparameter tuning and cross-validation of our models [26] in order to achieve the

9

best performance metrics for our detection models. Parameters were specific to the

respective classifiers.

 Bridging a Gap Between Research and Industry

With this research, we endeavored to bridge research and industry gaps in

malicious website detection. Although existing research has demonstrated success in

various studies, the problem of malicious website detection persists. There are

differences, of course, between an environment in which research is conducted and an

operational scenario. First, research operates on in-depth knowledge of the malicious

dataset under study, a factor that often influences the features collected for detection. For

example, researchers who focused on detecting phishing websites would collect HTML

and other visual features from webpages since these have been demonstrated to detect

phishing attacks. In an operational scenario, however, the goal is to prevent the network

from accessing malicious websites regardless of their nature. To more closely replicate an

operational environment, we used datasets consisting of common threats, specifically:

phishing, drive-by downloads, and C2 URLs. Additionally, we treated our evaluation as a

“black box,” with the ultimate concern being whether or not the malicious website was

detected. A second difference between research environments and operational scenarios

involves the features under study. Researchers often select features ahead time (a priori),

based on the threat or based on what is known to be effective. This assumes that attack

techniques do not evolve over time. We bridged a third gap between research and

industry scenarios by limiting our features to those that could be gathered from a

response to a web request. The benefit of using such features is that they can be

gathered in the course of normal interactions with websites. Other research has used

10

additional features like domain name system (DNS) requests or search engine ranking,

but this would require additional overhead and depends on those services being available.

 Analysis on Different Datasets and Over Time

Finally, we focused this research on analyzing the applicability of findings from

this study to other datasets and on conducting a study of feature-based malicious website

detection over time. Researchers typically face the challenge of generating results that are

specific to a study’s individual dataset, which in this field often consists of gathering data

applicable to a single threat and gathering it at a single point in time. To address that

limitation, we explored whether and how the detection models and their features could be

applied to other datasets. Additionally, we conducted research on an additional dataset

that was gathered over time.

 Research Questions and Approach

In conducting this research, we evaluated an approach for identifying features for

malicious website detection in various scenarios and over time. We approached our work

on the basis of the 13 research questions outlined in the following sections.

 Research Question 1

With our first research question, we addressed how well our approach aligned

with or diverged from prior research. In our survey of prior research on malicious website

detection, we observed that several features were reused for malicious website detection,

opening the opportunity to identify new features. We hypothesized that by considering

additional features (many of which had never been studied for malicious website

detection in the past), we would identify new features as being important to the detection

of malicious websites. With RQ1, then, we investigated how the features identified

11

through our approach differed from those gathered from prior research. RQ1 is stated as

follows:

RQ1: How do the features identified compare with prior research?

 Research Question 2

We used our second research question to investigate whether the identification

and incorporation of new features improves malicious website detection. Although we

captured many performance metrics for the models we built, we focused our discussion

and performance comparison on the Matthews Correlation Coefficient (MCC) [27] since

it handles imbalanced datasets. To do so, we built detection models from features

identified in our research and in prior research, comparing the respective MCCs from

models built from features exclusively from prior research. We repeated this approach

under two feature transformation scenarios – feature transformation with feature selection

and feature transformation with PCA [28]. Hence, RQ2 is stated as follows:

RQ2: Do the additional features identified improve malicious website detection?

 Research Question 3

Our third research question enabled us to examine the effect of dataset imbalance,

a constraint that is common to malicious website detection experiments. The datasets

used for malicious website detection experiments typically contain imbalance – an

unequal number of malicious and benign websites. To investigate the effects of

conducting experiments with an imbalanced dataset, we trained our models on different

samplings of our training dataset. We then evaluated the models to determine the impact

on overall detection performance. Hence, RQ3 is stated as follows:

12

RQ3: Do our results change with no-sampling, under-sampling, and over-

sampling scenarios?

 Research Question 4

Here, we aimed to compare the performance of features identified in our approach

to the performance of those features identified in prior research. To do so consistently, we

built all of the models with the default parameters provided by [29]. However, it was

possible that we could obtain better results by performing hyperparameter tuning and

cross-validation of our models. Therefore, we focused RQ4 on hyperparameter tuning

and cross-validation of our models, stated as follows:

RQ4: Does hyperparameter tuning and cross-validation improve our results?

 Research Question 5

We focused the fifth research question on the results of using all features in this

study followed by feature selection to discover features for malicious website detection.

Using the webpage content features, URL features, and Hypertext Transfer Protocol

(HTTP) header features as the basis for the detection model provided the best

understanding of how discovering features (versus selecting them ahead of time)

performed. RQ5 is stated as follows:

RQ5: Is feature discovery feasible for malicious website detection?

 Research Question 6

Even if the discovered features (those features identified through feature

selection) performed well, we still would have little understanding as to whether it was

worthwhile to re-select features or if those from prior research were sufficient. To address

13

that gap in understanding, we needed to provide a comparison. RQ6, then, is stated as

follows.

RQ6: How do discovered features’ detection ability compare to those from prior

research?

 Research Question 7

The features used in this research can all be derived from the response to a web

request. As such, the features were available to a normal web browser or HTTP

environment and did not require any additional resources for collection. Although this set

of features was limited, it could be used to supplement any other that is available based

on the specific operational scenario. Hence, we arrived at RQ7, stated as follows.

RQ7: Can a discovery approach be applied to several threats when only features

from a web response are available?

 Research Question 8

We leveraged three datasets in conducting this study. Prior research has

demonstrated the difficulty of applying detection models built from one dataset to

another. However, to verify or refute this observation from prior research, we explored

RQ8, stated as follows:

RQ8: How robust are malicious website detection models when applied to a new

dataset?

 Research Question 9

The next area of focus – a follow-on to the previous research question – addressed

whether the features identified throughout this research, not just the models built from

14

them, could be used to build detection models on another dataset. RQ9 is stated as

follows:

RQ9: How do the features identified perform on a new dataset?

 Research Question 10

In the next area of focus, we explored whether we could apply aspects from the

previous research questions to the new dataset to improve malicious website detection.

RQ 10 is stated as follows:

RQ10: What aspects from prior experiments can we apply to a new dataset?

 Research Question 11

All prior research questions were explored in the context of two datasets, both of

which were captured at a single point in time. At this point in the research, we shifted our

approach, focusing the last three research questions on temporal aspects of malicious

website detection. The first aspect of our temporal study included an evaluation of the

how detection performance changes over time, with RQ11 stated as follows:

RQ11: How does detection performance change over time?

 Research Question 12

The internet is dynamic, with websites commonly assumed to change over time.

Prior research has demonstrated that the web changes, but this assumption must be

revisited for the purpose of this dissertation. To seek a rationale for the results of the

previous research question, we explored RQ12, stated as follows:

RQ12: Do websites change over time?

15

 Research Question 13

Once we determined whether websites changed over time, we went on to explore

the degree of change. We did so by comparing the change in features as a function of

time (1 week, 2 weeks, … 11 weeks), gathered from several measurements. Research

Question 13 is stated as follows:

RQ13: If websites change over time, how much do they change over time?

 Contributions

Our contributions are listed below.

1. We identified new features for malicious website detection and validated the

use of features from prior research in malicious website detection.

2. We quantified and compared the performance improvement when

incorporating new features for malicious website detection.

3. We evaluated this approach on a dataset consisting of several types of

malicious websites in order to demonstrate the approach’s potential and

explored additional datasets.

4. We evaluated and compared the performance of our detection method over

several scenarios, varied the ratio of benign to malicious websites, used

feature transformation, and performed hyperparameter tuning and cross-

validation to explore consistency.

5. We demonstrated the feasibility of discovering features for malicious website

detection and the advantages of doing so over choosing features a priori.

6. We quantified the performance of detection models over time and compared

the degree of website change over time.

16

 Dissertation Outline

Figure 1-4 shows a detailed overview of the structure of this dissertation. We have

structured this dissertation in the following manner. In Chapter 2, we present a survey of

related work on malicious website detection. Chapter 3 details our methodology. In

Chapters 4–6, we describe the independent studies conducted on different types of

features for malicious website detection, dividing the material with: the webpage content

in Chapter 4, the structure of the website URL in Chapter 5, and the HTTP headers from

the website in Chapter 6. In each of these chapters, we address research questions 1-4 and

we outline the similar methods of feature selection, feature ranking, and model training

and evaluation applied in each, with the main difference being the type of features

studied. The works described in Chapters 4 and 6 have been published [30], [31] and

have been presented at two conferences. In Chapter 7, we address research questions 5-7

and explore our use of all the features studied to that point – webpage content, URL

structure, and HTTP headers for detection. Chapter 8 investigates research questions 8-10

and includes details regarding our application of models and features identified through

this dissertation to a different dataset. In Chapter 9, we conclude with research questions

11-13 and outline the portion of the research aimed at determining whether and how the

models for malicious website detection and the features for detection changed over time.

We discuss limitations in Chapter 10. Finally, we present a summary of the research and

findings in Chapter 11.

17

Fig. 1-4. A detailed overview of this dissertation

(Images courtesy of Pixabay [22].)

18

Chapter 2: Background and Related Research

 Introduction

The techniques for detecting malicious websites have evolved over the years, as

have the features used to detect them. The three facets common to all approaches to

detecting malicious websites are: 1) the set of features that characterize a website; 2) the

method(s) or model(s) used to make the determination; and 3) the dataset(s) used for

training and validating the methods used to make the determination. In this chapter, we

provide a survey of related research into each of these facets of malicious website

detection. Additionally, we discuss four additional relevant aspects: 1) potential

validation methods on an additional dataset; 2) potential practical implementations; 3)

relevant performance metrics; and 4) measure of change in a website and training and

evaluating detection models on different points in time.

 An Overview of Features for Malicious Website Detection

The first aspect of malicious website detection is the set of features or quantifiable

attributes that characterize a website. These features serve as the basis for determining

whether a website is malicious. Researchers have drawn on a diverse set of features,

including features in the following three categories: host information, webpage content,

and communication data. The features in these categories include: the URL, the content

of the webpage, network traffic to and from the website, information available in the

DNS [32] and registration records, geographic properties, and certificate information

[33].

19

 Host Information

For our purposes, we define host information as being all aspects of a website that

must be in place before the website is accessed. Examples of host information include the

URL, information found in the domain name registration system, and the website

certificate. In this section, we discuss the URL features that are the most prevalent host

information features used in prior research for malicious website detection.

2.2.1.1 URL Word-Based Features

Word-based features are motivated by the observation that phishing URLs often

contain specific words or can be tokenized based on specific delimiters for further

analysis. One of the early word-based approaches in malicious website detection and

classification came from [34], who discovered a list of words notably found in phishing

website URLs. These words, which included “webscr,” “secure,” “banking,” “ebayisapi,”

“account,” “confirm,” “login,” and “signin,” were used as a group of features to detect

phishing URLs. The words “login” and “signin” were found to be particularly prominent

on their phishing dataset. Ma et al. [35] expanded on this approach and implemented a

method that separates the path in the URL by special delimiter characters (“/,” “?,” “.,”

“=,” “-,” “ and “_”) into tokens for further analysis. This approach, referred to as a “bag

of words” approach, is a common approach to URL feature generation. Ma et al. [36]

repeated this approach with the addition of an online learning algorithm and continued

the research [37]. The “bag of words” approach for phishing detection has also been used

by other researchers [38]-[40] and is one of the primary methods for analyzing URLs.

Word-based features and the “bag of words” approach can be used to detect all types of

20

malicious website URLs, but the approaches have been used predominantly to detect

phishing URLs.

2.2.1.2 Special Characters and URL Structure Features

Researchers also have explored the use of special characters and the URL

structure for detecting malicious websites and URLs. This differs slightly from using

special characters as delimiters for the “bag of words” approach. One characteristic in the

structure of the URL is the presence of an internet protocol (IP) address [41]. IP

addresses can be substituted for hostnames and are sometimes used by malicious websites

to hide malicious domain names for phishing, drive-by downloads, or C2 websites.

Researchers [42] stated that IP addresses in URLs could be indicative of a malicious URL

and used the presence of an IP address in the URL as a feature. In addition, they also

counted the number of hosts in the URL that could be determined by counting the

number of “.” characters in the URL. The number of dots is motivated by an observation

that malicious websites use multiple hostnames in order to appear more legitimate. He et

al. [43] also considered the presence of the “@” character as a feature. Authors [44]

reused the features mentioned thus far and added the presence of a “shifted” URL,

multiple top-level domains (TLDs), misspelled domain names, modified URL encoding,

and modified or mismatched port numbers, along with adding whether the URL was a

short or a “tiny” URL. IP addresses, multiple hosts, having several TLDs in the URL,

URL length features, and other special characters have all been used in some manner or

permutation by researchers [40], [45]-[49] as features for detecting malicious URLs.

Basnet et al. [50] used the presence of special characters as features and evaluated feature

selection techniques on phishing datasets. The features mentioned in this section have

21

primarily been used to detect phishing websites, though some features – including the

length of the URL, the number of dots (.) in the URL and ratios of characters to numbers

– have proven successful in detecting other threats such as drive-by downloads and C2 or

bot URLs.

Lin et al. [51] reused many features and presented an approach that used ratios

within website URLs. Examples of ratios include: the length of the domain name divided

by the length of the entire URL; the length of the path divided by the length of the URL;

and the length of the argument field divided by the length of the URL. In addition to

these ratios, [51] also used specific patterns such as letter-digit-letter and the longest

word length as features. Ahluwalia et al. [52] focused on a specific type of threat –

domains generated by a domain generation algorithm (DGA) [53] – and solely used URL

length, number of vowels and consonants, and digits in the second level domain name to

detect this specific type of malicious URL. The approaches based on ratios and the

analysis of the distribution of vowels, consonants, and digits have primarily been

leveraged to detect malicious URLs used by bots or C2 traffic with a detection and false

positive rate (FPR) of 98.96% and 2.1%, respectively [52].

2.2.1.3 Additional Approaches with URL Features

Researchers [54] took an approach toward URL analysis that defined and used the

Kolmogorov complexity of the URL string to identify malicious URLs. This approach

did not require a priori knowledge and could be combined with other methods discussed

in this section. Kheir et al. [55] classified C2 connections via statistical clustering of the

URLs generated by a malware testbed. In [56], the authors used character n-grams from

N = 1 to N = 10 appearing in the URL string to classify malicious URLs. Distinguishing

22

factors for [56] were their evaluation of the effectiveness of their n-gram approach on

phishing as well as on spam URL datasets and their comparison of the respective

performance on these datasets.

 Webpage Content

Webpage content consists of the information gathered from the webpage that is

available when navigating to the website URL. All webpage content features can be

extracted from the webpage. This section includes a review of those features extracted

from the webpage that are relevant for malicious website detection.

2.2.2.1 Term Frequency-Inverse Document Frequency (TF-IDF) and Its

Applicability in Webpage Content

Term frequency-inverse document frequency (TF-IDF) is a statistical measure

used to evaluate the importance of a specific word to a document [57]. It has been used in

malicious website detection in several ways. The main methods involving TF-IDF are

search engine and comparison based.

The authors of CANTINA [24] and CANTINA+ [46] extracted the top K words

from a webpage and performed a Google search of those K terms. The authors then

examined the top N returned results, with whether the webpage appeared in the top N

results being used as a feature for malicious website detection. The researchers varied K

(the number of terms) and N (the number of results), with that approach, along with the

Google search engine, being used by [42]. Researchers [58] used TF-IDF to compare the

contents of a candidate webpage with the contents of the TLD webpage of the candidate

webpage. The larger the difference, the more likely it was that the candidate webpage

was malicious. He et al. [43] used the difference between the candidate webpage and the

23

TLD page as part of a macro feature they referred to as “URL Identity.” In addition, the

author of CANTINA+ [46] used TF-IDF to find the presence of specific sensitive words

throughout the webpage. Researchers primarily used the TF-IDF approach, regardless of

the specific implementation, as a means of identifying phishing websites.

2.2.2.2 Webpage Content - Structural Content - Tags and Attributes

HTML elements and attributes, as well as the document object model (DOM), are

the defining portions of webpage structure and have served as a basis for multiple

features for malicious website detection. One well-studied feature is the <iframe>.

Provos et al. [59] studied the prevalence of drive-by downloads on the web and

<iframe>s that are often used in malicious content injection common in drive-by

downloads. Although <iframe>s facilitate content injection and drive-by downloads,

other structural information can identify other attacks, such as phishing. Whitaker et al.

[42] used a simple feature – whether the webpage has a password field – as one of many

features to detect phishing webpages. Authors [43] expanded on this by extracting other

features including <meta> tag and description tags, the <title> tag, and all text fields

inside the <body> tag as feature sets to detect phishing websites. Other authors including

[44], used similar features. Xiang et al. [46] captured the presence of “bad forms,” that is,

forms with a specific structure (structures where the form was an HTML <form>, where

keywords were related to sensitive information, and where there was a specific action

attribute as a feature).

Basnet et al. [50] expanded the selection of structural features to include password

fields, as well as counts of various tags within the webpage, including <iframe>s and

<frame>s. Drew and Moore [60] extracted input HTML elements and performed

24

multiple stages of clustering to identify criminal websites that share commonalities.

Corona et al. [61] took an overall approach similar to the TF-IDF difference between top

webpage and candidate webpage. Instead of using terms, they used the difference in

HTML between the candidate webpage and the TLD webpage. Borgolte et al. [62] aimed

to detect malicious campaigns, extracted different features, and ignored visual

differences.

Researchers also examined a group of features related to the URLs and to links

present in a webpage. Several HTML elements have the href and src attributes, which

specify links or references to additional resources such as files. The type of resource

depends on which HTML element specifies the href or src attributes. The resources

referenced by the href or src attributes can be on the webpage (like a section), or can

be in another domain or website. Researchers [42] extracted features describing the

extent to which links and images reference other domains outside of the TLD for that

webpage. He et al. [43] did the same, extracting the base domain by extracting the href

attributes from the <a> and <area> elements, while [48] only used the <a> tag in their

identity builder. Gastellier-Prevost et al. [44] expanded their feature set to other HTML

elements with the href attribute. With CANTINA+, the authors [46] checked whether

the majority of URLs in the webpage were within the same domain as the candidate

webpage. Le et al. [63] used the presence of external links in <frame> tags to capture a

macro feature they called “foreign contents.” With BINSPECT, the authors [47] counted

the total number of links and split them into categories similar to those created by other

authors, including same-origin and different-origin. Eshete et al. [47] also counted the

number of external JavaScript files in the URLs on the webpage. Like the researchers

25

who had examined URLs and their relationships to TLD webpages, [50] checked whether

the respective <iframe> links pointed to internal or external resources or to other

denylisted URLs and expanded on that research in a later study [64].

2.2.2.3 Webpage Content - Defining Page Content Behavior with JavaScript

Behavioral features of a website come primarily in the form of JavaScript, an

object-oriented programming language and a foundational technology of the modern

web. Because JavaScript is a powerful language that can be misused by attackers, it has

been of interest to various researchers. JavaScript is most commonly misused to enable

drive-by downloads. JavaScript Anomaly-based Analysis and Detection (JSAND)

creators [65] focused on identifying malicious webpages with drive-by downloads by

extracting JavaScript features, gathering features by executing the JavaScript in a

sandbox and recording features during execution. Although the researchers collected

several features, they focused their study primarily on the detection and execution of

suspicious behavior, including suspicious methods and sequences of method calls, the

presence of likely shellcode, and indicators of JavaScript obfuscation (a method used to

hide malicious code from someone analyzing the script). Canfora and Corrado [66] also

leveraged JavaScript features in research focused on the detection of malicious websites.

The authors addressed features such as the presence of suspicious methods, specific

sequences of method calls, and indicators of obfuscation. In addition, they compared

groups of features in order to determine which features were best able to detect malicious

websites. They found that JavaScript played a significant role in malicious website

detection.

26

Other authors approached JavaScript analysis in malicious webpages from the

abstract syntax tree (AST). Rieck et al. [67] proposed Cujo, which has both static and

dynamic (execution) analysis components. Cujo is trained on reports detailing benign and

malicious code, with its performance evaluated with either static features or dynamic

features alone or with static and dynamic features combined. The authors found that

using static and dynamic features together improved their accuracies compared to using

static and dynamic features in isolation. Curtsinger et al. [68] used a mostly static

JavaScript analysis approach, but made the argument that static analysis was a challenge

for malicious JavaScript because malicious JavaScript is most likely obfuscated and

hence is difficult to analyze statically. As a result, they hooked the JavaScript runtime to

get the de-obfuscated JavaScript before analyzing the JavaScript AST statically.

Researchers [69] used JStill to leverage the AST, but created four categories: 1)

JavaScript native functions, 2) JavaScript built-in functions, 3) DOM methods [70] (those

methods that operate on the DOM), and 4) user-defined functions that group their

features. With JStill, the researchers captured three differences between malicious and

benign method invocations: 1) the method arguments, 2) the method definition, and 3)

the context of a method invocation. Kapravelos et al. [71], with Revolver, also used the

AST with a focus on AST similarity between known malicious and candidate ASTs.

2.2.2.4 Combining Page Structure and Behavior for More Holistic Malicious

Detection

Although structural features like TF-IDF, HTML, links, and URLs in the page,

along with behavioral features like JavaScript, can be extracted independently to identify

malicious websites, they are often combined. Researchers [23] described three categories

27

of features that combined structural and behavioral features. These features describe the

exploit, the exploit delivery mechanism, and whether there are attempts to hide elements

or scripts on the malicious webpage. The authors incorporated specific tags like <frame>

and <iframe>, as well as indicators of JavaScript obfuscation, among their feature set.

Choi et al. [72] also looked for the presence of suspicious native JavaScript methods like

escape(), eval(), link(), unescape(), exec(), link(), and search(),

combining them with HTML features including tag counts, and counts of zero size, and

thus invisible, <iframe> tags. Heiderich et al. [73] proposed ICEShield, which lightly

instruments JavaScript and detects attacks against the DOM tree. This approach

combined attacks against the DOM with additional heuristics centered around previously

studied HTML tags and considered the presence of suspicious Unicode as an additional

feature. With Prophiler, [45] examined the src attributes of <iframe> tags, hidden

elements, <iframe>s with small areas, and other features commonly found in malicious

webpages. They also extracted 25 features around JavaScript code. With BINSPECT, the

authors [47] extracted 25 webpage content features, primarily from prior research,

including document length, number of words, lines, spaces, average word length, hidden

elements, and presence of suspicious methods. In addition to capturing a better

representation of the website, combination approaches are more applicable to detecting a

wider range of attacks, as in the case of BINSPECT [47], which detected various

malicious websites, including phishing and drive-by downloads, with 97% accuracy.

28

 Communication Data Features

Communication data features describe the facet of the website that characterizes

how a client communicates with the website. This includes protocol information,

metadata from the communications, and traffic summary statistics.

2.2.3.1 Communication Data Features – HTTP Headers

HTTP [74] is the primary application level protocol used throughout the web. As

such, HTTP features are studied and used to detect malicious websites. HTTP features

are most commonly used to detect C2 traffic and HTTP requests generated from

malware. Authors [75] and [76] clustered HTTP communications from known malware

and generated signatures. Researchers [55] executed malware in a sandbox that generated

HTTP communications and took a clustering approach to grouping URLs in the malware-

generated HTTP traffic to classify the C2 communications.

Tao et al. [77] gathered HTTP header features from interaction with a webpage

and recorded attributes from the HTTP requests and responses over a session to a

candidate webpage. The authors combined these features with non-HTTP features to

detect malicious websites. Zhang et al. [78] examined features over a session, but focused

specifically on redirect chains (one or more redirects) between the initial URL and

destination. Brezo et al. [79] proposed a method of detecting malicious web requests by

using machine learning and HTTP and transmission control protocol (TCP)

characteristics. Although they found TCP features, such as packet length, to be the most

influential in their study, HTTP characteristics still were among the top 10 most relevant

features. Xu et al. [49] used 15 HTTP header features in addition to taking a “crosslayer”

approach that used application, network, and webpage level characteristics. Specifically,

29

they reused the HTTP header content-length, which also was used by [79].

Researchers [80] proposed ExecScent, which generated control protocol templates

(CPTs) from clusters of HTTP requests associated with C2 traffic. CPTs are defined by

the URL, HTTP headers, and the destination IP address. Researchers [40] and [81] used

HTTP headers – including the response code, HTTP method, and Boolean values such

as if the HTTP response content is zipped – in their feature set for malicious website

identification. Zarras et al. [82] created a method that learned how HTTP based malware

worked and learned the structure of the HTTP requests sent. They leveraged header

chains and templates like CPTs to use header chains to detect C2 traffic. Researchers [83]

used Phishmon to examine the headers and used the length of the respective header

values as features to detect phishing webpages.

 The Methods and Models for Detection

The next aspect of malicious website detection is the method or model used to

make the determination of whether a website is malicious. The method or model uses

features that characterize the website to make the determination. In our literature survey,

we found three types of methods that researchers used for detecting malicious websites:

1) heuristics, 2) clustering, and 3) supervised machine learning techniques.

 Heuristics

Heuristics are simple approaches or rules that have been applied to detecting

malicious websites. Their use was more prevalent in earlier research. Recent research has

tended to favor the use of machine learning techniques. The main benefit of heuristics is

their simplicity and intuitiveness, though they rely strongly on preconceived notions of

malicious behavior or attributes. Seifert et al. [23] presented one of the earlier approaches

30

that leveraged heuristics to identify malicious websites. Their approach used many

features in HTTP responses and the webpage HTML. Prakash et al. [84] used denylists

as the basis to detect phishing attacks. Researchers [44] defined 20 heuristics from lists

and acceptlists and implemented them in an anti-phishing toolbar called Phishark to

differentiate between legitimate and phishing websites. Wang et al. [85], with Phishnet,

evaluated rule-based and classifier-based approaches for identifying webpages that lead

to drive-by downloads. In their study, the rule-based system outperformed their classifier,

further motivating the continued use of heuristics. Nguyen et al. [86] created a heuristic

with weights for six features to detect phishing websites. Ghafir and Prenosil [87]

extended this idea, using threat intelligence to automatically update their denylist, which

was leveraged to identify C2 traffic based on denylists of malicious IPs. Seshagiri et al.

[88] created heuristics for known attack patterns with JavaScript and HTML. Authors

[89] created the Phidma algorithm consisting of five layers in a pipeline to identify the

webpage as legitimate, the five layers being: 1) acceptlist, 2) page features, 3) search

engine, 4) URL similarity, and 5) accessibility. Heuristics are still relevant; however,

most researchers in the field of malicious website detection leveraged more sophisticated

machine learning techniques.

 Clustering

Clustering has an advantage over heuristics in that it does not require

preconceived notions of what malicious looks like. Clustering groups similar data, but

usually requires larger amounts of data to create more defined clusters. Clustering has

been successful in identifying several threats including threats detected via the webpage

and via HTTP traffic.

31

Borgolte et al. [62] searched for new web infection campaigns by looking at two

versions of the webpage, extracting differences in their DOM and assigning the

difference to specific clusters. Drew and Moore [60] identified criminal websites by

clustering websites based on metrics gathered from the HTML on the page. Researchers

[75], [76] performed coarse grained clustering which measures the statistical similarity of

the HTTP requests including total number of requests, number of GET and POST

requests, and fine-grained clustering, which considers the structural similarity of the

HTTP communications generated from malware in their testbed to generate detection

signatures. Authors [90] built CyberProbe, which probes different servers and builds

signatures known as fingerprints by clustering request-response pairs (RRPs) in the

generated traffic. Kheir et al. [55] presented Webvisor, which records HTTP requests

from known families of malware and then performs clustering of the generated URLs to

build signatures for C2 channels. Zarras et al. [82] used a dataset of 40,000 malicious

HTTP requests from 24 malware families and requests to the top 1,000 domains

from Alexa to generate 7,000,000 HTTP requests and built HTTP templates from

clustered HTTP headers.

 Supervised Learning

The most common method of detecting malicious websites is to build models

using supervised machine learning techniques. The features are extracted from known

benign and known malicious websites to build models using one or more supervised

learning algorithms. Some researchers [40],[42]-[43],[61] and [91] used one classification

algorithm. This approach has shown success, with [91] being able to classify phishing

webpages written in English with an area under the curve (AUC) of 0.999. Authors [42]

32

focused on classifying a “large” number of phishing webpages and training their logistic

regression (LR) classifier [92] on millions of webpages. They evaluated their classifier on

165,382 phishing webpages during the first six months of their study. Authors [43], [61]

used a support vector machine (SVM) [93] classifier with a different set of features and,

unlike [42], used a smaller evaluation dataset of 200 legitimate and 325 phishing

webpages in their experiment. Authors [40], [43] also leveraged an SVM-based classifier

while [91] used a gradient-boosting (GB) classifier [94].

Other scholars [35],[45]-[47],[49]-[50],[72],[83], [95] used up to seven different

algorithms. Ma et al. [35] leveraged an LR classifier (a naïve Bayes [96] and SVM-based

classifier) and also recorded the time to test and train their classifiers. Canali et al. [45]

used random tree [97], random forest (RF) [98], naïve Bayes, LR, J48 [99], and Bayesian

networks [100] and compared their respective performances. RF was the best performing

classifier over different feature sets. Similarly, [46] used Bayesian networks, J48, RF,

AdaBoost (AB) [101], LR, and SVMs. Choi et al. [72] included RakEl [102] and multi-

level K-nearest neighbor (ML-KNN) [103]. Basnet et al. [50] used seven supervised

classifiers and then combined them with a customized version of the confidence-

weighted, majority-vote algorithm [104]. In [50], the authors used naïve Bayes, RFs, and

LR classifiers. Researchers [49] performed a similar study with four classifiers and found

J48 to be the best performing. Researchers [95] also demonstrated applicability of

decision tree classifiers, particularly J48. Phishmon creators [83] used similar algorithms,

but added classification and regression trees [105] into their study.

Authors [106] used batch learning, where models are built on the whole dataset at

once, while others [107] used online learning, where models were updated as data was

33

made available. Ma et al. [36] continued their work from [35], but with online learning

algorithms including Perceptron [108], LR, Passive-Aggressive algorithm [109], and

confidence-weighted algorithm. Both [39] and [64] used batch learning and online

learning as well. Other authors, including [48], applied more than one classifier, usually

in sequence, in their detection schemes. Several algorithms were used, including

AdaBoost, Bayesian networks, CART, confidence-weighted, C4.5 [110], GB, J48, K-

nearest neighbor (KNN) [111], LR, naïve Bayes, Perceptron, RF, random tree, and

SVMs.

 Validation

Ground truth datasets used for training and evaluation make up the next

component of malicious website detection. Currently, no standard dataset exists for

training machine-learning algorithms to detect malicious websites, though some datasets

have been reused by several researchers. We identified three types of datasets used in

malicious website detection: 1) well-known datasets, 2) custom datasets, and 3)

proprietary datasets provided by an external organization. Well-known datasets are

commonly used as ground truth for malicious and benign websites. Examples of such

datasets include Alexa.com [112] for benign domains or Phishtank [113] for malicious

domains (in the case of phishing related studies). Multiple researchers [24], [44], [47]-

[49], [61], [73], [77], [86], [89], [114]-[117] used these predefined datasets. Researchers

who used the second type of dataset – a custom dataset, commonly generated “randomly”

or by a crawler – include [23], [35]-[37], [40], [42]-[46], [49]-[50], [62], [64], [66]-[67],

[69], [72], [81], [91], [95], and [118]-[119]. Although the random and crawler-based

approach can be used for both benign and malicious dataset generation, it has been more

34

commonly used to generate data for benign websites. Moreover, this type of method can

be combined with well-known datasets. The third type of dataset is a dataset provided by

external organizations. These datasets, used by [55], [91], [119]-[120], are not as

common. The nuances and differences among datasets used by prior researchers can be

subtle. As a result, we created Table 2-1 below to briefly describe these works and their

benign and malicious datasets. A value of “-“ indicates that the specific field was not

applicable in the respective study or that the author used a custom dataset specific to the

study. A “*” character indicates that some or all of the data was provided by an

unspecified external organization.

35

Table 2-1.
Datasets from Prior Research (Prior Research

Leveraged Various Datasets Derived from Numerous

Sources)

Datasets from Prior Research

Work Year Benign Dataset Source Malicious Dataset Source

[114] 2006 - [121]-[122]

[24] 2007 [123] [113]

[23] 2008 [124]-[125] [126]

[35] 2009 [124]-[125] [113],[127]

[36] 2009 [125] *

[77] 2010 [112] [128]-[130]

[42] 2010 - [131], *

[67] 2010 [112],[132] [133]

[116] 2011 [112], [121],[123] [113],[122]

[44] 2011 [112], [135]-[136] *, - [113],[137]

[45] 2011 [112], [132] [133]

[63] 2011 [125], [134] [130],[138]-[139]

[37] 2011 [125] *

[46] 2011 [124]-[125] [113], [141]-[140]

[47] 2012 [112], [124]-[125] [113],[132],[142]

[50] 2012 [124]-[125] [113]

[86] 2013 [124] [113]

[49] 2013 [112] [130], [143]-[146]

[48] 2013 - [113]

[62] 2013 - [133]

[64] 2014 [124]-[125] [113]

[69] 2014 [112] [147]

[40] 2014 - -

[117] 2014 [124] [113]

[118] 2015 [112] [147]-[150]

[120] 2015 [151] [151]

[55] 2015 - [147], [152]

[115] 2016 [112] [113]

[66] 2016 - [153]

[91] 2016 [154] [113]

[95] 2016 [124] [113], [155]

[89] 2017 [156] [113]

[61] 2017 - [113]

[116] 2018 [157] [113]

[119] 2018 - [158]

36

Some prior researchers performed analysis on datasets derived from different

sources. These datasets can vary temporally (identified in Table 2-2 below as “temporal”)

or can be drawn from a different corpus (identified in Table 2-2 below as “corpus”).

Table 2-2 provides a summary of the works of researchers who performed analysis on

different datasets and how they differed, with “Y” meaning “yes” and “N” meaning “no.”

Table 2-2.

Prior Research Occasionally

Tested Detection Methods on

Different Datasets

Application to Another Dataset

Research Corpus Temporal

[35] Y N

[38] Y N

[42] N Y

[43] Y N

[45] N Y

[46] Y N

[50] N Y

[63] Y N

[64] Y N

[65] Y N

[82] N Y

[159] Y N

[160] Y N

[161] Y N

 Practical Implementation

An additional component, often specified in the related research, is the

incorporation of detection models into a practical solution. Rieck et al. [162] tested

Botzilla on a live university network by incorporating their approach in the open-source

flow monitor Vermont [163]. They deployed their solution at the central gateway of a

university network to monitor uplink traffic. Given high network traffic volume, they

37

only monitored the first 256 bytes of each flow to keep stream reassembly to a minimum.

Cujo, developed by [67], was embedded in a web proxy between the web client and the

web service. Cujo performed the analysis before data were sent to the web client and

webpages containing drive-by downloads were blocked. Authors [164] divided their

solution for detecting clickjacking attacks into two components – a detection unit and

testing unit. The detection unit combined two browser plugins and the testing unit was a

single browser plugin. Gastellier-Prevost et al. [44] took a similar approach,

implementing the Phishark toolbar as a Firefox add-in. Ghafir and Prenosil [87]

leveraged additional servers to passively analyze network traffic looking for denylist hits.

Their approach also updated their denylist from various intelligence feeds. DeltaPhish

was wrapped inside a web application firewall that served as proxy between the user and

the website in Corona et al.’s [61] live implementation.

 Performance Metrics

Performance metrics include the FPR, false negative rate (FNR), true positive rate

(TPR), true negative rate (TNR), accuracy (ACC), AUC, Precision (Prec), Recall (Rec), F

Score, and MCC. In some cases, authors specified other metrics such as detection and

error rate. Currently there is no standard set of metrics used for evaluation that is

consistent across malicious website detection studies. To better understand the capability

of prior approaches, we listed related research, the relevant performance metrics, and the

results. Table 2-3 below lists those works that were most similar to our research, as well

as those that provided concrete numbers (as opposed to graphs and visualizations alone).

The table also includes the results from the respective research that we identified as the

“best” or as capturing the most “representative” reflection of their approach. Many of the

38

works provided several measurements with slightly different features and datasets and

quantified additional performance aspects like time. Therefore, the selection of the “best”

or most “representative” result was somewhat subjective. A value of “-“ indicates that the

respective metric was not discussed in the respective related research.

39

Table 2-3.
Prior Researchers Did Not Use a Standard Performance Metric

Performance Metrics from Related Research

Related
Research Year TPR TNR FPR FNR ACC AUC Prec. Rec

F
Score MCC

[24] 2007 0.97 - 0.06 - - - - - - -

[23] 2008 - - 0.0588 0.4615 - - - - - -

[35] 2009 - - - - 0.99 - - - - -

[77] 2010 - - 0.001 - 0.922 - - - - -

[67] 2010 0.944 - 0.00002 - - - - - - -

[65] 2010 - - 0.002 - - - - - -

[42] 2010 - - 0.0003 - - - 0.9754 0.9497 - -

[45] 2011 - - 0.0988 0.0077 - - - - - -

[43] 2011 0.9733 - 0.0145 - - - - - - -

[46] 2011 0.9424 - 0.01948 - - - - - 0.9607 -

[37] 2011 - - 0.0152 0.0255 - - - - - -

[44] 2011 - - - - - - - - - -

[47] 2012 - - 0.189 0.011 0.97 - - - - -

[54] 2012 0.969 0.9315 0.071 0.031 - - - - - -

[48] 2013 0.969 - 0.0125 - - - - - - -

[49] 2013 - - 0.03676 0.09127 0.95161 - - - - -

[86] 2013 - - - - 0.97 - - - - -

[165] 2013 - - 0.081 0.017 0.965 - - - - -

[69] 2013 - - 0.0175 0.0053 - - - - - -

[40] 2014 - - 0.063 0.076 - - 0.935 0.924 0.93 -

[117] 2014 - - 0.013 - 0.995 - - - - -

[159] 2014 - - 0.002 0.005 - - - - - -

[64] 2014 - - 0.0024 0.0075 - - 0.9955 0.9925 0.994
0.99

1

[118] 2015 - - 0.00212

0.00849

2 - - - - - -

[81] 2015 - - - - - - 0.935 0.924 0.93 -

[66] 2016 - - - - - 0.891 0.819 0.819 0.819

[91] 2016 0.0005 0.999 0.956 0.958 0.957 -

[95] 2016 - - 0.177 0.022 0.939 - - - -

[52] 2017 - 0.021 - - - - - - -

[89] 2017 0.9054 0.9418 0.0582 0.0946 0.9272 - - - - -

[56] 2017 - - - - 0.9848 - - - - -

[83] 2018 - 0.013 - 0.954 - - - - -

[166] 2018 - - - - 0.964 - 0.964 0.964 0.963 -

[116] 2018 - - 0.004 - - - 0.997 - - -

40

 Measuring Website Change

For the portion of the research detailed in the ninth chapter of this dissertation, we

measured the change in a website. It is often assumed that websites change, and prior

researchers have quantified and measured such change. Researchers [167], motivated by

the potential benefits of using caching servers, conducted one of the earliest studies in

measuring change on the web. They found that only 22% of the web resources referenced

in their traffic dataset were accessed more than once, with half of the 22% being accessed

from multiple reference sources. In addition, they studied other changes on the webpage,

including changes in hrefs (hyperlinks), images, email address, telephone number, and

URL strings in the body of the webpage. Cho and Garcia-Molina [168] instrumented a

crawler and crawled more than 700,000 pages, capturing whether a webpage changed

(based on the MD5sum of the webpage). They reported that 40% of all webpages in their

evaluation dataset changed in less than a week, breaking down which webpages changed

based on the domain (.com, .netorg, .edu, and .gov). Fetterly et al. [168] expanded on this

work by monitoring changes in other aspects of the website, including the webpage

length and HTTP response code. Fetterly expanded on [170] in [171], shifting focus to

determine how many webpages were duplicates and finding that 29.2% were very similar

to other webpages and that 22.2% were near-identical. Brewington and Cybenko [172]

monitored change and the lifetime of the webpages to model and infer change rates.

Lim et al. [173] measured frequency of web document change over time but did

so on a “word” level. Ada et al. [174] examined webpage changes at a finer level than

previous work by developing an algorithm that tracked the movement of DOM elements

within the documents and evaluated the persistence of structural elements. Kwon et al.

41

[175] proposed criteria and a new metric for measuring webpage change based on six

types of changes associated with webpages: “add,” “drop,” “copy,” “shrink,” “replace,”

and “move.”

Although past researchers have emphasized the broad study of how websites

change, we have not identified any metrics useful for our purpose of evaluating detection

models over time. Although these studies have established that websites change over

time, we revisited this assumption in Chapter 9.

 Summary

From this literature review, we identified three common facets of malicious

website detection: 1) the features used, 2) the method(s) or model(s) used to make the

determination, and 3) the dataset(s) for training and evaluation of the models. We

summarized studies that were performed on different datasets, identified prior research

that incorporated research methods into practical solutions, and discussed performance

metrics used in the prior studies. Additionally, we discussed research that measured

websites and their change over time.

42

Chapter 3: Methodology

 Overview

In our research, we evaluated a method for detecting malicious websites,

leveraging features proposed in prior research, and also identifying new relevant features

through statistical analysis. This method can be repeated to adapt with the evolution of

threats and malicious techniques. Ultimately, we envision the repetition of this method

over time, in order to identify sets of features and evaluate them for their applicability in

detecting malicious websites. Although we focused on identifying and evaluating new

features for malicious website detection and did not develop a new tool, the features that

were identified and evaluated can be used as part of an additional layer of protection that

can be hosted in a browser. Figure 3-1 below shows a potential use case wherein a

detector built from a model using our method could examine and adjudicate the webpage

before rendering it in a user’s browser. Images courtesy of [22]. Our research consisted of

several steps leading to malicious website models that can be placed in a user’s browser

environment as shown in Figure 3-1.

43

Fig. 3-1. Methods explored in this research can be applied with other security solutions

 High Level Approach

We sought to identify and evaluate features for malicious website detection and

evaluate them over time. We also compared the features identified by our approach to

those identified in prior research in terms of rank and importance and in terms of the

ability of the detection models they yield. We evaluated this approach over various

scenarios, datasets, and over time. At a high level, we followed the overall approach

outlined below. Steps 1-4 correspond to Chapters 4-6. Step 5 corresponds to Chapter 7.

Step 6 corresponds to Chapter 8 and step 7 corresponds to Chapter 9.

1. Step 1: Select datasets

a. Choose malicious and benign datasets for the research.

i. There are 3 datasets (Dataset 1, Dataset 2, and Dataset 3).

2. Step 2: Discover features

44

a. Identify potential features from prior research that represent the three

facets that characterize a website (host information, webpage content,

and communication data).

b. Expand on features from prior research and incorporate new, unstudied

features.

c. Select features for malicious website detection.

3. Step 3: Build detection models

a. Individually evaluate feature-based malicious website detection using

features from three facets that characterize a website (host information,

webpage content, and communication data) by building detection

models from supervised machine learning techniques over three

scenarios. Scenarios include no-sampling, over-sampling, and under-

sampling of the dataset to account for class imbalances between our

malicious and non-malicious datasets.

b. Rank the importance of features with regard to their ability to detect

malicious websites.

c. Apply pair-wise feature transformation techniques to identify

additional features, followed by feature selection and PCA, and rebuild

the models to further investigate the consistency of our approach over

multiple scenarios.

d. For training and evaluation of the models, use an 80:20 split of

training to testing data, that is: 80% of the data is used to build the

models, with the remaining 20% being used to evaluate the models.

45

e. When applicable, compare the performance of models built with the

features identified with the performance of models built with features

from prior research.

4. Step 4: Tune and cross-validate

a. Perform hyperparameter tuning and cross-validation of the detection

models in an attempt to improve performance and demonstrate

consistency in our models’ detection ability.

b. Repeat steps 3a, 3b, 3c, and 4a on a training-to-testing split of 70:30 to

demonstrate that our results are not a product of the initial 80:20

training-to-testing split from step 3d.

5. Step 5: Combine features for improved detection

a. Repeat steps 2 through 4, but use all of the categories of features to

achieve better detection.

b. Compare results to features used in prior research.

6. Step 6: Evaluate on another dataset

a. Apply the RF model built in Chapter 7 to a new dataset (Dataset 2).

b. Capture performance metrics on the model.

c. Retrain a new model on the new Dataset 2, with features identified

from Dataset 1.

d. Investigate incorporating data from both datasets in training and

evaluation.

7. Step 7: Explore detection performance over time

46

a. Measure the performance of a model trained on Dataset 1 and

evaluated on another dataset (Dataset 3).

b. Investigate the impact of model re-training on performance, using:

i. various feature sets, and

ii. different training intervals.

c. Evaluate website change over time.

i. Quantify the number of features (and their importance) relevant

to malicious website detection change over time with statistical

tests.

 Step 1: Select Datasets

 Dataset 1

There are many methods for choosing a benign dataset, but there are two popular

paradigms – either create a new dataset or leverage existing datasets. Creating a new

dataset has the advantage of enabling the researcher to select websites deemed

representative of the websites on the internet or websites that are more relevant to the

research topic. The disadvantage of creating a new dataset, on the other hand, is that it

requires building a method of gathering relevant websites, such as a crawler, which could

influence or sway results. Researchers can attempt to minimize influence on their dataset

selection, but a practical way to remove researcher influence is to use a dataset provided

by an external party. In our research, we chose a well-known and commonly used benign

dataset source, the Alexa top one million domains (Alexa Top 1M) provided by [176]. At

least 10 studies on malicious website decision used the Alexa Top 1M domains as a

source of benign websites. In addition to being used as the foundation of the benign

47

dataset in prior research, we performed an additional check with threat intelligence

information to ensure that the respective domains found in the Alexa Top 1M were not

commonly involved in attacks.

Like the benign website dataset, malicious website datasets typically come from

two places – a custom or an existing dataset. Just as we chose an existing dataset (the

Alexa Top 1M) for the benign websites studied, we chose to use a dataset provided by an

external party – Cisco Talos [177] – for the malicious websites. The dataset consists of

malicious websites representing several classes of attacks including drive-by downloads,

phishing websites, and C2 website URLs. By using the dataset provided by Cisco Talos,

we lessened our influence over the dataset. Specifically, we did not choose the actual

entries in the list. Additionally, the malicious dataset provided by Cisco Talos allowed us

to evaluate our approach on an aggregation of websites associated with several types of

threats and, therefore, attacks. This contrasts with previous researchers, who typically

focused on a single type of attack or had a priori knowledge into exactly which types of

threats were present in their malicious dataset. The combination of the benign and

malicious portions of this dataset are referred to as Dataset 1. It is used primarily in

Chapters 4–7 and is leveraged minimally in Chapters 8 and 9. Dataset 1 was collected in

August 2018.

 Dataset 2

We derived Dataset 2 from the websites in the Alexa Top 1M collected in January

2019. Once the collection was complete, we labeled the data using open source threat

intelligence information provided by Cymon.io [193]. That is, we labeled entries that

were present in the Cymon.io data as malicious and labeled entries that were not present

48

in the Cymon.io data as benign. Like Dataset 1, Dataset 2 can be viewed as being

provided from an external source, with the choice of entries being outside of our control.

We used Dataset 2 in the portion of the research outlined in Chapter 8.

 Dataset 3

We collected Dataset 3 over a period of 12 weeks, beginning February 2nd, 2020

and ending April 19th, 2020. We derived this dataset from the Alexa Top 1M as well. On

February 2nd, 2020, we conducted a query through Censys [176] to determine the Alexa

Top 1M. After doing so, we began collection of these websites over the following week.

On each subsequent week (February 9th, February 16th, February 23rd, etc.), we repeated

the query to Censys, beginning the last collection on April 19th, 2020. We limited

analysis to the entries that were consistent throughout each week – a total of 106,776

websites (106,776 websites were present in the Alexa Top 1M on the query conducted

each week on February 2nd, February 9th, … and April 19th). We used Google Safe

Browsing [132] as the source of ground truth and labeled our data based on the rating

provided by this service. This dataset, consisting of 106,766 websites that were

consistently present in the Alexa Top 1M for a period of 12 weeks and were labeled

based on Google Safe Browsing, is referred to as Dataset 3 and is used in Chapter 9.

 Step 2: Discover Features

The next step in our research centered on the discovery of which features to use to

detect malicious websites. We surveyed academic and industry papers to determine the

features that were commonly used to detect malicious websites. Although each researcher

approached the detection of malicious websites in a slightly different way, we were able

to summarize the types of features collected into three facets depicted in Figure 3-2: 1)

49

host information, 2) webpage content, and 3) communication data. These three facets

describe a website, with each facet consisting of at least one category of feature. For

example, WHOIS information and website URL structure are both categories of features

in the host information facet. Images courtesy of [22].

Fig. 3-2. Defining a website with three facets

Host information: We define host information as all information that must be in

place before the website is accessed, e.g., URL, DNS information, and the presence of

SSL certificates.

Webpage content: Webpage content consists of information gathered from the

webpage fetched from the website URL. It includes the HTML, JavaScript, and any other

information present on the webpage. Unlike host information, webpage content can be

swapped out (in the case of updated HTML pages) without having to re-register the

domain, URL, or any other corresponding information.

Communication data: We define communication data as information flowing to

and or from the website. It can contain details at the traffic, protocol, or metadata levels

50

and governs the method or way to communicate with the website, e.g. HTTP headers,

traffic statistics, and summaries of traffic flow over a period of time.

There are many categories of features that comprise these three facets, including:

the structure of the URL, DNS record information, registration information, HTML and

JavaScript characteristics, information gathered from TCP sessions, and HTTP metadata.

Although many features exist, we limited our study of features to those that we could

extract, just as a browser retrieves a website. Doing so reduced overhead during feature

collection and increased the feasibility of this approach being integrated into a browser or

other web client. Specifically, we used the URL structure as our host information

features, we used the HTML and JavaScript on the webpage as our webpage content

features, and we used the HTTP headers from the website as our communication data

features. Refer to Appendices A, B, and C for a full list of features studied in this

research.

 Extensive Feature Consideration

Although prior research efforts identified features for detecting malicious

websites, the researchers often relied on preconceived notions of the features to use. In

some cases, these features have not changed over the years. For example, [23] counted

the number of <iframe> elements on a webpage in their study and additional authors

included this feature as well. Although [23] conducted their research more than 11 years

ago, they helped establish the use of <iframe> information for detecting malicious

websites. This single example illustrates the tendency of researchers to assume the

relevance of certain features, based on their prevalence in prior research. In our research,

51

we included features gathered from previous studies, but also incorporated additional

features and used additional techniques to determine which were useful.

 Feature Selection Process

By gathering an extensive number of features, we ran the risk of overfitting our

models, which would inhibit detection capability on unknown datasets. Also, using too

many features could negatively impact computation performance for detection model

building and evaluation. Thus, making detection decisions with hundreds or thousands of

features was impractical. We sought, therefore, to identify a smaller set of relevant

features for potential incorporation into a detector. To find such a set of features, we

performed a series of feature selection steps after completing our feature collection,

thereby identifying relevant features. We performed the six steps listed below to select

features from our feature set.

1. Remove features for which all the features have the same value.

2. Remove features that have the same value at least 95% of the time.

3. Determine the variance inflation factor (VIF) [178], which measures

multicollinearity (high correlations among independent variables), values for

each feature and iteratively identify features that have a VIF > 5 [179].

4. Determine which features have similar VIF values and high correlation to

each other (we defined high correlation as having a correlation coefficient

greater than 0.7 [180]).

5. Iteratively repeat Step 4 and remove the highly correlated feature with the

higher VIF from our feature set.

52

6. At this point, if our feature set consists of 50 or fewer features, we have

arrived at our final feature set. If there are more than 50 features, however, we

eliminate features even further with the use of XGBoost (XGB) [181], a GB

algorithm. First, we calculate the feature importance – a metric between 0 and

1 that measures how much that feature impacts the algorithm’s ability to make

a determination regarding whether or not a website is malicious. We then

iteratively input each feature importance as a threshold to the

SelectFromModel technique [29], which is a transformer used to select

features based on their weights. This produces sets of features that have a size

“n” and corresponding threshold “t.” With each set of “n” features associated

with each threshold “t,” we rebuild our XGB models to obtain an ACC for

each set of ‘n’ features. We then iterate through the list of sets with “n” (the

number of features) decreasing and identify relative maxima in the respective

accuracies produced by the set of “n” features. When a relative maximum in

ACC is observed, we stop and use the associated feature set as our final set.

An example of this is seen in Chapter 4, Section 4.6.1. In Chapter 7 and 9, we

observed that performing this step could directly (without Steps 3–6) produce

a set of features for detection; hence, we skipped Steps 3–6 when performing

feature selection in Chapters 7 and 9.

 Step 3: Build Detection Models

 Supervised Machine Learning Techniques

We used supervised machine learning classifiers to build our models. In its

simplest form, supervised learning involves mapping input variables to an output variable

53

via a mapping function. However, the mapping function is learned from an algorithm that

requires a known or labeled dataset as input. In our work, we had access to a corpus of

labeled training data, both malicious and benign websites, which made a supervised

learning approach feasible. The supervised classifiers used to build our models belong to

several classes of machine learning algorithms: nearest neighbors [111], generalized

linear models (GLMs) [92], ensemble methods [182], and neural networks (NNs) [183].

Among the models, four are ensemble methods and provide a measure of feature

importance: adaptive boosting (AB), extra trees (ET), RF, and GB. The other models do

not provide a measure of feature importance, but represent other classes of algorithms:

bagging classifier (BC) [184] is an ensemble method [182], LR is a GLM, and KNN is a

nearest neighbor [111] method. Covering additional classes of algorithms (other than

those that incorporate feature importance), provides better insight into the effectiveness

of the features identified and demonstrates consistency across various learning

algorithms.

In this research, we leveraged: FPR, FNR, ACC, AUC, MCC, Prec, and Rec. We

chose these metrics based on our motivation to present thorough and transparent results,

on the prevalence of the metrics in previous research, and on the ability of the metrics to

describe the detection ability of our models based in various ways.

1. Accuracy (ACC)

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

where TP is the number of true positives, TN is the number of true negatives,

FP is the number of false positives, and FN is the number of false negatives.

2. False Positive Rate (FPR)

54

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃

3. False Negative Rate (FNR)

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁

4. AUC is the area under the receiver operating characteristic (ROC) curve that

plots the TPR vs FPR at each classification threshold. The AUC (lightly

shaded) for a given ROC curve is shown below.

5. MCC is a measure of the quality of a binary classifier and ranges between -1

and 1, with 1 representing a perfect classifier, 0 representing a random

classifier, and -1 indicating complete disagreement between the prediction and

actual value.

𝑀𝐶𝐶 =
(𝑇𝑃 ∙ 𝑇𝑁) − (𝐹𝑃 ∙ 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃) ∙ (𝑇𝑃 + 𝐹𝑁) ∙ (𝑇𝑁 + 𝐹𝑃) ∙ (𝑇𝑁 + 𝐹𝑁)

6. Precision quantifies the number of correct positive classifications made and is

defined as follows:

55

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝑇𝑁

7. Recall is a metric that describes how many positive cases the model finds

from among all of the positive cases and is defined as follows:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

We focused our discussion in this research on the MCC since it incorporated the

number of true positives and true negatives as well as false positives and false negatives

in its value.

 Importance Determination

Determining the most useful features for malicious website detection is a key task

for building models that are not overfit and can be applied in a practical setting. To do so,

we needed a method of ranking the importance of the potential features for malicious

website detection. Fortunately, machine learning techniques such as AB, ET, RF, XGB,

and GB algorithms can be used to build detection models and have the ability to provide

feature rankings. Supervised machine learning techniques – including ensemble methods

[182] and decision trees – have shown promise in prior studies. More importantly, each

of these models provides a feature importance metric – a number between 0 and 1 that

indicates how much the feature contributed to the model’s classification decision. This

importance metric allowed us to determine which features contributed the most to

malicious website detection and to create a ranking of features. The sum of these feature

importance metrics equals 1. A feature was considered more important (and higher

ranked) than another feature if it had a higher importance.

Specifically, the models that calculate feature importance use decision trees and

the Gini impurity [185] as the basis to determine feature importance. It is the foundation

56

for measuring feature importance and is calculated in a two-step process. First, we

determine the Gini impurity [185] for a specific feature branch in the decision tree:

𝑖(𝑡) = 1 − ∑ 𝑝2(𝑗|𝑡)

𝑘

𝑗=1

where i(t) is the Gini impurity for the feature branch in the decision tree, t is the branch

condition for the feature, k is the number of possible output categories (in our case k = 2

for malicious and not malicious), and p is the probability of each outcome in k given t.

The total Gini impurity of that feature is created by taking a weighted sum of the

respective indices per feature branch:

𝐺(𝑓) = ∑ 𝑖(𝑡) ∗ 𝑝(𝑡)

𝑁

𝑡=1

where G(f) is the total Gini impurity for a feature f, i(t) is the impurity of the respective

branch, N is the total number of branches, and p(t) is the probability of that condition

over the total dataset. The lower the Gini impurity, the more useful (important) the

feature is in the decision tree and the higher it should be placed in the tree. Specific

details on the implementation used in our study are available in [29]. In Chapters 4–7 we

created a ranking that enabled us to make comparisons to features used in prior research.

 Scenarios and Feature Transformation

Datasets used to detect malicious websites commonly contain class imbalances

(i.e., the size of the malicious dataset and the size of the benign dataset often differ from

one another). This is true for prior research and was true for our research as well. We

acknowledge that our Dataset 1 was unbalanced and sought to examine whether and how

57

this affected the performance of our detection models. We used three sampling scenarios:

1) no-sampling (using the dataset as is); 2) over-sampling (incrementally over-sampling

the malicious dataset to make the number of benign and malicious websites equal); and 3)

under-sampling (sampling the benign dataset to lower the number of benign websites to

equal the number of malicious websites). We performed over-sampling using the

Synthetic Minority Over-Sampling Technique (SMOTE) [186] from [187], while under-

sampling was random. We applied each of our machine learning algorithms to the three

sampling scenarios, yielding several models for analysis (multiple models per sampling

scenario). Class-balancing also was explored by changing the class weight [29]

parameter of the models. However, this was shown to have little effect on performance

and involved performing an exhaustive grid-search on the weight parameters.

In addition to the no-sampling, over-sampling, and under-sampling scenarios, we

created two more scenarios using feature transformation techniques – feature

transformation with feature selection (FT w/FS) and feature transformation with PCA

(FT w/PCA). Feature transformation enabled us to create additional features using pair-

wise arithmetic operations (addition, multiplication, and division). After creating these

new features, we independently performed additional feature selection and PCA to

identify relevant features and components, respectively. We performed feature

transformation with pair-wise feature transformations (addition, multiplication, and

division) with the help of a Python library, featuretools [188]. The additional

feature selection included the use of correlation [189], SelectKBest (scoring function chi-

square), recursive feature elimination (RFE), and SelectFromModel [29] to select a

subset of features. We input the transformed features into these four techniques and

58

selected features that were identified by at least three of these four techniques. PCA

created new features, also known as components, by reducing the features to “n”

principal components that captured a large portion of variance in the data. We used two

techniques to accomplish feature transformation – feature transformation with feature

selection and feature transformation with PCA – applying them exclusively to the no-

sampling scenario. With the addition of these two-feature transformation cases, we had

several models for analysis (models repeated over the five scenarios, which consisted of

three sampling scenarios and two feature transformation scenarios). Figure 3-3 below

shows the scenarios we used in this study.

Fig. 3-3. Several sampling and feature transformation scenarios

were used throughout this research

In Chapters 4 and 6, we rebuilt these sets of models on two sets of features – those

identified by our approach and those used in prior research. Doing so allowed us to

compare the effect of the newly identified features in this research. Chapter 5 is unique

from Chapters 4 and 6 in its focus on a set of features (URL structure) that have been

extensively studied. Thus, we did not make a comparison between new features and

features from prior research since prior research has covered many of the possible URL

features and the distinction between those that are new and those that are from prior

research is not clear.

59

 Step 4: Tune and Cross-Validate

 Hyperparameter Tuning and Cross-Validation

Once we had the performance metrics for each of the models in the respective

scenarios, we performed cross-validation and hyperparameter tuning for two reasons:

first, to improve the performance of the models, and second, to demonstrate the

consistency of the models with and without hyperparameter tuning and cross-validation.

We used a decision tree classifier as the base estimator and StratifiedKFold [190] for 10-

fold cross-validation. We used ACC, Prec, Rec, and F1 score as potential scoring metrics.

We performed hyperparameter tuning and cross-validation on the best model in each of

the five scenarios (no-sampling, under-sampling, over-sampling, feature transformation

with feature selection, and feature transformation with PCA).

 Validation with Another Data Split

In our study, we trained and tested our models using an 80:20 split of train to test

data. We used 80% of the dataset to train and used the remaining 20% to test our models.

This approach is common in prior research. We used the same 20% to evaluate our

models to ensure consistency. To further demonstrate that our results were not a product

of our initial 80:20 split of training to testing data, we rebuilt our models in the various

scenarios and performed hyperparameter tuning and cross-validation, starting with a

70:30 split of train to test data. We then compared these results to the tuned and cross-

validated models built with the 80:20 split.

60

 Step 5: Combine Features for Improved Detection

 Combined Features in this Study

In this step, we built detection models over various scenarios on a set of features

derived from all categories of the features in our study. We also built models with

features exclusively from prior research.

 Additional Detection Models

We built models using nine different supervised learning models and two models

from unsupervised learning techniques on two feature sets – those identified in this

dissertation and those from prior research. We performed feature selection by following

the same procedure detailed in Section 3.3.2 of this chapter. The supervised learning

models included KNN, AB, ET, RF, GB, XGB, BC, NNs, and a voting classifier (V)

[191] built form the RF, ET, and GB. We excluded LR in this study because it

consistently proved to be one of the worst performing models from the prior steps. We

gathered feature importance from the AB, ET, RF, GB, and XGB algorithms. The

unsupervised models included one-class SVMs and autoencoders [192], both of which

have been used for malicious website detection.

 Hyperparameter Tuning and Cross-Validation

We performed hyperparameter tuning and cross-validation as outlined in Step 5.

However, we also varied the Scikit-Learn [29] class weight parameter, which

penalized missed classifications for the positive (malicious) or negative (benign) classes

in the classification. We varied the Scikit-Learn class weight parameter in this step as

an alternative to sampling.

61

 Step 6: Evaluate on Another Dataset

 Model Application to a New Dataset (Dataset 2)

We then applied to a new dataset the best performing RF classifier built thus far

(the classifier that performed well in our studies thus far and performed well in prior

research). The new dataset (Dataset 2) consisted of the Alexa Top 1M domains. We

defined malicious websites as those websites that were in the Alexa Top 1M and that also

were identified in threat intelligence information provided by Cymon.io [193]. We

defined benign websites as those from the Alexa Top 1M that were not present in the

Cymon.io dataset. We directly applied the model trained from Step 5, captured the

performance metrics, and explored any differences.

 Retrain with Features Identified in Prior Studies (Section 3.3)

We also explored the capabilities of the features identified in our first dataset

(Dataset 1) to another dataset (Dataset 2) by re-training a model based with the features

identified from Dataset 1 on Dataset 2 and evaluating the detection ability of the new

model on Dataset 2. We then evaluated the performance and determined whether new

features derived from the newer dataset (Dataset 2) could be incorporated to improve

detection.

 Leverage Two Datasets for Training and Evaluation

In Step 6, we explored the use of two different datasets for training and

evaluation. Furthermore, we made observations on the impact and feasibility of doing so.

62

 Step 7: Explore Detection Performance Over Time

 Measure the Performance of a Model Trained on Dataset 1 and Evaluated on

Dataset 3

We required a well-performing model for evaluating detection performance over

time. To that end, we first examined the performance of an RF model built on Dataset 1

and evaluated on Dataset 3. We evaluated how consistently the entries in the dataset were

classified and how well the model performed.

 Investigate the Impact of Model Retraining on Performance

We then investigated the impact of model re-training by re-training an RF model

on the first snapshot of Dataset 3 and evaluating on the proceeding snapshots in Dataset

3. The model was trained using three sets of features – the identified features from

Dataset 1 (the features in Chapter 7), the features used in prior research, and a new set of

features re-selected on Dataset 3. We then re-trained on each week and evaluated the

performance on subsequent weeks. Finally, we re-trained the model using all past data

(instead of a single snapshot) and evaluated the model on the subsequent weeks.

 Evaluate Website Change Over Time

The internet is a fast-changing environment and websites change over time. These

changes can occur in areas that may influence detection models, including the features

that are used for detection. Hence, we measured the change in the websites over time

(based on the features used in our detection models). We used four tests –the t-test for

related samples, the two-sample Kolmogorov-Smirnov (KS) test, the k-sample Anderson-

Darling test [198]-[199], and the Kruskal Wallis H test [200]-[201] – summarized as

follows:

63

▪ The related (dependent) t-test [194]-[195] tests whether means of two

related samples are the same and the t-statistic is given by:

𝑡 =
𝑚

𝑠/√𝑛

where:

• m is the mean differences of all the paired measurements,

• n is the sample size, and

• s is the standard deviation of the differences

If the t-statistic is greater than a critical value, the null hypothesis of equal

means can be rejected.

▪ The two-sample KS test [196]-[197] tests that two samples come from the

same distribution. The KS statistic (D below) is expressed by:

𝐷 = | 𝐸1(𝑖) − 𝐸2(𝑖)|

where E1 and E2 are the empirical distributions for the two samples. We can

reject the null hypothesis that the two samples come from a common

distribution if the following is true:

𝐷𝑛,𝑚 > 𝑐(𝛼)√
𝑛 + 𝑚

𝑛 ⋅ 𝑚

α 0.1 0.05 0.025 0.01 0.005 0.001

c(α) 1.22 1.36 1.48 1.63 1.73 1.95

where:

• D is the KS statistic,

•  is the significance level,

• c() is the critical value per significance level, and

64

• n and m are the sizes of the samples.

▪ The k-sample Anderson-Darling test [198]-[199] tests the null hypothesis

that the populations for which two or more groups were drawn are

identical. The Anderson-Darling (A) statistics is described below:

𝐴 =
𝑛 − 1

𝑛2 (𝑘 − 1)
 ∑ [

1

𝑛𝑖
∑ ℎ𝑗

(𝑛𝐹𝑖𝑗 − 𝑛𝑖𝐻𝑗)
2

𝐻𝑗(𝑛 − 𝐻𝑗) −
𝑛ℎ𝑗

4

𝐿

𝑗=1
]

𝑘

𝑖=1

where:

• Ai are the populations we are considering,

• ni = the total number of data points from Ai,

• xij is the jth observation in ith group,

• n = the total number of data points for all ni,

• L = the number of distinct data points in the combined sample,

• z* = z1, z2, ... zL are the distinct values in the combined data set

ordered from smallest to largest,

• hj = number of values in the combined samples equal to zj,

• Hj = number of values in the combined samples less than zj plus

one half the number of values in the combined samples equal to zj,

• Fij = number of values in the ith group (Ai) which are less than zj

plus one half the number of values in this group which are equal to

zj , and

• k = number of groups.

The null hypothesis is that the samples were drawn from the same population

and can be rejected if the test statistic is greater than a critical value.

65

▪ The Kruskal Wallis H test [200]-[201] determines whether medians of two

or more groups are different. The H statistic is given by:

𝐻 = [
12

𝑛 (𝑛 + 1)
 ∑

𝑇𝑗
2

𝑛𝑗

𝑐

𝑗=1
] − 3(𝑛 + 1)

where:

• n = sum of sample sizes for all samples,

• c = number of samples,

• Tj = sum of ranks in the jth sample, and

• nj = size of the jth sample.

If the H statistic is greater than a critical value, we can reject the null

hypothesis that the medians are the same.

All four of these tests allowed us to determine whether two samples or sets of data

came from a similar distribution and formed the basis for how we determined whether

websites (and their features) have changed. Their application is discussed in detail in

Chapter 9.

 Summary

In this section we discussed our methodology. We started with a high-level

description of our approach then discussed the steps taken in this dissertation. The first

step included selection of three datasets used in the proceeding chapters. We then

discussed our approach to discover features for malicious website detection through

extensive feature consideration and through a process of feature selection. The next step

in our methodology is the creation and evaluation of detection models from distinct types

of features – webpage content, URL, and HTTP headers, with various learning

algorithms in different scenarios. We further investigated detection performance by

66

performing tuning and cross-validation of the models. After this investigation, we

performed studies to measure the detection performance when leveraging all three types

of features (webpage content, URL, and HTTP headers) in this dissertation. We shifted

emphasis in the later portion of this dissertation and performed an investigation of the

effectiveness of the models built thus far and the features identified when applied to

another dataset. We concluded our methodology with steps for our temporal study of

malicious website detection.

67

Chapter 4: Webpage Content Features Analysis

 Introduction

In this chapter, we explore an approach using only webpage content for three

reasons. First, prior research places little emphasis on finding new features derived from

webpage content to detect malicious websites, which can lead to potential missed

detection opportunities. For example, the <iframe> HTML element has been considered

a means of detecting malicious websites for more than 11 years without re-evaluation.

Second, security operations centers (SOCs) or incident response teams can gather

webpage content features with little effort and incorporate them into signatures to detect

malicious websites. Third, most prior research focused on detecting either phishing

websites or drive-by downloads. While these results were promising, they required a

priori knowledge of the target website, which is not a viable solution for a SOC or an

incident response team. We then evaluated the ability of webpage content features in

order to detect malicious websites on a diverse dataset (Dataset 1) containing several

types of malicious websites to gain insight into their performance when a priori

knowledge is not available. Our contributions are outlined below.

• We re-evaluated the importance of features for detection of malicious website

from prior research and provided a ranking of webpage content features to

detect malicious websites.

• We created an approach using webpage content to identify 26 features, 17 of

which were introduced in our study, to detect malicious websites with an

average ACC, AUC, and MCC of 89.15%, 0.867, and 0.641, respectively,

across all sampling and feature transformation scenarios.

68

• Our approach identified 26 features, with 17 of them introduced in our study,

whose models produced an average MCC that was 0.005 higher than models

built with features identified in prior research and did so with 48% fewer

features.

• We identified features, both new and from prior research, that showed

promise for detecting websites involved in phishing attacks, drive-by

downloads, and C2 activities.

 Related Research

Researchers have used features gathered from webpage content – both the HTML

and the JavaScript on a webpage – to detect malicious websites separately and

collectively. Provos et al. [59] examined drive-by downloads, commonly enabled by the

<iframe> HTML element. Zhang et al. [24] looked for the <input> tag accompanied

by the words “credit card” and “password” as indicators of phishing websites. Xiang et

al. [46] built a framework to detect phishing websites using features gathered from the

URL structure and HTML on the webpage. Both [24] and [46] used approaches for

phishing website detection that relied on the assumption that phishing websites will often

try to “trick” a user into entering sensitive information. Whittaker et al. [42] applied

statistics to use of the password field and to links on the webpage to build a classifier

with a TPR of 95% against websites involved in phishing attacks. Marchal et al. [91]

used the links on the webpage, in conjunction with URL features and the Alexa ranking

of the domain, as a set of features to detect phishing websites and achieved an AUC of

0.999 for English webpages. Arab and Sohrabi [202] used a list of website features

69

derived from many aspects of a website to create clusters for phishing website detection

and achieved 99% accuracy on their dataset of 200 websites.

Other authors focused solely on gathering features from the JavaScript on the

webpage. Curtsinger et al. [68] detected JavaScript malware with an AST based approach

by instrumenting the browser with a “de-obfuscator” to get a better representation of the

actual JavaScript on the webpage and produced an FPR of 0.0003%. JStill [69] used the

fact that malicious JavaScript is often obfuscated and used practical examples on

malicious JavaScript techniques, including data obfuscation, ASCII encoding, and logical

structure obfuscation and produced an FPR of 1.75% and 0.53%. Researchers [119] used

JaSt to detect and analyze obfuscated JavaScript, using entirely static analysis that

yielded an ACC of nearly 99.5% when used with an RF classifier.

HTML and JavaScript have often been studied independently and have also been

combined for malicious website detection. In an influential paper, [23] gathered features

from the <script> and <frame> elements to achieve an FPR of 5.88% and an FNR of

46.15%. Researchers [45], with Prophiler, extracted both HTML and JavaScript features

to create a “fast filter” for detecting drive-by downloads and achieved an FPR of 9.88%

and FNR of 0.77%. Researchers [47] and [165] collected suspicious HTML features

along with the counts of suspicious JavaScript methods such as eval(),

charCodeAt(), unescape(), and others that are known to be associated with

malicious JavaScript. They achieved accuracies of 97.8% and 96.5%, respectively.

Authors [49] and [66] used the respective counts of suspicious JavaScript methods and

specific HTML tags in their feature collection to achieve an ACC of 96.39% and an AUC

of 0.891, respectively.

70

 Research Questions 1–4

We created four research questions to explore the effectiveness of this approach

and the webpage content features we identified as features for malicious website

detection. These questions focused on using webpage content features – that is, the

HTML and JavaScript on the webpage – as the sole source of features for detection of

whether the website was malicious.

 Research Question 1

Our first question aided in determining how well our approach aligned with or

differed from prior research. Some previous researchers used webpage content to detect

malicious websites, but did not evaluate features that have not demonstrated potential for

malicious website detection. We considered 17,746 features in total, gathered from the

HTML and JavaScript on the webpage. While no definitive list of webpage content

features currently exists, certain HTML and JavaScript features have been commonly

reused in prior research. We hypothesized that our approach, which considered 17,746

features, many of which had never been studied for malicious website detection, would

identify new features that were important to the detection of malicious websites.

Research Question 1 is stated as follows:

RQ1: How do the features identified compare with prior research?

 Research Question 2

Our second research question investigated whether the incorporation of these

features improved malicious website detection. This was done by comparing the MCCs

for models built with the features identified by our approach to the MCCs of models built

with features from prior research. We added assurance to our approach by performing

71

feature transformation techniques with feature selection and PCA, comparing the

respective MCCs. Hence, RQ2 is stated as follows:

RQ2: Do the additional features identified improve malicious website detection?

 Research Question 3

Our third research question focused on the robustness of our approach by

investigating how our results changed in different sampling scenarios – that is, whether

our approach yielded consistent results in the cases of no-sampling, over-sampling, and

under-sampling of our dataset. In security research, class imbalances between the benign

and malicious datasets are common. We also had an imbalance of malicious and benign

websites in our dataset. Hence, we state RQ3 as follows:

RQ3: Do our results change with no-sampling, under-sampling, and over-

sampling scenarios?

 Research Question 4

Our fourth research question enabled us to explore additional validation of our

results by performing hyperparameter tuning and cross-validation in an attempt to

improve our results. Hyperparameter tuning and cross-validation could enable us to build

better detection models. RQ4 is stated as follows:

RQ4: Does hyperparameter tuning and cross-validation improve our results?

 Feature Consideration

 JavaScript Methods

From our literature review, we observed that the presence and counts of

JavaScript methods are often used as a JavaScript feature for malicious website detection.

Method counts are defined as the number of invocations of a specific method found on a

72

webpage. For example, extracting the method count for the method eval on the

following code snippet would result in a value of 2 – that is, we count two invocations of

the method eval:

console.log(eval('3 + 2') === eval('5'));

JavaScript methods of interest from previous research fall into three loose

categories – 1) obfuscation methods, 2) suspicious methods, and 3) methods that act on

the Window or DOM objects. These categories are considered loose because potential

exists for a method to be found in more than one category. For example, obfuscation

methods are often considered suspicious, but suspicious methods exist that are not related

to obfuscation. In addition, methods that act on the DOM and Window objects can also

be considered suspicious, yet they maintain some uniqueness because they act upon the

DOM and Window objects.

4.4.1.1 Obfuscation Methods

Obfuscation is a technique used by malicious JavaScript writers to hinder analysis

of their code, thus making it more difficult to analyze it and to detect it as malicious

JavaScript code. Obfuscated JavaScript is challenging to read, but it contains certain

characteristics useful for determining whether it is malicious. These obfuscation

characteristics include use of specific methods such as replace and unescape. The

snippet of code below from [203] shows normal JavaScript and its obfuscated equivalent.

▪ No obfuscation:

alert('Hello, world!');

▪ Obfuscation :

var _0x1dc7 = ["\x48\x65\x6C\x6C\x6F\x2C\x20\x77\x6F\x72\x6C\x64\x21"];alert(_0x1dc7[0])

73

4.4.1.2 Suspicious Methods

Methods are considered suspicious for many reasons, including their presence in

specific types of attacks. The code snippet below from [204] uses events to send a user to

a fake website when they try to go to the previous webpage.

function addBackClickAd(options) {a

 if (options['backClickAd'] && options['backClickZone'] && typeof

window['history']['pushState'] === 'function') {

 if (options['backClickNoHistoryOnly'] && window['history'].length >

1) {

 return false;

 }

 // pushes a fake history state with the current doc title

 window['history']['pushState']({exp: Math['random']()},

document['title'], null);

 var createdAnchor = document['createElement']('a');

 createdAnchor['href'] = options['url'];

 var newURL = 'http://' + createdAnchor['host'] + '/afu.php?zoneid=' +

options['backClickZone'] + '&var=' + options['zoneId'];

 setTimeout(function () {

 window['addEventListener']('popstate', function (W) {

 window['location']['replace'](newURL);

 });

 }, 0);

 }

}

4.4.1.3 Methods that Act on the Window or DOM Objects

The DOM is the internal representation of the webpage document and the

Window object represents the browser window. It is common for malicious JavaScript to

manipulate or misuse properties of both the DOM and Window objects to facilitate

attacks. The example below shows malicious JavaScript that manipulates the DOM from

[205].

(function () {

 var qk = document.createElement('iframe'); // creating an

iframe

 qk.src = 'http://xxx.tld/wp-includes/dtd.php'; // pointing

it at a webpage

 /*

 making the iframe only take up a 1px by 1px square

 in the top left-hand corner of the web page it is injected

into

 */

74

 qk.style.position = 'absolute';

 qk.style.border = '0';

 qk.style.height = '1px';

 qk.style.width = '1px';

 qk.style.left = '1px';

 qk.style.top = '1px';

 /*

 Adding the iframe to the DOM by creating a <div> with an ID

of "qt"

 (If the div has not been created already)

 */

 if (!document.getElementById('qk')) {

 document.write('<div id=\'qk\'></div>');

 document.getElementById('qk').appendChild(qk);

 }

})();

Table 4-1 lists commonly studied JavaScript methods involved in obfuscation,

considered suspicious, and that act upon the DOM and the Window objects.

75

Table 4-1.
Certain JavaScript Methods Were Considered Suspicious

and Have Been Studied in Prior Research

Commonly Studied JavaScript Methods

Method Motivation

createElement
This method modifies the data object model

(DOM).
write This method modifies the DOM, writes a string.

charCodeAt
This method is considered suspicious and has been

used in JavaScript obfuscation.

Concat
This method manipulates strings and is associated
with obfuscation.

escape
This method is considered suspicious and has been

used in obfuscation.

eval
This method is considered suspicious and enables
the execution of a string as code.

exec
This method is considered suspicious and can be

used in obfuscation.
fromCharCode This method has been associated with obfuscation.

link
This global method is considered suspicious and
has appeared in many types of attacks.

parseInt
This method has been associated with malicious

combinations of methods.

replace

This method is commonly used in obfuscation.
This method has also been shown to be used in

conjunction with shellcode.

search
This global method is considered suspicious and
has appeared in many types of attacks.

subString
This method associated with string manipulation

and obfuscation.

unescape

This method is considered suspicious and has been
used in obfuscation. This method has also been

shown to be used in conjunction with shellcode.

addEventListener
Event attachments can be considered suspicious
under certain circumstances.

setInterval

The method is involved in executing code after a

certain time interval and has been used in drive-by

download attacks.

setTimeout

The method is involved in executing code after a

certain time interval and has been used in drive-by

download attacks.

Although we extracted the counts for the methods in Table 4-1, we also included

another 384 methods found on Mozilla Developer Network (MDN) [206] and W3Schools

[207]. MDN and W3 were consulted because they are intended for JavaScript developers

and contain extensive and up-to-date information on JavaScript. The additional 384

methods were chosen for our study because they are related to previously studied

methods, albeit there is little published research about the use of these methods for

detecting malicious websites. For example, only two methods that act on the DOM have

been studied in previous research reviewed; we added an additional 46 DOM methods to

76

our feature set in addition to the two DOM methods, write and createElement, listed

in Table 4-1. With our approach, we captured methods that are relevant as well as

methods from previous research, and we explored other methods that may be relevant for

detecting malicious websites. For a complete list of all JavaScript method counts

collected in this chapter, please see Appendix B.

 HTML Characteristics

Another feature-rich aspect of webpage content is the HTML. When a browser

loads a webpage, it uses the HTML to determine how to represent the webpage to the

user. HTML defines the structure of the webpage, including visual characteristics,

specific elements, and attributes. It consists of elements – also referred to as tags –

specified by <element_name> and of attributes specified within an element. We refer to

an attribute within a specific element as an element-attribute pair.

The HTML code example below represents a webpage that specifies links to two

websites – CNN and Google.

<html>

<body>

 </body>

</html>

Although this example is small, it contains several features we can collect: the

count of <body>, <a>, and
 elements, as well as details about the href attribute in

the <a> element (also referred to as the a_href element-attribute pair). Running this

HTML through the feature collector we developed created a feature vector like the one

shown below.

<a> count=2

<body> count=1

77

 count=1

Total out of domain URLs=2

Total HTML Tags=5

Total href attributes=2

=2

=2

This vector can be interpreted as: “This HTML contains five tags, two href

attributes, one <body> element, two <a> elements, and one
 element. Two of the

links on the webpage point to resources outside of the domain, two of the href attributes

on the <a> element point to a resource specified over the HTTP protocol, and two href

attributes point to a .com URL.” Other research typically counts specific elements such

as <iframe>. We took a more expansive approach, expanding our collection of element

counts to include many HTML elements. Please see Appendix B for a complete listing of

elements collected in this chapter. Additionally, we expanded analysis of element-

attribute pairs that specify resources via URLs. URLs specified on a webpage are

interesting because they can reference a resource and have many properties that translate

to potential features. These properties can be extracted and used for malicious website

detection. While we included element-attribute pairs from previous research, we also

expanded and analyzed webpage URLs and additional element-attribute pairs not

previously studied. For a complete listing of element-attribute pairs we collected in this

chapter, please refer to Appendix C. Table C-1 in Appendix C also specifies the attributes

for additional URL analysis for the respective elements. This is specified in the last

column of Table C-1. The last feature we collected is the number of small elements of a

specified HTML type. Previous research captured the presence of small <iframe>s and

<frame>s. We did the same, but we also included other elements that have size

78

attributes. An element is considered small if it has a height or width of less than or equal

to two pixels.

 Feature Collection

We wrote our collection scripts in Python and used Pyselenium [208] to fetch

the webpage and retrieve the information. Pyselenium was chosen for its ability to

parse the HTML and extract values and attributes. We extracted JavaScript method

counts by searching for a method call on the webpage to speed up extraction for potential

implementation into a detector. HTML feature extraction was more complex because a

page can have several instances of a specific element and those elements can contain

various attributes. Furthermore, not all attributes are guaranteed to be present in each

element. To account for this, we created a simple algorithm to aide our HTML feature

extraction. The pseudo-code for HTML feature extraction is shown below. Special

elements are specific elements where we extract additional attributes such as features

regarding the resource URLs (for example href), whether the element is “small,” etc.

elements = ALL_HTML_ELEMENTS

for elem in elements:

 count = get_total_element_count(elem)

 if elem is special_element:

 special_attributes = get_special_attributes(elem)

 for special_attribute in special_attributes:

 extract_attribute(elem, special_attribute)

 Learning, Feature Selection, and Sampling Techniques in Webpage Content

Analysis

 Feature Elimination Process

We then sought to shrink our feature set of 17,746 webpage content features to a

smaller, more useful set of no more than 50 features. The number 50 was chosen

subjectively, but it also is approximately the number of features used to detect malicious

79

websites in prior research. For example, [45] used 77 features with Prophiler, while [47]

used 30 features with BINSPECT. We followed the approach outlined in Section 3.3.2,

determining which features had strong association with the dependent variable, whether

the website was malicious, and which had no relationship or a weak relationship with the

dependent variable. We identified and removed features specific to our dataset, as well as

features that are the same for most of the dataset. Hence, we removed features that had

the same value 95% or more of the time. This eliminated 17,525 features and left us with

221 features. We then evaluated the remaining 221 features to identify those that had a

high multicollinearity. Removing features with high multicollinearity was required in

order to ensure that we analyzed a set of independent features. We quantified collinearity

with the VIF [177]. First, we computed the VIF for each feature. We then identified

features that had a VIF > 5, as used in [179]. Among our list of features with a VIF

greater than five, we then determined which features had similar VIF values, thereby

showing that they had correlations similar to those of the other variables and had high

correlation to each other. We considered a high correlation to be a correlation of greater

than 0.7, as used in [180]. Among the highly correlated features with similar VIF values,

we dropped the feature with the higher VIF. This process resulted in 43 features removed,

leaving us with 178 features.

Since we had more than 50 features remaining, we continued to remove features

using the XGB algorithm. XGB is a GB algorithm that also computes feature importance.

To remove additional features, we first calculated the feature importance for each feature

in the set of 178. This was done by building a model from a 70:30 split of training to test

data. Once we had the importance values for the 178 features, we then iteratively input

80

each feature importance as a threshold to the SelectFromModel technique [29], a

transformer used to select features based on their weights to produce a set of features.

This produced a set of features for each threshold. We then used each set of features

associated with each threshold and rebuilt our XGB models to obtain an ACC for each set

of features. At this point in our analysis, we have a list of sets consisting of a threshold

“thresh,” number of features “n,” set of features “f,” and an ACC. An example is below.

…

Thresh=0.009, n=31, f=[..], Accuracy: 90.58%

Thresh=0.010, n=26, f=[..], Accuracy: 90.62%

Thresh=0.010, n=26, f=[..], Accuracy: 90.62%

Thresh=0.010, n=26, f=[..], Accuracy: 90.62%

Thresh=0.013, n=23, f=[..], Accuracy: 90.58%

…

There are three entries for a threshold of 0.010 because the threshold 0.010

appeared three times in the list of feature importance values for the 178 features. We then

iterated through the list of sets with “n” decreasing and identified relative maxima in the

respective ACC. We found a relative maximum at n = 26 and used the features associated

with this relative maximum as our final feature set.

 Machine Learning Models, Sampling, and Feature Transformation

To ensure that we identified a relevant set of features, we evaluated the

effectiveness for detecting malicious websites by building eight models using supervised

machine learning algorithms discussed in Section 3.4.1.

For all models, we split training and testing data using an 80:20 ratio, a common

train/test split for data. Our overall dataset is imbalanced, with 34,778 benign websites

and 5,931 malicious websites. To address this and to ensure that our results were not the

product of our benign-to-malicious website ratio, we performed the sampling procedure

outlined in Section 3.4.3.

81

For no-sampling, we used 27,822 benign websites and 4,745 malicious websites

in our training set. Under-sampling resulted in 4,745 malicious websites and 4,745

benign websites in the under-sampled training set. For over-sampling, we arrived at a

balanced training set with 27,822 benign websites and 27,822 malicious websites.

The websites used in the testing dataset remained consistent across all machine

learning models and sampling approaches for the training data so that we could compare

model results and identify whether any single sampling technique led to a better model.

We ensured that there was no overlap between any training and testing data. We also

built models in feature transformation scenarios as discussed in Section 3.4.3. Figure 3-3

from Chapter 3 provides a summary of the feature selection and sampling techniques.

 Results

 RQ1: How do the Features Identified Compare with Prior Research?

RQ1 compared the features identified in our approach with those from prior

research in terms of ability to detect malicious websites. To examine this question, we

leveraged our four ensemble methods (RF, AB, ET, and BC), all of which captured the

notion of feature importance. The higher the importance, the more the feature contributed

toward determining whether the website was malicious. The identified 26 features are

shown below in Table 4-2, along with their rank and importance, separated by a “:” in the

no-sampling, over-sampling, and under-sampling scenarios. Shaded rows designate new

features we identified in our research. Unshaded rows designate features studied in prior

research for identifying malicious websites or traffic.

82

Table 4-2.
Feature Selection Identified 26 Webpage Content Features for Detection

26 Identified Webpage Content Features Ranked

Feature No-sampling Over-sampling Under-sampling

Total HTML Tags 1: 0.3206 1: 0.2705 1: 0.2239

Total href attributes 2: 0.1025 2: 0.1190 2: 0.1723

<link href> OoD 3: 0.0644 3: 0.0943 3: 0.1018

<p> count 4: 0.0567 5: 0.0601 4: 0.0642

 5: 0.0554 8: 0.0403 6: 0.0581

Count of <meta> tag 6: 0.0515 6: 0.0471 8: 0.0340

<script_async=true> 7: 0.0462 7: 0.045 5: 0.0634

<link type=”text/css”> 8: 0.0298 9: 0.0327 11: 0.0257

<script src> OoD 9: 0.0289 14: 0.0141 7: 0.0535

<link href=”http*”> 10: 0.0271 11: 0.0224 10: 0.0283

push() 11: 0.0258 4: 0.0627 9: 0.0325

<link href=”*.css”> 12: 0.0258 12: 0.0205 13: 0.0125

indexOf() 13: 0.0175 25: 0.0071 16: 0.0119

<form action=”http*> 14: 0.0168 19: 0.012 12: 0.0136

 count 15: 0.0151 15: 0.0132 18: 0.0114

<iframe src=”https*”> 16: 0.015 10: 0.0271 24: 0.0078

Count of <center> tag 17: 0.0141 16: 0.0131 19: 0.0093

setTimeout() 18: 0.0136 26: 0.0066 15: 0.0121

 19: 0.0133 13: 0.0186 20: 0.0090

document.write() 20: 0.0112 17: 0.0129 22: 0.0084

addEventListener() 21: 0.0096 20: 0.011 14: 0.0124

get() 22: 0.0093 21: 0.0107 26: 0.0023

<link type=”application/rsd+xml”> 23: 0.0079 22: 0.0103 21: 0.0088

find() 24: 0.0077 24: 0.0078 25: 0.0035

<link rel=”shortlink”> 25: 0.0073 23: 0.0085 23: 0.0080

replace() 26: 0.0069 18: 0.0123 17: 0.0114

We repeated this exercise on features from prior research, with their respective

ranking and importance shown in Table 4-3 below.

83

Table 4-3.
50 Webpage Content Features from Prior Research Showed

Inconsistent Rank in Sampling Scenarios

50 Webpage Content Features from Prior Research Ranked
Feature No-sampling Over-sampling Under-sampling

Total HTML Tags 1: 0.3190 1: 0.2694 1: 0.2452
Count of <meta> tag 2: 0.0620 7: 0.0437 7: 0.0507
<a href> OoD 3: 0.0583 2: 0.0688 2: 0.1071
Total href attributes 4: 0.0534 6: 0.0509 5: 0.0665
Count of <div> tag 5: 0.0462 17: 0.0182 11: 0.0292
Count of <a> tag 6: 0.0457 4: 0.0669 3: 0.0734
<link href> OoD 7: 0.0437 3: 0.0671 4: 0.0684
<script src> OoD 8: 0.0408 5: 0.0563 6: 0.0564
Count of <link> tag 9: 0.0330 13: 0.0234 10: 0.0296
Total 10: 0.0307 9: 0.0342 8: 0.0415
 OoD 11: 0.0252 11: 0.0285 13: 0.0218
Count of <title> tag 12: 0.0245 15: 0.0196 18: 0.0086
createElement() 13: 0.0238 8: 0.0395 12: 0.0276
Count of tag 14: 0.0207 12: 0.0255 9: 0.0351
<script type=

”text/javascript”> 15: 0.0198 16: 0.0191 14: 0.0182
Count of <input> tag 16: 0.0164 20: 0.0094 20: 0.0069
Count of <iframe> tag 17: 0.0152 14: 0.0223 15: 0.0166
<form action> OoD 18: 0.0150 10: 0.0341 16: 0.0119
replace() 19: 0.0136 19: 0.0134 17: 0.0110
Count of <style> tag 20: 0.0077 26: 0.0058 21: 0.0064
escape() 21: 0.0075 22: 0.0079 22: 0.0063
addEventListener() 22: 0.0072 21: 0.0086 19: 0.0077
setTimeout() 23: 0.0072 24: 0.0064 24: 0.0061
substring() 24: 0.0071 33: 0.0020 33: 0.0018
concat() 25: 0.0064 23: 0.0065 34: 0.0013
document.write() 26: 0.0063 31: 0.0031 32: 0.0025
fromCharCode() 27: 0.0059 27: 0.0056 25: 0.0059
 OoD 28: 0.0058 25: 0.0063 23: 0.0062
search() 29: 0.0054 28: 0.0052 26: 0.0054
charCodeAt() 30: 0.0053 39: 0.0003 43: 0.0003
<audio src> OoD 31: 0.0051 29: 0.0052 27: 0.0052
<iframe src> OoD 32: 0.0033 32: 0.0025 28: 0.0043
parseInt() 33: 0.0030 18: 0.0136 31: 0.0030
<base href> OoD 34: 0.0021 30: 0.0042 30: 0.0035
unescape() 35: 0.0021 34: 0.0020 29: 0.0037
eval() 36: 0.0010 35: 0.0009 38: 0.0005
Count of <frame> tag 37: 0.0008 43: 0.0003 39 0.0005
exec() 38: 0.0007 38: 0.0005 35: 0.0007
Count of <object> tag 39: 0.0006 37: 0.0006 37: 0.0005
<frame src> OoD 40: 0.0006 42: 0.0003 41: 0.0004
<embed src> OoD 41: 0.0005 40: 0.0003 40: 0.0004
hidden <iframe> 42: 0.0004 36: 0.0008 36: 0.0006
Count of <embed> tag 43: 0.0003 41: 0.0003 42: 0.0003
<area href> OoD 44: 0.0002 46: 0.0001 46: 0.0001
<object data> OoD 45: 0.0002 44: 0.0002 45: 0.0002
setInterval() 46: 0.0001 45: 0.0001 47: 0.0001
link() 47: 0.0001 48: 0 44: 0.0003
<source src> OoD 48: 0.0001 47: 0.0001 48: 0.0001
<video src> OoD 49: 0 49: 0 50: 0
<source srcset> OoD 50: 0 50: 0 49: 0

4.7.1.1 Features Identified in Previous Research

Table 4-2 displays the 9 of 26 identified features that have been studied in

previous research. They can be grouped and summarized in the manner outlined below.

84

• Two of the nine previously studied features centered around the number of

HTML tags on the webpage. Tag counts were useful for identifying phishing

websites in prior research. The <meta> tag was specifically used.

• Three of the nine previously studied features were gathered from the links and

URLs found on the webpage. Six features are JavaScript methods studied in

relation to malicious website detection. Links and URLs on the page were of

particular interest if they pointed to out-of-domain (OoD) resources and were

of interest since they could specify additional content that may be malicious

without including malicious contents on the specific webpage.

• The final four features from prior work were counts of JavaScript methods

that are considered suspicious or have been associated with JavaScript

obfuscation. Another was a method that acts on the Window object,

4.7.1.2 New Features Identified

Table 4-2 identifies the 17 of 26 identified features that, to the best of our

knowledge, have not been studied in prior research. They can be grouped and

summarized in the manner outlined below.

• Three of the features were counts of tags that have not been studied for

malicious website detection. Although tags have been studied, these three, to

our knowledge, have not been selected for study in prior research.

• Four of the features were counts of additional JavaScript methods that are not

common in studies to detect malicious websites.

• Six of the new features were gathered from the URLs specified in tags on the

page.

85

• The remaining four features were specific values for attributes in several

HTML tags.

4.7.1.3 Features Ranking Analysis

For the features identified by our approach in Table 4-2, the top three features are

consistent and have the same rank in all scenarios. They are the count of all tags, the

count of all href attributes, and the number of out-of-domain OoD href attributes in the

<link> tag, having a total importance of 0.4875, 0.4838, and 0.4980, respectively. The

features identified by our approach account for 40.61%, 41.97%, and 41.53%,

respectively, of the total feature importance in the sampling scenarios in Table 4-2. Five

of the features are counts of tags and account for 0.4016 average feature importance.

Eight of the features are counts of JavaScript methods and account for 0.109 average

feature importance. Seven of the features are related to the URLs on the webpage and

account for 0.3577 average feature importance. The final six features are specific

attribute values and account for 0.1313 of total feature importance.

When considering the 50 features from prior research in Table 4-3, in all three

sampling scenarios, the total HTML tags (the first feature listed in Table 4-3) accounts

for the most importance (0.3190, 0.2694, and 0.2452, respectively) and the importance

difference between the first and second ranked feature is larger than the difference

between the any other two consecutively ranked features. Thirteen of the 50 features are

associated with tag counts, 17 are specific JavaScript method counts, and 16 are gathered

from URLs on the webpage, two with specific values of attributes, and four with the

counts of specific attributes. On average, we found that the most important features

studied in prior research were gathered from counts of tags, URLs on the webpage,

86

counts of JavaScript methods on the webpage, and other specific attributes found in tags

on the webpage accounting for an average total feature importance of 53%, 34%, 10%,

and 2%, respectively.

Our approach identified 26 features, nine of which are from prior research, while

the other 17, to the best of our knowledge, were new. The nine features account for

roughly 40% of the total feature importance. For the 26 features identified by our

approach, the top three are consistent across sampling scenarios and account for roughly

half of the total feature importance.

 RQ2: Do the Additional Features Identified Improve Malicious Website

Detection?

We then investigated the performance of models built in our study in sampling

and feature transformation scenarios. To do so, we built two sets of models with the 26

features identified by our approach and with the 50 features from prior research. We

evaluated performance for the test dataset when using the no-sampling, under-sampling,

and over-sampling training sets. Table 4-4 provides the FPR and FNR, the ACC, the

AUC, and MCC for the 26 and 50 features and are separated by a “/.” We focused on

MCC to drive the discussion because MCC is a balanced metric that considers the four

quadrants of the confusion matrix and works well even when the dataset is imbalanced.

Table 4-5 provides the Prec and Rec of the respective models. In addition to sampling

scenarios, we performed two sets of feature transformations on the 26 features identified

by our approach and the 50 features gathered from prior research. These results are

shown in Tables 4-4 and 4-5 below.

87

Table 4-4.

Identified Webpage Content Features Slightly Outperformed Features from Prior Research

Model Performance (50 Features from Prior Research / 26 Identified Features) in Sampling Scenarios

Model

No-sampling Over-sampling Under-sampling

FPR FNR ACC AUC MCC FPR FNR ACC AUC MCC FPR FNR ACC AUC MCC

KNN
0.0844/

0.0865

0.1239/

0.1264

0.9097/

0.9075

0.8958/

0.8934

0.7003/

0.6942

0.0399/

0.0423

0.8344/

0.8261

0.8427/

0.8419

0.5628/

0.5657

0.1899/

0.1937

0.0409/

0.0397

0.8569/

0.8377

0.8386/

0.8424

0.5510/

0.5612

0.1576/

0.1860

LR
0.0861/
0.0961

0.2262/
0.1797

0.8931/
0.8915

0.8437/
0.8620

0.6246/
0.6386

0.1814/
0.1870

0.0532/
0.0474

0.8375/
0.8335

0.8826/
0.8827

0.5956/
0.5925

0.1936/
0.1943

0.0474/
0.0482

0.8279/
0.8271

0.8794/
0.8786

0.5843/
0.5828

RF
0.0805/

0.0835

0.1198/

0.1148

0.9136/

0.9118

0.8998/

0.9008

0.7110/

0.7083

0.0998/

0.0902

0.0898/

0.0890

0.9016/

0.9099

0.9051/

0.9103

0.6944/

0.7131

0.1201/

0.1047

0.0715/

0.0798

0.8870/

0.8989

0.9041/

0.9076

0.6718/

0.6925

AB
0.0808/
0.0847

0.2229/
0.1747

0.8981/
0.9019

0.8481/
0.8702

0.6378/
0.6642

0.1488/
0.1337

0.0773/
0.0673

0.8617/
0.8760

0.8868/
0.8994

0.6233/
0.6530

0.1533/
0.1504

0.0673/
0.0557

0.8593/
0.8635

0.8896/
0.8969

0.6238/
0.6360

GB
0.0806/

0.0819

0.1647/

0.1505

0.9069/

0.9078

0.8772/

0.8837

0.6794/

0.6867

0.1234/

0.1110

0.0790/

0.0798

0.8830/

0.8935

0.8987/

0.9045

0.6612/

0.6814

0.1328/

0.1312

0.0673/

0.0657

0.8768/

0.8784

0.8998/

0.9015

0.6543/

0.6580

ET
0.0814/
0.0842

0.1222/
0.1156

0.9125/
0.9110

0.8981/
0.9000

0.7075/
0.7063

0.1000/
0.0904

0.0890/
0.0956

0.9016/
0.9087

0.9054/
0.9069

0.6947/
0.7079

0.1110/
0.1118

0.0698/
0.0806

0.8949/
0.8927

0.9095/
0.9037

0.6882/
0.6795

BC
0.0817/

0.0844

0.1206/

0.1156

0.9125/

0.9109

0.8988/

0.8999

0.7081/

0.7060

0.1028/

0.0939

0.0840/

0.0881

0.8999/

0.9069

0.9065/

0.9089

0.6930/

0.7065

0.1161/

0.1134

0.0748/

0.0782

0.8899/

0.8917

0.9044/

0.9041

0.6762/

0.6786

NN
0.0880/
0.0985

0.1422/
0.1039

0.9039/
0.9006

0.8848/
0.8987

0.6804/
0.6870

0.1342/
0.1269

0.0565/
0.0632

0.8771/
0.8824

0.9045/
0.9049

0.6595/
0.6665

0.1693/
0.1775

0.0457/
0.0341

0.8489/
0.8436

0.8924/
0.8941

0.6166/
0.6138

88

Table 4-5.

Identified Webpage Content Features Slightly

Outperformed Features from Prior Research (cont.)

Model Performance (50 Features from Prior Research / 26

Identified Features) in Sampling Scenarios

Model

No-sampling Over-sampling Under-sampling

Prec Rec Prec Rec Prec Rec

KNN
0.6424/

0.6359

0.8760/

0.8735

0.4180/

0.4155

0.1655/

0.1738

0.3771/

0.4140

0.1430/

0.1622

LR
0.6086/
0.5964

0.7737/
0.8202

0.4747/
0.4686

0.9467/
0.9525

0.4600/
0.4588

0.9525/
0.9517

RF
0.6542/

0.6472

0.8801/

0.8851

0.6121/

0.6362

0.9101/

0.9109

0.5723/

0.6033

0.9284/

0.9201

AB
0.6247/
0.6278

0.7770/
0.8252

0.5177/
0.5470

0.9226/
0.9326

0.5130/
0.5208

0.9326/
0.9442

GB
0.6419/

0.6421

0.8352/

0.8494

0.5636/

0.5892

0.9209/

0.9201

0.5487/

0.5521

0.9326/

0.9342

ET
0.6512/
0.6450

0.8777/
0.8843

0.6120/
0.6338

0.9109/
0.9043

0.5918/
0.5874

0.9301/
0.9193

BC
0.6508/

0.6446

0.8793/

0.8843

0.6066/

0.6270

0.9159/

0.9118

0.5797/

0.5846

0.9251/

0.9217

NN
0.6278/
0.6115

0.8577/
0.8960

0.5488/
0.5610

0.9434/
0.9367

0.4939/
0.4851

0.9542/
0.9658

Without sampling, the MCC was slightly higher for four of the eight models (LR,

AdaBoost, GB, and NN), when considering the 26 features instead of the 50 previously

studied features (on average, 0.6865 for the 26 features and 0.6812 for the 50 features).

When over-sampling, the average MCC increased (0.6144 for 26 the features and 0.6015

for the 50 features) when considering 26 features instead of the previous studied 50

features. With over-sampling, the MCC was higher for all models except LR when

considering the 26 features instead of the 50 previously studied features. When under-

sampling, the average MCC increased (to 0.5910 for the 26 features and to 0.5842 for the

50 features). With under-sampling, the average MCC was higher for all eight models

except LR, ET, and NN for the 26 features versus the 50 previously studied features. In

each of our sampling scenarios, we observed overall improvement when building models

with our 26 identified features compared to the 50 previously studied features. Although

the improvement was not large, it was achieved with roughly half of the features, 17 of

89

which are not commonly used for malicious website detection. This suggests that

additional features, outside of those identified in prior research, should be explored for

their use in malicious website detection.

We also performed feature transformation with the process in Section 3.4.3 on the

26 features to investigate combinations of features that could improve performance and to

evaluate the effects on the models. The 26 features were transformed into 1,326 feature

combinations. We then performed feature selection on these feature combinations, using

four different techniques: correlation, SelectKBest (scoring function chi-square), RFE,

and SelectFromModel [29]. We kept the feature combinations selected by at least three of

these techniques, yielding 40 transformed features. We then rebuilt the eight models with

these 40 transformed features. We repeated this approach with the 50 features from prior

research, with the results shown in Tables 4-6 and 4-7 under FT w/FS.

We then determined whether PCA could reduce the 1,326 features to “n”

components, mixtures, or combinations of variables that captured the maximum variance.

By using a cumulative scree plot, we identified 150 components that captured 79.9% of

the variance (see Figure 4-1) from the 26 identified features and rebuilt the models with

the components. We repeated this approach on the 50 features from prior research,

identifying 300 components that captured 81.2% of the variance (see Figure 4-2) with the

results shown in Tables 4-6 and 4-7 under FT w/PCA.

90

Fig. 4-1. 150 components are created from 26 identified webpage

content features

Fig. 4-2. 300 components are created from 50 identified

webpage content features

91

Table 4-6.
Model Performance (50 Webpage Content Features from Prior Research / 26 Identified Webpage Content

Features) with Feature Transformation

Table 4-7.

Model Performance (50 Webpage

Content Features from Prior Research /

26 Identified Webpage Content Features)

with Feature Transformation (cont.)

Model Performance (50 Webpage Content

Features from Prior Research / 26 Identified

Webpage Content Features) with Feature

Transformation

Model

FT w/FS FT w/PCA

Prec Rec Prec Rec

KNN
0.7393/

0.7668

0.1297/

0.1231

0.6368/

0.6352

0.8752/

0.8693

LR
0.5493/
0.5575

0.8236/
0.8219

0.6111/
0.6201

0.7936/
0.8544

RF
0.6496/

0.6456

0.8810/

0.8793

0.6534/

0.6480

0.8752/

0.8760

AB
0.6314/
0.6208

0.8194/
0.7820

0.6324/
0.6360

0.8302/
0.8477

GB
0.6448/

0.6451

0.8444/

0.8410

0.6460/

0.6442

0.8535/

0.8510

ET
0.6491/
0.6455

0.8818/
0.8818

0.6517/
0.6465

0.8752/
0.8810

BC
0.6486/

0.6435

0.8801/

0.8801

0.6480/

0.6447

0.8777/

0.8818

NN
0.5682/
0.5701

0.8968/
0.8727

0.6277/
0.6226

0.8893/
0.8910

Model Performance (50 Webpage Content Features from Prior Research / 26 Identified Webpage Content Features) with

Feature Transformation

Model

FT w/FS FT w/PCA

FPR FNR ACC AUC MCC FPR FNR ACC AUC MCC

KNN
0.0079/
0.0064

0.8702/
0.8768

0.8647/
0.8650

0.5609/
0.5583

0.2720/
0.2719

0.0864/
0.0864

0.1247/
0.1306

0.9078/
0.9070

0.8943/
0.8914

0.6957/
0.6916

LR
0.1170/

0.1129

0.1763/

0.1780

0.8742/

0.8774

0.8533/

0.8544

0.6038/

0.6095

0.0874/

0.0906

0.2063/

0.1455

0.8949/

0.9012

0.8531/

0.8818

0.6363/

0.6730

RF
0.0822/
0.0835

0.1189/
0.1206

0.9123/
0.9109

0.8993/
0.8978

0.7081/
0.7043

0.0804/
0.0824

0.1247/
0.1239

0.9130/
0.9114

0.8974/
0.8968

0.7078/
0.7043

AB
0.0828/

0.0827

0.1805/

0.2179

0.9027/

0.8973

0.8683/

0.8496

0.6639/

0.6376

0.0835/

0.0840

0.1697/

0.1522

0.9037/

0.9059

0.8733/

0.8818

0.6701/

0.6814

GB
0.0805/
0.0801

0.1555/
0.1589

0.9083/
0.9082

0.8819/
0.8804

0.6861/
0.6847

0.0809/
0.0814

0.1464/
0.1489

0.9093/
0.9086

0.8862/
0.8848

0.6916/
0.6890

ET
0.0825/

0.0838

0.1181/

0.1181

0.9121/

0.9110

0.8996/

0.8990

0.7080/

0.7054

0.0809/

0.0834

0.1247/

0.1189

0.9125/

0.9113

0.8971/

0.8988

0.7067/

0.7057

BC
0.0825/
0.0844

0.1198/
0.1198

0.9119/
0.9103

0.8988/
0.8978

0.7069/
0.7031

0.0825/
0.0841

0.1222/
0.1181

0.9115/
0.9108

0.8975/
0.8988

0.7052/
0.7049

NN
0.1180/

0.1139

0.1031/

0.1272

0.8841/

0.8840

0.8894/

0.8793

0.6535/

0.6435

0.0913/

0.0935

0.1106/

0.1089

0.9057/

0.9042

0.8989/

0.8987

0.6960/

0.6930

92

The MCC improved only in the LR model when comparing the models built with

the prior 50 features to the models built with the 26 features identified in the feature

transformation with feature selection case. Additionally, in this case, the average MCC

decreased from 0.6253 to 0.6201 when using the 26 features instead of the 50 features

from prior research. Also, when considering the impact of feature transformation with

feature selection on the 26 features compared to no feature selection, feature

transformation with feature selection reduced the average MCC from 0.6865 to 0.6201.

When we applied PCA to the transformed features, the MCC only increased in two of the

models – LR and AB – when considering the 26 features identified in our research rather

than the 50 previously studied features, but the average MCC increased from 0.6887 to

0.6929. When considering the impact of feature transformation with PCA on the 26

features compared to no feature transformation, feature transformation with PCA

increased the average MCC from 0.6865 to 0.6929.

Although the features we identified did not greatly improve malicious website

detection (there was only an increase of 0.005 in the average MCC overall), the features

we identified did improve malicious website detection with 48% fewer features in the

scenarios without feature transformation and in the feature transformation with PCA.

 RQ3: Do our Results Change with No-sampling, Under-sampling, and Over-

sampling Scenarios?

RQ3 addressed the sensitivity of our approach and the impact of dataset

imbalance. Sampling is especially important in malicious website classification because

researchers (ourselves included) use datasets that are imbalanced. There is neither a

standard that dictates when to perform sampling nor a standard of how much of an

93

imbalance between malicious and non-malicious should be used to train and test

malicious website detection models. Hence, exploring whether sampling affects the

results is worthwhile. We compared the feature rankings and the overall performance of

our classifiers.

In the ranking of the 26 features identified in our research, the top three were

consistent in the three-sampling scenarios. Although these were only three consistent

rankings, they accounted for approximately 50% of total feature importance. We did

however, observe some change in the MCC over the sampling scenarios with MCCs of

0.6865, 0.6144, and 0.5910, respectively, in the no-sampling, over-sampling and under-

sampling scenarios. In case of the 50 features gathered from prior research, the only

ranking that was consistent was the first, with the MCCs for the respective sampling

scenarios being 0.6812, 0.6015, and 0.5842, respectively, for the no-sampling, over-

sampling, and under-sampling cases.

The answer to RQ3 was mixed. We observed that rankings were not consistent,

though the rankings of the features with the highest importance demonstrated

consistency. The MCCs, however, were more consistent across the sampling scenarios.

 RQ4: Does Hyperparameter Tuning and Cross-Validation Improve our

Results?

We performed hyperparameter tuning and cross-validation to explore their effects

and to provide assurance that results in Tables 4-4, 4-5, 4-6, and 4-7 were comparable to

the tuned and cross-validated results. In each scenario – no-sampling, over-sampling,

under-sampling, feature transformation with feature selection, and feature transformation

with PCA – we chose the best performing model, built from the 26 features, and

94

proceeded to tune the parameters and cross-validate. We leveraged a decision tree

classifier as the base estimator and StratifiedKFold [190] for 10-fold cross-validation.

None of the MCC results from the five models improved, with the average MCC only

decreasing from 0.7051 to 0.6999, suggesting that using the default parameters in [29] for

our models in Tables 4-4, 4-5, 4-6, and 4-7 was sufficient.

We also needed to ensure that our results were not dependent on the 80:20 split of

train/test data. To do this, we repeated our approach, as well as parameter tuning and

cross-validation of the best models, but on a 70:30 split of training to test data instead of

80:20. Tuning and cross-validation did not improve any of the models for the 70:30 split,

but the average MCC decreased from 0.7043 to 0.6908. Without tuning and cross-

validation, the average MCC was 0.7043 and 0.7051, respectively, with the 70:30 and

80:20 split. With tuning and cross-validation the average MCC was 0.6908 and 0.6999,

respectively, with the 70:30 and 80:20 split. The results were similar, suggesting that we

were not dependent on the train/test split. Full results are shown in Table 4-8 below.

95

Table 4-8.

Cross-Validation and Hyperparameter Tuning Slightly

Improved Webpage Content Models

Cross-Validation and Hyperparameter Tuning Webpage Content

Models

Model Scenario - Split MCC Scoring Metric

ET No-sampling - 70:30 0.6880 recall macro

ET Over-sampling - 70:30 0.6865 accuracy

ET Under-sampling - 70:30 0.6763 recall macro

RF FT w/ FS - 70:30 0.6984 balanced accuracy

ET FT w/ PCA - 70:30 0.6906 balanced accuracy

RF No-sampling - 80:20 0.7029 precision macro

RF Over-sampling - 80:20 0.7126 balanced accuracy

RF Under-sampling - 80:20 0.6808 accuracy

ET FT w./FS - 80:20 0.6977 balanced accuracy

ET FT w/ PCA - 80:20 0.7055 balanced accuracy

Although we tuned our model hyperparameters and cross-validated, we did not

see improvement of the average MCC in the 80:20 and 70:30 cases.

 Conclusion

This chapter included a comprehensive evaluation of webpage content features to

demonstrate the potential of using webpage content features alone to detect malicious

websites and to determine whether new, unstudied webpage content features could

improve malicious website detection. We analyzed webpage content features from 5,931

malicious websites and from 34,778 benign websites. Malicious websites were identified

by Cisco Talos, while benign websites were gathered from the Alexa Top 1M. We

collected 17,746 webpage content features from these websites and identified 26 for

further analysis, of which, 17, to the best of our knowledge, were new. We built and

evaluated eight models and ensured that our results were not greatly impacted by our

dataset imbalance by performing no-sampling, over-sampling, and under-sampling

96

scenarios. We further demonstrated consistency in our results by performing feature

transformations, rebuilding the models, and comparing results.

We compared the results from models built with the 26 features identified by our

approach with results from models built with 50 features gathered from prior research.

Additionally, we observed that the relative importance of the features decreased gradually

with rank except for the first, and in some cases the second, ranked feature. The average

MCC for the 26 features identified from our research was slightly higher than the average

MCC for the 50 previously studied features, but used roughly half of the features. When

considering the 26 selected features, feature transformation with feature selection

decreased the MCC, while feature transformation with PCA increased the average MCC.

Our results indicated the existence of a broader set of webpage content features that can

be used for malicious website detection than those features commonly studied by

previous researchers.

97

Chapter 5: URL Features Analysis

 Introduction

A URL specifies the internet location of a resource – most commonly a website.

The URL allows for the retrieval of documents, webpages, and other files across the

internet and can do so with or without the actual IP address. Although website URLs

have legitimate uses, they also enable many threats on the internet. URLs can point to

phishing websites, to websites that conduct drive-by downloads, or to C2 websites, for

example. Prior research has noted that malicious URLs often have a distinct structure

when compared to benign URLs. Thus, the structure of the URL has been explored for

malicious website detection and we conduct an additional analysis in this chapter. Our

contributions are detailed below.

• We demonstrated the potential of using only URL features as a means to

detect malicious websites on a dataset consisting of multiple types of threats.

• Among the 41 features we identified, we introduced five features focused on

the number of English words of a given length that had not been studied in

terms of detecting malicious websites.

• We observed that counts of the letters in the English alphabet account for an

average of 35% of feature importance across our sampling scenarios.

• When considering the 41 selected features, feature transformation with feature

selection and PCA decreased the MCC compared to the no-sampling scenario

with no feature transformation.

98

 Related Research

In this section, we summarize previous research and the use of URL features for

malicious website detection. URL features have been used in many works and this

section groups together works that have commonalities.

Early research by [34]-[37] and [40] leveraged a “bag-of-words” approach that

separates the URL based on special characters (“=,” “.,” “?” etc.) and examined the

resulting tokens. In addition to using special characters as delimiters, researchers have

used the presence or counts of specific special characters as features for malicious

website detection [24], [40], [43]-[44], [46]-[50], [64], [81], [89], [116]. The “.” character

is heavily used because it separates domain names including TLDs and subdomains in the

URL. Another feature, the URL length, is one of the features most prevalently leveraged

in prior research. Prior researchers noticed that malicious URLs are typically longer (or

shorter) and hence the url length has been used to detect malicious websites [40], [44],

[47], [49], [51], [64], [81], [89].

Some methods for detecting malicious URLs also take the structure of the URL

(protocol, host, subdomain, domain, path, query parameters) into consideration and were

demonstrated in [40], [42], [47], [81], [86], [91], [117]. Although this approach

facilitates the extraction of more features, it presents a problem in potential test sets in

that benign sets, such as ours, are usually the home pages of the domain, while test sets

for malicious websites may have multiple subdomains, different paths, and varying query

parameters. Such features would not be applicable to benign websites. Furthermore, to

create a benign test set of URLs that have paths would require use of a web crawler or

similar method that could introduce influence into the study. Another structural property

99

used in prior research is the presence of an IP address or a port number in the URL and

has been studied by [24], [42]-[46], [48]-[50], [64], [81], and [116].

URL characteristics have been used to detect bots and malicious traffic. Kheir et

al. [55] detected C2 communications through the clustering of URLs generated by

malware. Yadav et al. [209] developed a method to detect DNS “fluxing” by examining

bigrams in algorithmically generated URLs. Researchers [44] used the presence of

multiple TLDs, which can be expressed as n-grams, in the domain as another feature.

Huang et al. [160] proposed a method for dynamically extracting patterns from URLs (as

opposed to n-grams) for malicious URL detection. Daeef et al. [95] used n-grams in

conjunction with separating URLs into host, path, and query segments. Verma and Das

[56] also used n-grams and extracted overlapping sequences of consecutive characters in

the ranges of N = 1 to N = 10 and discussed the speed of their n-gram feature extractor.

Authors [52] distinguished between algorithmically generated domains (AGDs) and

human generated domains (HGDs), using url length, vowels, consonants, and digits,

while [116] used the ratio of the number of specific characters over the total url

length, among others factors, in their set of 41 features.

Whether using a “bag-of-words” approach, a structural approach, or a length-and-

character approach, n-grams present in a URL have played a key role in the detection of

malicious websites. As such, we used n-grams as the main set of features in our malicious

website detection experiments. We extracted features from previous research and added

several new features from n-grams based on English words, TLDs, file extensions, and

well-known ports, with the goal of identifying new URL-based features for malicious

website detection and building capable detection models.

100

 Research Questions

We created three of our research questions with the aim of exploring the

effectiveness of our approach and at assessing the URL features we identified as features

for malicious website detection. These three research questions focus on using features

derived from the URL as the sole source of features for the detection of malicious

websites.

 Research Question 1

Previous research applied several techniques and features to the analysis and

detection of malicious website URLs. Currently, no definitive list of URL features exists,

though certain features have been used extensively in prior research. Given that URLs

have been analyzed in many ways and that diverse features have already been used in

malicious website detection, we postulated that additional features might be relevant for

malicious website detection. We hypothesized that our approach, which considered

28,162 features, many of which had never been studied for malicious website detection,

would identify new features of importance in the detection of malicious websites. RQ1 is

stated below.

RQ1: How do the features identified compare with prior research?

 Research Question 3

This second question (third of our 13 research questions) focused on the

consistency of our approach by investigating if our results changed across three sampling

scenarios: no-sampling, under-sampling, and over-sampling. Class imbalances between

the benign and malicious datasets are common in security research. With this question,

101

we analyzed whether our model performance changed across three sampling scenarios.

We stated RQ3 as follows:

RQ3: Do our results change with no-sampling, under-sampling, and over-

sampling scenarios?

 Research Question 4

With this research question, we explored the use of hyperparameter tuning and

cross-validation on our results. These techniques have the potential to improve our

models and aided us in understanding how much our models could be improved (if at all).

These additional methods gave our results more credence. RQ4 is as follows:

RQ4: Does hyperparameter tuning and cross-validation improve our results?

 Feature Consideration

URLs have several characteristics we can extract. URL features are created by

examining properties and patterns in the URL strings. In our approach, we leveraged

features from previous research and expanded our study to include features not

previously used in previous research. For a full list of URL features used in this study,

please refer to Appendix A.

 N-gram Approach

We took an n-gram approach that looked for specific n-grams in the URL. The n-

gram approach is inspired by the “bag-of-words” approach used by many authors to

detect phishing URLs and is influenced by the fact that n-grams have been used in

several ways to successfully detect malicious websites. Our n-grams, however, were

shaped by the n-grams used in previous research and extended to include additional

relevant n-grams. Our first set of n-grams consisted of all English words. We used [210]

102

as our source of words. Specifically, we looked for the counts of all words from the

dictionary with a length of four letters or more. We chose a word length of four letters in

order to filter out simple connecting words such as “the” or “and.” We extracted the

specific word, counted the number of times it was present in the URL, and counted the

number of unique words of a given length that were present in that URL. For example, in

the URL homedepot.com, we would identify the words home and depot resulting in a

value of one for word_count_4 and word_count_5. The next n-grams we extracted were

the presence of TLDs like .com, .net, or .us, motivated by the fact that multiple

TLDs have been used in malicious website detection. We used the list of TLD names

from the Internet Corporation for Assigned Names and Numbers and the list of file

extensions from [211]. The third set of n-grams we extracted was the presence of file

extensions. URLs can point to files (.exe, .zip, etc.), with previous researchers

focusing on whether a URL points to an executable file.

 Character Distributions

Character distributions and the number of certain special characters (the “.” and

the “-,” for example) are known features for malicious website detection. In addition to

special characters, regular characters such as consonants, vowels, and digits also have

been used to detect malicious websites. Typically, different ratios of characters are

grouped together to detect bot URLs and URLs generated by DGAs. We extended these

approaches by capturing the total number of digits, vowels, consonants, and special

characters, as well as the counts for each type of character.

103

 Specific Features

Lastly, we collected those features that are specific to the URL structure. We first

checked for the presence of an IP address in the URL, since an IP address substituted for

a hostname is a known technique for obfuscating a malicious URL. In addition to IP

addresses, we also looked for the presence of port numbers. If we found a port number in

a URL, we recorded it and checked to see whether it is a well-known port number. Well-

known port numbers include 22 for ssh, 25 for smtp, and 53 for DNS, among others.

 Learning, Feature Selection, and Sampling Techniques in URL Analysis

 Feature Selection

After initial collection of the 28,162 URL features, we analyzed which features

had a strong association with the dependent variable (i.e., whether the website was

malicious) and eliminated any redundant features (those that had no relationship or a

weak relationship with the dependent variable). We removed those features that had the

same value at least 95% of the time, thereby eliminating 28,121 features and resulting in

a final set of 41 features.

 Machine Learning Models, Sampling, and Feature Transformation

We evaluated the feature set against eight different supervised classifiers

discussed in Section 3.4.1 and recorded their performance metrics. For all models, we

split training and testing data using an 80:20 ratio, a common train/test split for data. Our

overall dataset was imbalanced: we had 39,877 benign websites and 6,894 malicious

websites. To address this and to ensure that any results were not the product of our

benign-to-malicious website ratio, we trained the models using different samples of the

benign and malicious datasets in the three sampling scenarios discussed in Section 3.4.3.

104

For the no-sampling scenario, we used 31,892 and 7,985 benign websites and

5,525 and 1,369 malicious websites, respectively, in our training and testing sets. Under-

sampling resulted in 5,525 malicious websites and 5,525 benign websites in the under-

sampled training set. Over-sampling with the SMOTE technique [186] from [187]

produced a balanced training set with 31,892 benign websites and 31,892 malicious

websites. We also built models with transformed features created from the process in

Section 3.4.3.

The websites used in the testing dataset remained consistent across all models and

sampling scenarios for the training data so that we could compare model results and

identify whether a sampling technique led to a better model. We ensured that there was

no overlap between training and testing datasets.

 Results

 RQ1: How do the Features Identified Compare with Prior Research?

With RQ1, we investigated whether or not our approach identified previously

studied URL features as important. To do so, we leveraged our four ensemble methods

(RF, AB, ET, and BC), all of which captured the notion of feature importance – a

normalized metric between 0 and 1.0 for each respective feature. The top 41 features are

shown below in Table 5-1, along with their respective rank in the no-sampling, over-

sampling, and under-sampling cases and with their respective header field. The white

rows indicate features previously studied in prior research for the identification of

malicious websites, while the shaded rows are features that, to our knowledge, are new.

Rank and importance are separated by a “:” character.

105

Table 5-1.

The Top Seven URL Features Had Consistent Rank

41 Identified URL Features Ranked

URL Feature No-sampling Over-sampling Under-sampling

Total Extensions in URL 1 : 0.1978 1 : 0.1874 2 : 0.1657
URL Length 2 : 0.1815 2 : 0.1133 1 : 0.2105

Count of ‘.’ character 3 : 0.0726 3 : 0.0685 3 : 0.0796
Count of ‘w’ character 4 : 0.0699 4 : 0.0496 4 : 0.0503

number of consonants in the URL 5 : 0.0520 6 : 0.0386 5 : 0.0475
number of digits in the URL 6 : 0.0430 5 : 0.0485 6 : 0.0408

Total TLDs in URL 7 : 0.0343 8 : 0.0335 7 : 0.0398
Count of ‘z’ character 8 : 0.0298 14 : 0.023 8 : 0.0319
Count of .com in URL 9 : 0.0235 21 : 0.016 11 : 0.0200

Count of 4-character words 10 : 0.0221 18 : 0.0201 9 : 0.02919
Number of vowels in the URL 11 : 0.0197 23 : 0.0146 10 : 0.0249

Count of ‘i’ character 12 : 0.0156 7 : 0.03385 13 : 0.0186
Count of ‘b’ character 13 : 0.0132 19 : 0.0186 12 : 0.0193
Count of ‘y’ character 14 : 0.0131 20 : 0.0168 18 : 0.0112
Count of ‘l’ character 15 : 0.0128 12 : 0.0273 15 : 0.0127
Count of ‘m’ character 16 : 0.0120 27 : 0.0082 17 : 0.0117
Count of ‘o’ character 17 : 0.0119 15 : 0.0223 14 : 0.0137
Count of ‘t’ character 18 : 0.0114 10 : 0.0278 20 : 0.0110
Count of ‘p’ character 19 : 0.0113 16 : 0.0208 32 : 0.0060
Count of ‘n’ character 20 : 0.0111 30 : 0.0060 16 : 0.0125
Count of ‘x’ character 21 : 0.0109 33 : 0.0043 23 : 0.0107
Count of ‘f’ character 22 : 0.0108 25 : 0.0112 22 : 0.0109
Count of ‘r’ character 23 : 0.0106 11 : 0.0277 21 : 0.0110
Count of ‘h’ character 24 : 0.0098 26 : 0.0107 24 : 0.0098
Count of ‘g’ character 25 : 0.0094 35 : 0.0038 25 : 0.0091
Count of ‘e’ character 26 : 0.0084 22 : 0.0158 19 : 0.0110
Count of .i in URL 27 : 0.0080 38 : 0.0026 26 : 0.0079

Count of ‘j’ character 28 : 0.0077 40 : 0.0019 41 : 0.0025
Count of ‘s’ character 29 : 0.0069 9 : 0.02914 31 : 0.0061
Count of .net in URL 30 : 0.0067 28 : 0.0080 28 : 0.0071
Count of ‘c’ character 31 : 0.0064 24 : 0.0120 27 : 0.0074
Count of ‘a’ character 32 : 0.0060 29 : 0.0061 29 : 0.0065
Count of ‘u’ character 33 : 0.0057 17 : 0.0207 30 : 0.0064

Count of 5-character words 34 : 0.0056 31 : 0.0060 33 : 0.0058
Count of ‘d’ character 35 : 0.0055 13 : 0.0236 35 : 0.0053

Count of 6-character words 36 : 0.0046 32 : 0.0050 34 : 0.0055
Count of ‘k’ character 37 : 0.0043 34 : 0.0041 36 : 0.0043
Count of ‘v’ character 38 : 0.0033 37 : 0.0031 39 : 0.0033

Count of 7-character words 39 : 0.0033 36 : 0.0031 38 : 0.0033
Count of ‘-’ character 40 : 0.0031 39 : 0.0025 37 : 0.0034

Count of 8-character words 41 : 0.0025 41 : 0.0018 40 : 0.0030

5.6.1.1 Features Identified in Previous Research

In our list of 41 features, 36 had been used in prior research, while the remainder

were introduced in our study. The url-length consistently ranks highly and has been

used by nearly all research that uses any URL features. The number of file

extensions in the URL also ranked highly. While no research of which we are aware

has used this feature explicitly, some scholars have examined whether or not the URL

106

points to a specific type of file, so we included this feature as a prior feature. Counts of

the special characters “.” and “-“ also appear in our list and, like url-length, are very

commonly studied features. However, we found it surprising that the count of “-“ was

ranked so low (40, 39, and 37, respectively, in the no-sampling, over-sampling, and

under-sampling cases), given its frequent use in prior research. Distributions of vowels,

digits, and consonants have been used to identify C2 websites, in particular, and appeared

on our list. We also observed that the count of every letter with the exception of “q”

ranked on our list.

5.6.1.2 New Features Identified

Thirty-six of the 41 features were identified in prior research or were closely

related enough to be considered part of prior research. However, our research identified

five new features that can facilitate malicious website detection. These five features all

represent the number of English words of a given length in the URL. Certain words have

been associated with phishing websites [34], though, to our knowledge, no approaches

have incorporated the length of words present in the URL. We also observed that all

letters of the alphabet contributed to the detection of the malicious website except for the

letter “q.”

5.6.1.3 Features Ranking Analysis

We used ensemble methods (RF, AB, ET, and GB) to understand feature

importance. Table 5-1 presents the 41 features, along with their average respective rank

and importance with no-sampling, under-sampling, and over-sampling using the four

ensemble methods [182]. We observed that the first two features were consistently

ranked as the top two features both with and without sampling and had an importance

107

much higher than the remaining 36 features. Specifically, url-length and the number

of file extensions had a combined importance of 0.3793, 0.3008, and 0.376,

respectively, in the no-, over-, and under-sampling cases for the 41 features. We also

observed that the feature rank and importance were similar when considering no-

sampling, over-sampling, or under-sampling, with the top six features being the same

(but in different order) in the various sampling scenarios. These six features accounted

for 0.6170, 0.5063, and 0.5947, respectively, of cumulative importance. In the previous

section, we noted that counts of specified characters, with the exception of the letter “q,”

appeared in our list. When we summed the respective importances of the counts of letters,

we got cumulative importances of 0.3191, 0.4263, and 0.3044, respectively, in the no-

sampling, over-sampling, and under-sampling cases.

URL features have been extensively studied in prior research. Thus, we only

identified five new features, all of which centered around the counts of words of specific

lengths that were present in the URL. Our approach identified features from prior

research, reinforcing the importance of character counts for malicious website detection.

 RQ3: Do our Results Change with No-sampling, Under-sampling, and Over-

sampling scenarios?

We then investigated model performance for the test dataset when using the no-

sampling, under-sampling, and over-sampling scenarios. Tables 5-2 and 5-3 provide FPR,

FNR, ACC, AUC, MCC, Prec, and Rec for the three sampling. We focused on the

average MCC of all models to motivate the discussion of our results. Averaging the MCC

also provided an overall idea of how well the models performed, taking into account the

respective performances of each model into a single metric.

108

Table 5-2.

URL Features Produced High Detection Metrics with 41 Identified URL Features in Sampling Scenarios

Model Performance (41 Identified URL Features) in Sampling Scenarios

Model

No-sampling Over-sampling Under-sampling

FPR FNR ACC AUC MCC FPR FNR ACC AUC MCC FPR FNR ACC AUC MCC

KNN 0.0032 0.2652 0.9584 0.8658 0.8254 0.0735 0.1359 0.9174 0.8953 0.7135 0.0316 0.1789 0.9469 0.8947 0.7878

LR 0.0144 0.2454 0.9518 0.8701 0.7973 0.0705 0.1169 0.9227 0.9063 0.7330 0.0731 0.1242 0.9194 0.9013 0.7223

RF 0.0073 0.1994 0.9646 0.8967 0.8527 0.0111 0.1928 0.9623 0.8980 0.8432 0.0496 0.1293 0.9387 0.9106 0.7731

AB 0.0148 0.2564 0.9499 0.8644 0.7887 0.0476 0.1855 0.9322 0.8834 0.7397 0.0923 0.1227 0.9033 0.8925 0.6846

GB 0.0124 0.2199 0.9572 0.8839 0.8212 0.0279 0.1885 0.9486 0.8918 0.7921 0.0585 0.1264 0.9316 0.9076 0.7536

ET 0.0074 0.2023 0.9640 0.8951 0.8503 0.0088 0.1928 0.9643 0.8992 0.8515 0.0501 0.1227 0.9393 0.9136 0.7763

BC 0.0101 0.2053 0.9613 0.8923 0.8386 0.0103 0.1987 0.9622 0.8955 0.8424 0.0554 0.1315 0.9335 0.9066 0.7575

NN 0.0247 0.1585 0.9557 0.9084 0.8218 0.0397 0.1651 0.9450 0.8976 0.7745 0.0909 0.1191 0.9050 0.8950 0.6898

Table 5-3.

URL Features Produced High Detection Metrics with 41

Identified URL Features in Sampling Scenarios (cont.)

Model Performance (41 Identified URL Features) in Sampling Scenarios

Model

No-sampling Over-sampling Under-sampling

Prec Rec Prec Rec Prec Rec

KNN 0.9748 0.7348 0.6683 0.8641 0.8168 0.8210

LR 0.8998 0.7545 0.6822 0.8831 0.6724 0.8758

RF 0.9497 0.8005 0.9254 0.8071 0.7506 0.8707

AB 0.8961 0.7436 0.7458 0.8144 0.6197 0.8772

GB 0.9151 0.7801 0.8328 0.8115 0.7191 0.8736

ET 0.9487 0.7976 0.9404 0.8071 0.7501 0.8772

Bag 0.9307 0.7947 0.9304 0.8013 0.7290 0.8685

NN 0.8539 0.8414 0.7828 0.8349 0.6242 0.8809

109

Without sampling, the average MCC was 0.8245. When over-sampling, the

average MCC was 0.7862. In the under-sampling case, the average MCC was 0.7431.

Throughout various sampling scenarios, this method showed promise for malicious

website detection.

We also explored the model performance with transformed features created from

the process in Section 3.4.3. We performed feature-transformation for the 41 features in

order to determine whether we could improve upon the performance (increase the

average MCC). We transformed the original 41 features into 3,321 features. We then

performed feature selection on the 3,321 features with the four different techniques from

Section 3.4.3, resulting in 33 transformed features.

We also attempted to determine whether PCA could reduce the transformed

features to a group of components that captured the maximum variance among the data.

Using a cumulative scree plot, we found that 110 components captured 80.65% of the

variance in the dataset for 41 identified features (see Figure 5-1). We used these 110

components in our subsequent analyses to assess their performance detecting malicious

websites. Results are shown in Tables 5-4 and 5-5.

110

Fig. 5-1. 110 components are created from 41 URL features

Table 5-4.

URL Features Produced High Detection Metrics with 41 identified URL

Features in Feature Transformation Scenarios

Model Performance (41 Identified URL Features) with Feature Transformation

Model
FT w/FS FT w/PCA

FPR FNR ACC AUC MCC FPR FNR ACC AUC MCC

KNN 0.0169 0.2220 0.9531 0.8805 0.8044 0.0020 0.3908 0.9411 0.8036 0.7467

LR 0.0164 0.2885 0.9438 0.8475 0.7617 0.0140 0.2257 0.9550 0.8801 0.8117

RF 0.0138 0.2301 0.9546 0.8781 0.8097 0.0113 0.3185 0.9438 0.8351 0.7591

AB 0.0170 0.3112 0.9399 0.8359 0.7433 0.0198 0.2827 0.9417 0.8488 0.7536

GB 0.0160 0.2498 0.9498 0.8671 0.7888 0.0124 0.2535 0.9523 0.8671 0.7990

ET 0.0160 0.2264 0.9532 0.8788 0.8044 0.0055 0.3740 0.9406 0.8102 0.7434

BC 0.0148 0.2243 0.9546 0.8805 0.8101 0.0132 0.2776 0.9482 0.8546 0.7801

NN 0.0104 0.2243 0.9583 0.8827 0.8254 0.0232 0.1812 0.9537 0.8978 0.8114

Table 5-5.

URL Features Produced High Detection Metrics with 41 Identified

URL Features in Feature Transformation Scenarios (cont.)

Model Performance (41 Identified URL Features) with Feature Transformation

Model

FT w/ FS FT w/ PCA

Prec Rec Prec Rec

KNN 0.8875 0.7779 0.9811 0.6092

LR 0.8814 0.7114 0.9044 0.7742

RF 0.9054 0.7699 0.9120 0.6815

AB 0.8739 0.6888 0.8614 0.7173

GB 0.8891 0.7501 0.9116 0.7465

ET 0.8921 0.7735 0.9511 0.6260

Bag 0.9000 0.7757 0.9040 0.7224

NN 0.9275 0.7757 0.8583 0.8188

111

For feature transformation with feature selection, the MCC was 0.7934. With

feature transformation with PCA, the average MCC was 0.7756. Both show promise that

our approach can detect malicious websites however, we found that feature

transformation with feature selection and PCA both worsened the average MCC when

compared to the no-sampling case.

We next used dataset sampling to investigate the consistency of our approach and

its robustness over class imbalance. The MCCs were 0.8245, 0.7862, and 0.7431 for 41

features identified in our approach, showing slight variation from the no-sampling

scenario, where the MCC was 0.8245 , to the under-sampling case, where the MCC was

0.7431. The MCC for the over-sampling case was 0.7862. Nevertheless, all three

scenarios still showed promise for malicious website detection.

We observed slight disparities in model performance across the sampling

scenarios and observed that the set of the top six most important features were consistent,

accounting for 0.6170, 0.5063, and 0.5947, respectively, of cumulative importance in the

no-sampling, under-sampling, and over-sampling scenarios.

 RQ4: Does Hyperparameter Tuning and Cross-Validation Improve our

Results?

In this step, we investigated the impact of hyperparameter tuning and cross-

validation on our results. We performed hyperparameter tuning and cross-validation on

our dataset and re-evaluated our models with a 70:30 split of train to test data instead of

the initial 80:20 split. Doing so ensured that our models were not overfit and that they

had the potential to improve our models. Furthermore, this reinforced that our

observations were not dependent on the initial 80:20 split of data.

112

We performed hyperparameter tuning and cross-validation on the best performing

models in each scenario – no-sampling, over-sampling, under-sampling, feature

transformation with feature selection, and feature transformation with PCA. In the 80:20

case, all five models improved, but the average MCC only increased from 0.8258 to

0.8343, suggesting consistency of the results in Tables 5-2, 5-3, 5-4, and 5-5 even when

we tuned the parameters and performed cross-validation.

In the 70:30 case, tuning and cross-validation improved three of the five models

for the 70:30 split, but the average MCC only increased from 0.8303 to 0.8399. Without

tuning and cross-validation, the average MCC was 0.8303 and 0.8258, respectively, with

the 70:30 and 80:20 splits. With tuning and cross-validation, the average MCC was

0.8399 and 0.8343, respectively, with the 70:30 and 80:20 splits. The small difference

between results in the different splits suggested that we were not dependent on the

train/test split. Results are shown in Table 5-6 below.

Table 5-6.

Cross-Validation and Hyperparameter Tuning Slightly

Improved URL Models

Cross-Validation and Hyperparameter Tuning URL Models

Model Scenario – Split MCC Scoring Metric

ET No-sampling - 70:30 0.8655 balanced accuracy

ET Over-sampling - 70:30 0.8596 balanced accuracy

KNN Under-sampling - 70:30 0.8236 precision weighted

NN FT w/ FS - 70:30 0.8382 accuracy

LR FT w/ PCA - 70:30 0.8124 recall weighted

RF No-sampling - 80:20 0.8572 recall weighted

ET Over-sampling - 80:20 0.8567 balanced accuracy

KNN Under-sampling - 80:20 0.8163 precision weighted

NN FS w/ FT - 80:20 0.8303 accuracy

LR FS w/PCA - 80:20 0.8107 precision weighted

In Research Question 4 (three of 13), we determined two ways of validating our

results. First, we performed hyperparameter tuning and cross-validation. Secondly, we

113

rebuilt and performed hyperparameter tuning and cross-validation on our eight models on

a 70:30 split of the data. While we observed improvement after performing

hyperparameter tuning and cross-validation, the improvement was small.

 Conclusion

This chapter included a comprehensive evaluation of URL features for assessing

whether additional URL features improve malicious website detection. We analyzed

URL data from 6,894 malicious and 39,877 benign websites. We based our dataset of

malicious websites on those identified by Cisco Talos and based our dataset of benign

websites on the Alexa Top 1M. We collected 28,162 URL features from these websites

and identified 41 for further analysis, including five newly identified features. We applied

eight models and ensured robustness of our methodology by using three sampling

scenarios – no-sampling, over-sampling and under-sampling.

Among the 41 features, the top six were consistent across the sampling scenarios

and accounted for approximately 55% of the total feature importance. Also, we found the

count of individual characters to be of importance in malicious website detection,

accounting for an average importance value of approximately 35% over the three

sampling scenarios. Lastly, we observed that counting the number of words of a given

length may be an additional useful feature for malicious website detection.

114

Chapter 6: HTTP Features Analysis

 Introduction

This chapter includes a comprehensive evaluation of an HTTP header-only

approach to malicious website detection aimed at assessing whether additional HTTP

header features can improve malicious website detection. Our contributions in this

chapter are listed below.

• We demonstrated the potential of using HTTP header features alone as a

means of detecting malicious websites.

• We introduced 11 new HTTP header features not previously considered as

aiding in the detection of malicious websites.

• Eight of the 22 features, three of which were newly identified by our

approach, ranked as the most important features and represented 80% of

feature importance.

• The average MCC for the selected 22 features was better than the average

MCC for the 11 previously studied features across our three sampling

scenarios.

• We found that applying PCA to the 22 selected features improved malicious

website detection.

 Related Research

Features gathered over a session have been used to identify malicious websites

and traffic. Authors [77] gathered features from HTTP requests and responses over a

session and combined them with non-HTTP features in an attempt to detect malicious

webpages. Authors [40], [49], and [81] took similar approaches, combining non-HTTP

115

features with specific metadata gathered from the interaction with a website. These

approaches obtained detection rates of up to 96%. Researchers [212] used the Content-

Type header as a means of distinguishing between different types of HTTP traffic, while

[213] used HTTP application level features to distinguish different attack classes in

traffic to their honeypot. These approaches demonstrate that specific HTTP features show

potential for identifying malicious activity. However, prior researchers limited

themselves to a small list of features or required additional non-HTTP features to achieve

their performance metrics. With Phishmon, researchers [83] considered all HTTP headers

as potential features, but used lengths of the respective headers.

Other approaches demonstrated that HTTP traffic generated by malware can be

used to build signatures or fingerprints for detection. Authors [75]-[76] clustered the

HTTP communications generated to and from HTTP-based malware on their testbed to

create signatures. Brezo et al. [79] recorded HTTP traffic over a session and produced a

list of the influential features for malicious traffic identification that consisted of TCP and

HTTP features. They found the Content-Length header to be of importance. ARROW,

by [78], generated signatures from redirect chains captured in HTTP traces. Kheir et al.

[55] clustered HTTP traffic in order to classify the C2 communications. With BotHound,

[82] found that malicious communications may have similar User-Agent strings in

requests. Generating signatures or fingerprints for malicious HTTP communications

was also used in [80], [162], [212], [214]-[215].

 Research Questions

We created four research questions aimed at exploring the effectiveness of our

approach and the header features we identified as features for malicious website

116

identification. With these four questions, we focused on using HTTP headers as the sole

source of features for detection of malicious websites.

 Research Question 1

With our first question, we compared the features identified in our approach with

those gathered from prior research. Previous researchers used HTTP headers to detect

malicious websites, but their use is limited. Furthermore, we did not consider session-

based features, focusing instead on features extracted from the HTTP responses

headers. While no definitive list of HTTP headers and features to use for malicious

website detection exists, we created an approach designed to create such a list.

Additionally, researchers have identified a select few HTTP header features for actual use

in detecting malicious website detection. We hypothesized, however, that with our study

of 672 features, many of which had never been explored for purposes of malicious

website detection, we could identify new important features for the identification of

malicious websites. To that end, we compared the header features identified by our

approach with the header features used by previous authors. Research Question 1 is stated

as follows:

RQ1: How do the features identified compare with prior research?

 Research Question 2

With RQ2, we investigated whether the incorporation of these new features would

improve malicious website detection. To accomplish this, we compared the MCCs with

and without the additional 11 features identified in this work. We also built models with

transformed features created from performing feature transformation techniques with

117

feature selection and with PCA, further comparing the respective MCCs. RQ2, then, is

stated as follows:

RQ2: Do the additional features identified improve malicious website detection?

 Research Question 3

We focused RQ3 on the consistency of our approach in sampling scenarios. In

other words, we sought to determine whether our approach yielded consistent results in

the cases of no-sampling, over-sampling, and under-sampling of our dataset. We, like

other security researchers, worked with an imbalanced dataset. In this question, we

analyzed how our models performed in the no-sampling, over-sampling, and under-

sampling cases. RQ3 is stated as follows:

RQ3: Do our results change with no-sampling, under-sampling, and over-

sampling scenarios?

 Research Question 4

We used RQ4 to enable our exploration of additional tuning methods to our

results. Although we were working with a single dataset, we intended to evaluate and

include additional methods that would give our results more credence. Our fourth

research question is stated as follows:

RQ4: Does hyperparameter tuning and cross-validation improve our results?

 Feature Consideration

 Extractable HTTP Features

Previous researchers have used HTTP traffic to identify and detect malicious

websites, using two approaches. First, they applied HTTP traffic characterization, which

involves the recording of HTTP traces and other features from known malicious websites

118

or from malware communicating with malicious websites. Although this approach has

been used in bot detection, it requires additional dependencies and additional setup

compared to the methodology we used for this research. HTTP traffic characterization

also presents challenges of combining HTTP trace features with the other features studied

in this research.

Previous researchers also employed a second method of exploiting HTTP traffic

for detecting malicious websites – they used specific HTTP headers as part of a larger set

of features. Although HTTP headers have been used in feature sets for malicious website

detection, few researchers have emphasized HTTP headers, and none, to our knowledge,

have used them outside of a “flow-based” method. We hypothesized that the lack of

inclusion of HTTP headers in malicious website identification has resulted from the fact

that HTTP header analysis is messy. First, while headers are specified in the HTTP

specification, they also can be defined by users. Secondly, since the values in the HTTP

headers can vary significantly, the process of researching and recording the possible

values for headers is a tedious one. Lastly, in the process of collecting our HTTP headers,

we observed that the values and the names of the headers frequently contained

inconsistencies or misspellings that necessitated a pre-processing step. For example, we

noticed the presence in our collection of two HTTP headers: Accept-Encoding and

Accept-encoding. These headers are the same header but would be viewed as unique

values without an additional pre-processing step because of the capitalization difference.

There are other differences among headers as well, including misspellings of specific

headers.

119

 HTTP Feature Collection

An HTTP header is a key-value pair within an HTTP request or response,

both of which may contain multiple headers. The example below shows the HTTP

request headers generated during a web request. Bolded items are the header names

(keys), while non-bold items are the corresponding values. We use the symbol “…” to

indicate places where values were truncated due to length.

Accept */*

Accept-Encoding gzip, deflate, br

Accept-Language en-US,en;q=0.5

Authorization SAPISIDHASH 1550122185_7937eb6...

Connection keep-alive

Content-Length 3878

Content-Type application/json

Cookie
YSC=b-ooV1KIyCk;

VISITOR_INFO1…4555ce3QEAAAAdGxpcGn7+2...

For commonly used headers, please refer to MDN [206]. HTTP responses have

a similar structure of key-value pairs. In this portion of the study, we performed a GET

request to the selected websites, recording the headers present in the response. We

only considered response headers.

HTTP feature collection took place in August 2018. We used the Python

requests library [216] to make GET requests to the websites and collected HTTP

features in the associated response. Upon receiving responses, we parsed and

recorded the headers and values. The collection included features defined in the HTTP

specification as well as custom headers defined by specific websites. We then examined

the HTTP specification to determine whether the headers had a finite group of values. For

example, the Content-Security-Policy header can have a finite group of directives

in the header’s value. Based on those directives, we collected additional features that

captured whether the specific directive was present in the header. Another group of

120

features we gathered was defined by key-value pairs, which exist in the directives of

certain headers. The example below shows a possible Cache-Control header.

Cache-Control: public, max-age=31536000

The public directive indicated that the response might be held in any cache, and

the max-age directive was set to 31,536,000 seconds. Our method captured both of these

features. Overall, data collection resulted in a total of 672 HTTP features.

 Learning, Feature Selection, and Sampling Techniques in HTTP Header

Analysis

 Feature Selection

After collecting the 672 HTTP header features, we analyzed which of the features

had strong association with the dependent variable (i.e., whether the website was

malicious), eliminating any redundant features (i.e., those that had no relationship or a

weak relationship with the dependent variable). We followed the process in Section 3.4.3.

First, we removed the 399 features for which all the websites’ HTTP response headers

had the same value. Next, we removed features specific to our dataset by removing those

that had the same value at least 95% of the time, thereby eliminating 245 features. We

then evaluated the remaining 28 features to identify those features that had a high

multicollinearity. Removing features with high multicollinearity ensured that we

analyzed a set of independent features. Collinearity can be quantified by the VIF [177].

First, we determined the VIF values for each feature. We then iteratively identified

features that had a VIF > 5, per [179]. Among our list of features with a VIF > 5, we

determined which of the features had similar VIF values and high correlations to one

another. We defined high correlation as having a correlation of greater than 0.7, as in

121

[180]. Among the highly correlated features with similar VIF values, we then removed

those with the highest VIFs from our feature set, leaving us with final set of 22 features.

 Machine Learning Models, Sampling, and Feature Transformation

We created two feature sets, the first of which included the 22 features identified

by our approach and the second of which consisted of the 11 features identified in our

approach that had also been studied in prior research. We evaluated the feature sets

against eight different supervised classifiers discussed in Section 3.4.1, recording their

performance metrics. For all models, we split training and testing data using an 80:20

split, which is a common train/test split. Our dataset was imbalanced, with 39,835 benign

websites and 6,021 malicious websites. To address the imbalance and to ensure that our

results were not a product of our benign-to-malicious split, we trained the models using

different samples of the benign and malicious datasets. Specifically, we performed no-

sampling, under-sampling, and over-sampling of the training dataset, which yielded three

different training datasets that we used to evaluate models.

For no-sampling, we used 31,853 benign websites and 4,831 malicious websites

in our training set. For under-sampling, we used the full set of malicious websites in the

training set and selected a subsample from the benign websites to arrive at a training set

of 4,831 malicious and benign websites respectively. For over-sampling, we derived a

balanced training set of 31,853 benign websites and 31,853 malicious websites. The

websites used in the testing set remained consistent across all models and sampling

approaches so that we could compare results. Training and testing datasets did not

overlap. Figure 3-3 provides a summary of the feature transformation and sampling

techniques.

122

 Results

 RQ1: How do the Features Identified Compare with Prior Research?

With RQ1, we investigated whether our approach identified previously studied

HTTP headers as important. To do so, we leveraged our four ensemble methods (RF, AB,

ET, and BC), all of which captured the notion of feature importance – a normalized

metric between 0 and 1.0 for each respective feature. Table 6-1 below displays the top 22

features, along with their respective rank in the no-sampling, over-sampling, and under-

sampling cases and their respective header fields. That is, the “Feature” column specifies

the header and, in some cases, specifies the value of that header. For example, content-

encoding gzip specifies that the header content-encoding has a value gzip. The

shaded rows are the new headers identified by our approach, while the unshaded rows

indicate the headers gathered from previous scholarship. The ranking and respective

importance values are separated by a “:” in the data columns. Table 6-2 shows the

rankings from header features from prior work.

123

Table 6-1.

The Top 8 Identified HTTP Header Features Accounted for 81.62% of Importance

22 Identified HTTP Header Features Ranked

Feature No-sampling Over-sampling Under-sampling

content-length 1 : 0.3313 2 : 0.2208 1 : 0.2531
content-encoding gzip 2 : 0.2070 1 : 0.2512 2 : 0.2528
transfer-encoding chunked 3 : 0.0808 4 : 0.0862 3 : 0.0930
content-type text/html 4 : 0.0746 6 : 0.0388 8 : 0.0272
vary accept 5 : 0.0487 3 : 0.0904 4 : 0.0694
server apache 6 : 0.0408 7 : 0.0375 5 : 0.0400
cache-control max-age 7 :0.0263 5 : 0.0487 6 : 0.0386
connection keep-alive 8 : 0.0250 8 : 0.0280 7 : 0.0383
cache-control no-store 9 :0.0219 12 :0.0187 11 : 0.0204
pragma no-cache 10 : 0.0213 10 : 0.0213 9 : 0.0271
server nginx 11 : 0.0202 9 :0.0226 10 :0.0207
cache-control private 12 : 0.0136 15 : 0.0170 13 : 0.0150
expect-ct max-age 13 : 0.0135 14 : 0.0171 17 : 0.0104
x-content-type-options nosniff 14 : 0.0132 19 : 0.0099 22 : 0.0048
connection close 15 : 0.0129 20 : 0.0093 18 : 0.0093
cache-control must-revalidate 16 : 0.0122 16 : 0.0118 16 : 0.0118
via 1.1 17 : 0.0094 11 : 0.0189 14 : 0.0138
vary age 18 : 0.0089 18 : 0.0102 12 : 0.0150
cache-control no-cache 19 : 0.0074 17 : 0.0102 19 : 0.0091
strict-transport-security max-age 20 : 0.0052 13 : 0.0189 20 : 0.0090
x-xss-protection 21 : 0.0041 22 : 0.0059 15 : 0.0121
cache-control public 22 : 0.0017 21 : 0.0072 21 : 0.0089

Table 6-2.

The Top 3 HTTP Header Features from Prior Research Were Consistent

in Sampling Scenarios

11 HTTP Header Features from Prior Research Ranked

Feature No-sampling Over-sampling Under-sampling

content-length 1 : 0.4473 1 : 0.3585 1 : 0.3753
content-encoding gzip 2 : 0.2277 2 : 0.3077 2 : 0.3481
content-type text/html 3 : 0.1653 3 : 0.0999 3 : 0.0949
server apache 4 : 0.0485 5 : 0.0561 4 : 0.0522
cache-control max-age 5 : 0.0242 4 : 0.0621 5 : 0.0375
server nginx 6 : 0.0236 6 : 0.0368 6 : 0.0245
cache-control no-cache 7 : 0.0183 8 : 0.0184 8 : 0.0150
cache-control private 8 : 0.0148 7 : 0.0213 7 : 0.0150
cache-control no-store 9 : 0.0135 9 : 0.0142 9 : 0.0134
cache-control must-revalidate 10 : 0.0085 11 : 0.0118 10 : 0.0121
cache-control public 11 : 0.0083) 10 : 0.0132 11 : 0.0120

6.6.1.1 Features Identified in Previous Works

Researchers [40], [49], [75], [79] used content-length and content-

encoding headers in their research on malicious websites and behavior, with content-

length being a measure of the length in bytes of the content of the HTTP request or

response. The content-length header is especially descriptive because there can be

124

great variation in this feature and there is no standard maximum content-length for

responses. Content-encoding specifies the compression scheme used for the

content of the HTTP requests. Gzip, compress, deflate, identity, and br are all

different types of encodings, but the identity value indicates no compression of the

content. Compression or zipping is a well-known technique for preventing security

scanners from flagging on signatures in the content. Security scanners will raise an alert

if incoming or outgoing content matches on a known malicious pattern, also referred to as

a signature. We observed that the gzip encoding is of particular importance as noted in

Table 6-1 and is studied with other zipped encodings by [40]. We were not surprised by

its inclusion in the list of HTTP header features that are important for malicious website

detection. The content-length header and the gzip value of content-encoding

are ranked highly in all three cases, further validating their importance and inclusion in

prior and future work. Tao et al. [77] used the content-type header in their HTTP

feature set gathered over a session.

Further review of this list showed a large number of cache-control directives

(six of 22) present in our list. The cache-control header specifies details about the

caching mechanisms and can be present in HTTP requests and responses. In total,

the six cache-control directives (max-age, no-store, no-cache, must-

revalidate, and public) hovered around the middle of our rankings, with max-age

being ranked as high as 5th in the under-sampling case and public and as low as 22nd in

all three cases. In our literature review, we found that [212] examined the cache-

control header, though it was not heavily used elsewhere. Since six of the top 22

features were related to the cache-control header, we validated the need to collect the

125

cache-control header and further found that six specific directives can be used to

detect malicious websites and should be included in further studies.

In addition, we found that features specified in the server header can help detect

malicious websites. In practice, the use of the server header is not recommended, since

it could leak information about the website to the benefit of attackers. The inclusion of

the server header in a response does not necessarily show a positive correlation to a

website being malicious, but our work showed that the server header should be

collected and that certain details about the server (whether it is an apache and nginx

server) can help detect malicious websites. This validates the inclusion of the server

header used in previous work [49] as a detector of malicious websites.

6.6.1.2 New Features Identified

The transfer-encoding header with the value chunked is viewed as a simple

way to evade security scanners and its presence on this list of HTTP header features for

malicious website identification is justified. This feature has not been studied in previous

works, but is ranked highly in all sampling scenarios. The specific value of chunked

indicates that content will arrive in chunks, thus making it harder to signature. To build

intuition, consider the challenge of a security scanner that must piece together various

chunks of data in order to make a determination on whether or not the content is

malicious or hits a security signature. Having chunked data can make this problem more

challenging.

The vary header, including a value of accept and the value of the age directive,

are on our list, the former being highly ranked in all three scenarios with rankings of 5, 3,

and 2, respectively, for no-sampling, under-sampling, and over-sampling. The vary

126

header describes behavior of the HTTP cache and tells the HTTP cache on the client

which fields should be extracted from the response versus those that can originate from

the HTTP cache. In our experiment, we found that vary specified the accept and age

headers in our top 22, though the value of accept was consistently highly ranked. This

header is also somewhat unique because its fields specify additional headers that should

be processed differently by the client.

The via header with a value of 1.1 was also flagged for further investigation,

though it did not appear in previous works and was not necessarily mapped to a known

threat. The via header describes proxy behavior in several ways. In our experiment, the

1.1 indicated the protocol version of HTTP. Although proxies are known to be used in

malicious activity, the evidence from this experiment was not strong enough to conclude

that this was the case. Nevertheless, the via header, if equal to 1.1, should be collected

during future work with a focus on the protocol version, despite the fact that these values

are not associated with a well-known threat or technique.

The inclusion of the pragma header in our list was of particular interest. Its value

of no-cache did not rank very high, but it is a general header for HTTP/1.0 (not the

current version) and its behavior, when present in responses, is not defined in the

HTTP specification. To our knowledge, this header and its respective values are not

associated with any known threat, but we recommend its use and further exploration

since it represents an unpredictable part of the HTTP specification (undefined behavior

when included in response headers) and was on our list of 22 features.

The keep-alive and close values for the connection header indicate

whether or not the connection is to be kept open or closed and are not linked to any

127

known threats that we have identified. However, their importance is noted and they

should be studied further.

The expect-ct header is another header used for defensive purposes, and max-

age is a specific directive for this header. This header specifies that the browser checks

the website’s certificate to ensure that it is listed in the public Certificate Transparency

logs. This header is set by the server requested. Because of the appearance of this header

in our list, we recommend that it be examined and that the max-age directive be included

in future feature sets. The presence of the strict-transport-security header

informs the browser that the website should only be accessed over HTTPs and not over

HTTP. The presence of the x-xss-protection header tells the browser to stop loading

the page if the browser detects a cross-site scripting attack. The x-content-type

header with value of nosniff tells the browser not to attempt to interpret the

multipurpose internet male extension (MIME) type sent. Older browsers would attempt

“MIME sniffing,” where the browser would attempt to interpret the content and

execute/render the contents. Doing so enables attackers to lie about the content type as a

mechanism for hiding malicious code and objects. With the nosniff value in the x-

content-type header, attackers cannot lie about the content type because the browser

will not render or execute a content type if it detects a different type than the type

specified.

6.6.1.3 Features Ranking Analysis

We observed that the top two features, both of which were prevalent in prior

research, had an importance much higher than the remaining 20 features (content-

length had an importance of 0.33 and content-encoding gzip had an importance

128

of 0.21 without sampling) both with and without sampling. We also observed that the

feature rank and importance were similar when considering over-sampling or under-

sampling. We also observed that the top eight features were the same with and without

sampling. The cumulative importance of these eight features was 0.83, 0.80 and 0.81 for

no-sampling, over-sampling and under-sampling, respectively.

Table 6-2 provides the feature rank and importance for the 11 features gathered

from prior research. Compared to the 22 features, the first two features had higher

importance (0.45 instead of 0.33 and 0.23 instead of 0.21) in the case of no-sampling.

The combined feature importance for the top two features ranged from 0.66 to 0.72 for

no-sampling, over-sampling, and under-sampling. As for the 22 features on our list, the

feature rank and importance were similar when considering over-sampling or under-

sampling. We also observed that the top five features were the same with and without

sampling. The overall importance of these five features was 0.91, 0.88, and 0.91 for no-

sampling, over-sampling, and under-sampling, respectively.

Overall, we identified 11 features that, to the best of our knowledge, have not

been used for malicious website detection. The other 11 we identified have been used by

prior researchers. The new features accounted for roughly a third of overall feature

importance (32%, 31.55%, and 30.24% in the no-sampling, over-sampling, and under-

sampling scenarios, respectively).

 RQ2: Do the Additional Features Identified Improve Malicious Website

Detection?

We went on to investigate model performance for the test dataset when using the

no-sampling, under-sampling, and over-sampling. We compared the results of using our

129

expanded feature set of 22 features to the results of using the 11 features previously

identified from prior research. Tables 6-3 and 6-4 provide the FPRs, FNRs, ACCs,

AUCs, Precs, Recs, and MCCs. Tables 6-5 and 6-6 show these metrics for the feature

transformation cases. We focused on the MCC to drive the discussion regarding our

results. The best result in each column is bolded. A “/” separates the metric for models

built with the 11 features from that of the models built with the 22 features.

130

Table 6-3.

Identified HTTP Header Features Outperformed Features from Prior Research inn Sampling Scenarios

Model Performance (11 HTTP Header Features from Prior Research / 22 Identified HTTP Header Features) in Sampling Scenarios

Model
No-sampling Over-sampling Under-sampling

FPR FNR ACC AUC MCC FPR FNR ACC AUC MCC FPR FNR ACC AUC MCC

KNN
0.0057/

0.0061

0.7865/

0.6932

0.8929/

0.9047

0.6038/

0.6502

0.3923/

0.4865

0.0268/

0.0975

0.7512/

0.1252

0.8791/

0.8988

0.6109/

0.8885

0.3254/

0.6548

0.0321/

0.1083

0.7773/

0.1251

0.8711/

0.8894

0.5952/

0.8832

0.2762/

0.6347

LR
0.0774/

0.0840

0.4537/

0.3302

0.8737/

0.8839

0.7343/

0.7928

0.4563/

0.5367

0.1795/

0.1644

0.1621/

0.1058

0.8227/

0.8431

0.8291/

0.8648

0.5012/

0.5595

0.1789/

0.1647

0.1596/

0.1126

0.8235/

0.8420

0.8307/

0.8613

0.5037/

0.5546

RF
0.0965/
0.0819

0.1336/
0.1470

0.8986/
0.9096

0.8848/
0.8855

0.6510/
0.6714

0.1166/
0.1166

0.1033/
0.0882

0.8850/
0.8870

0.8900/
0.8975

0.6349/
0.6451

0.1290/
0.1319

0.0966/
0.0815

0.8751/
0.8746

0.8871/
0.8932

0.6187/
0.6243

AB
0.0828/
0.0808

0.3226/
0.2638

0.8860/
0.8954

0.7972/
0.8276

0.5449/
0.5920

0.1787/
0.1552

0.1176/
0.1151

0.8291/
0.8499

0.8517/
0.8648

0.5324/
0.5662

0.1716/
0.1593

0.1462/
0.1151

0.8316/
0.8463

0.8410/
0.8627

0.5224/
0.5604

GB
0.0793/

0.0794

0.2823/

0.1983

0.8943/

0.9051

0.8191/

0.8611

0.5819/

0.6414

0.1369/

0.1225

0.1016/

0.1042

0.8676/

0.8798

0.8806/

0.8866

0.6027/

0.6243

0.1439/

0.1284

0.0957/

0.1025

0.8622/

0.8749

0.8801/

0.8845

0.5959/

0.6157

ET
0.0983/

0.0835

0.1277/

0.1436

0.8978/

0.9086

0.8869/

0.8863

0.6516/

0.6703

0.1188/

0.1181

0.1025/

0.0848

0.8832/

0.8861

0.8892/

0.8984

0.6316/

0.6448

0.1309/

0.1336

0.0983/

0.0739

0.8733/

0.8740

0.8853/

0.8961

0.6145/

0.6265

BC
0.0953/

0.0811

0.1235/

0.1445

0.9010/

0.9105

0.8905/

0.8871

0.6603/

0.6748

0.1192/

0.1170

0.1016/

0.0882

0.8830/

0.8867

0.8895/

0.8973

0.6315/

0.6445

0.1280/

0.1424

0.1016/

0.0789

0.8753/

0.8657

0.8851/

0.8892

0.6169/

0.6095

NN
0.0972/

0.0840

0.2067/

0.1756

0.8885/

0.9040

0.8905/

0.8871

0.5992/

0.6473

0.1227/

0.1218

0.1100/

0.0865

0.8788/

0.8826

0.8895/

0.8973

0.6199/

0.6370

0.1221/

0.1221

0.1151/

0.0882

0.8787/

0.8822

0.8851/

0.8892

0.6175/

0.6357

131

Table 6-4.

Identified HTTP header Features Outperformed Features

from Prior Research in Sampling Scenarios (cont.)

Model Performance (11 HTTP Header Features from Prior Research

/ 22 Identified HTTP Header Features) in Sampling Scenarios

Model

No-sampling Over-sampling Under-sampling

Prec Rec Prec Rec Prec Rec

KNN
0.8466/

0.8816

0.2134/

0.3067

0.5803/

0.5719

0.2487/

0.8747

0.5076/

0.5461

0.2226/

0.8747

LR
0.5126/
0.5429

0.5462/
0.6697

0.4102/
0.4476

0.8378/
0.8941

0.4118/
0.4453

0.8403/
0.8873

RF
0.5721/

0.6081

0.8663/

0.8529

0.5340/

0.5381

0.8966/

0.9117

0.5106/

0.5093

0.9033/

0.9184

AB
0.5494/
0.5759

0.6773/
0.7361

0.4238/
0.4594

0.8823/
0.8848

0.4258/
0.4529

0.8537/
0.8848

GB
0.5743/

0.6007

0.7176/

0.8016

0.4944/

0.5215

0.8983/

0.8957

0.4835/

0.5102

0.9042/

0.8974

ET
0.5693/
0.6043

0.8722/
0.8563

0.5294/
0.5359

0.8974/
0.9151

0.5066/
0.5080

0.9016/
0.9260

BC
0.5781/

0.6110

0.8764/

0.8554

0.5289/

0.5373

0.8983/

0.9117

0.5112/

0.4908

0.8983/

0.9210

NN
0.5488/
0.5938

0.7932/
0.8243

0.5193/
0.5276

0.8899/
0.9134

0.5192/
0.5266

0.8848/
0.9117

Without sampling, the MCC was higher for all eight models when considering the

22 features instead of the 11 previously studied features (on average, 0.615 compared to

0.57). When over-sampling, the average MCC increased from 0.56 to 0.62 when

considering the set of 22 features instead of the set of 11 previously studied features.

With over-sampling, the MCC was higher for all eight models when considering the set

of 22 features instead of the set of 11 previously studied features. When under-sampling,

the average MCC increased from 0.545 to 0.61 when considering 22 features instead of

the previously studied 11 features. With under-sampling, the MCC was higher for all

eight models other than BC when considering the 22 features instead of the 11 previously

studied features.

We performed feature transformation on the 22 features to determine whether

there were combinations of features that improved performance. We used the feature

transformation process in Section 3.4.3 to transformation the original 22 features were

132

transformed into 946 features. We then performed feature elimination on the 946 features

using four different techniques from Section 3.4.3 and kept features selected by at least

three of these techniques, leaving 36 in total.

We also determined whether PCA could reduce the 946 transformed features to

some “n” number components while capturing the maximum variance. Using a

cumulative scree plot, we found that by using 117 components, we were able to capture

95% of the variance for the 22 features and that by using 56 components, we captured

95% of the variance. Using these 117 and 56 components, we attempted to see how our

models performed. Results are shown in Tables 6-5 and 6-6.

133

Fig. 6-1. 22 header features yielded 117 components

Fig. 6-2. 11 header features yielded 56 components

134

Table 6-5.

Identified HTTP Header Features Outperformed Features from Prior Research

in Feature Transformation Scenarios

Model Performance (11 HTTP Header Features from Prior Research / 22 Identified HTTP Header Features)

with Feature Transformation

Model
FT w/FS FT w/PCA

FPR FNR ACC AUC MCC FPR FNR ACC AUC MCC

KNN
0.0806/
0.0912

0.3705/
0.1907

0.8817/
0.8958

0.7743/
0.8590

0.5137/
0.6221

0.0238/
0.0815

0.6638/
0.1521

0.8931/
0.9092

0.6561/
0.8831

0.4277/
0.6688

LR
0.0870/

0.0776

0.4058/

0.4176

0.8715/

0.8782

0.7535/

0.7523

0.4734/

0.4842

0.0828/

0.0845

0.4067/

0.2176

0.8751/

0.8981

0.7552/

0.8488

0.4816/

0.6169

RF
0.0874/
0.0909

0.2831/
0.1899

0.8871/
0.8962

0.8146/
0.8595

0.5641/
0.6232

0.0967/
0.0830

0.1285/
0.1462

0.8991/
0.9087

0.8873/
0.8853

0.6542/
0.6696

AB
0.0858/

0.0031

0.4117/

0.8815

0.8718/

0.8829

0.7512/

0.5576

0.4715/

0.2907

0.0942/

0.0804

0.1815/

0.2075

0.8944/

0.9030

0.8621/

0.8560

0.6226/

0.6327

GB
0.0825/
0.0908

0.3142/
0.2159

0.8873/
0.8929

0.8015/
0.8466

0.5516/
0.6052

0.0923/
0.0803

0.1638/
0.1689

0.8983/
0.9081

0.8719/
0.8753

0.6385/
0.6599

ET
0.0873/

0.0910

0.2823/

0.1890

0.8873/

0.8962

0.8151/

0.8599

0.5650/

0.6236

0.0982/

0.0829

0.1310/

0.1462

0.8975/

0.9088

0.8853/

0.8854

0.6496/

0.6699

BC
0.0856/
0.0907

0.2848/
0.1899

0.8884/
0.8964

0.8147/
0.8596

0.5665/
0.6237

0.0974/
0.0820

0.1294/
0.1487

0.8983/
0.9092

0.8865/
0.8846

0.6521/
0.6700

NN
0.0836/

0.0907

0.2949/

0.2268

0.8889/

0.8916

0.8147/

0.8596

0.5634/

0.5978

0.0819/

0.0820

0.2840/

0.1789

0.8918/

0.9053

0.8865/

0.8846

0.5751/

0.6492

Table 6-6.

Identified HTTP Header Features Outperformed

Features from Prior Research in Feature

Transformation Scenarios (cont.)

Model Performance (11 HTTP Header Features from Prior

Research / 22 Identified HTTP Header Features) with Feature

Transformation

Model

FT w/FS FT w/PCA

Prec Rec Prec Rec

KNN
0.5376/

0.5694

0.6294/

0.8092

0.6779/

0.6078

0.3361/

0.8478

LR
0.5042/

0.5277

0.5941/

0.5823

0.5164/

0.5797

0.5932/

0.7823

RF
0.5499/

0.5704

0.7168/

0.8100

0.5732/

0.6051

0.8714/

0.8537

AC
0.5054/

0.8493

0.5882/

0.1184

0.5643/

0.5949

0.8184/

0.7924

GB
0.5532/

0.5627

0.6857/

0.7840

0.5744/

0.6067

0.8361/

0.8310

ET
0.5506/

0.5703

0.7176/

0.8109

0.5687/

0.6054

0.8689/

0.8537

BC
0.5543/

0.5710

0.7151/

0.8100

0.5711/

0.6073

0.8705/

0.8512

NN
0.5567/

0.5596

0.7050/

0.7731

0.5657/

0.5986

0.7159/

0.8210

For feature transformation with feature selection, the MCC was higher for the

models (other than AB), when considering the set of 22 features instead of the set of 11

previously studied features. When considering the 22 features instead of the 11

135

previously studied features, the average MCC improved from 0.53 to 0.56. However,

when considering the 22 features, FT w/FS reduced the average MCC from 0.615 to 0.56

when compared to no feature transformation.

For FT w/PCA, the MCC was higher for all eight models when considering the 22

features instead of 11 previously studied features. The MCC average also improved from

0.59 to 0.65. When compared to no feature transformation, the average MCC improved

from 0.615 to 0.65.

When considering the effect of feature transformation on our model performance,

we found that FT w/ FS worsened the average MCC, while FT w/PCA improved the

average MCC. Thus, we demonstrated that, compared to the case without sampling and

without feature transformation, feature transformation with PCA improved the results but

feature transformation with feature selection worsened them. We observed improvement

in 38 of the 40 models when adding the new features and postulated that additional HTTP

header features can improve malicious website detection.

 RQ3: Do our Results Change with No-sampling, Under-sampling, and Over-

sampling Scenarios?

In posing RQ3, we addressed the sensitivity of our approach and its robustness in

dataset sampling. Sampling is important in malicious website classification because

researchers, ourselves included, work with various datasets that may or may not have

class imbalance. In other words, there may be more malicious than non-malicious

websites used in the training and test sets or vice versa. Currently, no standard exists for

whether or not to perform sampling, nor is there a set standard regarding how much of a

class imbalance between malicious and non-malicious websites should be present for

136

training and testing malicious website detection models. Hence, exploring whether or not

sampling had an effect was worthwhile. We compared two parts of our results – the

feature rankings and the overall performance of our classifiers.

The features rankings were stable, with the top eight from Table 6-2 and the top

five from Table 6-3 being the same. The MCC was 0.5671, 0.5599, and 0.5457 for the 11

features in the no-, over-, and under-sampling cases, and was 0.6150, 0.6220, and 0.6076

for the 22 features in the no-, over-, and under-sampling cases. Thus, we observed that

result, feature ranking, and importance, were fairly consistent in the different sampling

scenarios.

 RQ4: Does Hyperparameter Tuning and Cross-Validation Improve our

Results?

In this last step, we used RQ4 to investigate how we could add additional

assurance to our approach and evaluated the effect of tuning our models. After

researching common techniques, we decided to perform hyperparameter tuning and

cross-validation on our dataset and to re-evaluate our models with a 70:30 split of train to

test data instead of the initial 80:20 split. By doing so, we could investigate that our

models were not overfit, we could potentially improve our models, and we could ensure

that our observations were not dependent on the initial 80:20 split of data.

We performed hyperparameter tuning and cross-validation on the best performing

models in each of the five scenarios – no-sampling, over-sampling, under-sampling,

feature transformation with feature selection, and feature transformation with PCA. In the

80:20 case, all five models improved, but the average MCC only increased from 0.652 to

0.657, suggesting validity of the results in Tables 6-3, 6-4, 6-5, and 6-6.

137

In the 70:30 case, tuning and cross-validation improved three of five models for

the 70:30 split, but the average MCC only increased from 0.653 to 0.655. Without tuning

and cross-validation, the average MCC was 0.653 and 0.652, respectively, with the 70:30

and 80:20 splits. With tuning and cross-validation, the average MCC was 0.655 and

0.657, respectively, with the 70:30 and 80:20 splits. The small difference between results

in the different splits suggests that we were not dependent on the train/test split. Results

are shown in Table 6-7.

Table 6-7.

Cross-Validation and Hyperparameter Tuning Slightly

Improved HTTP Header Models

Cross-Validation and Hyperparameter Tuning HTTP Models
Model Scenario - Split MCC Scoring Metric

ET No-sampling - 70:30 0.6497 balanced accuracy

KNN Over-sampling - 70:30 0.6784 precision weighted

RF Under-sampling - 70:30 0.6414 precision weighted

RF FT w/ FS - 70:30 0.6301 precision micro

BC FT w/PCA - 70:30 0.6773 Recall

BC No-sampling - 80:20 0.6764 f1 weighted

KNN Over-sampling - 80:20 0.6722 precision weighted

NN Under-sampling - 80:20 0.6400 Recall

BC FT w/FS - 80:20 0.6249 f1 weighted

BC FT w/PCA - 80:20 0.6713 Recall

In this fourth research question, we determined two ways of validating our results.

First, we performed hyperparameter tuning and cross-validation. Secondly, we rebuilt

and performed hyperparameter tuning and cross-validation on our eight models on a

70:30 split of the data. We observed that while hyperparameter tuning and cross-

validation improved our results, the improvements were not large.

 Conclusion

This chapter detailed our comprehensive evaluation of HTTP header features to

assess whether additional HTTP header features could improve malicious website

detection. We analyzed HTTP headers from 6,021 malicious websites and from 39,853

138

benign websites. We used a dataset of malicious websites identified by Cisco Talos and

used a set of benign websites from the Alexa Top 1M (Dataset 1). We collected 672

HTTP header features from these websites, identifying 22 for further analysis, including

11 that were newly identified. We applied eight models, ensuring the robustness of our

methodology by performing no-sampling, over-sampling and under-sampling.

Of the 22 features studied, we found eight to be consistently ranked as the most

important features, representing 80% of feature importance. Of those eight important

features, three were features identified by our approach. The average MCCs for the

selected 22 features were consistently better than for the 11 previously studied features.

When considering the 22 selected features, FT w/PCA increased the MCC. Our results

indicated the existence of a broader set of HTTP header features that are applicable for

malicious website detection, beyond those that have been commonly studied by prior

scholars. In addition, our results showed consistency over various scenarios.

139

Chapter 7: Combined Web Request Features Analysis

 Introduction

In this chapter, we present a comprehensive evaluation of discovery of features

for malicious website detection with webpage content, URL, and HTTP header features

instead of a priori selection of features. We do so by collecting features from a

response to a web request. Our dataset (Dataset 1) consists of benign websites from

the Alexa Top Domains [112] provided by [176]. The malicious websites consist of

phishing webpages, drive-by downloads, and other malicious websites including

command and control (C2) URLs provided by the Cisco Talos Intelligence Group [177].

We apply a series of feature selection techniques to discover features suitable for

detection of malicious websites. We investigate their detection performance using

unsupervised and supervised learning algorithms in various sampling and feature

transformation scenarios. We compare the detection performance of the discovered

features to the detection performance provided by features from prior research. Overall,

we find:

• The discovery approach identifies features used in prior research, and new

features and feature combinations;

• The discovery approach produces features that yield similar (and slightly

better on average without model tuning and slightly worse with model tuning)

performance to features from previously published but requires fewer features

for the same level of performance; and

140

• The discovery approach identifies features that produce better meta-features

via feature transformation further demonstrating benefits over selecting

features a priori.

We make the following contributions:

• We demonstrated the potential for discovering features for malicious website

detection by achieving a best-classifier ACC, AUC, MCC, Prec, and Rec of

98.38%, 0.9464, 0.9174, 0.9555, 0.8982, respectively, with tuning and overall

averages of 96.62%, 0.9251, 0.8432, 0.8560, and 0.8723, respectively, across

several machine learning models built with default parameters; and

• We showed that new features must be discovered and evaluated for their ability

to detect malicious websites by demonstrating that supervised models built

from discovered features, 12 of which were newly identified and 22 of which

had been used in prior research, outperformed models built with features from

prior research by an average MCC of 0.0208 with 66% fewer features when

using default parameters.

 Related Research

Machine learning has been applied in many cybersecurity studies and has shown

potential to detect various threats and malicious websites. Three threats are commonly

detected in prior research – phishing webpages, drive-by downloads, and C2

infrastructure.

Ma [35] used the URL structure and host-based properties gathered from other

sources (IP denylists, WHOIS, domain name properties, and geographic properties) with

naïve Bayes [96], and LR [92] classifiers. They continued in [36]-[37], using similar

141

features and adding the use of online learning [217] to detect malicious URLs.

CANTINA [24] relied primarily on features from the webpage content and created

heuristics, evaluating the framework based upon 100 legitimate URLs from a prior study

[123] and 100 URLs from PhishTank [113]. CANTINA+ [46] improved upon this

approach by adding features and training and by testing models built from various

machine learning methods. The authors relied on subject matter expertise to select

features and used search engine features derived from search results. Whittaker et al.[42]

used an LR classifier and used millions of URLs for evaluation. Marchal et al. [91] took

an approach similar to that of the CANTINA+ authors, gathering 212 features,

differentiating between languages on the webpage, and analyzing the URL structure more

than CANTINA and CANTINA+ authors had. Their method used a GB [94] algorithm.

Phishmon [83] leveraged HTTP header features for their phishing detection mechanism

and Li et al. [218] used feature transformation to perform better phishing detection.

JSAND creators Cova et al. [65] identified malicious JavaScript with 10 features

associated with drive-by downloads. Their approach relied on instrumenting a browser,

executing the code, and recording the events. Rieck et al. [67] used Cujo to perform static

and dynamic analysis of JavaScript. The static analysis relied on lexical tokens and the

dynamic analysis relied on known attack patterns. The sequences from static and

dynamic analysis were transformed into Q-grams – a sequence of “q” words within the

code execution – that were then used to train an SVM. Curtsinger et al. [68] used Zozzle

to perform static analysis by first de-obfuscating the JavaScript and creating features

from two parts – the context in which it appeared (try/catch block, etc.), and some text.

They used contexts relevant to malicious JavaScript detection. Features were selected and

142

used to train a naïve Bayesian classifier on 919 malicious entries and 7,976 benign

samples and achieved a false positive rate of 0.0003% on 1.2 million files. Revolver was

used to examine the AST created from the JavaScript, to create sequences of nodes, and

to compare the similarity to known malicious sequences. Researchers [45] used Prophiler

to detect drive-by downloads with features commonly used in phishing detection

(webpage content). They trained their model on 787 samples of drive-by downloads with

HTML elements, static JavaScript features, URL features, and features from DNS. Zhang

et al. [78] used Arrow to detect drive-by downloads with HTTP traces pulled from logs

instead of from the JavaScript. JavaScript analysis was the source of features used in

studies to detect drive-by downloads, though researchers also have used other features

commonly associated with phishing detection.

Authors in [75]-[76] performed clustering on high-level features (total number of

HTTP requests, number of GET/POST requests, response lengths, etc.) and on

lower-level features such as specific headers, and creating HTTP traffic clusters to derive

signatures for C2 (bot) URLs. Researchers [80] used ExecScent which focused on

clustering requests and built templates for detection from HTTP traffic clusters, and

derived signatures from the URL path length, query component, user-agent string, and

other headers. These features and similar features have been used in other studies as well,

with [55] using them to compare distances of clusters of HTTP requests by extracting

the URL path, URL parameters, and URL method (GET, POST, etc.). Zarras et al. [82]

used header chains (sequences of HTTP headers) for their detection method, creating

signatures from clustering. Researchers [219] also aimed to detect bots and gathered

“flow-based” features (extracted from network traffic) over a period of time to do so.

143

Yadav et al. [209] sought to detect DGAs [53] by examining features purely from domain

names.

Although researchers aimed to detect differing threats, some were able to detect

multiple threats with various types of features. For example, [47] used features to detect

phishing webpages and drive-by downloads, while [49] selected various feature types –

webpage content, flow-based features, URL features, etc. – and leveraged [220] as their

dataset.

 Research Questions 5–7

 Research Question 5

 Prior studies have relied on preconceived notions of relevant (a priori) features –

URL length, <iframe>s, etc., for detection. This reliance has demonstrated success

however attacks change over time [221], as do the technologies used by attackers and as

well as developers of benign websites. There is a need to re-evaluate the features used to

detect malicious websites. For example, HTML5 [222], released in 2014, introduces new

tags (elements). Hence, features that were new to HTML5 could not have been included in

research prior to 2014. Additionally, there are techniques such as feature selection [50] that

can be employed to discover features which may be more applicable to the detection of

malicious websites. RQ5, stated as follows:

RQ5: Is feature discovery feasible for malicious website detection?

 Research Question 6

Even if feature discovery is feasible, there is no guarantee that it is better than

selecting features a priori. To date, there is little insight into how discovered features’

detection ability compares to those from prior research. RQ6, with which we investigated

144

how discovered features performed compared to those gathered from prior research, is

stated as follows:

RQ6: How do discovered features’ detection ability compare to those from prior

research?

 Research Question 7

Once we’ve established the feasibility of discovered features and compared their

detection ability to the detection ability of a priori features from prior research, we then

investigated operational constraints. A constraint within an operational scenario is that a

network is exposed to various threats simultaneously. Denylists (among other tools) are

used to prevent communication with the malicious website. Some prior researchers

worked successfully to identify specific threats: [91] focused on phishing, [67] focused

on drive-by downloads, and [75]-[76] focused on detecting C2 infrastructure. In this

study, we gain insight into whether features could be used to detect a group of threats,

regardless of their nature.

Success in an operational scenario also depends on the availability and choice of

features used. For example, phishing is typically best detected from HTML on a

webpage, drive-by downloads are best detected by the JavaScript, and C2 infrastructure is

best detected by the URL structure or HTTP headers. When a user (or service) retrieves a

malicious website, there may not be information about the type of threat or the relevant

features for detecting the malicious website. Furthermore, a website could be a phishing

website, could result in a drive-by download, and could serve as C2 infrastructure.

Additionally, some features that are useful for detection may not be available in a timely

manner. DNS information, search engine results, and WHOIS features, for example, all

145

show promise for detection, but we cannot guarantee that these features are available

when determining whether to block communication with a website. This chapter

leveraged features derived from the web response, which was derived directly from the

website.

It is unclear whether discovering features can be applicable to an operational

environment. Hence, we arrived at RQ7, stated as follows:

RQ7: Can a discovery approach be applied to several threats when only features

from a web response are available?

 Methodology

Figure 7-1 provides an overview of the seven-step analytical process we used in

this chapter which can be viewed as a culmination of Chapters 4-6. Images courtesy of

Pixabay [22].

146

Fig. 7-1 A process for discovery and evaluation of features for malicious website detection

 Dataset Selection

 Our dataset (Dataset 1) consists of two portions – benign entries from the 39,877

Alexa top domains, and 6,894 malicious entries provided by Cisco Talos Intelligence

Group [15]. The Alexa top domains have been used in several studies including [43]. The

malicious entries are a mix of websites and include several threats (phishing, drive-by

Dataset
Selection

Internet

Threats Features Detection

Methods

HTTP

If:
Else:

C2

Phishing

Drive-By

Download http://url.com/

Feature Selection

Supervised

Learning

Evaluation

Unsupervised

Learning

Hyperparameter Tuning
Cross-validation

A
cc

u
ra

cy

Features

Features for Malicious

Website Detection

Sampling

Feature Transformation

Feature

Collection
Train Test

147

download, and C2). Both datasets are provided by external organizations and are not hand-

selected or created for the purpose of this study.

Because we obtained the dataset of malicious websites from a third party, we

exerted no influence over its size. To select a size for the benign dataset, we first

surveyed prior research. Dataset sizes varied widely in prior scholarship. Researchers

[68] used 919 malicious entries and 7,976 benign samples in their training and they

evaluated their method on 1.2 million files. On the other hand, authors [91] used 1,213

malicious samples and 5,000 benign samples in their training and used 1,553 entries in

their testing set. For this research, we made the decision to select 39,877 entries for our

benign dataset. Both small and large datasets have their own respective advantages, with

smaller datasets allowing for focus and deeper analysis of a few samples, and larger

datasets potentially being more representative. In order to account for the dataset

imbalance, we performed sampling which is discussed in Section 7.4.4.

 Features for Malicious Website Detection

This chapter leveraged features from Chapters 4-6. Please refer to Chapters 4-6

Sections 4.4, 5.4, and 6.4 for complete details.

 Feature Collection, Selection, and Transformation

7.4.3.1 Feature Collection

We performed feature collection in August of 2018, recording the content and the

HTTP headers from GET requests and discarding entries for which the GET requests

failed. We retrieved 34,742 entries from among the top 39,877 domain names in the

Alexa Top 1M and retrieved 4,441 entries from among the 6,894 Cisco Talos entries.

Failed requests were due to causes including: timeouts, firewalls blocking our IP

148

address, or the web URL no longer being valid (more prevalent in the malicious dataset).

We collected 46,580 features in total – 28,162 derived from the URL, 17,746 derived

from the webpage content, and 672 derived from the HTTP response headers.

7.4.3.2 Feature Selection

We split our dataset into two portions – a training set (80% of total data), and a

testing set (20% of total data). The training set is used for feature selection and model

building, and the testing set is placed aside for evaluation. To perform feature selection

we used the feature selection process with XgBoost described in Section 3.3.2 and the

initial steps yielded a list of sets each containing three elements - a threshold ‘thresh,’

number of features ‘n,’ set of features ‘f,’ and an accuracy. Our goal was to achieve the

best performance with few features. Thus, we iterated through the sets consisting of

threshold, number of features, and accuracy (with ‘n’ decreasing) and looked for a

relative maximum in accuracy. The presence of a relative maximum in accuracy, as ‘n’

decreases, is how we determined which set of features to use for detection. We find a

relative maximum accuracy at n=36 features as shown below.

Thresh=0.001, n=105, Accuracy: 97.78%

…

Thresh=0.006, n=43, Accuracy: 97.72%

Thresh=0.007, n=36, Accuracy: 97.75%

Thresh=0.009, n=26, Accuracy: 97.69%

We calculated the correlation [223] of the features and observed that two features

had high correlation to other features in the list. We removed the features with high

correlation and arrived at 34 features. These 34 features are the discovered features. We

have also identified 99 features used in prior research which are referred to as the 99 a

priori features.

149

7.4.3.3 Feature Transformation

Although we have 34 discovered and 99 a priori features to build our detection

models, we also compared their effectiveness by comparing the detection abilities of

features they can produce. As such, we performed feature transformation on the 34

discovered and 99 a priori features to form additional features and evaluate their ability

to detect malicious websites. We performed two types of feature transformation scenarios

– feature transformation with feature selection (FT w/FS) and feature transformation with

principal component analysis (FT w/PCA) from Section 3.4.3 in order to build a better

understanding of how the discovered features detection ability compares to that of the a

priori. Both involved first transforming the 34 discovered and 99 a priori features into

new features which we referred to as the transformed features. Since feature

transformation produced many features, we then performed feature selection with

additional selection techniques and dimensionality reduction with PCA respectively to

generate a smaller set of features (components in the case of PCA) to build our detection

models.

Once we transformed the 34 and 99 features, we then performed feature selection

on the transformed features using four different techniques: Correlation as used in [189],

Select K Best (scoring function chi-square), Recursive Feature Elimination (RFE), and

Select From Model in the feature transformation with feature selection case. The choice

of these techniques is motivated by prior research and current data science techniques.

We input transformed features created from the addition, multiplication, and division

transformations into each of these four techniques which produced four sets of features.

We kept (selected) the transformed features that at least three of these techniques select

150

as relevant. For the feature transformation with PCA case, we performed PCA on the

transformed features to create ‘n’ components, mixtures, or combinations of variables

that capture the maximum variance, which are then used to build detection models. By

using a cumulative scree plot, we identified components that capture maximum variance

between the features within the data.

 Sampling

Our dataset has imbalance, 6,894 malicious websites to 39,877 benign websites,

which could influence the detection performance of models built in this study. To account

for this potential impact, we created three sampling scenarios for the training data from

which we will build supervised learning models no-sampling – training data are used as

is; over-sampling – malicious websites are over-sampled with the SMOTE technique

[186] provided by [187] to equal the number of benign websites; and under-sampling –

benign websites are randomly under-sampled to equal the number of malicious websites.

 Unsupervised and Supervised Learning

We leveraged unsupervised and supervised learning to build malicious website

detection models. We captured the ACC, AUC, MCC, Prec, and Rec for each model. We

focused our discussion on the MCC.

Unsupervised learning in the form of clustering and anomaly detection is

commonly used to detect malicious websites and traffic and has been used in prior

research as in [65] and [75]-[76]. Clustering is more applicable to distinguishing and

discovering different classes within the data. For example, [80] used clustering to

distinguish HTTP traffic among different families of malware. Since we have only two

data classes (malicious and non-malicious), we chose to leverage an anomaly detection

151

approach where benign websites are the normal case and the malicious websites are

anomalous. We built unsupervised models with default parameters using Autoencoders

[192] and a One Class SVM from the 34 discovered features, 99 a priori features,

transformed features using the FT w/FS technique, and transformed features using the FT

w/PCA technique.

We also leveraged nine supervised learning algorithms to detect malicious

websites because supervised learning is more common: nearest neighbor [111], ensemble

methods [182], and NNs [183]. The choice of building nine models was motivated by two

factors. First, we wanted to explore performance of various models built with the

discovered and a priori features to gain a more thorough understanding of the features’

detection ability. Second, we found that [47] leveraged seven different supervised

algorithms which were combined with a voting [191] algorithm. Of our nine models, five

are ensemble methods and provide a measure of feature importance [185] based on the

Gini Impurity: AB [101], ET [97], RF [98],GB, and XGB. Feature importance enabled us

to examine which features contribute the most to the classification decision and allows us

to create a ranking of the most importance features for detection. We also built a Voting

classifier (V) [191] created from the RF, ET, and GB classifiers. The other three models

did not provide a measure of feature importance however provided additional insight into

how the selected features perform across well-known machine learning algorithms and

enable a more thorough comparison of the two sets of features. They were the BC [184],

an ensemble method, KNN, a nearest neighbor method, and NNs. When building the

models, we chose to use the default parameters provided by [29] for the respective

models in an effort to reduce subjectivity and to be consistent. Our analysis in Sections

152

7.5.2 through 7.5.4 was done on the models built with default parameters. We did

however, perform hyperparameter tuning and cross-validation where we varied the model

hyperparameters and adjusted the training and testing data with Kfold [190] validation.

Doing so attempted to improve our models and provided better insight into their

performance of the features by lessening the reliance on the initial 80:20 training to test

split of data.

 Hyperparameter Tuning and Cross-Validation

In our last step, we performed hyperparameter tuning and cross-validation on our

supervised models to improve our models and validate our results built from default

parameters. We chose the best performing model from each scenario – no-sampling,

over-sampling, under-sampling, FT w/FS, and FT w/PCA and tuned the hyperparameters

and performed cross-validation. We used StratifiedKFold [190] for 10-fold cross-

validation [26] and explored several scoring metrics (accuracy, precision, recall) provided

by [29] when performing Grid Search [224] in our attempt to maximize our performance.

 For added assurance that our results were not a result of our initial 80:20 train to

test split, we repeated our training, sampling, and feature transformation approach with a

70:30 split of training to testing data and again performed hyperparameter tuning and

cross-validation. We also performed hyperparameter tuning and 5-fold cross-validation

on the Voting classifier.

 Results

 Unsupervised Results

In the unsupervised case, we observed an average ACC, AUC, MCC, Prec, and

Rec of 88.72%, 0.8076, 0.5491, 0.7277, and 0.8141, respectively, with discovered

153

features and observed an average ACC, AUC, MCC, Prec, and Rec of 88.39%, 0.7556,

0.4699, 0.6237, and 0.8264, respectively, with a priori features. Full results are shown in

Figures 7-2 and 7-3.

Fig. 7-2. Autoencoders perform better with transformed features

Fig. 7-3. One-class SVMs perform well with feature transformation with feature selection

and perform poorly with feature transformation with PCA

The unsupervised models did not perform well, though we saw improvement (on

average) when using the discovered features versus the a priori – an average increase in

MCC of 0.0793. The detection results were not great; hence, we focused most of our

analysis on supervised methods.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No Sampling FT w/ FS FT w/ PCA

M
C

C

Autoencoders

Discovered

A Priori

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No Sampling FT w/ FS FT w/ PCA

M
C

C

OneClass SVM

Discovered

A Priori

154

 Feature Selection Importance

Rankings of the 34 discovered features are shown in Table 7-1 in the no-

sampling, over-sampling, and under-sampling scenarios. Shaded rows mark the new

features. Rank and importance are separated by a “:” character.

155

Table 7-1.

Feature Selection Identified 22 Features Used in Prior

Research and 12 that Were New

34 Discovered Features Ranked

Feature No-sampling Over-sampling Under-sampling

Total HTML Tags 1 : 0.1311 1 : 0.1318 1 : 0.1138

URL Length 2 : 0.1285 2 : 0.0845 2 : 0.0926

Total Extensions in URL 3 : 0.1137 3 : 0.0717 4 : 0.0622

Count of ‘w’ character 4 : 0.0734 5 : 0.0575 5 : 0.0563

Count of ‘.’ character 5: 0.0494 7 : 0.0410 9 : 0.0401

content-encoding gzip 6: 0.0383 6 : 0.0489 8 : 0.0443

<a href> relative 7 : 0.0379 21 : 0.0179 13 : 0.0269

Count of <meta> tag 8 : 0.0322 4 : 0.0590 7 : 0.0499

<a href> OoD 9 : 0.0301 17 : 0.0212 6 : 0.0499

server apache 10 : 0.0242 20 : 0.0182 16 : 0.0227

Count of ‘z’ character 11 : 0.0236 25 : 0.0145 21 : 0.0138

<link type=”text/css”> 12 : 0.0235 9 : 0.0348 10 : 0.0383

 13 : 0.0215 24 : 0.0149 32 : 0.0073

Count of ‘i’ character 14 : 0.0196 15 : 0.0265 22 : 0.0137

Count of <p> tag 15 : 0.0190 18 : 0.0193 14 : 0.0255

push() 16 : 0.0178 14 : 0.0273 15 : 0.0236

Count of ‘l’ character 17 : 0.0168 11 : 0.0318 34 : 0.0070

url extension is .com 18 : 0.0158 22 : 0.0162 23 : 0.0137

Count of ‘y’ character 19 : 0.0155 34 : 0.0033 30 : 0.0079

vary user-agent 20 : 0.0154 27 : 0.0121 27 : 0.0109

Total href attributes 21 : 0.0146 10 : 0.0339 3 : 0.0739

 22 : 0.0140 30 : 0.0086 11 : 0.0337

<link href> OoD 23 : 0.0136 8 : 0.0371 12 : 0.0278

cache-control max-age 24 : 0.0130 13 : 0.0276 18 : 0.0187

Count of ‘p’ character 25 : 0.0124 32 : 0.0053 26 : 0.0114

<form action=”http*”> 26 : 0.0121 26 : 0.0132 33 : 0.0071

Count of <a> tag 27 : 0.0115 16 : 0.0250 19 : 0.0186

transfer-encoding chunked 28 : 0.0113 12 : 0.0286 17 : 0.0224

Count of ‘f’ character 29 : 0.0102 29 : 0.0092 28 : 0.0099

<script async=”true”> 30 : 0.0090 23 : 0.0160 20 : 0.0160

via 1.1 31 : 0.0089 28 : 0.0120 24 : 0.0129

 32 : 0.0087 33 : 0.0042 31 : 0.0077

Count of <center> tag 33 : 0.0069 19 : 0.0187 25 : 0.0114

<iframe src=”*..html”> 34 : 0.0063 31 : 0.0083 29 : 0.0081

The total number of HTML tags and the URL lengths were consistent across the

sampling scenarios and accounted for an average 22.7% of total feature importance. Half

of the features (17 of 34) were from the webpage content and accounted for 43% of total

feature importance, and, of the webpage content features, only one feature – counts of the

push() method – was a JavaScript feature. Eleven of the 34 features were URL features

that accounted for 44% of total feature importance, with the remaining six features being

HTTP headers that accounted for 13% of total feature importance. Four of the top five

156

features with the highest average importance were URL features (URL length, total

extensions in the URL, the count of “w” characters, and the count of “.” characters),

accounting for approximately 31% of total feature importance. Nine of the features were

HTML features that represented resources via the src or href attributes or other

attributes that can specify resources. They accounted for 17% of total feature importance.

Twelve of the 34 features, accounting for 17% of total feature importance, have not been

studied for their role in malicious website detection.

The total number of HTML tags was the most important feature and was part of a

webpage’s content complexity [225]. More content requires additional analysis of

whether the webpage is malicious and provides added opportunities for placing malicious

content inside the webpage. For example, a webpage consisting only of text will not

cause a drive-by download, whereas a page with various links, JavaScript, and other

resources such as <iframe>s, may enable a drive-by download. The next feature

identified – URL length – is one that has been frequently used in prior works. This

feature was not surprising since attackers use “tiny” as well as longer URLs [226].

URL features, especially the counts of the respective characters in the URL, were

observed to be helpful for detecting malicious websites. The count of “w” characters,

along with counts of “z,” “I,” “l,” “y,” and “p” characters, all appeared on our list. There

were no specific known associations between these characters and malicious URLs,

though all of the characters, with the exception of “i” and “l,” are infrequently used in the

English language. The characters “z,” “y,” “p,” and “w” occur 0.27%, 1.77%, 3.16% and

1.28% of the time, respectively [227]. The characters “i” and “l,” however, have been

prevalent in Kwyjino malware [209]. Furthermore, features derived from character

157

counts, including ratios, distance vectors, and similarity, have been studied to detect bots

and C2 URLs [52] when used in conjunction with unsupervised learning techniques such

as clustering or anomaly detection. Lastly, character counts and related metrics were

necessary for further study of URLs generated by DGAs. Hence, character counts (and

features derived from them) were relevant.

The first HTTP header features we observed have been used in specific attacks

and included features that describe how data is packaged in a response and how long

data should be kept by a client. The gzip content-encoding header extracted from

the HTTP response has legitimate uses, but it can be used to evade network scanners

[228]. Chunked responses, which also appeared on the list, are similar in that they are

specified in a response header, they have legitimate purposes, and they can be used by

attackers [228]. The cache-control header, studied by [49], and max-age directive

can be used by attackers to require a cache to hold a malicious response for a long

period, thereby enabling a cache-poisoning attack [229].

Other HTTP headers appeared on the list and were the server header with a

value of apache. Apache servers have had many well-known security issues with some

enabling backdoors (control) for attackers [230]–[234]. The via [206] header is added by

proxies that have legitimate uses, but also are well-known to be used by attackers [234]-

[235]. The vary header can be used by requests or responses. When used by

responses with a value of user-agent, it specifies whether responses will be

cached based on the user-agent string. This feature is well-known for being

misunderstood and misused by developers [236].

158

We also observed many webpage content features related to links and URLs on

the webpage. The total number of relative links or resources (as opposed to absolute

links) that point to resources within the page (or relative to the page) is one of the higher

ranked features, is an extension of features used in [47], and is known to be used by

attackers. It is also a measure of content-complexity [225]. Using relative links has the

advantage of decreasing the chances of detection for attackers. For example, if the

webpage is fetched and successfully loaded, it has gotten past some network-level

defenses or other security solutions [237]. Furthermore, relative URLs are known to be

leveraged by attackers. Recently, attackers have used relative URLs [237] to bypass

Microsoft’s ATP for phishing detection. Additionally, the number of OoD links on the

page (URLs that are out of the current domain) ranked as a feature. The more links on a

webpage, the more opportunities for potential malicious URLs, only one of which must

be effective to cause an infection. We also found that the structure of the URLs on the

webpage were present in our features. For example, we observed that the protocol (http

vs https) for certain resource references (such as image, links) helped with detection,

though they were not highly ranked. The <iframe> is well-known for its ability to detect

drive-by downloads [59] and we observed that .html files in the <iframe> src

attribute made the list.

The next webpage content features deal with specific tags (elements on the

webpage). The <meta> tag is known to be associated with malicious redirects [238].

Two other tags that appeared were counts of <p> and <center> tags. Both are

formatting tags that specify how text should be rendered. Although they have no known

relation to malicious websites, the counts may provide additional insight as to the level of

159

care that attackers take in formatting their text, information that would be of interest for

phishing detection. The other feature, <link type>, identifies references to .css

resources. Although this has legitimate uses, CSS files have also been used for attacks

[239].

We observed that one JavaScript feature – counts of the push() method – made

our list. JavaScript methods can identify obfuscated JavaScript, but the push() method

is not highly related to malicious JavaScript. Although it made our list, it did not rank

highly and it should be noted that although this study performed static analysis, dynamic

analysis has been shown to be better suited for malicious code detection. In fact, most

prior research required de-obfuscation before analysis of code, as in [65] and [68]).

Although we found just one count of a JavaScript method, the async=true attribute on

the <script> tag is a potential attack vector (it instructs the browser to continue

rendering third party libraries in the JavaScript).

We then performed feature ranking of the 99 a priori features. Webpage content

features accounted for 40% of total feature importance, while URL features accounted for

48% of total feature importance, and HTTP features accounted for 12% of total feature

importance. Whereas the top two features in Table 7-1 were consistent, none of the top

features in Table 7-2 were consistent. Also, we observed that some a priori features had

little to no importance in our study. Full rankings for the 99 a priori features in sampling

scenarios are in Table 7-2.

160

Table 7-2.

The Importance of 99 Features from Prior Research Was

Inconsistent Across Sampling Scenarios

99 Features from Prior Research Ranked

Feature No-sampling Over-sampling Under-sampling

Total HTML Tags 1 : 0.1159 6 : 0.0382 1 : 0.1358
Total Extensions in URL 2 : 0.0957 3 : 0.0520 5 : 0.0493
URL Length 3 : 0.0926 4 : 0.0499 3 : 0.0520
Count of ‘w’ character 4 : 0.0585 5 : 0.0493 4 : 0.0499
Count of ‘.’ Character 5 : 0.0460 9 : 0.0229 11 : 0.0215
<a href> OoD 6 : 0.0291 15 : 0.0189 6 : 0.0382
Total href attributes 7 : 0.0283 10 : 0.0219 2 : 0.0559
server apache 8 : 0.0261 11 : 0.0215 10 : 0.0219
content-encoding gzip 9 : 0.0255 2 : 0.0559 7 : 0.0372
Count of <link> tag 10 : 0.0241 19 : 0.0175 12 : 0.0196
Count of <meta> tag 11 : 0.0221 7 : 0.0372 8 : 0.0229
Total TLDs in URL 12 : 0.0207 33 : 0.0090 20 : 0.0172
content-language text/html 13 : 0.0195 18 : 0.0183 13 : 0.0194
Count of ‘z’ character 14 : 0.0190 23 : 0.0151 19 : 0.0175
<link href> OoD 15 : 0.0153 20 : 0.0172 22 : 0.0165
Count of <a> tag 16 : 0.0144 12 : 0.0196 9 : 0.0229
Count of 4-character words 17 : 0.0142 27 : 0.0125 23 : 0.0151
Count of ‘y’ character 18 : 0.0141 49 : 0.0046 56 : 0.0034
url extension is .com 19 : 0.0135 41 : 0.0055 26 : 0.0133
Total 20 : 0.0134 16 : 0.0187 15 : 0.0189
content-length 21 : 0.0134 36 : 0.0082 17 : 0.0187
<form action> OoD 22 : 0.0133 22 : 0.0165 21 : 0.0168
Count of <div> tag 23 : 0.0130 25 : 0.0134 14 : 0.0191
cache-control max-age 24 : 0.0128 21 : 0.0168 16 : 0.0187
Count of ‘i’ character 25 : 0.0128 8 : 0.0229 24 : 0.0147
Count of ‘l’ character 26 : 0.0122 14 : 0.0191 49 : 0.0046
Count of <style> tag 27 : 0.0113 58 : 0.0031 34 : 0.0090
<script src> OoD 28 : 0.0090 46 : 0.0049 18 : 0.0183
Count of ‘p’ character 29 : 0.0090 26 : 0.0133 27 : 0.0125
Count of <title> tag 30 : 0.0087 1 : 0.1358 41 : 0.0055
Count of ‘f’ character 31 : 0.0084 30 : 0.0104 31 : 0.0101
<script type=text/javascript> 32 : 0.0077 37 : 0.0073 28 : 0.0120
Count of ‘d’ character 33 : 0.0076 17 : 0.0187 35 : 0.0085
Count of ‘s’ character 34 : 0.0074 28 : 0.0120 32 : 0.0092
Count of 5-character words 35 : 0.0072 38 : 0.0066 62 : 0.0021
Count of ‘o’ character 36 : 0.0068 29 : 0.0114 44 : 0.0050
cache-control no-store 37 : 0.0063 57 : 0.0034 29 : 0.0114
url extension is .i 38 : 0.0063 40 : 0.0063 46 : 0.0049
replace() 39 : 0.0063 34 : 0.0090 40 : 0.0063
Count of ‘u’ character 40 : 0.0060 43 : 0.0051 30 : 0.0104
Count of tag 41 : 0.0059 61 : 0.0027 36 : 0.0082
 OoD 42 : 0.0059 39 : 0.0065 45 : 0.0050
Count of ‘b’ character 43 : 0.0058 32 : 0.0092 60 : 0.0028
Count of ‘e’ character 44 : 0.0057 45 : 0.0050 58 : 0.0031
addEventListener() 45 : 0.0054 44 : 0.0050 33 : 0.0090
<base href> OoD 46 : 0.0042 76 : 0.0004 74 : 0.0006
Count of ‘t’ character 47 : 0.0042 59 : 0.0030 48 : 0.0049
Count of <iframe> tag 48 : 0.0041 63 : 0.0021 55 : 0.0037
Count of ‘x’ character 49 : 0.0040 70 : 0.0010 72 : 0.0007
Count of ‘c’ character 50 : 0.0039 47 : 0.0049 47 : 0.0049
Count of ‘r’ character 51 : 0.0037 51 : 0.0045 65 : 0.0014
Count of ‘m’ character 52 : 0.0037 55 : 0.0037 52 : 0.0045
Count of ‘h’ character 53 : 0.0036 35 : 0.0085 66 : 0.0013
Count of ‘a’ character 54 : 0.0032 13 : 0.0194 61 : 0.0027
server nginx 55 : 0.0031 54 : 0.0039 38 : 0.0066
createElement () 56 : 0.0031 24 : 0.0147 25 : 0.0134
Count of ‘n’ character 57 : 0.0029 52 : 0.0045 50 : 0.0045
cache-control no-cache 58 : 0.0029 56 : 0.0034 57 : 0.0034
Count of 6-character words 59 : 0.0028 31 : 0.0101 63 : 0.0021
Count of 7-character words 60 : 0.0027 64 : 0.0019 64 : 0.0019

161

99 Features from Prior Research Ranked

Feature No-sampling Over-sampling Under-sampling

Count of <input> tag 61 : 0.0023 65 : 0.0014 43 : 0.0051
Count of ‘k’ character 62 : 0.0022 66 : 0.0013 67 : 0.0012
Count of ‘g’ character 63 : 0.0021 50 : 0.0045 37 : 0.0073
 OoD 64 : 0.0019 62 : 0.0021 42 : 0.0053
Count of ‘-’ character 65 : 0.0019 42 : 0.0053 39 : 0.0065
Count of ‘v’ character 66 : 0.0016 69 : 0.0010 59 : 0.0030
write() 67 : 0.0015 74 : 0.0006 69 : 0.0010
cache-control must-revalidate 68 : 0.0014 48 : 0.0049 54 : 0.0039
Count of ‘j’ character 69 : 0.0013 71 : 0.0009 68 : 0.0011
Count of 8-character words 70 : 0.0012 72 : 0.0007 73 : 0.0007
cache-control private 71 : 0.0012 53 : 0.0041 53 : 0.0041
substring() 72 : 0.0011 80 : 0.0002 70 : 0.0010
url extension is .net 73 : 0.0011 67 : 0.0012 71 : 0.0009
<iframe src> OoD 74 : 0.0010 60 : 0.0028 51 : 0.0045
escape() 75 : 0.0005 79 : 0.0002 75 : 0.0005
cache-control public 76 : 0.0004 68 : 0.0011 78 : 0.0003
setTimeout() 77 : 0.0004 84 : 0.0001 81 : 0.0002
parseInt() 78 : 0.0003 78 : 0.0003 77 : 0.0004
concat() 79 : 0.0003 73 : 0.0007 85 : 0.0001
Count of <frame> tag 80 : 0.0002 83 : 0.0002 80 : 0.0002
<frame src> OoD 81 : 0.0002 81 : 0.0002 79 : 0.0002
unescape() 82 : 0.0002 82 : 0.0002 76 : 0.0004
exec() 83 : 0.0002 75 : 0.0005 84 : 0.0001
fromCharCode() 84 : 0.0001 88 : 0.0001 83 : 0.0002
Count of <object> tag 85 : 0.0001 89 : 0.0001 87 : 0.0001
<area href> OoD 86 : 0.0001 77 : 0.0004 89 : 0.0001
<embed src> OoD 87 : 0.0001 85 : 0.0001 82 : 0.0002
eval() 88 : 0.0001 87 : 0.0001 91 : 0
search() 89 : 0.0001 91 : 0 93 : 0
Count of <embed> tag 90 : 0 90 : 0 90 : 0
charCodeAt () 91 : 0 95 : 0 86 : 0.0001
<object data> OoD 92 : 0 92 : 0 88 : 0.0001
hidden <iframe> 93 : 0 86 : 0.0001 92 : 0
setInterval() 94 : 0 94 : 0 96 : 0
<source src> OoD 95 : 0 93 : 0 94 : 0
<source srcset> OoD 96 : 0 97 : 0 95 : 0
link() 97 : 0 98 : 0 97 : 0
<audio src> OoD 98 : 0 96 : 0 98 : 0
<video src> OoD 99 : 0 99 : 0 99 : 0

 Sampling Scenarios

In the no-sampling scenario, we observed that two out of the nine models improve

when using discovered features versus a priori features. The average accuracy, AUC,

MCC, Precision, and Recall changed by -0.03%, 0.0045, -0.001, -0.013 and 0.01, when

using discovered versus a priori features respectively. In the no-sampling scenario the

discovered feature set performs nearly as well as the a priori feature set albeit with 66%

fewer features. Results are shown in Figure 7-4, and full results shown in Appendix D.

162

Fig. 7-4. Discovered features performed approximately

as well as the prior features in the no-sampling scenario

In the over- and under-sampling scenarios, we observed that three and two out of

the nine models improved with discovered features versus a priori features, respectively.

The average accuracy, AUC, MCC, Precision, and Recall changed by -0.2%, 0.006, -

0.007, -0.027, 0.016, in the over-sampling scenario and -0.37%, -0.0008, -0.01, -0.019,

0.0049 in the under-sampling scenario with discovered features. Hence, we observed

similar behavior as in the no-sampling scenario. Results are shown in Figure 7-5 and

Figure 7-6, with full results shown in Appendix D.

Fig. 7-5. Discovered features performed approximately

as well as the a priori features in the over-sampling scenario

0.7
0.72
0.74
0.76
0.78
0.8

0.82
0.84
0.86
0.88
0.9

0.92
0.94

KNN RF AB GB ET XGB BC NN V
M

C
C

No Sampling

Discovered

A Priori

0.7
0.72
0.74
0.76
0.78
0.8

0.82
0.84
0.86
0.88
0.9

0.92

KNN RF AB GB ET XGB BC NN V

M
C

C

Over-sampling

Discovered

A Priori

163

Fig. 7-6. Discovered features performed approximately

as well as the a priori features in the under-sampling scenario

 Feature Transformation

We now discuss the results of using features created through transformation of the

features and the components created by performing FT w/FS and FT w/PCA on these

features. For the transformed features (2,278 features were created from the 34

discovered features, and 19,503 from the 99 a priori features) we observed a change in

accuracy in AUC, MCC, Precision, and Recall of 0.23%, 0.0113, 0.0129, -0.0006,

0.0231, respectively, and all nine models improved when using features created from

discovered features versus a priori features – 88% fewer created features.. The effect of

the feature transformation with feature selection is shown in Figure 7-7 and full results

are found in Appendix D.

0.7

0.75

0.8

0.85

0.9

KNN RF AB GB ET XGB BC NN V
M

C
C

Under-sampling

Discovered

A Priori

164

Fig. 7-7. Discovered features out-performed the a priori

features in the feature transformation with feature selection

The discovered features also appeared to produce better components from PCA

and did so with fewer features. One hundred and twenty-five components were created

from the 34 discovered features with PCA, compared to 750 components created from the

99 a priori features. With components from discovered features compared to the

components created from a priori features, we observed a change in ACC, AUC, MCC,

Prec, and Rec of 7.65%, 0.0743, 0.1099, 0.0789, 0.0658, respectively, and eight of the

nine models demonstrated overall improvement compared to using models built with the

components from the a priori features. The effect of the feature transformation with PCA

is shown in Figure 7-8, with full results shown in Appendix D.

Fig. 7-8. Discovered features out-performed a priori features

in the feature transformation with PCA

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

KNN RF AB GB ET XGB BC NN V
M

C
C

Feature Transformation w/ FS

Discovered

A Priori

-0.5

-0.3

-0.1

0.1

0.3

0.5

0.7

0.9

KNN RF AB GB ET XGB BC NN V

M
C

C

Feature Transformation w/ PCA

Discovered

A Priori

165

 Hyperparameter Tuning and Cross-Validation

 We tuned the best performing model in each scenario built from an 80:20 split of

train to test data (no sampling, over-sampling, under-sampling, FT w/FS, and FT

w/PCA). In this section, we compare the results of the tuned models to their respective

non-tuned counterparts. With tuning, only one of the models built with the 34 discovered

features achieved a higher MCC, and the average MCC of the tuned models was 0.004

less than the average MCC of the non-tuned models. When performing hyperparameter

tuning and cross-validation on the models built from 99 a priori features, we observed

that the average MCC improved by 0.007 compared to the non-tuned models and all five

of the best performing models improved.

 For further assurance that our results were not a product of our initial 80:20

split, we repeated our approach with a 70:30 split of training to testing data. We observed

that the average MCC increased by 0.011 when tuning, and four of the five best

performing models improved when tuning models built with the 34 discovered features

compared to their non-tuned counterparts. When performing hyperparameter tuning and

cross-validation on the models built from 99 a priori features, we observed that the

average MCC improved by 0.011, and all five of the best performing models improved.

Full results are available in Table 7-3 which show the model used, scenario, MCC, and

scoring metric used during tuning achieve the respective MCC. Results from the a priori

features are separated by a “/” from the results of the discovered features.

166

Table 7-3.

Hyperparameter Tuning and Cross-Validation

Slightly Improved Detection Performance for

Discovered and A Priori Features

Cross-Validation and Tuning for A Priori / Discovered

Model Scenario - Split MCC Scoring Metric

BC

RF
No - 70:30

0.9027/

0.8926

precision weighted

balanced accuracy

RF

RF
Over - 70:30

0.8802/

0.8830

precision weighted

precision weighted

BC

ET
Under - 70:30

0.8113/

0.7967

precision weighted

recall weighted

BC

BC
FT w/ FS - 70:30

0.8865/
0.8920

precision weighted
precision weighted

NN

NN
FT w/ PCA - 70:30

0.8853/

0.8744

recall

recall

BC

RF
No - 80:20

0.9066/

0.8942
precision weighted
precision weighted

RF

ET
Over - 80:20

0.8819/

0.8718

precision weighted

precision weighted

RF

ET
Under - 80:20

0.8174/
0.8049

precision weighted
recall weighted

RF

RF
FT w/ FS - 80:20

0.8841/

0.8843

precision weighted

precision

NN

BC
FT w/ PCA - 80:20

0.8863/
0.8792

recall
precision weighted

We then performed hyperparameter tuning and cross-validation of the voting

classifier. Full results for each scenario are shown in Table 7-4.

Table 7-4.

Hyperparameter Tuning and Cross-Validation Slightly

Improved Detection Performance for Discovered and

A Priori Features

MCC of Tuned Voting Classifier in Different Scenarios

Scenario No Over Under FT w/ FS FT w/ PCA

70/30 Discovered 0.9144 0.9066 0.8231 0.8966 0.2406

70/30 Prior 0.9281 0.9192 0.8375 0.8911 -0.4314

80/20 Discovered 0.9174 0.9071 0.8177 0.8973 -0.0275

80/20 Prior 0.9264 0.9226 0.8295 0.8884 -0.3831

Hyperparameter tuning and cross-validation showed that the default parameters

for all models, except the voting classifier, performed similarly to the tuned classifiers.

The voting classifier improved when we performed tuning (except when used with PCA).

167

We observed that while the discovered features performed better with default parameters,

they performed slightly worse during hyperparameter tuning.

 RQ5: Is Feature Discovery Feasible for Malicious Website Detection?

In RQ5 we examined the detection ability of discovered features. With the

discovered features we can obtain a best classifier performance of an MCC 0.7043 using

unsupervised learning techniques, and 0.9174 using supervised learning techniques. The

unsupervised results were not promising however unsupervised techniques are not as

common for detecting malicious websites (except for C2 traffic). The supervised results

suggested that a discovery approach can be used however, for further insight into their

feasibility, we need to compare our approach and results with prior research that uses the

notion of a priori features.

Ma in [35] leveraged URL and host-based (DNS queries, WHOIS properties, and

geographic information) and incorporated online learning in [36]-[37] and an SVM

classifier to identify malicious URLs. Ma used strictly URL and host-based features. We

both investigated different training scenarios however Ma focused on training an SVM

several times with online learning while we focused on sampling, feature transformation,

and evaluated nine different algorithms. Additionally, we both accepted our malicious

dataset from external parties though their dataset consisted of millions of URLs while

ours included ~47000 entries. Given the design of our experiments we also quantified

best-case performance differently – Ma with error rate (best-case 2.6%) while we focused

on MCC (best-case 0.9174) due to our dataset imbalance. Whittaker [42] also took an

online approach and trained and evaluated an LR classifier on millions of webpages (with

different algorithms), focused on phishing, and presented their results as a tradeoff

168

between precision and recall with their best performance being a precision and recall over

0.95 respectively. Prophiler [45] also focused on classifying a large number of malicious

webpages with an evaluation dataset of almost 19 million webpages and achieved a false

positive and false negative rate of 9.88% and 0.77% with HTML, JavaScript, URL, and

host features. They used naïve Bayes, random forest, logistic regression, and other

decision tree algorithms.

CANTINA+[46], like us, extracted webpage features and investigated several

learning algorithms -support vector machines, logistic regression, Bayesian networks, J48

decision tree, random forest, and adaboost. Unlike us and like Ma, they relied on external

sources (for example Page Rank) for features which differed from our approach of only

using web response features. Their study included two phishing sets of 1,595 and 624

webpages respectively. They achieved a true positive and false positive rate of 4.24% and

1.948% respectively.

Marchal [91] detected phishing with a GB (provided by Scikit Learn) classifier

with high performance metrics (an AUC up to 0.999 compared to our AUC of 0.9464)

and differentiated themselves by detecting phishing webpages in different languages.

They selected 212 features (including the URL and webpage content) for detection, many

of which overlap with other prior works. Their dataset consisted of 150,000 legitimate

phishing URLS and 3,366 phishing URLs. Like our study, they performed cross-

validation.

Phishmon [83] achieved an accuracy of 95.4% (compared to our accuracy of

98.38%) with a false positive rate of 1.3% on a dataset of 17,508 legitimate and 4,807

phishing webpages. Their approach, unlike other approaches and like our approach,

169

incorporated all HTTP headers in conjunction with webpage content features for

detection. They used four different classifiers (classification and regression trees, k

nearest neighbor, adaboost, and random forest) and provided a notion of feature

importance.

BINSPECT [47] who has a similar approach (aside from feature discovery) to our

own used several machine learning classifiers (J48, random tree, random forest, naïve

bayes, bayesian networks, support vector machine, and logistic regression) and some of

our discovered features overlap with their features. However, our study discovered all our

features and did not require external sources such as search engine results. We also

differed in that our dataset contained C2 URLs while theirs did not. Our accuracies were

similar – their accuracy is 97.81% compared to our accuracy of 98.38%. In addition, we

observed that 22 of the 34 features discovered have been used in prior research.

Additionally, most of the features in the discovered list have some known association

with attacks or malicious techniques. Cova [65] leveraged a priori features that can

identify malicious or suspicious JavaScript and anomaly detection to create JSAND.

They evaluated their approach on 823 samples from four different data sources and

achieved a false negative rate of 0.2%. Xu [49] took the closet approach to our own

regarding the features for detection. However, they also included other features like

network traffic summaries, which required additional overhead, and they performed

feature selection from their a priori features for detection. Their approach evaluated four

different classification algorithms - naïve Bayes, logistic regression, support vector

machines, and J48 and achieved a best-case 99.986% accuracy and they noted the five

most selected features.

170

Basnet [50] used correlation-based feature selection and wrapper feature selection

to find relevant features among 177 URL, webpage content, and search engine features

along with a naïve Bayes, logistic regression, and random forest classifier. They observed

wrapper-based feature selection techniques could improve false negative rates by 44.5%

while we found that feature selection generally decreased classifier performance. Li

[218], like our study, performed feature transformation during their detection of

malicious URLs and did so on seven domain-based, 21 host-based, six reputation-based,

and 28 lexical features. Their goal was to demonstrate the benefit of feature

transformation when used with different algorithms and noted that feature engineering

improved detection rates from 68% to 86%, 58% to 81% and 63% to 82% for KNN,

SVM, and NNs classifiers respectively. Their best accuracy was measured at 97.80%.

There are similarities are well as differences between our approach and results

from those of prior research. First, we note that our results are comparable (and often

better) than those from prior research however true comparison is difficult. Marchal [91]

and Xu [49] have achieved highly accurate results with a priori features however this was

done on phishing alone in the case of Marchal, and with additional features like network

traffic statistics as in the case of Xu. Marchal and Xu provided better results than any

prior research we have encountered. Second, we observed that features derived from a

web response are simpler to gather. Page rank, WHOIS information, network traffic

statistics all require additional instrumentation and overhead. Based on our detection

metrics as well as on comparisons to prior research, we postulate that feature discovery is

feasible for malicious website detection.

171

 RQ6: How do Discovered Features’ Detection Ability Compare to Those

from Prior Research?

With RQ6, we compared the ability of the a priori features from prior research to

the ability of those found via our discovery approach. In the sampling scenarios, we saw

little change in detection performance when using discovered features versus a priori

features. However, we did obtain similar detection metrics with fewer features. With

feature transformation, the discovered features outperformed the a priori features. Hence,

we postulated that discovered features can be used to create better transformed features

for detection and also require fewer features for detection. During tuning of the models,

we noted that the a priori features slightly outperformed the discovered features. Thus,

we answered RQ6 in a mixed fashion. The discovered features performed nearly as well

as the a priori features, with slight differences depending on the scenario, but they did so

with fewer features.

 RQ7: Can a Discovery Approach be Applied to Several Threats when Only

Features from a Web Response are Available?

With RQ7, we explored whether the discovery approach can be applied to a set of

several threats with a limited number of features (those that can be gathered from the

response to web request). We designed our experiment to simulate the real-world

constraints by using a dataset consisting of several threats and by leveraging techniques

from prior research. Our limited insight into these threats (we did not hand select them

nor were they homogenous) also simulated real-world constraints. In addition, we

included C2 URLs in our dataset, an element that is often not absent from other studies

that detected multiple types of threats. To examine this research question, we looked

172

further into the performance metrics. Overall, our ACC, AUC, and MCC performed well

and were comparable to (and sometimes exceeded) the accuracy of other approaches.

However, our findings do suggest that this approach alone is not enough. To further

examine whether this approach can be a supplement to other detection capabilities, we

examined the FPR of our models since a large number of false positives [240] poses a

challenge for practical detection solutions. The FPR of our best performing model in the

no-sampling scenario was 0.3% (the tuned voting classifier) and our worst performing

classifier in the no-sampling case (AB) had an FPR of 1.326% which bodes well for

inclusion into a practical solution. Furthermore, the features extracted in this approach

can be extracted from a web request response and can be added to other security

solutions. As a result, we postulated that a discovery approach, while not sufficient in

isolation, can be used as a supplement to other detection techniques.

 Conclusions

We performed a comprehensive evaluation of discovering features for malicious

website detection. We built two unsupervised learning models and nine supervised

detection models over various sampling and feature transformation scenarios. Based on

our study, we postulated that discovering features (versus selecting features a priori) was

feasible and performed nearly as well as the features from prior research, but did so with

fewer features.

173

Chapter 8: Evaluation on an Additional Dataset

 Introduction

Feature-based malicious website detection has shown promise in prior research as

well in our studies (see Chapters 4–7). Thus far, our experiments gathered a dataset

(Dataset 1) and split it into two portions – a training portion and a testing portion. We

were able to achieve high performance metrics in Chapter 7, with MCCs of up to 0.9281

but we performed our study on a single dataset that was created from a single point in

time. Although this approach is common, it leads to a lack of insight into how the models

built (and their features) would perform on additional datasets that may have been

gathered at another point in time. In an operational scenario, a detection model must work

on different datasets regardless of time of collection or dataset source. Using a single

dataset for training and testing provided limited intuition regarding the feasibility of

training models using features and applying it to an operational scenario.

In this chapter, we explore the application of the models and features identified in

Chapters 4–7 to a different dataset. This new dataset (Dataset 2) differs from the dataset

used in Chapters 4–7 in three ways: 1) the benign portion consists of more entries, 2) the

malicious dataset is derived from another source, and 3) the dataset was collected at a

different point in time. The first dataset, referred to as Dataset 1 and used in Chapters 4–

7, consisted of domains gathered from the top 39,877 websites in the Alexa Top 1M and

6,894 websites provided by Cisco Talos. We collected Dataset 1 in August of 2018. The

second dataset, referred to as Dataset 2, consisted of websites from the Alexa Top 1M

collected four months later in December of 2018. We segmented this dataset into two

portions – benign websites and malicious websites. In the malicious portion of the

174

dataset, we grouped those websites in the Alexa Top 1M that appeared in threat

intelligence information from Cymon.io [193]. We created the benign dataset from

websites in the Alexa Topo 1M that did not appear in the Cymon.io threat intelligence

information. Throughout this chapter, we report the various experiments performed on

Dataset 2 with the goal of better understanding how the models and features discovered

in Chapters 4–7 would perform on an additional dataset. In this portion of the study, we

made the following contributions:

• We demonstrated that the 34 features identified in Chapter 7 served as a

foundation for detection, but required adjustments in order to be effective;

• We compared features for detection over two datasets gathered from different

sources at different points in time; and

• We identified two additional features that greatly improved detection on

another dataset.

 Related Research

Ma et al. [35] used two different benign sources (Yahoo! and DMOZ) and two

different malicious sources (PhishTank and Spamscatter). From the benign and malicious

datasets, the authors created four datasets in which the benign and malicious dataset

combinations were Yahoo-PhishTank, Yahoo-Spamscatter, DMOZ-PhishTank, and

DMOZ-Spamscatter. They trained an LR classifier on each set and evaluated the model

on each set. They received low error rates (0.9%, 1.24%, 1%, and 3.01%) when training

and testing on the same dataset, but observed error rates of up to 44% when training and

evaluating on a different dataset. They repeated this approach of training and evaluating

on different datasets in subsequent research [64], [159], [161]. JSAND creators [65]

175

accomplished a similar goal in their evaluation. They trained their models on two known

datasets: 1) “known-good,” consisting of webpages from Google, Yahoo, and Alexa with

malicious websites removed; and 2) “known-bad,” consisting of URLs from datasets used

in prior research (spam trap, SQL injection, malware forum, and wepawet). Although

they did not focus on evaluating a separate dataset, they identified 137 URLs as

malicious (on the separate dataset), with 15 being false positives. Le et al. [63] trained

their detection mechanism on a group of malicious websites and evaluated them on

another set of benign websites and malicious websites. Blum et al. [38] trained their

models on University of Alabama phishing websites and evaluated them on other feeds

from Cyveillance, observing error rates as high as 30% when the training sets and testing

set were from different sources. Researchers [160] also provided a training and testing

dataset from different sources.

He et al. [43] built their dataset with the combination of websites from multiple

sources – Alexa, 3Sharp, and Phishtank – but they evaluated their detector on two

datasets. They derived the datasets from the same source, but collected them at different

points in time. They observed that their detector performed well, with a TPR of 97% and

FPR of 4%. CANTINA+ authors [46] conducted several experiments on phishing

webpages, including collecting two datasets of phishing websites from the same source,

achieving a TPR of 93.47% and FPR of 0.608%.

Prior researchers have reported mixed results. Some have observed similar

performance when applying their methods to other datasets (either gathered from a

different source or collected at a different point in time), while others have seen

performance decreases. We made two observations. First, we observed that performance

176

decreased when researchers trained and tested on datasets composed of different threats

([35], for example), while researchers tended to report consistent performance when

focused on detecting one type of threat. Secondly, we observed that researchers were

more likely to show consistent performance when data collections occurred closer in time

(authors [45] with Prophiler, for example). Based on these observations, we analyzed our

detection performance on an additional dataset.

 Research Questions

In this section we list the research questions addressed in Chapter 8

 Research Question 8

With this research question, we explored the ability to apply models built from

data derived from one dataset to models built from data derived from another dataset. To

that end, we examined the performance of the best-performing RF model (built from 34

features as detailed in Chapter 7 and trained on Dataset 1) when evaluated on Dataset 2.

We stated RQ8 as follows:

RQ8: How robust are malicious website detection models when applied to a new

dataset?

 Research Question 9

We crafted this research question to guide our investigation into the effectiveness

of the features identified in Chapter 7 and their ability to detect malicious websites on a

new dataset. We used a series of feature selection techniques to identify the features

noted in Chapter 7, some of which had been used in prior research, while others had not.

We re-trained models on our new dataset, but limited our features to the 34 identified in

Chapter 7. By doing so, we gained insight into the robustness of the features identified

177

from our previous work and determined whether they could be applied to additional

datasets. RQ9 is stated as follows:

RQ9: How do the features identified perform on a new dataset?

 Research Question 10

Although we evaluated the features identified in Chapter 7 and the robustness of

the model built in Chapter 7, here we investigated how we could leverage on a new

dataset other aspects of the experiment results reported in Chapters 4–7. We aimed to

identify which aspects, if any, from our prior experiments could be leveraged on this new

dataset. RQ10 is stated as follows:

RQ10: What aspects from prior experiments can we apply to a new dataset?

 Feature Consideration, Dataset, Analysis Approach

 Feature Consideration

In Chapter 7, we captured the performance of our detection models constructed

with 34 features that we identified through feature selection and with 99 features gathered

from prior research. In this chapter, we focus on the 34 features identified in Chapter 7

(referred to as the “identified features”), but expand our analysis to the 99 features

gathered from prior research and reported in Chapter 7 (referred to as the “prior

features”), as well as to 288 additional features (referred to as the “features after the first

feature-selection step”). As reported in Chapter 7, we obtained these 288 features by

dropping from our dataset those features that were consistent at least 95% of the time and

by dropping from our dataset those features with high VIF values before application of

the XGB algorithm.

178

 Datasets

In the study portion reported in this chapter, we continued to make use of Dataset

1, though we focused our evaluations on a Dataset 2 consisting of the Alexa Top 1M

websites. We selected as malicious websites those from the Alexa Top 1M that were

found in threat intelligence data provided by Cymon.io [193]. For benign websites, we

chose those that appeared in the Alexa Top 1M but did not appear in the Cymon.io threat

intelligence information. For clarity, we refer to the dataset used in Chapters 4–7 as

Dataset 1 and to the new dataset of Alexa/Cymon.io websites as Dataset 2.

 Analysis Approach

To explore additional (and larger) datasets, it was necessary for us to perform

analysis more efficiently than we had performed the analysis in previous portions of our

inquiry. Thus, we narrowed our focus to an RF classifier, which had proven to be the

among best performing classifiers in our prior studies and performed well in related

research as well. Additionally, we leveraged the class weight parameter available in

the SciKit library, which can be an alternative to over-sampling and under-sampling.

 Results

 RQ8: How Robust are Malicious Website Detection Models when Applied to

a New Dataset?

We began our investigation by applying to Dataset 2 the RF model built in the no-

sampling scenario with the 34 features in Table 7-1.

8.5.1.1 Evaluation on Previous Models

First, we evaluated the performance on the new dataset of our best-performing

model from Chapter 7, the RF model. We built this RF model with the 34 features

179

identified in Chapter 7. Table 8-1 below shows the performance of the RF model on

Dataset 2, the new dataset of Alexa Top 1M with Cymon.io [193] threat intelligence data

as ground truth.

Table 8-1.

Applying the Best Random Forest Classifier Built in Chapter 7

from Dataset 1 to Dataset 2 Yielded Poor Detection Results

Detecting Malicious Websites in Dataset 2 with a Model Built with Dataset 1

FPR FNR ACC AUC MCC Prec Rec

0.5599 0.4846 0.4432 0.4778 -0.0179 0.0384 0.5154

As shown in Table 8-1, results demonstrated poor metrics and an inability to

classify the new dataset. This observation was similar to that made by Ma et al. [35], who

observed high errors when training and testing datasets from different sources. This

observation prompted further investigation into the datasets and potential causes.

However, from the results in Table 8-1, we observed that we could not directly apply the

model derived from Dataset 1 to Dataset 2.

8.5.1.2 Feature Correlation Investigation

To investigate potential causes for the poor performance of our model, we began

to examine Dataset 2 and compare it to Dataset 1. We first analyzed the correlation of

each variable to the target variable (whether the website is malicious) in order to

determine whether there were differences between the respective correlations for the

features in Dataset 1 and Dataset 2. We did this on three different sets: the 34 features

identified by our research and reported in Chapter 7; the 99 features gathered from prior

research and reported in Chapter 7; and the 288 features remaining after removing

features that were consistent at least 95% of the time and that had high VIF values before

application of the XGB algorithm. By expanding our analysis to the 99-feature and 288-

180

feature sets, we gained insight into whether there were additional features that had high

correlation with the target variable, in case they were applicable to Dataset 1 but not to

Dataset 2 or vice versa. Tables 8-2 and 8-3 show the correlation values for the 34 features

and the 99 features on Dataset 1 and Dataset 2. Table D-1 in Appendix D shows the

correlation values for the 288 features on Dataset 1 and Dataset 2.

Table 8-2.

The 34 Features Identified for Detection in

Chapter 7 Had Different Correlation Values

for Dataset 1 and Dataset 2

Correlation with Maliciousness for Identified on Datasets 1 and 2

Feature Dataset 1 Dataset 2

URL Length 0.5245 0.0188
Count of ‘.’ character 0.5078 0.0159
Total Extensions in URL 0.4672 0.0006
content-encoding gzip 0.4350 0.0027
Count of ‘w’ character 0.3821 0.0022
Count of ‘z’ character 0.3129 0.0074
Count of ‘y’ character 0.2854 0.0103
transfer-encoding chunked 0.2797 0.0102
Count of ‘i’ character 0.2566 0.0096
Total HTML Tags 0.2370 0.0007
<script async=”true”> 0.2170 0.0100

Total href attributes 0.1946 0.0001
cache-control max-age 0.1934 0.0108
Count of ‘l’ character 0.1934 0.0101
Count of <a> tag 0.1867 0.0009
<link href> relative 0.1857 0.0009
<link href> OoD 0.1822 0.0173
<a href> OoD 0.1748 0.0019
<link type=”text/css”> 0.1704 0.0148
Count of ‘f’ character 0.1655 0.0057
Count of ‘p’ character 0.1493 0.0055
 0.1490 0.0041
<iframe src=”*..html”> 0.1221 0.0046
url extension is .com 0.1415 0.0205
via 1.1 0.1085 0.0135
Count of <p> tag 0.1048 0.0032
Count of <meta> tag 0.1008 0.0103
 0.0995 0.0062
<form action=”http*”> 0.0832 0.0045
server apache 0.0745 0.0043
 0.0708 0.0095
push() 0.0471 0.0008
Count of <center> tag 0.0335 0.0035
vary user-agent 0.0226 0.0083

181

Table 8-3.
The 99 Features from Prior Research Had Different Correlation Values

for Dataset 1 and Dataset 2

182

Table D-1 in Appendix D shows that the count of “-“ characters had high

correlation with the target variable. From Tables 8-2 and 8-3, we observe that the features

that have high correlation with the target variable in Dataset 1 no longer have a high

correlation with the target variable in Dataset 2. This suggests there are differences

between these datasets and this is one potential cause for the poor performance. We did

notice however, that counts of the “-“ had high correlation (0.3660) in Table D-1

(Appendix D). This observation is noted for the remainder of this experiment.

8.5.1.3 T-SNE Analysis

Given the poor results in Table 8-1, we also analyzed the distribution of features.

We analyzed the distribution of the 34 features used to build the model, the 99 features

gathered from prior research, and the set of 288 features remaining after removal of

consistent features and high-VIF features. We applied t-distributed stochastics neighbor

embedding (t-SNE) [241] (a non-linear, dimensionality-reduction technique that helps

visualize high-dimensional data) on the 34 features and on each individual feature

category. We used t-SNE, an exploratory analysis technique, to visually compare the

features from both sets. We took a sample of 5,000 websites from both datasets in each

case. We first performed t-SNE on the 34 features. Results are shown in Figure 8-1.

183

Fig. 8-1. T-SNE analysis performed on the features identified in Chapter 7 from a sample of 5,000

websites from Dataset 1 and Dataset 2 showed no clusters for malicious websites

We then separately performed t-SNE on the webpage content, URL, and HTTP

header features. Results are shown in Figure 8-2, Figure 8-3, and Figure 8-4 below.

Fig. 8-2. T-SNE analysis performed on the webpage content features collected

in Chapter 4 from a sample of 5,000 websites from Dataset 1 and Dataset 2

showed no clusters for malicious websites

184

Fig. 8-3. T-SNE analysis performed on the URL features collected

in Chapter 5 from a sample of 5,000 websites from Dataset 1 and

Dataset 2 showed clusters for malicious websites on Dataset 1

Fig. 8-4. T-SNE analysis performed on the HTTP header features collected

in Chapter 6 from a sample of 5,000 websites from Dataset 1 and Dataset 2

showed no clusters for malicious websites

We did not observe any clusters for the malicious websites in Figures 8-1 and 8-2,

though we did see a cluster in Figure 8-3 (URL features) for Dataset 1 that was not

185

present from Dataset 2. Additionally, we observed that URL features (see Chapter 5)

produced higher accuracies compared to the other features. We also observed a small

cluster in Dataset 1 (see Figure 8-4). These are additional potential explanations for the

failure of the model from Chapter 7 to detect malicious websites in Dataset 2.

8.5.1.4 Statistical Tests on Dataset 1 and Dataset 2

We then performed further statistical tests to probe the differences between

Dataset 1 and Dataset 2. First, we performed a two-sample KS test [197] to determine

whether the 34 features from Datasets 1 and 2 were from the same distribution. The test

is more suited for continuous variables and is conservative for discrete variables.

186

Table 8-4.

The KS Statistics for the Identified Features

from Chapter 7 for Dataset 1 and Dataset 2

Demonstrated that the Identified Features Were

Not from the Same Distribution

Kolmogorov-Smirnov Statistic for the Features Identified in

Chapter 7

Feature statistic p-value

URL Length 0.1622 0
<link type=”text/css”> 0.1455 0
server apache 0.1176 0
<a href> relative 0.116 0
Count of <a> tag 0.1148 0
Total HTML Tags 0.1118 0
<a href> OoD 0.1102 0
<iframe src=”*..html”> 0.1079 0
push() 0.1054 0
 0.1012 0
<script async=”true”> 0.0967 1.37E-305
Total HTML Tags 0.0942 1.87E-289
 0.089 1.84E-258
Count of <meta> tag 0.0859 5.84E-241
Count of <p> tag 0.0845 4.83E-233
<link href> OoD 0.084 2.10E-230
Count of ‘l’ character 0.0792 8.19E-205
Count of ‘i’ character 0.0611 3.33E-122
 0.0525 1.76E-90
via 1.1 0.0421 2.18E-58
<form action=”http*”> 0.0372 1.58E-45
content-encoding gzip 0.0324 8.81E-35
vary user-agent 0.0316 3.82E-33
Count of ‘p’ character 0.0273 8.39E-25
Count of ‘w’ character 0.0242 1.26E-19
cache-control max-age 0.0242 1.58E-19
Count of ‘z’ character 0.0235 1.82E-18
url extension is .com 0.0217 8.33E-16
Total Extensions in URL 0.0204 5.52E-14
transfer-encoding chunked 0.0169 8.30E-10
Count of ‘.’ character 0.0161 6.88E-09
Count of ‘y’ character 0.0065 0.0802
Count of ‘f’ character 0.0065 0.0839
Count of <center> tag 0.0047 0.3592

The KS statistic, sometimes referred to as the D value, is the max distance

between the two samples (the supremum). The null hypothesis stated that there was no

difference between the two distributions. Thus, we can reject the null hypothesis if:

𝐷𝑛,𝑚 > 𝑐(𝛼)√
𝑛 + 𝑚

𝑛 ⋅ 𝑚

187

and where:

α 0.1 0.05 0.025 0.01 0.005 0.001

c(α) 1.22 1.36 1.48 1.63 1.73 1.95

Generally speaking, one can reject the null hypothesis  < 0.05, which makes D =

0.007643 for our sample sizes m = 817,130 and n = 39,183. For all of the features except

for the counts of the characters “y” and “f” and the count of the <center> element, we

can reject the null hypothesis. Additionally, we observed small p-values except for the

count of <center> elements, which is further evidence that we cannot reject the null

hypothesis for this feature. This served as further evidence that Datasets 1 and 2 were not

from the same population.

We then investigated the association between categorial features (those present in

the HTTP header features) by calculating Pearson’s chi square of association [242] and

Cramer’s phi [243] on the features from Datasets 1 and 2. Results are shown in Table 8-5.

Table 8-5.

Pearson's Chi Square and Cramer's Phi Showed that the Categorical

Features Had Different Levels of Association with Maliciousness for

Dataset 1 and Dataset 2

Association between respective features and maliciousness for HTTP columns for Dataset 1 / 2

Features Pearson Chi-square Cramer's phi p-value

cache-control set max-age 1466.8135 / 102.8165 0.1935 / 0.0109 0 / 0

content-encoding gzip 7416.1314 / 6.7207 0.4351 / 0.0028 0 / 0.0095

server apache 217.9999 /16.2768 0.0746 / 0.0043 0 / 0.0001

transfer-encoding chunked 3066.5364 / 92.4559 0.2798 / 0.0103 0 / 0

vary user-agent 20.1741 / 60.374 0.0227 / 0.0083 0 / 0

via 1.1 461.5291 / 159.1664 0.1085 / 0.0135 0 / 0

In Table 8-5, we first noticed large differences in Pearson’s chi-squared value

calculated on Dataset 1 compared to those calculated on Dataset 2, which suggested that

the features of Dataset 1 had a stronger association with a website being malicious. We

188

also observed a difference in Cramer’s phi (with 1 indicating total association and 0

indicating no association) between the respective datasets; specifically, the respective

features for training and testing had a higher association in Dataset 1 than Dataset 2. This

illustrated another difference between our two datasets. The p-value was low, indicating a

significant result.

We observed that our best performing model from Chapter 7 was unable to

accurately detect malicious websites in our new dataset. Upon further investigation,

however, we observed various differences in the respective datasets that helped to explain

this observation. However, for RQ8, we observed that we could not apply our best model

to another dataset with success.

 RQ9: How do the Features Identified Perform on a New Dataset?

Dataset 2 (the Alexa Top 1M with Cymon.io data) differed from Dataset 1 (the

Alexa with Cisco Talos data) in several ways. First, Dataset 2 was much larger than

Dataset 1 (approximately one million websites and approximately 47k websites,

respectively). Secondly, the malicious websites from Dataset 2 were gathered from threat

intelligence instead of from a security vendor. Thirdly, the two datasets were collected at

different points in time. Thus, they were ultimately different datasets. In RQ8, we

observed that we could not directly apply a detection model built in Chapter 7 to the

Dataset 2. However, we still needed to investigate whether the features identified in

Chapter 7 could successfully build detection models on this new dataset. With this

research question, then, we explored how well the features from our prior models

performed on a new (and different) dataset.

189

8.5.2.1 Retraining for Malicious Website Detection

We first explored building detection models on our second dataset, but with

features identified in Chapter 7. We split our data into training and testing data and used

the 34 features identified in Chapter 7, the 99 features gathered from prior research, and

the 288 features achieved by dropping from our dataset those features that were

consistent at least 95% of the time and by dropping from our dataset those features with

high VIF values. Results are shown in Table 8-6 below.

Table 8-6.

Retraining on the New Dataset 2 Slightly Improved Detection Ability,

But Was Not Sufficient

Performance when Training a Random Forest Classifier on Dataset 2 with Features from Dataset 1

Features FPR FNR ACC AUC MCC Prec Rec

34 Identified in Ch7 0.0001 0.9905 0.9587 0.5046 0.0827 0.7741 0.0094

99 from Prior Research 0.0007 0.9704 0.9582 0.5143 0.1315 0.6419 0.0295

288 After First Feature Selection Step 0.0038 0.9117 0.9584 0.5422 0.1968 0.4972 0.0883

We saw slightly better results for the 34 features than for the random forest

classifier in Table 8-1, with Table 8-6 showing an increase in MCC as we went from 34

features, to 99 features, and then to 288 features. However, we observed that we could

not simply re-train our model on that new dataset “as is” and that considering additional

features could be warranted.

8.5.2.2 Investigating Additional Features

In prior experiments, we noted the ability of the 34 features to detect malicious

websites, though in the previous step we observed that the 34 features did not perform

well even when we re-trained our models on the new dataset (though re-training did show

improvement over using the model from Chapter 7 “as is”). It was possible, then, that

additional features might improve our detection capabilities.

190

During our exploration, we identified two features that might show promise – the

number of special URL characters and the number of “-“ characters. To gain further

assurance regarding the promise of those two features, we first measured the correlation

(Pearson’s correlation coefficient) of the respective feature with the target variable

(whether the website was malicious). Full results are show in Table 8-7 below.

Table 8-7.

Pearson's Correlation Between Features

and Maliciousness in Dataset 2 Suggested

Ability of Two New Features for Detection

Correlation Values for Features in Dataset 2

Features Correlation

Count of ‘-’ character 0.3660

Number of Special Chars in URL 0.2456

Count of 4-character words 0.0314

Total TLDs in URL 0.0303

URL extension is “.c” 0.0277

Count of ‘a’ character 0.0262

URL TLD “co” Count 0.0257

<link href=”https*”> 0.0252

<link rel=https://api.w.org/*> 0.0248

<link type=”application/rsd+xml”> 0.0245

<link rel=”EditURI”> 0.0245

<link rel=”wlwmanifest”> 0.0243
<link

type=”application/wlwmanifest+xml”>
0.0243

<link rel=”shortlink”> 0.0243

<link rel=”canonical”> 0.024

<meta http-equiv=”content-type”> 0.0234

<meta http-equiv=”Content-Type“> 0.0234

<link rel=”dns-prefetch”> 0.0219

server nginx 0.0219

URL extension ”.com” 0.0205

URL TLD “com” 0.0205

Count of ‘u’ character 0.0199

escape() 0.0196

191

In Table 8-7, we observed that the correlation value between these two new

features was considerably higher than the rest of the features we had identified thus far.

This suggested that we might want to consider using them.

8.5.2.3 Varying Ratios of Training to Testing Data

Since we had identified additional features that might improve our detection

capability, we now rebuilt our RF model with these two features. Additionally, we varied

the train-to-test ratio (see Table 8-8 below). We tuned the model parameters with an F1

scoring metric.

Table 8-8.

Incorporating Two Additional Features Greatly Improved

Detection Ability

Performance when Retraining a Random Forest Classifier on Dataset 2 with

Identified +2 Features with Various Training: Testing Ratios

Training :

Testing FPR FNR Acc AUC MCC Prec Rec

70% : 30% 0.0772 0.2151 0.9174 0.8549 0.4591 0.3067 0.7868

60% : 40% 0.0774 0.2127 0.9169 0.8537 0.4574 0.3058 0.7848

50% : 50% 0.0774 0.2116 0.9146 0.8521 0.4512 0.2991 0.7839

40% : 60% 0.0778 0.2105 0.9170 0.8554 0.4589 0.3061 0.7883

30% : 70% 0.0620 0.2724 0.9145 0.8518 0.4508 0.3052 0.7894

20% : 80% 0.0783 0.2128 0.9160 0.8544 0.4562 0.3036 0.7871

10% : 90% 0.0791 0.2121 0.9153 0.8543 0.4544 0.3012 0.7878

After incorporating the two additional features, we saw a large performance

increase that was consistent across Dataset 2. From this observation, we postulated that

the features from Chapter 7 remained relevant, though some slight modifications would

need to be made in order to improve malicious website detection.

8.5.2.4 Identifying Training to Testing Ratio

We had observed that the addition of the two features – the number of special

characters and the number of “-“ characters – improved malicious website detection. We

also observed that the MCC remained fairly consistent as we varied the training-to-testing

192

ratio. As a result, we further investigated how much training data was actually needed to

build the models thus far. Results are shown below in Table 8-9. We tuned the model

parameters and also performed grid search on the class weight parameter of the

Scikit-Learn [29]. In Table 8-9 below, we report that we received consistent results

even when we used just 3% of the data for training.

Table 8-9.

Detection Performance When Incorporating Two Additional Features Remained Consistent with 3% of

Data Used for Training

Performance when Retraining and Tuning a Random Forest Classifier on Dataset 2 with Identified +2 Features with

Lower Training Ratios

Train:

Test Split FPR FNR ACC AUC MCC Prec Rec

Grid Search of

Class Weight

0.05:0.95 0.0796 0.2160 0.9146 0.8521 0.4512 0.2991 0.7839 No

0.03:0.97 0.0797 0.2165 0.9145 0.8518 0.4508 0.2989 0.7834 No

0.03:0.97 0.0747 0.2312 0.9187 0.8470 0.4548 0.3087 0.7687 Yes

In RQ9, we observed how well the features identified in Chapter 7 performed on a

new dataset. Alone, and even with re-training, the 34 features did not demonstrate the

ability to detect malicious websites. Upon further investigation, however, we identified

two additional features that greatly complemented the detection ability of the 34

identified features. As such, we observed that we could reuse the features from our

previous studies, though we also needed to investigate potential additions.

 RQ10: What Aspects from Prior Experiments Can We Apply to Our New

Dataset?

In RQ8, we observed that our best performing models from Chapter 7 did not

perform well on the new dataset. However, we did observe differences in the respective

training and evaluation datasets. With RQ10, we investigated the impact of using aspects

of both models on detection capability.

193

8.5.3.1 Training Dataset Evaluation

For the first step, we trained the models with both Dataset 1 and Dataset 2 and

evaluated the models using Dataset 2. Results appear in Table 8-10 below.

Table 8-10.

Incorporating Dataset 2 Into Training Did Not Improve Detection Ability

on Dataset 2 When Using Identified Features

Performance when Training a Random Forest Classifier with Identified on Dataset 1 and 2 and

Evaluating on Dataset 2 with 34 Identified Features

Fraction of Dataset 1:

Fraction of Dataset 2 FPR FNR ACC AUC MCC Prec Rec

0.8 Dataset 1: 0.01 Dataset2 0.6536 0.3917 0.3572 0.4773 -0.0189 0.0387 0.6082

0.8 Dataset 1: 0.05 Dataset2 0.7293 0.3129 0.2879 0.4788 -0.0189 0.0392 0.6870

0.8 Dataset 1: 0.1 Dataset2 0.7094 0.3350 0.3060 0.4777 -0.0195 0.0390 0.6649

0.8 Dataset 1: 0.2 Dataset2 0.7221 0.3196 0.2946 0.4791 -0.0185 0.0392 0.6803

0.8 Dataset 1: 0.3 Dataset2 0.7366 0.2991 0.2815 0.4820 -0.0162 0.0395 0.7008

0.8 Dataset 1: 0.4 Dataset2 0.7138 0.3204 0.3024 0.4828 -0.0151 0.0396 0.6795

0.8 Dataset 1: 0.5 Dataset2 0.6357 0.4109 0.3735 0.4766 -0.0193 0.0386 0.5890

In Table 8-10, we see that models trained with Datasets 1 and 2 were unsuccessful

at detecting malicious websites in Dataset 2. Therefore, we investigated whether we

could incorporate new data into the training of our models to detect threats from Dataset

1 as well as Dataset 2. We did this on the set of 34 features as well as on the set of 99

features gathered from prior research. We also varied the train to test split by training on

20%, 30%,..,70% and evaluating on 80%, 70%,..,30% respectively.

Table 8-11.

Training Models with Both Dataset 1 and Dataset 2 Slightly Improved Detection

on Both Datasets When Using Identified Features

Performance with Identified Features When Training Using Dataset 1 and 2 and Testing on Dataset 1 and 2

Train / Test Split FPR FNR ACC AUC MCC Prec Rec

20:80 0.0014 0.9211 0.9574 0.5387 0.2292 0.7199 0.0788

30:70 0.0013 0.9183 0.9576 0.5401 0.2368 0.73967 0.0816

40:60 0.0013 0.9162 0.9576 0.5411 0.2403 0.74231 0.0837

50:50 0.0013 0.9121 0.9580 0.5432 0.2468 0.74524 0.0878

60:40 0.0014 0.9114 0.9583 0.5435 0.2461 0.7360 0.0885

70:30 0.0015 0.9100 0.9583 0.5442 0.2476 0.7339 0.0899

194

Table 8-12.

Training Models with Both Dataset 1 and Dataset 2 Slightly Improved

Detection on Both Datasets When Using Features from Prior Research

Performance when Training a Random Forest Classifier with Prior Features Using Dataset

1 and 2 and Testing on Dataset 1 and 2

Train / Test Split FPR FNR ACC AUC MCC Prec Rec

20:80 0.0008 0.9190 0.9578 0.5401 0.2489 0.8153 0.0809

30:70 0.0008 0.9160 0.9579 0.5415 0.2537 0.8172 0.0839

40:60 0.0009 0.9082 0.9580 0.5454 0.2647 0.8131 0.0917

50:50 0.0010 0.9072 0.9579 0.5458 0.2645 0.8047 0.0927

60:40 0.0012 0.9002 0.9582 0.5492 0.2717 0.7908 0.0997

70:30 0.0012 0.9010 0.9582 0.5488 0.2709 0.7917 0.0989

We observed that with training, we could slightly improve our detection ability

when training and evaluating on both datasets. However, we noted a very high FNR,

which implied that this technique, despite producing a high accuracy, was not feasible.

We further investigated the impact of over-sampling with two separate techniques:

SMOTE [186] (provided by [187]) and adaptive synthetic sampling (ADASYN) [244].

Table 8-13.

Over-Sampling Slightly Decreased Detection Performance When

Training Models with Both Dataset 1 and Dataset 2 and Evaluating

on Dataset 1 and Dataset 2 with Identified Features

Performance when Training a Random Forest Classifier with Over-sampling on Dataset 1

and 2 with Identified Features and Evaluating on Dataset 1 and 2

Over-sampling method FPR FNR ACC AUC MCC Prec Rec

SMOTE 0.0048 0.9074 0.9547 0.5438 0.1947 0.4730 0.0925

ADASYN 0.0037 0.9120 0.9556 0.54212 0.2018 0.5247 0.0879

Table 8-14.

Over-Sampling Slightly Decreased Detection Performance When Training

Models with Both Dataset 1 and Dataset 2 and Evaluating on Dataset 1

and Dataset 2 with Prior Features

Performance when Training a Random Forest Classifier with Over-sampling on Dataset 1 and 2

with Prior Features and Evaluating on Dataset 1 and 2

Over-sampling method FPR FNR ACC AUC MCC Prec Rec

SMOTE 0.0066 0.8229 0.9566 0.5852 0.2976 0.5573 0.1770

ADASYN 0.0081 0.8013 0.9556 0.5952 0.3079 0.\5344 0.1986

We observed slight average improvement as well as high FNRs when using the

prior features versus the features we identified.

195

 Discussion

We first observed that even our best model performed poorly when applied “as-

is” to another dataset. However, there were differences in the dataset, particularly in the

URL features that were identified by t-SNE plots. This result was not surprising, given

that prior authors had often received high error rates when evaluating their models on

different datasets without any re-training. Additionally, we found that there were several

differences in the respective features’ correlation and association to maliciousness

between the datasets. We also observed that the features from the respective datasets did

not come from the same distribution.

Secondly, we found that the 34 features we identified in Chapter 7 and the

features gathered from prior research demonstrated potential for detection on a new

dataset, however new features needed to be incorporated to make the detection models

successful. Specifically, we explored the potential of other features via correlation, which

motivated their incorporation into a detection mechanism. Once we incorporated these

features, we saw large improvement in our detection ability.

Thirdly, we observed that even when we used both Dataset 1 and Dataset 2 for

training, we were still unable to detect malicious websites in Dataset 2. However, the

models trained from Datasets 1 and 2 were better able to detect malicious websites from

Datasets 1 and 2, but missed a substantial portion of websites, as demonstrated by the

high FNR.

 Conclusion

In this chapter, we detailed our investigation through three research questions that

explored the application of models trained on one dataset to another dataset. We first

196

observed that a model trained on another dataset could not be applied “as-is” to another

dataset with guaranteed success. This result reflected findings of prior authors, who had

often received high error rates when evaluating their models on different datasets without

any retraining.

Secondly, we found that the 34 features identified in Chapter 7 demonstrated

slight potential on a new dataset and served as a good foundation for features, though

modifications were required. Specifically, these features could be reused, but other

features needed to be incorporated based on the dataset. Once we incorporated two new

features derived from Dataset 2, we observed improvement in our detection ability.

Thirdly, we observed that even when we used both Dataset 1 and Dataset 2 for

training, we still were unable to detect malicious websites in Dataset 2. While the models

trained from Datasets 1 and 2 showed slight improvement, we still missed a substantial

portion of malicious websites.

197

Chapter 9: A Temporal Evaluation of Feature-Based Malicious Website Detection

 Introduction

Web security is a fast-moving field. Attackers and defenders are constantly

creating new techniques to confront each other [221] and detecting malicious websites,

used by attackers for phishing, drive-by downloads, and C2, is a challenge. The

adversarial environment of web security and relationship between offensive and

defensive practitioners motivates research and industry to continuously explore new

techniques and tools. Defenders in research and industry have used features and machine

learning to detect malicious websites yielding promising results. However, several studies

including [42], [50], [64], [75], and [159] have observed that detection models do not

remain robust over time. Other studies like [91] have shown success when training and

testing on data gathered across different points in time. There is a lack of clarity

regarding the ability of detection models to remain robust over time. Given that attacks

change over time, there is an inherent assumption that detection models, especially those

built with either supervised or unsupervised learning on current or past data, will

eventually become inaccurate. This assumption however, has been minimally explored.

In this chapter, we perform a temporal evaluation of feature-based malicious

website detection. We study 106,766 websites from the Alexa Top 1M [112] provided by

[176] over a period of 12 weeks. We use Google Safe Browsing [132] to label the

websites as malicious or benign. We build detection models with the random forest

algorithm and three sets of features gathered from a response to web request – 34

identified in Chapter 7 from a dataset (Dataset 1) provided by Cisco Talos Intelligence

Group [177], 99 gathered from prior research, and 41 re-selected from the dataset used in

198

this study (Dataset 3). We analyze the impact of re-training and measure the change in

websites and detection performance over time. Overall, we observe that 1) detection

models slowly degrade over time with an exponential decay however improve to a power

decay with re-training, and 2) websites (as defined by their features) change more as time

grows.

We make the following contributions:

• We present, to our knowledge, the first study of feature-based malicious

website detection that focuses on detection performance and change over

time;

• We demonstrate that while retraining detection models improves performance

and can result in a slower performance degradation, performance still

decreases over time; and

• We present a new method of analyzing and measuring change in website

datasets which enables further statistical analysis.

 Related Research

Related research in studying websites over time falls into two categories -

research focused on if and how the internet and webpages change over time, and research

into malicious website detection that includes temporal aspects (a model trained at one

point in time and applied on data from a later point in time).

Researchers in the first group focused on examining the dynamic nature of the

web. Websites change with some studies having quantified and measured this change.

Web crawlers, which iterate webpages and the internet, are useful in studying website

changes. For example, [168] used a crawler to determine that 40% of all webpages in

199

their dataset were subject to change (based on the MD5sum). The MD5sum determines

whether a sequence of bytes (in the form of a webpage [168]) changes. Features like the

webpage length and HTTP response code can also be used to determine change. For

example, [168] monitored changes in the website. Researchers [173] and [174] leveraged

additional features including word level and DOM-related features to characterize

website changes and HTML element persistence. HTTP status codes have been combined

with approaches from [170] and are used to determine the similarity of webpages to each

other, as in [169]. In [170] Fetterly expanded on [171] and observed that 40% of

webpages in their dataset changed within a week. Authors [172] aimed to infer change

rates of webpages on the web. Researchers in [175] proposed criteria and a new metric to

measure website change though this metric was not presented in the context of malicious

website detection.

While studying detection performance over time has not been the primary focus in

malicious website detection research, a few works have evaluated their detection methods

on the same dataset at a later point in time. Zarras et al. [82] evaluated Bothound on data

collected over time. On the first evaluation, their technique identified 718 domains as

malicious, 74.7% of which were found in denylists. On the second dataset, collected one

week later, they found that an additional 59 identified domains (for a total of 82.9%)

were now on denylists. Their approach specifically identified malicious domains

generated by malware. Basnet et al. [64] observed over a 900% increase in the error rate

(from 0.42% to 3.82%) when training and testing on dataset separated by three months

and investigated different training frequencies. They concluded that models must be re-

trained to adjust to changing phishing tactics.

200

Other studies have not shown much performance decrease when training and

testing models on data collected at different times however, in such studies, the

difference between training and evaluation is closer than in the studies that show a larger

performance decrease. Prophiler [45] achieved an FPR of 9.88% and an FNR of 0.77%,

but did so on a validation dataset collected immediately following the training dataset.

Some researchers have incorporated temporal aspects by evaluating live feeds of data.

Ma et al. in [36]-[37] ingested live feeds of data from a Webmail provider containing

samples of spam and phishing URLs, and leveraged online learning to investigate

different training regimens. They showed the benefits of continuous training and

observed a decrease in the cumulative error rate from approximately 2% to 1% over a

100-day period. CANTINA+ [46] observed a 92.25% true positive and a 1.375% false

positive rate when training on a dataset and evaluating on another dataset two weeks

later. Whittaker et al [42] were able to achieve a phishing detection true positive rate of

91.85% and a false negative rate of 0.01% when training on three months of data and

evaluating on another dataset two weeks later. Marchal et al. [91] achieved highly

accurate results (an AUC of 0.999) on phishing webpage detection and trained and tested

on datasets gathered one month apart.

In this chapter we focus on observing and measuring malicious website detection

performance and change over time. Like others including [36]-[37], [42], [46], [64], and

[91] we perform analysis of detection models that were trained and evaluated on datasets

gathered at different times. Also like [36]-[37] and [64], we investigate different training

frequencies. The differentiators in our study are that we 1) make the performance change

over time our main focus, 2) substantiate our observations regarding the performance

201

change with measurable rationale, and 3) limit our analysis to the same dataset gathered

over time.

 Research Questions

 Research Question 11

This research question focuses on the investigation of the performance of

detection models over time. In Chapter 7, we were able to build several detection models,

with our best performing model achieving an MCC of 0.9174 with features we identified

through feature selection. However, we had little insight into how these models would

perform over time and did not have insight into their consistency when applied on a new

dataset. In the portion of our research outlined in Chapter 8, we demonstrated that re-

training and adjusting models was needed when applying models built from one dataset

to another. Specifically, models trained on one dataset could not necessarily be applied to

another. Prior researchers have observed different results. Some have seen performance

decrease as in [64] when their training and testing sets were collected at different times

and some, like [91], have been able to achieve high detection metrics when separating

their training and testing set by a few weeks. Insight into if and how detection models

change over time may influence if and when a researcher or practioner decides to re-

evaluate or re-train their detection models. The differences of results presented in prior

research and the knowledge gained from studying performance over time leads us to the

next research question. RQ11, then, is stated as follows:

RQ11: How does detection performance change over time?

202

 Research Question 12

To understand whether detection models can remain robust over time (and to

determine the potential reasons they remain robust or fail to do so), we first must

understand whether websites change over time. Based on prior research, we hypothesized

that websites change over time and that malicious website detection models will

eventually become irrelevant and no longer be able to distinguish between benign and

malicious websites, though we had not yet established this in our research. To do so, we

determined whether the features that compose a website (and are used for detection)

change over time. Gaining insight into feature change (and whether they are capable of

detecting malicious websites or were related to features that have demonstrated the ability

to detect malicious websites) was a necessary step for constructing models that remain

relevant over time. RQ12 is stated as follows:

RQ12: Do websites change over time?

 Research Question 13

We extended RQ12 further in our final research question by evaluating website

change more thoroughly by examining feature change over time. Specifically, we

gathered several data points regarding the number of features that changed when we

compared the time between data collections. Access to 12 weeks of data enabled us to

perform various comparisons (comparing the snapshot of week one to week two, week

one to week three, and week one to week four, then comparing the snapshot of week two

to week three, week two to week four, etc.). RQ13 is stated as follows:

RQ13: If websites change over time, how much do they change over time?

203

 Approach

Our approach is comprised of three steps. In the first step we collected our dataset

(Dataset 3) over a period of 12 weeks that was derived from the Alexa Top 1M and

Google Safe Browsing. In the second step we selected feature sets to build detection

models – 34 features identified in Chapter 7, 99 features from prior research (also used in

Chapter 7), and a set of features re-selected from Dataset 3. In the final step we build and

evaluate detection models across snapshots and compare the websites (and their features)

from the respective snapshots to each other. The process is depicted in Figure 9-1 below.

Fig. 9-1. Three step approach for temporal evaluation of feature-based malicious website detection

(Images courtesy of Pixabay [22].)

Query Alexa 1M

12 Weeks

02/02/2020
𝑊1 = 𝐹ሼ𝑓𝑒𝑎𝑡𝑢𝑟𝑒1: 𝑁, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2: 𝑀, … ሽ
𝑊2 = 𝐹ሼ𝑓𝑒𝑎𝑡𝑢𝑟𝑒1: 𝑁, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2: 𝑀, … ሽ
𝑊3 = 𝐹ሼ𝑓𝑒𝑎𝑡𝑢𝑟𝑒1: 𝑁, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2: 𝑀, … ሽ

𝑓𝑒𝑎𝑡𝑢𝑟𝑒1 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑛

02/09/2020

02/16/2020

04/19/2020

𝑓𝑒𝑎𝑡𝑢𝑟𝑒1

𝑓𝑒𝑎𝑡𝑢𝑟𝑒1

=1 Week

=2 Weeks

=11 Weeks

=11 Week

=1 Week

=10 Weeks

Train with Random Forest

Test

Test

Test

Dataset 3
Selection

Data

Collection
Feb-April

2020

Internet

Re-select Features

(on Dataset 3)

Leverage Three Feature Sets
34 from Chapter 7, 99 from Prior Research, Re-selected Features

on Dataset 3

Pairwise Feature Correlation

Dataset

Collection

Feature Set

Selection

Analysis

Approach 𝑓𝑒𝑎𝑡𝑢𝑟𝑒1

Ch7 Models

204

 Dataset Collection

We derived the dataset from the websites that were consistently present in the

Alexa Top 1M over a period of 12 weeks. The choice of a period of 12 weeks was

derived from prior studies. Fetterly collected webpages over a 10- and 11-week period in

[169] and [170], respectively. Basnet [64] observed a 900% increase in error rate when

using training and testing datasets separated by three months. Beginning on February 2nd,

2020, we performed a query via Censys for the Alexa Top 1M. Over the following week,

we gathered features from the websites by performing an HTTP GET request to each

website. On each of the following weeks for a total of 12 weeks, we re-performed the

query for up-to-date Alexa Top 1M data and re-performed our gathering of data from the

respective websites. We limited our analysis to websites that were present in the Alexa

Top 1M during all 12 weeks. Hence, our final dataset consisted of snapshots of 106,766

websites that remained consistent over the 12-week period. Table 9-1 shows the number

of websites on the Alexa Top 1M that were consistent over the respective time periods.

205

Table 9-1.

A Fraction of the Websites in the Alexa

Top 1M Were Consistent Over Time

Number of Consistent Websites in Alexa Top 1M

Start Date - End Date Common Websites

2/2/2020-2/9/2020 364,106

2/2/2020-2/16/2020 281,515

2/2/2020-2/23/2020 238,459

2/2/2020-3/1/2020 203,145

2/2/2020-3/8/2020 185,673

2/2/2020-3/15/2020 164,776

2/2/2020-3/22/2020 144,578

2/2/2020-3/29/2020 129,295

2/2/2020-4/5/2020 118,418

2/2/2020-4/12/2020 111,618

2/2/2020-4/19/2020 106,766

Ground truth data (the designation of which websites were malicious and which

were benign) consisted of data gathered from Google Safe Browsing. We labeled this

dataset (106,776 websites labeled with Google Safe Browsing) as Dataset 3.

 Feature Set Selection

We narrowed our focus to the 34 features identified in Chapter 7 and to the 99

features gathered from prior research and also used in Chapter 7. The 34 features have

been identified in our studies (Chapter 7) as being able to detect malicious websites with

an MCC of up to 0.9281 on a prior dataset. The 99 features have been vetted throughout

prior research. Additionally, we re-performed the feature selection process from Chapter

7 on the new dataset in order to arrive at a third set of features for analysis in case the 34

features and 99 features were not effective on this new dataset. We used Esprima [245]

to parse the content of the HTTP response.

 Analysis Approach

Our analysis was divided into three sections corresponding to the three proposed

research questions. The process is detailed below.

206

Step 1: Investigate model performance over time

• Evaluate prior model performance

o Train an RF [98] model using Dataset 1 (from Chapters 4–7), using

the 34 features identified in Chapter 7 and the 99 features gathered

from prior research;

o Evaluate the performance of the RF model trained on Dataset 1

relative to the respective snapshots (collection of benign and

malicious websites) of Dataset 3 – the 106,766 websites, that are

consistent across the 12 weeks – and record the result;

o Identify the following:

▪ The number of website detection outcomes that are consistent

throughout the 12 weeks,

▪ The number of website detection results that changed

classification, and

▪ The accuracy of the detection results based on the ground truth

data;

• Retrain and evaluate a new RF model

o Retrain an RF detection model on the first snapshot of Dataset 3

(the Alexa Top 1M that are consistent over the 12 weeks beginning

February 2, 2020) with Google Safe Browsing as ground truth;

o Evaluate the performance of the model trained on the first snapshot

compared to the remaining 11 snapshots and evaluate the

207

performance including whether detection performance increases,

decreases, or remains constant over time;

o Retrain an RF model on each snapshot of Dataset 3 (and evaluate it

on the later snapshots) to determine the following:

▪ Whether performance increases or decreases, and

▪ How the performance compares to the model trained on the

first snapshot of data and evaluated based on the proceeding

snapshots;

o Retrain an RF model on all previous snapshots of Dataset 3 and

evaluate on all proceeding snapshots to determine:

▪ Whether performance increases or decreases, and

▪ How the performance of the model trained on the first snapshot

of data and evaluated on the proceeding snapshots compares to

the performance of the model trained on all previous snapshots

and evaluated on the proceeding snapshots.

Step 2: Determine whether websites (composed of features) change over time

We hypothesized that we would see some change in performance over time and

we performed this step to gain insight into potential reasons. For this step, we evaluated

each feature in isolation to determine whether it changed. We defined a website as a set

of key-value pairs where the key is the feature and the value is the respective

quantification of that feature. As such we defined a website as the following:

𝑊 = 𝐹ሼ𝑓𝑒𝑎𝑡𝑢𝑟𝑒1: 𝑁, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2: 𝑀, … . 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑡: 𝑍ሽ

208

where W is the website, F is a set of key-value pairs, feature1, feature2, …featuret are the

features, and N, M, and Z are integers (the respective values of each feature).

With this definition of a website, we derived a histogram from the values of a

specific feature in a snapshot. Figure 9-2 below provides a contrived example (not based

on real data and only used for demonstrative purposes) of a feature in a specific snapshot

– the number of HTML tags - which is a feature we collected in this study. This is one

example and we applied this approach to the other features in each weekly snapshot.

Fig. 9-2. Distribution of the number of HTML tags

We derived a histogram from the collection of measurements for each feature in

each snapshot. The x axis represents the value of the feature and the y axis represents

how many websites have the specific of that feature. The histogram in Figure 9-2 can be

read as; two websites have a zero for the value of the “Number of HTML Tags” feature,

three websites have a value of one for the number of HTML tags,…, and three websites

have a value of 11 for the number of HTML tags. This histogram was created for each

feature in each snapshot. This view of the data formed the basis for the statistical tests

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11

N
u

m
b

e
r
 o

f
W

e
b

si
te

s

Number of HTML Tags

Number of HTML Tags in Snapshot 1

209

used to determine which features changed and which did not change from snapshot to

snapshot. We leveraged one strategy incorporated by industry and four statistical tests.

First, we investigated the pairwise correlation between each feature in the respective

snapshots, a strategy frequently employed by industry for determining whether a model

should be re-trained. Next, we used four statistical tests – the t-test for related samples

[194]-[195], the two-sample KS test [196]-[197], the k-sample Anderson-Darling test

[198]-[199] (where k =2), and the Kruskal Wallis H test [200]-[201]. The related t-test for

the null hypothesis determined whether the two related or repeated samples had identical

average values, relied on dependent observations, and assumed normality. However,

since our sample size is large (greater than 31) we rely on the Central Limit Theorem

[246] should any data be non-normal. Furthermore, [247] validates the reliance on the

Central Limit Theorem for large (and potentially non-normal) datasets. The two-sample

KS tested that two independent samples were drawn from the same distribution and

required independent observations. The k-sample Anderson-Darling [198]-[199] tested

that k-samples were drawn from the same population and required independent

observations. The Kruskal Wallis H test [200]-[201] tested whether the population

median of all the groups was equal (the test is a non-parametric version of ANOVA

[248]) and also required independent observations. We considered two possibilities of the

samples in our dataset – the samples are dependent (or related) and the samples are

independent. An argument can be made for both cases. In the case of dependent

observations, the most appropriate test was the related t-test, since the samples could be

considered related (the same websites collected over time). However, given the dynamic

nature of the internet and the novelty of studying feature change in this manner, we also

210

adopted the view that websites collected at different times could be considered

independent, or not related. Hence, we also used the other three tests – the two-sample

KS test [196]-[197], the k-sample Anderson-Darling [198]-[199], and the Kruskal Wallis

H test [200]-[201] – and observed the outcomes.

 Results

 RQ11: How does Detection Performance Change Over Time?

For this research question, we applied to Dataset 3 the RF model built from

Dataset 1 with 34 features identified in Chapter 7 and the RF model built from Dataset 1

with 99 features gathered from prior research. Tables 9-2 and 9-3 below present a

summary of the number of websites that were consistent and the number of websites that

changed.

Table 9-2.

The Detection Model Built from

Dataset 1 with 34 Features

Remained Consistent on Dataset 3

Website Prediction Based on Mode Trained on

Dataset 1 and 34 Identified Features

Consistency Status Number Percent

Consistent Benign 89257 83.6

Consistent Malicious 438 0.4

Failed Collection 7794 7.3

Changes 9277 8.7

Table 9-3.

The Detection Model Built from

Dataset 1 with 99 Features

Remained Consistent on Dataset 3

Website Prediction Based on Mode Trained on

Dataset 1 and 99 Prior Features

Consistency Status Number Percent

Consistent Benign 89204 83.5

Consistent Malicious 491 0.5

Failed Collection 7794 7.3

Changes 9277 8.7

211

Tables 9-2 and 9-3 show the metrics of classification consistency from the models

built from the 34 features and 99 features from Dataset 1 and applied to Dataset 3. In both

cases approximately 84% of the websites were consistently classified as benign; 0.4% of

the websites were consistently classified as malicious; 7% had at least one failure during

collection; and 9% changed their classification over the 12 weeks. Although we had 85%

of the websites with no collection failures (the connection timed out, the connection was

blocked, etc) that were consistent with respect to their classification by the models built

in Chapter 7, we did not yet know how well those the respective models performed (if

they were accurate). To determine this, we captured performance metrics and used

Google Safe Browsing as the ground truth. Results are shown in Tables 9-4 and 9-5.

212

Table 9-4.

The Model Trained on Dataset 1 with 34 Features

Performed Consistently Poorly When Applied to Dataset 3

Performance of Random Forest Classifier Trained On 34

Identified Features on Dataset 1 Applied to Dataset 3 Over Time

Week FPR FNR AUC MCC Prec Rec

2/2/2020 0.0044 0.9822 0.5066 0.0311 0.0989 0.0177

2/9/2020 0.0045 0.9829 0.5062 0.0289 0.0934 0.0170

2/16/2020 0.0045 0.9833 0.5060 0.0279 0.0907 0.0166

2/23/2020 0.0046 0.9830 0.5061 0.0281 0.0909 0.0169

3/1/2020 0.0045 0.9829 0.5062 0.0291 0.0938 0.0170

3/8/2020 0.0045 0.9833 0.5060 0.0281 0.0918 0.0166

3/15/2020 0.0045 0.9829 0.5062 0.0288 0.0928 0.0170

3/22/2020 0.0045 0.9826 0.5063 0.0295 0.0949 0.0173

3/29/2020 0.0046 0.9831 0.5060 0.0279 0.0907 0.0168

4/5/2020 0.0046 0.9823 0.5065 0.0299 0.0952 0.0176

4/12/2020 0.0047 0.9831 0.5060 0.0276 0.0896 0.0168

4/19/2020 0.0046 0.9838 0.5057 0.0267 0.0884 0.0161

Table 9-5.

The Model Trained on Dataset 1 with 99 Features

Performed Consistently Poorly When Applied to Dataset 3

Performance of Random Forest Classifier Trained On 99 Prior

Features on Dataset 1 Applied to Dataset 3 Over Time

Week FPR FNR AUC MCC Prec Rec

2/2/2020 0.0035 0.9837 0.5063 0.0326 0.1108 0.0162

2/9/2020 0.0036 0.9841 0.5061 0.0313 0.1067 0.0158

2/16/2020 0.0036 0.9840 0.5061 0.0316 0.1076 0.0159

2/23/2020 0.0036 0.9837 0.5062 0.0322 0.1090 0.0162

3/1/2020 0.0035 0.9840 0.5061 0.0317 0.1081 0.0159

3/8/2020 0.0035 0.9845 0.5059 0.0310 0.1069 0.0154

3/15/2020 0.0035 0.9845 0.5059 0.0307 0.1055 0.0154

3/22/2020 0.0036 0.9842 0.5060 0.0313 0.1073 0.0157

3/29/2020 0.0036 0.9846 0.5058 0.0298 0.1030 0.0153

4/5/2020 0.0036 0.9838 0.5062 0.0318 0.1079 0.0161

4/12/2020 0.0037 0.9846 0.5058 0.0297 0.1025 0.0153

4/19/2020 0.0036 0.9849 0.5056 0.0292 0.1018 0.0150

In both cases, the models built on the 34 identified features and 99 prior features

performed only slightly better than random on each snapshot. (We saw an MCC of

0.0311 for the model built with the 34 features, and an MCC of 0.0326 for the model

built with the 99 features.) We went on to investigate the performance of models over

time, our primary goal being to gauge how long models would remain accurate for

detection before becoming out-of-date. To that end, we trained an RF detection model on

the first week of collection and evaluated its performance on the remaining 11 weeks of

collection. We used Google Safe Browsing as ground truth data for evaluating the

213

accuracy. For re-training, we used the 34 identified features from Chapter 7 derived from

Dataset 1, the 99 features gathered from prior research, and 41 re-selected features from

Dataset 3. We performed re-selection on Dataset 3 in case there was another set of

features that better suited Dataset 3, following the same process outlined in Chapter 7 for

feature selection. Figure 9-3 below shows the performance of the models trained on the

first week of collection and applied to the 11 subsequent weeks. We focused on the MCC

and FNR. The FPR is not shown because it only changed slightly and was very low

(approximately equal to or less than 0.01% over all measurements). Full results can be

found in Appendix D.

Fig. 9-3. Performance consistently decreased when training on the first snapshot of Dataset 3 and

evaluating on future snapshots

In all three cases, we observed a decrease in MCC over the 12 weeks; over the

same period, we observed an increase in the FNR with all three sets of features. We also

observed that the model built from 99 features performed slightly better over time than

the model built with 34 features, although both models exhibited similar behavior with

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
C

C
 a

n
d

 F
N

R

Week

Performance Over Time with 34, 99, Re-selected Features

MCC (34)

FNR (34)

MCC (99)

FNR (99)

MCC (Re-selected)

FNR (Re-selected)

214

respect to performance degradation over time. We observed that the model built from re-

selected features outperformed the model built from 34 features from Chapter 7, but it

underperformed when compared to the model built from the 99 features gathered from

prior research. Additionally, we observed that the performance (MCC) of models built

from all three feature sets decreased with an exponential decay N = N0e
-λt which we

determined by performing linear and non-linear regressions on the sequence of data

finding the regression with the smallest error. On the linear regressions, we observed R2

values 0.9803, 0.9918 and 0.9961, for the 34, 99, and re-selected features with p-values

of 5.43E-9, 1.04E-10, and 3.56E-12, respectively.

We then examined whether and how re-training could improve the ability to

distinguish between benign and malicious websites. To do so, we re-trained on each week

and evaluated on all subsequent weeks. The results were similar when re-training on the

different snapshots. See Figure 9-4 for the results of re-training on the sixth week. Full

results appear in Appendix D.

Fig. 9-4. Performance temporarily increased when retraining, but still consistently decreased over time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
C

C
 a

n
d

 F
N

R

Week

Performance Over Time with 34, 99, Re-selected Features Retrained on 6th

MCC (34)

FNR (34)

MCC (99)

FNR (99)

MCC (Re-selected)

FNR (Re-selected)

215

When re-training on the sixth snapshot (taken March 8th, 2020), we observed a

performance increase when applying the re-trained models (with 34, 99, and re-selected

features, respectively) to the following weeks, followed by a decrease similar to the

model performance from Figure 9-3. After re-training, we also observed that the

performance for all three feature sets decreased according to a power rule N = N0t
-n based

on the result of performing non-linear and linear regressions. On the linear regressions,

we observed R2 values 0.9499, 0.9719 and 0.9825, for the 34, 99, and re-selected features

with p-values of 9.5E-4, 2.9E-4, and 1.1E-4, respectively. Additionally, the MCC and

FNRs of models trained on the snapshot taken the week of March 8th, 2020 and evaluated

on the data from weeks 6, 7, …11, was approximately equal to the MCC and FNR of the

model trained on February 2nd, 2020, and applied to the February 9th, 2020, snapshot

(Figure 9-3).

Fig. 9-5. Model performance improved and remained more robust when training on several snapshots

of prior data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
C

C
 a

n
d

 F
N

R

Week

Performance Over Time with 34, 99, Re-selected Features Retrained on all Prior Weeks

MCC (34)

FNR (34)

MCC (99)

FNR (99)

MCC (Re-selected)

FNR (Re-selected)

216

We then evaluated the impact of using all of the previous weeks as training data

instead of using just the previous week. Results are shown in Figure 9-5, with full results

appearing in Appendix D. When doing so, we noted improvement in the performance

(MCC and FNR). We observed a decrease in performance on the subsequent weeks,

though the decrease was slower than that for the models that were trained on a single

snapshot of data. Again, the model built from 99 features performed the best and the re-

selected features outperformed the 34 features identified in Chapter 7, though the

difference between the three was smaller (see Figure 9-5 versus Figures 9-4 and 9-3).

Figure 9-5 displays the observed power decrease for the 34 features and the re-selected

features and there is an observed exponential decrease for the 99 features. On the linear

regressions, we observed R2 values 0.9869, 0.9919 and 0.9914, for the 34, 99, and re-

selected features with p-values of 6.38E-5, 2.41E-5, and 2.75E-5, respectively. Thus, we

observed that the model’s ability to distinguish between malicious and benign websites

decreased over time, specifically, with a rise in FNR.

With RQ11, we investigated the performance of detection models over time. To

do so, we first examined the models built from Dataset 1 (see Chapter 7). We found

consistency in the number of benign and malicious websites, with approximately 92% of

the websites maintaining the same classification over time (based on our RF model built

on Dataset 1 with 34 identified features and with 99 features gathered from prior

research). Although our model was consistent, it performed poorly. Thus, the model built

from Dataset 1 was not able to distinguish between malicious and benign websites. The

performance (MCC) of the models was approximately 0, indicating that the classifier was

217

roughly random and therefore did not provide insight into detection ability over time and

was not useful for this study.

In order to create a model that performed well, we re-trained three RF models

with different feature sets on the first snapshot of data from Dataset 3 (the Alexa Top 1M

domains that were consistent over 12 weeks, with the Google Safe Browsing as the

ground truth). That is, we re-trained on the first snapshot of data (gathered February 2nd,

2020) and evaluated the performance on the subsequent weeks. When doing so, we

observed an MCC of 0.8960 and an FNR of 0.1906, followed by a performance decrease

(a decrease in the MCC) and an increase in the FNR for each subsequent week when

using the 34 identified features. The FNR on the last snapshot (taken April 19th, 2020)

was 48.46% for the model built from 34 identified features. This result was similar to

results for the models built with 99 features and with re-selected features. The decrease in

performance was exponential over time without re-training, but by the sixth week of

evaluation, we observed FNRs of approximately 30% for the 34 and 41 re-selected

features, and of approximately 20% for the 99 features gathered from prior research.

These results (and additional results from the other feature sets) indicated that while

detection models may be sufficient for the short term, they cannot be guaranteed to work

for an extended period of time. This observation aligned with general intuition about the

dynamic nature of the internet in an adversarial environment of threat detection.

However, the large performance decrease was due to the increasing FNR. The FPR

stayed lowed during each iteration (we recorded a max FPR of 0.0032%, 0%, 0.0085%,

for the models built from 34, 99, and re-selected features, respectively). This bodes well

218

for potential incorporation into detectors since triaging false positives is a major problem

for security teams [240].

Re-training frequently (in this case, every week) improved performance

temporarily, but still resulted in a performance decrease over time with all three feature

sets. However, re-training on all prior snapshots resulted in better performing models that

remained more robust (their performance decreased more slowly). Additionally, re-

training slowed the performance degradation from e-t to t-n in five of the six re-training

scenarios based on finding the respective regression with the lowest error. As a result, we

postulated that detection models decrease in performance over time, need re-training, and

benefit from re-training on various instance of past data.

 RQ12: Do Websites Change Over Time?

In this next step, we determined whether websites changed over time by

examining whether the features that composed those websites changed. To do so, we first

examined the pairwise correlations between the respective features to determine any

changes. We examined the pairwise correlations between every feature in the respective

snapshots (6,160 feature pairs in total) and did so for each feature studied in this chapter.

For example, we calculated the correlation between the “Number of HTML tags” feature

and the number of <a> tags and did this for each of the twelve snapshots. To determine if

there were any changes in the pairwise correlations, we looked for outliers as defined by

the IQR (Inter Quartile Range) among the sequence of 12 measurements for each

pairwise correlation. When doing so on all possible feature pairs, we identified 41 feature

pairs (out of 6,160 possible feature pairs) of which each had a single outlier

measurement. That is, 41 feature pairs had only a single outlier measurement of the 12

219

total measurements and the other 6,119 feature pairs had no outlier measurements. Thus,

our analysis did not reveal much change in pairwise correlations between the respective

snapshots. We next applied four statistical tests to features in the respective snapshots to

determine if the feature changed. We did this in a pairwise manner (from the February 2nd

snapshot to the February 9th snapshot, from the February 2nd snapshot to the February 16th

snapshot, etc.). Results are shown in Figure 9-6 with a significance level of 10%, chosen

because we manually inspected the data and observed many p-values just over 0.05 and

chose 0.10 (10%) in order to capture these features. We ignored URL features since they

do not change.

Fig. 9-6. More features changed as the time period lengthened

All four tests showed that the number of changing features increased as the time

period lengthened. Although the values were different for all tests, there was an upward

trend in the number of features that changed for each test. However, for the two-sample

0

5

10

15

20

25

30

35

40

45

N
u

m
b

er
 o

f
F

ea
tu

re
s

Time Period (First Snapshot - Second Snapshot)

Feature Changes Over Time with 10% Significane Level

Rel T-test

2-sample K-S

k-sample Anderson Darling

Kruskal Wallis H-test

220

KS and Kruskal Wallis H test [200]-[201], we observed a greater change for the time

period of February 2nd through March 22nd than for the time period of February 2nd

through March 29th . All of the data points compared the features collected on February

2nd to the end date separated by a “-.”

In addition to measuring the number of features that changed over the respective

time periods, we also examined the feature importance associated with the respective

features that changed. Figure 9-7 shows the total importance of the features that changed

within the three feature sets between February 2nd and April 19th.

Fig. 9-7. The features that change represented more than 1/3 of total feature importance

Of the features that changed over the time period measured, approximately 38%–

40% of the total feature importance was contained in these features across the three

feature sets. Thus, the features that changed were influential in determining whether or

not a website was malicious in that they captured non-trivial amount of feature

importance. Additionally, approximately 24%-37% of the features in the respective

datasets were URL features (which do not change over time). Figure 9-8 shows the

cumulative importance of URL features.

0.36

0.37

0.38

0.39

0.4

34 Identified Features Re-selected Features 99 Prior Features

T
o
ta

l
Im

p
o
rt

an
ce

Feature Set

Importance Captured in Changing Features Per Feature Set

221

Fig. 9-8. More than 20% of total feature importance was derived from URL features

After identifying the total importance from the features that changed over time,

we then examined how much total importance changed over each week. This was

calculated by examining the features that changed during each time period and summing

their importance for each interval. Results are shown in Figure 9-9, based on the related t-

test.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

34 Identified Features Re-selected Features 99 Prior Features

T
o
ta

l
Im

p
o
rt

an
ce

Feature Set

Importance Captured in URL Features

222

Fig. 9-9. Feature importance changed more as the time gap became larger when using the

related sample t-test

Results from this test showed less than a 0.02 change in feature importance from

February 2nd, 2020 to March 8th, 2020 over the three feature sets within the first few

weeks. We then examined the feature importance that changed when we considered as

“changed” those features that changed on at least one of the four tests. This is shown in

Figure 9-10.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Im
p

o
rt

an
ce

 C
h

an
g
e

Date Range

Total Feature Importance Change Between Dates Based on Related Sample T-test

34 Identified Features

Re-selected Features

99 Prior Features

223

Fig. 9-10. When using several tests, feature importance changed more as the time gap increased

The results shown in Figure 9-10 are similar to the results shown in Figure 9-9 in

that the first few weeks showed little importance change followed by larger importance

change in the last weeks. Thus, we observed that the features that compose websites do

change and that those features accounted for roughly 40% of the total feature importance

in the respective feature sets, confirming that websites do change over time.

With RQ12, we investigated whether websites changed over time. We focused the

analysis on the features that compose a website and on those used for discriminating

between malicious and benign websites. All four statistical tests demonstrated that the

number of features that change over time increased. Additionally, we found that the

features that change over time accounted for a non-trivial amount of feature importance

in our detection model. Thus, we postulated that websites, as defined by their features

that can be used for malicious website detection, change over time.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

F
ea

tu
re

 I
m

p
o
rt

an
ce

 C
h

an
g
e

Date Range

Total Feature Importance Change Between Dates Based on All Four Tests

34 Identified Features

Re-selected Features

99 Prior Features

224

 RQ13: If Websites Change Over Time, How Much do They Change Over

Time?

To answer RQ13, we used techniques and tests similar to those used in RQ12, but

we measured the results as a function of the number of weeks that had passed. In other

words, instead of comparing each week to the first week, as we did when answering

RQ12, we compared each week to each of the other weeks. For example, we performed

analysis on the data and changes between the weeks of March 2nd and March 9th, the

weeks of March 2nd and March 16th, the weeks of March 2nd and March 23rd, etc. As a

result, we obtained a series of measurements as a function of the number of weeks. We

obtained 11 measures where the week difference was 1 week, 10 measurements where

the week difference was 2 weeks, 9 measurements where the week difference was 3

weeks, etc.

First, we examined the average number of features that changed over time as a

function of the week difference. Results are shown in Figure 9-11.

225

Fig. 9-11. The average number of features that changed over time increased with the lengthening

of the time period

As with the findings from RQ12, Figure 9-11 showed the constant upward trend

we observed in the number of features that changed over time. Box plots of the respective

feature changes based on the respective tests are shown in Figures 9-12, 9-13, 9-14, and

9-15.

Fig. 9-12. Box plot for the number of features

that changed over time, per related sample t-test

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11

A
v
er

ag
e

N
u

m
b

er
 o

f
F

ea
tu

re
s

T
h

at
 C

h
an

g
e

Time Difference (Weeks)

Average Number of Features Changing Over Time with 10% Significance Level

Rel T-test

2-sample K-S

k-sample Anderson Darling

Kruskal Wallis H-test

226

Fig. 9-13. Box plot for the number of features

that changed over time, per two-sample KS

Fig. 9-14. Box plot for the number of features

that changed over time, per k-sample Anderson-Darling

Fig. 9-15. Box plot for the number of features that

changed over time, per the Kruskal Wallis H test

We observed overlap in the box plots for the number of features that changed

when the time difference was one week and two weeks. Although we made this

observation, the fact that a similar number of features changed when the time difference

227

was one or two weeks did not appear to have improved detection results since there was

no overlap in the box plots for the performance as a function of the time difference (with

the exception of a few outlier measurements). Results are shown in Figures 9-16, 9-17,

and 9-18 below for the 34, re-selected, and 99 features, respectively.

Fig. 9-16. Capturing several measurements as a function of time

further demonstrated performance decrease when using 34 features

for malicious website detection

Fig. 9-17. Capturing several measurements as a function of time

further demonstrated performance decrease when using re-selected

features for malicious website detection

228

Fig. 9-18. Capturing several measurements as a function of time

further demonstrated performance decrease when using 99 prior

features for malicious website detection

We investigated the number of features that changed by analyzing all possible

pairs. Findings further supported the conclusion that features changed over time and that

the change followed an upward trend while performance followed a downward trend.

With RQ13, we verified our initial observations from RQ12 by performing an

additional analysis and calculating the results when comparing the features over every

possible combination of snapshots to gauge how much websites changed over time and if

the change was consistent. We knew that websites are updated over time, but to our

knowledge, this is the first study that attempted to evaluate how websites change with

regard to malicious website detection. We observed that the longer the time period

between model training and model use, the worse the performance of the original model

and the more features changed. This finding supported our observation from RQ11

regarding the need to frequently re-train. As features begin to change, models will

become stale and experience changing performance metrics. We observed a decrease.

Thus, we demonstrated that websites do change over time and that the changes become

229

larger as the timeframe increases, a finding that highlights the need to re-train detection

models.

 Conclusion

This chapter included a temporal evaluation of feature-based malicious website

detection. In this chapter, we detailed our investigation into whether detection models

remained effective over a period of time and the different strategies we used for re-

training. Additionally, we provided insight into whether and how websites changed over

time and demonstrated that as websites change (in the form of their features), the

performance of detection models consistently decreased without re-training.

230

Chapter 10: Limitations

This dissertation included several studies on feature-based malicious website

detection. However, it was not without limitations. In this chapter we discuss the

limitations present throughout this research.

 Dataset Selection

The first limitation originated from dataset selection. In related security research,

authors used different techniques to create datasets of benign and malicious websites.

Some authors implemented web crawlers or used randomly selected URLs or similar

methods to identify and collect websites to supplement or define their datasets [35]-[37],

[40], [42]-[44], [46], [49]-[50], [81], [91], [95]. Others used established or well-known

datasets as part of their datasets [24], [47]-[48], [86], [89], [116]-[117]. Both approaches

to defining and curating datasets of benign and malicious websites include inherent

subjectivity. We based our datasets (Dataset 1 used in Chapters 4-7, Dataset 2 used in

Chapter 8, and Dataset 3 used in Chapter 9) from external sources – the Alexa top 1M,

Cisco Talos Intelligence Group, Cymon.io, and Google Safe Browsing in an attempt to be

objective and lessen our influence in our studies.

In our studies in Chapters 4-7, we assumed that popularity and high Alexa rank

were benign traits, though this may not always be true. To investigate our assumption, we

verified with threat intelligence feeds from Cymon.io [193], a tool that accumulates threat

intelligence. In 2018, we observed that approximately 5% of the websites in our benign

list appeared in the Cymon.io database. While the appearance in, or absence from, the

Cymon.io database does not confirm the benign or malicious nature of the website, given

that only 5% of our benign websites were present in Cymon.io, we demonstrated that the

231

assumption of popularity as a trait of benign websites was reasonable. This observation

suggests that at most 5% of our benign data was mislabeled. Also, our dataset in Chapters

4-7 represented a specific point in time. Internet security and the web are ever-changing

environments, providing no guarantee that our findings will remain true should this

experiment be repeated on a different dataset. This limitation is difficult to avoid in

dynamic environments like the internet. We did however address this limitation with our

study in Chapters 8 and 9.

For purposes of our study, a website was considered “malicious” if it was

associated with any attacks including phishing, drive-by downloads, or C2 infrastructure.

“Malicious” does not have a precise, standardized definition in a cybersecurity context,

so definitions may vary. Therefore, we run the risk of disagreeing with other researchers

who may define “malicious” differently.

 Feature Challenges

There are some limitations present in the features themselves. Webpage content

provides a rich environment for feature collection, a fact that we took full advantage of in

conducting our research. However, the extent to which HTML and JavaScript can be

studied is vast, and some methods from previous research present challenges when

attempting to combine many different analysis techniques. For example, HTML can

contain many URLs. Although we analyzed properties of these URLs in our collection,

URL analysis itself is vast, encompassing several detection means that were not

compatible with our approach. The JavaScript on the webpage posed the same challenge.

Our approach was static and therefore did not include the several dynamic approaches to

JavaScript that exist. Thus, feature collection and analysis for webpage content is

232

challenging as a result of the many different features that can be collected and as a result

of the many different analysis techniques.

The gathering of JavaScript features posed another limitation. We gathered our

JavaScript features statically, which has been done in prior research, but because

malicious JavaScript is often obfuscated, it presents a challenge to analysis. Potential

mitigations include adding a de-obfuscator or instrumenting the collection environment to

record the specific JavaScript methods executed. This requires additional overhead and

potentially runs the risk of executing malicious script while attempting to perform feature

collection.

Additionally, our set of URLs consisted of English URLs, a choice that greatly

influenced the lexical features we extracted in our research. Should our dataset have

contained URLs with non-English characters, we would have needed to modify our

feature set and collection mechanism to account for this. URL features are very flexible

since URLs consist simply of strings of characters. As a result, they can be analyzed in

many ways. Given this flexibility, there was a risk that our approach – examining n-

grams on the URL – may not have been the optimal approach for analyzing URLs. Given

the existence of many different analysis techniques, it is challenging to identify the single

best analysis technique.

The selection of HTTP header features also limited us. HTTP header analysis

requires substantial data cleaning and validation due to the prevalence of custom headers,

misspellings, and so on. For our exploration into HTTP header features and their

applicability to detect malicious websites, we focused on collecting and cleaning headers

received in a response to a GET request. While this provided a rich set of features, we

233

did not collect session-based features or those features arising from HTTP requests and

responses over a period of time. In addition, we used HTTP features in isolation, rather

than in combination with other website features.

 Comparison with Other Works

Benchmarking our work to related research was a challenge. Prior researchers

used different datasets, features, and performance metrics, collected their data at different

times, or focused on different aspects, such as the speed of website classification or other

metrics. This points to a broader problem in the field of cybersecurity – a lack of

repeatability – that hinders validation and comparison.

 Additional Limitations

The last limitations came from our last two chapters where we explored additional

datasets and performed a temporal evaluation of malicious website detection. The main

limitation but also key finding in Chapter 8 was that the ability to apply feature-based

detection to malicious websites was dependent upon the datasets themselves. After we

demonstrated that we could not apply a model built with one dataset to another, we then

observed differences with correlations and association between the features studied on

the respective datasets. If we had used two similar datasets, our results most likely would

have demonstrated better detection. Although this was a challenge, this observation also

is key to assessing the real-world application of this method.

For Chapter 9, we chose a dataset source (the Alexa 1M) that is leveraged in

various studies, and ensured consistency by only studying websites that appear in the

Alexa Top 1M in each of the 12 weeks. Although our dataset has objective rationale,

there was some subjectivity in choosing a dataset. Additionally, we scoped our study to a

234

period of 12 weeks or approximately 90 days. From prior research we observed that

detection performance decreases after 1-3 months and this is the basis for the 12-week

period of this study. Studies on website change have also spanned approximately three

months. Although the 12-week duration was based on prior research, it too was

somewhat subjective.

Another limitation with Chapter 9 resulted from the notion of measuring website

changes over time. Because little work has been completed in the field with respect to

malicious website detection change over time, we found no agreed-upon method for

analysis. Furthermore, few statistical tests are designed for measuring website change.

We chose four tests that appeared to be the most appropriate and their results were

similar, though the lack of a universally agreed-upon method and test for measuring

website change posed a challenge.

Lastly, the dynamic nature of the internet created a limitation for our research in

Chapter 9. Some websites change quickly, while others change more gradually. We use a

week-to-week analysis which is based on an observation from prior research that

websites are likely to change within a week, however acknowledge the subjectivity of

this frequency. We began each weekly collection on a specific date, but since the

collection of data for hundreds of thousands of websites cannot happen instantly, actual

timestamps of collection were not identical.

235

Chapter 11: Conclusions

 Dissertation Summary

Researchers have extensively used website features to detect malicious websites.

With this research, we performed a comprehensive evaluation of feature-based malicious

website detection. First, we reviewed prior research that established features that are

relevant for malicious website detection, leveraged detection methods (heuristics,

machine learning, etc.), presented potential validation methods, provided practical

implementations, discussed relevant performance metrics, and evaluated website change

over time. In Chapter 3, we presented our methodology and the 13 research questions that

drove it. In Chapters 4–6, we presented independent studies on malicious website

detection using three separate classes of features, validating prior research as well as

presenting new findings. In Chapter 7 we leveraged the findings and features from

Chapters 4–6, going on to evaluate the discovery of features through feature selection

versus using those from gathered prior research. In Chapter 8 we reported our application

of detection models built on one dataset to another dataset, while in Chapter 9 we detailed

our temporal study on feature-based malicious website detection.

We established that feature-based malicious website detection remains relevant

for detection of several types of threats and that re-evaluation of the assumptions from

prior research (including the features used for detection) yields benefits. Our research

showed improvement when using discovered features versus features gathered from prior

research. This improvement was demonstrated with models built from various machine

learning algorithms over various scenarios. Furthermore, we demonstrated that feature

selection (versus selecting features in advance) decreased the number of features needed

236

for malicious website detection. The study in each chapter that demonstrated the benefit

of building detection models with new features was performed with a dataset consisting

of several threats. Furthermore, the features that were used for detection are available in a

web browsing environment. Thus, we recommend the addition and exploration of new

features in future research.

In our last two chapters, we evaluated feature-based malicious website detection

on two additional datasets. By doing so, we showed that detection models were reliant on

the dataset on which they trained, however, the features that we identified could be

applied to new datasets with minor adjustments. Our study of the temporal aspects of

malicious website detection provided evidence that malicious website detection models

degrade over time. Re-training can improve model performance and can slow

performance degradation. From the results in Chapter 8 and Chapter 9, we postulate that

adjusting models with new features (as done in Chapter 8) and retraining as new data

becomes available (Chapter 9) will improve malicious website detection. Lastly, we

presented a method of quantifying how websites (as defined by their features) change

over time and quantified the change we observed.

 Future Work

There are two potential areas of future work that could follow this dissertation.

One possibility is the specification, creation, and maintenance of a central dataset

for malicious website detection experiments. Several datasets are used in prior research

that differ in size, types of threat, ratio of malicious to benign websites, and date of

collection. These differences make comparison of prior research and techniques

challenging because each researcher typically uses a dataset specific to their study.

237

Specifying, creating, and maintaining a training and evaluation dataset including both

malicious and benign websites would be beneficial to the research community.

Another possibility of future work involves the creation and evaluation of the

research in this dissertation into a potential security tool. That is, follow on work could

potentially involve building a component inside of a web browser or other tool that

fetches websites. There are several areas to be addressed in this work. First, we can

investigate different sources of training data and evaluate their effectiveness in an

operational environment. The training data could be open source intelligence, data from a

security operations centers, data from the users of the tool, or potentially a combination

thereof. Second, we could evaluate the utility of using this tool as a blocking mechanism

(preventing users or services from accessing a website) or as an aid to a user or a service

making browsing decisions. By evaluating this solution as a blocking mechanism, we

would gain insight into the usability of such a solution – particularly, is the false positive

rate low enough to prevent disruption. By evaluating this capability as a supplement to a

user, we would gain insight into if and how this mechanism benefits from user input.

Additionally, we could gauge if this capability enables a user or service to make

beneficial risk-based decisions on whether or not to visit a website.

Lastly, the completion of this dissertation involved the creation of various scripts

and software components. We are currently working on the release and sharing of code

used in this dissertation.

238

Appendices

239

Appendix A: URL Features

1. Presence of an IP address in the URL

2. Presence of a port number in the URL

3. Presence of a well-known ports in the URL

4. The length of URL

5. Counts of each character

6. Total count of digits

7. Total count of letters

8. Total count of special characters

9. Counts of n-grams from files extensions in the URL

10. Total count of file extension n-grams in the URL

11. Counts of n-grams of TLDs in the URL

12. Total count of file extension n-grams in the URL

13. Count of respective words from [210]

14. Count of the number of words in the URL with a given length

240

Appendix B: JavaScript Methods

We extracted the counts of the following methods within the webpage.

DOM Methods:

adoptNode
captureEvents

caretPositionFromPoint

caretRangeFromPoint
clear

close

createAttribute
createAttributeNS

createCDATASection

createComment

createDocumentFragment

createElement

createElementNS
createEntityReference

createEvent

createNodeIterator

createProcessingInstruction
createRange

createTextNode

createTouch
createTouchList

createTreeWalker

elementFromPoint
elementsFromPoint

enableStyleSheetsForSet

execCommand

exitPointerLock

getAnimations

getElementById
getElementByName

getElementsByClassName

getElementsByTagName

getElementsByTagNameNS
getSelection

hasFocus

importNode
normalizeDocument

open

queryCommandEnabled
queryCommandIndeterm

queryCommandValue

querySelector

querySelectorAll

releaseCapture

releaseEvent
routeEvent

write

writeln

Java Script:

add

all
allTrue

anchor

apply
big

bind

blink
bold

call

catch
charAt

charCodeAt

clear
codePointAt

compile

concat
construct

copyWithin

defineProperty
delete

deleteProperty

endWith
entries

every

exec
fill

filter

finally
find

findIndex

fixed
flat

flatMap

fontcolor
fontsize

forEach

formatToParts
from

get

getDate

getDay
getFloat32

getFloat64

getFullYear
getHours

getInt16

getInt32
getInt8

getMilliseconds

getMinutes
getMonth

getOwnPropertyDescriptor

getPrototypeOf
getSeconds

getTime

getTimezoneOffset
getUTCDate

getUTCDay

getUTCFullYear
getUTCHours

getUTCMilliseconds

getUTCMinutes
getUTCMonth

getUTCSeconds

getUint16
getUint32

getUint8

getYear
grow

has

hasOwnProperty
includes

indexOf

isExtensible
isNan

isPrototypeOf

italics
join

keys

lastIndexOf

link
localeCompare

log

map
match

min

next
normalize

of

ownKeys
padEnd

padStart

pop
preventExtensions

propertyIsEnumerable

push
reduce

reduceRight

repeat
replace

resolvedOptions

return
reverse

search

select
set

setDate

setFloat32
setFloat64

setFullYear

setHours
setInt16

setInt32

setInt8
setMilliseconds

setMinutes

setMonth
setPrototypeOf

setSeconds

241

setTime

setUTCDate

setUTCFullYear

setUTCHours
setUTCMilliseconds

setUTCMinutes

setUTCMonth
setUTCSeconds

setUint16

setUint32
setUint8

setYear

shift
slice

small

some
sort

splice

split

strike

subarray

substr
substring

supportedLocalesOf

test
throw

toDateString
toExponential

toFixed

toISOString
toJSON

toLocaleString

toLocaleTimeString
toLocaleUpperCase

toLowerCase

toPrecision

toSource

toString

toUpperCase
trim

trimEnd

trimStart
unshift

valueOf

values

Array.from

Array.isArray
Array.of

ArrayBuffer.isView

ArrayBuffer.transfer
Atomics.add

Atomics.and

Atomics.compareExchange

Atomics.exchange

Atomics.isLockFree

Atomics.load
Atomics.or

Atomics.store

Atomics.sub

Atomics.wait

Atomics.wake
Atomics.xor

Date.UTC

Date.now
Date.parse

Intl.getCanonicalLocales

JSON.parse
JSON.stringify

Math.abs

Math.acos
Math.acosh

Math.asin

Math.asinh
Math.atan

Math.atan2

Math.atanh

Math.cbrt

Math.ceil

Math.clz32
Math.cos

Math.cosh

Math.exp
Math.expm1

Math.floor
Math.fround

Math.hypot

Math.imul
Math.log

Math.log10

Math.log1p
Math.log2

Math.max

Math.min

Math.pow

Math.random

Math.round
Math.sign

Math.sin

Math.sinh
Math.sqrt

Math.tan

Math.tanh
Math.trunc

Number.isFinite

Number.isInteger
Number.isNaN

Number.isSafeInteger

Number.parseFloat
Number.parseInt

Object.assign

Object.create

Object.defineProperties

Object.defineProperty

Object.entries
Object.freeze

Object.getOwnPropertyDescriptor

Object.getOwnPropertyDescriptors

Object.getOwnPropertyNames

Object.getOwnPropertySymbols
Object.getPrototypeOf

Object.is

Object.isExtensible
Object.isFrozen

Object.isSealed

Object.keys
Object.preventExtensions

Object.seal

Object.setPrototypeOf
Promise.all

Promise.race

Promise.reject
Promise.resolve

Proxy.revocable

Reflect.apply

Reflect.construct

Reflect.defineProperty

Reflect.deleteProperty
Reflect.get

Reflect.getOwnPropertyDescriptor

Reflect.getPrototypeOf
Reflect.has

Reflect.isExtensible
Reflect.ownKeys

Reflect.preventExtensions

Reflect.set
Reflect.setPrototypeOf

String.fromCharCode

String.fromCodePoint
String.raw

Symbol.for

Symbol.keyFor

WebAssembly.compile

WebAssembly.compileStreaming

WebAssembly.customerSections
WebAssembly.exports

WebAssembly.imports

WebAssembly.instantiate
WebAssembly.instantiateStreaming

WebAssembly.validate

decodeURI
decodeURIComponent

encodeURI

encodeURIComponent
escape

eval

isFinite
isNaN

parseFloat

parseInt

undefined

unescape

uneval

Methods on the Window Object:

addEventListener

alert
atob

back

blur
btoa

cancelAnimationFrame

cancelIdleCallback

captureEvents
clearImmediate

clearInterval

clearTimeout
close

confirm

createImageBitmap

disableExternalCapture
dispatchEvent

dump

enableExternalCapture
fetch

find

242

focus

forward

getAttention

getAttentionWithCycleCount
getComputedStyle

getDefaultComputedSyle

getSelection
home

matchMedia

maximize
minimize

moveBy

moveTo
open

openDialog

postMessage

print

prompt
releaseEvents

removeEventListener

requestAnimationFrame
requestIdleCallback

resizeBy

resizeTo
restore

routeEvent

scroll
scrollBy

scrollByLines

scrollByPages

scrollTo

setCursor
setImmediate

setInterval

setResizable
setTimeout

sizeToContent

stop
updateCommands

243

Appendix C: HTML

Initial Tag Counts Counted

a
abbr

acronym

address
applet

area

article
aside

audio

b
base

basefont

bdi

bdo

bgsound

big
blink

blockquote

body
br

button
canvas

caption

center
cite

code

col
colgroup

command
content

data

datalist
dd

del

details
dfn

dialog

dir
div

dl

dt

element

em

embed
fieldset

figcaption

figure
font

footer
form

frame

frameset
h1

head

header
hgroup

hr
html

i

iframe
image

img

input
ins

isindex

kbd
keygen

label

legend

li

link

listing
main

map

mark
marquee

menu
menuitem

meta

meter
multicol

nav

nextid
nobr

noembed
noframes

noscript

object
ol

optgroup

option
output

p

param
picture

plaintext

pre

progress

q

rp
rt

rtc

ruby
s

samp
script

section

select
shadow

slot

small
source

spacer
span

strike

strong
style

sub

summary
sup

table

tbody
td

template

textarea

tfoot

th

thead
time

title

tr
track

tt
u

ul

var
video

wbr

xmp

244

Element Attribute Features

For the following attributes, we collected deeper information that fell into three

categories.

1. Certain attributes specify resources via URLs. For these attributes, we

extracted whether the reference pointed to an OoD resource, an in-domain

resource, a relative link within the page, and the protocol specified by the

resource. We also captured the protocol specifying the location to the

resource. Additionally, these resources are typically of a certain file type and

we collected which file type as well.

2. Certain elements can be of a “small size” or be a “small element.” We defined

a small element as one that had a length or width of fewer than 2 pixels.

The matrix below shows which additional attributes we extracted from the

respective HTML elements.

245

Appendix D: Full Tables and Charts

Table D-1:
The Count of “-“ Characters Had High Correlation

with the Target Variable

Correlation Values between Target Variable and 288

Features on Dataset 2

Features Dataset 2

Count of ‘-’ character 0.3660
marco contenttext 0.0094
content-language text/html 0.0081
URL Length 0.0188
<link href=”https*”> 0.0252
<link rel=”canonical”> 0.0240
<link href> OoD 0.0173

<script src> relative 0.0150
<script src> absolute 0.0150
Count of ‘w’ character 0.0022
<link rel=https://api.w.org/*> 0.0248
<script src=”https*”> 0.0182
<link rel=”stylesheet”> 0.0172
<link rel=”wlwmanifest”> 0.0243
<link

type=”application/wlwmanifest+xml”> 0.0243
<link type=”application/rsd+xml”> 0.0245
<link rel=”EditURI”> 0.0245
<meta http-equiv=”X-UA-Compatible”> 0.0130
<script type=”text/javascript”> 0.0174
Total URL Extensions 0.0006
Count of ‘u’ character 0.0199
<script src> OoD 0.0153
URL TLD “co” Count 0.0257

<link rel=”dns-prefetch”> 0.0219
<link rel=”shortlink”> 0.0243
content-encoding gzip 0.0027
<link type=”text/css”> 0.0148
URL extension is “.c” 0.0277
<link href=”*.xml”> 0.0164
URL extension ”.com” 0.0205
URL TLD “com” 0.0205
<script async=true> 0.0100
meta_charset_UTF-8 0.0154
<link rel=”icon”> 0.0120
Count of ‘.’ Character 0.0159
<script src=”*.js”> 0.0131
<link rel=”pingback”> 0.0188
getElementsByTagName() 0.0085
<link href> absolute 0.0085
<link href> relative 0.0085
Count of <link> tag 0.0085
<link href=*.png> 0.0100
Count of <script> tag 0.0070
<meta http-equiv=”content-type”> 0.0234
Count of ‘x’ character 0.0062
expect-ctmax-age 0.0137
expect-ctreport-uri 0.0138
<link href=”*0”> 0.0150
Count of ‘z’ character 0.0074
vary accept-encoding 0.0069
vary accept 0.0068
via 1.1 0.0135
URL endswith “.com” 0.0154
Count of ‘f’ character 0.0057

246

Correlation Values between Target Variable and 288

Features on Dataset 2

Features Dataset 2

<script type=”application/ld+json”> 0.0177
<link href=”*.css”> 0.0055
Count of ‘a’ character 0.0262
createElement() 0.0040
x-xss-enabled 0.0142
x-cintent-type-options nosniff 0.0137
<link rel=”publisher”> 0.0098
Count of 4-character words 0.0314
<link rel=”shortcut icon”> 0.0007
Count of <div> tag 0.0031
<link rel=”manifest”> 0.0095
Count of <iframe> tag 0.0018
<link rel=”apple-touch-icon-

precomposed”> 0.0118
<link rel=”apple-touch-icon”> 0.0053

indexOf() 0.0070
<link href=”*.php”> 0.0076
 0.0091
Count of ‘o’ character 0.0192
Count of ‘e’ character 0.0073
Count of <a> tag 0.000012
<a href> relative 0.000036
<link href=”*.json”> 0.0062
content-length 0.0040
<a href> absolute 0.0001
Count of ‘c’ character 0.0182
Count of tag 0.0005
Count of ‘p’ character 0.0055
Total href attributes 0.0001
Total HTML Tags 0.0002
Count of ‘m’ character 0.0110
 0.0041

Count of ‘r’ character 0.0146
<script_src=”*.0”> 0.0107
 absolute 0.0084
 relative 0.0084
<script defer=true> 0.0110
setTime() 0.0058
Count of <nav> tag 0.0049
Count of <style> tag 0.0056
<link type=”application/rss+xml”> 0.0115
isNaN() 0.0008
<link rel=”alternate”> 0.0047
<iframe src=”https*”> 0.0024
<meta charset=utf-8> 0.0154
<link_type=”image/png”> 0.0046
getTime() 0.0075
cache-control max-age 0.0108
apply() 0.0095

getElementById() 0.0058
match() 0.0073
strict-transport-security max-age 0.0060
server nginx 0.0219
Count of ‘v’ character 0.0066
<a href> OoD 0.0019
Count of <footer> tag 0.0045
replace() 0.0058
<iframe src> absolute 0.0007
vary age 0.0082
addEventListener() 0.0093
 OoD 0.0073
vary user-agent 0.0083
<iframe src> relative 0.0003
Count of <header> tag 0.0043

247

Correlation Values between Target Variable and 288

Features on Dataset 2

Features Dataset 2

JSON.parse() 0.0050
vary cookie 0.0101
Count of tag 0.0025
bind() 0.0006
Count of ‘y’ character 0.0103
Count of tag 2.1119
<a href-=”*.aspx> 0.0064
JSON.stringify() 0.0048
trim() 0.0030
Count of <main> tag 0.0027
transfer-encoding chunked 0.0102
log() 0.0055
 0.0032
connection keep-alive 0.0109
Count of tag 0.0005

toLowerCase() 0.0050
<link href=”http*”> 0.0012
hasOwnProperty() 0.0053
Count of 5-character words 0.0160
<script src=”*.com”> 0.0050
Count of <i> tag 0.0001
Total TLDs in URL 0.0303
Count of ‘h’ character 0.0080
<iframe_src=”*.com”> 0.0018
encodeURIComponent() 0.0042
setTimeout() 0.0034
Count of ‘i’ character 0.0096
Count of <section> tag 0.0033
concat() 0.0086
decodeURIComponent() 0.0006
Count of <meta> tag 0.0048
Math.random() 0.0015
Count of <time> tag 0.0019
Count of ‘d’ character 0.0015
 0.0006
<link href=”*.ico”> 0.0037
Count of <button> tag 0.0006
<link rel=”next”> 0.0037
escape() 0.0196
 0.0042
Count of ‘t’ character 0.0037
cache-control no-store 0.0102
test() 0.0048
Count of <center> tag 0.0018
join() 0.0086
Count of tag 0.0004
Count of <article> tag 0.0036
url_extension_.i 0.0069

cache-control must-revalidate 0.0084
Count of ‘n’ character 0.0081
<link_href=”*.com”> 0.0021
cache-control private 0.0089
 0.0027
Count of <select> tag 0.0016
Count of <form> tag 9.0816
Math.floor() 0.0001
split() 0.0054
Count of <hr> tag 2.4394
url_extension_.net 0.0011
url_tld_NET 0.0011
 relative 0.0040
 absolute 0.0040
 0.0062

248

Correlation Values between Target Variable and 288

Features on Dataset 2

Features Dataset 2

 0.0036
Count of ‘s’ character 0.0001
pop() 0.0079
Count of 7-character words 0.0019
Count of <noscript> tag 0.0023
URL TLD “ne” 0.0009
<iframe src> OoD 0.0017
substring() 0.0025
<link type=”image/x-icon”> 0.0014
<form enctype=”application/

x-www-form-urlencoded”> 0.0013
Count of <small> tag 0.0013
Count of <ins> tag 0.0008
<img_src=”*.jpg”> 0.0057
Total 0.0050

substr() 0.0016
server apache 0.0043
exec() 0.0023
parseInt() 0.0007
URL extension “.net” 0.0011
Count of <dl> tag 0.0029
push() 0.0008
open() 0.0021
 0.0036
<link rel=”mask-icon”> 0.0048
Count of <figure> tag 0.0003
<form action> relative 0.0013
<form action=”https*”> 0.0010
find() 0.0021
Count of <option> tag 0.0013
<form action>_absolute 0.0015
shift() 0.0078

<base href> OoD 0.0121
Count of <h1> tag 0.0025
Count of <aside> tag 0.0008
defineProperty() 0.0024
Object.defineProperty() 0.0024
 0.0019
Math.max() 0.0029
Count of ‘k’ character 0.0070
<script src=”http*”> 0.0053
pragma no-cache 0.0123
<script language=”javascript”> 0.0045
Count of <input> tag 0.0011
connection close 0.0043
<form action> OoD 0.0016
get() 0.0013
 0.0077
forEach() 0.0029

Count of tag 4.4068
Count of <source> tag 0.0004
<a_href=”0*”> 0.0050
Count of ‘b’ character 0.0101
 0.0025
Count of <textarea> tag 0.0001
cache-control no-cache 0.0102
Count of tag 0.0022
keys() 0.0032
 OoD 0.0070
slice() 0.0017
<link rel=”preload”> 0.0042
<meta http-equiv=”Content-Type“> 0.0234
Object.keys() 0.0032
<script language=”JavaScript”> 0.0045

249

Correlation Values between Target Variable and 288

Features on Dataset 2

Features Dataset 2

Count of 6-character words 0.0057
querySelector() 0.0035
<script crossorigin=”anonymous”> 0.0064
Count of 8-character words 0.0021
 0.0020
Count of ‘p’ character 0.0029
Count of <td> tag 0.0012
charAt() 0.0018
unescape() 0.0040
Count of ‘g’ character 0.0100
<iframe src=”*0”> 0.0025
Count of <dd> tag 0.0023
Count of <tbody> tag 0.0005
<form action=”*.php”> 0.0029
<form action=”http*”> 0.0044

script_charset_UTF-8 0.0051
 0.0095
 0.0007
toString() 0.0021
<script charset=”utf-8”> 0.0051
Count of <tr> tag 0.0017
Count of <base> tag 0.0035
<base href> absolute 0.0035
<base href> relative 0.0035
 0.0033
call() 0.0036
Count of ‘l’ character 0.0101
Count of <table> tag 0.0011
Count of <label> tag 0.0027
Count of ‘j’ character 0.0081
Count of <dt> tag 0.0033
Count of tag 0.0002
Count of <fieldset> tag 0.0011
add() 0.0001
Count of
 tag 0.0007
 0.0043
Math.round() 0.0032
<iframe src=”http*”> 0.0044
cache-control public 0.0024
Count of <title> tag 0.0058
 0.0009
<iframe src=”*.html”> 0.0046
write() 0.0012

250

Table D-2:

Performance of a Several Models Built with Features from Prior Research Versus Discovered Features

Model Performance over Various Scenarios with 99 Prior Features / 34 Identified Features

Model
No-sampling Over-sampling Under-sampling

FPR FNR ACC AUC MCC Prec Rec FPR FNR ACC AUC MCC Prec Rec FPR FNR ACC AUC MCC Prec Rec

KNN

0.0050/

0.0113

0.1844/

0.1522

0.9743/

0.9724

0.9052/

0.9181

0.8686/

0.8611

0.9544/

0.9061

0.8155/

0.8477

0.0608/

0.0529

0.0744/

0.0966

0.9376/

0.9420

0.9323/

0.9252

0.7517/

0.7581

0.6637/

0.6889

0.9255/

0.9033

0.0474/

0.0693

0.0955/

0.0844

0.9470/

0.9289

0.9285/

0.9231

0.7741/

0.7242

0.7121/

0.6314

0.9044/

0.9155

RF

0.0053/

0.0061

0.1633/

0.1300

0.9765/

0.9795

0.9156/

0.9319

0.8803/

0.8968

0.9531/

0.9479

0.8366/

0.8700

0.0079/

0.0099

0.1466/

0.1233

0.9761/

0.9770

0.9227/

0.9333

0.8792/

0.8850

0.9331/

0.9195

0.8533/

0.8766

0.0364/

0.0425

0.0811/

0.0666

0.9584/

0.9547

0.9412/

0.9454

0.8161/

0.8070

0.7657/

0.7400

0.9188/

0.9333

AB

0.0129/

0.0132

0.1555/

0.1611

0.9706/

0.9697

0.9157/

0.9128

0.8525/

0.8478

0.8941/

0.8913

0.8444/

0.8388

0.0351/

0.0456

0.1188/

0.0733

0.9552/

0.9511

0.9229/

0.9404

0.7959/

0.7935

0.7647/

0.7245

0.8811/

0.9266

0.0622/

0.0606

0.0633/

0.0622

0.9376/

0.9391

0.9371/

0.9385

0.7553/

0.7600

0.6611/

0.6671

0.9366/

0.9377

GB

0.0077/

0.0080

0.1522/

0.1511

0.9756/

0.9755

0.9199/

0.9204

0.8764/

0.8758

0.9339/

0.9317

0.8477/

0.8488

0.0181/

0.0298

0.1255/

0.0900

0.9695/

0.9632

0.9281/

0.9400

0.8509/

0.8319

0.8619/

0.7982

0.8744/

0.9100

0.0455/

0.0458

0.0611/

0.0588

0.9526/

0.9526

0.9466/

0.9476

0.8017/

0.8023

0.7278/

0.7270

0.9388/

0.9411

ET

0.0047/

0.0067

0.1844/

0.1500

0.9746/

0.9767

0.9053/

0.9216

0.8699/

0.8821

0.9569/

0.9421

0.8155/

0.8500

0.0070/

0.0106

0.1488/

0.1166

0.9766/

0.9771

0.9220/

0.9363

0.8815/

0.8861

0.9398/

0.9148

0.8511/

0.8833

0.0371/

0.0386

0.0788/

0.0722

0.9580/

0.9575

0.9419/

0.9445

0.8153/

0.8151

0.7626/

0.7570

0.9211/

0.9277

XGB

0.0079/

0.0077

0.1522/

0.1533

0.9755/

0.9755

0.9199/

0.9194

0.8757/

0.8757

0.9327/

0.9338

0.8477/

0.8466

0.0181/

0.0314

0.1277/

0.0866

0.9692/

0.9622

0.9270/

0.9409

0.8495/

0.8288

0.8616/

0.7903

0.8722/

0.9133

0.0451/

0.0467

0.0655/

0.0633

0.9525/

0.9513

0.9446/

0.9449

0.8001/

0.7970

0.7287/

0.7223

0.9344/

0.9366

BC

0.0063/
0.0083

0.1388/
0.1433

0.9784/
0.9761

0.9273/
0.9241

0.8908/
0.8793

0.9462/
0.9300

0.8611/
0.8566

0.0109/
0.0132

0.1366/
0.1311

0.9746/
0.9732

0.9261/
0.9278

0.8725/
0.8666

0.9109/
0.8947

0.8633/
0.8688

0.0389/
0.0446

0.0744/
0.0777

0.9569/
0.9515

0.9433/
0.9387

0.8128/
0.7935

0.7552/
0.7280

0.9255/
0.9222

NN

0.0136/
0.0129

0.1300/
0.1400

0.9729/
0.9724

0.9273/
0.9241

0.8655/
0.8622

0.8918/
0.8958

0.8700/
0.8600

0.0220/
0.0220

0.1100/
0.1200

0.9678/
0.9666

0.9261/
0.9278

0.8463/
0.8399

0.8396/
0.8380

0.8900/
0.8800

0.0563/
0.0624

0.0755/
0.0644

0.9414/
0.9373

0.9433/
0.9387

0.7626/
0.7542

0.6802/
0.6603

0.9244/
0.9355

V

0.0028/

0.0142

0.1266/

0.0588

0.9831/

0.9809

0.9352/

0.9399

0.9135/

0.9030

0.9747/

0.9411

0.8733/

0.8868

0.0066/

0.0123

0.1018/

0.1087

0.9826/

0.9766

0.9457/

0.9394

0.9117/

0.8836

0.9452/

0.9023

0.8981/

0.8912

0.0378/

0.0405

0.0463/

0.0475

0.9612/

0.9586

0.9578/

0.9559

0.8321/

0.8230

0.7622/

0.7491

0.9536/

0.9524

251

Table D-3:

Performance of a Several Models Built with Transformed Features from Prior Research Versus Discovered Features

Model Performance in Feature Transformation Scenarios with 99 Prior Features / 34 Identified Features

Model
Feature Transformation with Feature Selection Feature Transformation with PCA

FPR FNR ACC AUC MCC Prec Rec FPR FNR ACC AUC MCC Prec Rec

KNN

0.0102/

0.0113

0.1800/

0.1655

0.9702/

0.9709

0.9048/

0.9115

0.8485/

0.8527

0.9122/

0.9048

0.8200/

0.8344

0.0015/

0.0102

0.2866/

0.1788

0.9656/

0.9703

0.8558/

0.9054

0.8210/

0.8492

0.9831/

0.9123

0.7133/

0.8211

RF

0.0063/

0.0077

0.1566/

0.1355

0.9763/

0.9775

0.9184/

0.9283

0.8799/

0.8866

0.9452/

0.9350

0.8433/

0.8644

0.0057/

0.0077

0.2811/

0.1722

0.9626/

0.9733

0.8565/

0.9099

0.8039/

0.8640

0.9417/

0.9324

0.7188/

0.8277

AB

0.0125/

0.0142

0.2322/

0.1666

0.9622/

0.9682

0.8776/

0.9095

0.8052/

0.8402

0.8881/

0.8833

0.7677/

0.8333

0.0165/

0.0149

0.1833/

0.1711

0.9642/

0.9670

0.9000/

0.9069

0.8203/

0.8344

0.8647

/0.8776

0.8166/

0.8288

GB

0.0089/

0.0070

0.1722/

0.1566

0.9723/

0.9757

0.9094/

0.9181

0.8589/

0.8768

0.9231/

0.9393

0.8277/

0.8433

0.0109/

0.0096

0.1844/

0.1644

0.9691/

0.9725

0.9023/

0.9129

0.8426/

0.8607

0.9061/

0.9181

0.8155/

0.8355

ET

0.0080/

0.0072

0.1688/

0.1466

0.9734/

0.9767

0.9115/

0.9230

0.8648/

0.8823

0.9303/

0.9388

0.8311/

0.8533

0.0011/

0.0067

0.5822/

0.2088

0.9321/

0.9700

0.7083/

0.8921

0.6153/

0.8455

0.9791/

0.9380

0.4177/

0.7911

XGB

0.0089/

0.0073

0.1700/

0.1633

0.9725/

0.9747

0.9105/

0.9146

0.8603/

0.8714

0.9233/

0.9365

0.8300/

0.8366

0.0093/

0.0089

0.1755/

0.1622

0.9715/

0.9734

0.9075/

0.9144

0.8550/

0.8652

0.9194/

0.9240

0.8244/

0.8377

BC
0.0080/
0.0086

0.1588/
0.1333

0.9746/
0.9770

0.9165/
0.9290

0.8710/
0.8843

0.9311/
0.9285

0.8411/
0.8666

0.0106/
0.0082

0.1955/
0.1611

0.9681/
0.9742

0.8968/
0.9153

0.8368/
0.8690

0.9072/
0.9298

0.8044/
0.8388

NN
0.0131/
0.0157

0.1511/
0.1233

0.9710/
0.9719

0.9165/
0.9290

0.8547/
0.8617

0.8935/
0.8786

0.8488/
0.8766

0.0129/
0.0154

0.1222/
0.1277

0.9744/
0.9716

0.8968/
0.9153

0.8733/
0.8601

0.8977/
0.8800

0.8777/
0.8722

V

0.0057/

0.0061

0.1544/

0.1454

0.9774/

0.9780

0.9198/

0.9241

0.8837/

0.8872

0.9493/

0.9463

0.8455/

0.8545

0.7152/

0.1764

0.8489/

0.1053

0.2696/

0.8938

0.2179/

0.5383

-0.375/

0.2347

0.0262/

0.8235

0.1510/

0.0789

252

Table D-4:

Performance of a Random Forest Classifier Trained with 34 Features

on Dataset 3 Snapshot 1
Evaluation Over Time with a Random Forest Classifier Trained with 34 Features on Dataset 3,

Snapshot 02/02/2020

Snapshot ACC FPR FNR AUC MCC Prec Rec

2/9/2020 0.9948 6.37E-05 0.1905 0.9046 0.8960 0.9971 0.8094

2/16/2020 0.9935 7.43E-05 0.2400 0.8799 0.8673 0.9964 0.7600

2/23/2020 0.9919 6.35E-05 0.2978 0.8510 0.8331 0.9967 0.7021

3/1/2020 0.9915 6.37E-05 0.3157 0.8420 0.8221 0.9966 0.6842

3/8/2020 0.9909 4.24E-05 0.3383 0.8307 0.8086 0.9976 0.6616

3/15/2020 0.9899 6.36E-05 0.3760 0.8119 0.7843 0.9962 0.6239

3/22/2020 0.9890 5.32E-05 0.4036 0.7981 0.7666 0.9967 0.5963

3/29/2020 0.9882 5.30E-05 0.4363 0.7817 0.7449 0.9966 0.5636

4/5/2020 0.9880 4.23E-05 0.4447 0.7776 0.7396 0.9972 0.5553

4/12/2020 0.9871 4.24E-05 0.4758 0.7620 0.7181 0.9970 0.5241

4/19/2020 0.9869 3.19E-05 0.4846 0.7576 0.7123 0.9977 0.5153

Table D-5:

Performance of a Random Forest Classifier Trained with 99 Features

on Dataset 3 Snapshot 1
Evaluation Over Time with a Random Forest Classifier Trained with 99 Features on Dataset 3,

Snapshot 02/02/2020

Snapshot ACC FPR FNR AUC MCC Prec Rec

2/9/2020 0.9970 0 0.1123 0.9438 0.9407 1 0.8876

2/16/2020 0.9960 0 0.1491 0.9254 0.9205 1 0.8508

2/23/2020 0.9948 0 0.1932 0.9033 0.8958 1 0.8067

3/1/2020 0.9945 0 0.2036 0.8981 0.8899 1 0.7963

3/8/2020 0.9940 0 0.2238 0.8880 0.8782 1 0.7761

3/15/2020 0.9930 0 0.2614 0.8692 0.8563 1 0.7385

3/22/2020 0.9924 0 0.2820 0.8589 0.8440 1 0.7179

3/29/2020 0.9915 0 0.3155 0.8422 0.8237 1 0.6844

4/5/2020 0.9911 0 0.3306 0.8346 0.8144 1 0.6693

4/12/2020 0.9904 0 0.3546 0.8226 0.7994 1 0.6453

4/19/2020 0.9900 0 0.3695 0.8152 0.7900 1 0.6304

Table D-6:

Performance of a Random Forest Classifier Trained with Re-selected Features

on Dataset 3 Snapshot 1
Evaluation Over Time with a Random Forest Classifier Trained with Re-selected Features on Dataset

3, Snapshot 02/02/2020

Snapshot ACC FPR FNR AUC MCC Prec Rec

2/9/2020 0.9954 0.00010 0.1684 0.9157 0.9076 0.9953 0.8315

2/16/2020 0.9942 0.00011 0.2116 0.8941 0.8828 0.9946 0.7883

2/23/2020 0.9932 0.00012 0.2465 0.8766 0.8623 0.9938 0.7534

3/1/2020 0.9928 0.00012 0.2653 0.8672 0.8512 0.9937 0.7346

3/8/2020 0.9920 0.00013 0.2946 0.8525 0.8334 0.9929 0.7053

3/15/2020 0.9912 0.00013 0.3233 0.8382 0.8158 0.9926 0.6766

3/22/2020 0.9905 8.51E-05 0.3470 0.8264 0.8022 0.9953 0.6529

3/29/2020 0.9897 0.00011 0.3750 0.8124 0.7837 0.9932 0.6250

4/5/2020 0.9893 9.52E-05 0.3940 0.8029 0.7719 0.9943 0.6059

4/12/2020 0.9884 0.00014 0.4256 0.7871 0.7498 0.9907 0.5743

4/19/2020 0.9879 0.00012 0.4422 0.7788 0.7391 0.9917 0.5577

Table D-7:

Performance of a Random Forest Classifier Trained with 34 Features

on Dataset 3 Snapshot 6

253

Evaluation Over Time with a Random Forest Classifier Trained with 34 Features on Dataset 3, Snapshot

03/08/2020

Snapshot ACC FPR FNR AUC MCC Prec Rec

3/15/2020 0.9949 4.24E-05 0.1893 0.9052 0.8971 0.9980 0.8106

3/22/2020 0.9930 2.13E-05 0.2589 0.8705 0.8573 0.9989 0.7410

3/29/2020 0.9914 5.30E-05 0.3148 0.8425 0.8229 0.9972 0.6851

4/5/2020 0.9905 3.17E-05 0.3517 0.8241 0.8005 0.9982 0.6482

4/12/2020 0.9898 3.18E-05 0.3769 0.8115 0.7845 0.9981 0.6230

4/19/2020 0.9893 4.25E-05 0.3941 0.8029 0.7731 0.9974 0.6058

Table D-8:

Performance of a Random Forest Classifier Trained with 99 Features

on Dataset 3 Snapshot 6
Evaluation Over Time with a Random Forest Classifier Trained with 99 Features on Dataset 3, Snapshot

03/08/2020

Snapshot ACC FPR FNR AUC MCC Prec Rec

3/15/2020 0.9970 0 0.1119 0.9440 0.9409 1 0.8880

3/22/2020 0.9954 0 0.1689 0.9155 0.9095 1 0.8310

3/29/2020 0.9945 0 0.2032 0.8983 0.8901 1 0.7967

4/5/2020 0.9939 0 0.2269 0.8865 0.8764 1 0.7730

4/12/2020 0.9930 0 0.2588 0.8705 0.8578 1 0.7411

4/19/2020 0.9925 0 0.2767 0.8616 0.8472 1 0.7232

Table D-9:

Performance of a Random Forest Classifier Trained with Re-selected Features

on Dataset 3 Snapshot 6
Evaluation Over Time with a Random Forest Classifier Trained with Re-selected Features on Dataset 3,

Snapshot 03/08/2020

Snapshot ACC FPR FNR AUC MCC Prec Rec

3/15/2020 0.9953 7.42E-05 0.1731 0.9134 0.9056 0.9967 0.8268

3/22/2020 0.9939 6.39E-05 0.2216 0.8891 0.8782 0.9970 0.7783

3/29/2020 0.9927 7.42E-05 0.2676 0.8661 0.8510 0.9963 0.7323

4/5/2020 0.9919 6.34E-05 0.2972 0.8513 0.8334 0.9967 0.7027

4/12/2020 0.9911 0.0001 0.3236 0.8381 0.8161 0.9938 0.6763

4/19/2020 0.9905 9.57E-05 0.3470 0.8259 0.8014 0.9947 0.6520

Table D-10:

Performance of a Random Forest Classifier Trained with 34 Features

on Dataset 3 Snapshot 1-6
Evaluation Over Time with a Random Forest Classifier Trained with 34 Features on Dataset 3, Snapshot

02/02/2020-03/08/2020

Snapshot ACC FPR FNR AUC MCC Prec Rec

3/15/2020 0.9982 0.00015 0.0584 0.9706 0.9664 0.9938 0.9415

3/22/2020 0.9974 0.00012 0.0908 0.9545 0.9498 0.9949 0.9091

3/29/2020 0.9965 0.00013 0.1230 0.9383 0.9321 0.9943 0.8769

4/5/2020 0.9960 0.00015 0.1432 0.9283 0.9206 0.9933 0.8567

4/12/2020 0.9952 0.00013 0.1710 0.9144 0.9055 0.9940 0.8289

4/19/2020 0.9949 0.00014 0.1839 0.9079 0.8979 0.9934 0.8160

Table D-11:

Performance of a Random Forest Classifier Trained with 99 Features

on Dataset 3 Snapshot 1-6
Evaluation Over Time with a Random Forest Classifier Trained with 99 Features on Dataset 3, Snapshot

02/02/2020-03/08/2020

Snapshot ACC FPR FNR AUC MCC Prec Rec

3/15/2020 0.9994 0 0.0224 0.9887 0.9884 1 0.9775

3/22/2020 0.9988 0 0.0430 0.9784 0.9776 1 0.9569

254

Evaluation Over Time with a Random Forest Classifier Trained with 99 Features on Dataset 3, Snapshot

02/02/2020-03/08/2020

Snapshot ACC FPR FNR AUC MCC Prec Rec

3/29/2020 0.9985 0 0.0552 0.9723 0.9712 1 0.9447

4/5/2020 0.9981 0 0.0675 0.9662 0.9647 1 0.9324

4/12/2020 0.9976 0 0.0878 0.9560 0.9539 1 0.9121

4/19/2020 0.9973 0 0.0981 0.9509 0.9483 1 0.9018

Table D-12:

Performance of a Random Forest Classifier Trained with Re-selected Features

on Dataset 3 Snapshot 1-6
Evaluation Over Time with a Random Forest Classifier Trained with Re-selected Features on Dataset 3, Snapshot

02/02/2020-03/08/2020

Snapshot ACC FPR FNR AUC MCC Prec Rec

3/15/2020 0.9978 0.00012 0.0755 0.9621 0.9580 0.9949 0.9244

3/22/2020 0.9971 0.00014 0.0988 0.9504 0.9450 0.9940 0.9011

3/29/2020 0.9966 0.00014 0.1207 0.9395 0.9331 0.9939 0.8792

4/5/2020 0.9962 0.00015 0.1347 0.9325 0.9252 0.9933 0.8652

4/12/2020 0.9956 0.00018 0.1552 0.9222 0.9134 0.9923 0.8447

4/19/2020 0.9953 0.00014 0.1685 0.9156 0.9066 0.9935 0.8314

255

Table D-13:

Details of Which Features Changed Over Time, Beginning with the First Snapshot
Rejecting the Null Hypothesis (1 = Reject, 0 = Cannot Reject) for Features (Related T Test / KS / k-sample Anderson-Darling / Kruskal Wallis H-

test

Feature

2/2/20

-

2/9/20

2/2/20

-

2/16/20

2/2/20

-

2/23/20

2/2/20

-

3/1/20

2/2/20

-

3/8/20

2/2/20

-

3/15/20

2/2/20

-

3/22/20

2/2/20

-

3/29/20

2/2/20

-

4/5/20

2/2/20

-

4/12/20

2/2020

-

4/19/20

 0/0/0/0 0/0/0/0 0/1/1/1 0/1/1/1 0/1/1/1 0/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1
 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/1 0/1/1/1 0/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1

Count of <center> tag 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0
Count of <div> tag 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0
createElement() 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0

write() 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/1 0/0/1/1
addEventListener() 0/0/0/0 0/0/0/0 0/0/1/0 1/0/1/1 1/0/1/1 1/0/1/1 1/0/1/1 1/0/1/1 1/0/1/1 1/0/1/1 1/1/1/1

<form action=”*.php”> 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 1/0/1/1 1/0/0/0 1/0/0/0 1/0/0/0 1/0/1/1
<form action=”http*”> 0/0/0/0 0/0/0/0 0/0/1/1 0/0/1/0 0/0/1/1 0/0/1/1 0/0/1/1 0/0/1/1 0/0/1/1 0/0/1/1 0/0/1/1
cache-control max-age 0/0/0/0 0/0/1/0 0/0/0/0 0/0/1/0 0/0/1/1 1/0/1/1 1/0/1/1 1/0/1/1 1/0/1/1 1/0/1/1 1/1/1/1
cache-control must-

revalidate 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0
cache-control no-

cache 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0 0/0/1/1
cache-control no-

store 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0 0/0/0/0 0/0/0/0 1/0/1/1 1/1/1/1
cache-control public 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0 1/0/1/1
content-encoding gzip 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 1/0/1/1

content-language

text/html 0/0/1/1 0/0/1/1 1/0/1/1 1/0/0/0 0/0/1/1 0/0/0/0 0/0/1/1 0/0/1/1 0/0/0/0 0/0/1/1 0/0/1/1
content-length 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/1 0/0/1/0 0/0/1/0 0/1/1/1 0/1/1/1

expect-ctreport-uri 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0 1/0/1/1 1/0/1/1 1/0/1/1 1/0/1/1 1/1/1/1 1/1/1/1 1/1/1/1
server apache 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/1 0/0/1/1 1/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1

strict-transport-

security_max-age 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 1/0/1/0 1/0/1/1 1/0/1/1 1/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1
transfer-encoding

chunked 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/1 0/0/1/0 1/0/1/0 1/0/1/1 1/1/1/1
via_1.1 0/0/0/0 0/0/0/0 0/0/0/0 1/0/1/1 1/0/1/1 1/0/1/1 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0

hidden <iframe> 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0
 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/1 0/0/0/0 0/0/1/1 0/1/1/1 0/1/1/1 0/1/1/1
 0/0/0/0 0/0/0/0 0/0/1/1 0/0/1/1 0/0/1/1 0/0/1/1 0/1/1/1 0/1/1/1 0/1/1/1 0/1/1/1 1/1/1/1

Count of <input> tag 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/1 0/0/0/1 0/1/1/1 0/1/1/1
charAt() 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 1/0/0/0 1/0/0/0 1/0/1/0 1/0/1/0 1/0/0/0

charCodeAt() 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 1/0/0/0 1/0/0/0 1/0/0/0 1/0/1/0 1/0/0/0
push() 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/1 0/0/1/1 0/0/1/0
search() 0/0/0/0 0/0/1/1 0/0/0/0 0/0/1/1 0/0/0/0 0/0/0/0 0/0/1/1 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/1
shift() 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0 0/0/1/0
escape() 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0 0/0/1/1 0/0/1/1
eval() 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/1 0/0/1/1 0/0/1/1 0/0/1/1 0/0/1/1 0/0/1/1 0/0/0/0

unescape() 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0 0/0/0/0
Count of <link> tag 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 1/0/1/1 1/0/1/0 1/0/1/0 1/0/1/0 1/1/1/1

256

Rejecting the Null Hypothesis (1 = Reject, 0 = Cannot Reject) for Features (Related T Test / KS / k-sample Anderson-Darling / Kruskal Wallis H-

test

Feature

2/2/20

-

2/9/20

2/2/20

-

2/16/20

2/2/20

-

2/23/20

2/2/20

-

3/1/20

2/2/20

-

3/8/20

2/2/20

-

3/15/20

2/2/20

-

3/22/20

2/2/20

-

3/29/20

2/2/20

-

4/5/20

2/2/20

-

4/12/20

2/2020

-

4/19/20

<link href=”*.php”> 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0 0/0/1/1 0/0/1/1 0/0/1/1
<link href=”https*”> 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/1 0/0/1/1 1/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1
<link href> relative 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/1/0/0 0/1/1/1 0/1/0/0 0/1/0/0 1/0/0/0 1/0/0/1

<link

type=”text/css”> 0/0/0/0 0/0/0/0 0/0/1/0 0/0/0/0 0/0/1/1 0/0/1/1 0/0/1/1 0/1/1/1 0/1/1/1 0/1/1/1 0/1/1/1
Meta content index

follow 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0 0/0/1/0 0/0/1/1
Count of <meta> tag 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0
getElementsByTagName(

) 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/1 0/0/1/1 1/1/1/1 1/0/1/1
<script src=”https*”> 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/1 0/1/1/1 0/1/1/1 0/1/1/1 0/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1

<script

type=text/javascript> 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/1 0/0/1/1 1/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1
<source srcset> OoD 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0 0/0/1/1 0/0/1/1 0/0/1/1 0/0/1/1
Count of <style> tag 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 1/0/1/1 1/0/1/1 1/0/1/1 1/1/1/1 1/1/1/1 1/1/1/1

Total HTML Tags 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/1/0/0 0/1/0/0
Total 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/1 0/0/1/1 0/0/1/0

257

Table D-14:

Feature Change Based on the Related T-test
Number of Features That Change Per a Given Time Difference (Measuring All Possible Intervals) - Related T-test

Time Difference

(Weeks) Measurements

1 0 0 1 1 1 0 1 0 0 0 0

2 0 1 2 2 1 1 1 0 0 0
3 1 2 1 3 3 3 2 0 0
4 3 1 2 4 7 5 6 3
5 4 4 4 6 10 8 7
6 8 10 9 9 12 10
7 12 13 11 11 15
8 13 15 13 15
9 16 17 17

10 19 22
11 22

Table D-15:

Feature Change Based on the Two-Sample KS Test
Number of Features That Change Per a Given Time Difference (Measuring All Possible Intervals) – Kolmogorov Smirnov

Time Difference (Weeks) Measurements

1 0 0 0 0 0 1 0 0 0 0 0

2 0 0 0 0 1 1 0 0 0 0
3 1 1 0 2 1 2 0 1 0
4 1 1 3 2 2 3 1 1
5 2 3 3 4 4 6 3
6 5 5 7 6 7 6
7 7 6 12 10 10
8 10 12 18 11
9 13 19 15

10 16 15
11 20

Table D-16:

Feature Change Based on the K-Sample Anderson-Darling
Number of Features That Change Per a Given Time Difference (Measuring All Possible Intervals) - k-sample Anderson Darling

Time Difference (Weeks) Measurements

1 1 0 3 4 2 1 3 4 0 1 5

2 3 5 3 4 4 5 2 7 1 9
3 6 5 4 6 6 9 5 11 12
4 11 6 9 17 12 14 11 9
5 14 13 13 13 15 21 23
6 16 20 20 17 21 25
7 24 24 28 25 28
8 23 29 31 32
9 27 34 36

10 36 40
11 41

Table D-17:

Feature Change Based on the Kruskal Wallis H Test
Number of Features That Change Per a Given Time Difference (Measuring All Possible Intervals) - Kruskal Wallis H test

Time Difference (Weeks) Measurements

1 1 0 2 3 2 1 3 4 0 0 4

2 2 4 2 4 4 2 1 4 0 8
3 4 5 4 5 5 5 4 8 7
4 8 5 10 11 12 11 9 6
5 13 12 10 8 13 18 15
6 17 17 17 15 18 21

258

Number of Features That Change Per a Given Time Difference (Measuring All Possible Intervals) - Kruskal Wallis H test

Time Difference (Weeks) Measurements

7 22 18 21 22 21
8 20 21 25 29
9 22 28 26

10 28 30
11 33

259

References

1. Pew Research Center, “Internet/broadband fact sheet,” Washington D.C., June 12,

2019. Available: https://www.pewresearch.org/internet/fact-sheet/internet-

broadband/

2. Internet World Stats, “Internet growth statistics.” Available:

https://www.internetworldstats.com/emarketing.htm [Accessed: September 19,

2019].

3. Digital Commerce 360, “U.S. e-commerce sales grow 15.0%.” Available:

https://www.digitalcommerce360.com/article/us-ecommerce-sales/. [Accessed:

Sept. 19, 2019].

4. H. Cavusoglu, B. Mishra, and S. Raghunathan, “The effect of internet security breach

announcements on market value: Capital market reactions for breached firms and

internet security developers,” International Journal of Electronic Commerce, vol.

9, no. 1, pp. 69–104, Fall 2004.

5. S. Morgan, “Global cybersecurity spending predicted to exceed $1 trillion from 2017-

2021,” Cybercrime Magazine, June 10, 2019. Available:

https://cybersecurityventures.com/cybersecurity-market-report/. [Accessed: Sept.

19, 2019].

6. R. Tonar and E. Talton, “A lack of cybersecurity funding and expertise threatens U.S.

infrastructure,” Forbes, April 23, 2018. Available:

https://www.forbes.com/sites/ellistalton/2018/04/23/the-u-s-governments-lack-of-

cybersecurity-expertise-threatens-our-infrastructure. [Accessed: Sept. 19, 2019].

7. L. J. Trautman and P. C. Ormerod, “Corporate directors' and officers' cybersecurity

standard of care: The Yahoo data breach,” 66 American University Law Review,

vol 66, no. 1231, 2017.

8. Broadcom.com, “Hackers attack Epsilon database, phishing spree anticipated,” April

13, 2011. Available: https://www.symantec.com/connect/blogs/hackers-attack-

epsilon-database-phishing-spree-anticipated. [Accessed: Sept. 19, 2019].

9. M. Antonakakis, et al., “Understanding the Mirai botnet,” in Proc. of the 6th USENIX

Security Symposium, 2017, pp. 1093–1110.

10. S. Weagle, “Financial impact of Mirai DDos attack on Dyn revealed in new data,”

The DDoS Blog, Feb. 21, 2017, Available: https://www.corero.com/blog/797-

financial-impact-of-mirai-ddos-attack-on-dyn-revealed-in-new-data.html.

[Accessed: Sept. 19, 2019].

11. T. N. Jagatic, N. A. Johnson, M. Jakobsson, and F. Menczer, “Social phishing,”

Communications of the ACM, vol. 50, no. 10, pp. 94–100, October 2007.

260

12. V. L Le, I. Welch, X. Gao, and P. Komisarczuk, “Anatomy of drive-by download

attack,” in Proc. of the 11th Australasian Information Security Conference-

Volume, 2013, pp. 49-58.

13. J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and DDoS defense

mechanisms,” ACM SIGCOMM Computer Communication Review, vol. 34, no. 2,

pp.39–53, 2004.

14. W3Schools.com, “JavaScript Tutorial.” Available: https://www.w3schools.com/js/.

[Accessed: Sept. 19, 2019].

15. J. Gardiner, M. Cova, and S. Nagaraja, “Command and control: Understanding,

denying and detecting, a review of malware C2 techniques, detection and

defences.” ArXiv preprint arXiv:1408.1136., 38 pages, 2014.

16. J. Vijayan, “More than 22,000 vulns were disclosed in 2018, 27% without fixes,”

DarkReading.com, Feb. 27, 2019. Available:

https://www.darkreading.com/vulnerabilities---threats/more-than-22000-vulns-

were-disclosed-in-2018-27--without-fixes/d/d-id/1333998. [Accessed: Sept. 19,

2019].

17. H. Orman, “The Morris Worm: A fifteen-year perspective,” IEEE Security &

Privacy, vol. 1, no. 5, pp.35–43, Sept./Oct. 2003.

18. C. Willems, T. Holz, and F. Freiling, “Toward automated dynamic malware analysis

using cwsandbox,” IEEE Security & Privacy, vol. 5, no. 2, pp.32–39, March/April

2007.

19. A. Malanov, “Antivirus fundamentals: Viruses, signatures, disinfection,” Kaspersky

Daily, Oct. 13, 2016. Available: https://www.kaspersky.com/blog/signature-virus-

disinfection/13233/. [Accessed: Sept. 19, 2019].

20. Verisign, “What is a URL?” Available: https://www.verisign.com/en_US/website-

presence/online/what-is-a-url/index.xhtml. [Accessed: Sept. 19, 2019].

21. Mozilla MDN Web Docs, “HTML: Hypertext markup language,” updated July 27,

2020. Available: https://developer.mozilla.org/en-US/docs/Web/HTML.

[Accessed: Sept. 19, 2019].

22. Pixabay. “Stunning free images and royalty free stock.” Available:

https://pixabay.com/. [Accessed: Sept. 19, 2019].

23. C. Seifert, I. Welch, and P. Komisarczuk, “Identification of malicious web pages

with static heuristics,” in Proc. of the 2008 Australasian Telecommunication

Networks and Applications Conference, Adelaide, SA, Australia, Dec. 7–10, 2008,

pp. 91–96.

261

24. Y. Zhang, J. Hong, and L. Cranor, “CANTINA: A content-based approach to

detecting phishing web sites," in Proc. of the 16th International Conference on

the World Wide Web, WWW 2007, Banff, Alberta, Canada, May 8–12, 2007, pp.

639–648.

25. S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised machine learning: A

review of classification techniques,” Informatica, vol. 31, pp.249–268, January

2007.

26. R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation and

model selection,” in IJCAI ’95: Proc. of the 14th International Joint Conference

on Artificial Intelligence, San Francisco, CA: Morgan Kaufman Publishers, 1995,

pp. 1137–1145.

27. S. Boughorbel, F. Jarray, and M. El-Anbari, “Optimal classifier for imbalanced data

using Matthews Correlation Coefficient metric,” PloS ONE, vol. 12, no.6, June 2,

2017, p. e0177678.

28. S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,” Chemometrics

and Intelligent Laboratory Systems, vol. 2, no 1–3, pp. 37–52, August 1987.

29. Scikit-Learn, 2019. Available: http://scikitlearn.org/. [Accessed: Feb. 8, 2019].

30. J. McGahagan IV, D. Bhansali, M. Gratian, and M. Cukier, “A comprehensive

evaluation of HTTP headers for detecting malicious websites,” in Proc. of the

2019 15th European Dependable Computing Conference (EDCC), Naples, Italy,

Sept. 17–20, 2019, pp. 75–82.

31. J. McGahagan IV, D. Bhansali, C. Pinto-Coelho, and M. Cukier, “A comprehensive

evaluation of webpage content features for detecting malicious websites,” in Proc.

of the 2019 9th Latin America Symposium on Dependable Computing, Natal,

Brazil, Nov. 19–21, 2019, pp. 1–10.

32. Network Solutions, “Tools and Tips” Available:

https://www.networksolutions.com/support/what-is-a-domain-name-server-dns-

and-how-does-it-work/. [Accessed: Sept. 19. 2019].

33. Technopedia, “Website security certificate,” updated April 14, 2014. Available:

https://www.techopedia.com/definition/29743/website-security-certificate/.

[Accessed: Sept. 19, 2019].

34. S. Garera, N. Provos, M. Chew, and A. D. Rubin, “A framework for detection and

measurement of phishing attacks,” in WORM ’07: Proc. of the 2007 ACM

Workshop on Recurring Malcode. Alexandria, VA, Nov. 2, 2007, pp. 1–8.

35. J. Ma, L. K. Saul, S. Savage. and G. M. Voelker, “Beyond blacklists: Learning to

detect malicious web sites from suspicious URLs,” in Proc. of the 15th ACM

262

SIGKDD International Conference on Knowledge Discovery and Data Mining,

Paris, France, June 28–July 1, 2009, pp. 1245–1254.

36. J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Identifying suspicious URLs: An

application of large-scale online learning,” in ICML ’09: Proc. of the 26th

International Conference on Machine Learning, Montreal, Quebec, Canada, June

2009, pp. 681–688.

37. J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Learning to detect malicious urls,”

ACM Transactions on Intelligent Systems and Technology, vol. 2, no.3, May

2011.

38. A. Blum, B. Wardman, T. Solorio, and G. Warner, “Lexical feature-based phishing

URL detection using online learning,” in Proc. of the 3rd ACM Workshop on

Security and Artificial Intelligence, AlSec 2010, Chicago, IL, Oct. 8, 2010, pp.

54–60.

39. A. Le, A. Markopoulou, and M. Faloutsos, “Phishdef: URL names say it all,” in

Proc. of the 2011 IEEE INFOCOM, Shanghai, China, April 10–15, 2011, pp.

191–195.

40. A. E. Kosba, A. Mohaisen, A. West, T. Tonn, and H. K. Kim, “ADAM: Automated

detection and attribution of malicious webpages,” in Proc. of the 2013 IEEE

Conference on Communications and Security, National Harbor, MD, Oct. 14–16,

2013, pp. 399–400.

41. T. Fisher, “What is an IP address?” Lifewire, March 9, 2020. Available:

https://www.lifewire.com/what-is-an-ip-address-2625920. [Accessed: Sept. 19,

2019].

42. C. Whittaker, B. Ryner, and M. Nazif, “Large-scale automatic classification of

phishing pages,” in Proc. of the Network and Distributed System Security

Symposium, NDSS 2010, San Diego, California, Feb. 28-March 3, 2010.

Available: https://static.googleusercontent.com/media/research.google.com/

en//pubs/archive/35580.pdf.

43. M. He et al., “An efficient phishing webpage detector,” Expert Systems with

Applications, vol. 38, no. 10, pp. 12018–12027, September 2011.

44. S. Gastellier-Prevost, G. G. Granadillo, and M. Laurent, M, “Decisive heuristics to

differentiate legitimate from phishing sites,” in Proc. of the 2011 Conference on

Network and Information Systems Security, La Rochelle, France, May 18-21,

2011, pp. 1-9.

45. D. Canali, M. Cova, G. Vigna, and C. Kruegel, “Prophiler: A fast filter for the large-

scale detection of malicious web pages,” in Proc. of the 20th World Wide Web

Conference, Hiderabad, India, March 2010, pp. 197-206.

263

46. G. Xiang, J. Hong, C. P. Rose, and L. Cranor, “CANTINA+: A feature-rich machine

learning framework for detecting phishing web sites,” ACM Transactions on

Information and System Security, vol. 14, no. 2, pp. 21, September 2011.

47. B. Eshete, A. Villafiorita, and K. Weldemariam, “BINSPECT: Holistic analysis and

detection of malicious web pages,” in Proc. of the International Conference on

Security and Privacy in Communication Systems, SecureComm 2012, Padua,

Italy, Sept. 3–5, 2012, pp. 149–166.

48. X. Gu, W. Hongyuan, and N. I. Tongguang, “An efficient approach to detecting

phishing web,” Journal of Computational Information Systems, vol. 9, no. 14, pp.

5553–5560, July 2013.

49. L. Xu, Z. Zhan, S. Xu, and K. Ye, “Cross-layer detection of malicious websites,” in

Proc. of the Third ACM conference on Data and Application Security and

Privacy. February 2013, pp. 141–152.

50. R. B. Basnet, A. H. Sung, and Q. Liu, “Feature selection for improved phishing

detection,” in Advanced Research in Applied Artificial Intelligence, IEA/AIE

2010, vol. 7345, H. Jiang, W. Ding, M. Ali, and X. Wu, Eds. Berlin: Springer,

2012, pp. 252–261.

51. M. S. Lin, C. Y. Chiu, Y. J. Lee, and H. K. Pao, “Malicious URL filtering: A big

data application,” in Proc. of the 2013 IEEE International Conference on Big

Data, Silicon Valley, CA, Oct. 6–9, 2013, pp. 589–596.

52. A. Ahluwalia, I. Traore, K. Ganame, and N. Agarwal, “Detecting broad length

algorithmically generated domains,” in Traore I., Woungang I., Awad A. (eds.)

Intelligent, Secure, and Dependable Systems in Distributed and Cloud

Environments: ISDDC 2017, I. Traore, I. Woungang, and A. Awad, Eds., Cham,

Switzerland: Springer, 2017, pp. 19–34.

53. P. Arntz, “Explained: Domain-generating algorithms,” Malwarebytes Labs, Dec. 6,

2016. [Online]. Available: https://blog.malwarebytes.com/security-

world/2016/12/explained-domain-generating-algorithm/. [Accessed: Sept. 19,

2019].

54. H. Pao, Y. Chou, and Y. Lee, “Malicious URL detection based on Kolmogorov

complexity estimation,” in Proc. of the 2012 IEEE/WIC/ACM International Joint

Conferences on Web Intelligence and Intelligent Agent Technology, Macau,

China, Dec. 4–7, 2012, pp. 380–387.

55. N. Kheir, G. Blanc, H. Debar, J. Garcia-Alfaro, and D. Yang, “Automated

classification of C&C connections through malware URL clustering,” in ICT

Systems Security and Privacy Protection. SEC 2015. IFIP Advances in

Information and Communication Technology, H. Federrath and D. Gollman, Eds.

Sham, Switzerland: Springer, 2015, pp. 252–266.

264

56. R. Verma and A. Das, “What's in a URL: Fast feature extraction and malicious URL

detection,” in IWSPA ’17: Proc. of the 3rd ACM on International Workshop on

Security and Privacy Analytics, Scottsdale, AZ, March 2017, pp. 55–63.

57. Tfidf.com, “What does TF-IDF mean?” [Online]. Available: http://www.tfidf.com/.

[Accessed: May 23, 2019].

58. N. Sanglerdsinlapachai and A. Rungsawang, “Using domain top-page similarity

feature in machine learning-based web phishing detection,” in 2010 Third

International Conference on Knowledge Discovery and Data Mining, Phuket,

Thailand, Jan. 9–10, 2010, pp. 187–190.

59. N. Provos, P. Mavrommatis, M. Rajab, and F. Monrose, “All your iframes point to

us,” in SS '08: Proc. of the 17th Conference on Security Symposium, Berkeley,

CA: USENIX Association, 2008, pp. 1–15.

60. J. Drew, and T. Moore, “Automatic identification of replicated criminal websites

using combined clustering,” in 2014 IEEE Security and Privacy Workshops, San

Jose, CA, May 17–18, 2014, pp. 116–123.

61. I. Corona et al., “Deltaphish: Detecting phishing webpages in compromised

websites,” in Computer Security – ESORICS 2017: 22nd European Symposium on

Research in Computer Security, Oslo, Norway, Sept. 11-15, 2017, Proceedings,

Part I, pp. 370–388.

62. K. Borgolte, C. Kruegel, and G. Vigna, “Delta: Automatic identification of unknown

web-based infection campaigns,” in Proc. of the 2013 ACM SIGSAC Conference

on Computer & Communications Security, Berlin, Germany, Nov. 4–8, 2013,

pp.109–120.

63. V. L. Le, I. Welch, X. Gao, and P. Komisarczuk, “Identification of potential

malicious web pages,” in AISC ’11: Proc. of the Ninth Australasian Information

Security Conference, vol. 16, Darlinghurst, NSW, Australia: Australian Computer

Society Inc., 2011, pp. 33–40.

64. R. B. Basnet and A. H. Sung, “Learning to detect phishing webpages,” Journal of

Internet Service and Information. Security, vol. 4, no. 3, pp. 21–39, August 2014.

65. M. Cova, C. Kruegel, and G. Vigna, “Detection and analysis of drive-by-download

attacks and malicious JavaScript code,” in WWW ’10: Proc. of the 19th

International Conference on World Wide Web, Raleigh, NC, April 26–30, 2010,

pp. 281–290.

66. G. Canfora, and A. V. Corrado, “A set of features to detect web security threats,”

Journal of Computer Virology and Hacking Techniques, vol. 12, no. 4, pp 243-

261, January 2016.

265

67. K. Rieck, T. Krueger, and A. Dewald, “Cujo: Efficient detection and prevention of

drive-by download attacks,” in Proc. of the 26th Annual Computer Security

Applications Conference, ACSAC 2010, Austin, TX, Dec. 6–10, 2010, pp. 31–39.

68. C. Curtsinger, B. Livshits, B. G. Zorn, and C. Seifert, “ZOZZLE: Fast and precise in-

browser JavaScript malware detection,” in Proc. of the 20th USENIX Security

Symposium, San Francisco, CA, Aug. 10–11, 2011, pp. 33–48.

69. W. Xu, F. Zhang, and S. Zhu, “JStill: Mostly static detection of obfuscated malicious

JavaScript code,” in Proc. of the 3rd ACM Conference on Data and Application

Security and Privacy, CODASPY’13, San Antonio, TX, Feb. 18–20, 2013, pp.

117–128.

70. Mozilla MDN Web Docs, “Introduction to the DOM.” [Online]. Available:

https://developer.mozilla.org/en-

US/docs/Web/API/Document_Object_Model/Introduction. [Accessed: Sept. 19,

2019].

71. A. Kapravelos, Y. Shoshitaishvili, M. Cova, C. Kruegel, and G. Vigna, “Revolver:

An automated approach to the detection of evasive web-based malware,” in

Proceedings of the 22nd USENIX Security Symposium, Washington DC, Aug. 14–

16, 2013, pp. 637–652.

72. H. Choi, B. B. Zhu, and H. Lee, “Detecting malicious web links and identifying their

attack types,” in WebApps ’11:Proceedings of the 2nd USENIX Conference on

Web Application Development, Berkeley, CA: USENIX Association, 2011, p.

218–229.

73. M. Heiderich, T. Frosch, and T. Holz, “Iceshield: Detection and mitigation of

malicious websites with a frozen DOM,” in Recent Advances in Intrusion

Detection, RAID 2011, R. Sommer, D. Balzarotti, and G. Maier, Eds., Berlin:

Springer, 2011, pp. 281–300.

74. V. Beal, “HTTP-Hypertext transfer protocol,” Webopedia. [Online]. Available:

https://www.webopedia.com/TERM/H/HTTP.html. [Accessed: Sept. 19, 2019].

75. R. Perdisci, W. Lee, and N. Feamster, “Behavioral clustering of http-based malware

and signature generation using malicious network traces,” in Proc. of the 7th

USENIX conference on Networked Systems Design and Implementation, NSDI

‘10, San Jose, CA, April 28–30, 2010, pp. 26–40.

76. R. Perdisci, A. Davide, and G. Giacinto, “Scalable fine-grained behavioral clustering

of HTTP-based malware,” Computer Networks, vol. 57, no. 2, pp 487–500,

February 2013.

77. W. Tao, Y. Shunzheng, and X. Bailin, “A novel framework for learning to detect

malicious web pages,” Proc. of the 2010 International Forum on Information

266

Technology and Applications, IFITA 2010, Kunming, China, July 16–18, 2010,

vol. 2, pp. 353–357.

78. J. Zhang, C. Seifert, J. W. Stokes, and W. Lee, “Arrow: Generating signatures to

detect drive-by downloads,” in Proc. of the 20th International Conference on

World Wide Web, WWW 2011, Hyderabad, India, March 2011, pp. 187–196.

79. F. Brezo, J. G. de la Puerta, X. Ugarte-Pedrero, I. Santos, and P. G. Bringas, “A

supervised classification approach for detecting packets originated in a HTTP-

based botnet,” CLEI Electronic Journal, vol. 16, no.3, pp. 2, December 2013.

80. T. Nelms, R. Perdisci, and M. Ahamad, “ExecScent: Mining for new C&C domains

in live networks with adaptive control protocol templates,” in Proc. of the 22nd

USENIX Security Symposium, Washington, DC, Aug. 14–16, 2013, pp. 589–604.

81. A. Mohaisen, “Towards automatic and lightweight detection and classification of

malicious web contents,” in 2015 Third IEEE Workshop on Hot Topics in Web

Systems and Technologies, Washington, DC, Nov. 12–15, 2015, pp. 67–72.

82. A. Zarras, A. Papadogiannakis, R. Gawlik, and T. Holz, “Automated generation of

models for fast and precise detection of HTTP-based malware,” in Proc. of the

12th Annual International Conference on Privacy, Security, and Trust, Toronto,

ON, Canada, July 23–14, 2014, pp. 249–256.

83. A. Niakanlahiji, B. T. Chu, and E. Al-Shaer, “PhishMon: A Machine Learning

Framework for Detecting Phishing Webpages,” in Proc. 2018 IEEE International

Conference on Intelligence and Security Informatics (ISI), 2018, pp. 220–225.

84. P. Prakash, M. Kumar, R. R. Kompella, and M. Gupta, “Phishnet: Predictive

blacklisting to detect phishing attacks,” in 2010 Proceedings IEEE INFOCOM,

San Diego, CA, May 6, 2010, pp. 1–5.

85. G. Wang, J. W. Stokes, C. Herley, and D. Felstead, “Detecting malicious landing

pages in malware distribution networks,” in Proc. of the 43rd Annual IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN), Budapest,

Hungary, Aug. 8, 2013, pp. 1–11.

86. L. A. T Nguyen, B. L To, H. K. Nguyen, and M. H Nguyen, “Detecting phishing

web sites: A heuristic URL-based approach,” in Proc. of the 2013 International

Conference on Advanced Technologies for Communications (ATC 2013), Hi Chi

Minh City, Vietnam, Jan. 6, 2013, pp. 597–602.

87. I. Ghafir, and V. Prenosil, “Blacklist-based malicious ip traffic detection,” in Proc. of

the 2015 Global Conference on Communication Technologies, Thuckalay, India,

Dec. 3, 2015, pp. 229–233.

267

88. P. Seshagiri, A. Vazhayil, and P. Sriram, “AMA: Static code analysis of web page

for the detection of malicious scripts,” Procedia Computer Science, vol. 93,

pp.768–773, December 2016.

89. G. Sonowal, and K. S. Kuppusamy. “PhiDMA–A phishing detection model with

multi-filter approach,” Journal of King Saud University-Computer and

Information Sciences, vol. 32, no. 1, pp. 99–112, January 2017.

90. A. Nappa, Z. Xu, M. Z. Rafique, J. Caballero, and G. Gu, “CyberProbe: Towards

internet-scale active detection of malicious servers,” in Proc. of the 2014 Network

and Distributed System Security Symposium, NDSS 2014, San Diego, CA, Feb.

23–26, 2014, pp. 1-15.

91. S. Marchal, K. Saari, N. Singh, and N. Asokan, “Know your phish: Novel techniques

for detecting phishing sites and their targets,” in 2016 IEEE 36th International

Conference on Distributed Computing Systems (ICDCS), Nara, Japan, Aug. 11,

2016, pp. 323–333.

92. P. McCullagh and J. A. Nelder, Generalized Linear Models. Boca Raton, FL:

Chapman & Hall, 1989.

93. W. S. Noble, “What is a support vector machine?” Nature Biotechnology, vol. 24,

no.12, pp.1565–1567, December 2006.

94. J. H. Friedman, “Stochastic Gradient Boosting,” Computational Statistics & Data

Analysis, vol. 38, no. 4, pp. 367–378, Feb. 28, 2002.

95. A. Y. Daeef, R. B Ahmad, Y. Yacob, Y, and N. Y. Phing, “Wide scope and fast

websites phishing detection using URLs lexical features,” in Proc. of the 2016 3rd

International Conference on Electronic Design (ICED), Phuket, Thailand, Aug.

11–12, 2016, pp. 410-415.

96. K. P. Murphy, “Naïve Bayes classifiers,” University of British Columbia, Oct. 24,

2006. [Online.] Available: https://www.cs.ubc.ca/~murphyk/Teaching/CS340-

Fall06/reading/NB.pdf. [Accessed: Sept. 19, 2019.]

97. P. Geurts, E. Damien, and L.Wehenkel, “Extremely randomized trees,” Machine

Learning, vol. 63, no.1, pp. 3–42, April 2006.

98. L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, October

2001.

99. J. Girones, “J48 decision tree,” [Online]. Available: http://data-mining.business-

intelligence.uoc.edu/home/j48-decision-tree. [Accessed: Sept. 19. 2019].

100. N. Friedman, D. Geiger, and M. Goldszmidt. “Bayesian network classifiers,”

Machine Learning, vol. 29, no. 2-3, pp. 131–163, November 1997.

268

101. R. E. Schapire, “A brief introduction to boosting,” in IJCAI ’99: Proc. of the

Sixteenth International Joint Conference on Artificial Intelligence, vol. 2, San

Francisco, CA: Morgan Kaufman Publishers, Inc., 1999, pp. 1401–1406.

102. G. Tsoumakas, and I. Vlahavas, “Random k-labelsets: An ensemble method for

multilabel classification,” in Proc. of the 18th European Conference on Machine

Learning, Warsaw, Poland, Sept. 17–21, 2007, pp. 406–417.

103. M. L. Zhang, and Z. H Zhou, “Ml-knn: A lazy learning approach to multi-label

learning,” Pattern Recognition, vol. 40, no.7, pp. 2038–2048, July 2007.

104. N. Tóth, and B. Pataki, “Classification confidence weighted majority voting using

decision tree classifiers,” International Journal of Intelligent Computing and

Cybernetics, vol. 1, no. 2, pp. 169–192, June 6, 2008.

105. D. G Denison, B. K. Mallick, and A. F. Smith, “A Bayesian CART algorithm.”

Biometrika. vol. 85, no 2. pp. 363–377, June 1998.

106. N. S Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang, “On

large-batch training for deep learning: Generalization gap and sharp minima,”

presented at ICLR 2017: International Conference on Learning Representations,

Toulon, France, April 24–26, 2017.

107. S. Shalev-Shwartz, “Online learning and online convex optimization,” Foundations

and Trends® in Machine Learning, vol. 4, no.2, pp. 107–194, 2012.

108. I. Stephen, “Perceptron-based learning algorithms,” IEEE Transactions on Neural

Networks, vol. 50, no. 2, pp. 179–191, June 1990.

109. K. Crammer, O. Dekel, J. Keshet, S. Shaley-shwartz, and Y. Singer, “Online

passive-aggressive algorithms,” Journal of Machine Learning Research, vol. 7,

pp. 551–585, March 2006.

110. J. R Quinlan, “Bagging, boosting, and C4.5,” in AAAI ’96: Proceedings of the 13th

National Conference on Artificial Intelligence, vol. 1, pp. 725–730, August 1996.

111. L. E Peterson, “K-nearest neighbor,” Scholarpedia.org, vol. 4, no. 2, 2009.

[Online.] Available: http://www.scholarpedia.org/article/K-nearest_neighbor.

[Accessed: Aug. 1, 2018].

112. Alexa.com, “The top 500 sites on the web.” [Online]. Available:

https://www.alexa.com/topsites. [Accessed: August 2018].

113. PhishTank.com. “Join the fight against phishing.” [Online]. Available:

https://www.phishtank.com/. [Accessed: April 8, 2019].

269

114. Y. Pan and X. Ding, “Anomaly based web phishing page detection,” in Proc. of the

2006 22nd Annual Computer Security Applications Conference (ACSAC ’06),

Miami Beach, FL, Dec. 11–15, 2006, pp. 381–392.

115. S. A Onashoga, A. Abayomi-Alli, O. Idowu, and J. O. Okesola, “A hybrid approach

for detecting for detecting malicious web pages using decision tree and naïve

Bayes algorithms,” Georgian Electronic Scientific Journal: Computer Science &

Telecommunications, vol. 48, no.2, January 2016.

116. C. Liu, L. Wang, B. Lang, and Y. Zhou, “Finding effective classifier for malicious

URL detection,” in ICMSS 2018: Proc. of the 2nd International Conference on

Management Engineering, Software Engineering and Service Sciences, New

York: Association for Computing Engineering, 2018, pp. 240–244.

117. D. Abraham and N. S, Raj, “Approximate string matching algorithm for phishing

detection,” in Proc. of the 2014 International Conference on Advances in

Computing, Communications and Informatics (ICACCI 2014), Noida, India, Sept.

24–17, 2014, pp. 2285–2290.

118. J. Wang, Y. Xue, Y. Liu, and T. H. Tan, “JSDC: A hybrid approach for Javascript

malware detection and classification,” in ASIA CCS ’15: Proc. of the 10th ACM

Symposium on Information, Computer and Communications Security, Singapore,

April 2015, pp. 109–120.

119. A. Fass, R. P. Krawczyk, M. Backes, and B. Stock, “JaSt: Fully Syntactic Detection

of Malicious (Obfuscated) JavaScript,” in DIMVA 2018: Detection of Intrusions

and Malware, and Vulnerability Assessment, C. Giuffrida, S. Bardin, G. Blanc,

Eds., Cham, Switzerland: Springer, 2018, pp. 303–325.

120. Y. S. Hwang, J. B. Kwon, J. C. Moon, and S. J. Cho, “Classifying malicious web

pages by using an adaptive support vector machine,” Journal of Information

Processing Systems, vol. 9, no. 3, pp. 395–404, June 2013.

121. MillerSmiles.co.uk, “The web’s dedicated anti-phishing service,” 2019. [Online].

Available: http://www.millersmiles.co.uk/. [Accessed: Sept. 19, 2019].

122. Castlecops.com, 2019. [Online]. Available: http://castlecops.com. Discontinued.

[Accessed: Sept. 19, 2019].

123. 3sharp.com. [Online]. Available: http://www.3sharp.com/projects/antiphishing/.

[Accessed: Sept. 19, 2019].

124. Dmoz.org, 2017. [Online]. Available: http://dmoz-odp.org/. [Accessed: April. 8,

2019].

125. Yahoo.com. [Online]. Available: https://www.yahoo.com/. [Accessed: Sept. 19,

2019].

270

126. HauteSecure.com,. [Online]. Available: http://hautesecure.com/ [Accessed: Sept. 19,

2019].

127. D. S. Anderson, C. Fleizach, S. Savage, G. M, Voelker, “Spamscatter.

Characterizing internet scam hosting infrastructure,” in SS ’07: Proc. of 16th

USENIX Security Symposium on USENIX Security Symposium, Berkeley, CA:

USENIX Association, 2007, pp. 1–16.

128. A Malware Dataset, [Online]. Discontinued. Formerly available:

mwm.rising.com.cn. [Accessed: Sept. 19, 2019].

129. Knownsec Information Technology Co. [Online]. Discontinued. Formerly

available: Knownsec.com. [Accessed: Sept. 19, 2019].

130. MalwareDomainList.com. [Online]. Available:

https://www.malwaredomainlist.com. [Accessed: April. 8, 2019].

131. Google, Malicious Emails from Gmail, 2019. [Online]. Available: www.gmail.com.

[Accessed: Sept. 19, 2019].

132. Google Safe Browsing. [Online]. Available: https://safebrowsing.google.com/.

[Accessed: Sept. 19, 2019].

133. Wepawet Database. [Online]. Discontinued. Formerly available:

http://wepawet.cs.ucsb.edu. [Accessed: Sept. 19, 2019].

134. Google.com. [Online]. Available: www.google.com. [Accessed: Sept. 19, 2019].

135. Netcraft.com. [Online]. Available: https://www.netcraft.com/anti-phishing/.

[Accessed: Sept. 19, 2019].

136. Telecom Sudparis. [Online]. Available: https://www.telecom-sudparis.eu/en/aris.

[Accessed: Sept. 19, 2019].

137. APWG.org. [Online]. Available: https://apwg.org. [Accessed: Sept. 19, 2019].

138. Blade Defender. [Online]. Available: blade-defender.org. [Accessed: Sept. 19,

2019].

139. CleanMX. [Online]. Available: https://support.clean-mx.com/clean-

mx/viruses.php. [Accessed: April 8, 2019].

140. Jowein.de. “Spam domain blacklist (filtered by jwSpamSpy),” last updated Aug. 7,

2020. [Online]. Available: http://www.joewein.de/sw/blacklist.htm. [Accessed:

April 8, 2019].

271

141. MalwareDomains.com, “DNS-BH – Malware Domain Blocklist by RiskAnalytics,”

June 11, 2018. Available: https://www.malwaredomains.com/. [Accessed: Sept.

19, 2019].

142. MalwareURL.com. [Online]. Available: https://www.malwareurl.com/. [Accessed:

April 8, 2019].

143. URL-domain.txt.malware.com. [Online]. Discontinued. Formerly available: url-

domain.txt.malware.com. [Accessed: Sept. 19, 2019].

144. ZeusTracker. [Online]. Discontinued. Formerly available:

https://zeustracker.abuse.ch/. [Accessed: Sept. 19, 2019].

145. Compuweb. [Online]. Discontinued. Formerly available: http://compuweb.com/.

[Accessed: Sept. 19, 2019].

146. SpyEye Tracker. [Online]. Discontinued. Formerly available:

https://spyeyetracker.abuse.ch/. [Accessed: Sept. 19, 2019].

147. VirusTotal.com. [Online] Available: https://www.virustotal.com/. [Accessed: April

8, 2019].

148. VxHeavens. [Online]. Discontinued. Formerly available: http://vxheavens.com/.

[Accessed: Sept. 19, 2019].

149. OpenMalware.org. [Online]. Available: openmalware.org. [Accessed: Sept. 19,

2019].

150. WebInspector.com. [Online]. Available: http://www.webinspector.com// [Accessed:

Sept. 19, 2019].

151. Korea Internet and Security Agency. [Online]. Available:

https://www.kisa.or.kr/eng/main.jsp// [Accessed: Sept. 19, 2019].

152. Github.com, “AnubisMalware.” [Online]. Available:

https://github.com/fs0c131y/AnubisMalware. [Accessed: Sept. 19, 2019].

153. hpHosts. [Online]. Discontinued. Formerly available: https://www.hosts-file.net/.

[Accessed: Sept. 19, 2019].

154. Intel.com. [Online]. Available: https://www.intel.com. [Accessed: Sept. 19, 2019].

155. OpenPhish.com. [Online]. Available: https://openphish.com/. [Accessed: Sept. 19,

2019].

156. M. Maurer, “Phishload: The Phishload phishing test database, 2012. [Online].

Available: https://www.medien.ifi.lmu.de/team/max.maurer/files/phishload/.

[Accessed: Sept. 19, 2019].

272

157. Digg58. [Online]. Discontinued. Formerly available: www.digg58.com. [Accessed:

Sept. 19, 2019].

158. Federal Office for Information Security, “Taking advantage of opportunities –

avoiding risks.” [Online]. Available:

https://www.bsi.bund.de/EN/Home/home_node.html. [Accessed: Sept. 19, 2019].

159. R. B. Basnet, A. H. Sung, and Q. Liu, “Learning to detect phishing URLs,”

International Journal of Research in Engineering and Technology, vol. 3, no. 6,

June 2014, pp. 11–24.

160. D. Huang, K. Xu, and J. Pei, “Malicious URL detection by dynamically mining

patterns without pre-defined elements,” World Wide Web, vol. 17, no. 6, pp.

1375–1394, November 2014.

161. R. B. Basnet, and T. Doleck, “Towards developing a tool to detect phishing URLs:

a machine learning approach,” in Proc. of the 2015 IEEE International

Conference on Computational Intelligence & Communication Technology,

Ghaziabad, India, Feb. 13–14, 2015, pp. 220–223.

162. K. Rieck, G. Schwenk, T. Limmer, T. Holz, and P. Laskov, “Botzilla: Detecting the

phoning home of malicious software,” in Proc. of the 2010 ACM symposium on

applied computing (SAC ’10), Sierre, Switzerland, March 22–25, 2010, pp. 1978–

1984.

163. Github.com, “VERMONT – VERsatile MONitoring Tool.” [Online]. Available:

https://github.com/tumi8/vermont/. [Accessed: May 20, 2019].

164. M. Balduzzi, M. Egele, E. Kirda, D. Balzarotti, and C. Kruegel, “A solution for the

automated detection of clickjacking attacks,” in ASIACCS ’10: Proc. of the 5th

ACM Symposium on Information, Computer and Communications Security,

Beijing, China, April 13–16, 2010, pp. 135–144.

165. B. Eshete, A. Villafiorita, K. Weldemariam, and M. Zulkernine, “EINSPECT:

Evolution-guided analysis and detection of malicious web pages,” in COMPSAC

’13: Proc. of the 2013 IEEE 37th Annual Computer Software and Applications

Conference, Washington DC: IEEE Computer Society, pp. 375–380.

166. C. Wu, L. I. Min, Y. E. Li, X. Zou, and B. QIANG. “Malicious Website Detection

Based on URLs Static Features,” in Proc. of the 2018 International Conference

on Modeling, Simulation, and Optimization (MSO 2018), Shenzhen, China, Jan.

21–22, 2018.

167. F. Douglis, A. Feldmann, B. Krishnamurthy, and J.C. Mogul, “Rate of change and

other metrics: A live study of the world wide web,” in USITS ’97: Proc. of the

USENIX Symposium on Internet Technologies and Systems, Monterey, CA,

December 1997, 14 pages.

273

168. J. Cho, and H. Garcia-Molina, “The evolution of the web and implications for an

incremental crawler,” in VLDB ’00: Proceedings of the 26th International

Conference on Very Large Data Bases, A. Abadi, M. Brodie, Eds., San Francisco:

Morgan Kaufmann Publishers Inc., 2000, pp. 200–209.

169. D. Fetterly, M. Manasse, and M. Najork, M., 2003, November. “On the evolution of

clusters of near-duplicate web pages,” In Proceedings of the IEEE/LEOS 3rd

International Conference on Numerical Simulation of Semiconductor

Optoelectronic Devices, IEEE, 2003, pp. 37-45.

170. D. Fetterly, M. Manasse, M. Najork, and J. L. Wiener, “A large-scale study of the

evolution of web pages," Software: Practice and Experience, vol. 34, no. 2,

February 2004, pp. 213–237.

171. A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig, “Syntactic clustering

of the web,” Computer Networks and ISDN Systems,” vol. 29, no. 8–3, September

1997, pp. 1157–1166.

172. B. E. Brewington and G. Cybenko, “How dynamic is the web?” Computer

Networks, vol. 33, no.1–6, June 2000, pp. 257–276.

173. L. Lim, M. Wang, S. Padmanabhan, J. S. Vitter, and R. Agarwal, “Characterizing

web document change,” in WAIM ’01: Proc. of the Second International

Conference on Advances in Web-Age Information Management, X. S. Wang, G.

Yu, H. Lu, Eds. Berlin: Springer, 2001, pp. 133–144.

174. E. Adar, J. Teevan, S. T. Dumais, and J. L. Elsas, “The web changes everything:

Understanding the dynamics of web content,” in WSDM ’09: Proc. of the Second

ACM International Conference on Web Search and Data Mining, Barcelona,

Spain, February 2009, pp. 282–291.

175. S. Y. Kwon, S. H. Lee, and S. J. Kim, “A precise metric for measuring how much

web pages change,” in Proc. of the 11th International Conference on Database

Systems for Advanced Applications (DASFAA 2006), Singapore, April 12–15,

2006, pp. 557–571.

176. Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halderman, “A search

engine backed by internet-wide scanning,” in CCS ’15: Proc. of the 22nd ACM

SIGSAC Conference on Computer and Communications Security, Denver, CO,

October 2015, New York: Association for Computing Machinery, pp. 542–553.

177. Cisco.com, “Cisco Talos: Meet Cisco Talos, the industry-leading threat intelligence

group fighting the good fight.” [Online]. Available:

https://www.cisco.com/c/en/us/products/security/talos.html. [Accessed: May 20,

2019].

178. Statsmodels.org. “Variance inflation factor, VIF, for one exogenous variable.”

[Online]. Available:

274

https://www.statsmodels.org/devel/generated/statsmodels.stats.outliers_influence.

variance_inflation_factor.html. [Accessed: April 8, 2019].

179. M. O. Akinwande, H. G. Dikko, and A. Samson, “Variance inflation factor: As a

condition for the inclusion of suppressor variables(s) in regression analysis,”

Open Journal of Statistics, vol. 5, no. 7, pp. 754–767, January 2015.

180. A. G. Asuero, A. Sayago, and A. G. Gonzalez, “The correlation coefficient: An

overview,” Critical Reviews in Analytical Chemistry, vol. 36, no. 1, pp. 41–59,

January 12, 2007.

181. XGBoost, “XGBoost documentation.” [Online].

182. T. G. Dietterich, “Ensemble methods in machine learning,” in MCS 2000: Multiple

Classifier Systems, vol. 1857, Lecture Notes in Computer Science. Berlin:

Springer. pp. 1–15.

183. C. M. Bishop, Neural Networks for Pattern Recognition. New York: Oxford

University Press, 1995.

184. L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp. 123–140,

August 1996.

185. C. Lee, “Feature importance measures for tree models – Part 1,” Oct. 28, 2017.

[Online]. Available https://medium.com/the-artificial-impostor/feature-

importance-measures-for-tree-models-part-i-47f187c1a2c3. [Accessed: Sept. 19,

2019].

186. N. V. Chawla, K. W Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE:

synthetic minority over-sampling technique,” Journal of Artificial Intelligence

Research, vol. 16, pp. 321–357, June 1, 2002.

187. G. Lemaitre, F. Nogueira, D. Oliveira, and C. Aridas, “SMOTE - Synthetic

minority over-sampling technique.” [Online]. Available: https://imbalanced-

learn.readthedocs.io/en/stable/generated/imblearn.over_sampling.SMOTE.html.

[Accessed: Feb. 8, 2019.]

188. Featuretools.com. [Online]. Available: https://www.featuretools.com/. [Accessed:

Feb. 8, 2019].

189. L. Sullivan, “Correlation and linear regression.” [Online]. Available:

http://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704_Correlation-

Regression/BS704_Correlation-Regression_print.html. [Accessed: Feb. 8, 2019].

190. J. Friedman, T. Hastie, and R. Tibshirani, The Elements of Statistical Learning:

Data Mining, Inference, and Prediction, Springer Series in Statistics. New York:

Springer Series in Statistics, 2009.

275

191. D. Ruta, and B. Gabrys, “Classifier selection for majority voting,” Information

Fusion, vol.6, no.1, pp. 63–81, March 2005.

192. P. Baldi, “Autoencoders, unsupervised learning, and deep architectures,” in UTLW

’11: Proc. of the 2011 International Conference on Unsupervised and Transfer

Learning, vol. 27, pp. 37–49, July 2011.

193. Cymon.io, “Open threat intelligence.” [Online]. Available: https://cymon.io/.

[Accessed: Jan. 15, 2019].

194. H. Hsu, and P. A Lachenbruch, “Paired t test,” Encyclopedia of Biostatistics,

Hoboken, NJ: John Wiley & Sons, 2008.

195. DataNovia.com, “T-test essentials, Definition, formula and calculation,” 2018.

[Online]. Available: https://www.datanovia.com/en/lessons/t-test-formula/

[Accessed: July 6, 2020].

196. F. J. Massey, Jr., “The Kolmogorov-Smirnov test for goodness of fit,” Journal of

the American Statistical Association, vol. 46, no. 253, pp. 68–78, 1951.

197. National Institute of Standards and Technology, “Kolmogorov-Smirnov Two-

Sample,” Oct. 9, 2015. [Online]. Available:

https://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/ks2samp.htm.

[Accessed: July 7, 2020].

198. F. W. Scholz, and M. A Stephens, “K-sample Anderson–Darling tests,” Journal of

the American Statistical Association, vol. 82, no. 399, pp. 918–924, 1987.

199. National Institute of Standards and Technology, “Anderson-Darling k sample test,”

Oct. 9, 2015. [Online]. Available:

https://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/andeksam.htm

. [Accessed: July 6, 2020].

200. P. E. McKight and J. Najab, “Kruskal‐Wallis test,” in The Corsini Encyclopedia of

Psychology, vol. 4, C. B. Nemeroff, L. M. Miller, C. B. Nemeroff, W. E.

Craighead, Eds., New York: John Wiley & Sons, 2010.

201. S. Glen, “Kruskal Wallis H Test: Definition, examples, & assumptions,”

StatisticsHowTo.com: Statistics for the Rest of Us, Feb. 4, 2016. [Online].

Available: https://www.statisticshowto.com/kruskal-wallis/ [Accessed: July 6,

2020].

202. M. Arab, and M. K. Sohrabi, “Proposing a new clustering method to detect phishing

websites,” Turkish Journal of Electrical Engineering & Computer Sciences, vol.

25, no. 6, January 2017, pp. 4757-4767.

276

203. Dzone.com, “What is JavaScript obfuscation and when is it used?” Jan. 22, 2018.

[Online]. Available: https://dzone.com/articles/obfuscation-what-is-obfuscation-

in-javascript-why/. [Accessed: May 20, 2019].

204. P. Mioni, “Anatomy of a malicious script: How a website can take over your

browser,” July 13, 2018. [Online]. Available: https://css-tricks.com/anatomy-of-a-

malicious-script-how-a-website-can-take-over-your-browser/ [Accessed: May 20.

2019].

205. StackOverflow.com, “Malicious JavaScript code,” April 5 2013. [Online].

Available: https://stackoverflow.com/questions/15825408/malicious-javascript-

code/. [Accessed: May. 1, 2019].

206. Mozilla MDN Web Docs, “HTTP headers,” April 27, 2020. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers. [Accessed: Aug.

1, 2019].

207. W3Schools.com, “HTML: The language for building web pages.” [Online].

Available: https://www.w3schools.com/. [Accessed: Aug. 1, 2019].

208. Python Software Foundation, “Python bindings for Selenium.” [Online]. Available:

https://pypi.org/project/selenium/. [Accessed: Aug. 1, 2018].

209. S. Yadav, A.K.K Reddy, A.L. Narasimha Reddy, and S. Ranjan, “Detecting

algorithmically generated malicious domain names,” in IMC ’10: Proc. of the

10th ACM SIGCOMM Conference on Internet Measurement, Melbourne,

Australia, November 2010, pp. 48–61.

210. Github.com, “English words.” Available: https://github.com/dwyl/english-words/.

[Accessed: Aug. 1, 2018].

211. Webopedia, “TLD – Top-level domain,” 2019. [Online] Available:

https://www.webopedia.com/TERM/T/TLD.html. [Accessed: May 20, 2019].

212. Z. Xu, A. Nappa, R. Baykov, G. Yang, J. Caballero. and G. Gu, “AUTOPROBE:

Towards automatic active malicious server probing using dynamic binary

analysis,” in CCS ’14: Proc. of the 2014 ACM SIGSAC Conference on Computer

and Communications Security ACM, Scottsdale, AZ, November 2014, pp. 179–

190.

213. T. Bujlow, M. T. Riaz, and J. M. Pedersen, “A method for classification of network

traffic based on C5.0 machine learning algorithm,” in ICNC ’12: Proc. of the

2012 International Conference on Computing, Networking and Communications,

Maui, HI, Jan. 30–Feb. 12, 2012, pp. 237–241.

214. G. Gu, J. Zhang, and W. Lee. “BotSniffer: Detecting botnet command and control

channels in network traffic,” in NDSS 2008: Proc. of the 15th Annual Network

and Distributed System Security Symposium, San Diego, CA, Feb. 10–15, 2008.

277

215. B. Soniya and M. Wilscy, “Detection of randomized bot command and control

traffic on an end-point host,” Alexandria Engineering Journal, vol. 55, no. 3, pp.

2771–2781, September 2016.

216. K. Reitz, I. Cordasco, N. Prewitt, “Requests: HTTP for humans,” 2019. [Online].

Available: https://requests.readthedocs.io/en/master/. [Accessed: Aug. 10, 2018].

217. L. Bottou and Y. L. Cun, “Large scale online learning,” in Advances in Neural

Information Processing Systems 16 (NIPS 2003), S. Thrun, L. K. Saul, and B.

Scholkopf, Eds. San Diego, CA: Neural Information Processing Systems, 2004,

pp. 217–224.

218. T. Li, G. Kou, and Y. Peng, “Improving malicious URLs detection via feature

engineering: Linear and nonlinear space transformation methods,” in Information

Systems, 91, p.101494, 2020.

219. E. B Beigi, H. H. Jazi, N. Stakhanova, and A. A Ghorbani,“Towards effective

feature selection in machine learning-based botnet detection approaches,” in Proc.

of the 2014 IEEE Conference on Communications and Network Security, San

Francisco, CA, Oct. 29–31, 2014, pp. 247–255.

220. The Honeypot Project, “Capture HPC.” [Online]. Available:

https://www.honeynet.org/projects/old/capture-hpc/. [Accessed: Mar. 31, 2020].

221. G. Willard, “Understanding the co-evolution of cyber defenses and attacks to

achieve enhanced cybersecurity,” Journal of Information Warfare, vol. 14., no. 2,

pp. 17–31, April 2015.

222. W3Schools.com, “HTML tutorial.” [Online]. Available:

https://www.w3schools.com/html/html5_intro.asp. [Accessed: March 31, 2020].

223. K. Pearson, “On the criterion that a given system of deviations from the probable in

the case of a correlated system of variables is such that it can be reasonably

supposed to have arisen from random sampling,” in Breakthroughs in Statistics,

S. Kotz and N.L. Johnson, Eds., New York: Springer, 1992, pp. 11–28.

224. I. Syarif, A. Prugel-Bennett, and G. Wills, “SVM parameter optimization using grid

search and genetic algorithm to improve classification performance,” Telkomnika,

vol. 14,no. 4, p.1502, 2016.

225. M. Butkiewicz, H. V. Madhyastha, and V. Sekar, “Understanding website

complexity: measurements, metrics, and implications,” in ICM ’11: Proc. of the

2011 ACM SIGCOMM Conference on Internet Measurement, Berlin, Germany,

Nov. 2–4, 2011, pp. 313–328.

226. D. K. McGrath, and M. Gupta, “Behind phishing: An examination of phisher modi

operandi,” in Proc. of the First USENIX Workshop on Large-Scale Exploits and

Emergent Threats, San Francisco, CA, April 15, 2008, p. 4.

278

227. University of Notre Dame, “The frequency of the letters of the alphabet in English.”

[Online]. Available:

https://www3.nd.edu/~busiforc/handouts/cryptography/letterfrequencies.html.

[Accessed: Mar. 31, 2020].

228. Noxxi, “HTTP evasions explained.” [Online]. Available:

https://noxxi.de/research/semantic-gap.html. [Accessed: Mar. 31, 2020].

229. OWASP.org, “Cache poisoning.” [Online]. Available: https://owasp.org/www-

community/attacks/Cache_Poisoning. [Accessed: Mar. 31, 2020].

230. “Malicious Apache server and Blackhold provide stealthy backdoor,” Info Security,

April 30, 2013. [Online]. Available: https://www.infosecurity-

magazine.com/news/malicious-apache-server-and-blackhole-provide/ [Accessed:

Mar. 31, 2020].

231. C. Cimpanu, “Apache web server bug grants root access on shared hosting

environments,” Zero Day, April 3, 2019. [Online]. Available:

https://www.zdnet.com/article/apache-web-server-bug-grants-root-access-on-

shared-hosting-environments/. [Accessed: Mar. 31, 2020].

232. D. Goodin, “Rampant Apache website attack hits visitors with highly malicious

software,” Ars Technica, July 3, 2013. [Online]. Available:

https://arstechnica.com/information-technology/2013/07/darkleech-infects-40k-

apache-site-addresses/. [Accessed: Mar. 31, 2020].

233. L. Tung, “’Sophisticated’ backdoor malware opens up security blackhole in Apache

webservers,” ZdNet.com, May 1, 2013. [Online]. Available:

https://www.zdnet.com/article/sophisticated-backdoor-malware-opens-up-

security-blackhole-in-apache-web-servers. [Accessed: Mar. 31, 2020].

234. ThreatX Labs, “Malicious bot detection through a complex proxy network,”

Security Boulevard, April 17, 2019. [Online]. Available:

https://securityboulevard.com/2019/04/malicious-bot-detection-through-a-

complex-proxy-network/. [Accessed: Mar. 31, 2020].

235. E. J. Zaborowski, “Malicious proxies: The web’s evil twin,” Defcon.org, 2009.

[Online]. Available: https://www.defcon.org/images/defcon-17/dc-17-

presentations/defcon-17-edward_zaborowski-doppelganger.pdf. [Accessed: Mar.

31, 2020].

236. H. Pandjarov, “How the vary HTTP header can be bad,” SiteGround, June 21,

2017. [Online]. Available: https://www.siteground.com/blog/vary-http-header/.

[Accessed: Mar. 31, 2020].

237. E. Kovaks, “Phishers use new method to bypass Office 365 safe links,” Security

Week, May 8, 2018. [Online]. Available: https://www.securityweek.com/phishers-

use-new-method-bypass-office-365-safe-links. [Accessed: Mar. 31, 2020].

279

238. Y. Nathaniel, “MetaMorph HTML obfuscation phishing attack,” Avanan, Aug. 14,

2019. [Online]. Available: https://www.avanan.com/blog/metamorph-html-

obfuscation-phishing-attack. [Accessed: Mar. 31, 2020].

239. M. Gualtieri, “Stealing data with CSS: Attack and defense,” Feb. 6, 2018. [Online].

Available: https://www.mike-gualtieri.com/posts/stealing-data-with-css-attack-

and-defense/. [Accessed: Mar. 31, 2020].

240. “Ponemon Institute reveals security teams spend approximately 25 percent of their

time chasing false positives; response times,” Bloomberg, Aug. 1, 2019. [Online].

Available: https://www.bloomberg.com/press-releases/2019-08-01/ponemon-

institute-reveals-security-teams-spend-approximately-25-percent-of-their-time-

chasing-false-positives-response-times. [Accessed: Mar. 31, 2020].

241. L. V. D Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of Machine

Learning Research, vol. 9, pp. 2579–2605, November 2008.

242. K. Pearson, “On the criterion that a given system of deviations from the probable in

the case of a correlated system of variables is such that it can be reasonably

supposed to have arisen from random sampling,” in Breakthroughs in Statistics,

S. Kotz and N.L. Johnson, Eds., New York: Springer, 1992, pp. 11–28.

243. A. C. Acock, and G. R. Stavig, “A measure of association for nonparametric

statistics,” Social Forces, vol. 57, no. 4, pp. 1381–1386, June 1979.

244. H. He, Y. Bai, E. A. Garcia, and S. Li, “ADASYN: Adaptive synthetic sampling

approach for imbalanced learning,” in Proc. of the 2008 IEEE International Joint

Conference on Neural Networks (IEEE World Congress on Computational

Intelligence), Hong Kong, China, June 1–8, 2008, pp. 1322–1328.

245. “Esprima 4.0.1: ECMAScript parsing infrastructure for multipurpose analysis in

Python,” Python Package Index. [Online]. Available:

https://pypi.org/project/esprima/. [Accessed: Mar. 1, 2020].

246. W. Hoeffding and H. Robbins, “The central limit theorem for dependent random

variables,” Duke Mathematical Journal, vol.15, no. 3, pp.773-780, 1948.

247. P. Lumley, P. Diehr,, S. Emerson, and L. Chen, “The importance of the normality

assumption in large public health data sets,” Annual review of public health, vol.

23, no. 1, pp. 151-169, 2002.

248. E. R. Girden, ANOVA: Repeated Measures, Newbury Park, CA: SAGE

Publications, Inc., 1992.

	Chapter 1: Introduction
	1.1 Background and Motivation
	1.1.1 The Impact of Cybersecurity
	1.1.2 Websites as Attack Enablers
	1.1.3 The Case for New Detection Techniques
	1.1.4 The Current State of Malicious Website Detection

	1.2 Research Scope
	1.2.1 Detecting Malicious Websites
	1.2.2 Identifying and Comparing New Features for Malicious Website Detection
	1.2.3 Evaluating our Approach over Multiple Scenarios
	1.2.4 Bridging a Gap Between Research and Industry
	1.2.5 Analysis on Different Datasets and Over Time

	1.3 Research Questions and Approach
	1.3.1 Research Question 1
	1.3.2 Research Question 2
	1.3.3 Research Question 3
	1.3.4 Research Question 4
	1.3.5 Research Question 5
	1.3.6 Research Question 6
	1.3.7 Research Question 7
	1.3.8 Research Question 8
	1.3.9 Research Question 9
	1.3.10 Research Question 10
	1.3.11 Research Question 11
	1.3.12 Research Question 12
	1.3.13 Research Question 13

	1.4 Contributions
	1.5 Dissertation Outline

	Chapter 2: Background and Related Research
	2.1 Introduction
	2.2 An Overview of Features for Malicious Website Detection
	2.2.1 Host Information
	2.2.1.1 URL Word-Based Features
	2.2.1.2 Special Characters and URL Structure Features
	2.2.1.3 Additional Approaches with URL Features

	2.2.2 Webpage Content
	2.2.2.1 Term Frequency-Inverse Document Frequency (TF-IDF) and Its Applicability in Webpage Content
	2.2.2.2 Webpage Content - Structural Content - Tags and Attributes
	2.2.2.3 Webpage Content - Defining Page Content Behavior with JavaScript
	2.2.2.4 Combining Page Structure and Behavior for More Holistic Malicious Detection

	2.2.3 Communication Data Features
	2.2.3.1 Communication Data Features – HTTP Headers

	2.3 The Methods and Models for Detection
	2.3.1 Heuristics
	2.3.2 Clustering
	2.3.3 Supervised Learning

	2.4 Validation
	2.5 Practical Implementation
	2.6 Performance Metrics
	2.7 Measuring Website Change
	2.8 Summary

	Chapter 3: Methodology
	3.1 Overview
	3.1.1 High Level Approach

	3.2 Step 1: Select Datasets
	3.2.1 Dataset 1
	3.2.2 Dataset 2
	3.2.3 Dataset 3

	3.3 Step 2: Discover Features
	3.3.1 Extensive Feature Consideration
	3.3.2 Feature Selection Process

	3.4 Step 3: Build Detection Models
	3.4.1 Supervised Machine Learning Techniques
	3.4.2 Importance Determination
	3.4.3 Scenarios and Feature Transformation

	3.5 Step 4: Tune and Cross-Validate
	3.5.1 Hyperparameter Tuning and Cross-Validation
	3.5.2 Validation with Another Data Split

	3.6 Step 5: Combine Features for Improved Detection
	3.6.1 Combined Features in this Study
	3.6.2 Additional Detection Models
	3.6.3 Hyperparameter Tuning and Cross-Validation

	3.7 Step 6: Evaluate on Another Dataset
	3.7.1 Model Application to a New Dataset (Dataset 2)
	3.7.2 Retrain with Features Identified in Prior Studies (Section 3.3)
	3.7.3 Leverage Two Datasets for Training and Evaluation

	3.8 Step 7: Explore Detection Performance Over Time
	3.8.1 Measure the Performance of a Model Trained on Dataset 1 and Evaluated on Dataset 3
	3.8.2 Investigate the Impact of Model Retraining on Performance
	3.8.3 Evaluate Website Change Over Time

	3.9 Summary

	Chapter 4: Webpage Content Features Analysis
	4.1 Introduction
	4.2 Related Research
	4.3 Research Questions 1–4
	4.3.1 Research Question 1
	4.3.2 Research Question 2
	4.3.3 Research Question 3
	4.3.4 Research Question 4

	4.4 Feature Consideration
	4.4.1 JavaScript Methods
	4.4.1.1 Obfuscation Methods
	4.4.1.2 Suspicious Methods
	4.4.1.3 Methods that Act on the Window or DOM Objects

	4.4.2 HTML Characteristics

	4.5 Feature Collection
	4.6 Learning, Feature Selection, and Sampling Techniques in Webpage Content Analysis
	4.6.1 Feature Elimination Process
	4.6.2 Machine Learning Models, Sampling, and Feature Transformation

	4.7 Results
	4.7.1 RQ1: How do the Features Identified Compare with Prior Research?
	4.7.1.1 Features Identified in Previous Research
	4.7.1.2 New Features Identified
	4.7.1.3 Features Ranking Analysis

	4.7.2 RQ2: Do the Additional Features Identified Improve Malicious Website Detection?
	4.7.3 RQ3: Do our Results Change with No-sampling, Under-sampling, and Over-sampling Scenarios?
	4.7.4 RQ4: Does Hyperparameter Tuning and Cross-Validation Improve our Results?

	4.8 Conclusion

	Chapter 5: URL Features Analysis
	5.1 Introduction
	5.2 Related Research
	5.3 Research Questions
	5.3.1 Research Question 1
	5.3.2 Research Question 3
	5.3.3 Research Question 4

	5.4 Feature Consideration
	5.4.1 N-gram Approach
	5.4.2 Character Distributions
	5.4.3 Specific Features

	5.5 Learning, Feature Selection, and Sampling Techniques in URL Analysis
	5.5.1 Feature Selection
	5.5.2 Machine Learning Models, Sampling, and Feature Transformation

	5.6 Results
	5.6.1 RQ1: How do the Features Identified Compare with Prior Research?
	5.6.1.1 Features Identified in Previous Research
	5.6.1.2 New Features Identified
	5.6.1.3 Features Ranking Analysis

	5.6.2 RQ3: Do our Results Change with No-sampling, Under-sampling, and Over-sampling scenarios?
	5.6.3 RQ4: Does Hyperparameter Tuning and Cross-Validation Improve our Results?

	5.7 Conclusion

	Chapter 6: HTTP Features Analysis
	6.1 Introduction
	6.2 Related Research
	6.3 Research Questions
	6.3.1 Research Question 1
	6.3.2 Research Question 2
	6.3.3 Research Question 3
	6.3.4 Research Question 4

	6.4 Feature Consideration
	6.4.1 Extractable HTTP Features
	6.4.2 HTTP Feature Collection

	6.5 Learning, Feature Selection, and Sampling Techniques in HTTP Header Analysis
	6.5.1 Feature Selection
	6.5.2 Machine Learning Models, Sampling, and Feature Transformation

	6.6 Results
	6.6.1 RQ1: How do the Features Identified Compare with Prior Research?
	6.6.1.1 Features Identified in Previous Works
	6.6.1.2 New Features Identified
	6.6.1.3 Features Ranking Analysis

	6.6.2 RQ2: Do the Additional Features Identified Improve Malicious Website Detection?
	6.6.3 RQ3: Do our Results Change with No-sampling, Under-sampling, and Over-sampling Scenarios?
	6.6.4 RQ4: Does Hyperparameter Tuning and Cross-Validation Improve our Results?

	6.7 Conclusion

	Chapter 7: Combined Web Request Features Analysis
	7.1 Introduction
	7.2 Related Research
	7.3 Research Questions 5–7
	7.3.1 Research Question 5
	7.3.2 Research Question 6
	7.3.3 Research Question 7

	7.4 Methodology
	7.4.1 Dataset Selection
	7.4.2 Features for Malicious Website Detection
	7.4.3 Feature Collection, Selection, and Transformation
	7.4.3.1 Feature Collection
	7.4.3.2 Feature Selection
	7.4.3.3 Feature Transformation

	7.4.4 Sampling
	7.4.5 Unsupervised and Supervised Learning
	7.4.6 Hyperparameter Tuning and Cross-Validation

	7.5 Results
	7.5.1 Unsupervised Results
	7.5.2 Feature Selection Importance
	7.5.3 Sampling Scenarios
	7.5.4 Feature Transformation
	7.5.5 Hyperparameter Tuning and Cross-Validation
	7.5.6 RQ5: Is Feature Discovery Feasible for Malicious Website Detection?
	7.5.7 RQ6: How do Discovered Features’ Detection Ability Compare to Those from Prior Research?
	7.5.8 RQ7: Can a Discovery Approach be Applied to Several Threats when Only Features from a Web Response are Available?

	7.6 Conclusions

	Chapter 8: Evaluation on an Additional Dataset
	8.1 Introduction
	8.2 Related Research
	8.3 Research Questions
	8.3.1 Research Question 8
	8.3.2 Research Question 9
	8.3.3 Research Question 10

	8.4 Feature Consideration, Dataset, Analysis Approach
	8.4.1 Feature Consideration
	8.4.2 Datasets
	8.4.3 Analysis Approach

	8.5 Results
	8.5.1 RQ8: How Robust are Malicious Website Detection Models when Applied to a New Dataset?
	8.5.1.1 Evaluation on Previous Models
	8.5.1.2 Feature Correlation Investigation
	8.5.1.3 T-SNE Analysis
	8.5.1.4 Statistical Tests on Dataset 1 and Dataset 2

	8.5.2 RQ9: How do the Features Identified Perform on a New Dataset?
	8.5.2.1 Retraining for Malicious Website Detection
	8.5.2.2 Investigating Additional Features
	8.5.2.3 Varying Ratios of Training to Testing Data
	8.5.2.4 Identifying Training to Testing Ratio

	8.5.3 RQ10: What Aspects from Prior Experiments Can We Apply to Our New Dataset?
	8.5.3.1 Training Dataset Evaluation

	8.5.4 Discussion

	8.6 Conclusion

	Chapter 9: A Temporal Evaluation of Feature-Based Malicious Website Detection
	9.1 Introduction
	9.2 Related Research
	9.3 Research Questions
	9.3.1 Research Question 11
	9.3.2 Research Question 12
	9.3.3 Research Question 13

	9.4 Approach
	9.4.1 Dataset Collection
	9.4.2 Feature Set Selection
	9.4.3 Analysis Approach

	9.5 Results
	9.5.1 RQ11: How does Detection Performance Change Over Time?
	9.5.2 RQ12: Do Websites Change Over Time?
	9.5.3 RQ13: If Websites Change Over Time, How Much do They Change Over Time?

	9.6 Conclusion

	Chapter 10: Limitations
	10.1 Dataset Selection
	10.2 Feature Challenges
	10.3 Comparison with Other Works
	10.4 Additional Limitations

	Chapter 11: Conclusions
	11.1 Dissertation Summary
	11.2 Future Work

