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Global food supply and our understanding of it have never been more important than 

in today’s changing world. For several decades, Earth observations (EO) have been 

employed to monitor agriculture, including crop area, type, condition, and yield 

forecasting processes, at multiple scales. However, the EO data requirements to 

consistently derive these informational products had not been well defined. 

Responding to this dearth, I have articulated spatially explicit EO requirements with a 

focus on moderate resolution (10-70m) active and passive remote sensors, and 

evaluate current and near-term missions’ capabilities to meet these EO requirements.  

To accomplish this, periods requiring monitoring have been identified through 

the development of agricultural growing season calendars (GSCs) at 0.5˚ from 

MODIS surface reflectance. Second, a global analysis of cloud presence probability 

and extent using MOD09 daily cloud flags over 2000-2012 has shown that the early-



  

to-mid agricultural growing season (AGS) – an important period for monitoring – is 

more persistently and pervasively occluded by clouds than is the late and non-AGS. 

Third, spectral, spatial, and temporal resolution data requirements have been 

developed through collaboration with international agricultural monitoring experts. 

These requirements have been spatialized through the incorporation of the GSCs and 

cloud cover information, establishing the revisit frequency required to yield 

reasonably clear views within 8 or 16 days. A comparison of these requirements with 

hypothetical constellations formed from current/planned moderate resolution optical 

EO missions shows that to yield a scene at least 70% clear within 8 or 16 days, 46-

55% or 10-32% of areas, respectively, need a revisit more frequent than Landsat 7 & 

8 combined can deliver. Supplementing Landsat 7 & 8 with missions from different 

space agencies leads to an improved capacity to meet requirements, with Resourcesat-

2 providing the largest incremental improvement in requirements met. No single 

mission/observatory can consistently meet requirements throughout the year, and the 

only way to meet a majority (77-94% for ≥70% clear; 47-73% for 100% clear) of 8 

day requirements is through coordination of multiple missions. Still, gaps exist in 

persistently cloudy regions and periods, highlighting the need for data coordination 

and for consideration of active EO for agricultural monitoring. 
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Preface 

Chapter 2 is comprised of jointly authored and published work of which Alyssa K. 

Whitcraft is the primary author. Chapter 3 is in preparation for submission (Alyssa K. 

Whitcraft is again the primary author of that jointly authored work), and includes a 

dataset generated by Eric F. Vermote. Chapters 4-5 include datasets and inputs from 

members of the Group on Earth Observations Global Agricultural Monitoring 

(GEOGLAM) Community of Practice, as well as from the Committee on Earth 

Observation Satellites (CEOS) Ad Hoc Team for GEOGLAM. All external 

contributions are identified with citations, references, and/or footnotes. All other 

methods, analyses, and results were developed and/or executed by Alyssa K. 

Whitcraft, as is all text contained herein. 
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Dedication 

For the survivors, everywhere.  

 

 

 

 

"Go out and change the world you live in; it is the only world you have!"  

– StaceyAnn Chin  
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considered. ................................................................................................................ 137 
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Chapter 1: Introduction – Context, Research Goals, and Guiding 

Questions 
 

 

1.1 Research Context, Questions, & Goals 

With changes in climate, increasing instances of extreme weather events, a 

growing global population, and the associated pressures upon Earth’s resources, 

issues of food security and agricultural production are becoming more relevant and 

urgent than ever (Justice & Becker-Reshef, 2007). Earth observations (EO) using 

satellite data have been used continuously for over forty years to provide timely and 

synoptic information on broad agricultural landscapes and processes, including crop 

area, type, and condition, as well as yield forecasting (Allen, Hanuschak, & Craig, 

2002; Anderson & Kalcic, 1982; Bastiaanssen, Molden, & Makin, 2000; MacDonald, 

Hall, & Erb, 1975; MacDonald & Hall, 1980; Pinter et al., 2003; Steven, 1993; Wu et 

al., 2013a). Earth observing missions such as the National Oceanic and Atmospheric 

Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) and 

National Aeronautics and Space Administration (NASA) Moderate Resolution 

Imaging Spectroradiometer (MODIS) Terra/Aqua, with the capacity to image the 

entire Earth’s land surface daily, have proven useful in the generation of timely 

agricultural information, though they miss crucial information existing at the very 

fine to moderate (VFTM; <5-100m) level (Becker-Reshef et al., 2009; Lobell & 

Asner, 2004; Reed et al., 1994).  

Agricultural monitoring, for the purpose of this proposed research, refers to the 

use of remotely sensed EO to provide either direct information on or indicators of 
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agricultural parameters such as yearly crop area, type, progress, and vigor to gather 

information toward the goal of accurately modeling and monitoring crop yield, and 

providing early warnings of crop failure (Justice & Becker-Reshef, 2007). The utility 

of satellite data for agricultural monitoring is contingent upon the EO being first 

acquired at appropriate spectral, spatial, temporal, and radiometric resolutions, and 

then made available and accessible to users in a timely manner. Therefore, EO 

requirements for agricultural monitoring are geographically-defined spatial, spectral, 

and temporal imaging resolution requirements which are necessary to derive, in a 

timely manner, the direct information on and/or indicators of those agricultural 

parameters listed previously for agricultural areas across the globe. 

Due to onboard data storage limitations, as well as pixel size-to-swath ratio trade-

offs, current systems that collect data finer than 100m have not yet had the capacity to 

image the entire cropped area of the Earth at every overpass opportunity (Arvidson, 

Gasch, & Goward, 2001; Hansen & Loveland, 2012; Wulder et al., 2008). However, 

in the near-term (2014-2015), the planned moderate spatial resolution missions 

Sentinel-2A and Sentinel-2B are purported to acquire moderate resolution data at 

every overpass opportunity with a combined revisit of 5 days (Drusch et al., 2012). 

Even with these systematic or near-systematic acquisitions in the optical moderate 

resolution domain, geographic and temporal variability in cloud cover contamination 

and obscuration means that these missions need to be harmonized in order to secure 

cloud free observations. The historical and current lack of coordinated image 

acquisition efforts with respect to agricultural monitoring means the capabilities of 

most of these VFTM systems have not been optimized for the purpose of gathering 
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crucial agricultural information throughout the growing season. As such, the amount 

of remotely sensed data and information available throughout the growing season is 

regionally and temporally inconsistent, leaving knowledge gaps in the satellite-based 

contribution regarding the food and agricultural situation in many parts of the world. 

Strategic monitoring of the Earth’s surface under cultivation is needed in order to 

generate timely, synoptic, and accurate agricultural information at multiple scales 

(Arvidson et al., 2001; Becker-Reshef et al., 2010a; Duveiller, López-Lozano, 

Seguini, Bojanowski, & Baruth, 2013). 

It is in the context of agricultural market price volatility, food insecurity, and 

non-harmonized national to regional monitoring efforts that the need for a 

coordinated international effort to monitor global agriculture has become clear 

(Atzberger, 2013; Naylor, 2011; Wu et al., 2013a). Indeed, the G20 agricultural 

ministers in 2011 mandated the creation of a global agricultural monitoring system of 

systems known as the Group on Earth Observations Global Agricultural Monitoring 

(GEOGLAM) initiative, a crucial component of which is the coordination of EO data 

for operational agricultural monitoring (Becker-Reshef et al., 2010a; Duveiller et al., 

2013; Justice & Becker-Reshef, 2007; Singh Parihar et al., 2012). Since its formal 

inception in 2011, GEOGLAM has been actively engaged with the Committee on 

Earth Observations Satellites (CEOS) in order to translate imaging requirements for 

monitoring into an actionable acquisition strategy which leverages EO capabilities 

from space agencies around the world. Crucial to this task is the articulation of the 

temporal (When? How frequently?), spatial (Where? At what spatial resolution?), and 

spectral (active vs. passive) requirements for a suite of agricultural monitoring 
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applications. However, prior to this research, this articulation had not been attempted 

in a comprehensive and spatially explicit manner. From this point of departure, the 

dissertation research presented herein seeks to answer the following research 

questions: 

1. When, where, and at what temporal and spatial resolutions should 

VFTM resolution remotely sensed imagery be acquired for monitoring 

of global croplands? 

2. What is the impact of cloud cover on our ability to view croplands 

on the Earth’s surface using passive optical plus thermal (O+TIR) data 

throughout the agricultural growing season? 

3. Are our present and near-term moderate resolution O+TIR Earth 

observing missions’ capabilities sufficient to meet our moderate 

resolution O+TIR EO requirements for global agricultural monitoring? 

From these overarching research questions emerge several specific 

questions and related steps which are addressed through this dissertation’s 

original research, contributions from members of the agricultural monitoring 

community, and/or extensive review of the literature (Table 1.1).   

Table 1.1: Research Sub-Questions, Response Steps, & Sources 

Ch. Questions Steps Sources 

2, 4 a. Where are the 

agricultural lands that are 

to be monitored? 

a. Determination of the ‘best 

available’ satellite-derived 

cropland masks to identify 

agricultural regions of interest 

Dissertation 

Research + 

existing 

cropland masks 

2 b. When are the average 

start, peak, and end of 

season dates for major 

b. The use of MODIS Terra 

surface reflectance converted 

to Normalized Difference 

Dissertation 

Research + 

existing 
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global croplands? Vegetation Index (NDVI) 

data to extract vegetation 

phenological metrics and 

agricultural growing season 

(AGS) timing. 

cropland masks 

3, 4 c. What is the impact of 

cloud cover on obtaining 

clear views of the Earth’s 

surface throughout the 

AGS, at different times 

of day (AM vs. PM), and 

in different regions of the 

world? 

c. The analysis of 10-13 years 

of MODIS Aqua and Terra 

surface reflectance cloud 

flags over agricultural regions 

throughout the growing 

season to determine the 

probability of a cloud free 

clear view at 0.05˚, as well as 

the percentage of each 0.05˚ 

which is cloudy. 

Dissertation 

research + daily 

cloud 

probability and 

daily cloud 

percent at 0.05˚ 

(Vermote)  

4 d. Where are fine vs. 

moderate vs. coarse 

resolution imagery 

required in order to 

resolve fields?  

d. Crowd-sourced field size 

dataset and determination of 

appropriate resolution for 

agricultural applications. 

S. Fritz et al., 

(unpublished) + 

requirements 

table (Table 

4.1) 

4 e. Where, when, and at 

what temporal resolution 

do we need our VFTM 

spatial resolution satellite 

missions to acquire data 

for a suite of agricultural 

monitoring applications? 

e. Synthesize location (a, d), 

timing of necessary imaging 

(b), and cloud cover impacts 

on required image frequency 

(c) to generate maps of 

monthly requirements;  

All of the above  

5 f. Which present and 

near-term planned 

moderate spatial 

resolution missions are 

candidates for meeting 

EO requirements and 

what are their combined 

overpass (temporal 

resolution) capabilities? 

f. Development of scenarios 

combining different overpass 

swaths to illustrate what 

temporal resolution different 

mission combinations can 

generate. 

CEOS COVE 

Tool (Killough 

et al., NASA 

Langley) 

5 g. Can our present and 

near-term moderate 

spatial resolution O+TIR 

missions meet our EO 

requirements for 

monitoring? 

h. Which regions/times 

of the year are 

g-h. Overlay the requirements 

(f) with different mission 

capabilities (g) to determine 

which/whether missions 

combinations can meet 

requirements; where 

requirements for O+TIR are 

not met, consider microwave 

All of the above 
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pervasively and 

persistently cloudy 

during the AGS, 

requiring the 

consideration of active 

microwave SAR data? 

 

While this research discusses EO requirements in the VFTM spatial resolution 

range, the primary focus is on moderate spatial resolution (10-70m) instruments in 

both the O+TIR and active microwave spectral ranges. Because O+TIR data at coarse 

spatial resolution (250-1000m) are already available on roughly a daily basis, no 

strategy beyond the maintenance and continuity of the related missions is required. In 

the case of fine (5-10m) and very fine (<5m) spatial resolution data, all requirements 

(Table 4.1) are to cover relatively small areas (either sample, or for a subset of 

croplands – medium and small, or only small), and due to the pointing capabilities of 

candidate sensors (e.g. RapidEye REIS, SPOT-6 HRG, IKONOS-2 OSA, and others) 

very frequent revisit rates across the globe are possible. However, as these data are 

from the private sector, they can be very costly. The priority growth area for regional 

to global scale analyses in the agricultural monitoring context is in the moderate 

spatial resolution range. A number of monitoring applications rely upon data at this 

resolution (Duveiller & Defourny, 2010), yet the lack of consistent cloud free 

acquisitions with sufficiently high temporal resolution has provided a boundary to full 

implementation in the agricultural monitoring context (Duveiller et al., 2013). 



 

 7 

 

1.2 Background: Agricultural Monitoring using Remote Sensing 

Remote sensing has its roots in agricultural research and applications. Some of 

the earliest applications of remote sensing were undertaken through the Large Area 

Crop Inventory Experiment (LACIE), initiated in 1974, the Agricultural Research 

Service (ARS) Wheat Yield Project, initiated in 1976, and the Agriculture and 

Resource Inventory Surveys Through Aerospace Remote Sensing (AgRISTARS) 

Program, initiated in 1980 (Pinter et al., 2003). LACIE, a collaboration between the 

United States Department of Agriculture (USDA), NASA, and NOAA, aimed to 

improve the U.S.’s domestic and international crop forecasting ability through the use 

of Landsat 1 (Earth Resources Technology Satellite-1) data. Following the success of 

LACIE, the ARS Wheat Yield Project began, where early methods for detecting 

deviations from normal crop condition originated, while expanding satellite-based 

agricultural monitoring to international sites (Wiegand et al., 1992). AgRISTARS 

furthered work from LACIE and ARS Wheat Yield Project, defining ideal conditions 

for agricultural observations, as well as experimenting with remote sensing as a tool 

for early warning, crop condition assessment, yield modeling, and measurements of 

soil moisture (Baker et al., 1985; Boatwright, Ravet, & Taylor, 1985; Jackson, 1986; 

Pinter et al., 2003).  

Agricultural monitoring through remote sensing continued to evolve and 

expand throughout the 1980s, 1990s, and 2000s, bearing witness to substantial 

increases in satellite platforms in orbit and in understanding of the biophysical 

properties of crops and agricultural lands (Justice & Becker-Reshef, 2007; Wu et al., 

2013a). The lingering dearth of a coordinated imaging strategy designed specifically 
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for agricultural monitoring is due at least in part to the fact that the task of agricultural 

monitoring is distributed amongst many different and disconnected international 

groups, with only the past few years demonstrating the beginning of coordinated EO 

activities (Justice & Becker-Reshef, 2007; Singh Parihar et al., 2012). Those 

acquisition strategies that do exist are sensor-specific, and managed by a single entity. 

In the early Landsat years, there was an effort to obtain complete global coverage at 

least once per year. With the privatization of Landsat, data were collected based 

largely on customer demand. For Landsat 7 ETM+, a Long-Term Acquisition Plan 

(LTAP) was developed to build a meaningful archive of Landsat data over a range of 

land covers, acquiring the approximately 400-450 (originally 250) best, cloud free 

scenes of the up to 630 daylit land-containing scenes that are observable every day 

(Arvidson, Gasch, & Goward, 1999; Arvidson et al., 2001; Arvidson, Goward, Gasch, 

& Williams, 2006). A similar strategy is being developed for Landsat 8 Operational 

Land Imager (OLI), although at present that instrument is already acquiring 550-600 

scenes/day, thereby coming close to “acquiring every opportunity,” which would be 

up to 630 scenes per day (Eugene Fosnight, personal communication, 5 February 

2014). The original LTAP takes a seasonality approach, wherein acquisition dates are 

determined by AVHRR NDVI-based seasonal transition dates (green-up and 

senescence are the most dynamic periods of the year, so they get the most 

acquisitions). While not an acquisition plan designed exclusively with agricultural 

monitoring in mind, it does have an agricultural component, wherein agricultural 

scenes of interest have been identified by the USDA Foreign Agriculture Service 

(FAS). In 1996, the USDA FAS requested 2161 scenes, which was later negotiated 
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down to 237 scenes, and upped by 45 additional scenes over Argentina in the year 

2000 (Terry Arvidson, personal communication, 7 May 2010.).  LTAP directs 

Landsat 7 ETM+ to acquire imagery at every opportunity in the United States’ 

agricultural areas, regardless of cloud cover, while for the 282 international 

agricultural scenes of interest only acquiring during the growing season (determined 

by general phenology, not cropland specific phenology) on overpasses for which 

cloud cover is predicted at less than 60% (Arvidson et al., 2001). However, because 

the combined satellite revisit rate for Landsat 7 and Landsat 8 is every eight days 

(with each individual sensor having a nominal revisit of 16 days), and cloud cover is a 

persistent problem in many regions of the world during the growing season, there 

have historically been very long gaps between clear Landsat images for many 

agricultural areas worldwide (Arvidson et al., 2001, 2006; Brisco & Brown, 1995; 

Roy et al., 2010; Roy, Lewis, Schaaf, Devadiga, & Boschetti, 2006). This issue has 

been compounded since the Landsat 7’s scan-line corrector failure in 2003. In fact, 

because 22% of data in each Landsat 7 scene are now missing (Scaramuzza, 

Micijevic, & Chander, 2004), the United States Department of Agriculture National 

Agricultural Statistics Service (USDA-NASS) has stopped using Landsat 7 data in the 

production of its Cropland Data Layer (Johnson, 2008).  

Due to the highly dynamic nature of agricultural processes at multiple scales, 

no single moderate resolution sensor is alone capable of securing a reasonably cloud 

free view of every actively cropped agricultural area of the world at a sufficiently 

frequent interval to resolve meaningful changes in crop vigor, crop stage, crop type, 

or crop yield, as these processes happen beneath the 16 day time step (Becker-Reshef, 
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Vermote, Lindeman, & Justice, 2010b; Duveiller et al., 2013; Johnson, 2014; Reed, 

Schwartz, & Xiao, 2009). Doing so would require leveraging multiple EO missions 

with different spectral and spatial resolutions, as different agricultural monitoring 

applications require acquisition at different spatial resolution in order to resolve 

crucial differences. For example, Duveiller and Defourny (2010) found that 

estimating crop area requires finer resolution pixels than does monitoring stages of 

crop growth, further corroborating the point that multiple resolutions of data are 

necessary for agricultural monitoring.  

With these issues of cloud cover, rate of change in agricultural parameters, 

and necessary scale of detection in mind, the lack of an acquisition strategy for 

agriculture becomes especially apparent. In order to ensure that cloud free data at the 

appropriate spatial resolutions are acquired throughout the growing season, it is 

necessary to articulate the timing, frequency and spatial resolution requirements for 

VFTM resolution active and passive remote sensing Earth observations of global 

croplands. Such a coordination of imaging efforts would facilitate the agricultural 

monitoring community’s opportunities to gain access to and effectively employ 

consistent, quality, appropriate data toward the production and application of timely 

agricultural information on a global basis.  

1.3 Organization of Dissertation 

At the time this research was proposed (2010), the Group on Earth 

Observations (GEO) had produced a diagram for its Task 07-03 (“improved 

international coordination on EO for global agriculture monitoring”) which describes 

what it viewed as necessary temporal and spatial resolutions for a variety of 
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operational agricultural monitoring applications, regardless of whether or not a 

mission capable of fulfilling a requirement existed (Figure 1.1). This requirements 

diagram was the result of collaboration of several experts in the agricultural 

monitoring community, and provided the context and rationale for this dissertation 

work. Further, it paved the way for the generation of a requirements table (Table 4.1) 

which provides more precise information on spectral, temporal, and spatial resolution 

requirements for different landscapes (characterized by crop type and/or field size). 

 

Figure 1.1: The GEO Requirements diagram for the necessary temporal and spatial resolutions of 

remotely sensed Earth observations for operational agricultural monitoring. 

 

The research presented here takes the general requirements for monitoring 

detailed in these efforts, and roots them firmly in the spatial domain by considering 

spatially explicit agricultural growing season (AGS) timing, cropland locations, cloud 

cover constraints, and field size information (Figure 1.2). 
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Figure 1.2: Schematic illustrating the organization, flow, and components of this dissertation 

research. 

 

Timing of the agricultural growing season comes from the development of the 

first global, spatially-explicit, satellite-derived agricultural growing season calendars 

at 0.5˚ (Chapter 2). These GSCs are derived from ten years of 8 day MODIS surface 

reflectance, and include phenological transitions dates (PTDs) for start of season, 

peak period of season, and end of season. Previously, global information on the 

timing of the agricultural growing season was restricted to ground based crop 

calendars which often lacked regional or sub-national phenological characterization, 

rendering them inappropriate for identifying in a spatially explicit manner the EO 

requirements for agricultural monitoring. 
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Information on how cloud cover impacts optical imaging over agricultural 

areas, throughout the growing season, and at different times of day is discussed in 

Chapter 3. This is accomplished through the use of 10-13 years of MODIS Terra and 

Aqua surface reflectance cloud flags compiled in such a way that provides 

perspective both on the extent and frequency of cloud cover.  

Chapter 4 introduces the aforementioned requirements table (Table 4.1), 

which is a collection of spatial, spectral, and temporal requirements derived from 

“best-practices” for a variety of different agricultural monitoring applications. In this 

chapter, supplementary datasets are introduced and then combined with the GSCs 

from Chapter 2 and cloud cover information from Chapter 3 to place the EO 

requirements in a spatial context. It provides insight on the revisit frequency required 

to probabilistically yield reasonably clear views of actively cropped 0.05˚ cells every 

8 or 16 days around the world throughout the agricultural growing season.  

Finally, Chapter 5 relates these spatialized EO requirements to current and 

planned near-term polar orbiting moderate spatial resolution O+TIR missions, 

detailing where and when those data requirements can be met and where and when 

alternative data sources (primarily microwave SAR, but also geostationary optical) 

must be considered. Chapter 6 concludes the dissertation work and provides insights 

into future research directions. This dissertation research provides key inputs and 

baseline results from which to construct an image acquisition strategy for global 

agricultural monitoring.  
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Chapter 2: Spatially Explicit Timing of the Agricultural 

Growing Season   
 

2.1 Introduction 

In order to articulate EO requirements and in turn develop an acquisition 

strategy designed particularly for agriculture monitoring, one must identify at a 

meaningful spatial scale using repeatable methods both where and when crops are 

growing (Becker-Reshef et al., 2010a; Singh Parihar et al., 2012) – conditions which 

can be  satisfied using satellite remote sensing (Lobell & Asner, 2004; Pan et al., 

2012; Zhang et al., 2003). From this point of departure, this chapter seeks to identify 

the start, peak period, and end of agricultural growing season phenological transition 

dates (PTDs) for global cropped areas using ten years (2001-2010) of 8 day 250m 

MODIS surface reflectance (MOD09Q1) data converted to NDVI and aggregated to 

0.5°, providing guidance for as to when imagery are required for monitoring.  While 

for certain monitoring applications (such as crop progress and condition), information 

is crucial throughout the agricultural growing season (AGS), for others (such as early 

within-season crop area estimates), the most important information is derived from 

data acquired during the start of season (SOS) and peak period (Becker-Reshef et al., 

2010b; Boken & Shaykewich, 2002).Breaking the season down by the PTDs SOS, 

peak period (the period during which the true NDVI maximum will likely exist), and 

end of season (EOS) provides information that will help determine when and how 

frequently (Chapter 3) data are required for these different applications. 

The use of remote sensing data for the production of global agricultural 

phenology provides the unique benefits of a finer spatial resolution than existing 
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ground-based information on agricultural phenology and of information on 

interannual variability in PTDs. Ground-based crop calendars have been the primary 

source of information about the timing and duration of the AGS to-date. They are 

crop-specific, only representing one cropping cycle as opposed to the two or three per 

year (or five every two years) that can exist in multicropping systems (Biradar & 

Xiao, 2011), and typically involve a large amount of spatial interpolation from 

survey-based dates to provide regional- or national-level coverage (Sacks, Deryng, 

Foley, & Ramankutty, 2010), thereby missing within-region variations in growing 

season periods. For the conterminous United States (CONUS), the United States 

Department of Agriculture National Agricultural Statistics Service (USDA-NASS) 

has developed good quality crop calendar information at the state-level, detailing the 

ranges of planting and harvesting dates for a variety of field crops commonly 

cultivated (USDA-NASS, 1997; 2010). However, these data still rely considerably on 

spatial interpolation of census-based data, and while they provide perhaps the best 

available comparison dataset, they should not be considered completely correct in all 

cases as they miss sub-regional variation  (Stehfest, Heistermann, Priess, Ojima, & 

Alcamo, 2007).  

Outside of the CONUS, information on crop timing is limited and often 

unreliable, as existing crop calendars have unclear/unknown data sources, are often 

out of date, are poorly documented, generally lack subnational growing season 

characterization, and are not spatially explicit (Portmann, Siebert, & Döll, 2010; 

Sacks et al., 2010; Stehfest et al., 2007). In an attempt to generate a global product 

that also considers geographical variations in climate, Stehfest et al. (2007) modelled 
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planting dates at 30 arc minutes (0.5°) for several major crops by choosing the highest 

modelled yield’s associated planting month. However, such an approach made no 

attempt to identify the peak or the harvesting periods. Additionally, due to the lack of 

existing observed planting dates at a sufficiently fine resolution, they were unable to 

evaluate the reliability of this modelled approach. Lack of data for comparison or 

validation is an issue common to phenological studies (Sakamoto et al., 2005, 2010; 

Wardlow, Kastens, & Egbert, 2006; Wu et al., 2013b).  

With these limitations of crop calendars for the purpose of defining the 

necessary period of image acquisition in mind, this chapter introduces a set of global, 

spatially explicit growing season calendars (GSCs). This approach is a fundamental 

departure from past investigations into general land surface phenology, which 

consider all vegetation types or crop-specific phenology (Reed et al., 2009; Sakamoto 

et al., 2005, 2010; Xiao et al., 2005). Rather than defining planting and harvest dates 

for a single crop, these GSCs seek to identify the SOS, peak period, and EOS dates 

for all crops in a geographical area appropriate for both moderate resolution sensors’ 

imaging swaths and regional agricultural variations. For this purpose, the selected 

resolution is 0.5°,  roughly 56 km at the Equator, which falls beneath the swath 

widths of moderate resolution sensors (e.g. Landsat at 185 km or AWIFS at 720 km), 

and roughly equivalent to the USDA Foreign Agriculture Service’s (USDA-FAS) IJ 

units, their smallest aggregations of international agricultural information (Becker-

Reshef et al., 2010a).  

Data acquired during a vegetation index’s peak (maximum) period, such as 

that of the normalized difference vegetation index (NDVI), provide particularly 
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important inputs to yield models as well as planted area mapping (Becker-Reshef et 

al., 2010b; Boken & Shaykewich, 2002; Ozdogan, 2010; Wardlow & Egbert, 2008). 

However, as NDVI data are known to saturate in areas with high leaf area index 

(Huete et al., 2002), and as the mixing of multiple crop signals together can change 

apparent timing of the NDVI maximum, the approach taken here is to identify a 

broader time period in which the maximum is likely to occur. This period is herein 

referred to as the “peak period,” and is presented with a discussion of caveats 

associated with detecting the peak period in areas with multiple cropping cycles. 

Concise definitions of these phenological parameters can be found in Table 2.1. 

Table 2.1: Phenological Transitions Dates Parameter Descriptions 

PTD Parameter Name PTD Parameter Definition and Algorithm 

Specification 

Start of Season (SOS) Greenness onset; emergence of above ground biomass; 

first point at which an upward trending NDVI which 

precedes the NDVI maximum (peak) surpasses a given 

threshold 

Peak Period Start (PPS) Onset of green leaf area maximum; start of the period 

during which the NDVI maximum is likely to occur; first 

point above 75% of annual range in NDVI which precedes 

the NDVI maximum (peak) 

NDVI Maximum (Peak) The NDVI maximum observed within a given growing 

season 

Peak Period End (PPE) Onset of senescence; end of the period during which the 

NDVI maximum is likely to occur; last point above 75% 

of annual range in NDVI which follows the NDVI 

maximum (peak) 

End of Season (EOS) End of senescence; termination of photosynthetic activity; 

last point at which a downward trending NDVI which 

follows the NDVI maximum (peak) dips below a given 

threshold 

 

In reality, in nearly every landscape, the 0.5° grid cell is comprised of more 

than one single crop type often with different phenologies, particularly if there is a 
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mix of winter and spring/summer crops (Ozdogan, 2010; Pan et al., 2012). The 

problem of subpixel heterogeneity in cultivated areas is frequently encountered in 

crop type mapping and monitoring (Duveiller & Defourny, 2010; Lobell & Asner, 

2004; Ozdogan & Woodcock, 2006; Pax-Lenney & Woodcock, 1997), and it is 

expected that the mixing of these signals will similarly impact the apparent timing of 

these different PTDs, with the extent to which these signals are mixed changing the 

extent to which the PTDs deviate from a given crop’s calendar. That is, a 0.5° cell for 

which the majority of the 250m cropped pixels’ crop type is corn will yield PTDs 

closer to that of corn’s crop calendar than will an area that is equal parts corn and 

winter wheat (Pan et al., 2012). A test of the effects of mixing known winter and 

spring crops’ signals (individual cropped pixels extracted from USDA-NASS 

Cropland Data Layer from 2006 and 2007 (Boryan, Yang, Mueller, & Craig, 2011; 

Han, Yang, Di, & Mueller, 2012; Johnson, 2010) in different proportions on PTD 

determination has been performed for a few sites in Kansas and Missouri to give 

preliminary insight into this complex topic (see Section 2.3.4).   

Due to reliability issues as well as thematic differences in types of existing 

studies of land surface phenology, no appropriate global comparison data exist for 

these growing season calendars. Vegetation phenology is too general, and the 

disagreement/agreement between the GSCs and any set of compiled crop calendars 

would only be meaningful in areas of homogeneous crop-type cover (e.g. the US 

Corn Belt). Further, the degree of agreement between the GSCs and the comparison 

data would vary with the latter’s compilation approach (i.e. for areas with multiple 

crops, which crop’s calendar dates should be used for comparison?). As such, a 
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quantitative validation between these existing crop calendars and finer resolution 

GSCs would be negatively impacted by the lack of within-region variation in the crop 

calendars (Sakamoto et al., 2010; Wardlow et al., 2006), something that will be 

discussed and addressed in Section 2.3.1.1. For this reason, a quantitative comparison 

will only be provided for the CONUS where Sacks et al. (2010) have digitized 

USDA-NASS (1997) usual planting and harvest dates. 

To illustrate the sensitivity of GSCs to interannual variability as well as to 

within-region heterogeneity in phenology, correlations with USDA-NASS Quick 

Stats (USDA-NASS, 2013) yearly crop progress are presented and discussed. To 

address this lack of validation outside of the United States, the global calendar dates 

which are presented in this chapter were reviewed and refined by agricultural experts 

from around the world.  

2.2 Methods 

2.2.1 Data pre-processing and preparation   

The processing steps and the general logic behind the phenological transition 

dates extraction algorithm are outlined in Figure 2.1. Ten years (2001-2010) of 

global, 250m 8 day surface reflectance data (MOD09Q1) were converted to NDVI 

(Rouse, Haas, Schell, Deering, & Harlan, 1974), and then were adjusted through the 

application of strict quality assessment (QA) bits from the state QA layer for 

MOD09A1 (Vermote, El Saleous, & Justice, 2002) which had been resampled from 

500m to 250m. The data were not, however, adjusted for the effects of bidirectional 

reflectance. Data converted to NDVI have been shown to be less impacted by variable 
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view and azimuth angles throughout the growing season than the Enhanced 

Vegetation Index (EVI), or red and near-infrared channel data alone, at least partially 

justifying the lack of BRDF adjustment (Bréon & Vermote, 2012; Sims, Rahman, 

Vermote, & Jiang, 2011).  

 

 

Figure 2.1: A flowchart depicting the pre-processing and data preparation steps, the basic 

logic of the PTD extraction algorithm, as well as the steps leading to the generation of the 

final data products. Intermediate data products and steps are in solid rectangles, actions are 

connecting arrows accompanied by italicized text, and final data products are in soft-cornered 

rectangles. 

 

Before aggregating from 250m to 0.5° to create a general cropland NDVI, 

cropland pixels needed to be identified. Several cropland masks and land cover 

products were used to do so, all produced in 2001 or more recently, with preference 

given to those products which were percentage or probability products (Table 2.2). 

For example, in the CONUS, the cropland layer from the 2001 National Land Cover 

Database (Homer et al., 2007) was used by resampling from crop/non-crop values at 
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30m to 250m, with only those 250m pixels which were ≥80% cropped being 

aggregated to 0.5° through averaging. Due to some spatial gaps left after the analysis 

using NLCD-2001, an additional “background” layer was generated from Pittman et 

al.’s (2010) discrete cropland mask to generate more complete coverage. The 

cropland mask used for each 0.5˚ grid cell is identified in a supplementary 

informational layer. 

Table 2.2: Crop Masks Used 

Name Notes & Specifications Associated Citation 

NLCD 20011 Pass 1, ≥80% (Homer et al., 2007) 

Global Cropland Extent 

(Discrete) 

Pass 1; Pass 2 

(Pittman, Hansen, Becker-

Reshef, Potapov, & 

Justice, 2010) 

Geocover 2000 

Pass 1; ≥90% 

(Tucker, Grant, & Dykstra, 

2004) 

Global Cropland Extent 

(Probability) Pass 1; ≥90% 

(Pittman et al., 2010) 

MOD12 2004  Pass 1; Pass 2 (Friedl et al., 2002) 

CORINE 2000 

Pass 1; Pass 2 

(Bossard, Feranec, & 

Otahel, 2000) 

 

Each resulting time series of these 0.5˚ 8 day QA-adjusted cropland NDVI 

images had a number of temporal gaps due to the stringent QA requirements. These 

gaps as well as those values which dropped below the mean annual minimum NDVI 

(2001-2010) for that grid cell (perhaps due to errors in cloud screening; Huete et al., 

2002) were replaced using linear interpolation, so as not to distort the annual ranges 

of NDVI. This gap-filled time series of 0.5˚ cropland NDVI was run through the PTD 

extraction algorithm during Pass 1. Those 0.5˚ grid cells for which >50% (n=230) of 

the 10-year time series was missing (largely due to chronic cloud cover) were initially 

                                                 
1 Originally at 30m, the masks for NLCD 2001 and Geocover 2000 were aggregated to 250m and 

placed in the MODIS gridding scheme by Inbal Becker-Reshef.  
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not processed for PTDs in Pass 1. A subsequent pass (Pass 2 in Figure 2.1) at 

processing was carried out for these areas in which a single year-long time series was 

constructed out of the median NDVI value for each compiling day of the year (DOY) 

over 10 years and then processed for PTDs. This latter pass yielded useable dates for 

many areas, but still left some persistently cloudy areas (e.g. central Africa, parts of 

southeast Asia) without PTDs.  

2.2.2 Extracting Phenological Transition Dates from Time Series NDVI 

NDVI is a metric which has long been used as an indicator of above ground 

green biomass (AGB), vigor, stress, photosynthetic capacity, and leaf area index 

(LAI), and as a proxy for vegetation health (Baret & Guyot, 1991; Jackson, 1986; 

Rouse et al., 1974; Sellers, 1985; Tucker, Holben, Elgin, & McMurtrey, 1981; 

Tucker, 1979; Wiegand & Richardson, 1990). The Moderate Imaging 

Spectroradiaometer (MODIS), with improved radiometric and geometric properties 

and atmospheric correction, has provided higher quality data which have proven 

useful for land biophysical applications (Justice et al., 1998; Vermote et al., 2002; 

Wardlow et al., 2006). The NDVI was chosen because it has been shown to be 

suitable for studying phenology in the CONUS (Goward, Tucker, & Dye, 1985), and 

involves only the two MODIS bands which have 250m (231.65635m, precisely) 

resolution, whereas the Enhanced Vegetation Index (EVI) would require the 

incorporation of coarser 500m data (Huete et al., 2002) in addition to being less 

resistant to BRDF effects (Sims et al., 2011). In areas where croplands are small and 

fragmented and the agricultural landscape is heterogeneous, the use of finer resolution 

data can potentially reduce the inclusion of non-cropped surfaces (Duveiller, Baret, & 
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Defourny, 2011; Duveiller & Defourny, 2010; Pittman et al., 2010; Townshend & 

Justice, 1988; Wardlow, Egbert, & Kastens, 2007), justifying the choice of 250m over 

500m observations.   

Planting and harvest are processes which are not easily detected by moderate-

to-coarse sensors such as the MODIS instruments, as planting does not result in 

instantaneous crop-specific above ground biomass (AGB) generation, and harvesting 

often leaves a large volume of AGB present, continuing to influence reflectance for 

some time after the end of the cropping season (Reed et al., 1994; Wardlow et al., 

2006). Furthermore, soil background and in some cases non-crop vegetation can 

influence the signal in advance of and immediately after planting (Galford et al., 

2008; Wardlow et al., 2006). For these reasons, this analysis identifies a series of 

PTDs (Table 2.1) that can be related to cropping practices: first, the start of growing 

season (SOS) has been identified as the point when an up-sloping NDVI surpasses a 

certain threshold (for background vegetation) in a period preceding an annual 

maximum (peak) NDVI. This point describes the onset of photosynthetic activity, 

also known as “the greenup” (Zhang et al., 2003), and marks the beginning of a 

crucial time for monitoring crop development (Becker-Reshef et al. 2010a). Second, 

the end of growing season (EOS) is considered the point at which a down-sloping 

NDVI drops below a certain threshold in the period following the annual peak, 

marking the end of senescence and the termination of photosynthetic activity for the 

crops (Zhang et al., 2003). The thresholds used in detection of SOS and EOS were 

determined through an iterative process and were instituted largely to avoid the 

detection of volunteer weeds which precede the green-up of actual crops and would 
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bias the SOS earlier, an issue which is likely to be more impactful in areas with high 

precipitation where tilling is not used (Galford et al., 2008; Wardlow et al., 2006).  

Finally, the peak timing and duration have been identified as the period during which 

NDVI is ≥75% of its annual range falling around the apparent NDVI maximum. This 

“peak” metric is unique to satellite data, with Zhang et al. (2003) having described a 

conceptually similar period (for all vegetated surfaces, not just crops) as 

representative of the period between the onset of green leaf maximum for a vegetated 

surface (peak period start; PPS), and the onset of senescence and subsequent rapid 

decline of photosynthetic activity (peak period end; PPE). Therefore, SOS and EOS 

dates span the entire active growing season, and are rough estimators of planting and 

harvest, with SOS theoretically occurring after the actual planting, while the peak 

period bounds the portion of the growing season during which the LAI maximum will 

likely occur (Zhang et al., 2003). 

Multiple methods have been established in the literature for extracting 

phenological information from temporal curves of NDVI, primarily using thresholds, 

inflection points, largest increases/decreases, and divergence from an established 

trend  (Jönsson & Eklundh, 2004; Reed et al., 2009). Several studies have used NDVI 

thresholding approaches to detect seasonal changes in vegetation, wherein a certain 

NDVI value is assumed as indicative of a change in vegetation stage (Fischer, 1994; 

Lloyd, 1990; White, Thornton, & Running, 1997), while others identified as 

beginning, peak, and end of season the sign changes (inflection points) of the first 

derivative of the NDVI curve (Moulin, Kergoat, Viovy, & Dedieu, 1997). The 
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methodology adopted for this study can be described as a combination of the 

application of thresholds with detection of inflection points.  

2.2.3 Growing Season Calendar Compilation  

For each 0.5˚ grid cell, the PTD detection algorithm yielded up to ten viable 

SOS and EOS dates as well as ten viable PPS and PPE dates (Figures 2.2a-b). When 

defining the agricultural growing season for the purpose of satellite imagery 

acquisition, cost and operational constraints are critically important and as such the 

exclusion of even potentially spurious dates is crucial from a strategic standpoint. 

Outlier removal is challenging and problematic in very dynamic cropping systems 

with high interannual variability, but is justifiable in the context of developing an 

image acquisition strategy, where imaging resource and cost constraints must be 

considered. Accordingly, measures of central tendency were taken to identify and 

remove dates which fell more than one median absolute deviation from the median. 

From this “cleaned-up” set of PTD candidates, the earliest, median, and latest SOS, 

and EOS dates were extracted for each 0.5˚ grid cell. Two separate growing season 

duration metrics were calculated: first, the median observed growing season duration 

from a single season was taken (i.e. each season’s detections were analysed 

separately); and secondly, the number of days between the earliest SOS and the latest 

EOS date was taken, regardless of whether those observations were from the same 

season, in order to give an idea of the maximum possible period of time for which 

observations would be necessary. Meanwhile, the median peak period duration within 

a single season was extracted, and the corresponding PPS and PPE dates were 

preserved.  
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Figures 2.2a-b: Plots of the gap-filled time series of 8-day composites of scaled NDVI (x 

1000), 2001-2010 (46 per year x 10 years = 460 values), from which PTDs were detected. a) 

Top, NDVI time series from a location in southern Kansas, providing an example of a winter 

wheat dominated landscape, with the SOS being detected in the October-November time 

period, and the EOS being detected in the June-July time period. The algorithm selects the 

post-dormancy resumption of growth (Miller, 1999) of the crop as the peak period, and in 

2001 places the SOS in March (contemporaneous with this post-dormancy re-emergence) due 

to the true SOS taking place in 2000, before the initiation of the time series. b) Bottom, NDVI 

time series from a location in central Indiana, providing an example of a corn/soy mix, with 

the SOS being detected in April-May, and the EOS being detected in October.  

 

To accompany these GSCs, an informational map layer was stored which 

tracks for each 0.5˚ grid cell the use of quality assessment bits, the impacts of cloud 

cover, the crop mask used, the degree of interpolation (“gap-filling”) necessary, as 

well as measures of central tendency for the dates detected for each cell. This 

information can be used as a sort of “confidence layer” in future exercises.  
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2.3 Results 

Broadly speaking, the agricultural growing season spans the spring to fall 

period for Northern and Southern Hemispheres, with notable exceptions for areas of 

known winter crop (e.g. wheat, barley) cultivation in Australia, the southern 

Plains/Pacific Northwest of the US, China, and in areas of southern Europe (Figures 

2.3a-b). For summer/spring crop cultivating areas, the PTDs follow broad patterns of 

climate limitation, with later SOS and earlier EOS for areas which are further inland 

(continental climate), more arid (dryer), and/or further from the Equator (lower winter 

temperatures). Other factors, such as ability to irrigate, selection of seed varieties, and 

farmer decision making are likely implicated in these regional variations, but analysis 

of these factors is beyond the scope of this analysis. 
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Figures 2.3a-b: The global median, a) Top, SOS date, and b) Bottom, EOS date, as observed 

between 2001 and 2010. The PTDs are natively at 0.5˚, but the inclusion of even a single 

250m cropped pixel in any of those half-degree grid cells would lead to a large 

overestimation of cropland extent. In this global view, a cropland indicator mask (GLAM-

UMD, unpublished raw data) at 0.05˚ has been overlaid to provide a more realistic extent of 

cropland area. Some grid cells (shown in grey) had no detection over 2001-2010 (due to 

cloud cover or low quality observations), despite having at least some cropland present.  
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As discussed previously, there are no reliable data against which the global 

product can be compared. For this reason, these GSCs were vetted by regional and 

national experts within the GEO Agricultural Monitoring Community of Practice, 

whose evaluations of the product’s accuracy and suggested changes were ingested 

into the final product. Preliminary discussion with experts in areas of Australia, 

Canada, Argentina, Uruguay, Ukraine, Spain, and Russia show that the time periods 

encapsulated by these GSCs are indeed representative of the periods during which 

satellite imagery are necessary for their respective areas. For the CONUS, however, 

this paper presents a comparison of GSC dates against crop calendar dates for a few 

states in the corn and soy cultivating areas of the CONUS from Sacks et al. (2010) 

digitization of USDA-NASS (1997) Usual Planting and Harvest Dates. Additionally, 

state-level crop progress data (each state’s crop’s planting, emergence, and harvesting 

progress) from USDA-NASS from 2001-2010 are compared with each individual 

year’s PTDs to illustrate the GSCs sensitivity to interannual variability.  

2.3.1 Geographical Patterns of PTDs Observed in the CONUS 

Including small contributions from Alaska and Hawaii, an average of 98.9 

million hectares were harvested in the USA each year between 2001-2010, including 

those areas for which there were multiple crop rotations and for which each harvest’s 

area was counted. More than 80% of total area harvested is accounted for by three 

crops: maize (30.9%), soybeans (29.8%), and wheat (both winter & spring varieties, 

20.4%), the remainder being largely composed of seed cotton (4.7%), sorghum 

(2.7%), barley (1.5%), and rice (1.3%) (FAOSTAT, 2012). A majority of the 

cultivation is spring and summer crops, although winter wheat and barley are 
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commonly cultivated in the southern half of the CONUS, with much of the west coast 

states cultivating specialty crops throughout the year (USDA-NASS, 1997; 2010). 

The GSCs model these known phenomena, with clear winter crop dominated 

cultivation in the southern Plains states (Texas, Oklahoma, Kansas) as well as in 

some portions of the Pacific States, where SOS dates come between August and 

December (Figures 2.4a-b). The major corn and soybean producing states are well-

characterized with the earliest SOS dates falling generally in April to May and the 

median SOS dates falling predominately in late May. Meanwhile, the median EOS 

dates fall in late-September and the latest EOS season dates fall from October to 

November, aligning well with planting ranges (April-May) and harvest ranges 

(September-November) articulated by USDA-NASS (1997; 2010).  
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Figure 2.4a-b: For the CONUS, the median a) Top, SOS date, and (b) Bottom, EOS date, as 

observed between 2001 and 2010. The GSCs are shown at their native resolution (0.5˚) 

without any post-processing application of a finer scale cropland mask to account for true 

cropland extent estimation (as in Figures 2.3a-b). 



 

 32 

 

In Illinois, Iowa, and Indiana, corn is planted 2-3 weeks before and harvested 

1-2 weeks after soybeans. It is expected, then, that SOS dates – which by accounting 

for multiple crops on the landscape and by approximating emergence are expected to 

come a few weeks after planting – will fall after corn planting and right around soy 

planting. Meanwhile, EOS is a rough approximation of harvest without a specified 

direction of disagreement, and thus EOS should fall sometime around soybean 

harvest and just before corn harvest. Both of these expectations are represented in the 

GSCs, as shown through comparison with USDA-NASS’s (1997) average planting 

and harvest dates for corn (Figure 2.5a-b) and soybean (Figures 2.5d-c), respectively, 

for Illinois, Indiana and Iowa (n=161, 0.5˚ cells). Each of these states produces large 

quantities of corn and soybean relative to other crops, meaning that their relative 

homogeneity makes them an appropriate area for comparing single crop calendars 

with the GSCs.  
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Figures 2.5a-d: Histograms of GSCs minus Sacks et al. (2010)/USDA (1997) planting or 

harvest dates for corn/soybean cultivating states Illinois, Indiana, and Iowa. A negative value 

indicates an earlier GSC and a positive value indicates a later GSC relative to planting or 

harvest dates. Very few 0.5˚ grid cells agreed perfectly, and so were placed in the +1 month 

category if they existed. Clockwise from top left: a) median SOS date minus average corn 

planting date; b) median EOS minus average corn harvesting date; c) median SOS date minus 

average soybean planting date; d) median EOS minus average soybean harvesting date. 
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Beyond the major corn and soy producing states of the CONUS, there also 

exist three major areas of cotton cultivation – western Texas (TX), along the 

Mississippi River (Louisiana, Arkansas, and Mississippi), and in the southeast 

(southern Georgia and eastern Carolinas). In TX, the most active planting takes place 

in May-June, with the most active harvest period taking place during November, 

while in both the southeast and the states along the Mississippi River, planting takes 

place during April-May with harvest occurring in October-November in the former 

case, and primarily October in the latter case (USDA-NASS, 1997). All of these dates 

are accurately represented by the GSCs.  

In California (CA), the existence of a climate that is amenable to year-round 

cultivation leads to a more variable suite of suitable crops, including a wide variety of 

specialty crops.  According to USDA-NASS (1997), in CA planting spans the entire 

year, while harvesting spans from April 1st (sugarbeets) until December 10th 

(sugarbeets), and this is not to mention specialty crops (e.g. grapes, tomatoes, berries) 

growing in the state. The GSCs reflect these dynamics, even detecting rice cultivation 

in the Sacramento River Valley, spanning from May until October (consistent with 

those dates in USDA-NASS, 1997). With respect to the northeast, the majority of 

cultivation in that area is actually alfalfa hay (year round cultivation) with a small 

area of corn production in New York, for which the corresponding USDA-NASS 

(1997; 2010) crop calendar dates (April/May to October/November) are closely 

approximated in the GSCs, April/May to November/December. This area is not a 

high priority for agricultural monitoring due to its low production of food crops, and 

therefore does not merit further investigation for the purpose of this analysis. 
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2.3.1.1 Sensitivity of GSCs to Interannual and Regional Phenological Variations 

The USDA-NASS’s Usual Planting and Harvesting Dates for US Field Crops 

(1997; 2010) referenced in this chapter give ranges of observed planting and harvest 

dates for entire states for a given crop, aggregating information from multiple 

geographic locations and multiple years. These roughly decadal releases are based off 

of yearly crop progress data on state-wide percentage of crop type that have been 

planted, emerged, and harvested. Meanwhile, for a given year, a single set of progress 

information exists for an entire state despite the percentage 

planted/emerged/harvested values themselves essentially being aggregations of 

geographic variations in planting, emergence, and harvest timing across a state (that is 

to say, the progress data indicates on a certain day of the year, 20% of the state has 

been planted, but there is no spatial information on which areas that 20% occupies). 

In contrast, the GSCs are at a finer resolution (0.5˚), meaning that they avoid this 

geographic aggregation and provide insight into within-state variations in 

phenological transitions.  

For Illinois, Indiana, and Iowa, the days of year which correspond with five 

thresholds (0-20%, 20-40%, 40-60%, 60-80%, and 80-100%) of area planted and area 

emerged corn progress data for each year 2001-2010 have been extracted from the 

USDA-NASS Quick Stats Database (USDA-NASS, 2013). These threshold dates 

have been correlated with SOS dates to try to determine whether the GSC PTDs are 

sensitive to interannual variability in cropping dynamics. The same approach has 

been taken with area harvested thresholds and EOS dates. Because of the geographic 

aggregation present in the state-level corn progress data, it is expected that certain 
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percent planted/emerged/harvested thresholds will produce better correlations with 

SOS/EOS dates for certain grid cells.  Figures 2.6a-c show the maximum correlation 

value (0-1) as well as that maximum value’s corresponding crop progress threshold. 

Keeping in mind that this is a correlation for only corn, and not soybeans or winter 

wheat or any other crop that may exist in these states, the GSC PTD algorithm is 

fairly sensitive to interannual variability in cropping dynamics, particularly with 

SOS/percent emerged and EOS/percent harvested. This not only demonstrates that the 

GSC PTD algorithm is sensitive to interannual variability in cropping dynamics, but 

also clearly illustrates the utility of this type of finer scale analysis of cropland 

phenology over previous articulations, particularly in the context of planning fine 

resolution/small swath satellite image acquisitions.  

 

Figure 2.6a-c: Maps of yearly GSC 0.5˚ grid cells correlated with different crop progress 

percentages from state-level USDA-NASS yearly crop progress data, both sets from 2001-

2010. On the right is the maximum correlation value from the five crop progress percentage 

thresholds, and on the left is the crop progress threshold for which that maximum correlation 

value exists.  a) Yearly percent planted correlated with yearly SOS; b) yearly percent 

emerged with yearly SOS; c) yearly percent harvested with yearly EOS. 
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2.3.2 Duration of the Agricultural Growing Season  

There are several ways to define the duration of the agricultural growing 

season when there are several years of SOS and EOS PTDs. For example, the 

maximum possible number of days for which imagery would be required could be 

taken as the number of days between the earliest SOS and the latest EOS date 

observed between 2001-2010, regardless of whether those dates are from the same 

growing season or not. This, however, might yield an artificially long growing season 

due to interannual variability in cultivation practices. Instead, presented here is 

median growing season duration observed in a single season between 2001 and 2010 

(Figure 2.7). 

 

Figure 2.7: The median duration of the agricultural growing season (SOS to EOS from the 

same growing season), 2001-2010. As in Figures 2.3a-b, the GLAM-UMD cropland indicator 

mask at 0.05˚ is overlaid the native 0.5˚ GSCs to more accurately represent cropland extent. 
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While the agricultural growing seasons range from 96 to 352 days in duration, 

the mean growing season length for the entire world is 216 days (median = 224 days), 

which is just over seven months. Generally speaking, areas with cooler winters (e.g. 

higher latitudes, areas of higher elevation) and/or less precipitation (e.g. the Sahel) 

have shorter growing season durations while areas which are characterized by a 

warmer and wetter climate have longer growing seasons. The shortest growing 

seasons are found in the Peace River Valley in Canada as well as in eastern Russia, 

north of China. While certain winter crop cultivating areas have apparently shortened 

growing season durations due to the post-dormancy resumption of growth (Miller, 

1999) being tagged as the SOS (Section 2.3.4), this at least highlights the most active 

period of the AGS for monitoring and is important and new information.  

These relationships hold in the CONUS, where growing season durations 

follow a geographic pattern largely dictated by regional climate, ranging from 96-304 

days. The mean growing season length for the CONUS is ~205 days, or just shy of 

seven months, with 3.0% of the 0.5° grid cells having growing seasons lasting 3-4 

months, 12.9% of grid cells lasting 4-5 months, 15.7% lasting 5-6 months, 19.2% 

lasting 6-7 months, 26.8% lasting 7-8 months, 15.2% lasting 8-9 months, and 7.3% 

lasting 9-10 months.  For Midwestern states characterized by a continental climate 

and limited by very cold winters, the growing season tends to be shorter (3-6 months), 

while those areas characterized by a warmer or less variable year-round climate (West 

Coast and Southern states) tend to have longer growing seasons (up to 10 months). 

Exceptions to these rules are found in western Texas and the 

Arkansas/Mississippi/Louisiana border, each of which are heavy cotton cultivating 
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areas with 4-5 month growing periods (USDA-NASS, 1997). Somewhat surprisingly, 

longer growing seasons are found in the north eastern CONUS where a distinct 

seasonality and cold winter would suggest a shorter, climate-limited growing season. 

In fact, as stated in Section 2.3.1, the cultivation of alfalfa hay along with some corn 

is responsible for this seemingly unusual growing season duration (USDA-NASS, 

1997). 

2.3.3 Peak Period Timing and Duration 

The period during which green leaf area is highest is contemporaneous with 

the NDVI maximum (Zhang et al., 2003). For reasons identified previously, it is 

important to determine the period during which this NDVI maximum is most likely to 

occur. However, at 0.5˚ resolution, an area over which many 250m pixels potentially 

representing a variety of crop types have been averaged, the relationship between 

apparent NDVI maximum and individual crop’s LAI maximum is perhaps more 

tenuous as out-of-sync pixel-level NDVI maxima are blended to form a flatter and 

broader peak period. To allow for this flattening and broadening effect and 

encompass a wider period during which the maximum NDVI is likely to occur, the 

peak period was defined as the period for which NDVI is ≥75% of the annual NDVI 

range (between the peak period start (PPS) and the peak period end (PPE); Figures 

2.8a-c). This value – 3/4 maximum – was selected through an iterative process, so as 

simply to define a period of time just broad enough to likely bound the NDVI 

maximum. Ten years of PPS and PPE dates were detected (Figures 2.2a-b), and 

compiled similarly to the SOS/EOS dates (see Section 2.2.3).  
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Figures 2.8a-c: The median, a) peak period start date and, b) peak period end date as 

observed between 2001 and 2010, as well as, c) the median peak period duration for that 

period, which is the number of days between (a) and (b). As in Figures 2.3a-b and 8, the 

GLAM-UMD cropland indicator mask at 0.05˚ is overlaid the native 0.5˚ GSCs to more 

accurately represent cropland extent. 

 

a 
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For most agricultural regions, the peak period lasts between 4 and 12 weeks, 

with longer peak periods typically occurring in the same areas that have longer 

growing season durations and/or that are known to have multiple crops present on the 

b 

c 
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landscape. Within the CONUS, there are two areas with distinctly shorter peak period 

durations: 1) the major winter wheat cultivation area in Kansas/Oklahoma (KS/OK), 

and, 2) the Montana (MT) and western North/South Dakotas (ND/SD). In the former 

case, the shortened peak period corresponds with the steeper, shorter (duration) peak 

associated with the winter wheat’s post-dormancy resumption of growth.  In the latter 

case, MT and western ND cultivate almost solely spring wheat and spring barley, 

which have nearly identical calendars (USDA-NASS, 1997). In contrast, eastern 

ND/SD have large areas of sugar beet, corn, and soybean cultivation in addition to 

wheat (spring in ND, winter and spring in SD) and barley (mostly ND), and 

accordingly have longer peak period durations, illustrating how multiple crops’ 

signals, even when somewhat similarly timed, can combine to create a broader, 

longer apparent peak NDVI period.  

In areas for which multiple, distinct cropping cycles and therefore distinct 

peaks exist, the peak period approach weakens as the algorithm considers only the 

dates that surround the annual maximum NDVI rather than allowing for multiple 

peaks in a year. In the KS/OK area dominated by winter wheat production, the peak 

period is capturing the winter wheat cultivation’s peak; however, there is considerable 

corn and soy cultivation there as well, and, as discussed in the following Section 

2.3.4, the extent to which the increases in corn/soy NDVI impact the apparent timing 

of the winter wheat NDVI peak is contingent upon the relative proportions of winter 

vs. spring crops.  
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2.3.4 Winter Wheat Presence and Impacts on PTD Detection 

Figure 2.9 shows a comparison of a corn & soybean only compilation of 

Sacks et al.’s (2010) digitization of USDA-NASS (1997) usual planting and harvest 

dates with the GSC SOS dates. Moving toward areas with a larger winter wheat 

presence, such as Kansas, eastern Colorado, western Nebraska, South Dakota, and 

southern Illinois, the GSC SOS dates begin to come before the start of planting dates 

for corn and soy, which illustrates that winter crop presence causes an earlier SOS 

detection, although the extent of this impact is contingent upon the ratio of winter to 

spring/summer crops in an area. 

 

Figure 2.9: The earliest SOS date (2001-2010) minus a corn & soybean-only compilation of 

the Start of Planting period (based on maximum harvested area fraction (Monfreda, 

Ramankutty, & Foley, 2008)) for the CONUS’ Corn Belt. A negative number indicates an 

earlier GSC SOS date relative to the start of the planting period, while a positive number 

indicates a later GSC SOS date versus the start of the planting period. 
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 In fact, it is not until southern Kansas, central Oklahoma, and the 

Texas/Oklahoma border – where winter wheat becomes the dominant crop – that the 

GSC PTDs begin to correspond more strongly with known winter wheat calendar 

dates (September planting, June/July harvesting; USDA-NASS, 1997). After planting 

and an initial emergence, winter wheat enters a period of dormancy during the winter 

and resumes growth in the early spring (Miller, 1999). It is not uncommon that this 

initial emergence does not produce a sufficiently large increase in NDVI to be 

detected and classified as a start of season, particularly if within the same 0.5˚ grid 

cell there is a large spring/summer crop presence, as the spring/summer crop’s 

contemporaneous NDVI decrease from end of season senescence and harvesting 

further mutes any NDVI increase. Due to these factors, the GSC’s often detect an 

SOS date for an area with a considerable winter crop presence as late as the end of 

March, which in reality is the point in time when the crop resumes growth after 

dormancy. This phenomenon is present in Ukraine and parts of Russia (Figure 2.3a) 

as well as in certain areas of Kansas, Oklahoma, Colorado, and Missouri, where 

winter wheat is grown alongside a large quantity of spring/summer crops (primarily 

corn and soy, though in some cases also sorghum). This phenomenon lends itself to a 

high level of disagreement between a typical winter wheat planting date in September 

or October and its associated emergence (SOS) date. While the majority of 

agricultural monitoring applications only require imagery during the most active part 

of the growing season (from post-dormancy resumption of growing until end of 

season), biophysical growth models rely on crop biophysical information throughout 

the growing season including initial emergence/SOS (Brisson et al., 1998; Jones et 
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al., 2003), and crop type identification applications rely on observations during the 

SOS, meaning delayed SOS detections are impactful and require attention.  

As a preliminary investigation into the impacts of mixed signals on PTD 

detection, I have used the USDA-NASS Cropland Data Layers from 2006 & 2007 for 

the Kansas and Missouri areas, extracting 250m time series for a handful of adjacent 

corn, soy, and winter wheat cultivating areas (Boryan et al., 2011; Han et al., 2012; 

Johnson, 2010), and processing these “pure” pixel signals for crop-specific PTDs 

using the same algorithm as for the general agricultural GSCs. So as to better 

understand how grid cells of varying winter wheat proportion diverge from “pure” 

wheat pixel’s PTDs, these corn, soy, and wheat NDVI values have been added 

together in different ratios and processed for PTDs to create simulations of the 

various mixed pixels that can exist. Preliminary results show that the proportions of 

winter wheat required to result in the detection of a PTD equivalent to that of a “pure” 

wheat pixel varies for SOS, peak of season (NDVI maximum; POS), as well as EOS. 

For SOS, the required winter wheat proportion is 33-75%, for POS of season is 33-

50%, and for EOS is 67-85%. Meanwhile, even a small proportion of wheat was 

capable of changing apparent PTDs by one compositing period (8 days) for corn 

(SOS: 25-50%; POS: 5-17%; EOS: 7-33%)  or soy (SOS: 9-25%; POS: 5-20%; EOS: 

5-50%). These findings are from only a small sample of sites and are very 

preliminary, but serve to suggest that in the context of deriving PTDs, the proportions 

of crops that make up the unit of analysis do matter and merit further investigation. 
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2.4 Discussion, Known Issues, & Future Research 

This chapter has introduced a suite of results that improve our understanding 

of the agricultural growing season worldwide. First and foremost, it provides a set of 

GSCs at 0.5˚, providing SOS and EOS PTDs detected between 2001 and 2010 from 

MODIS surface reflectance data. This information enables the identification of the 

period during which different scales and resolutions of Earth observations for 

agriculture monitoring are required. For the purpose of developing an image 

acquisition strategy for agriculture monitoring, this study has articulated the timing of 

necessary image acquisitions for the global agricultural regions, providing the 

foundation for a continued investigation into the frequency of necessary observations, 

as well as the necessary spatial and spectral (optical vs. active/microwave) resolutions 

as inputs to a global agriculture monitoring imaging constellation system (Chapter 4). 

There remain a few areas for which no viable detection was possible, usually 

due to persistent cloud cover creating too many gaps in the time series. Tandem 

efforts exist at the International Rice Research Institute (IRRI) for the production of 

rice crop calendars. As many of the areas lacking dates are rice cultivating – for 

example, coastal West Africa and Southeast Asia – this provides a remedy.  

As discussed previously and demonstrated by a preliminary analysis (Section 

2.3.4), the impacts of multiple cropping’s mixed signals on PTD detection are present 

but their magnitude is not well understood. In the future, a more in depth analysis of 

these impacts for a larger sample of sites would provide insight into the limitations of 

coarser spatial resolution analyses of croplands in general and phenology in 

particular. 
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In addition to farmer decision making and farming systems, climatic variables 

such as temperature and precipitation are known to impact observed SOS and EOS 

dates both across regions and between years. An analysis of the relationships between 

climatic variables and PTDs merits further research, but is beyond the scope of this 

analysis.  

While the emphasis of this research is on defining the growing season from 

the perspective of developing Earth observations requirements as inputs to an image 

acquisition strategy for agriculture monitoring in the context of GEOGLAM, the 

growing season calendar and its associated methodology could be useful as inputs for 

other applications. This is particularly true if attempts are made to separate out the 

major crops and move back into the realm of crop-specific growing season calendars, 

research that would be facilitated by crop-specific masks which currently do not exist 

globally at a sufficiently fine resolution, although efforts to develop them are 

underway.  The present resolution (0.5˚) was chosen to fall within the swath widths of 

moderate resolution sensors, but the PTD detection algorithm is suitable for use at 

any resolution.  As the algorithm has been shown to reasonably model known 

cropland phenology and to account for regional and interannual variability in 

cropping practices (at least in the Corn Belt of the CONUS), it can be applied to crop-

specific time series in order to generate fine resolution, spatially explicit crop-specific 

crop calendars to accompany the general agricultural GSCs presented herein.  
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Chapter 3: Cloud Cover throughout the Agricultural Growing 

Season 
 

3.1 Introduction & Background 

Cloud cover impedes optical plus thermal (O+TIR) instruments from 

obtaining clear views of the Earth’s surface. This occlusion has been a persistent 

barrier to operational monitoring of croplands for many regions of the world. In order 

to improve the quality of agricultural monitoring information in the context of 

GEOGLAM, the adequate provision of satellite data through the development of an 

acquisition strategy designed to meet a suite of agricultural monitoring data needs 

must be ensured (Singh Parihar et al., 2012). This is partially enabled through the 

articulation of revisit frequency (temporal resolution) requirements for monitoring 

that take into account the degree to which cloud cover obscures data acquired over 

agricultural areas throughout the agricultural growing season. 

Cloud cover varies throughout the day, over geographic space, and throughout 

the year, following broad brush patterns (Cairns, 1995; Mercury et al., 2012; Minnis 

& Harrison, 1984; Roy et al., 2006; Wylie, Jackson, Menzel, & Bates, 2005; Wylie & 

Menzel, 1999). Very broadly speaking, the afternoon is cloudier than the morning 

(Cairns, 1995; Minnis et al., 2008), the Equatorial zone and very high-latitudes are 

cloudier than mid-latitudes, and clouds vary seasonally – all important considerations 

both in incorporating existing missions into an acquisition strategy as well as in 

planning for future missions. However, in the context of articulating EO requirements 

specifically for agricultural monitoring, and translating them into an implementable 
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acquisition strategy that will utilize multiple missions, it is necessary to determine 

with greater spatial precision how cloud cover varies throughout the agricultural 

growing season and in turn impacts optical data acquisitions of the cropped land 

surface. To this end, this present analysis draws upon the growing season calendars’ 

phenological transitions dates (Table 2.1) described in Chapter 2, and aims to 

characterize usual cloud cover over agricultural areas of the Earth between these 

different PTDs, as well as its impact upon obtaining clear views of the Earth’s surface 

when collecting data in the visible, reflected infrared, and thermal infrared portions of 

the Electromagnetic Spectrum. 

There have been multiple studies of cloud cover as it varies diurnally (Cairns, 

1995; Kaufman et al., 2005; Minnis & Harrison, 1984), seasonally or intra-annually 

(Gunderson & Chodas, 2011; Ju & Roy, 2008; Wylie et al., 2005; Wylie & Menzel, 

1999), and between different sensors (Chernokulsky & Mokhov, 2009; Minnis et al., 

2008, 2011; Stubenrauch et al., 2013).  Meanwhile, a handful of studies have looked 

specifically at cloud cover’s impacts on a missions’ ability to meet their science 

objectives (Gunderson & Chodas, 2011; Ju & Roy, 2008; Mercury et al., 2012; Roy et 

al., 2006) including the Landsat program’s Long-term Acquisition Plan (LTAP), 

which compares usual cloud cover information with near-term daily predictions of 

cloud cover for an area for real-time acquisition scheduling (Arvidson, Gasch, and 

Goward 2001; Arvidson et al. 2006; Irish et al. 2006). Ju and Roy (2008) found that 

monitoring applications that required more than one Landsat ETM+ image per year 

would be severely limited due to cloud cover coupled with on-board data storage 

limitations. Considering that all agricultural monitoring applications require more 
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than one image during the agricultural growing season, with many of them requiring 

bi-weekly, weekly temporal sampling of an area to monitor crop condition, forecast 

crop yield, and provide early warning of crop failure, cloud contamination of optical 

imagery presents a major limitation and supports the perspective that an imaging 

constellation of sensors with multiple overpass times is necessary for agricultural 

monitoring (Gao, Masek, Schwaller, & Hall, 2006; Goward et al., 2012; Goward, 

Arvidson, Williams, Irish, & Irons, 2009; Goward, Williams, Arvidson, & Irons, 

2011; Ju & Roy, 2008; Roy et al., 2006; Singh Parihar et al., 2012). However, to date 

no studies have approached the issue of cloud obscuration of optical imagery at the 

global scale specifically from the perspective of agricultural regions, agricultural 

growing seasons, and agricultural monitoring. 

In the context of articulating temporal EO requirements for a multi-mission 

acquisition strategy geared specifically toward agricultural monitoring, a number of 

factors must be considered. The first is the resolution of analysis – the information 

must be at a sufficiently fine resolution to be scalable to the multiple swath widths 

which exist on current and near-term VFTM spatial resolution missions 

(approximately 11 km [Ikonos] to 740 km [AWIFS]). For this reason, 0.05˚ (~5.6 km 

at the Equator) has been chosen. The second factor which merits consideration is the 

acceptable threshold of cloud amount for each monitoring application. To indicate 

how frequently a completely clear view can probabilistically be obtained, I analyze 

the probability of a cloud free clear view over 0.05˚ throughout different portions of 

the agricultural growing season as well as for each month of the year (herein denoted 

as “P(clear)”, shorthand for “probability of cloud free clear view”). This effectively 
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provides the upper boundary of required image frequency (the “worst case scenario”) 

by accepting only completely clear 0.05˚ cells. However, multi-date image 

compositing is a common approach for studies which do not rely on very fine 

temporal resolution analyses of phenological progress to separate characteristics 

(Becker-Reshef et al., 2010b; Roy et al., 2010; Hansen et al., 2008), and thus I 

perform an additional analysis of the portions of scenes which are clear and can be 

used to create a cloud free, multi-date image composite. Accordingly, the average 

percentage of each 0.05˚ which is clear (cloud free) throughout the agricultural 

growing season is investigated as well (herein denoted as “APClear,” shorthand for 

“average percentage clear”). While at the local level cloudiness in agricultural areas is 

well-understood, this study presents the global perspective, providing information 

which is suitable and necessary for incorporation into an image acquisition strategy 

for global agricultural monitoring. 

3.2 Methods 

Both MODIS Terra and Aqua cloud cover detections have been shown to 

compare well with existing cloud cover datasets such as International Satellite Cloud 

Climatology Project (Rossow & Schiffer, 1999) and High-resolution Infrared 

Radiation Sounder (Wylie et al., 2005), with the primary differences in cloud 

coverage occurring in high latitudes or during winter due to high zenith angles 

(Chernokulsky & Mokhov, 2009; Mercury et al., 2012).  As the majority of croplands 

fall between 60˚ N and 60˚ S, and those that lie in cold climates are typically 

dormant/not actively cropped with food crops that impact global food supply during 

the winter months, these dissimilarities relative to HIRS and ISCCP are not impactful.  
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For consistency, the baseline dataset for both analyses was 1 km surface 

reflectance cloud flags from the state QA layer (Vermote et al., 2002) from MODIS 

Aqua (MYD09) for the afternoon analysis (overpass = 1:30 pm local solar time), and 

from MODIS Terra (MOD09) for the morning analysis (overpass = 10:30 am local 

solar time)2.  

3.2.1 Generation of Probability of Cloud Free Clear View at 0.05˚ 

Twelve years (2000-2011) of daily 1 km MODIS Terra (MOD09 - AM) and 

ten years (2002-2011) MODIS Aqua (MYD09 - PM) surface reflectance quality 

assessment (QA) cloud presence flags were each separately analyzed and aggregated 

to 0.05˚ wherein even a single cloudy 1 km pixel would return a cloudy 0.05˚ value 

for cell for that year. Then, for each DOY for all years, the number of cloudy 

observations was divided by the total number of observations over that period (10 for 

Aqua, 12 for Terra). This P(cloud) value was inverted to show P(clear), yielding two 

sets of 365 maps of probability of a cloud free clear view in a 0.05˚ grid cell, one for 

each day for each time of day (morning and afternoon). A schematic using dummy 

data that shows this aggregation process and the calculation of P(cloud) as well as 

P(clear) is shown Figure 3.1. This analysis answers the question, “what is the 

probability of a completely cloud free clear view over this 0.05˚ cell for a given day 

of year (DOY) or a given portion of the year?”  These data can be converted 

arithmetically to show the days until cloud free clear view (DUC) for a given revisit 

frequency (f):  

                                                 
2 This baseline dataset (daily cloud presence probability and cloud cover percentage) was developed 

and compiled by Eric Vermote et al. I performed all subsequent analyses. 
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1. DUC = f ÷ P(clear) 

As this analysis only accepts spatial units (herein, 0.05˚) which are completely 

clear, this provides insight into the “worst case scenario” for the frequency of clear 

views to be expected from a sensor or constellation of sensors with (combined) revisit 

capability f.  

3.2.2 Generation of Average Clear Percentage of Each 0.05˚ Cell  

 The same input data as used in the generation of the clear view probability 

dataset were used to generate the average clear percentage of each 0.05˚, however 

there exist two key differences. First, due to the point in time at which the datasets 

were produced, the analysis was extended through 2012, meaning there are thirteen 

years (2000-2012) of daily 1 km MODIS Terra (MOD09 - AM) and eleven years 

(2002-2012) of daily 1 km MODIS Aqua (MYD09 - PM) used in this analysis. 

Second, while in the probability analysis, a pixel was flagged as “not clear” if it 

contained cloud, was adjacent to cloud, or contained cloud shadow, in this latter 

analysis, only those pixels which contained cloud were flagged as “not clear.” 

Because the purpose of the P(clear) analysis was to essentially establish the “worst 

case scenario” boundary for clear view frequency, this broader definition of unusable 

data was appropriate. This percentage clear analysis is, in a sense, establishing the 

“best case scenario” for the capability of compositing a reasonably, partially clear 

view, and as such has used a less inclusive definition of what is “not clear.” 

 For each DOY in each year, the percentage of each 0.05˚ grid cell which was 

cloudy was calculated as the number of cloud containing 1 km pixels divided by the 
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total number of pixels within that grid cell (Figure 3.1). Next, all years’ percent cloud 

values were averaged for each DOY, yielding average daily percentage cloud 

(APCloud) and its inverse, APClear, for all 365 days of the year, for both morning 

and afternoon observations, at 0.05˚.  

 

Figure 3.1:  Schematic showing the method by which both APClear and P(clear) were 

compiled from 1 km single pixel surface reflectance cloud flags into indicators of cloud cover 

extent and cloud presence frequency, respectively.  

 

Roy et al. (2006) analyzed the probability of generating cloud free composites 

from multi-date MODIS imagery by using a similar baseline dataset as 

APCloud/APClear. Within a spatial unit that is only 0.05˚, it can be assumed that the 

percentage of the cell which is cloudy is the same as the probability that any given 

pixel/portion within that cell is cloudy (below denoted as P(cloudportion), not to be 

confused with P(cloud) previously introduced, which refers to the probability that any 

cloud exists within a 0.05˚ cell). Following Roy et al. (2006), this analysis assumes 

that there is no spatial or temporal correlation of cloud occurrence probability, and 
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that the probability that a given pixel within a spatial unit (here, 0.05˚) is cloudy on 

consecutive looks is equal to the product of each of those looks’ probabilities of cloud 

(P(cloudportion)). Therefore, the final percentage of a spatial unit that is clear (FPC) 

after a certain number of looks (revisit frequency, f) within a certain compositing 

period (c) beginning on day d is given by:  

2. FPC = 1 – [P(cloudportion)d * P(cloudportion)d+f … * P(cloudportion)[d + (c ÷ f)]] 

This analysis gives the “best case scenario” in terms of the frequency of 

partially clear views to be expected from a sensor or constellation of sensors with 

(combined) revisit capability f, thereby complementing the “worst case scenario” 

perspective described in Section 2.2.1 and effectively bounding the problem of 

identifying the impacts of cloud cover on securing usable data of the Earth’s cropped 

surface during the AGS. 

3.3 Results 

Different agricultural monitoring applications span different portions of the 

growing season. For example, early within-season planted area estimates require data 

principally from the early-to-mid growing season while harvested area estimates 

require data from the late season as well, and some yield forecasting applications 

require very frequent data during the peak period (Becker-Reshef et al., 2010b; Boken 

& Shaykewich, 2002), and crop progress and crop condition require data sampled 

continuously throughout the growing season. Long term studies of changes in 

agricultural land cover and land use require data sampled from throughout the entire 

year, including the period during which crops are not actively growing (non-AGS), so 
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as to detect deviations from previously established phenology. Accordingly, the AGS 

has been broken down into periods between different phenological transition dates in 

order to understand how cloud cover can probabilistically impact optical observations 

of agricultural areas on the Earth’s surface. Each of these two cloud datasets were 

averaged over different portions of the agricultural growing season (resampled to 

0.05˚ from the 0.5˚ growing season calendars described in Chapter 2) for each 0.05˚ 

grid cell: 

 Start of season (SOS) to peak period start (PPS)  

 PPS to peak period end (PPE)  

 PPE to end of season (EOS) 

 EOS to SOS, the non-AGS  

Additionally, in order to summarize geographic and diurnal differences in cloud 

cover, each of the datasets have been aggregated into 1˚ increments of latitude for 

both the Eastern and Western Hemispheres for different portions of the AGS, 

extracting multiple measures of central tendency (mean, median, maximum, 

minimum, and standard deviation), although the focus will be the mean cloud 

presence frequency and mean cloud amount.  

3.3.1 Global Patterns in Cloud Cover Frequency and Amount   

Equatorial zones (between roughly 15˚ N and 15˚ S) and higher mid-latitudes 

(above 40˚ N and below 40˚ S) have higher cloud frequency and cloud cover amount 

(illustrated by APClear; Figure 3.2a-b) than do the lower mid-latitudes (15˚ to 40˚ N 

and S, roughly). For continental (non-coastal) land mass areas, afternoons are 

generally cloudier than mornings (a consideration in the design of MODIS Terra 
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(Minnis et al., 2008) particularly in the southern lower mid-latitudes of both the 

Eastern and Western Hemispheres (Figure 3.3a-b). This holds with findings from the 

ISSCP project that the global average maximum in low level cloud amount occurs at 

1:30 pm local time (Cairns, 1995), consistent with MODIS Aqua’s overpass. Further, 

P(clear) and APClear (divided by 100) consistently disagree by approximately 0.2 at 

all latitudes, indicating that for most parts of the world regardless of the portion of the 

year, where there is frequent cloud cover, cloud amount is high, and where there is 

infrequent cloud cover, clouds amount is low. Stated differently, this shows the 

spatially auto-correlated character of clouds, and suggests that in chronically and 

expansively cloudy areas, whether the requirement is for partially or completely clear 

views, the requirement will be difficult to meet with optical observations (further 

discussed in Chapters 4 and 5).  
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Figure 3.2a-b: For each 1˚ of latitude in the Western Hemisphere (a, left) and Eastern 

Hemisphere (b, right), the mean percentage of each 0.05˚ cell which is clear over different 

portions of the agricultural growing season (SOS to PPS; PPS to PPE; PPE to EOS) and non-

agricultural growing season (EOS to SOS). The patterns observed are very similar for the 

probability of cloud absence (P(clear)), as well, but are not shown herein.  

a b 
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Figure 3.3a-b: For each 1˚ of latitude in the Western Hemisphere (a, left) and Eastern 

Hemisphere (b, right), the difference (Terra minus Aqua) in mean percentage of each 0.05˚ 
cell which is clear over different portions of the agricultural growing season (SOS to PPS; 

PPS to PPE; PPE to EOS) and non-agricultural growing season (EOS to SOS). The dotted 

vertical line in each graph shows where the morning and afternoon have, on average, equal 

amounts of cloud cover for that degree of latitude. The markers on the right of the dotted line 

indicate for which degrees of latitude the morning is, on average, clearer for that portion of 

the AGS/non-AGS, while the markers to the left of the dotted line indicate where the 

afternoon is, on average, clearer.  

 The most interesting patterns, however, emerge when breaking down cloud 

presence frequency and cloud cover amount by different portions of the agricultural 

growing season (Figures 3.2a-b, 3.4a-f). At nearly every latitude, the early AGS 

a b 
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(between the start of season and peak period start (SOS-PPS)) is as cloudy if not 

considerably cloudier than later portions of the growing season and the non-AGS. 

This is particularly pronounced around 20˚ N in the Eastern Hemisphere due to the 

Indian summer monsoon, coinciding with an area of expansive agricultural activity 

(Figure 3.2b).  Similarly, the mid-AGS (peak period start to peak period end (PPS-

PPE)), is also generally cloudier than the late or non-AGS, both in frequency and 

amount. As farmers tend to plant in expectation of rains, it is not surprising that the 

early and mid-AGS are the cloudiest portions of the year. Unfortunately, these 

periods are also the most important periods for agricultural monitoring, because they 

allow the generation of early within season estimates of area, yield, and also because 

crop stress during this period is particularly impactful in terms of yield (Becker-

Reshef et al., 2010b; Boken & Shaykewich, 2002; Johnson, 2014; Sakamoto, 

Gitelson, & Arkebauer, 2013). The high cloud cover presence frequency and cloud 

amount indicate, therefore, that more frequent optical observations and/or microwave 

data will be required for agricultural monitoring in these areas during these periods. 

For example, for an area with P(clear) = 0.2, one in five revisits would 

probabilistically yield a cloud free clear view. With the combined revisit frequencies 

of Landsat 7 and Landsat 8 standing at 8 days, this could mean 40 days between clear 

observations of the surface, well below that which is necessary to monitor meaningful 

changes in cropland phenology (Becker-Reshef et al., 2010a, 2010b; Duveiller et al., 

2013; Justice & Becker-Reshef, 2007; Singh Parihar et al., 2012). 
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Figures 3.4a-f: The probability of a cloud free clear view (left; a, c, e) and the average 

percentage clear (right; b, d, f), averaged over different portions of the agricultural growing 

seasons.   

The most expansively cropped latitudes in the Western Hemisphere are 

between 30˚ N and 50˚ N, with a peak around 40˚ N (Figure 3.5), which coincides, 
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fortunately, with low to moderate cloud cover frequency and amount throughout the 

AGS and non-AGS alike (Figure 3.2a). Meanwhile, in the Eastern Hemisphere, which 

has an overall greater amount of land mass and cropped area, agriculture is 

expansively cultivated between 10˚ N and 60˚ N, with a very large peak in cropping 

activity around 55˚ N. This peak, in particular, also coincides with low to moderate 

cloud cover frequency and amount (Figure 3.2b).While there is not as much 

agricultural land in the Southern Hemisphere as there is in the Northern Hemisphere 

due to the lower quantity of both general and arable land mass, several regions here 

are important areas for agricultural production, both in terms of global food supply 

and food security. The general patterns of cloud frequency and cloud amount are 

symmetrical about the Equator, which makes sense in the context of broad brush 

climatological patterns. A large exception to this symmetry is the seasonal divergence 

in cloudiness in the Indian Monsoon areas, where the early and mid-AGS show cloud 

cover probabilities and percentages inverted relative to those seen at the same 

latitudes in the Southern Hemisphere.  
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Figure 3.5: Latitudinal plot of relative cropland area for the Western Hemisphere (black) and 

Eastern Hemisphere (gray), based on Fritz et al. (2013) cropland mask.  

 

3.3.2 Multi-Date Image Compositing throughout the Agricultural Growing Season  

 Due to the rapid rate of change in crop biophysics, clear views over 

contiguous land areas are preferred to multi-date image composites, particularly for 

crop condition monitoring and crop yield estimation applications (Becker-Reshef et 

al., 2010b). However, composites containing data from eight days apart are 
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acceptable for many cropland monitoring applications (Bolton & Friedl, 2013; 

Johnson, 2014; Sakamoto et al., 2013). While 16 day composites are commonly used 

for agricultural applications (Chen, Fedosejevs, Tiscareño-LóPez, & Arnold, 2006; 

Li, Liang, Wang, & Qin, 2007; Sakamoto et al., 2005; Wardlow et al., 2006; Zhang et 

al., 2003), the true temporal resolution when using consecutive 16 day composites has 

been shown to be greater than 16 days (as much as 30 days) roughly half of the time, 

(Guindin-Garcia, Gitelson, Arkebauer, Shanahan, & Weiss, 2012), a temporal 

resolution that is coarser than the rate of change in crop biophysical variables. Due to 

this fact, that many important crop processes happen on the roughly weekly time step, 

and that monitoring applications rely on high temporal resolution (historically at the 

expense of high spatial resolution), cloud cover impacts upon the production of 8 day 

composites are evaluated herein.  

The final percentage of a 0.05˚ cell that will probabilistically be clear (FPC) 

for each 8 day compositing period throughout the AGS based on two modeled revisit 

frequencies (f = 2, 4) has been analyzed. From this, the percentage of these 8 day 

composites, based on morning acquisitions, during the AGS which will yield an FPC 

of at least 70%, 80%, or 90% clear for each 0.05˚ cell have been derived (Figures 

3.6a-f). With the two day revisit frequency, there are four opportunities to acquire 

data within eight days, while with the four day revisit frequency, there are only two 

opportunities to acquire data, meaning that a two day revisit will probabilistically 

meet a given FPC requirement more often throughout the agricultural growing season 

than will the four day revisit. This relationship is particularly pronounced in North 

America where increasing the FPC requirement leads to a decrease the percentage of 
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eight day composites during the AGS for which the FPC requirement is met, as well 

as in northern Europe and Eurasia, where the increased FPC requirement coupled 

with a decrease in revisit capability leads to a complete lapse in ability to meet this 

established FPC requirement. Interestingly, over India, which has such strong 

seasonal cloudiness (i.e. during the Monsoon it is nearly completely cloudy and the 

rest of the year it is very clear, as discussed in Section 2.3.1), changing the frequency 

of acquisition or the FPC requirement has little impact on the percentage of eight day 

composites which meet their FPC requirement within the context of the entire AGS. 

For areas or portions of the AGS which cannot consistently (or at all) have their FPC 

requirement met, alternatives to polar-orbiting optical instruments, such as 

geostationary instruments with sub-daily revisit capability or active microwave SAR 

instruments, ought to be considered.  

As previously noted, the assumption that there is no temporal or spatial 

correlation in cloud cover may lead to an underestimation of the impact of clouds on 

optical acquisitions and therefore an overestimation of the FPC (Roy et al., 2006). To 

accompany this “best case scenario” is the “worst case scenario” for days until cloud 

free clear view (DUC) with f = 2, 4 days based on the P(clear) analysis. Figures 3.7a-

b show the percentage of 8 day periods throughout the AGS which would 

probabilistically have a cloud free clear view within them based on a 2 day and 4 day 

revisit frequency in the morning, respectively. Notably, due to the linear relationship 

between probability of a clear view and revisit frequency (Equation 1), the same 

percentages of 8 day periods yielding a clear view would result for a 16 day period 

with a 4 day revisit (Figure 3.7a) and an 8 day revisit (Figure 3.7b), respectively. 
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Figure 3.6a-f: The percentage of 8 day composites during the AGS yielding an FPC of at 

least 70% (a, b), 80% (c d), or 90% (e, f), based on a modeled revisit of 2 days (left) and 4 

days (right). This analysis draws on APClear.   

 

 
Figure 3.7a-b: The percentage of 8 day composites during the AGS yielding a completely 

clear view based on a modeled revisit of a) 2 days, and b) 4 days. This analysis is based on 

P(clear).  
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It is important to note, however, that it matters during which portion of the 

AGS the 8 day composites would probabilistically not reach their FPC requirement. 

Gaps in coverage during the early and especially the mid-AGS will be more 

negatively impactful than will gaps toward in the end of the AGS, as changes in crop 

condition leading up to and around the peak of season are generally more 

consequential in terms of yield and production than are those changes in condition 

that may occur once the crops are closer to harvest (Becker-Reshef et al., 2010b; 

Boken & Shaykewich, 2002; Johnson, 2014; Meng & Wu, 2008; Sakamoto et al., 

2013). For this reason, Figures 3.8a-f show the areas for which each portion of the 

AGS (early [SOS-PPS], mid [PPS-PPE], and late [PPE-EOS]) has a given FPC (70%, 

80%, or 90%) requirement met for at least 50% of 8 day periods, based on a 2 or 4 

day modeled revisit frequency. All areas and portions of the AGS which meet any of 

the established FPCs are shown in green, yellow, or red, while those areas shown in 

gray are not able to meet a minimum FPC for at least half of that portion of the AGS. 

Areas shown in green return composites with an FPC of at least 90% at least 50% of 

the time, areas in yellow return composites with an FPC of at least 80% at least 50% 

of the time, and areas in red return composites with an FPC of at least 70% at least 

50% of the time. The areas shown in gray, found more commonly during the early to 

mid AGS than during the late AGS, as well as in south/southeast Asia, northern 

Europe, west Africa, and in parts of both North America and South America 

(particularly during the early AGS), are areas/portions of the AGS which are 

frequently and pervasively occluded by cloud cover. A further discussion of whether 
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these areas/times of year may be poorly suited for monitoring by passive optical 

instruments is found in Chapter 5.  

 

Figure 3.8a-f: Based on two modeled revisit frequencies (2 days: a, c, e; and 4 days: b, d, and 

f), the areas for which the FPC is <70% (gray), 70-80% (red), 80-90% (yellow), and 90-100% 

(green) for at least half of 8 day periods during different portions of the AGS (early, a-b; mid, 

c-d; and late, e-f).  
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3.4 Discussion, Future Research, and Caveats  

This analysis has derived the percentage of each 0.05˚ cell that is clear at the 

end of an 8 day compositing period based on two hypothetical revisit frequencies (f = 

2, 4 days), and from that shown the percentage of these 8 day compositing periods 

throughout the AGS for which we meet a given FPC requirement. Also presented is 

the percentage of 8 day periods throughout the AGS which would probabilistically 

have a completely cloud free clear view within them based on a 2 day and 4 day 

revisit frequency.   

The impact of clouds on obtaining (reasonably) clear views of the land surface 

depends on the time of day, the time of year, the spatiotemporal dynamics of clouds, 

and the frequency with which (reasonably) clear views are required (Roy et al., 2006). 

In the context of agricultural monitoring, this research shows that these seasonal 

dynamics are particularly impactful as some of the most important monitoring 

activities rely on imagery during the early and mid-agricultural growing season, 

which are characterized by both frequent cloud cover and pervasive cloud extent. 

Some areas during certain portions of the year are so persistently and pervasively 

occluded by clouds that optical, polar-orbiting imaging is not likely to be a viable 

option for operational monitoring, and microwave imaging must be considered in its 

stead or as a complementary activity through a constellation approach. Geo-stationary 

optical imaging with multiple observations throughout the day could provide an 

increased opportunity for cloud free observation, but for moderate resolution imaging 

would require a significant increase in spatial resolution as compared to current 

geostationary systems (Duveiller et al., 2013). Additionally, this analysis has shown 
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that for most agricultural areas of the world during all portions of the AGS as well as 

the non-AGS, morning acquisitions are more likely to return clear views and are more 

likely to have a lower cloud amount, which is something to consider in the planning 

of future polar-orbiting Earth observing missions. Coastal areas, western and northern 

Europe, and southeastern China are the exceptions to this rule, although the degree to 

which afternoon observations are less impacted by clouds is very small (less than 5% 

clearer/more likely to be clear).  

3.4.1 Future Research 

 The degree to which cloud cover impacts our ability to meet our requirements 

for clear views over cropped areas of the Earth throughout the AGS additionally 

depends upon the revisit frequency of available mission(s). This concern is addressed 

from a hypothetical standpoint by the analysis in which revisit frequencies (f) are 

modeled to show the DUC or the FPC after a given compositing period. Beyond this 

general evaluation, this analysis of modeled revisit frequency (f) could be expanded 

to reflect more precise orbital overpasses of current and near term Earth observing 

missions. In Chapter 4, the cloud cover data analysis is expanded to analyze the 

revisit frequency required (fr) to probabilistically return a clear view within an 

established requirement period dictated by best practices for a suite of specific 

agricultural monitoring applications.  

3.4.2 Caveats 

 Two perspectives on cloud cover have been presented: the probability of a 

cloud free clear view (P(clear)) within a 0.05˚ cell, and the average percentage of 

each 0.05˚ clear (APClear), both analyzed for specific days of the year as well as 
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throughout the AGS. Neither of these perspectives are perfect, with the latter likely 

underestimating the time to reach a given FPC and overestimating the FPC for a 

given compositing period with a certain revisit frequency (f) due to the assumption of 

no spatial and temporal correlation of clouds (Roy et al., 2006). The former is likely 

overestimating the time to a reasonably clear view by accepting only completely clear 

0.05˚ cells. Further, within both analyses, there may be resolution errors as the 

percentage of cloud cover is overestimated where the resolution of the instrument(s) 

in use (here, 1 km MODIS Terra/Aqua) is larger than the most frequent cloud element 

size (Minnis, 1989; Rossow & Schiffer, 1999). Although extensively validated 

(Kotchenova, Vermote, Matarrese, & Klemm Jr, 2006; Kotchenova & Vermote, 

2007; Vermote & Kotchenova, 2008), the MOD09 cloud flags may themselves 

include errors in cloud detection as a result in variable sensitivities to different cloud 

properties. This and the time it takes for a scan to be completed across swath (clouds 

move, as well) may introduce bias into the analysis (Kaufman et al., 2005; Mercury et 

al., 2012; Roy et al., 2006). 

3.5 Conclusions 

The two perspectives on cloud cover as it impacts the ability to obtain clear 

views of the Earth’s cropped surface throughout the AGS described herein 

complement one another by bounding the problem, with the APClear analysis 

providing important information on the utility of multi-date compositing for global 

agricultural monitoring applications. Further, the P(clear) analysis’ “overestimation” 

of cloud cover’s effects on obtaining usable data of the Earth’s surface is valuable in 

that it provides input into acquisition planning that is not at risk of being overly 



 

 72 

 

optimistic (Gunderson & Chodas, 2011; Mercury et al., 2012). This research provides 

important insight into the seasonal, geographical, and diurnal variations in cloud 

cover over global agricultural areas and is an important contribution in the 

articulation of Earth observations requirements toward operational global agricultural 

monitoring.  
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Chapter 4: Earth Observations for Global Agricultural 

Monitoring: Requirements for Visible, Reflected, and Thermal 

Infrared Data  
 

4.1 Introduction 

The coordination of Earth observations (EO) data necessitates first the 

articulation of spatially explicit EO requirements for monitoring, namely what 

(spectral range), where, when, how frequently, and at what spatial resolution these 

data are needed. In 2007, there was an attempt by those in the Group on Earth 

Observations Agricultural Monitoring Community of Practice (GEO Ag CoP) to 

describe the data necessary for operational agricultural monitoring (Figure 1.1; 

Justice & Becker-Reshef, 2007), and a related effort was made to define the 

requirements specifically for Europe (Duveiller et al., 2013). While these efforts 

provided a sketch of the multiple spatial and temporal scales of required data inputs 

for a variety of monitoring applications and illustrated the inherent complexity of 

such an undertaking, they needed refinement and a higher degree of specificity in 

order to be translatable into data acquisition requests. In 2012, members of the newly 

formed Committee on Earth Observations Satellites (CEOS) Ad Hoc Team for 

GEOGLAM held a focused meeting with the goal of articulating the spatial (Table 

4.1, Column B), spectral (Table 4.1, Column C), and cloud free temporal resolution 

(Table 4.1, Column D) requirements for meeting the data needs for a variety of 

agricultural monitoring applications or “target products” (Table 4.1, Columns G-M)3. 

                                                 
3 The development of this requirements table was a collaborative group effort, pulling on the expertise 

of a number of agricultural remote sensing scientists around the world, previous efforts to identify 

necessary EO (e.g. Figure 1.1), as well as relevant literature. I was present for and actively engaged in 



 

 74 

 

These agricultural monitoring applications include mapping cropped area (crop mask) 

and crop type area, identifying the crop calendar, monitoring crop condition, 

forecasting crop yield, retrieving crop biophysical variables (such as leaf area index 

(LAI), green area index (GAI), and fraction of absorbed photosynthetically active 

radiation (fAPAR)), deriving environmental variables (such as evapotranspiration), 

and identifying agricultural practices and cropping systems (including burning, 

tillage, transplantation, and cropping intensity). In addition to the framework this 

provided, the table additionally referenced where the imagery were required (Table 

4.1, Columns E & F) – extent of coverage varies as does the field sizes for which a 

given spatial/spectral resolution combination are required – as well as when the 

imagery were required (Table 4.1, Column D), with most of the requirements being 

for imagery during the agricultural growing season (AGS) but a few requesting data 

to be acquired during the non-AGS.   

 

 

 

 

 

 

 

 

 

                                                                                                                                           
the development of this requirements table, and since its initial drafting in July 2012, I have been one 

of the primary people working to refine and update it.  
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Table 4.1: The requirements table developed by the CEOS Ad Hoc Team for 

GEOGLAM 

A B C D E F G H I J K L M

Req#
Crop 

Mask

Crop 

Type 

Area and 

Growing 

Calendar

Crop 

Condition 

Indicators

Crop 

Yield

Crop 

Biophysical 

Variables

Environ. 

Variables

Ag 

Practices / 

Cropping 

Systems

1 500 - 2000m
optical + 

TIR
Daily Wall-to-Wall All X L

2 100-500m
optical + 

TIR
2 to 5 per week

Cropland 

extent
All X X X L L L

3 5-50 km microwave Daily
Cropland 

extent
All X

4 10-70m
optical + 

TIR

Monthly (min 3 

in season + 2 

out of season); 

Required every 

1-3 years

Cropland 

extent (if #5 

= sample, 

else skip)

All X L/M X

5 10-70m
optical + 

TIR

Weekly (8 

days; min. 1 

per 16 days)

Sample 

(pref. 

Cropland 

extent)

All X X X X X X X

6 10-100m SAR

Weekly (8 

days; min. 1 

per 2 weeks)

Cropland 

extent of 

persistantly 

cloudy and 

rice areas

All X X X X X X X

7 5-10m optical 
Monthly (min. 3 

in season)

Cropland 

extent
M/S M/S M/S

8 5-10m optical

Weekly ( 8 

days; min. 5 

per season)

Sample All M/S X X X X

9 5-10m SAR Monthly

Cropland 

extent of 

persistantly 

cloudy and 

rice areas

M/S M/S M/S M/S

10 < 5m optical

3 per year (2 in 

season + 1 out 

of season); 

Required every 

3 years

Cropland 

extent of 

small fields

S S S

11 < 5m VISNIR
1 to 2 per 

month

Refined 

Sample 

(Demo)

All X X X

 Very Fine Resolution Sampling (<5m)

Spatial 

Resolution

Spectral 

Range

Effective 

observ. 

frequency 

(cloud free)

Extent
Field 

Size

Target Products

 Coarse Resolution Sampling (>100m)

 Moderate Resolution Sampling (10 to 100m)

 Fine Resolution Sampling (5 to 10m)

 

Due to the rapid rate of change in crop phenology and progress – beneath the 

weekly time step (Duveiller et al., 2013; USDA-NASS, 2013) – cloud free imagery 

are generally required with greater frequency for agricultural monitoring than they are 

for applications which monitor more static phenomena or processes. For crop yield 

and crop condition, for example, clear views are needed weekly or  at least biweekly, 

although even more frequent data are valuable (Becker-Reshef et al., 2010b; Boken & 

Shaykewich, 2002; Johnson, 2014; Sakamoto et al., 2013). To date, global scale 
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cropland monitoring has been predominately undertaken with coarse spatial 

resolution data, with MODIS at 250-500m with broad spectral coverage providing the 

primary data source over the past decade (Biradar & Xiao, 2011; Duveiller et al., 

2011; Galford et al., 2008; Guindin-Garcia et al., 2012; Justice et al., 1998; Pan et al., 

2012; Pittman et al., 2010; Sakamoto et al., 2005, 2010; Wardlow et al., 2007; 

Wardlow & Egbert, 2008; Xiao et al., 2005). An issue with coarse resolution analyses 

of cropland dynamics is subpixel heterogeneity (Duveiller & Defourny, 2010; 

Ozdogan, 2010; Pax-Lenney & Woodcock, 1997) with many small fields or highly 

heterogeneous landscapes having variability beneath the spatial resolution of the 

sensing instrument in use. While moderate spatial resolution has been used 

extensively in national scale analyses of land cover, including cropped area and crop 

type mapping efforts (Doraiswamy et al., 2004; Homer et al., 2007; Kauth & Thomas, 

1976; Liu et al., 2005; Lobell & Asner, 2004; MacDonald et al., 1975; MacDonald & 

Hall, 1980; Odenweller & Johnson, 1984; Vogelmann et al., 2001; Wulder et al., 

2008; Chang, Hansen, Pittman, Carroll, & DiMiceli, 2007; Mueller & Seffrin, 2006), 

their limited revisit frequency and/or limitations in on-board storage capacity have 

meant that these data have been too sparsely collected in time and often also in extent 

in order to be used for crop condition or crop yield monitoring (Johnson, 2014). 

Further, the persistence of cloud cover in certain agricultural regions and during 

certain portions of the AGS exacerbates the sparseness of usable data. The 

requirements established by the CEOS Ad Hoc Team for GEOGLAM builds upon the 

experiences of agricultural monitoring experts from around the world, who stand in 

agreement that more frequent moderate spatial resolution imagery are required for 
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operational cropland monitoring (beyond cropped area and crop type) than are 

presently freely available to and accessible by the public, particularly if more broad 

scale monitoring is to be undertaken.  

 With these requirements conceptualized, there remained the task of placing 

them in the geographical context with respect to target cropland locations, growing 

season calendar, and cloud cover considerations, showing precisely how frequently 

and to what spatial extent data are required throughout the calendar year. The focus 

herein will be on Requirement #5 (10-70m, O+TIR, 8-16 days), detailing the average 

revisit frequency required (fr) to meet each associated cloud free clear view 

requirement during each month of the calendar year (Table 4.1, Column D). It should 

be noted that while the requirement is explicitly for “cloud free” data, in reality there 

are many cases where data which are reasonably cloud free are sufficient, and the 

revisit frequency required to meet these looser criteria (herein, 70% of a 0.05˚ cell 

being cloud free is considered reasonable) will be shown as well. While requirements 

have been established for O+TIR coarse resolution instruments as well (Table 4.1, 

Req. 1-2), these requirements are met in nearly every area through systematic 

acquisitions by systems such as MODIS, SPOT-5, VIIRS, and AVHRR, and therefore 

nothing more than the maintenance of quality and quantity of such a set of 

observations is required at this time.  

4.2 Datasets & Methods  

4.2.1 Input Datasets: Where to Image? 

 The first step in defining EO requirements for global agricultural monitoring 

is identifying the areas which require monitoring, namely the locations of global 
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croplands. To this end, Fritz et al. (2013) have developed a “best-available” cropland 

mask which provides the probability that any 0.0083˚ (~1 km at the Equator) cell 

contains cropland based on a suite of existing land cover and cropland masks (Figure 

4.1). This harmonizing and synthesizing effort was undertaken in the context of 

GEOGLAM, and as such has been chosen as the cropland mask for this effort. Due to 

the resolution of other input datasets (namely, cloud cover, Section 4.2.3), and 

balancing data volume considerations with the need for a resolution sufficiently fine 

to be scalable to VFTM spatial resolution missions’ swath widths (approximately 11 

km [Ikonos] to 740 km [AWIFS]), this cropland mask has been degraded to 0.05˚ 

(~5.6 km at the Equator). While different cropland probabilities are ideally suited for 

different areas of the globe, a threshold has been set at 20% as it aligns well with 

understood cropland distributions.  

 

Figure 4.1: The “best-available” cropland mask used in this analysis, derived from Fritz et al. 

(2013). A threshold of ≥20% probability of cloud cover has been selected to produce the 

mask. 
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 The requirements are also broken down by the field sizes for which they are 

prescribed. Generally speaking, larger fields require coarser spatial resolution data, 

medium fields require moderate spatial resolution data, and smaller fields require 

finer spatial resolution data. These relationships are further contingent upon shape, 

arrangement, fragmentation, and crop type heterogeneity of the fields as well as the 

imaging bandwidths (Duveiller, Defourny, & Gérard, 2008; Duveiller & Defourny, 

2010), and future articulations of the requirements can be refined by the inclusion of 

this additional information. However, at present such datasets do not exist at the 

global level, and the broad relationship between field size and necessary spatial 

resolution is sufficient to allocate fine, moderate, and coarse spatial resolution data 

acquisitions. A research group at the International Institute for Applied Systems 

Analysis (S. Fritz et al., unpublished raw data4)  have deployed an online 

collaborative tool called “GEO-WIKI” (Fritz et al., 2009, 2012) to gather “crowd 

sourced” information on field size. Volunteers from around the world visually 

interpret high resolution imagery on GEO-WIKI’s Google Earth platform and use 

visual interpretation to estimate field size. As of 2013, over 50,000 individual fields 

had been identified, and this point information has been extrapolated to neighboring 

locations to create a global indicator layer for field size (Figure 4.2). The 

requirements table identifies fields as “small,” “medium,” or “large,” corresponding 

with fields smaller than 1.5 ha, between 1.5 and 15 ha, and larger than 15 ha, 

respectively. This field size classification system was designed to align with very 

fine/fine (<5-10 m), moderate (10-70 m), and coarse resolution (100-1100 m) sensor 

                                                 
4 Fritz, S. (2013). [Field Size Data Distribution from http://agriculture.geo-wiki.org]. Unpublished raw 

data.   

http://agriculture.geo-wiki.org/
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spatial resolutions, respectively, and the ability to have at least the possibility of a few 

“pure” pixels of each class of sensors’ systems fall within each field (Duveiller, 

Baret, & Defourny, 2012; Duveiller et al., 2013) .   

 

Figure 4.2: A map of field size distribution at 0.05˚, interpolated from more than 50,000 

crowd-sourced points collected via the GEO-WIKI platform (S. Fritz et al., unpublished raw 

data). Large fields are >15 ha, medium fields are 1.5-15 ha, and small fields are <1.5 ha. This 

is a beta version generated in early 2013, with points constantly having been collected by the 

tool since then.  

 

4.2.2 Input Datasets: When to Image? 

 Many agricultural monitoring applications including crop yield, crop 

condition, and crop type mapping rely on data acquired only during the period when 

crops are actually growing. By contrast, cropland area mapping efforts (“crop mask”), 

particularly in light of dynamics in year-to-year cropping practices and associated 

changes in land use, require data throughout the calendar year although the frequency 

with which imagery are required is reduced during the non-AGS as the goal is to 

detect long-term rather than short-term (as in, phenological) changes. This seasonal 

breakdown of the agricultural growing season is provided by the agricultural growing 
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season calendars detailed in Chapter 2, with the AGS spanning the period between the 

median start of season (SOS) and the median end of season (EOS) as observed over 

2001-2010, and the non-AGS spanning the period between the median EOS and the 

median SOS.  

4.2.3 Input Datasets: How frequently to Image for (Reasonably) Clear Views 

 As stated in the requirements table (Table 4.1, Column D), the temporal 

resolution requirement is for “cloud free” clear views of the Earth’s surface. Whether 

the requirement is for a completely clear view of every pixel within a scene, or a 

mostly clear scene, is contingent upon the application and the expert opinion of the 

user, although increasingly scientists are moving toward per pixel analyses as 

opposed to per scene analyses (Hansen & Loveland, 2012; Hansen et al., 2013; Roy 

et al., 2010). For this reason, cloud cover has been analyzed from two perspectives – 

the probability of a cloud free clear view over a 0.05˚ cell (P(clear)) and the average 

percentage of a 0.05˚ cell that is clear (APClear), both based on MODIS surface 

reflectance cloud flags (Bréon & Vermote, 2012; Vermote et al., 2002). As detailed in 

Chapter 3, cloud cover varies seasonally, geographically, and diurnally, and as such 

the revisit frequency required (fr ) in order to satisfy a given clear view requirement 

(referred to as the “Effective Temporal Resolution” in Table 4.1) within a certain 

period varies throughout the year, with location, and also with the acceptable cloud 

threshold. As the great majority of VFTM EO satellites have morning overpasses, the 

revisit frequency required herein will be presented assuming a morning (10:30 am 

local solar time) overpass. 
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 The revisit frequency required to yield a cloud free clear view within a 0.05˚ 

cell within a certain number of days (CVR) is given by the following equation: 

3. fr = P(clear) * CVR 

This, by accepting only clear views provides the “worst case scenario” for 

required revisit frequency. In contrast, some scientists/applications may accept 0.05˚ 

cells which are partially clear. The revisit frequency required to yield a cell with a 

given FPC after a certain number of days is given by the following equation:  

4. fr  = c ÷ [ln(1 – FPC)/ln(P(cloudportion)] 

Where c is the number of days within which reasonably clear data are required 

(or, the length of compositing period) and P(cloudportion) is the probability that any 

given portion of a cell is cloudy during a given observation. This probability is the 

same as APCloud – the inverse of APClear – and is based on the assumption that the 

percentage of any cell that is cloudy is the same as the probability that any given 

portion of a cell is cloudy, following (Roy et al., 2006). As described in Chapter 3, it 

may underestimate the impact of clouds, and as such, it provides the “best case 

scenario” for revisit frequency required to meet a reasonable FPC requirement with a 

certain period (c).   

4.2.4 Generation of Requirements Maps 

 For the establishment of a baseline of requirements and the subsequent 

analysis of our capacity to meet them with current and near-term remote sensing 

instruments (Chapter 5), it is necessary to analyze the year in segments mindful of 

agricultural growing seasons and cloud cover dynamics. For simplicity of analysis, 

the year has been divided into its calendar months, and acquisitions are considered 
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necessary during any month for which even one day is actively cropped (based on 

median SOS and median EOS). This may lead to overestimation of the period for 

which imagery are required, but variability in year-to-year cropping practices and 

climatological factors may justify the expanded period of acquisition. Additionally, 

APClear (in Equation 4, P(cloudportion)) and P(clear), while natively at daily temporal 

resolution, have been averaged over each calendar month to show the usual cloud 

condition (in terms of presence and amount) for that period.  

 With all of the components of the EO requirements established, what remains 

is an assemblage of these individual layers to provide spatially explicit monthly 

estimates of revisit frequency required to yield a completely clear view or one with a 

FPC of at least 70% within a certain time period, only for the extent of crops which 

are actively growing (or, in the case of those requirements for imagery during the 

non-AGS, for all croplands which are out of season) for that month. This present 

analysis focuses on moderate spatial resolution requirements, as coarse resolution 

missions already have systematic daily acquisitions, and the requirements for very 

fine and fine resolution data are for small samples or subsets of the cropland extent 

and can be managed by the capabilities of pointing satellites in that resolution class. 

This focus on moderate resolution will be further discussed in Chapter 5.  

4.3 Results 

 For each individual requirement in Table 4.1, Column D, there is at least a 

minimum and a maximum days until clear view requirement during the AGS, and in 

Requirements #4 and #10 a tertiary requirement for imagery outside of the AGS. The 
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focus herein will be on Requirement #5, both its preferred revisit frequency (8 days5) 

as well as its minimum requirement (16 days) for all field sizes.  

The resultant revisit frequency required (fr) is often a non-integer. A non-

integer revisit is an impossibility with polar-orbiting, sun-synchronous imaging 

systems, and when translating into data requests will have to rounded or otherwise 

altered. However, data coordination at this level is beyond the scope of this research, 

and as such herein the non-integer computational output has been maintained.  

4.3.1 Requirement #5: 8 Day Reasonably Clear View Requirement 

 The requirements table establishes that moderate resolution data spanning the 

visible, reflected infrared, and thermal infrared portions of the electromagnetic 

spectrum are required for croplands of all sizes at least every 16 days throughout the 

AGS, however the precision and accuracy of satellite-based estimates, particularly 

regarding yield and condition, would be improved by having clear views every 8 days 

(Figures 4.3-4.14a-b).  The data are preferred for the full cropland extent, but in the 

early phases of GEOGLAM’s implementation, data acquired on a sampled basis will 

still yield important results. The location and extent of the statistical sampling frame 

will vary over time and with target crop, and thus the full extent of actively growing 

large, medium, and small fields have been analyzed, and can be later refined 

geographically to represent sample sites. 

 What is immediately noticeable, as with the analyses in Chapter 3, is the 

impact of the Indian summer monsoon on revisit frequency required. In India in 

                                                 
5 Note that the requirements table says “Weekly” but puts “8 days” beside it in parenthesis. This is in 

acknowledgement that the two Landsat satellites together typically have a combined revisit of ~8 days 

(see Chapter 5), and that the different between 7 and 8 days is not significant enough to warrant the 

exclusion of these satellites from consideration for fulfillment of this requirement.  
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particular, the revisit frequency requirement for much of the country is up around 5-8 

days in both scenarios (FPC of at least 70%, and for a completely clear view) during 

the months outside of the monsoon for which crops are in season (October-March), 

but during the monsoon, it is almost universally less than 1 day. Only southern Brazil 

comes close to having a similar magnitude of seasonal divergence in revisit frequency 

required.  

 

 



 

 86 

 

 

Figures 4.3a-b: The revisit frequency required to probabilistically yield, a) Top, a view at 

least 70%; or b) Bottom, a completely clear view (CVR), every 8 days during the month of 

January. Areas containing cropland out of season are shown in gray. Resolution is 0.05˚.    
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Figures 4.4a-b: The revisit frequency required to probabilistically yield, a) Top, a view at 

least 70%; or b) Bottom, a completely clear view (CVR), every 8 days during the month of 

February. Areas containing cropland out of season are shown in gray. Resolution is 0.05˚.    
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Figures 4.5a-b: The revisit frequency required to probabilistically yield, a) Top, a view at 

least 70%; or b) Bottom, a completely clear view (CVR), every 8 days during the month of 

March. Areas containing cropland out of season are shown in gray. Resolution is 0.05˚.    
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Figures 4.6a-b: The revisit frequency required to probabilistically yield, a) Top, a view at 

least 70%; or b) Bottom, a completely clear view (CVR), every 8 days during the month of 

April. Areas containing cropland out of season are shown in gray. Resolution is 0.05˚.    
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Figures 4.7a-b: The revisit frequency required to probabilistically yield, a) Top, a view at 

least 70%; or b) Bottom, a completely clear view (CVR), every 8 days during the month of 

May. Areas containing cropland out of season are shown in gray. Resolution is 0.05˚.    
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Figures 4.8a-b: The revisit frequency required to probabilistically yield, a) Top, a view at 

least 70%; or b) Bottom, a completely clear view (CVR), every 8 days during the month of 

June. Areas containing cropland out of season are shown in gray. Resolution is 0.05˚.    
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Figures 4.9a-b: The revisit frequency required to probabilistically yield, a) Top, a view at 

least 70%; or b) Bottom, a completely clear view (CVR), every 8 days during the month of 

July. Areas containing cropland out of season are shown in gray. Resolution is 0.05˚.    
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Figures 4.10a-b: The revisit frequency required to probabilistically yield, a) Top, a view at 

least 70%; or b) Bottom, a completely clear view (CVR), every 8 days during the month of 

August. Areas containing cropland out of season are shown in gray. Resolution is 0.05˚.    
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Figures 4.11a-b: The revisit frequency required to probabilistically yield, a) Top, a view at 

least 70%; or b) Bottom, a completely clear view (CVR), every 8 days during the month of 

September Areas containing cropland out of season are shown in gray. Resolution is 0.05˚.    

 



 

 95 

 

 

Figures 4.12a-b: The revisit frequency required to probabilistically yield, a) Top, a view at 

least 70%; or b) Bottom, a completely clear view (CVR), every 8 days during the month of 

October. Areas containing cropland out of season are shown in gray. Resolution is 0.05˚.    
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Figures 4.13a-b: The revisit frequency required to probabilistically yield, a) Top, a view at 

least 70%; or b) Bottom, a completely clear view (CVR), every 8 days during the month of 

November. Areas containing cropland out of season are shown in gray. Resolution is 0.05˚.    
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Figures 4.14a-b: The revisit frequency required to probabilistically yield, a) Top, a view at 

least 70%; or b) Bottom, a completely clear view (CVR), every 8 days during the month of 

December. Areas containing cropland out of season are shown in gray. Resolution is 0.05˚.   

 

The revisit frequency required ranges from <1 day to exactly 8 days when the 

requirement is for a scene that has an FPC of at least 70%. Globally, the general 

pattern reveals that for November through February, a single revisit (RFR = 8 days) is 
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all that is required for 22-31% of actively cropped cells (Figure 4.15). This is owing 

to the Indian summer monsoon areas in these months are very clear. For April-June, 

3-5 days is the most common revisit frequency required (20-31% of cells), while in 

March and July-October, required revisit frequency ranges broadly from 2-6 days. 

There are some cells for which a revisit rate of less than 1 day is required, but only 

during the months of July and August does this account for more than 4% of cells 

(8% and 9%, respectively). Globally, 44-55% of cells have a required revisit 

frequency of less than 4 days, while 7-23% of cells have a required revisit frequency 

of less than 2 days. 

 

Figure 4.15: Histogram showing the revisit frequency required to yield a view at least 70% 

clear within 8 days over actively cropped cells during each month of the year.  

 

 This story is very different for the requirement for completely clear views, 

where for every month of the year, the most common revisit frequencies required fall 

in the 0-3 day range. In fact, 74-92% of cells have a required revisit frequency of less 
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than 4 days, while 38-60% of cells have a required revisit frequency of less than 2 

days. As is visible in the map figures (4.3-4.14b), there is practically nowhere for 

which the revisit frequency is equivalent to the requirement (Figure 4.16), which is 

not surprising as the analysis would require an area to have 0% cloud cover 

probability during that month in order to meet a completely clear view. Again, the 

slightly increased average revisit rate pattern in November-February mentioned 

previously is present, although it is much lower in magnitude and has shifted to the 5-

7 day range. In sum, rapid revisit rates would be required to meet an 8 day clear view 

requirement. 

 

Figure 4.16: Histogram showing the revisit frequency required to yield a clear view every 8 

days over actively cropped cells during each month of the year.  
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4.3.2 Requirement #5: 16 Day Reasonably Clear View Requirement  

 Recognizing that obtaining the revisit frequency required to meet the 8 day 

moderate resolution data requirement will be challenging with the current state of 

moderate resolution remote sensing (see Chapter 5 for full discussion), an analysis of 

the revisit frequency required to yield reasonably clear views of all croplands at least 

every 16 days throughout the AGS has also been performed. Similar patterns are 

followed in the revisit frequency required for an FPC of at least 70% for 16 days 

(Figure 4.17) as were exhibited and described for the 8 day requirement (Figure 4.15), 

with the November-February time frame again exhibiting a relatively infrequent 

revisit (16 days) required in 22-31% of cases yet again, and with the most common 

required revisit frequencies for April to June falling in the 6-9 day range. No month 

has more than 1% of cell requiring a revisit of less than 1 day, although >20% of cells 

during July-August and November-January require revisit rates more frequent than 4 

days. Again, between 44-55% of cells require a revisit of less than 8 days. 
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Figure 4.17: Histogram showing the revisit frequency required to yield a view at least 70% 

clear within 16 days over actively cropped cells during each month of the year.  

 

 Because of the simple linear relationship in Equation 3, the revisit frequency 

for a completely clear view within 16 days is simply half as frequent as for 8 days. In 

this case, 67-92% of actively cropped cells require a revisit frequency of less than 8 

days (many of them in 4-5 day range), with 38-60% of cells requiring a revisit within 

4 days (Figure 4.18).  
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Figure 4.18: Histogram showing the revisit frequency required to yield a clear view within 

16 days over actively cropped cells during each month of the year.  

 

4.4 Discussion, Future Research, and Conclusions 

 The research has shown the revisit frequency required to probabilistically 

yield a clear view (or partially clear view – FPC ≥ 70%) within 8 or 16 days within 

the context of moderate spatial resolution EO requirements established by the GEO 

Agricultural Monitoring Community of Practice and the CEOS Ad Hoc Team for 

GEOGLAM (Table 4.1). These revisit frequency requirements are provided on a 

monthly basis for only those areas which are actively cropped (or not actively 

cropped in the case of those requirements for data outside of the AGS), and where 

appropriate, for areas which contain fields of the stated target size.  The revisit 

frequency required varies temporally and geographically, with many areas requiring 

revisits more frequent than every 2 or 4 days in order to probabilistically meet a CVR 

or FPC requirement every 8 or 16 days, respectively.  
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 As previously mentioned, the requirement evaluated (#5) is preferred for the 

full cropland extent, but may be taken on a sampled basis. It would perhaps be 

beneficial to design a sampling frame with these cloud constraints in mind. The 

implications of these required revisit frequencies will be discussed in depth in 

Chapter 5, wherein approaches to meeting these requirements will be presented and 

evaluated. 

For over 40 years, moderate spatial resolution remote sensing instruments 

have passed over the earth at least every 16-18 days, with much of the Landsat 

program’s history having 8-9 day overpass frequency, although data for most areas 

outside of the United States have not been systematically acquired at this rate (Ju & 

Roy, 2008; Wulder et al., 2008; Wulder, White, Masek, Dwyer, & Roy, 2011). In this 

context, it may seem surprising that the revisit frequency that is required to actually 

meet an 8 or 16 day requirement for (relatively or completely) cloud free data is in 

some areas less than 2 or 4 days, respectively. However, in the context of the global 

agricultural monitoring activities, such as crop yield forecasting, which have relied 

upon daily data since the launch of MODIS Terra in 1999, this revelation is not 

unexpected. In order to yield moderate resolution results at the regional to global 

scale, it is necessary to rethink the way in which we have historically approached 

moderate resolution systems’ design and/or to consider a multi-mission constellation 

approach to monitoring (Goward et al., 2011; Hansen & Loveland, 2012).   

The requirements articulated herein provide practical inputs into a data 

acquisition strategy for global agricultural monitoring. However, what remains is 

twofold. First, an investigation into our current, near-term, and mid-term EO systems 
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revisit capabilities would provide valuable insight into our missions’ capacity to meet 

such requirements (Chapter 5). That many of the required revisit frequencies 

articulated herein are well beyond the capabilities of any single existing moderate 

resolution program or mission demonstrates that with current proven capabilities, a 

multi-mission, multi-space agency constellation approach is necessary for operational 

monitoring in the moderate resolution domain, although precisely how these 

constellations might operate requires further analysis (Chapter 5). Secondly, for the 

synthetic aperture radar (SAR) requirements detailed in Table 4.1, Req. 6 and 9, the 

“where” requirement identifies “persistently cloudy” areas. It is necessary to delineate 

precisely which regions are “persistently cloudy” and therefore require microwave 

SAR acquisitions, a topic which will also be addressed in Chapter 5.  
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Chapter 5: Meeting Earth Observations Requirements for 

Global Agricultural Monitoring: An Evaluation of the Revisit 

Capabilities of Current and Planned Moderate Resolution 

Optical & Thermal Infrared Earth Observing Missions 
 

5.1 Introduction 

 The past decade for remote sensing has been described as the “MODIS 

Revolution,” with nearly twice daily consistently high quality global observations 

available in near real time (NRT) being applied by researchers around the world to 

generate global scale science results (Justice et al., 1998; Justice, Vermote, Privette, 

& Sei, 2011). With the Landsat archive opening and computational resources 

growing, global scale analyses are poised to move into the moderate resolution 

domain (Goward et al., 2009, 2011, 2012; Wulder, Masek, Cohen, Loveland, & 

Woodcock, 2012; Roy et al., 2014), with regional to global datasets at 30m resolution 

already demonstrated (Gong et al., 2013; Hansen et al., 2013; Johnson, 2010; Roy et 

al., 2010; Yu et al., 2013). In the context of crop condition monitoring and yield 

forecasting, moderate resolution data have not yet achieved broad scale results across 

the globe, primarily due to the lack of consistent cloud free acquisitions with 

sufficiently high temporal resolution, although as demonstrated by the GEOGLAM 

requirements table (Table 4.1, especially Requirements #4-6), this is a priority growth 

area for analyses spanning the extent of cropland for fields of all sizes. Requirements 

for coarse resolution data are presently being met by the systematic acquisitions of 

systems like MODIS and its follow-on, the Visible Infrared Imaging Radiometer 

(VIIRS) Suite (Justice et al., 2013), as well as Proba-V and Sentinel-3. Yet, in terms 
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of moderate spatial resolution optical missions, no single observatory at present is 

capable of acquiring data with sufficient frequency to meet an eight day cloud free 

requirement over all croplands, much less one which makes data freely and openly 

available to science users. Still, the Landsat observatory has been used in many 

regional studies particularly for land cover and land use analyses (Homer et al., 2007; 

Johnson, 2010; Skole & Tucker, 1993; Vogelmann et al., 2001; Wulder et al., 2008). 

In the private sector, there are emerging options for both fine and moderate spatial 

resolution monitoring, such as Planet Labs and Disaster Modeling Constellation 

(Underwood et al., 2005). However, they are (or will be) fee-based, and are not yet 

established as a viable data source.  For this reason, the focus herein will be on 

analyzing the capability of current and near-term moderate resolution civil space 

agency flown instruments to meet EO requirements for global agricultural 

monitoring.  

Having articulated the temporal revisit requirements for moderate resolution 

O+TIR monitoring in Chapter 4, there remains the assessment of the capacity of our 

current and planned moderate resolution missions to meet the revisit requirements. 

This will be achieved by identifying candidate missions, modeling their coincident 

orbital overpasses, and comparing these multi-mission/multi-space agency 

constellations’ combined revisit frequencies to show how and where we can (and 

cannot) meet our O+TIR EO requirements for monitoring. In those areas where we 

cannot meet our O+TIR requirements, alternative data types (namely, microwave 

synthetic aperture RADAR (SAR) data) should be considered instead. Requirement 

#6 found in Table 4.1 calls for SAR data on a weekly basis in areas which are 
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“persistently cloudy,” in addition to rice cultivating areas. There is growing research 

in SAR algorithm development for rice and non-rice areas alike (Hong, Zhang, Zhou, 

& Brisco, 2014; Kussul, Skakun, Shelestov, Kravchenko, & Kussul, 2012; Leichtle, 

Schmitt, Roth, & Schardt, 2012; McNairn, Champagne, Shang, Holmstrom, & 

Reichert, 2009a; McNairn, Shang, Champagne, & Jiao, 2009b; McNairn, Shang, Jiao, 

& Champagne, 2009c; Torbick et al., 2011). The term “persistently cloudy” is 

qualitative but carries the implication that areas which fit this description are those for 

which current/planned O+TIR instrumentation are insufficient. Therefore, 

“persistently cloudy” will be defined herein as those areas and times of year which 

require a more frequent revisit in order to yield a (reasonably) clear view than our 

current/planned moderate resolution O+TIR missions are capable of delivering.  

 5.1.1 Identifying Candidate Missions 

There are a number of moderate resolution optical plus thermal infrared 

(O+TIR) missions that are currently operating as well as several additional planned to 

launch in the next few years. At this time (early 2014), the only moderate resolution 

O+TIR missions with free and open data policies are Landsat 7 Enhanced Thematic 

Mapper (L7 ETM+) and the Landsat 8 Operational Land Imager and Thermal 

Infrared Sensor (L8 OLI and TIRS), which together have a combined revisit 

capability of 8 days (SLC-Off problems notwithstanding). However, due to onboard 

storage and downlinking limitations these missions do not acquire every land scene at 

every opportunity, although recent alterations to the missions’ acquisition plans have 

greatly increased daily acquisitions to 550-600 daylit scenes per day for L8 and 400-

450 for L7 (Eugene Fosnight, USGS, personal communication, 5 February 2014) 



 

 108 

 

from the originally partitioned 250 best quality daylit, land-containing scenes, coming 

close to the acquiring all possible 540-630 daylit land-containing scenes within view 

of each sensor each day (Arvidson et al., 1999, 2001, 2006). The Indian Space 

Research Organization’s (ISRO) Resourcesat-2 Advanced Wide Field Sensor (R2 

AWiFS) is also currently operating, with a spatial resolution as fine as 55m and a 

repeat cycle of 24 days, although with its sensor engineering characteristics this 

permits a revisit capability on the order of 5 days.  At present, ISRO does not provide 

this data freely to all, although there has been some suggestion that they may supply 

some free data for GEOGLAM activities in response to encouragement from CEOS 

(Brian Killough, personal communication, 10 February 2014). Agencies within the 

United States – namely, the Department of Agriculture – have purchased these data 

and found them to be valuable for cropland monitoring applications and compatible if 

not complementary to Landsat data, although some uncertainty about long term 

radiometric calibration stability remains (Boryan & Craig, 2005; Goward et al., 2012; 

Johnson, 2010). Meanwhile, planned for the near future is the European Space 

Agency’s Sentinel-2 Earth observatory, comprised of two separate instruments (S2A, 

S2B), the first of which is set for launch in 2015. The two satellites together are 

purported to systematically acquire all data over land in the low-latitudes every 5 

days and in the mid-latitudes on the order of 2-3 days (Drusch et al., 2012).  The 

Sentinel-2 program also plans to employ a free and open data policy, and efforts are 

underway to cross-calibrate the instruments and ensure interoperability with Landsat 

(Jeff Masek, personal communication, October 2012). It should be noted that the 

Sentinel-2 missions do not include thermal bands. Thermal data in the agricultural 
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monitoring context are used primarily for evapotranspiration and water status 

(Anderson et al., 2011; Hain, Crow, Mecikalski, Anderson, & Holmes, 2011), and 

land surface temperature measurements (Tomlinson, Chapman, Thornes, & Baker, 

2011; Weng, Fu, & Gao, 2014), as well as for atmospheric adjustment (Frey et al., 

2008; Justice et al., 1998; Roy et al., 2014), although there is recent research 

suggesting their utility in yield forecasting (Johnson, 2014) as well as for crop type 

classification and residue mapping (Sullivan, Lee, Beasley, Brown, & Williams, 

2008). Nevertheless, data from the visible, near-IR and shortwave IR are still the most 

broadly applied resource in the agricultural monitoring context. Therefore, due to the 

Sentinel-2 missions’ high spatial and temporal resolution, their free and open data 

policy, their planned interoperability with the Landsat missions, and their otherwise 

well-placed spectral bands, they are included herein for analysis.  

While there are other moderate resolution Earth observing missions in orbit or 

planned for launch within the next five years, these three observatories/five 

instruments have (or will have) the highest quality data, are (or are in the process of 

negotiating to be) available to the agricultural monitoring community for low to no 

cost, are being studied for interoperability, and are considered to be the most 

attainable and highest quality by the CEOS Ad Hoc Team for GEOGLAM. They 

therefore comprise the candidate missions analyzed for their combined revisit 

capabilities herein.  
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5.2 Methods 

5.2.1 Overpass Analysis 

 The frequency with which a given area falls within the view of a satellite 

sensor is contingent upon the satellite’s orbit, the field of view of the sensor, and the 

latitude of the target area. With polar orbiters, high latitudes are within view more 

frequently than Equatorial zones, and so the majority of the variability in combined 

revisit capabilities occurs on a latitudinal gradient. Different missions have different 

repeat cycles, which refers to the time it takes the satellite to repeat a full orbital 

cycle, to be distinguished from revisit capabilities – which is the amount of time until 

an area is within view of a sensor. As such it is necessary to evaluate the combined 

revisit capabilities of multiple sensors in a window of time (“scenario period”) 

sufficient to allow for all considered missions to complete their respective full repeat 

cycles on the same day.  

The Committee on Earth Observation Satellites has invested in the 

development of a visualization environment (COVE) that models the orbits and by 

extension the coincident overpasses of multiple missions (Chander, Killough, & 

Gowda, 2010; Kessler et al., 2013). In this analysis6, the aforementioned five 

satellites have been combined to form seven hypothetical imaging moderate 

resolution O+TIR constellations (Table 5.1). The scenario periods range from 72-160 

days, and each time a given area passes within view of one sensor in a hypothetical 

constellation is counted as an acquisition opportunity (AO). In order to yield the 

                                                 
6 The modeled overpass analysis has been executed by the CEOS Systems Engineering Office (SEO) 

team under the leadership of Brian D. Killough at NASA Langley Research Center in Newport News, 

VA. I have requested the satellites to be included as well as their combinations for this study, and all 

subsequent analyses are my own. 



 

 111 

 

average time to revisit for each 1˚ cell, at the end of the scenario period the number of 

AOs for each hypothetical constellation is divided by the number of days within the 

scenario period.  

Table 5.1: The seven hypothetical constellations and their best and worst revisit 

capabilities  

# Satellites  

Scenario 

Period –

Days 

Least 

AO 

Mode 

AO 

Most 

AO 

Best 

Revisit 

- Days 

Mode 

Revisit 

- Days 

Worst 

Revisit 

- Days  

1 L8, S2A, S2B, R2 160 150 288 312 0.94 1.80 1.95 

2 L7, L8, S2A, R2 120 121 232 253 1.01 1.94 2.11 

3 L7, L8, R2 72 91 173 192 1.26 2.40 2.67 

4 L7, L8, S2A, S2B 80 123 246 246 1.54 3.08 3.08 

5 L8, S2A, S2B  80 152 305 305 1.90 3.81 3.81 

6 L7, L8, S2A 80 178 356 356 2.22 4.44 4.44 

7 L7, L8  80 320 640 640 4.00 8.00 8.00 

 

The actual interval between AOs is variable throughout the scenario period 

and will be shorter or longer than the average as the scenario period progresses. 

However, this temporal spacing is not consistently bound to any point in time or any 

specific location, and so for consistency, the average revisit time is maintained for 

each 1˚ grid cell. Additionally, within each scenario period, there is also some 

apparent longitudinal variability in revisit capability due to the initial conditions of 

the simulation (Paul Kessler & Shaun Deacon, personal communication, 10 March 

2014). This banding can be considered an artifact of the simulation and is not 

significant (Figures 5.1-7). To reduce the presence of these artifacts, only data within 

the 5th and 95th percentile are maintained. To be consistent with the approach used so 

far, which situates the analysis in terms of “best” and “worst” case scenarios, I extract 
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and use in this analysis the best (5th percentile), mode, and worst (95th percentile) 

average revisit frequency over each 1˚ increment of latitude.  

 

Figures 5.1-7: The average revisit capabilities of the seven hypothetical constellations 

analyzed herein. This is the “raw” revisit analysis, showing for each 1˚ cell the average revisit 

time observed over the scenario period. All seven constellations use the same legend for ease 

of intercomparison. 
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It bears noting that this analysis shows coincident overpasses and therefore 

acquisition opportunities from 60˚N to 60˚S (where the majority of croplands lie), but 

does not attempt to analyze actual acquisition frequencies. As previously mentioned, 

of the observatories incorporated in this analysis, only the Sentinel-2 program 

(S2A/S2B) plans to acquire every (low- and mid-latitude) land scene at every 

opportunity, and therefore an acquisition opportunity does not automatically mean 

that an image will be acquired. This analysis provides a baseline of what kind of 

performance by these missions is possible.   

5.2.2 Comparing Overpass Capabilities with EO Requirements  

 Chapter 4 showed the revisit frequency required to yield both a cloud free 

clear view (CVR) and a final percentage clear (FPC) of at least 70% after a given 

number of days, thereby providing two scenarios and bounding a sort of “best case 

scenario” and “worst case scenario” for acquisition frequency. Herein, the 8 day 

requirement for O+TIR data is compared against the seven combined revisit 

capabilities described in the previous section. More precisely, the best/most frequent 

combined revisit for each 1˚ of latitude (resampled to 0.05˚) is compared against the 

revisit frequency required to yield an FPC of at least 70% over each 0.05˚ after 8 

days, and the worst/least frequent combined revisit for each 1˚ of latitude (resampled 

to 0.05˚) is compared against the revisit frequency required to yield a clear view 

within 8 days. This bounds the upper and lower end of our ability to meet this 8 day 

requirement for (reasonably) clear O+TIR data. As the realistic performance is likely 

to fall somewhere between these two comparisons, I have provided summary 

statistics for two such analyses which estimate the “middle of the road” case as well: 
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the most common (mode) revisit for each 1˚ of latitude (resampled to 0.05˚) 

compared against both the requirement for an FPC of at least 70% as well as the 

requirement for clear views. 

5.3 Results 

5.3.1 Meeting the Requirement for a Reasonably Clear View every 8 Days  

In Table 5.1, the constellations are numbered 1 through 7, denoting their rank 

in terms of revisit frequency. That is to say, anything that Constellation #7 can meet, 

so too can #1-6, anything Constellation #6 can meet, so too can #1-5 but not #7, et 

cetera. Meanwhile, a value of 0 (elsewhere denoted “None”, as in Figures 5.8-5.19a-

b) indicates that no constellation is capable of meeting the revisit frequency 

requirement, and denotes a time and area for which active microwave SAR data ought 

to be considered. A quick glance through the monthly maps showing which (if any) 

of the constellations are capable of meeting the less frequent (based on a final 

percentage clear requirement of at least 70%; Figures 5.8-5.19a) and the more 

frequent (based on a clear view requirement; Figures 5.8-5.19b) required revisit for 

that month shows that for most areas in most months, the former comparison (the 

“best case scenario”) yields very high success rate with 6-7 different proposed 

constellations being capable of meeting the required revisit frequency.  The same, 

however, cannot be said for the “worst case scenario” comparison, wherein many 

areas are met by only Constellations #1-3, and still many others are not viable 

candidates for the use of O+TIR data.   
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Figure 5.8a-b: Constellations capable of meeting the revisit frequency required to yield a 

view every 8 days during January that is, a) Top, at least 70% clear, and b) Bottom, 100% 

clear. The “best case scenario” (a) compares this less stringent clear view requirement with 

the best revisit observed at each 1˚of latitude, while the “worst case scenario” (b) compares 

the more stringent clear view requirement with the worst revisit observed at each 1˚of 

latitude. The missions included in Constellations #1-7 can be found in Table 5.1. Note that 

the constellations are ranked such that each requirement that can be met by #7 can be also 

met by 1-6, and so forth.  
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Figure 5.9a-b: Same as Figure 5.8a-b, but for February. 
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Figure 5.10a-b: Same as Figure 5.8a-b, but for March. 
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Figure 5.11a-b: Same as Figure 5.8a-b, but for April. 
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Figure 5.12a-b: Same as Figure 5.8a-b, but for May. 
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Figure 5.13a-b: Same as Figure 5.8a-b, but for June. 
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Figure 5.14a-b: Same as Figure 5.8a-b, but for July. 
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Figure 5.15a-b: Same as Figure 5.8a-b, but for August. 
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Figure 5.16a-b: Same as Figure 5.8a-b, but for September. 
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Figure 5.17a-b: Same as Figure 5.8a-b, but for October. 
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Figure 5.18a-b: Same as Figure 5.8a-b, but for November. 
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Figure 5.19a-b: Same as Figure 5.8a-b, but for December. 

 

In fact, at the global level, one or more of these constellations is capable of 

probabilistically meeting an 8 day requirement for at least 70% cloud free data for 

between 77% (January) and 94% (May) of 0.05˚cells worldwide, assuming the best 
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revisit frequency (Figure 5.20). With the mode revisit frequency, between 71% and 

91% of cells will be at least 70% clear, and between 48% and 76% of cells will 

probabilistically yield clear views, within 8 days. Meanwhile, assuming the worst 

revisit frequency, between 47% (January) and 73% (October) of 0.05˚cells worldwide 

can probabilistically have an 8 day requirement for completely clear data met with 

one or more of these seven constellations. Interestingly, when comparing these four 

scenarios, it becomes clear that the largest determinant of any constellation being 

capable of meeting a requirement is whether that requirement is for completely clear 

views (CVR) or partially clear views (FPC ≥ 70%), so the present discussion will 

focus on the best and worst case scenarios, acknowledging that the most likely 

scenario will lie somewhere between them.   

 

Figure 5.20: The overall capacity to meet an 8 day data requirement, considering different 

revisit capacities (best, mode, worst) of the constellations versus two acceptable clear view 

thresholds (70%, 100%). Capacity is presented as percentage of total actively cropped 0.05˚ 
cells which have their requirements met by at least one constellation. To provide perspective 

on the extent requiring imagery for each month, also plotted is the percent of cropland in 

season during each month.  

 



 

 128 

 

At present (early 2014), Landsat 7 and Landsat 8 acquire the only freely and 

openly available moderate resolution data. Their combination, Constellation #7, even 

in the best case scenario can only meet an 8 day revisit requirement in 45-54% of 

actively cropped 0.05˚ grid cells (Figure 5.21). The addition of a Sentinel mission as 

in Constellation #6 (or both, as in Constellations #4-5) leads to a marked increase in 

the success rate in the best case scenario, although Constellation #4 peaks at a 37% 

success rate in the worst case scenario (Figure 5.22). The added value of Resourcesat-

2 in terms of increasing revisit frequency at the global scale is more notable in the 

worst case than for the best case, where Constellations #1-3 add only a marginal 

increase in the success rate, while in the worst case, the addition of R2 makes a 

considerable difference in success rate (peaks at 73%). 

 

Figure 5.21: Globally, the percent of actively cropped 0.05˚ cells in each month having their 

requirement for at least 70% views every 8 days met by each constellation’s best observed 

average revisit rate. This is the best case scenario. To provide perspective on the extent 

requiring imagery for each month, also plotted is the percent of cropland in season during 

each month. 
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Figure 5.22: Globally, the percent of actively cropped 0.05˚ cells in each month having their 

requirement for completely clear data every 8 days met by each constellation’s worst 

observed average revisit rate. This is the worst case scenario. To provide perspective on the 

extent requiring imagery for each month, also plotted is the percent of cropland in season 

during each month. 

 

These success rates, of course, vary greatly when taking a regional 

perspective, as cloud cover’s impacts on obtaining (reasonably) clear views varies 

geographically and revisit capability varies latitudinally. Looking at Europe (Figure 

5.23), for example, Constellation #7 again has a somewhat low performance, 

although with larger monthly variability present. The overall success rate in the best 

case scenario is greatly increased by the incorporation of S2A alone (Constellation 

#6), with most other months having their success rate only marginally increased 

through the addition of other sensors. However, if the requirement is for clear views, 

and the worst revisit rate (which is 8 days – the same as the mode and worst revisit 

frequencies, and what we typically consider the revisit of the two combined Landsat 

missions to be) is examined, then Constellation #7 is completely incapable of yielding 

clear views within 8 days. This is not surprising as having a clear view requirement 
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exactly match revisit capability would require a 0% probability of cloud presence, 

something highly unlikely in cropland areas. The worst case scenario again 

emphasizes the value of adding R2 into an imaging constellation (Figure 5.24), with 

the most pervasively cropped months (April-October) reaching between 69-91% 

success rate even with Constellation #1. However, the uptick in cloudiness and 

subsequent decline the success rate for both scenarios in November may have some 

impact on end of season harvested area analyses.  

 
 

Figure 5.23: For Europe, the percent of actively cropped 0.05˚ cells in each month having 

their requirement for at least 70% views every 8 days met by each constellation’s best 

observed average revisit rate. This is the best case scenario. To provide perspective on the 

extent requiring imagery for each month, also plotted is the percent of cropland in season 

during each month. 
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Figure 5.24: For Europe, the percent of actively cropped 0.05˚ cells in each month having 

their requirement for completely clear views every 8 days met by each constellation’s worst 

observed average revisit rate. This is the worst case scenario. To provide perspective on the 

extent requiring imagery for each month, also plotted is the percent of cropland in season 

during each month. 

 

An analysis of south and southeast Asia (including India, Nepal, Burma, 

Bhutan, Bangladesh, Vietnam, Laos, Thailand, Cambodia, and Malaysia, but 

excluding China) shows a very large difference between the best (Figure 5.25) and 

worst (Figure 5.26) case scenarios during the middle of the year (May-October), 

although the general shapes of the curves are similar. As seen in Figure 5.25, the 

success rate for the best revisit frequency for even Constellation #1 during July and 

August hovers around 30%, meaning approximately 70% of actively 0.05˚cells are 

left without a view that is at least 70% clear. Exacerbating this situation is the fact 

that July and August are amongst the most pervasively cropped months of the 

calendar year, meaning these requirements are missed not just at a higher rate but 

over a larger area. The outlook is even poorer in the worst case scenario, with what 

amounts to a cease of the utility of these O+TIR constellations between April and 
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September (although further refining the scale of analysis to the national level, by 

October much of India has its requirements met (Figure 5.17)).  

 

Figure 5.25: For Southeast Asia (excluding China), the percent of actively cropped 0.05˚ 
cells in each month having their requirement for at least 70% views every 8 days met by each 

constellation’s best observed average revisit rate. This is the best case scenario. To provide 

perspective on the extent requiring imagery for each month, also plotted is the percent of 

cropland in season during each month. 
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Figure 5.26: For Southeast Asia (excluding China), the percent of actively cropped 0.05˚ 
cells in each month having their requirement for completely clear views every 8 days met by 

each constellation’s worst observed average revisit rate. This is the worst case scenario. To 

provide perspective on the extent requiring imagery for each month, also plotted is the 

percent of cropland in season during each month. 

 

5.3.2 Meeting the Requirement for a Reasonably Clear View every 16 Days 

Despite the fact that there is twice the amount of time to obtain an FPC of at least 

70%, the overall success rate at the global scale is not that different from the 8 day 

case discussed in Section 5.3.1. The overall success rate is upped to between 83% 

(February) and 97% (June), as opposed to between 77-94% with the 8 day data. The 

largest difference, however, is in the performance of Constellation #7, the two 

Landsat missions (Figure 5.27). This constellation is capable of meeting 70-90% of 

requirements for data at least 70% clear every 16 days at the global scale, up from a 

yearly average of about 50% for 8 day data. Meanwhile, there still remain some 0.05˚ 

cells for which a requirement cannot be met (3-17%).   
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Figure 5.27: Globally, the percent of actively cropped 0.05˚ cells in each month having their 

requirement for at least 70% views every 16 days met by each constellation’s best observed 

average revisit rate. This is the best case scenario. To provide perspective on the extent 

requiring imagery for each month, also plotted is the percent of cropland in season during 

each month. 

 

Meanwhile, for the requirement for completely clear data within 16 days, the 

largest improvement in success rate relative to the 8 day “worst case scenario” are for 

Constellations #4-7 (Figure 5.28). Constellation #7 meets 9-29% of requirements, up 

from essentially 0%. Constellations #5-6 are capable of meeting 41-59% and 46-67%, 

respectively, of their requirements, each covering 20-52% additional actively cropped 

0.05˚ cells with a 16 day requirement relative to the 8 day requirement. Meanwhile, 

overall success has increased, standing at 60-84%, but still leaves considerable gaps 

during certain areas during certain times of the year. The gaps in requirements met for 

both the best and worst case scenarios for 16 day reasonably clear views highlights 

that some areas are very persistently and pervasively cloudy, and O+TIR missions are 

simply not well suited for monitoring in these areas/times of year. 
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Figure 5.28: Globally, the percent of actively cropped 0.05˚ cells in each month having their 

requirement for completely clear views every 16 days met by each constellation’s worst 

observed average revisit rate. This is the worst case scenario. To provide perspective on the 

extent requiring imagery for each month, also plotted is the percent of cropland in season 

during each month. 

 

5.3.3 Persistently Cloudy Areas: Where Requirements are Unmet 

As seen in Figures 5.8-5.26, there are a number of cells/times of year shown in 

gray (with value “0” or “None”) for which none of the analyzed O+TIR hypothetical 

constellations have a combined revisit frequent enough to meet a reasonably cloud 

free requirement within 8 days. As seen in the requirements table (Table 4.1), 

moderate resolution microwave SAR data are required every 8 days in “persistently 

cloudy areas” (including/in addition to rice cultivating areas), which have been 

defined herein as those areas and times of year which require a more frequent revisit 

in order to yield a (reasonably) clear view than our current/planned moderate 

resolution polar orbiting O+TIR missions are capable of delivering. SAR data are not 

the only alternative – for example,  data from geostationary satellites with multiple 
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observations per day have been used, but at rather coarse spatial resolution (Duveiller 

et al., 2013) – but they are currently most broadly available and applied non-polar 

orbiting moderate resolution data type. Figure 5.29 shows the extent and number of 

months for which SAR data may be required. In the best case, very few areas require 

microwave data for more than 3-4 months, with the majority of areas requiring SAR 

data for 2 months. These areas are concentrated in Southeast Asia, West Africa, and 

parts of Eastern Europe and the Equatorial Americas.  However, in the worst case 

scenario, the extent of necessary SAR data is expanded both in space and time, with 

many areas throughout the world requiring more than six months of SAR data. This 

highlights the potential value of microwave SAR data in a global agricultural 

monitoring system. 
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Figure 5.29: For the a) top, best case scenario (best revisit vs. requirement for 70% clear 

views), and b) bottom, worst case scenario (worst revisit vs. requirement for completely clear 

views), the number of months throughout the agricultural growing season for which an 8 day 

requirement cannot be met by any of the seven moderate resolution O+TIR constellations 

evaluated herein. These areas are too persistently and pervasively cloudy for these systems, 

and as such, alternatives for monitoring – principally, microwave SAR data (as in Table 4.1, 

Requirement #6) – should be considered. 
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5.4 Discussion 

There are four primary insights gained from this analysis. First, although 

rather stringent, the requirement for clear views is not completely unreasonable in 

some areas during certain parts of the year. However, it certainly requires a 

constellation beyond that which is currently freely available (Constellation #7), and 

must be supplemented in other areas/times of year by partially clear views (or non-

optical data). Second, accepting partially clear views, as seen in the best case scenario 

analysis for both 8 and 16 day requirements, provides a promising outlook for the 

capabilities of our current and near-term moderate O+TIR instruments for many areas 

throughout the year. Areas wherein clear views are not probable, but at least one 

constellation is capable of yielding a view that is at least 70% clear, are good 

candidates for an image compositing approach, although concerns about this 

approach’s likelihood to underestimate the impacts of cloud cover as well as miss 

changes in crop condition and progress during the compositing period should be kept 

in mind (Chapter 3). 

A third point is that simply adding more sensors does not necessarily improve 

coverage. At the global level in the case of the 8 day requirement, the two Landsat 

missions combined (Contsellation #7, the only currently available satellites with a 

free and open data policy) are capable of delivering views that are at least 70% clear 

over 45-54% of actively cropped areas throughout the year. The addition of one 

Sentinel satellite (S2A; Constellation #6) ups the success rate to 59-85%. Adding the 

S2B in (Constellation #4) increases the success rate to 70-91% with its four satellites. 

However, the addition of just R2 to the two Landsat missions (as seen in 
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Constellation #3) results in a practically identical success rate (70-91%) as does 

Constellation #4 with its four satellites. In fact, R2 has the largest effect on increasing 

revisit frequency of any single satellite analyzed herein due to its very wide swath, 

albeit with a relatively lower spatial resolution (56m). What these points suggest is 

that adding more satellites is not the only way to increase revisit frequency; rather, 

sensor architecture and alternative designs can and should be considered in the future, 

although this should be weighed against other factors such as the ground distortion at 

the edge of wide swath (Verma, Garg, & Garg, 2009).  

A fourth finding is that in both scenarios for both the 8 and 16 day reasonably 

clear data requirement, there are still areas and times for which our current and near-

term O+TIR instrumentation cannot yield a sufficient revisit frequency to overcome 

the presence and pervasiveness of cloud cover. This is related to the third point – 

space agencies can deploy a veritable cadre of polar orbiting O+TIR missions, but 

little difference will be made in areas that are frequently and pervasively occluded by 

clouds. These areas, as shown in Figure 5.27, are poorly suited for polar orbiting 

O+TIR imaging, and alternative data sources, particularly microwave SAR data, 

should be considered instead. If willing to accept O+TIR data which are at least 70% 

clear, that leaves between 6-23% percent of 0.05˚ cells globally, depending on month, 

which can be characterized as requiring microwave SAR. However, if clear cells are 

required, this leaves between 27-53% of cells worldwide, a considerable quantity 

pointing at the value of investing in research related to using data from alternatives to 

polar orbiting O+TIR instruments.   
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5.4.1 Considerations and Limitations 

 There are a few caveats to consider in this analysis. First, pinning down the 

exact combined revisit frequency for each constellation is very challenging due to the 

repeat cycles of each component mission being out of sync with one another. For 

example, if there are 80 revisits within 120 days, it can only be said that the average 

combined revisit frequency is 1.5 days. All of the satellites discussed herein are sun-

synchronous with overpass times at (or projected to be at) 10:30 am, and so a revisit 

of 1.5 days is actually impossible. How precisely this impacts the success rate is 

unknown, and merits further research, but is beyond the scope of this analysis.  

 An additional note is on the spatial unit of analysis: 0.05˚, which translates to 

about 5.6 km at the Equator. The final percentage clear analysis (FPC) is easily 

scalable to any unit of analysis, but the clear view requirement (CVR) is intimately 

tied to this native spatial unit. That is to say, while only 50% of a 0.05˚cells may be 

capable of meeting a clear view requirement, a finer resolution analysis might 

increase the apparent success rate. As stated in Chapter 3, the CVR analysis is likely 

to overestimate the impact of cloud cover, and therefore the worst case scenario 

analysis herein is likely particularly pessimistic. On the other hand, the constellations 

rarely deliver their best possible revisit frequency, and assumptions about spatial and 

temporal correlation within the FPC analysis (Roy et al., 2006) lead to the best case 

scenario being optimistic. In reality, the type of performance to be expected from 

current and near-term missions will likely fall somewhere in between these two 

scenarios.  
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 Finally, it is worth noting that Landsat 7 has had a scan-line corrector (SLC) 

mirror failure since 2003, resulting in the absence of a considerable amount of data 

(22%) in stripes throughout the scene (Scaramuzza et al., 2004). The data are still 

valuable and usable (Maxwell, Schmidt, & Storey, 2007), but this will impact the 

apparent revisit frequency, because even if the data are acquired (which is not a 

certitude, as systematic acquisitions are only planned for S2A+S2B), 22% of data will 

be missing from each L7 acquisition.   

5.5 Conclusions & Future Research 

The analysis presented herein shows the strength of combining multiple satellite 

missions to form an imaging constellation. Combining missions from two or three 

different space agencies leads to greatly improved revisit frequencies and an 

improvement in our ability to meet our EO requirements for agricultural monitoring, 

although key gaps exist in pervasively and persistently cloudy regions. Future 

research might continue the investigation initiated by Gao et al. (2006) regarding the 

utility of a moderate resolution MODIS type system (with daily or even twice daily 

revisit capability) for meeting EO requirements for agriculture and other societal 

benefit areas. Such a revisit frequency could prove particularly useful for yield 

forecasting with its reliance on very frequent data, but it is possible that an investment 

in such a system would experience diminishing marginal returns due to persistent 

cloud cover. For this reason, an increased investment in SAR systems and related 

algorithm development would be well-placed, as would a continued focus on SAR-

optical data fusion (Hong et al., 2014; Torbick et al., 2011).   
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Lastly, it is important to reiterate that an acquisition opportunity, as shown in this 

analysis, is just that – an opportunity, but not a fait accompli, in terms of acquisition 

or in terms of data availability. To date, agricultural analysts in many parts of the 

world have been hesitant to rely more fully upon a remote sensing based monitoring 

system due to concerns about data access, availability, interoperability, and 

continuity. Systematic acquisitions over actively cropped agricultural areas as well as 

a policy which guarantees continuous access to high quality, interoperable data are 

essential in the effort to meet EO requirements for agricultural monitoring (Atzberger, 

2013).  
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Chapter 6:  Discussion, Conclusions, & Future Research 
 

 

6.1 Overview & Main Findings 

 This research has provided new findings describing the temporal, spatial, and 

spectral resolution Earth observations requirements for a variety of agricultural 

monitoring applications. Each subsequent chapter in the work has built upon the 

previous contribution, first detailing the formulation of the requirements and 

generation and assemblage of supporting datasets, and then assessing our current and 

planned capabilities for meeting the 8 and 16 day reasonably clear view requirements 

for moderate spatial resolution optical plus thermal data. Ultimately, it has provided 

spatially explicit insight into where, when, and how frequently we require different 

scales and types of data as well as information on where and when our O+TIR 

instrumentation is insufficient and alternative data types must be considered instead. 

This work has provided baseline results and key inputs into an image acquisition 

strategy for global agricultural monitoring 

This dissertation began by taking ten years of MODIS Terra surface 

reflectance (MOD09) data converted to NDVI together with a variety of cropland 

masks, and extracted the timing of the agricultural growing season, including the 

phenological transition dates start of season, peak of season, and end of season for 

cropped areas around the world at 0.5˚ (Chapter 2). Preliminary comparison against 

existing crop calendars and crop progress data from USDA-NASS for the CONUS, as 

well as vetting with regional agricultural experts indicate that this approach has 

characterized cropland phenology well. This spatially explicit information on the 
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timing of the AGS – herein referred to as “growing season calendars” – breaks down 

the calendar year into periods during which different types and frequencies of EO 

data are required, with more frequently sampled data required during the AGS than 

when crops are out of season (Table 4.1). Next, the impact of cloud cover frequency 

and amount on passive O+TIR remote sensing instruments’ capability throughout the 

AGS to obtain reasonably clear views of the Earth’s surface was analyzed. Toward 

this end, daily cloud flags from MOD09 from 2000-2012, compiled to show average 

daily cloud presence probability (P(cloud)) and daily cloud extent (APCloud), were 

averaged over different segments of the AGS based on the PTDs described in Chapter 

2. It was shown (Chapter 3) that the early and middle portion of the AGS experience 

both more frequent and more pervasive cloud cover at nearly every latitude, that high 

cloud amount/frequency often coincide with broad cropland cultivation, that the 

morning is generally less impacted by cloud cover than is the afternoon, and that 

cloud occlusion is a factor that must be considered when articulating temporal 

resolution requirements for O+TIR data.  

General data requirements were characterized in Chapter 4 in Table 4.1. The 

table described the necessary spatial, spectral, and temporal resolutions for data to be 

used as inputs for a variety of agricultural monitoring applications including crop 

area, type, calendar, condition, yield, biophysical variables, and practices, as well as 

general environmental variables. These descriptive requirements were placed 

concretely in the spatial context (Chapter 4) through the inclusion of the growing 

season calendars from Chapter 2 (when to image), a “best available” cropland mask 

(Fritz et al., 2013) and field size distribution layer (Fritz et al., unpublished; where 
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[fine vs. moderate vs. coarse] data are required), and the cloud cover information 

from Chapter 3 (how frequently to image). This latter input revealed the actual 

temporal resolution (revisit frequency) that would be required in order to 

probabilistically yield a reasonably (≥70%) or completely clear view within a given 

time period during each month for actively cropped areas at 0.05˚, providing a “best” 

and “worst” case scenario for revisit frequency required. In this chapter, the minimum 

(16 day) and preferred (8 day) requirement for reasonably clear moderate spatial 

resolution data (Table 4.1; Requirement #5) were introduced. The 8 day reasonably 

clear view requirement was specifically highlighted, as agricultural monitoring 

scientists and practitioners have indicated that increased effective temporal resolution 

(rate of reasonably clear views) at moderate resolution (10-70m) is paramount in 

operational agricultural monitoring. This analysis showed that if data that are at least 

70% clear are required within a given period, then 44-55% of global cells require a 

revisit frequency less than half the length of that given period (i.e. <4 days for 8 day 

and <8 day for 16 day reasonably clear view), although between 22-31% of cells 

could be satisfied by only a single revisit within the given period (i.e. every 8 or 16 

days, respectively). The revisit frequency required to yield a completely clear view, 

however, was less than half the length of the total period in 74-92% and 67-92% of 

actively cropped 0.05˚ grid cells, for 8 day and 16 day periods, respectively, and in 

practically no location would just a single revisit be sufficient to probabilistically 

yield a completely clear view. 

However, there remained the question of whether our current and near-term 

planned moderate resolution instruments would be capable of a revisit frequent 
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enough to meet these actual temporal resolution requirements. Chapter 5 responded 

directly to that by comparing the requirements articulated in Chapter 4 with seven 

hypothetical multi-mission, multi-space agency moderate resolution constellations 

based off of five instruments. These analyses, in the end, confirmed the long-held 

notion that no single mission is capable of delivering high quality data at the regional 

or global scale at a revisit rate frequent enough to be used for agricultural monitoring 

applications which rely on phenological tracking (e.g. crop type or yield). It showed 

that two Landsat missions together, with a revisit of 8 days, are capable of yielding 

views that are at least 70% clear for between 45-54% (depending on month) of 

actively cropped 0.05˚ grid cells for an 8 day requirement and 70-90% for a 16 day 

requirement. Meanwhile, the two Landsat missions were completely incapable of 

meeting a clear view requirement anywhere during any month of the year for the 8 

day requirement, although for 9-29% of actively cropped 0.05˚ cells, the two sensors 

could probabilistically yield a completely clear view within 16 days. However, the 

addition of missions from other space agencies, namely Resourcesat-2 AWiFS, 

Sentinel-2A, and Sentinel-2B, could result in 77-94% of actively cropped areas being 

at least 70% clear, and 47-73% of areas being completely clear, each within 8 days 

(83-97% and 60-84% for 16 days, respectively). It also showed that these success 

rates are regionally and seasonally variable, with certain areas having some imaging 

requirements met throughout the year and others (particularly Southeast Asia, West 

Africa, Northern Europe, and the Equatorial Americas) facing such total cloud 

obscuration during certain parts of the year that O+TIR data are rendered practically 

useless for agricultural monitoring purposes. There remained 6-23% or 27-53% of 
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areas for which no hypothetical polar orbiting O+TIR imaging constellation was 

capable of yielding a reasonably clear view within 8 days. These are areas/periods of 

time for which alternatives to polar orbiting O+TIR data should be considered, 

particularly microwave SAR or possibly geostationary O+TIR instrumentation.   

6.1.1 Implications 

This research provides concrete evidence for an imaging constellation 

approach to moderate resolution remote sensing, enlisting multiple missions and even 

multiple spectral ranges of data to form an integrated monitoring system. Specific to 

agriculture, neither the problem of food insecurity nor the impact of increased 

agricultural market volatility are likely to disappear. As such, it is crucial to acquire 

EO data of sufficient quantity, quality, and accessibility to generate informational 

products about local, regional, and global food supply. This research has shown that 

neither at present, nor in the near term, are we capable of meeting at the global level 

all requirements for the reasonably clear 8 or 16 day moderate spatial resolution 

O+TIR data which would be used across all monitoring activities: crop area, type, 

calendar, yield, condition, biophysical variables, or system. Fortunately, through an 

imaging constellation approach as proposed and demonstrated in Chapter 5, we would 

be able to meet the requirements for a great majority of cropped areas, a promising 

finding for the generation of regional results.  

There are some areas of the world and times of year for which cloud cover is 

simply too pervasive and persistent to be monitored by O+TIR data, and this research 

has highlighted with a high degree of spatial precision (0.05˚) where those areas and 

times of year lie. Through the incorporation of microwave SAR data with cloud 
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penetrating capabilities, these persistently cloudy areas could be monitored as well, 

providing the opportunity for consistent regional to global scale results. Such a 

constellation approach, however, would require considerable data coordination 

(Section 6.2.1).  

Beyond this broader implication for agricultural monitoring using satellite EO, 

this research responds to a long-standing need for spatially explicit cropland 

phenology information through the generation of 0.5˚ agricultural growing season 

calendars (Chapter 2). While these GSCs are still in the process of being thoroughly 

vetted by regional agricultural monitoring experts, their comparison against known 

crop calendars in the corn and soy cultivating Corn Belt of the CONUS, their 

sensitivity to interannual and within region variations in growing season timing, as 

well as their approval by experts from Australia, Canada, Argentina, Uruguay, 

Ukraine, Spain, and Russia, all point to a successful product. 

6.2 Considerations and Future Research 

At present, a major dearth in agricultural monitoring is spatially explicit crop 

specific phenology and interannual variability, their absence being the largest source 

of uncertainty in a number of agricultural monitoring applications (Wu et al., 2013b). 

The growing season calendar methodology presented in Chapter 2 has been 

developed in such a way that it could be adapted to generate spatially explicit crop 

specific calendars at whatever spatial resolution desired. This activity would require 

crop specific masks, something that is presently being developed for the major crops 

(wheat, rice, corn, and soybean) in the context of GEOGLAM at the MODIS 

resolution for many areas around the world.  



 

 149 

 

Not analysed herein is the capability of coarse, fine, or very fine spatial 

resolution optical systems to meet the requirements established. As discussed in 

Chapter 5, the major area for improvement, both in terms of available systems and the 

magnitude of science and operational monitoring results, is in moderate spatial 

resolution remote systems. In the case of coarse data (>100m), there are already a 

number of systems in place or planned that have (near) daily temporal resolution, 

such as MODIS Terra/Aqua, S-NPP and JPSS VIIRS, SPOT-5 VGT-2, Sentinel-3A 

SLSTR, and Proba-V VGT-P. Several of these have or plan to have free and open 

data policies, and so as long as the spatial, spectral, temporal, and radiometric quality 

of these missions are maintained, the requirements can be met, although efforts at 

enabling interoperability are crucial as well. Meanwhile, in the case of fine (5-10m) 

and very fine (<5m) spatial resolution data, despite the pointing capabilities of the 

sensors and the resultant relatively frequent revisit rate possible (on the order of 1-5 

days), there is still uncertainty about whether or not these systems can deliver such a 

frequent revisit rate in multiple areas at the same time , or if acquisitions in one area 

would come at the expense of another. An evaluation of these capabilities and 

potential trade-offs would prove useful and valuable. Additionally, these fine and 

very fine data are entirely fee based, and a cost-benefit analysis of the areas wherein 

this considerable financial investment could be best placed, in light of cloud cover 

constraints and the degree of spatial heterogeneity of the landscape (Duveiller & 

Defourny, 2010), would be beneficial.   

 Herein, “reasonably cloud free” has been taken to mean at least 70% cloud 

free/clear. This means that as much as 30% of a view may be occluded by clouds, and 
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as briefly discussed, this may be too great an amount for certain monitoring 

applications. Future research should investigate the utility and limitations of different 

acceptable thresholds of cloud cover (including the 70% threshold), particularly in the 

context of the specific agricultural monitoring applications listed in Table 4.1. 

Different agricultural monitoring applications may tolerate different quantities or 

frequencies of cloud cover, and research should be conducted to analyse how these 

variable cloud cover amounts impact the production of each target product.  

 In this vein, a useful area of future research would be to analyse the 

requirements for each target product (moving down the columns in Table 4.1) rather 

than to analyse the requirements for each data type (moving along rows in Table 4.1), 

as is presented in this dissertation. It would be useful to understand how close we are 

to meeting the data requirements to derive crop yield versus cropland mask, and so 

forth. Identifying which thematic and geographical areas will probabilistically not 

have their requirements met will identify important paths and areas for research. 

Simply stating that requirements cannot be met is insufficient – but identifying gaps 

will pave the way for the research community to develop new methods of working 

with the data to which we do have access. 

There are three main aspects of EO requirements which are not at present 

discussed in this work or articulated in the requirements table (Table 4.1). First, there 

is no mention of radiometric resolution in the requirements table, largely because the 

assumption is that the current standard of systems with 8-12 bits radiometric 

resolution will be maintained from here forward. However, if alternative sensor 

architecture is considered (as mentioned in Section 5.4) to improve temporal and/or 
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spatial resolution of an Earth observing instrument, this may come at the cost of other 

elements of the instrument in order to reduce data volume. It would be worthwhile, 

then, to explicitly outline the minimum precision for each requirement/agricultural 

monitoring application. Second, Table 4.1 also neglects to explicitly mention the EO 

specifications for the spectral bands which are needed to atmospherically adjust the 

data. This requirement is not included explicitly as the initial formulation of the 

requirements considered only data directly used to extract crop specific parameters. In 

general, and since the early days of the Landsat program, the spectral band placement 

for moderate resolution EO systems has been made for the purpose of vegetation 

discrimination and monitoring in mind (Goward & Williams, 1997; Mika, 1997). 

However, the absence of well-placed spectral bands (both in the cloud screening 

process [e.g. cirrus, thermal bands], and vegetation discrimination [e.g. red edge]), 

would greatly impact the accuracy and reliability of derived informational products, 

and as such there is already discussion within the CEOS Ad Hoc Team for 

GEOGLAM to correct this omission.  

Third, the requirements table identifies the need for SAR data, but that is a 

broad category with a range of additional instrument specifications possible. At the 

outset of the observation requirements development, there was some discussion about 

the polarization and specific radar bands desired, but the group acknowledged that 

more research was needed. Early research has shown both C-Band multi-polarization 

SAR data fused with optical data as well as C-Band and L-Band SAR-only analyses 

to be useful for crop type discrimination (McNairn et al., 2009a, 2009c; Torbick et 

al., 2011).  In light of the barrier that cloud cover provides for optical imaging 
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(Chapters 3-5), further research into the utilization of SAR data on its own, as well as 

its fusion with optical data, for agricultural monitoring purposes would be very well 

placed. This research and development of SAR data methodologies and algorithms 

should be conducted in a variety of agricultural systems and for different crops, as 

applicability of the data is expected to change with the specific landscape under 

study.  

6.2.1 From requirements to data acquisition: strategic considerations 

These requirements will require updating over time to keep pace with 

agricultural land use change and shifting “best practices” for agricultural monitoring. 

The former case requires an updating of base layers, primarily the cropland masks 

and field size information, but also growing season calendars, tasks that will become 

more easily implementable due to the increased quantity of VFTM EO data that are 

purported to be made available through the acquisition strategy into which this thesis 

provides input. In fact, the data requested by the requirements table themselves are 

meant to be used to generate crop area and crop type masks, as well as crop calendars, 

and so updating could be done on a yearly basis in highly dynamic areas. The 

purported increase in access to high quality data may also impact the rate at which 

methodologies to monitor agriculture evolve (which may impact the data 

requirements), as will the expanding breadth and depth of EO-based agricultural 

monitoring expertise.    

When these EO requirements are converted into a strategy, there may be a few 

ways to optimize them. First, as seen in the requirements table (Table 4.1), there are 

certain spatial/spectral ranges that occupy two separate records (e.g. Requirements 
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#4-5, Requirements #7-8) due to variable extent and effective temporal resolutions. 

Requirement #5, for example, asks for 10-70m O+TIR data roughly weekly (no more 

than 16 days) on a sampled (prefer cropland extent) basis. With a higher temporal 

resolution (although potentially for only a subset of areas), this requirement could 

satisfy part of Requirement #4. The same is true of Requirement #8 partially 

satisfying Requirement #7. Through harmonizing these requirements, the overall 

quantity of data needed would be reduced.   

A second factor which merits further investigation when translating the 

requirements into actual data acquisitions is whether and where requirements could 

be smoothed spatially to reduce power cycling burden for remote sensing devices. For 

example, if there is a small strip in the along-track direction that is out of season 

between two areas which are in season, it may make sense to acquire data for that 

intermediate strip as well. Similarly, if a small area is in season surrounded by many 

areas which are out of season, it may be worth performing a cost/benefit analysis of 

acquiring that data versus power cycling impacts on the sensing device. 

Third, at present, the requirements are considered as necessary from the SOS 

to EOS. This makes logical sense for spring and summer crops that grow without 

interruption, however for winter crop cultivating areas, there is often a period after 

the SOS during which a plant becomes dormant and active generation of above 

ground biomass temporarily ceases (Miller, 1999). During this period, it is not clear 

that there is a need for image acquisitions, and removing these from the analysis 

would potentially improve the apparent success rate (Chapter 5) and would certainly 

reduce the total number of acquisitions needed.  
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 6.2.2 Uncertainty and error quantification 

 

 Not included in this dissertation is the quantification of error in these analyses. 

Each chapter builds upon the work of the previous, with the error propagating 

throughout, and as such, future work should quantify the error both within each 

analysis as well as how it propagates through into the final products (Chapters 4-5; 

Congalton et al., 1991). Ultimately, two of the most important questions to answer 

are: a) how likely is it that the revisit frequency required (as articulated in Chapter 4) 

will return a (reasonably) clear view every 8 or 16 days?; and b) how accurate are 

the success rates presented in Chapter 5? Answering such questions is beyond the 

scope of this immediate research, although identifying the sources of error is an 

important first step. 

The sources of error in Chapter 2 come from errors in the cropland masks 

used which may result in the inclusion of non-crop pixels in the aggregation process, 

and their signals’ consideration in the derivation of the PTDs. Error in the GSCs 

comes also from the PTD detection algorithm itself, which assumes a given threshold 

of the NDVI can be attributed to non-crop background vegetation (e.g. weeds), and 

which allows for the mixing of multiple crop types within each 0.5˚ cell. While 10 

years of dates (2001 through 2010) were detected for each season, a median was 

extracted and used in Chapters 3-5. Land cover or land use change that may have 

occurred during those years could provide a source of error in subsequent chapters as 

well.  

In Chapter 3, as briefly discussed, error will come from the MODIS surface 

reflectance flags themselves, although they have been extensively validated 
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(Kotchenova, Vermote, Matarrese, & Klemm Jr, 2006; Kotchenova & Vermote, 

2007; Vermote & Kotchenova, 2008).These analyses are based on 10-13 years, which 

is a relatively short record as clouds do experience interannual variability. The extent 

to which this subset of time is representative of cloud cover conditions moving 

forward is also a source of uncertainty. This analysis is particularly vulnerable to 

resolution dependent error due to both the initial resolution of the base data (1 km) as 

well as the resolution of analysis (0.05˚, or 5.6 km at the Equator). In the P(clear) 

analysis, the aggregation from 1 km to 0.05˚ based on a binary cloud/no cloud 

distinction means that it is possible to have P(clear) be zero, but cloud cover could 

also be as little as approximately 4%, or even less (Figure 3.1) as the 1 km pixels 

flagged as cloudy may actually have only a very small quantity of cloud within them. 

This results in a particularly conservative estimate of clouds. On the other hand, as 

stated in Roy et al. (2006), on which the FPC analysis is based, the assumption that 

there is no temporal or spatial correlation in cloud cover will result in an 

underestimation of the time to any given FPC, providing a more optimistic outlook 

than is likely realistic. An analysis of how optimistic or pessimistic the input cloud 

datasets and resultant analyses are would be very beneficial in planning required 

acquisition frequency (Chapters 3-5).   

 The cropland mask introduced and applied in Chapter 4 onward (Fritz et al., 

2013) will have its own user and producer accuracies and errors of 

commission/omission, affecting the areas flagged as requiring observations. For 

analyses in both Chapters 4 and 5, there is no attempt to derive the probability that 

each subsequent requirement period (herein, 8 or 16 days) would result in a 
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reasonably clear view. This provision of some form of confidence interval around 

securing clear views in consecutive periods would be useful. In Chapter 5, the 

overpass analysis itself has certain artifacts resulting from its initial model conditions 

which may increase or decrease the number of acquisition opportunities in the 

scenario period. This has been partially mitigated by bounding the analysis to the 5th 

and 95th percentiles of acquisition opportunities. However, also at hand as a source of 

uncertainty is the implicit assumption that the revisit frequency capability of a 

constellation is simply the number of acquisition opportunities divided by the number 

of days in the scenario period, resulting in non-integer revisit frequencies. In fact, all 

considered missions are sun-synchronous and pass over a given area of the Earth at 

the same time each day, meaning non-integer revisit frequencies are impossible. An 

error assessment should also take this into account.  

6.3 Concluding Thoughts 

Perhaps the greatest strength of the use of remotely sensed data for operational 

agricultural monitoring is that it provides timely and synoptic coverage at multiple 

scales and allows for repeatable methods and analyses. Conversely, the greatest 

challenges to date have largely been related to data availability and by association, the 

lack of EO data coordination: data acquisitions are uneven throughout space and time 

(Hansen & Loveland, 2012; Wulder et al., 2008), leaving gaps that can prevent the 

data from being implemented broadly and adopted operationally; many data policies 

are closed, resulting in data being inaccessible and/or very expensive to use; and data 

from different instruments are not interoperable, due in part to the lack of pre-

processing standards, meaning there is a lack of consistency between datasets 
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(Duveiller et al., 2013; Wu et al., 2013b). Also at hand (although beyond the scope of 

this research) is the capacity of agricultural monitoring agencies around the world to 

download and manage EO data. The data volumes required for operational crop 

monitoring are too large for local download in most countries of the world, and 

considerable training is necessary in order to utilize EO data. The research presented 

here has articulated EO requirements for global agricultural monitoring and provided 

key inputs into a data acquisition strategy, but efforts to address these other crucial 

aspects of data coordination are also necessary. Ensuring free and open access to high 

quality, interoperable data that are pre-processed at a standard level will pave the way 

toward an operational global agricultural monitoring program that leverages and 

engages talent from around the world.  
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Glossary 
 

AGS: Agricultural growing season; the period during which crops are in season. 

Bounded by SOS and EOS (see below). 

AO: Acquisition opportunity; occurs when a satellite passes over a given area of the 

Earth, allowing for an acquisition to be obtained.  

APClear: Average percentage clear. Refers to the average percentage of 1 km pixels 

within a 0.05˚ cell which are cloud free.  

APCloud: Average percentage cloudy. Refers to the average percentage of 1 km 

pixels within a 0.05˚ cell which contain cloud.  

CONUS: Conterminous United States; the lower 48 states, excluding Alaska and 

Hawaii. 

CVR: Clear view requirement; referenced in the usage of the probability of a clear 

view product (P(clear)) to yield a completely 100% cloud free clear view. 

EO: Earth observations. Herein, refers to satellite remote sensing based observations 

of the Earth’s surface, encompassing multiple spatial, spectral, temporal, and 

radiometric resolutions. Elsewhere, can refer to in situ observations as well.  

EOS: End of agricultural growing season. The termination of photosynthetic activity.  

FAO: Food and Agricultural Organization of the United Nations.  

FPC: Final percentage clear, the percentage of a spatial unit (herein, 0.05˚) that is 

cloud free/clear within a certain number of days or after a certain number of 

observations; referenced in the usage of the average percentage clear product 

(APClear).  

GEO: Group on Earth Observations, an intergovernmental organization that 

coordinates efforts amongst international space and monitoring agencies to build a 

Global Earth Observation System of Systems. Established officially in 2005 after 

conception in 2003, it focuses on nine societal benefit areas, including agriculture. 

GEOGLAM: GEO’s Global Agricultural Monitoring Initiative. Mandated in 2011 by 

the G20 agricultural ministers to build upon GEO activities in the agriculture society 

benefit area. Has six primary components, one of which is the coordination of EO 

data for agricultural monitoring.  

G20: Group of 20; consortium of finance ministers from the 20 of the largest 

economic powers in the world, collectively accounting for 80% of world trade. 
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GSCs: Growing season calendars; spatially explicit (0.05˚) characterization of the 

agricultural growing season. 

HIRS: High-resolution Infrared Radiation Sounder; a multi-channel infrared scanning 

radiometer which has been broadly used to monitor cloud cover and other 

atmospheric constituents. 

ISCCP: International Satellite Cloud Climatology Project; initiated in 1982, an effort 

to derive information on global distribution of clouds as well as their diurnal, 

seasonal, and interannual cycles from satellite radiance measurements.  

LAI: Leaf area index, a dimensionless quantity that describes the one-sided green 

leaf area per unit ground surface area.  

L7: Landsat 7. A satellite launched in 1999, jointly flown and operated by NASA and 

USGS. Contains one sensor: the Enhanced Thematic Mapper, which since 2003 has 

had a failure of its scan-line corrector, resulting in a data gap of 22% of each acquired 

scene. 

L8: Landsat 8. A satellite launched in 2013, jointly flown and operated by NASA and 

USGS. Contains two sensors: the Operational Land Imager, covering the visible and 

reflected infrared, and the Thermal Infrared Sensor, collecting data in the thermal 

portion of the Electromagnetic Spectrum. 

MODIS: Moderate Resolution Imaging Spectrometer. Consists of two missions: 

MODIS Terra, aka EOS AM, launched in 1999, and MODIS Aqua, aka EOS PM, 

launched in 2002. Operated by NASA, it has 36 spectral bands, and has paved the 

way for global scale observations of terrestrial and atmospheric processes.  

MOD09: The MODIS Terra derived surface reflectance product.  

NASA: The United States’ National Aeronautics and Space Administration. NASA 

operates a number of Earth observing missions, and also provides research funding 

and opportunities for the application of EO data. Their fellowship program funded 

this dissertation research. 

NDVI: The normalized difference vegetation index. A dimensionless ratio that 

incorporates data from the red and near-infrared, and that has been shown to correlate 

highly with leaf area index. It ranges from -1 to +1, with a low NDVI indicating 

relatively little green leaf area, and a high NDVI indicating relatively dense green leaf 

area. 

Non-AGS: The non-agricultural growing season; the period during which crops are 

out of season, occupying the period between the EOS and SOS.  

O+TIR: Optical plus thermal infrared. Refers specifically to the visible, reflected 

infrared, and thermal infrared portions of the Electromagnetic Spectrum, to which 

most clouds are opaque. 
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P(clear): The probability of a cloud free clear view, with an entire 0.05˚cell being 

completely cloud free. A dataset derived from 10-12 year of MODIS surface 

reflectance data for both the morning (MODIS Terra) and afternoon (MODIS Aqua). 

Provides insight into cloud absence frequency. 

P(cloud): The probability of the view of a 0.05˚cell containing any quantity of cloud. 

The inverse of P(clear), this provides insight into a cloud presence frequency. 

POS: Peak of season; the annual NDVI maximum.  

PPE: Peak period end; the point following the NDVI maximum (POS) that is greater 

than 70% of the annual range in NDVI. Indicates the end of the period within which 

the NDVI maximum is likely to occur. 

PPS: Peak period start; the point preceding the NDVI maximum (POS) that is greater 

than 70% of the annual range in NDVI. Indicates the beginning of the period within 

which the NDVI maximum is likely to occur. 

RFR: Revisit frequency required; refers to the frequency with which a data 

acquisition would been to occur to probabilistically yield a (reasonably) cloud free 

view within a given number of days.  

R2: Resourcesat-2, and satellite flown by the Indian Space Research Organization. It 

contains three multispectral cameras on board, although the focus herein has been on 

the Advanced Wide-Field Sensor (AWiFS) sensor.  

SAR: Synthetic Aperture Radar, a form of radio detection and ranging that, through 

the electronic simulation of a very large antenna, is able to obtain finer spatial 

resolution images than are conventional radar systems. Herein, microwave SAR data, 

with their cloud penetrating capabilities, are presented as alternatives O+TIR data in 

areas frequently occluded by cloud cover. 

SOS: Start of season; the beginning of the agricultural growing season, at which point 

above ground green biomass begins to accumulate.  

S2A: Sentinel-2A, the first of the two planned European Space Agency moderate 

spatial resolution Sentinel missions. It is purported to launch in late 2014, and have a 

revisit capability of 10 days. Coupled with a spatial resolution of 10-20 m, this 

mission will provide a key asset for agricultural monitoring. 

S2B: Sentinel-2B, the second of the two planned European Space Agency moderate 

spatial resolution Sentinel missions. It is purported to launch sometime in 2015, and 

will have the same spatial and temporal resolution capabilities as the S2A mission, 

meaning together they will provide a revisit capability of 5 days.  

USDA: The United States Department of Agriculture.  
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USDA-FAS: The United States Department of Agriculture’s Foreign Agricultural 

Service. This portion of the agency deals primarily with international agricultural 

production, agricultural systems, and markets. 

USDA-NASS: The United States Department of Agriculture’s National Agricultural 

Statistics Service. This portion of the agency deals primarily with domestic crop 

production, agricultural systems, and markets.  

USGS: The United States Geological Survey. 

VFTM: Very fine to moderate spatial resolution data, falling roughly between <5 m – 

100m. Traditionally, 250 m to even 1000 m data have been considered moderate, but 

as instrumentation has improved, so too have the definition adjusted. VFTM data are 

currently not acquired in a systematic manner (as opposed to coarse resolution data 

like MODIS), and require coordination in order for their potential to be fully realized, 

providing context for this research.  
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