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Extensive green roof systems can mitigate urban stormwater by capturing rainfall and 

reducing runoff volume.  Green roof substrates, often made from expanded shales, 

slates and clays are fundamental for roof hydraulic dynamics, and for providing 

optimal plant growth conditions. However, these substrates occasionally impose load 

limitations for retrofitting existing infrastructure.  This research studied recycled-tire 

crumb rubber, as a light-weight material for amending green roof substrates.  Zinc 

release from crumb rubber was quantified, and the interactions with commercial 

rooflite® substrate and the effect of high Zn concentrations on the growth and uptake 

by Sedum were studied.  Zn was found to leach from crumb rubber in quantities that 

could negatively affect plant growth; however, Zn was adsorbed onto cation exchange 

sites of the mineral and/or organic portion of rooflite®, preventing negative growth 

effects in Sedum.  Crumb rubber could be utilized as an amendment with substrates 

having high cation exchange capacities. 
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Chapter 1: Literature Review 

A. The Urban Context:  Stormwater Runoff 

Water, essential for most plant and animal life, is fundamental for social, 

economic and biological systems. Globally, about 67% of the water utilized by 

humans is used for agriculture, 19% for industrial processes, and 9% for domestic 

use (Sharma, 2009). Clean and abundant water is necessary to sustain food 

production, human health and maintain habitats for wildlife. Unfortunately, as a 

consequence of accelerated population growth and unsustainable urban 

development, we are currently facing critical issues with water quality impairment 

and quantity management (Berghage et al., 2009). 

The change in land use from forest or agriculture to suburban or urban 

areas, particularly the introduction of impervious surfaces and constructed 

drainage networks, has disrupted the natural hydrologic balance. When more than 

75% of a non-disturbed area is replaced with impervious or hardened surfaces, 

infiltration and evapotranspiration are significantly reduced and the proportion of 

runoff water increases to approximately 55% (Federal Interagency Stream 

Restoration Working Group (FISRWG), 1998). This is a dramatic modification, 

considering that in non-disturbed conditions, run off averages are approximately 

10%.  Urbanization of any magnitude has been demonstrated to negatively affect 

in-stream water quality (National Water Council, 2008).   

A direct consequence of the high volume of stormwater runoff is the 

change in peak discharge and velocity.  Runoff water can convey a number of 
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pollutants, for instance, physical debris (from microscopic to large particles), 

chemical constituents (both dissolved and immiscible), and changes other 

physical properties such as water temperature (National Water Council, 2008).  

After urban development and during dry periods, some contaminants (e.g. oils, 

sediments, pesticides and heavy metals) can accumulate on impervious surfaces.  

These pollutants can be dramatically released during the first stormwater flush 

(Prowell, 2006).  

In addition to the surface pollution problems, many old cities, particularly 

in the Northeast and Great Lakes regions, contribute to water impairment by 

discharging untreated human, commercial, and industrial waste directly into 

waterways (Kloss and Stoner, 2006).  These events occur when the flow of 

combined sewer systems, containing both stormwater and sewage, exceeds the 

capacity of the system.   Pathogens from sanitary overflows can have a negative 

impact on drinking water supply, fish consumption, shellfish harvesting and 

recreation (USEPA, 2004). Sanitary overflows can be avoided by separating 

combined sewers, expanding treatment capacity or storage within the sewer 

system, or by replacing broken or decaying pipes.  However, cost and disruption 

issues often prevent these solutions from being implemented (USEPA, 2008).   

The urban stormwater problematic is currently acknowledged in North 

America. For example, Mike Shapiro, Acting Assistant Administrator of the U.S. 

Environmental Protection Agency, testified his concerns before Congress in 2009:  

“In September 2007, the USEPA Inspector General concluded that stormwater 

discharges in the Chesapeake Bay, associated with increased impervious surface 
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area, which was attributable to development, were far outstripping gains made 

from addressing other sources of degradation” (Shapiro, 2009).  

Certainly, the deterioration of the Chesapeake Bay watershed as a 

consequence of intensive changes in land use exemplifies the stormwater 

problem. According to Copper (1995), the Chesapeake Bay area experienced 

progressive changes in land use, from basic agriculture during the settlement of 

Native Americans prior the 17th Century, to extensive urban areas as a 

consequence of the tremendous population growth observed during the late 19th 

Century. Nowadays, the demand for residential development continues. By 2006, 

the population in the watershed had reached 16.6 million people, according to the 

U.S. Geological Survey and the Bay Program. Predictions indicate the population 

will exceed 18 million in 2020 (Chesapeake Bay Program, 2008).  Currently, the 

impervious area in the watershed is estimated to be approximately 1.1 million 

acres (445,156 hectares) (Chesapeake Bay Program, 2008).   

Stormwater regulations have been in effect since 1987, when the U.S. 

Environmental Protection Agency (USEPA), under the framework of the Clean 

Water Act, was requested to control certain stormwater discharges as part of the 

National Pollutant Discharge Elimination System. Two permitting programs were 

implemented in 1990 (Phase I) and 1999 (Phase II) in order to set the 

requirements for municipal separate storm sewer systems and industrial activities 

including construction (National Water Council, 2008). 

These regulations focus on specific pollutants discharged from permitted 

points; however, a series of limitations prevent the Federal Stormwater Program 
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from completely restoring the nation’s waters. The National Research Council 

reported the following limitations in the Urban Stormwater Management Report 

(2004): 

 The volume of discharges is ignored because flow or alternative measures 

have not yet been implemented.   

 The Clean Water Act does not provide the authority to restrict land 

development. 

 The Urban Stormwater Program lacks the resources to continuously and 

effectively monitoring discharge points.  

 The state and local governments do not possess the adequate financial 

support to rigorously implement the stormwater program. 

 USEPA does not exercise a vigilant regulatory oversight in the licensing 

of products that contribute to stormwater pollution in a significant way. 

 

Because of these limitations, the Environmental Protection Agency Office 

of Water encourages the implementation of green infrastructure (Shapiro, 2009), 

especially in light of the new Chesapeake Bay Presidential Order and legally 

binding agreements (Chesapeake Bay Foundation, 2010). Green infrastructure 

refers to systems and practices that use or mimic natural processes to infiltrate, 

evapotranspirate or reuse stormwater or runoff on the site where it is generated 

(USEPA, 2008). Current approaches include green roofs, trees and tree boxes, 

rain gardens, vegetated swales, pocket wetlands, infiltration planters, porous and 
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permeable pavements, vegetated median strips, reforestation/revegetation, and 

protection and enhancement of riparian buffers and floodplains (USEPA, 2008).  

By using these techniques, several problems as stormwater, combined 

sewer overflows and non point source discharges can be better managed (Shapiro, 

2009). The benefits of green infrastructure tend to be particularly important in 

urban and suburban areas. The United States Environmental Protection Agency 

(USEPA, 2010a) summarizes the following benefits of green infrastructure 

technologies: 

 Reduction and delay stormwater runoff volumes.  

 Potential improvement of aquifer recharge rate. 

 Reduction of pollutant levels from stormwater when infiltration occurs.  

 Potential cooling effects from vegetated systems.   

 Creation of habitats for wildlife. 

 Perceived improvement of human emotional wellbeing. 

 

This thesis focuses on the role of extensive green roofs, constructed for 

mitigating storm water runoff through the installation of substrates and the 

establishment of vegetation on the rooftops of buildings.  Consistent with the 

general benefits described for green infrastructure, green roofs also generate 

several environmental, economical and social benefits.  

The green roof industry in North America is very young in comparison to 

Europe, particularly Germany, which is the leader of green roof technologies. The 

Guideline for the Planning, Execution and Upkeep of Green Roof Sites, published 
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by the Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau (FLL, 

2002), is a relevant compilation of the technical experience accumulated in 

Germany. Specific research for United States (U.S.) conditions is necessary to 

validate the developing industry by testing commercial components and green 

roof designs and performance.   Climatic and environmental conditions are 

substantially more variable in the U.S. than in Germany and will greatly affect 

green roof performance.  Snodgrass and Snodgrass (2006) acknowledge that some 

lessons can be extrapolated from the Europe; however, specific research about 

green roof media composition, depth, and plant performance needs to be 

conducted in order to ensure success under North American conditions. In 

general, more local technical knowledge needs to be generated to protect the 

customer’s investment and to achieve the environmental services expected from 

green roofs. The research described in this thesis investigates the effect of a 

recycled tire material (hereafter referred to as “crumb rubber”) as a sustainable 

amendment for extensive green roof substrates. 

B. Green Roofs 

B.1.  Historical Background and Definition 

A green roof is defined as a contained green space on top of a man made 

structure above, at or below grade (Green Roofs for Healthy Cities, 2008). 

Historically, greening roofs dates from thousands of years ago. For example, the 

Hanging Gardens of Babylon constitute an example of gardens constructed on 

rooftops (Snodgrass and Snodgrass, 2006).  Although no definitive proof of their 

existence have been found, they are probably considered the most famous gardens 



 7 
 

in history (Osmundson, 1999).  Scandinavian roofs also were covered with 

vegetation during the Viking and Middle Ages (Berg, 1989). This technology 

used several layers of birch bark for waterproofing purposes (Stern et al., 2006) 

and included an uppermost layer of sod or dry turf to hold the birch bark in place 

and to allow for the growth of grasses (Vreim, 1966). In very dry areas, the use of 

Sedum, Allium and Sempervivum species was recommended (Nordhagen, 1934 

and Melheim, 1933).  For landscaping purposes, sod houses were planted with 

wildflowers.  A representation of a sod house exists in Epcot’s Park Norway 

pavilion in Orlando, Florida.  This roof displays Evolvulus species, (blue daze), 

Vinca (vinca or periwinkle) and Impatiens species (impatiens) (Markey, 2006).   

The contemporary use of vegetation and supporting structures, 

intrinsically integrated to the buildings, represents the modern concept and 

technology generated in Germany and Central Europe (Dunnet and Kingsbury, 

2008).  In the 1880’s, sand and gravel were used in the top of a highly flammable 

tar for reducing fire hazards and it was later observed that natural seed 

colonization occurred (Getter and Rowe, 2006).  For more than one hundred 

years, 50 of these pioneer roofs have remained functional (Kohler and Keeley, 

2005).   

One of the earliest green roofs in the United States is located in the 

Rockefeller Center, New York (Osmundson, 1999). Established in 1936, this 

project is 76,400 square feet (approximately 0.7 Hectares) in area 

(Greenroofs.com, 2010a).  The adoption of green roofs as a sustainable practice 

has been encouraged by the governments of United States and Canada since the 
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1990’s. (Snodgrass and Snodgrass, 2006).  A current estimate of the total green 

roof square footage in the United States is over 10.5 million square feet or over 97 

ha (Greenroofs.com, 2010b).  

B.2.  Green Roof Systems Classification 

Contemporary green roofs integrate the plants and its supportive structures 

in the construction or retrofit of buildings. The new approach has established two 

main categories, based principally on the amount of maintenance required: 

intensive and extensive green roofs.  Intensive green roofs are designed to 

reproduce conventional gardens and expect to involve the individuals in 

recreation purposes (Dunnet and Kingsbury, 2008). They display a whole range of 

vegetation types, from herbaceous plants to trees and shrubs (Getter and Rowe, 

2006); in order to sustain these species, they require a deep soil layer (at least 6 

inches, equivalent 15 cm), typically rich in organic matter (Snodgrass and 

Snodgrass, 2006).   High maintenance is required in the form of weeding, 

fertilizing and watering (Berndtsson, 2010).    

In contrast, extensive green roofs, which are typically not accessible to the 

public, are meant to fulfill ecological functions (Dunnet and Kingsbury, 2008), for 

instance, stormwater mitigation and habitat creation.  Extensive green roof 

systems are usually composed by the following layers (from bottom to top): deck, 

waterproofing, insulation, root barrier, drainage, root permeable filter, substrate 

and vegetation (Snodgrass and Snodgrass, 2006). Hardy succulents are the most 

extensively used plant species (Snodgrass and Snodgrass, 2006) but herbs, grasses 

and mosses have also been used in installations (Getter and Rowe, 2006).  In 
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general, green roofs require relatively minimal maintenance; however, basic 

maintenance such as replanting, irrigating, fertilizing, and weeding is fundamental 

until plant coverage reaches approximately 80% of the surface area (Getter and 

Rowe, 2006).  Some authors refer to a third group of roof called “semi-intensive,” 

where the elements from intensive and extensive green roofs are combined. 

Dunnet and Kingsbury (2008) consider semi-intensive green roofs to provide an 

alternative to enhance aesthetics and biodiversity.  The following table 

summarizes the general characteristics of intensive, semi-intensive and extensive 

green roofs.  

 

 

 

 

 

 

 

 

 

Fig. 1.1. An example of intensive and extensive green roof components. Source: 

American Hydrotech Inc., 2010. 

 

Since this thesis focuses on extensive green roofs, the rest of this literature 

review will refer exclusively to this category.  
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Table 1.1. General characteristics of different green roof categories. Source: 

Green Roofs for Healthy Cities, 2008. 

 

Characteristic Extensive Semi-Intensive Intensive 

Substrate depth 
6 inches (15 
cm) or less  

25% above or below 
6 inches (15 cm) 

More than 6 
inches (15 cm) 

Accessibility 
Often 

inaccessible 
May be partially 

accessible 
Usually 

accessible 

Fully saturated 
weight 

Low 10 - 35 
lb/ft2 

(48.8 – 170.9 
kg/m2)  

Varies 35 - 50 lb/ft2 

(170.9 – 244.1 
kg/m2) 

Varies 35 - 300 
lb/ft2 

(170.9 – 1,464.7 
kg/m2) 

Plant diversity Low Greater Greatest 

Cost Low Varies High 

Maintenance Minimal Varies 
Varies, but is is 
generally high 

 

B.3.  Intent and Benefits of Extensive Green Roof Systems 

The motivation to construct an extensive green roof depends on the 

primary benefit expected from the project. As an example of green infrastructure, 

extensive green roofs contribute to stormwater management, increase biodiversity 

and, typically, reduce energy costs during the summer (Getter and Rowe, 2006). 

Other specific benefits derived from this technology are the extension of the life 

of the roof membrane (a major cost-consideration), and the improvement of 

building aesthetic characteristics. Several authors have categorized green roof 

benefits according to three main areas: environmental, economical and aesthetic 
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(Dunnet and Kingsbury, 2008); other authors divide the green roof benefits as 

public and private (Peck and Kuhn, 2000).   The following descriptions are based 

on Dunnet and Kingsbury’s (2008) classification. 

B.3.1. Environmental Benefits 

The following aspects constitute the major environmental benefits of 

extensive green roofs: 

 Stormwater management and water quality improvement. 

 Habitat creation. 

 Potential reduction of the urban heat island. 

B.3.1.1. Stormwater Management and Water Quality Improvement   

The reduction of storm water runoff quantity is possibly the most 

important single benefit of extensive green roof (Getter and Rowe, 2006).  Since 

impervious surfaces in urban areas often exceed 40%, green roofs have an 

important role in best management practices for stormwater mitigation (Dunnet 

and Kingsbury, 2008).  The most researched green roof topic has been the 

reduction and management of stormwater runoff (Dunnet and Kingsbury, 2008). 

As a result, it is well understood that: 

 Water is retained in the pore spaces of the substrate or taken up by 

absorbent materials in the mix (Dunnet and Kingsbury, 2008).  

 Water is also used by plants, which require it for physiological processes, 

including transpiration (this is one of the ways water is rapidly removed 
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from the green roof substrate and returned to the atmosphere (Getter and 

Rowe, 2006). 

 Water can be stored and retained by the substrate, becoming a buffer 

between the atmosphere and the roof top (Dunnet and Kingsbury, 2008). 

 As a result of the green roof system, peak flow runoff volumes are reduced 

and there is a delay in stormwater draining from the roof (Getter and 

Rowe, 2006).  

The storage capacity of extensive green roofs is dependent upon the 

season of the year, the depth of the substrate, the number and type of layers used 

for its construction, angle of slope of the roof, the physical properties of the 

growing media, the type of plants incorporated, and the rainfall intensity (Dunnet 

and Kingsbury, 2008).  Most research has determined yearly reductions in runoff 

between 40 and 60%, but reduction values above 80% have been reported for 

specific localities and environments (Dunnet and Kingsbury, 2008).  Typically, 

the average runoff volume from rainfall events can be reduced from 30 to 60% 

according to multiple authors (Getter and Rowe, 2006).   

Water quality can be modified when green roofs replace conventional 

roofing materials. The characteristics of runoff water from green roofs are, by and 

large, dependent on the quality of the rainwater and the characteristics of the 

media (Dunnet and Kingsbury, 2008). The levels of some nutrients in the green 

roof leachate can increase while other nutrients can be reduced, for this reason, 

Berghage et al. (2007) points out that “the increased concentration of a chemical 

element should not be seen in isolation”. According to Dunnet and Kingsbury 
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(2008) the actual load of certain nutrient concentration could be comparable to 

same levels of nutrients leached from other urban vegetated areas or could be the 

simple result of much reduced flow from the roof. 

Two factors can contribute to elevated levels of nutrients in green roofs: 

the composition of the media and fertilization practices (Dunnet and Kingsbury, 

2008). The first factor tends to be only important during the early life of the roof, 

when first stormwater flushes occur, and it can be minimized by reducing the 

amount of organic matter (Hunton et al., 2006).  In regards to fertilization, this 

should be also a requirement almost restricted to the establishment of plants, since 

the ultimate goal for extensive green roofs is to be self-sustainable through 

steady-state nutrient cycling.  In the case of green roof systems that are 

nutritionally poor, follow-up fertilization events in intervals of several years are 

suggested until reaching the desired plant coverage (FLL, 2002). Furthermore, 

high fertility has been shown to increase unwanted species competition (Getter 

and Rowe, 2006; Dunnett and Kingsbury, 2008). 

Once the potential sources of pollution from green roofs are better 

understood, it is important to focus on the benefits derived from the reduced 

volume and speed of the stormwater runoff from the system. Less stormwater- in 

waterways translates into less erosion, sedimentation, and reduced overflow from 

combined sewer systems (Getter and Rowe, 2006).  Additionally, green roofs also 

have the capability to buffer acid rain, until the point in which all the negative 

charges of the particle surface become saturated (Berghage et al., 2009). 
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Therefore, by reducing the volume of stormwater runoff, water quality is 

improved. 

B.3.1.2. Habitat Creation   

Another important benefit realized from the implementation of extensive 

green roofs is the creation of habitat for wild species.  Switzerland has led the way 

in conducting research and creating regulations to promote a strategy of 

biodiversity.  Federal legislation on the conservation of nature and cultural 

heritage requires the protection of endangered species by using well-designed 

green roofs to provide habitat and to compensate by the land-use changes 

(Brenneisen, 2006).  

In order to meet these legislated objectives, some modifications of design 

criteria are implemented, such as increasing the thickness of the substrate and 

incorporating natural soils from nearby areas (Brenneisen, 2006).  The use of 

natural and structural soils have been demonstrated to favor the colonization of 

approximately 79 species of beetles and 40 of spiders in the most biodiverse roof 

installation investigated to date: the Rhypark Building, in Basel, Switzerland 

(App. Fig. A1).   Variations of green roofs are “brown roofs”, which mimic urban 

wastelands i.e. brown field sites, which host rare invertebrates and ground-nesting 

birds (Dunnet and Kingsbury, 2008).  In this case, urban substrates such as brick 

rubble, crushed concrete, sands, gravels, and subsoils are utilized, and installed 

irregularly to recreate a mini-topography able to maximize the ecological variety 

(Dunnet and Kingsbury, 2008), (App. Fig. A2).  To date, green roofs and brown 

roofs have not been compared under equal conditions; however, best design 
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practices involve characteristics of both types to maximize biodiversity (Dunnet 

and Kingsbury, 2008).   

B.3.1.3. Potential Reduction of the Urban Heat Island   

Rooftops are reflective surfaces that can accumulate heat.  For example, 

during NASA flyovers, the rooftops of the cities of Baton Rouge, Houston, 

Sacramento and Salt Lake City reached temperatures of 160 °F (71 °C), while 

vegetation and water recorded surface temperatures between 75 and 95 °F (24 and 

35 °C) (Wong, 2005). The cooling effect of evapotranspiration is clear at the 

microclimatic scale (Dunnet and Kingsbury, 2008).  By transforming solar energy 

into water vapor, the production of heat in the impervious surfaces is prevented or 

reduced (Bass, 2001).  Little research has been conducted in this area, but it is 

suggested that, the larger the individual green areas are, the greater is the range of 

temperature moderation between them and impervious surfaces (Dunnet and 

Kingsbury, 2008).  In a holistic way, green roofs are connectors that allow the 

continuum of environmental services across the different types of green 

infrastructure that can be present in a city or residential area.   

B.3.2. Economic Benefits 

The following are major economic benefits of extensive green roofs: 

 Increased roof life; 

 Cooling, insulation and energy efficiency, and 

 Green Building assessment and public relations. 
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B.3.2.1 Increased Roof Life 

  The various components of the green roof protect the waterproofing 

membrane against solar exposure and ultraviolet radiation (Getter and Rowe, 

2006).  By avoiding drastic changes in temperature, the roof membrane does not 

expand and contract as it occurs in non-vegetated roofs (Getter and Rowe, 2006).  

A study conducted in Canada compared the maximum temperatures reached by 

membranes covered and not covered by vegetation and the related parts of the 

green roof.  The membrane protected by the components of the green roof reached 

a temperature of 77 °F (25 °C), while the membrane not covered by vegetation 

registered 158 °F (70 °C) (Liu and Baskaran, 2003). Under these circumstances, it 

is quite possible that a membrane protected by the vegetation of a green roof 

could be useful for two to three times the life cycle of that of a non-vegetated 

membrane (Peck et al., 1999).   

B.3.2.2.  Cooling, Insulation and Energy Efficiency   

The vegetation, substrate and additional components of a green roof can 

reduce solar energy gain by up to 90% compared with non-shaded buildings 

(Getter and Rowe, 2006).  It is estimated that for every 0.5 C reduction in internal 

building air temperature, this may reduce electricity use for air-conditioning by up 

to 8% (Dunnett and Kingsbury, 2004). The greater energy savings occur during 

summer, when, more often, the spaces between substrate particles are filled with 

air, since water is a poor insulator (Getter and Rowe, 2006).  Potential energy 

savings in cities is extremely relevant because buildings consume 36% of the total 

energy use and 65% of the total electricity consumption in cities (Kula, 2005). In 
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2003, it was estimated that if all the buildings of Chicago had green roofs, the 

potential savings could be $100M per year (Laberge, 2003). Since then, the cost 

of energy has risen considerably. 

B.3.2.3.  Green Building Assessment and Public Relations   

Construction projects that implement green roofs can opt for various 

assessment and rating schemes for sustainable or green building. For example, the 

LEED (Leadership in Energy and Environmental Design) Program (U.S. Green 

Building Council, 2010) rewards green roof systems for their contribution to 

stormwater management and reduction of heat island effects (Oberlander et al., 

2002).   

B.3.3. Aesthetic Benefits 

Humans experience beneficial health effects when observing green plants 

and nature, for example, stress reduction, lowered blood pressure, reduced muscle 

tension, and increased feelings of well-being (Ulrich and Simmons, 1986).  These 

are essential emotions desirable to sustain work productivity. Kaplan et al., (1988) 

reported that employees who had a view of natural landscapes were less stressed, 

experienced greater job satisfaction, and reported fewer headaches and other 

illnesses than those who had no natural view.  Ulrich (1984) also related the 

exposure to natural environments with the faster recovery of patients after 

surgery. Related to the economic benefits, the aesthetic component can add value 

to real estate and services (e.g. hotels, restaurants, condominiums etc.) (Dunnett 

and Kingsbury, 2004).   
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B.4. Extensive Green Roof System Components and Construction 

The components of a green roof can be classified as either physical, 

including the deck, waterproofing membrane, insulation, root barrier, drainage 

layer and the root permeable filter layer, or dynamic, including substrate and 

vegetation (Weiler and Scholz-Barth, 2009). Designers have the flexibility to 

choose among different materials and technologies in order to achieve the overall 

design intent of the project. The order of the physical layers may vary among 

projects; however, in general, these layers are installed in the way that provides 

the maximum protection to the waterproof membrane so that the life of the project 

is maximized.  

B.4.1. The Deck    

This is the base of the green roof.  It can be constructed from concrete, 

wood, metal, plastic, gypsum, or composite (Snodgrass 2009). In the United 

States, plywood is the most common material used in residential projects and 

concrete for buildings (Snodgrass and Snodgrass, 2006). Appendix Fig. A3 

provides an example of the installation of a deck in a residential project. 

B.4.2. Waterproofing Layer   

There are three types of waterproofing methods: the built-up roof, the 

single-ply membrane and the fluid-applied membrane (Osmundson, 1999).  Built-

up roofs are composed of bitumen/asphalt felt or bituminized fabrics. Given the 

short life of these materials (15-20 years), they are not recommendable for green 

roofs purposes (Dunnet and Kingsbury, 2008). 
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Single-ply membranes are root resistant and efficient if correctly installed. 

They consist of rolled sheets of inorganic materials as plastic, polyvinyl chloride 

(PCV), thermoplastic polyolefin (TPO) or synthetic rubber, usually with heat-

welded seams (Snodgrass and Snodgrass, 2006).  Appendix Fig. A4 illustrates the 

installation of a single-ply membrane in a commercial project.  Fluid-applied 

membranes are hot or cold liquids that can be sprayed or painted on the surface, 

and are very convenient for irregular surfaces (Dunnet and Kingsbury, 2008) and 

solid concrete decks (Snodgrass and Snodgrass, 2006). Once dry, they act like a 

seal, preventing leaks in the joints (Osmundson, 1999). 

B.4.3. Insulation Layer    

Insulation materials translate into in energy saving advantages for 

buildings (Snodgrass and Snodgrass, 2006). This layer can be located above or 

below the waterproofing membrane, however, by locating it above, mildew 

problems can be prevented and extra protection against ultraviolet (UV) 

degradation is provided to the membrane (Snodgrass and Snodgrass, 2006).  

Styrofoam is an example of the materials used for insulation purposes (Dunnet 

and Kingsbury, 2008). The installation of Styrofoam in a commercial project is 

illustrated in Appendix Fig. A5. 

B.4.4. Root Barrier   

This protection layer is absolutely necessary if the deck is made of 

biodegradable products such as: wood, asphalt and bitumen (Snodgrass and 

Snodgrass, 2006).  Among the products used to prevent root penetration are PVC 



 20 
 

rolls and high-density polyethylene sheets (Snodgrass and Snodgrass, 2006). 

Alternatively, an innovative pre-constructed system uses aluminum surfaces in 

order to prevent root and moisture penetration and avoids the use of PVC because 

of environmental concerns, (Corus Building Systems, 2008). Appendix Fig. A6. 

illustrates the installation of a root barrier. 

B.4.5. Drainage Layer   

Drainage is essential to maintain the aeration in the root zone (Snodgrass 

and Snodgrass, 2006).  Prolonged saturation of a roof can bring physiological 

disorders to the plants and could favor the colonization of pathogenic organisms.  

The thermal insulation properties are also lost when the green roof is permanently 

wet (Dunnet and Kingsbury, 2008).  Green roofs installed on flat roofs or in high 

rainfall regime areas usually require additional means to remove the water 

retained in the substrate (Snodgrass and Snodgrass, 2006).  According to Dunnet 

and Kingsbury (2008), three main types of materials can be used for drainage i.e., 

granular, porous mats and lightweight plastic or polystyrene modules.  

Granular materials include: gravel, stone chips, broken clay tiles, clinker, 

scoria (lava rock), pumice, expanded shale and expanded clay granules (Dunnet 

and Kingsbury, 2008). A layer of granular materials can be incorporated 

underneath the substrate profile increasing the root space for plants (Dunnet and 

Kingsbury, 2008).  Porous mats, made of a range of materials such as recycled 

clothing and car seats, act like sponges that absorbs the excessive water.  Some 

materials can negatively affect plants since they tend to extract the available water 

necessary for plant growth (Dunnet and Kingsbury, 2008). 



 21 
 

Lightweight plastic or polystyrene modules exhibit great flexibility in 

design and appearance. Usually thinner than 1 inch (2.5 cm), some sheets contain 

reservoirs to retain water, and others can be filled with granular media (Dunnet 

and Kingsbury, 2008). In some cases, the drainage layer enables irrigation water 

to be introduced from the base (Dunnet and Kingsbury, 2008).  Drainage outlets 

must be kept free of substrate particles at all times in order to maintain their 

functionality (Dunnet and Kingsbury, 2008).  The installation of a modular 

drainage layer in a residential project is illustrated in Appendix Fig. A7. 

B.4.6. Root Permeable Filter Layer   

This layer is responsible for keeping the substrate in place, and preventing 

blockage or damage of drainage outlets.  It is highly recommended to use a filter 

cloth or mat, such as semi-permeable polypropylene fabric, to prevent the 

movement of fine particles from the substrate into the drainage layer (Snodgrass 

and Snodgrass, 2006).  The root permeable layer should overlap 8 inches (20 cm) 

when laid out (Dunnet and Kingsbury, 2008).  Appendix Fig. A8 illustrates the 

installation of this layer in a commercial project. 

B.4.7. Substrate Layer   

Green roof substrates (also known as growing media) are a specifically 

formulated mix of mineral materials, stabilized organic amendments and 

stabilized lightweight aggregates (Weiler and Scholz-Barth, 2009).  The ideal 

substrate for extensive green roofs should retain the following characteristics: 

 Lightweight; 
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 Well-drained;  

 Adequate water and nutrient-holding capacity; 

 Able to filter pollutants; 

 Sustainable; 

 Durable and stable. 

The shallow layer of substrate, between 0.8 and 6 inches (between 2 and 

15 cm) is predominantly inorganic (Dunnet and Kingsbury, 2008) and generally, 

the organic fraction should not exceed 8% by mass (FLL, 2002). In order to have 

a substrate that efficiently absorbs and retains water and nutrients, while at the 

same time exhibits free draining characteristics, it is necessary to use granular 

materials that achieve these objectives with the different pore sizes created 

between the particles (Miller, 2003).  The granular products can be roughly 

classified as natural minerals, artificial minerals and recycled or waste materials 

(Dunnet and Kingsbury, 2008). 

Currently, most of the projects in the east of the United States use 

commercial mixes based on expanded shales, slates and clays.  Shale is a detrital 

sedimentary rock composed of very fine clay-size particles from the 

decomposition of feldspar, quarts, mica, pyrite and organic matter (Powell, 2010). 

A lamination process occurs when layers of other sediments lithify the silt and 

mud of the shale surface (Powell, 2010).  Shales have a high cation exchange 

capacity and provide some nutrients to plants (Handreck and Black, 2005).  

Expanded shales are an excellent material to remove pollutants.  This material has 

been proven to retain phosphorus, ammonia and metals from synthetic acid rain 
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(Long et al., 2006).  Slate is a foliated metamorphic rock derived from the 

metamorphism of shale (Powell, 2010).   

 

Table 1.2.  Examples of materials utilized as extensive green roof substrates. 

Sources: Dunnet and Kingsbury, 2008, and Green Roofs for Healthy 

Cities, 2008. 

 

Natural Minerals Artificial Minerals 
Recycled or Waste 

Materials 

Sand Perlite 
Crushed clay brick or 

tiles, brick rubble 

Lava (scoria) Vermiculite Crushed concrete 

Pumice 
Expanded shales, slates 

and clays 
Subsoil 

Gravel Rockwool  
 

A study conducted in the Center for Green Roof Research, Penn State 

University Park, demonstrated that expanded slates are less efficient than 

expanded shales and clays for pollutant retention. However, expanded slates are 

efficient in removing nutrients and metals on a weight basis (Long et al., 2006).  

Clays are soil particles smaller than 2 μm (0.002 mm), composed of crystalline 

sheets of silica and alumina (Sylvia et al., 2005).  One sheet of silica and one 

sheet of alumina is classified as a 1:1 clay, like kaolinite; and a sheet of alumina 

between two sheets of silica is classified as a 2:1 clay, like smectite (Handreck 

and Black, 2005).  These sheets give a layered effect to clays and increase their 

surface area (Sylvia et al., 2005).  The different arrangement of atoms in clays 
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makes these particles very active from a chemical point of view (Handreck and 

Black, 2005).  

The combination of activeness and large surface area of clays have 

important repercussions for the soils and substrates dynamics (Handreck and 

Black, 2005). The adsorption of water, nutrients and gases, and the attraction 

between particles are all surface phenomena (Sylvia et al., 2005).   

 

 

 

 

 

 

 

 

 

 

Fig. 1.2. A scanning electron micrograph showing the layered characteristics of 

clays. Source: US Geological Survey Online Publications Directory, 2009. 

 

Heat expanded clays tend to increase the pH buffering capacity and cation 

exchange of substrate mixes. These particles also tend to hold water very tightly 

(Handreck and Black, 2005).  The water holding characteristics of a substrate 

made of expanded clays could be problematic for horticultural crops but it could 
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be adequate for drought tolerant species in extensive green roofs, especially if the 

substrate has a balanced particle size distribution.   

Given the mineral characteristics of shales, slates and clays, the 

lightweight expanded mixes derived from these materials have a good cation 

exchange capacity, which is defined as the ability of a soil or substrate to hold 

positive ions (Sylvia et al., 2005). For extensive green roof effects, the cation 

exchange capacity of a substrate is important for pollutant filtration and plant 

nutrition (Long et al., 2006; Berghage et al., 2009).  

Another important chemical characteristic of substrates is pH, which has a 

direct influence in the availability of nutrients to plants.   It affects the total 

amount of nutrients held by soils, influencing nutrient deficiencies, toxicities and 

microbiological activity (Handreck and Black, 2005).  The maximum nutrient 

availability occurs between pH 6 to 7 for most soils (Handreck and Black, 2005). 

Most microorganisms prefer a pH range in which most nutrients are available 

(Sylvia et al., 2005).  Microorganisms also have the ability to modify the pH by 

producing organic acids under anaerobic conditions, and by producing H+ when 

oxidizing ammonia and sulfur under aerobic conditions (Sylvia et al., 2005).   

The chemical and physical properties of green roof substrates are achieved 

by combining different particle sizes of different, chemically-dynamic materials.  

According to FLL (2002), the recommended content of clay and silt is 7% by 

mass in extensive single course constructions.  If the depth of the substrate layer 

is less than 10 cm (4 inches), the largest particle size recommended is 1.2 cm 

(0.47 inches). If the media is deeper than 10 cm, the maximum particle size 
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recommended is 1.6 cm (0.63 inches), (FLL, 2002).   The FLL manual (2002) 

offers guidelines for the maximum and minimum particle distribution for green 

roof media with an appropriate particle size percentage, by mass.  By following 

these guidelines the resulting substrate should contain a well-balanced amount of 

small and large pores between the inorganic particles, which in conjunction with 

the organic matter, determines the dynamics for water retention.    

The substrate water-holding capacity, defined as the amount of water that 

a substrate can retain after saturation and drainage, plays an important role in 

extensive green roofs (Handreck and Black, 2005).  This property is responsible 

for retaining stormwater, and for continuously providing the air and water 

required for plant development.  FLL guidelines (FLL, 2002) suggest substrate 

water-holding capacities between 20% and 35%, depending on construction 

specifications. 

Bulk density is the physical property that describes the mass of substrate 

that occupies a certain volume.  In practice, the load (weight) of the substrate has 

major structural implications for green roof installations.  Under saturated 

conditions, extensive green roofs can be relatively heavy for existing buildings 

that need to be retrofitted. For example, Cumberland Hall, a residential project of 

the University of Maryland that houses 489 students, only allowed the installation 

of a green roof on 65% of the total available roof area, because of structural load 

limitations of the building (Department of Environmental Safety, UMD, 2010).  

In addition to the load limitations, extensive green roof substrates have 

been criticized for their high-embodied energy (Rustagi et al., 2008). According 
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to Elliot (2007), the embodied energy required for the manufacture of expanded 

shales, slates and clays (as a category) from the mining point to the manufacturer 

shipping point is approximately 1.34 million British Thermal Units (BTU’s) 

(184.9 MJ/hl.  In this process, mining and hauling demand 4.3%, the kiln utilizes 

91.4%, and the sorting/screening step (possibly over estimated) requires 4.3% of 

the energy.  

Because of the high-embodied energy required for the manufacture of 

expanded shales, slates and clays, and because of the expectancy of the industry 

and the communities for the development of lighter and more sustainable 

materials, some recycled products are being considered for amending green roof 

substrates.  Recycled products are readily available and they have the potential of 

reducing the environmental impact of production and the manufacturing costs 

(Emilsson, 2008).  

B.4.8. Vegetation Layer 

When selecting plant material, certain aspects must be considered, for 

instance: the design intent, aesthetic appeal, local environmental conditions, plant 

characteristics, disease and pest resistance, and substrate composition and depth 

(Getter and Rowe, 2006).  Some of the desirable characteristics for extensive 

green roof plants include: easy propagation, rapid establishment, and high ground 

cover density (White and Snodgrass, 2003). It is also important, for sustaining a 

full coverage, that the plants possess the mechanisms to perpetuate their 

propagation in the long term, as long as the environmental conditions are 

favorable (Getter and Rowe, 2006).  In the United States, succulent, native and 
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short grass prairie species are the major plant categories preferred for extensive 

green roofs (Snodgrass and Snodgrass, 2006; Sutton, 2009).  A typical green roof 

plant installation is illustrated in Appendix Fig. A9. 

B.4.8.1.  Succulent Plants 

The most adaptable green roof plant species have low growing habits, 

shallow and perennial root systems, and exhibit a high tolerance to extreme 

environmental and biological conditions (Snodgrass and Snodgrass, 2006). 

Succulent plants adapt well in these conditions (Getter and Rowe, 2006); for this 

reason, they are widely-used in extensive green roof projects. 

According to Snodgrass et al. (2006), Sedum, Sempervivum, Talinum, 

Jovibarba and Delosperma are the best-adapted genera of succulents. Sedum, in 

particular, has shown the greatest survival in a wide range of conditions 

(Snodgrass and Snodgrass, 2006).  Appendix Fig. A10 illustrates a mature 

extensive green roof planted with Sedum species. Hardy succulents have 

crassulacean acid metabolism (CAM), which allows the plants to increase the 

water-use efficiency by opening the stomata and storing CO2 during the night, 

when evaporation rates are the lowest (Lüttge, 2004). 

The genus Sedum, which belongs to the Crassulaceae family, seems to be 

facultative CAM species. Lee and Griffiths (1987) supported this theory by 

demonstrating that Sedum telephium has the potential to use the regular C3 

metabolism under well-watered conditions, and it expresses a transition to CAM 

when drought conditions are experienced.  This includes a continuum of different 

stages of CAM expression that are repeatedly reversible under changing drought 
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and watering regimes.  The survival of Sedum species under extended drought 

conditions has been extensively documented. One of the outstanding species of 

this genus, Sedum album L (white stonecrop), has survived after more than 100 

days without water (Lasalle, 1998).  This is likely mostly attributable to this 

species ability to reduce water loss to a minimum under extreme conditions. 

Occasionally, project owners and designers intend to increase the 

biological diversity of the green roof system by incorporating beneficial 

microorganisms.  According to Brundrett (2009), the Crassulaceae family does 

not establish mycorrhizal associations; however, other succulent plants, such as 

members of the Agavaceae, Cactaceae and Euphorbiaceae families have 

arbuscular mycorrhizal roots (Brundret, 2009).  

B.4.8.2.  Native Plants and Short Grass Prairie Species 

The selection of native and natural prairie species has being promoted for 

green roof installations in the Midwest regions of the US (Getter and Rowe, 

2006).  Native plants are already adapted to the existing climate but the potential 

fire hazard (particularly for grasses) represents a major concern for green roof 

installations on rooftops (Monterusso et al., 2005).  A second disadvantage is the 

high dependence of native plants for irrigation, since the majority of native plants 

rely on deep tap roots under natural conditions (Getter and Rowe, 2006). Through 

some plant selection studies, four native species were found to be well adapted to 

green roof conditions: Allium cernuum L. (nodding wild onion), Coreopsis 

lanceolata L. (lanceleaf coreopsis), Opuntia humifusa Raf. (prickly pear), and 

Tradescantia ohiensis L. (spiderwort), (Monterusso et al., 2005).  In addition to 
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fire hazards, a disadvantage of green roof grasses is the access requirement for 

hard pruning before the onset of new growth and other basic maintenance 

activities (Snodgrass and Snodgrass, 2006). 

The use of grasses is attractive for adding motion and texture to the 

design, and for providing habitat to birds and insects; however, because of the 

high biomass production requirements, a deeper layer of growing media is 

generally necessary to sustain this type of vegetation (Snodgrass and Snodgrass, 

2006).  As an exception, blue grama (Bouteloua gracilis) is better adapted to 

shallow rooting and high evapotranspiration environments, low rainfall, 

mycorrhizal symbiosis, and pulsed nutritional requirements (Sutton, 2009).   

  

C.  Investigating Crumb Rubber as a Potential Amendment for Extensive Green 

Roof Substrates 

C.1. Crumb Rubber and Zinc 

Used automotive tire disposal is a major environmental concern. Each 

year, approximately 270 million automobile and truck tires are removed from 

service and scrapped in the United States (Geosyntec Consultants, 2008). Several 

programs, laws or regulations throughout 48 states in the US have encouraged the 

management of this waste (USEPA, 2010b). For example, in Maryland, the HB 

1202 Scrap Tire Recycling Act, enacted in 1991, regulates the proper disposal of 

scrap tires (USEPA, 1999). Nowadays, this recycled product has several industrial 

applications. Geosyntec Consultants (2008) summarized the following uses: 
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 Alternative fuel source for electric generation; 

 Fuel source for cement kiln operations; 

 Raw material for the production of industrial and consumer goods; 

 Raw material for landfills and septic systems; 

 Lightweight fill material for embankment or retaining wall construction; 

 Rubber mats in horse stalls; 

 Sound barrier at highways and 

 Rubberized asphalt. 

Crumb rubber (CR), defined as rubber granules derived from a waste tire 

that are less than or equal to one-quarter inch or six millimeters in size, is a 

product that, among other applications, has been investigated to amend substrates 

in horticultural production (Newman et al., 1997) turf grass and playground 

installations (Groenevelt and Grunthal, 1998).  

Significant reductions in soil hardness and soil shear strength, as well as 

improvements in soil aeration and drainage have been reported with CR 

incorporation (Groenevelt and Grunthal, 1998). CR, as a potential lightweight 

amendment for extensive green roof substrates could reduce substrate loads, 

decreasing engineering costs for buildings (Anderson et al., 2006) and may also 

improve the porosity (Ristvey et al., 2010) and longevity of many green roof 

substrates. However, it has also been noticed that plants growing in CR amended 

soils and substrates exhibit a high Zinc (Zn) foliar content (Groenevelt and 

Grunthal, 1998) and in some cases, the exposure to CR has resulted in yield 

reduction (Newman et al., 1997) and phytotoxicity (Handreck and Black, 2005). 
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Zn is a bluish-white lustrous metal with atomic number of 30 and atomic 

mass of 65.38, constitutes between 0.0005% and 0.02% of the Earth’s crust (Irwin 

et al., 2007).   Zn is widely used by industry is an essential element for all 

organisms (Landner and Lindeström, 1998).  Mean Zn concentrations in soils 

range from 50 to 66 g total Zn/g of soil, and plants require Zn as an essential 

component of proteins (Broadley et al., 2007). High soil pH influences the 

availability of Zn because of increased adsorption to cation exchange sites 

(Broadley et al., 2007). Zn toxicity in soils is uncommon; however, it is usually 

observed when the concentration in the leaves exceeds 300 g Zn/g of dry weight 

(Broadley et al., 2007).  Plants capable of accumulating more than 3,000 g Zn/g 

of dry weight in the shoots are considered highly tolerant to Zn, and a plant is 

classified as a hyperaccumulator if more than 10,000 g Zn/g of dry weight in the 

aerial parts of plant species occurs under the natural growing environment 

(Broadley et al., 2007). 

Some polymers, metals and additives are incorporated to the natural and 

synthetic rubber elastomers during the tire manufacture in order to enhance 

performance (Geosyntec Consultants, 2008). Zn oxide is used as a vulcanizing 

initiator for rubber fabrication (Gordon et al., 2003). Therefore, rubber tires 

contain between 2.5% (FLL, 2002) and 5% Zn (Handreck, 1996) as Zn oxide.   

 According to a generic six-reservoir cycle (Fig. 1.3) for mineral resources, 

the Zn cycle includes the following stages: source (extraction from the 

environment), processing, fabrication, use, waste management, and a sink 

reservoir (Gordon et al., 2003). The information from this cycle provides a 
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framework for resource management, environmental science, and policy analysis 

(Gordon et al., 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.3. The generic six-reservoir cycle for a mineral resource. Source: (Gordon 

et al., 2003).    

 

Presently, around 70% of the Zn produced worldwide originates from 

mined ores, and 30% is estimated to be from recycled or secondary Zn sources 

(International Zinc Association, 2010a).   After the processing stage, Zn is used to 

fabricate coated steels, brass, Zn-based alloys and chemical compounds, among 

other products (International Zinc Association, 2010b). According to estimations 

in 2003, the final use of Zn occurs in the following sectors: construction (45%), 

transportation (25%), consumer and electrical goods (23%), and general 

engineering (7%) (International Zinc Association, 2003b).  Moderate amounts of 

Zn leaches into the environment during the use phase (Gordon et al., 2003).  Fig. 
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1.4. exemplifies different sources of Zn dissipation that affect the quality of urban 

runoff. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.4. Sources of total Zn in urban runoff. Adapted from University of 

Wisconsin-Extension, 1997. 

 

The addition of Zn to aquatic environments imposes a hazard for plants 

and animals. This pollutant can cause mortality, growth retardation, and 

reproductive impairments to aquatic species (Eisler, 1993).  The following levels 

are the national recommended water criteria for Zn. The Criteria Maximum 

Concentration (CMC) represents the highest concentration of a material in surface 

water to which an aquatic community can be briefly exposed without resulting in 

an unacceptable effect. The Criterion Continuous Concentration (CCC) refers to 
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the highest concentration of a material in surface water to which an aquatic 

community can be exposed indefinitely without resulting in an unacceptable 

effect (USEPA, 2009). 

 

Table 1.3. National Recommended Water Criteria for Zn. (USEPA, 2009). 

 

 Freshwater Saltwater 
Human Health for 

the Consumption of 

Pollutant 
Category 

CMC 
(acute) 
(μg/L)  

CCC 
(chronic)

(μg/L) 

CMC 
(acute)
(μg/L) 

CCC 
(chronic)

(μg/L) 

Water 
organism 

(μg/L)  

Organism 
Only 

(μg/L) 

Prioritary 120 120 90 81 7400 26000 

  

Several factors influence the bioavailability of Zn, for example: 

temperature, pH, water hardness, and the presence of other contaminants 

(Environmental Protection Division, British Columbia, 1999).  For example, Zn is 

more toxic to fish in soft, acidic waters with low total alkalinity (Wurts and 

Durburow, 1992).  The oral ingestion of 45 mg of elemental Zn per day has 

proven to be non toxic for human adults (Prasad, 1993). However, excessive Zn 

can promote copper deficiency, anemia, decreased levels of high-density 

lipoprotein (HDL) cholesterol (Mrini, 2003), pancreas damage, headache, and 

abdominal pain (Irwin et al., 1997).  

Post-industrial and post-consumer Zn materials are reused, recycled, 

deposited in landfills, or lost to the environment. During waste management 

stages, few uses of Zn are suitable for easy recycling (Gordon et al., 2003). With 

regard to rubber tires, an industrial technology for recovering the metal has not 
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been developed, probably because the Zn concentration after the use stage is not 

significant compared to other materials such as brass and galvanizing residues 

(Gordon et al., 2003). 

The import and export of Zn divides products by category (Gordon et al., 

2003): 

 Production: ore concentrate and smelted, and refined Zn. 

 Semi-production: Zn ingot, sheet, plated steel, among others; to be used 

for final products. 

 Final products: commercial and industrial products containing Zn or Zn 

alloy. 

Import and export records are important to reflect the accumulation or 

depletion of regional Zn stocks (Gordon et al., 2003). For example, during 1985 

and 2005, Central and East Europe reduced its refined Zn demand by 809 

kilotons, while China increased its’ demand by 2599 kilotons (International Zinc 

Association, 2010c).  From a sustainability aspect, the usage trend of Zn can not 

be sustained indefinitely because of the observed rates of depletion (Kesler, 

1994). The reuse of Zn (processed, in-use or discarded) is highly recommended, 

as well as a critical reflection about the anthropogenic inputs of Zn into the 

environment (Gordon et al., 2003).  

 



 37 
 

D.  Objectives of this Research 

Several research objectives were developed within the framework of this 

study, to determine whether CR could be used as an environmentally safe 

amendment for extensive green roof substrates. These were: 

 To quantify the amount of Zn released from CR. 

 To determine if what conditions influence the release of Zn from CR. 

 To determine the interactions between CR Zn and an expanded shale, slate 

and clay substrate mix (rooflite®). 

 To compare any leachate from CR or amended substrates, with water 

quality parameters. 

 To determine if Sedum album (L), S. reflexum (L) and S. kamtschaticum 

(Fisch) are tolerant to the amount of Zn released from CR amended 

substrates. 

 To describe the response of Sedum kamtschaticum to elevated 

concentrations of Zn commonly used during hypertolerance studies.    
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Chapter 2: Substrate Based Studies 

A. Introduction  

Extensive green roof systems are designed primarily to mitigate storm 

water runoff from impervious surfaces in dense urban areas. Additionally, 

extensive green roof systems have other proven ecological and economic benefits, 

for example energy conservation, mitigation of the urban heat island effect, and 

improvements in urban aesthetics (Dunnet and Kingsbury, 2008).   

A key design component of extensive green roof systems are lightweight 

substrates, usually made from heat-expanded shales, slates and clays. These 

substrates are able to buffer a large proportion of a typical rainfall event, thereby 

mitigating runoff from urban areas (Getter and Rowe, 2006).  The physical 

properties of extensive green roof substrates, primarily particle size, are an 

important determinant of water-holding capacity and air-filled porosity. These 

characteristics, when adequately balanced, allow for the development of healthy 

plant root systems and optimal stormwater holding capacity.  

Crumb rubber (CR), a recycled material from scrap tires, has been 

suggested as a lightweight amendment for green roof substrates.  To some extent, 

the use of CR in the green roof industry could alleviate a major environmental 

concern. Each year, over 270 million automobile and truck tires are disposed of in 

the United States (Geosyntec Consultants, 2008).  CR amendments in extensive 

green roof substrates have been demonstrated to improve air-filled porosity while 
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reducing substrate weight.  This might increase the potential for retrofit of green 

roofs on older buildings (Ristvey et al., 2010). 

However, a disadvantage that needs to be overcome is the presence of zinc 

(Zn) in CR.  Tires containing between 2.5% (FLL, 2002) and 5% Zn (Handreck, 

1996) as Zn oxide could represent a major input of Zn in urban runoff, which 

could exceed water quality standards at the point of discharge (University of 

Wisconsin-Extension, 1997).  To date, 489 cases of Zn water impairment have 

been reported in the List of Specific State Causes of Impairment Other Than 

Mercury (USEPA, 2010c).  Geosyntec Consultants (2008) reported that the 

release of Zn from tire-derived materials over 20 months was below the allowable 

effluent concentration (no specific concentration noted) from a 2 ft (0.6 m) tire 

chip layer in a contained landfill.  Soluble Zn from CR used in green roof systems 

could therefore be toxic for the growth of Sedum species, and it could also 

represent a pollutant for aquatic environments at relatively low concentrations 

(USEPA, 2009).  

High levels of Zn have been reported when growing plants in ground tire 

amended products (Handreck and Black, 2005; Newman et al. 1997; Zhao, 1995; 

Bowman et al., 1994). In these cases, the negative results of CR possibly occurred 

as a combined effect of several factors, which determined the availability of Zn in 

the soil or substrate solution. For example, the original tire Zn content, the volume 

of the amendment, the pH of the soil and solution, and the cation exchange 

capacity (CEC) of the substrate materials could contribute to Zn availability.  
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CEC refers to the ability of the substrate to exchange and retain positively 

charged ions.   

Zn toxicity risk increases when the substrate is kept below a 6.5 pH 

(Newman and Meneley, 2005) and when combined with substrates of a low cation 

exchange capacity (CEC). The source materials in many green roof substrates 

(expanded shales, slates, clays and organics) have chemical characteristics that 

determine CEC  (Austin, 2006). A commercial substrate, (rooflite®, Skyland 

USA, Avondale, PA) containing 80% expanded shale, slate and clay, with less 

than 65 g/L of organic material was utilized during this research. Based on an 

analysis conducted by A&L Eastern Laboratories, Inc., the average CEC of 

rooflite® is 7.45 meq/100 g at a pH of 7 (Appendix B1). Compared to many soil 

colloids, this CEC is low, but it represents a moderate CEC for many green roof 

substrates according to Soil Control Lab and Turf Diagnosis and Design, cited by 

Green Roofs for Healthy Cities (2008).       

Under natural conditions, Zn is adsorbed by soil sediments and organic 

components in aquatic ecosystems (He et al., 2005), as a consequence of cation 

exchange capacity. Three important questions therefore arise when considering 

the use of CR as a potential amendment for extensive green roof substrates:  

1) how much Zn is actually released from CR, over time? 

2) how does Zn interact with the green roof  substrates?, and  

3) how much Zn could be expected to leach from a commercial green roof  

amended with CR?   
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To understand and quantify the dynamics between CR and substrates made of 

expanded shales, slates and clays, three experiments were conducted to 

investigate the following objectives: 

 Quantify the rate and total release of Zn that could potentially leach out of 

CR (8-12 sieve mesh) in two different pH treatments over a 16 day (384-

hour) period.  

 Determine if substrates made of expanded shales, slates and clays have the 

ability to adsorb Zn released from CR amendments, over time. 

 Quantify the amount and concentration of Zn in leachates from several 

substrate mixes, including CR, rooflite and 3 mm glass beads (Walter 

Stern, Inc., Port Washington, NY).  

 

B. Methodology 

B.1. Experiment 1:  Quantification of Zn release over time from crumb 

rubber exposed to acidified and non-acidified reverse-osmosis water 

solutions 

Exactly 10 grams of CR (8-12 sieve mesh) was weighed and placed in 60 

replicate 125 ml Erlenmeyer flasks, 10 for each of six sample times (12, 24, 48, 

96, 192 and 384 hours).  Two water treatments, namely untreated reverse osmosis 

(RO) water (pH 5.5), and RO water adjusted to a pH of approximately 4.1 with 

sulfuric acid, were prepared. Half of the 60 flasks were filled with 50 ml of RO 

water and the other half were filled with 50 ml of acidified RO water. Acidified 

water was used as a treatment based on Lynch et al., (2004), who consistently 
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recorded pH values of 4.4 from rainwater in central Pennsylvania. All flasks were 

sealed with parafilm.  At each sample time, five replicate flasks per water 

treatment (10 total) were filtered, and the resulting supernatant decanted into 20-

ml scintillation vials, and frozen until analyzed for available Zn by Inductively 

Coupled Plasma (ICP) spectrometry at the University of Delaware Soils Testing 

Laboratory (Newark, DE). Leachate results from each sample period were 

analyzed with a Mixed Procedure, ANOVA to determine statistical significance 

between treatments (SAS v. 9.1; SAS Corporation, NC). 

The null hypotheses established for this experiment were: (1) the 

cumulative amount of Zn released from CR would not be significantly different 

after 16 days of immersion in acidified and non acidified RO water, and (2) the 

rate of Zn release would be equivalent at all sample times.   

 

B.2. Experiment 2: Adsorption of Zn in crumb rubber amended green roof 

substrates 

Five proportions of CR (0%, 6%, 18%, 30% and 100% by volume) were 

combined with a green roof substrate (rooflite) in 300 ml flasks, with 10 

replicates per treatment, sampled at four times during the study.  The weight of 

CR was constant (10 g) and the mass of rooflite was adjusted according to the 

treatment ratio.  One hundred ml of RO water was added to each flask (200 ml for 

the 6% treatment).  The pH of the water was adjusted to 5.5 before addition to 

treatments.  Fig. 2.1 indicates the exact weight of each component combined to 

achieve the proportions of interest. 
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Fig. 2.1. Mass of water, rooflite and CR combined to formulate and saturate five 

different proportions of CR amended substrates.  

Note treatment nomenclature: the first number corresponds to the 

volumetric percentage of CR and the second to the volumetric percentage 

of rooflite.  

 

Water samples were decanted from the replicate flasks at 0, 2, 8 and 16 

days after the start of the experiment, each sampling day having a separate set 

(n=10) of treatment replicates.  Flasks were agitated 2 hours before sampling to 

prevent any stratification of the substrate/supernatant.  Supernatants were sampled 

as described in the previous experiment and Zn sample analyses were performed 

at the University of Delaware Soil Testing Laboratory, as previously noted.  The 

resultant Zn concentration values were normalized (by multiplying by the 

expressed solution volume) to obtain Zn content per gram of CR. A mixed PROC 
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ANOVA was used to determine statistical significance between the Zn content of 

the various treatments (SAS v. 9.1). 

The null hypotheses established for this experiment were: (1) there would 

not be a significant difference in available Zn, between treatments and the 100% 

CR control, and (2) the availability of free Zn would not be significantly 

decreased with increasing proportions of rooflite.    

 

B.3. Experiment 3: Quantifying available Zn leachates from green roof 

substrates, with and without crumb rubber 

Three different substrate mixes were formulated: (1) 30% glass beads and 

70% rooflite; (2) 30% CR and 70% rooflite®, and (3) 30% CR and 70% glass 

beads. Glass beads are made of borosilicate glass; this material possesses a very 

low intrinsic cation exchange capacity, however, it has a limited ability to adsorb 

some heavy metals in soils (Kim and Hill, 1993). Compared to rooflite®, glass 

beads are considered to have almost no cation exchange capacity (see Appendix 

B1 and B3 for laboratory results).   Each treatment was replicated six times.  Each 

replicate consisted of one 4” Oyama pot (AV Planters, San Lorenzo, CA).  Oyama 

pots are bottom-watering planters, having an inner pot, which serves as a 

container for the substrate, and an outer pot, which is the water reservoir (Fig. 

2.2). In this experiment, the outer pot allowed for the repeated collection of 

leachate samples, over time. 

The pots were filled to 83% of their volume capacity. At the start of the 

study, 250 ml of RO water was added to each pot from the top, to imitate a 
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saturating rainfall. This volume of water simulated optimal growing conditions 

for the development of Sedum species, based on additional experimentation (see 

Chapter 3).   

The outer pot’s function is comparable to a modular drainage layer in a green roof 

installation, as it allows the stored water to be taken up into the substrate by 

capillary action.  The properties of adhesion and cohesion of water and solid 

particles are influenced by the size of the pores and the height of the column. It is 

therefore likely that the water content in the pots exhibited a gradient from the 

bottom (more saturated) to the top (more dry).  The conditions of this experiment, 

although artificial, were intended to simulate water dynamics in a green roof with 

regular rainfall.  The experimental units were randomly arranged in a growth 

chamber with an average temperature of 23 ˚C, 60% relative humidity.   

In contrast to outdoor and greenhouse environments, the use of a growth 

chamber allows for the maintenance of constant environmental conditions. These 

variables influence photosynthesis, evapotranspiration and growth rate which 

could alter the concentration of Zn in leachates and in plant tissue.  By reducing 

environmental variability, we presume the accuracy of the experimental results is 

improved.  

The surfaces of the pots were covered to prevent evaporation.  One week 

after the start of the study, the pots were taken out of the growth chamber and 

substrate leachates were sampled. The treatments were sorted by anticipated Zn 

concentration, from low to high, to prevent potential cross-contamination when 

collecting the leachates.  
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Fig. 2.2. Oyama pot description. Source: oyamaplanters.com (2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3. Addition of 250 ml of RO water to Oyama pot containing the treatment 

of 30% CR and 70% glass beads. 
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The individual volume of the leachates was measured each week by using 

a 250 mL graduated cylinder.  Initially, a measured volume of 40 ml was 

collected, and used to rinse the walls of the graduated cylinder to prevent cross-

contamination of samples; this first aliquot was then discarded.  The remaining 

leachate was then measured and a 20 ml subsample was taken for Zn analysis.  

After measurement and sampling all replicate sets from each treatment, the 

graduated cylinder was washed with soap, repeatedly rinsed with RO water and 

dried.  The next six replicates of the following treatment were then sampled, as 

previously described. When all leachates from all treatment replicates had been 

collected, measured and sampled, the pots were refilled with 250 mL of fresh RO 

water and re-randomized back in the growth chamber under the same 

aforementioned conditions. This procedure was repeated every week for twelve 

weeks, resulting in 72 samples per treatment. 

The data from this experiment were not normally distributed and exhibited 

heterogeneous variance, which could not be corrected by transformation.  For this 

reason, a non-parametric General Linear Models Mixed ANOVA with repeated 

measures (SAS v. 9.1) was used to determine the statistical significance between 

treatments over time. 

The null hypothesis established for this experiment was that were would 

be no significant difference in the availability of Zn between the treatments.    
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C. Results 

C.1. Experiment 1:  Quantification of Zn release over time from crumb 

rubber exposed to acidified and non-acidified RO water solutions 

The analysis of the water samples indicated that Zn leaches from CR in a 

relatively linear fashion over time after the first 12 hours, up to 16 days (Fig. 2.4).  

The final cumulative release of Zn per gram of CR averaged 64.7 μg (± 6.51 SE) 

and 53.9 μg (± 4.62 SE) with the acidified and non-acidified RO water, 

respectively. During the first 12 hours, significantly more Zn was released from 

the acid water treatment (P< 0.05), but thereafter no significant differences were 

found in the cumulative Zn leached between either pH treatments.  Interestingly, 

the results exhibited a relatively large sample to sample variation. 

 

 

 

 

 

 

 

 

 

 Fig. 2.4.  Micrograms of Zn released from CR for different exposure times in 

acidified and non-acidified solutions. 
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Fig. 2.5 illustrates that Zn was initially released at an average rate of 0.74 

(± 0.167 SE) μg Zn per gram of CR per hour during the first 12 hours in the 

acidified RO water treatment.  This initial rate of release was significantly 

different from CR soaked in non-acidified RO water (P<0.05), which leached at a 

rate of 0.22 (± 0.002 SE) μg Zn/g CR/hr.  Similar to the cumulative Zn release 

results after 12 hours, the Zn release rate of both treatments was not significantly 

different. Both rates of Zn released per gram of CR decreased and stabilized after 

the first 12 hours (Fig. 2.5).  

  

Fig. 2.5. Micrograms of Zn released per hour from rubber crumb exposed to 

different times in acidified and non-acidified solutions.  
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C.2. Experiment 2:  Adsorption of Zn in crumb rubber amended green roof 

substrates 

The average amount of available Zn released in µg per gram of CR over 

time is shown in Fig. 2.6.  After 16 days, the 100% CR control leachate contained 

99.5 (± 2.63 SE) µg/g CR, while the 30% CR treatment exhibited only 1.1 (± 0.16 

SE) µg Zn/g CR (Fig. 2.6).  This demonstrates that all treatments containing 

rooflite were able to reduce the amount of available Zn by nearly 100 times.    

Although the 100% CR treatment response was evidently different from 

the rest of the treatments, it imposed limitations for statistical analysis. In general, 

the data from this experiment were highly variable because of the treatment 

intervals chosen, preventing us from meeting the assumptions for analysis of 

variance (ANOVA).  Successful data transformation was only possible when the 

100% CR treatment was completely excluded from the data set.  In order to 

therefore identify significant differences in the total average release of Zn and the 

average Zn release rate between the lower levels of CR, the 100% CR was 

excluded from analysis and a log10 data transformation was performed.  

Significant differences for the total average release of Zn (µg Zn/g CR) at study 

initiation (time zero) were found between all treatments except 6% and 30% CR 

(P< 0.05). Two and eight days after study initiation, all differences in Zn release 

were significant among treatments.  At the end of the experiment (day 16), all the 

treatments except 18% and 30% were significantly different. The rate of Zn 

released for each treatment over the 16-day period, expressed as μg of Zn per 

gram of CR per hour, is depicted in Fig. 2.7.  Zn concentrations were measured at 
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each sampling period, and normalized for Zn content by multiplying with sample 

volume collected.  Rates were extrapolated by dividing the Zn content by the 

intervals of time between samples. 

 

 

Fig. 2.6. Zn availability in the leachate from five volumetric proportions of Zn 

(CR) and rooflite during sixteen day study period. 

 

As can be seen from Fig. 2.7, Zn release rates at the initiation of the 

experiment were higher in comparison to the subsequent sampling periods; the 

100% CR control treatment release rate was substantially higher than all other 

treatments levels.  The rates for all treatment levels decreased by more than ten-

fold their initial value within 48 hours compared to the 100% CR control, which 

continued to have a substantially higher release rate throughout the study.  During 
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the final 8-day period (day 9 through day 16), the 30% CR proportion exhibited 

an average release rate of 29 ng Zn/g CR/hr.   

Fig. 2.7.  Rate (μg/hr) of Zn released per gram of CR extrapolated between each 

sampling period, from five volumetric proportions (%) of CR and 

rooflite during a sixteen day (384-hour) study period.  
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C.3. Experiment 3: Quantifying available Zn from leachates of substrates, 

with and without crumb rubber 

 
Leachate Zn concentrations (mg/L) of the three formulated green roof 

amended substrates are shown in Fig. 2.8. The following treatment nomenclature 

are used from now on: 30CR : 70RL corresponds to 30% CR & 70% rooflite; 

30GB : 70RL to 30% glass beads and 70% rooflite; 30CR : 70GB to 30% CR 

and 70% glass beads (volumetric proportions).  The CMC (Criteria Maximum 

Concentration) value for Zn in freshwater is 0.12 mg/L (USEPA, 2009) and is 

indicated as a straight line in Fig. 2.8.  A CMC value represents the highest 

concentration of a material in surface water to which an aquatic community can 

be briefly exposed without resulting in an unacceptable effect (USEPA, 2009).  

Our results showed that the 30% CR : 70% GB (control) treatment exceeded this 

CMC value at all sampling times, while the 30% CR : 70% RL treatment 

exceeded this threshold only during the first two weeks.  The 30% GB : 70% RL 

treatment remained below this threshold at all sample times.   

The highest leachate concentration in the 30% CR : 70% GB treatment 

(i.e. 2.60 mg Zn/L ± 0.180 SE), was observed during the third week. After this 

time, Zn concentrations decreased substantially. The minimum concentration of 

Zn from this treatment occurred during the 10th week with 1.34 mg Zn/L (± 0.038 

SE).  The highest concentration in the 30CR : 70RL treatment was 0.40 mg Zn/L 

(± 0.037 SE) and occurred during the second week. After this time, all 

concentrations were below the CMC value. The minimum Zn release occurred in 
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the 8th week, and corresponded to 0.03 mg Zn/L (± 0.004 SE). The highest 

concentration in the 30GB : 70RL treatment occurred during the second week and 

the minimum during the 11th week, of 0.05 mg Zn/L (± 0.003 SE) and 0.02 mg 

Zn/L (± 0.002 SE), respectively. 

The non-parametric repeated measures ANOVA indicated that the mean 

leachate Zn concentration from the 30CR : 70GB treatment was significantly 

different than the 30CR : 70RL and the 30GB : 70RL (P< 0.05).  

 

Fig. 2.8. Leachate Zn concentration (mg/L) from CR, rooflite® and glass beads 

formulations.  

 

Fig. 2.9 illustrates the amount of Zn released from CR (from the 30CR : 

70GB and the 30CR : 70RL treatments), and the amount of Zn released from 

rooflite® in the 30GB : 70RL treatment.  Note that although CR was the main 

CMC value 
for Zn 
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source of Zn in this study, rooflite® did contain a small amount of natural Zn. An 

analysis of rooflite conducted by A&L Eastern Laboratories Inc (City, State) 

determined the average Zn concentration in rooflite® was 15.7 mg/Kg    

(Appendix B2).   

 

 

 

 

 

 

 

Fig. 2.9. Net Zn released (μg) from either crumb ruber (30CR : 70RL and 30CR : 

70GB treatments) or rooflite® (30 GB: 70 RL treatment).  

 

A general comparison of the maximum values observed during the 

experiment indicates there was 10.70 µg Zn/g CR (± 0.729 SE) in the leachate of 

the 30CR : 70GB treatment, compared to 1.57 µg Zn/g CR (± 0.145 SE) in the 

30CR : 70RL treatment.  In the GB : RL treatment, the maximum amount of 

available Zn was 0.06 µg Zn/g RL (± 0.004 SE).  The non-parametric analysis 

indicated the Zn availability (μg) per gram of metal source was significantly 
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different between 30CR : 70GB treatment and the 30CR : 70RL and 30GB : 70RL 

treatments (P< 0.05), during the entire experiment.  

As a general example, App. Table B.4 presents the analysis of variance 

conducted for the analysis of this experiment.  

 

D. Discussion 

D.1. Experiment 1:  Quantification of Zn release over time from crumb 

rubber exposed to acidified and non-acidified RO water solutions 

 
During the first study, we found that Zn was leached from CR and that the 

acidity of the water can increase the rate of release during the first few hours of 

saturation in RO water. As seen in soils, the solubility of Zn increases at low pH 

(Broadly et al., 2007).   However, no significant differences in the final 

cumulative Zn release were noted after 16 days of saturation between the acidified 

and non-acidified treatments.  Neither the cumulative Zn release nor the rate of Zn 

released per hour showed significant differences after the first 12 hours in the two 

water treatments.  

Pollutants are generally released during two stages of a product’s life 

cycle: early and late life (Clark et al., 2008).  From this experiment, it is presumed 

that the likelihood of phytotoxic effects or the occurrence of anthropogenic 

contamination in a CR amended green roof would be higher after the first flush of 

water (rain or irrigation), especially in locations where acid rain occurs.  Over 

time, it appears that the effect of the acidified water (rainfall) would not be 

different compared to non-acidified rainfall.  It also seems plausible that rubber 
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crumb incorporated into green roof substrates with the same proportion of CR 

would release the same amount of Zn over time, if the pH of rainfall were similar 

to our experimental conditions.  We did observe a large sample to sample 

variation in this study, which may possibly reflect the variability of analysis, 

variability of sampling, or most likely, the variability of Zn in the rubber crumb 

samples (e.g. different brands or origins of tires). 

 

D.2. Experiment 2: Adsorption of Zn in crumb rubber amended green roof 

substrates 

 
In the second study, an interaction was noted between the Zn released 

from CR and the mineral and organic particles of rooflite®.  This specific green 

roof substrate had the capability to almost totally adsorb the Zn released from 

30% CR, incorporated on a volume basis.  From these results, it appears likely 

that rooflite® could mitigate the potential negative effects of Zn released from 

CR, at least during the first three months of the life of a green roof.  

Extrapolating from these results, a green roof with a 30% CR could 

potentially release an average of 15.4 mg of Zn per square meter in 16 days if 

consistently saturated.  Under real green roof conditions, the Zn release would be 

affected by several external factors, including plant uptake, weathering and 

exposure, storm water pH, volume, frequency and duration of the rainfall events, 

and total cation adsorption ability of rooflite.  With an average CEC of 7.45 

meq/100 g, rooflite® demonstrated the capability to absorb the majority of the 
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relatively low amounts of Zn released from CR under these experimental 

conditions. This adsorption response is very important for preventing Zn 

phytotoxicity effects from CR in plants, and will be further discussed below, and 

in Chapter 3. 

However, we do not know the time it would take for Zn to be completely 

depleted from CR.  Consequently, the exchange sites in rooflite® could quickly 

become saturated.  In the worse-case scenario, excessive Zn could become 

available in solution and high enough concentrations to affect the growth of the 

green roof plants. Furthermore, if substantial Zn would be leached out from the 

green roof system, it would be considered as a source of anthropogenic pollution.   

It should be noted that the 18% CR and the 30% CR treatments were not 

significantly different from each other. This response suggests that by amending a 

substrate with 30% CR instead 18%, the bulk density of the substrate could be 

decreased without adding more significant Zn to the leachate solution.   Ristvey et 

al., (2010) noted that rooflite® amended with 18% CR reduces the bulk density of 

rooflite® by 6%, while maintaining water holding capacity and air filled porosity 

characteristics within FLL limits (FLL, 2002).   

 

D.3. Experiment 3: Quantifying available Zn from leachates of substrates, with 

and without crumb rubber 

The last study’s results were very consistent with the previous findings. 

The 30CR : 70GB (control) treatment released a significantly higher 

concentration of Zn, compared to the 30CR : 70RL and 30GB : 70 RL treatments.  
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These last two treatments were not significantly different from each other 

according to the non-parametric analysis.  These results are important since the 

average concentration of the 30CR : 70RL treatment was very close to the criteria 

maximum concentration (USEPA, 2009) during the first two weeks, and after 

that, it was always below the CMC level (Fig 2.8).  From these results, the Zn 

leachate from an urban green roof system amended with 30% would be 

insignificant particularly considering this concentration would be quickly diluted 

with additional runoff water at the point of discharge. 

A significantly higher amount of Zn was released from the 30CR : 70GB 

treatment, since the glass beads had little or no cation adsorption capability.   

Interestingly, the amount of Zn released from the 30CR : 70RL and the 30GB : 

70RL was not significantly different between treatments. The low level of Zn 

leached from the 30GB : 70RL treatment was released by the shale component, 

which is derived from fine sediments of inorganic and organic origin, and are 

known to contain larger amounts of trace elements including Cu, Zn, Mn, Pb, and 

Cd. (He et al., 2005). 

  In summary, rooflite® was shown to adsorb substantial quantities of Zn 

leached from CR.  As demonstrated by the third study, rooflite® maintained the 

ability to adsorb Zn released from CR for up to three months, even though 

laboratory analysis reported a relatively low CEC for this product.  Other green 

roof substrates have claimed relatively higher CEC’s; those substrates may 

therefore be ideal for further research in the use of CR and Zn sequestration. 
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Chapter 3: Plant – Substrate Interactions 

A. Introduction 

Low impact development techniques are now the preferred method of 

stormwater management in new and urban redevelopment projects (Andrus et al., 

2009). The green roof industry grew by 35% in North America in 2008 (Green 

Roofs for Healthy Cities, 2009).  Increased interest in green roof systems for 

urban stormwater management has prompted the need for research to determine 

green roof plant/substrate interactions and the efficacy of these systems for urban 

stormwater remediation (Snodgrass, 2006, Berghage et al., 2009; Clark et al., 

2008; Getter and Rowe, 2006).  

Substrates are fundamental to green roof system performance. They 

provide the matrix to sustain plant growth and to reduce peak flows during 

rainfall events (Getter and Rowe, 2006). Most commercial green roof media 

combine a lightweight aggregate like expanded clay, slate or shale (80-90% by 

volume) with organic components (10-20% by volume or 2-5% by weight). 

Crumb rubber (CR), a product made from recycled tires is a potential light-weight 

amendment that could reduce substrate weight, decreasing live loads of green 

roofs and engineering costs for buildings (Anderson et al., 2006); they may also 

improve the porosity and longevity of many green roof substrates.  However, tire 

formulations are known to contain between 2.5% (FLL, 2002) and 5% Zinc (Zn) 

(Handreck, 1996), primarily as Zn oxide, which is used as an activator in the 

vulcanization process (Li et al., 2007).  The Zn content of CR may therefore 
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preclude large additions to green roof substrates unless the Zn is adsorbed by the 

substrate and/or Sedum species can tolerate or hyperaccumulate the metal in large 

quantities. 

Previous studies have reported negative effects in ornamental plants when 

CR was incorporated into substrates (Newman et al., 1997; Handreck and Black, 

2005). According to the results from our previous studies (Chapter 2), Zn was 

effectively leached from CR, but adsorbed in the most part by the substrate, 

presumably as a result of substrate cation-exchange capacity. However, some 

available Zn remained in solution and could be a source of toxicity to green roof 

Sedum plants and aquatic life. 

In order to determine if Sedum plants can tolerate CR amendments up to 

30% (maximum volumetric amendment evaluated during this thesis), an 

experiment was conducted with the following objectives: 

 To determine if the plant growth quality of three Sedum species was 

affected by increasing proportions of CR amendments to a typical green 

roof substrate. 

 To ascertain if plant growth and dry mass are reduced when plants were 

exposed to CR amended substrates. 

 To quantify the shoot Zn content of the three species exposed to CR 

amended substrates, as well as the root Zn content of one of the species. 

 

Two additional hydroponic experiments were conducted to determine if 

Sedum kamtschaticum (Fisch.) is a hyper-tolerant species.   S. kamtschaticum is a 
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vibrant green species with rapid growth rate, commonly use to create a dense 

plant carpet (Stephenson, 2002). It belongs to the subgenus Sedum, Aizoon group, 

which presents the following characteristics: herbaceous flat leaves, thin stems 

with a maximum height of approximately 6 inches (15 cm), and a thick woody 

rootstock (Stephenson, 2002).  

 

 

 

 

 

 

 

 

Fig. 3.1. Shoot and roots of Sedum kamtschaticum.  

 

In addition to the desirable morphologic characteristics of this plant, 

which makes feasible to collect samples from both shoot and root tissues, S. 

kamtschaticum was the species that showed the smallest natural variation in the 

first experiment. Furthermore, this is one of the plants most commonly chosen for 

green roof installations in the United States (Snodgrass, 2009).          

The objectives of this experiment were: 

 To determine if S. kamtschaticum would express phytotoxicity symptoms 

as a product of elevated levels of Zn in either of the two substrates. 

 To compare the effects of the substrate composition on plant growth.  
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 To compare the effect of the substrate composition and Zn levels on shoot 

and root tissue Zn content.  

   

B.  Methods and Materials 

B.1. Experiment 1: Tolerance of Sedum spp. to various ratios of crumb 

rubber amendments in green roof substrate 

 
Three Sedum species, S. album (.L), S. reflexum (L.), and S. 

kamtschaticum, were grown in a green roof substrate (rooflite®, Skyland USA, 

Avondale, PA) containing primarily expanded shale, slate and clay, with less than 

65 g/L of organic material. The substrate was amended with 0%, 6%, 12%, 18%, 

24%, or 30% CR by volume.  Each substrate was mixed in a large container and 

was then subsequently distributed among replicate containers. Ten replicate 

Sedum plugs per treatment combination (180 experimental units) were placed in 

10 cm (4 inch) containers in an incompletely randomized block design; plants 

were then established for one month (Fig. 3.2).   
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Fig. 3.2 Sedum album, S. reflexum and S. kamtschaticum plants arranged in an 

incompletely randomized block design in the greenhouse. 

  

During the first 6 weeks of the study, plants were fertilized weekly with 

200 mg N/L using a soluble 20-4.4-16.6 (N : P2O5 : K2O) fertilizer, with 

microelements. This fertilization regime applied less than 50 μg chelated Zn to 

each plant over the whole study.  
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Five months after the start of the study, the Foliar Volume Index (FVI) 

was estimated by using the following formula:  

FVI (cm3) = (H x W x D) x QF  

where height (H), width (W) and depth (D) were measured in cm, and “QF” 

represented a subjective quality factor to express the degree of leaf coverage 

inside the three-dimensional space.   The quality factor ranged from zero (no 

foliar area) to 0.99.  At the termination of the study (immediately after FVI 

determination), plants were harvested, with shoots dried in an oven at 60 C 

degrees for 96 hours and weighed for dry mass.  Leaves were not separated from 

stems due to insufficient dry mass for laboratory analysis. The shoot Zn 

concentration of S. kamtschaticum was determined by ICP analysis at the 

University of Delaware Soil Testing Laboratory (Newark, DE).   

Our null hypotheses were: (1) the FVI of each species would not be 

significantly different between the 0% control and the four treatment levels; (2) 

no significant difference would be found between any Sedum species dry mass of 

the 0% control and the four treatment levels; and (3) no significant difference in 

(a) shoot Zn concentration or (b) shoot Zn content would occur between the 0% 

control and the four treatment levels of S. kamtschaticum.  

The final leaf volume index measurement was subjected to regression 

analysis, and dry mass and Zn results were analyzed by the Mixed Procedure, 

ANOVA (SAS v. 9.1; SAS Corporation, NC). 
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B.2. Experiment 2: Response of Sedum kamtschaticum to elevated doses of Zn 

in two different substrates under hydroponic conditions 

 
This experiment was conducted to determine the Zn tolerance of S. 

kamtschaticum during a 90-day hydroponic study between April and June 2009, 

comparing two substrates and three Zn levels applied in an otherwise balanced 

Hoagland’s solution.  This experiment was conducted simultaneously under 

greenhouse and growth chamber conditions, with the purpose of ascertaining any 

growth differences due to differing environmental conditions.  

The growth chamber (Conviron Model DDR36; Conviron, Winnepeg, 

Canada) was programmed to maintain, on average, the following conditions: 

 Day / night length: 12 hours. 

 Temperature: 23 ˚C 

 Relative humidity: 60% 

 Light intensity: #4 (500 ± 20 mol/m2/s). 

 

While the greenhouse showed greater environmental variation, the growth 

chamber environment conditions were held constant during the course of the 

experiment.   

This experiment was restricted to only once species because of its 

intensive nature. Sedum kamtschaticum was selected because it showed the 

smallest variability during previous experiments, with the most sensitivity to Zn 

uptake.  Plants in a dormant state were transplanted from plugs and allowed to 
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establish in 4” Oyama pots (AV Planters, San Lorenzo, CA) containing either 

rooflite® green roof media (rooflite®, Skyland USA, Avondale, PA) or 3 mm 

glass beads (Walter Stern, Inc., Port Washington, NY). During the first month 

(plant establishment), all plants received only water.   At the end of the fourth 

week all the plants were pruned to a height of 10 cm.  In general, the coloration of 

the plants suggested some degree of nutritional deficiency, since growing for a 

month without nutrients diluted the nutrient content of the plugs.   

After 4 weeks, the, plants were exposed to three Zn treatment regimens 

including 0.3 ppm (to match an ambient substrate Zn concentration), 80 ppm, and 

160 ppm Zn in solution. These rates will be referred to hereafter as low, medium 

and high Zn, respectively.  Additionally, the following concentration of nutrients 

(μmol/L) were applied to all the treatments: 2000 Ca(NO3)2•4H2O, 1000 KH2PO4, 

500 MgSO4•7H2O, 100 KCl, 700 K2SO4, 10 H3BO3, 0.50 MnSO4•H2O,  

0.20 CuSO4•5H2O, 0.01 (NH4)6Mo7O24, 100 Fe-EDTA(ethylenediaminetetracet-

ate).   Treatments were developed based on similar Zn phytotoxicity research 

done by Qui et al., (2006).  

A weekly volume of 300 ml of solution was necessary to maintain 

container capacity conditions for the plants growing in glass beads. However, the 

same volume didn’t seem adequate for the rooflite substrate, as the single 

application of 300 ml of water rapidly saturated the rooflite and Zn would have 

leached from the container. For this reason, the plants growing in rooflite 

received 150 ml of the solution twice a week.  
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Fig. 3.3. S. kamtschaticum growing in rooflite and glass beads.  

 

This irrigation regime did not represent a treatment in and of itself, but a small 

management adjustment to maintain adequate aeration and moisture in both 

substrates throughout the experiment.   Even though the irrigation frequency was 

different, both substrate treatments received the same volume of solution and 

concentration of Zn in the Hoagland’s solution every week.  

Plants were harvested at 30, 60 and 90 days after treatment.  During 

harvests, shoots and roots were separated.  Roots were removed from media, 

washed with tap water and set in 20 mM Na2-EDTA (disodium 

ethylenediaminetetraacetate) for 20 min to remove any Zn adhering to the root 

surfaces (Yang et al., 2004).  Plant tissues were dried at 60 °C (140 °F) and 

weighed for dry mass determination.  Due to very small dry mass quantities, 

shoots and roots were individually pulverized with a mortar and pestle, for tissue 
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analysis to determine the average Zn uptake.  Extreme care was taken to avoid 

cross-contamination of samples, by cleaning with ethanol between every sample. 

Tissue Zn concentrations were determined by Inductively Coupled Plasma Mass 

Spectrometry at the University of Delaware Soil Testing Laboratory.   

The data from this study exhibited heterogeneous variances and, in most 

cases, non normal distribution. Both square root and log10 transformation data 

failed to correct the inequality of variances, therefore, the assumptions for a 

MIXED procedure were not met.     For this reason, a non parametric generalized 

linear mixed model (GLIMMIX procedure) was chosen, since it fits statistical 

models to data with correlations or no constant variability and where the response 

is not necessarily normally distributed (SAS v. 9.1; SAS Corporation, NC). 

The null hypotheses for this experiment were: (1) the different Zn 

treatments would not significantly affect the dry mass of S. kamtschaticum; (2) 

plant dry mass would not be significantly different when growing in rooflite 

compared to glass beads; (3) different treatment levels of Zn would not 

significantly affect Zn uptake of S. kamtschaticum, and (4) Zn uptake by S. 

kamtschaticum would not be significantly different when growing in either 

substrate (rooflite vs. glass beads).   



 70 
 

C.  Results 

C.1. Experiment 1: Tolerance of Sedum spp. to various ratios of crumb 

rubber amendments in rooflite® 

C.1.1. Shoot Volume Index and Dry Mass 

 
An apparent downward trend in FVI was noticed when the volumetric 

proportion of CR increased in the substrate; however, the low R-squared values 

for these regression analyses (Figs. 3.4 A, B and C) indicated an insignificant Zn 

treatment effect on growth and quality at the end of the study within all Sedum 

species.  Before harvest, S. album shoot volume ranged from 20.3 cm3 to 36.5 cm3 

(Fig. 3.4 A); S. reflexum ranged from 6.8 cm3 to 20.1 cm3 (Fig. 3.4 B) and S. 

kamtschaticum ranged from 67.1 cm3 to 112.7 cm3 (Fig. 3.4 C).  In general, the 

growth quality response was highly variable and FVI could not discriminate CR 

treatment differences between Sedum species.  In contrast the dry mass results of 

the final shoot dry mass indicated some significant effects of percent CR for each 

of the species (Fig. 3.5).  

The maximum average shoot dry mass in S. album (Fig. 3.5) was observed 

in the 0% CR treatment and corresponded to 2.78 g (± 0.39 SE).  This was 

significantly higher than the other treatments (See App. Table C.1 A for P-

values).  The smallest average dry mass of S. album was 1.21 g (± 0.12 SE) and 

occurred in the 24% CR treatment, although this was not statistically different 

from any of the CR-amended substrates. 
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Fig. 3.4. Foliar volume index of three Sedum species: A) S. album, B) S. reflexum, C) S. 

kamtschaticum grown in several proportions of crumb rubber amended rooflite®.  
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Fig. 3.5 Shoot dry mass of S. album, S. reflexum, and S. kamtschaticum grown in 

several proportions of a CR amended green roof substrate. 

 

Sedum reflexum average shoot dry mass results ranged from 1.25 g (± 0.11 

SE) to 2.43 g (± 0.28 SE); however, the response to the different CR levels was 

highly variable and didn’t exhibit any logical trend (Fig 3.5). Significant 

differences between treatments are shown in App. Table C.1 B.  Sedum 

kamtschaticum exhibited a significant reduction in average shoot dry mass with 

increasing proportions of CR (Fig. 3.5; App. Table C.1 C for P-values). The 

minimum averaged dry mass was obtained with the 30% CR (2.23g ± 0.18 SE) 

and the maximum in the 0% CR (3.96 g ± 0.23 SE). 
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C.1.2. Average shoot Zn Concentration and Zn Content of Sedum kamtschaticum 

The average shoot Zn concentration in S. kamtschaticum increased linearly (with 

low variability) as the proportion of CR increased in the substrate (Fig. 3.6 A). The 

average concentrations ranged from 41.2 ppm (± 2.25 SE) to 86.4 ppm (± 1.98 SE).  

Significant differences were found for all the treatments except 6% and 12% CR, and 24 

and 30% CR (See App. Table C.2 for P-values).   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

 

Fig. 3.6 (A) Shoot Zn concentration and (B) Zn content of S. kamtschaticum grown in 

several proportions of a CR amended rooflite®. 

 

The average shoot Zn content (Fig 3.6 B) was obtained by multiplying the 

average leaf dry mass by leaf concentration, to normalize any differences in tissue 
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concentration that were confounded by growth differences.  No significant differences 

were found in shoot Zn content between any level of CR (Fig. 3.6 B).,  in S. 

kamtschaticum.  The minimum and maximum calculated contents were 0.17 mg (± 0.02 

SE) and 0.26 mg (± 0.03 SE).  

 

C.2. Experiment 2: Response of Sedum kamtschaticum to elevated doses of Zn in two 

different substrates under hydroponic conditions 

C.2.1. Greenhouse Experiment 

C.2.1.1. Root Comparisons 

The average root dry mass of plants grown in rooflite® was significantly larger 

than plants grown in glass beads by the end of the study (Fig. 3.7 A). The increasing 

concentrations of Zn did not cause significant differences between plants grown in 

rooflite®. In contrast, the average root dry mass of plants was negatively affected by the 

medium and high Zn levels in glass beads. Similarly, the low Zn solution treatment in 

glass beads allowed for normal shoot growth and resulted in a significantly higher 

average shoot dry mass (Fig. 3.8 A) than in the medium  (P < 0.05) and high  (P < 0.01) 

Zn treatments (which were not significantly different from each other).  All Zn treatment 

levels in rooflite® were significantly different from all Zn levels in glass beads (App. 

Table C.3 A). 
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Fig. 3.7. (A) Average root dry mass, (B) Zn concentration and (C) Zn content of S. 

kamtschaticum, grown in glass beads or rooflite®, fertigated with three Zn 

concentration levels (0.03, 80 and 160 ppm) and grown under greenhouse 

conditions for three months. 

A 

B 

C 
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 In general, the average Zn concentration in roots of plants grown in glass beads 

was higher than the Zn concentration of roots grown in rooflite® (Fig. 3.7 B). While non-

significant differences occurred at any Zn level in the rooflite® treatment, the average 

root Zn concentration between every Zn treatment level in glass beads was significantly 

different (P < 0.0001). Multiple means comparisons showed the low Zn treatment in glass 

beads was significantly different from all Zn levels in rooflite®  (App. Table C.3 B). 

Fig. 3.7 C indicates that the only significant difference in the average root Zn 

content was found between the low Zn level and the high level (P < 0.05) in the rooflite® 

treatment, due to high variability within treatments. In the glass bead treatment, the Zn 

content with the low Zn treatment was significantly different from the medium and high 

Zn treatments (P < 0.0001), which were not significantly different from each other. The 

low Zn treatment in glass beads was significantly different from the low and medium Zn 

levels in rooflite®  (App. Table C.3 C). 

C.2.1.2. Shoot Comparisons 

The average shoot dry mass of plants grown in rooflite® was higher compared to 

plants grown in glass beads (Fig. 3.8 A). All Zn treatment levels in rooflite® were 

significantly different from all Zn levels in glass beads (App. Table C.4 A).  No 

significant differences in shoot dry mass occurred between the three levels of Zn solution 

in rooflite® substrate.  In contrast, the low Zn solution treatment in glass beads resulted 

in a significantly higher dry mass than with the medium and high Zn levels (P < 0.001), 

which were not significantly different from each other.  App. Table B.5 is provided as an 

example of the statistical analyses conducted during this experiment. 



 77 
 

In general, the average shoot Zn concentration of plants grown in glass beads was 

significantly higher than in plants grown in rooflite® (Fig. 3.8 B).  

A comparison between rooflite® treatments showed no significant differences in 

Zn shoot concentration at any Zn level (Fig 3.7b).   In contrast, the low and medium Zn 

levels in glass beads were not significantly different from each other, but the low Zn level 

average shoot concentration was significantly lower than the high Zn level (P < 0.0001) 

and the medium Zn level was significantly lower than in the high Zn level (P < 0.05). A 

multiple means comparison showed the medium Zn treatment in glass beads was 

significantly different from the low Zn level in rooflite®, and the high Zn level in glass 

beads was significantly different from all Zn levels in rooflite®  (App. Table C.4 B). 

Fig. 3.8 (C) shows the average shoot Zn content at the end of the 3-month study 

was not different in glass beads, independent of the Zn treatment, due to the reduction in 

shoot dry mass.  For rooflite®, only the low Zn level had significantly less Zn, in 

comparison to the medium (P < 0.001) and the high Zn additions (P < 0.0001), which 

were not significantly different from each other. Significant differences between 

treatment combinations occurred in all the cases except the low Zn treatment in rooflite® 

compared to all Zn levels in glass beads (App. Table C.4 C). 
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Fig. 3.8. (A) Average shoot dry mass, (B) Zn concentration and (C) Zn content of S. 

kamtschaticum, grown in glass beads or rooflite®, fertigated with three Zn 

concentration levels (0.03, 80 and 160 ppm) and grown under greenhouse 

conditions, three months after study initiation.  

A 

B 

C 
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C.2.2. Growth Chamber Experiment 

C.2.2.1. Root Comparisons 

No significant differences were found in root dry mass between treatments in 

rooflite® (Fig. 3.9 A).  In contrast, the low Zn solution treatment in glass beads resulted 

in a significantly higher dry mass compared to the medium and high Zn additions (P < 

0.05), which were not significantly different from each other. A multiple means 

comparisons between treatment combinations showed the low Zn levels in glass beads 

was not significantly different from all the Zn levels in rooflite  (App. Table C.5 A). 

Fig. 3.9 B illustrates the average root Zn concentrations in each treatment at the 

end of the study.  No significant differences between any Zn level in the rooflite® 

occurred.  In contrast, all Zn levels in glass beads were significantly different to each 

other as indicated in Fig. 3.9 B and App. Table C.5.B (P < 0.0001).  A multiple means 

comparisons between treatment combinations showed the low Zn levels in glass beads 

was not significantly different from all the Zn levels in rooflite (App. Table C.5 A). 

 No significant differences were found in the average root Zn content between 

treatments in rooflite® (Fig. 3.9 C).  In contrast, all Zn levels were significantly different 

from each other in the glass beads treatment (P < 0.05 for the low-medium Zn level 

comparison; P < 0.01 for the medium-high Zn level comparison and P < 0.0001 for the 

low-high Zn level comparison).  
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Fig. 3.9. (A) Average root dry mass, (B) Zn concentration and (C) Zn content of S. 

kamtschaticum, grown in glass beads or rooflite®, fertigated with three Zn 

concentration levels (0.03, 80 and 160 ppm) and grown under growth chamber 

conditions, three months after study initiation.  

A 

B 
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The treatment comparison showed significant differences between the medium Zn 

level in glass beads compared to the low Zn level in rooflite, as well as in the high Zn 

level in glass beads compared to all Zn levels in rooflite (App. Table C.5 C).  

C.2.2.2. Shoot Comparisons 

No significant differences in shoot dry mass were found between treatments in 

rooflite® (Fig. 3.10 A).  In contrast, the lowest Zn treatment resulted in a significantly 

higher dry mass in glass beads than with the medium and high Zn treatments (P < 0.05), 

which were not significantly different from each other. All Zn treatment levels in 

rooflite® were significantly different from all Zn levels in glass beads except the pair of 

treatments constituted by both low Zn levels (App. Table C.6 A).  

No significant differences in the average shoot concentration were found between 

Zn additions in the rooflite® treatment (Fig. 3.10 B).  In contrast, in the glass bead 

treatment the low Zn vs. high Zn levels resulted in significantly different leaf Zn contents 

(P < 0.0001), as well as between medium and high levels of Zn (P < 0.0001). Multiple 

means comparisons between treatments showed significant differences between the high 

Zn level in glass beads compared to all Zn levels in rooflite (App. Table C6 B).  
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Fig. 3.10. (A) Average shoot dry mass, (B) Zn concentration and (C) Zn content of S. 

kamtschaticum, grown in glass beads or rooflite®, fertigated with three Zn 

concentration levels (0.03, 80 and 160 ppm) and grown under growth chamber 

conditions, three months after study initiation. 
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 No significant differences in the average shoot Zn content were found between 

the three Zn treatments in glass beads, primarily because of the very low dry mass 

(growth) of plants at the highest Zn additions (Fig. 3.10 C). In contrast, the low Zn 

solution treatment had a significantly lower Zn content to the other treatments (P < 

0.001), due to a larger dry mass. Multiple means comparisons between treatment 

combinations showed non-significant differences between the low Zn level in rooflite 

compared to all Zn levels in glass beads, and non-significant differences either between 

the medium Zn level in rooflite compared to the high Zn level in glass beads (App. 

Table C.6 C).  

 

C.3. Additional Chronologic Observations  

Throughout the time course of this study, the dry mass, Zn concentration and Zn 

content responses of shoot and root tissues exhibited comparatively similar results among 

the Zn and substrate treatments, in both greenhouse and growth chamber environments.  

Appendix Figures C.1 through C.12 show the responses of all variables over time in both 

greenhouse and growth chamber experiments.  For brevity, mostly greenhouse results are 

described here.  

Although some differences in dry mass, tissue Zn concentrations and contents 

between environments were noted, presumably due to the very different environmental 

conditions during the studies, growth patterns by treatment were surprisingly similar. In 

other words, similar statistical significances for each treatment response were found 

between the greenhouse and the growth chamber studies.   
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In the greenhouse study, average shoot and root dry mass of plants growing in 

glass beads were not significantly different than the plants growing in rooflite® at low Zn 

concentrations during the first two months of the study.  However, in the growth chamber 

environment, no significant differences in dry mass between substrates were noted in 

plants with the low Zn treatment throughout the entire study.  We presume that the 

influence of low light conditions on growth may have influenced Sedum growth and Zn 

uptake.   

However, there were initial significant differences seen in each response variable 

within each tissue, between substrates and Zn levels, starting at the first harvest. Simply 

put, the availability of Zn in the glass beads began to have an effect on plant growth and 

uptake of Zn by the first harvest, which continued to end of the experiment, which is why 

final evaluation results form the major focus of our discussion.   

 

D.  Discussion 

D.1. Experiment 1: Tolerance of Sedum spp. to various ratios of crumb rubber 

amendments in rooflite® 

The growth of the three Sedum species in this study showed no visible symptoms 

of Zn toxicity after 5 months in CR amended rooflite®. Sedum album and S. 

kamtschaticum fully explored the total capacity of the container and bloomed without 

showing any stress. Sedum reflexum in contrast, exhibited some physiological disorders, 

such as a slight chlorosis and the partial abscission of leaves. These symptoms were 

noted across all treatments, as the plants exhibited different degrees of stress that didn’t 

correlate with the different levels of CR.  Since this high variability in growth was equal 
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across the CR treatments, it appears that something other than the CR affected the growth 

of S. reflexum, possibly natural variability or the effect of other unfavorable abiotic 

factors.  It is possible that S. reflexum had different nutritional and / or irrigation 

requirements compared to S. album and S. kamtschaticum. 

 The absence of significant differences in the FVI of the three species suggested 

that the increasing proportions of CR do not cause any obvious effect on the growth of 

these three species of Sedum, which are extensively used in green roof plantings.  

However, it should be noted that this index did not have the resolution for detecting 

negative effects in plant growth, under the described experimental conditions. 

In contrast, the average dry mass showed a statistically significant negative effect 

on growth due to CR addition.  In S. album, the control (0%) treatment was had a higher 

biomass compared to the rest of the CR treatments. A variation in S. album response to 

CR addition was noticeable because of an inconsistent downward trend in plant dry mass 

as the proportion of CR increased. From a biological perspective, we expected a 

downward linear response with increasing levels of significance as the proportion of CR 

increased, due to the potential amount of Zn released from the CR.  

As stated previously with S. reflexum, something other than CR affected the 

growth quality of S. album, given the variability across the treatments. No biological 

inference could be made from the results, but plants exhibiting different levels of stress 

could have an important impact in the variability of the results. 

S. kamtschaticum provided the clearest response in the reduction of dry mass with 

increasing quantities of CR in the substrate. By comparing the probabilities of the 

significant differences in the simple effects (App. Table 3.1C), it is clear that some 
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degree of variability also occurred in the response by this species.   From the three 

species evaluated, S. kamtschaticum was considered the best for additional research with 

hydroponic response studies to increasing Zn. In addition, the morphological 

characteristics of S. kamtschaticum make this species a more practical model for 

intensive plant studies.  

By simple observation, it was noticed that the CR particle distribution in this 

study was not uniform throughout the experimental replicates of each treatment level. 

During the mixing process, where CR was proportionately added to the rooflite® the 

homogeneity of particles may have been different between treatments. It appeared that 

the 500 ml pots used in this study did not have adequate volume to ensure that a 

representative sample of that CR proportion was contained by each replicate.   If this was 

the case, more CR could have been added to some pots and less in others.  In order to 

reduce this potential source of variability in subsequent studies, the substrate 

combinations were formulated individually for each experimental unit. The average 

densities of the substrates were used to assure the exact amounts of the materials were 

added. 

Based on the significance of the results, some categorization of treatments can be 

inferred. For example, an amendment of 12% would not be different from 6%, and an 

amendment of 30% would not be different 24%. These considerations could be important 

to determine the maximum load reduction or the economic cost considerations of the 

amended substrate, while preventing toxic effects in the plants.  

The average shoot Zn concentration and Zn content were determined for S. 

kamtschaticum. In general, the average shoot concentration response was consistent with 
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the dry mass effect, i.e. a significant difference was found between the control and the 

CR amended treatments. Typically, as the dry mass decreased, the average Zn 

concentration increased.  In terms of Zn uptake, by combining the effect of growth (dry 

mass) and the uptake potential of the plants under the specific treatments (Zn 

concentration), no significant differences were found between treatments (Fig 3.6B). The 

most vigorous plants (control treatment, i.e. 0% Zn addition) extracted the same amount 

of the metal from the substrate than the rest of the treatments.  Because of the growth 

dilution effect, the average shoot concentration was lower than in treatments with higher 

CR proportions. In contrast, the 30% CR treatment, although having a significantly lower 

average dry mass to the other treatments, accumulated a higher concentration of Zn in the 

shoot tissue; this response however, was not significant when the shoot Zn contents were 

analyzed.    

Even though a dry mass reduction occurred as a consequence of the CR 

amendments and the Zn concentration increased as a consequence of the CR 

amendments, the absence of phytotoxicity symptoms (supported by the insignificant 

results in the FVI evaluations) suggested the possibility that Sedum species were tolerant 

to Zn. Past research had shown one species of the same genus, Sedum alfredii Hance, 

could accumulate 5000 mg Zn/Kg dry weight (Yang et al., 2002).  Furthermore, from the 

results of this study, it was not clear if sufficient Zn had been provided to create stressful 

conditions for these green roof species.  For these reasons, the focus of our subsequent 

research was to determine if Sedum kamtschaticum could in fact hypertolerate or 

hyperaccumulate Zn.  
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D.2. Experiment 2: Response of Sedum kamtschaticum to elevated concentrations of 

Zn in two different substrates. 

D.2.1.   Common Response of Plants to the Medium (80 mg Zn/L) and High (160 mg 

Zn/L) Zn Concentration Levels in Both Experiments 

This study was conducted under two different environmental conditions 

(greenhouse and growth chamber), to ensure the results were not affected by unknown 

environmental differences. The commonalities and differences from the results will be 

discussed; however, it should be noted that statistical comparisons between the two 

environments was not an objective of this study. 

The agreement of significant responses in the substrate treatments and Zn levels 

between locations reinforced the general conclusions of this study. While the rooflite® 

substrate prevented negative effects on plant growth at all Zn levels, the medium and 

high Zn concentrations caused the senescence and death of plants in the glass bead 

treatments.  In these cases, the Zn toxicity was initially manifested in the root system, 

which prevented subsequent root growth and caused the death of existing root tissues. 

Consequently, shoot growth was compromised, with visible symptoms showing early in 

the study. While still functional, the phloem transported a high amount of Zn. For this 

reason, the small shoot dry masses were associated with high Zn concentrations, and the 

Zn content varied as a function of dry mass and Zn concentration.  
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D.2.2.   Morphological Differences Between Greenhouse and Growth Chamber 

Plants 

Although some general growth and morphologic differences were observed 

between locations, the common denominator between both studies was the minimal 

growth and eventual collapse of the plants at the medium and high Zn levels in the glass 

bead treatment.  While the plants in the greenhouse showed fully expanded internodes 

and leaves, all plants in the growth chamber developed as a rosette (very compact 

growth) with comparatively small leaves. Since the growth reduction was manifested in 

both substrates and all Zn levels, it is very likely this was caused by the light 

characteristics of the growth chamber environment, which were not fully investigated.  

Additionally, by simple observation, the temperature and probably the evapotranspiration 

rates were lower in the growth chamber compared to the greenhouse.   

 The reduced growth and differentiation of the growth chamber plants could have 

been a short-term adaptation to prevent the elevated cost of biomass production.  Simply 

put, plant growth occurs only if the plants can meet the energetic expense for the 

metabolic processes involved, such as photosynthesis, transpiration, water and nutrient 

uptake (Larchner, 2003). 

D.2.3.   Root Growth, Zn Concentration and Zn Accumulation 

In both locations, no significant differences in the average root dry mass were 

found between the different Zn levels in the rooflite® substrate; we therefore assume that 

all the Zn was adsorbed by the rooflite during the course of the experiments, although 

we did not analyze the substrates at the end of the experiment.  By mitigating the 

negative effects of excessive Zn, the rooflite ensured that roots grew equally well with 
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all Zn additions.  In both locations it was also confirmed that the low Zn level was 

adequate for growing plants in glass beads; however, the inability of glass beads to 

adsorb the excessive Zn from the medium and high Zn treatments caused a significant 

reduction in average root dry mass in these treatments.  

 The average root Zn concentration response further explains the overall results.  

We observed in both locations that average root Zn concentrations were not significantly 

different in plants growing in rooflite®, regardless of Zn treatment.  However, this was 

not the case for plants growing in glass beads.  Extremely high Zn concentrations were 

found in the roots of plants grown in the medium and high Zn treatments in glass beads. 

This high accumulation has been described as a Zn2+ complex that occurs in the organic 

ligands of roots before translocation to shoots via xylem (Broadley et al., 2007).  

  

D.2.4.   Shoot Growth, Zn Concentration and Zn Accumulation 

The shoot growth of S. kamtschaticum was unrestricted by the addition of 0.3 

ppm Zn to both substrates, similar to the root growth results noted from both greenhouse 

and growth chamber environments.  Zn additions to rooflite® had no effect on shoot 

growth. We presume that the cation exchange capacity of the rooflite® particles 

measured at 7.5 meq/100g (App. A1), provided a mechanism for Zn to adsorb to the 

substrate exchange complex.  

Vigorous and functional root systems were the precondition for the occurrence of 

equivalently large shoot systems. Therefore, when root development was negatively 

affected by elevated concentrations of Zn in the soil solution, the shoot dry mass 

subsequently exhibited a mass reduction.  
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The tendency of average shoot concentration of plants grown in rooflite® in 

both locations was similar to the root responses described previously: no significant 

differences were found in the average shoot concentration at any Zn level.  In both 

locations, it was also found that the low and medium Zn concentration levels in glass 

beads were not significantly different. We think that the absence of a significant 

difference between the low and medium Zn treatment levels in glass beads could be due 

to large variability within these treatments and the inability of the non-parametric 

statistical analysis to discriminate between treatments.   This is strengthened by the 

observation that the plants receiving 80 mg/L Zn had manifested severe symptoms of Zn 

toxicity and significant reductions in dry mass by the end of the experiment. Non-

parametric statistics is a good resource for analyzing data that cannot be transformed, 

however, it is well known that the level of power is lower compared to parametric 

analysis.   

The simple effects for the average Zn shoot content were consistent in both 

environments for both glass bead and rooflite® substrates. As a consequence of the 

function between dry mass and Zn concentration, the response in shoot Zn accumulation 

of plants growing in glass beads was not different at any Zn solution concentration Note 

however, that while plants from the low Zn level treatment remained functional, the 

medium and high Zn level basically reflected the extreme accumulation of the metal in 

necrotic tissue with minimal dry mass. 

 In the rooflite® treatment, it was also observed that functional healthy plants can 

accumulate more Zn when the metal is available in excess in the substrate solution.  The 

chemical characteristics of the substrate buffered the substrate solution by sequestering 
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Zn. For this reason, Zn could be accumulated and tolerated by vigorously growing plants. 

Due the accumulation of larger dry mass, the Zn concentration was diluted in the shoots. 

Since S. kamtschaticum could not tolerate at least 80 mg/L Zn (medium Zn level), 

it is concluded that this species is not a hyper-accumulator of Zn.  For comparative 

purposes, this concentration was effective for accumulating 10,000 mg/Kg Zn in the 

shoots of Potentilla griffithii Hook, without exhibiting any toxicity symptoms (Qiu et al., 

2006). 

D.2.5.   Additional Chronologic Observations  

One of the major contributions from this study was the description of the plant 

responses between harvests during the study.  Severe toxic effects in the medium Zn level 

became visually evident relatively late in the time course of this study, however, the early 

evaluation of average dry mass, Zn concentration and Zn content, particularly in roots, 

allowed us to understand that the Zn toxicity began to occur since the first evaluation 

time.  We could not have determined these effects if the duration of this study had been 

reduced. 

The interaction between Zn and the mineral and organic particles of rooflite 

described in the second chapter reduced Zn availability for plant uptake. Therefore, S. 

kamtschaticum fertigated with potentially toxic concentrations of Zn could survive and 

develop as vigorously as plants grown under safe Zn concentrations. During the three 

months of treatments application, no visual insights suggested that there would be a 

reversion in plant growth. Hence, there is a possibility that, after three months, the cation 

exchange sites of the substrate had not been totally saturated.   From a strict chemical 
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point of view, the use of CR seems feasible as long as the substrates possess a high cation 

exchange capacity.   

 

Chapter 4: Summary and Final Remarks 

Extensive green roofs can improve the hydrologic balance in urban scenarios by 

significantly reducing the volume of storm water runoff from impervious surfaces.  Since 

green roofs incorporate dynamic components (both substrate and plants), these systems 

provide several ecological services. From a hydrologic perspective, the substrate layer is 

the most important component for capturing stormwater by retention and with the plant 

component, slowly releasing the moisture through evapotranspiration. From a biological 

point of view, the substrate is essential for sustaining the plants and associated life forms, 

by providing the physical characteristics such as optimal air and water availability, which 

are necessary for promoting the development of vigorous plant growth.   Additionally, 

diverse green roof systems can provide rich habitats for wildlife in urban landscapes.  

 The incorporation of recycled products into the substrates is a potential way to 

reduce substrate density, overall weight and remove waste materials from the 

environment. However, comprehensive testing of recycled materials is recommended 

because some could potentially release toxic substances into the environment.    

Our primary objective in this study was to determine if recycled crumb rubber 

(CR) could be used as a sustainable green roof amendment by investigating substrate 

interactions and plant responses to various proportions of CR amendments and Zn 

concentrations.  The model green roof substrate, rooflite®, utilized in these experiments 
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was composed of expanded shales, slates and clays with less than 65 g/L of organic 

material (rooflite®; Skyland, 2010). 

We reached three major conclusions from this research: 

1. We confirmed that Zn leaches from CR and the release rate is initially influenced 

by the pH of the solution. 

2. Available Zn can negatively affect Sedum plant growth.  

3. Zn adheres to the cation exchange sites of the mineral and organic portion of 

rooflite®.  

 

In the substrate – CR – plant complex, these interactions are multifarious, and 

thus we investigated the issue with five different experiments to focus on specific 

objectives.  It was the individual conclusions from these experiments that allowed us to 

understand the dynamics of Zn release from CR, Zn sequestration in rooflite, and Zn 

phytotoxicity. 

We quantified Zn release from CR and concluded that the rate and amount 

released was only significantly greater during the first 12 hours when CR was exposed to 

acidified water compared to non-acidified water.  We also found that the availability of 

Zn in the soil solution was significantly reduced when CR was combined with rooflite, 

a substrate with an average cation exchange capacity (CEC) of 7.45 meq/100 g at a pH of 

7 (App. B1).  For this reason, the leachate Zn concentration from rooflite® amended with 

30% CR was significantly lower than the leachate of a combination of 30% CR and 70% 

glass beads, a material with an average of 0.3 meq/100 g (App. B2), a negligible CEC.  

The acute criteria maximum concentration (CMC) of Zn in freshwater has been defined 
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as 0.12 mg Zn/L by the US Environmental Protection Agency. The concentration of Zn 

leached from a CR-amended green roof substrate was slightly above this value during the 

first two weeks after incorporation and at substrate container capacity. During the 

following weeks, the Zn concentration decreased to a level below the CMC for Zn.  

Interestingly, after twelve weeks, the average Zn leaching from the CR amended 

substrate treatment was not statistically significant from the control treatment without 

CR, indicating that rooflite® had similar amounts of native Zn.  

 Several volumetric proportions of rooflite® and CR (0% to 30%) were tested to 

evaluate the plant response to the substrate mixtures. Although no visual symptoms of 

toxicity were observed and no significant differences in the foliar volume were noted, a 

small but statistically significant reduction in dry mass occurred with proportions of CR 

greater than 0%.  For example, Sedum kamtschaticum, shoot dry mass was significantly 

less as proportions of CR increased in rooflite® (see Fig. 3.5).  A recent study suggests 

that increasing proportions of CR could modify the physical characteristics of the 

substrate, which should also be considered. Ristvey et al., (2010) investigated three 

different commercial green roof substrates amended with similar volumetric proportions 

of CR used in this study.  In the particular case of rooflite®, the limit for retaining the air-

filled porosity within the FLL recommendations was 18% CR. Other commercial green 

roof substrates sustained adequate air-filled porosities with higher proportions of CR.  

 During the hydroponic experiment, Zn concentrations of 80 mg/L and above 

caused severe toxicity and mortality in Sedum kamtschaticum grown in a glass-bead 

substrate. However, no negative plant growth effects occurred at the highest 

concentration of 160 mg/L Zn, as a consequence of growing in rooflite®.  Since Zn was 
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sequestered on cation exchange sites in the substrate, plants grown in rooflite® were able 

to develop normally during the three-month study, without the stress of highly available 

Zn in the substrate solution.    

We presume that we tested the worse-case Zn scenario during the hydroponic 

studies, since the Zn released by a 30% CR amendment is negligible compared to the 

elevated doses we applied during these experiments.   We must however recognize the 

limitations in extrapolating our results to long-term commercial installations.  We do not 

know the long-term limit of Zn release from CR, nor do we know the long-term capacity 

of rooflite® to sequester Zn.  Additionally, only a limited number of Sedum species were 

evaluated and more studies should be done to validate our results under specific 

circumstances.  In the future, several approaches could be adopted with regard to CR 

research for the green roof industry. From an industrial, environmental and marketing 

point of view, there is an opportunity for improving the commercial CR material by 

extracting the initial amount of Zn released from the product prior to use. The results 

from our leachate studies suggest that acid washing might potentially be a viable 

procedure to reduce the initial amount of Zn leached and not adsorbed by the substrate, as 

long as the leached metal could be remediated in a conscious and environmentally 

responsible manner.    

Research should also be oriented towards the selection of other green roof 

substrates with high cation exchange capacity that could adsorb the majority of the Zn 

released from CR. We also recommend the evaluation of how CR responds to freeze-

thaw cycles, UV and heat degradation, and to assess the fire hazard of these materials. 

This is fundamental to ascertain if CR could be use as a long term, stable, and 
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environmentally responsible green roof substrate amendment.  Nevertheless, this research 

shows that proportions between 18% and 30% CR could be used in green roof 

installations with few plant growth and environmental concerns. However, specific 

proportions are dependent upon the substrate’s capability to adsorb Zn and to maintain 

the physical attributes to retain water yet provide adequate air-filled porosity for healthy 

root growth.    
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App. Fig. A1. Green roof plant diversity creating habitat conditions. Rhypark extensive 

green roof. City of Basel, Switzerland. Source: greenroofs.com (2010c). 

 

 

 

 

 

 

 

 

 

 

 

 

App. Fig. A2. After construction: green roof designed to attract ground-nesting and 

feeding birds. City of Basel, Switzerland. Source: Breinnsein, 2006. 
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App. Fig. A3. Construction of a deck in the Flowers-Muller Residence. Project located in 

Adams Morgan, Washington, DC. Source: Capitol Greenroofs, 2010a.  

 

 

 

 

 

 

 

 

 

 

 

 

App. Fig. A4. Installation of a single-ply waterproofing membrane in Harvard University 

Institute. Project located in Cambridge, Massachussets. Source: Capitol 

Greenroofs, 2010b.  
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App. Fig. A5. Installation of insulating materials (Dow Styrofoam 40 lb density) in 

Harvard University Institute. Project located in Cambridge, Massachussets. 

Source: Capitol Greenroofs, 2010b.  

 

 
 

 

 

 

 

 

 

 

 

 

 

App. Fig. A6. Installation of a polyethylene root barrier in Harverford College, 

Pennsylvania. Source: Harverford College, 2010.  
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App. Fig. A7. Installation of a modular drainage layer. Source: Landmark Living Roofs 

Ltd, 2010.  

 

 

 

 

 

 

 

 

 

 

 

 

App. Fig. A8. Installation of a filter fabric in Harvard University Institute. Project located 

in Cambridge, Massachussets. Source: Capitol Greenroofs, 2010b.  
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App. Fig. A9. Installation of Sedum species in Harvard University Institute. Project 

located in Cambridge, Massachussets. Source: Capitol Greenroofs, 2010b.  

 
 

 

 

 

 

 

 

 

 

 

 

 

App. Fig. A10. Mature extensive green roof with Sedum species. Project located in Ford 

Motor Company's River Rouge Plant.  Dearborn, MI. Source: greenroofs.com 
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Appendix B 
 

Appendix B.1 

Cation Exchange Capacity analysis of rooflite®.
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Appendix B.2  

Zn concentration analysis of rooflite. 
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Appendix B.3  

Cation exchange capacity analysis of glass beads.  
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Appendix B.4  

 

App. Table B.4. General Linear Model Mixed (GLIMMIX) Analysis of Variance for 

the quantification of the available Zn in leachates from green roof substrates 

with and without CR.  

 
Leachate Zn concentration (mg/L) from CR, rooflite® and glass beads 
formulations(all times) 
          
        Type III Tests of Fixed Effects 
                Num  Den 
Effect         DF      DF       F Value    Pr > F 
Treatment    2        4          30.01        0.0039 
tpoint           1        122      11.21         0.0011 
 
       
Differences of Treatment Least Squares Means 
                                   Standard 
 
Treatment    _  Treatment             Estimate     Error          DF    t Value     Pr > |t| 
30GB : 70 RL      30CR : 70 RL      -0.08039    0.03053       4      -2.63         0.0580 
30GB : 70 RL      30CR : 70 GB      -1.5065      0.2018        4      -7.46          0.0017 
30CR : 70 RL      30CR : 70 GB      -1.4261      0.2018        4      -7.07          0.0021 
 
 
 
Net Zn released (μg) from either crumb rubber (30CR : 70RL and 30CR : 70GB 
treatments) or rooflite® (30 GB: 70 RL treatment).  
 
               Differences of Treatment Least Squares Means 
                                   Standard 
 
Treatment    _  Treatment             Estimate     Error           DF    t Value     Pr > |t| 
30GB : 70 RL      30CR : 70 RL      -0.3615      0.2008         4       -1.80         0.1462 
30GB : 70 RL      30CR : 70       -7.1146      0.2008         4       -35.43       <.0001 
30CR : 70 RL      30CR : 70            -6.7531      0.2008         4       -33.63       <.0001 
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Appendix B.5  

App. Table B.5. General Linear Model Mixed (GLIMMIX) Analysis of Variance for 

the average dry mass of S. kamtschaticum grown in glass beads or rooflite®, 

fertigated with three Zn concentration levels (0.03, 80 and 160 ppm) and 

grown under greenhouse conditions, three months after study initiation.  

 

                           The GLIMMIX Procedure 
                      Type III Tests of Fixed Effects 
                                  Num      Den 
          Effect                   DF       DF    F Value    Pr > F 
          Treatment                 2       30       6.35    0.0050 
          SUBSTRATE                 1       30     129.22    <.0001 
          Treatment*SUBSTRATE       2       30       4.80    0.0156  
 
HIG          GLASS        HIG           ROOFL           -7.85       <.0001 
HIG         GLASS        LOW         GLASS           -4.19       0.0002 
HIG          GLASS        LOW         ROOFL           -8.23       <.0001 
HIG          GLASS        MED         GLASS           -0.24       0.8083 
HIG          GLASS        MED         ROOFL           -8.05       <.0001 
HIG          ROOFL        LOW         GLASS            3.66        0.0010 
HIG          ROOFL        LOW         ROOFL           -0.38      0.7094 
HIG          ROOFL        MED         GLASS            7.61        <.0001 
HIG          ROOFL        MED         ROOFL           -0.20       0.8456 
LOW        GLASS        LOW         ROOFL           -4.03       0.0003 
LOW        GLASS        MED         GLASS            3.95        0.0004 
LOW        GLASS        MED         ROOFL           -3.85       0.0006 
LOW        ROOFL        MED         GLASS            7.98        <.0001 
LOW        ROOFL        MED         ROOFL            0.18        0.8586 
MED        GLASS        MED         ROOFL           -7.80       <.0001 
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Appendix C 

 

App. Table C.1. Summary of simple effects in average dry mass between CR 

treatments (A) S. album, (B) S. reflexum, (C) S. kamtschaticum  (P-values for 

the significant differences are indicated). 

 

A. Sedum. album 

 0% 6% 12% 18% 24% 30% 

0%  < 0.01 < 0.05 < 0.01 < 0.0001 < 0.01 

6% < 0.01      

12% < 0.05      

18% < 0.01      

24% < 0.0001      

30% < 0.01      

 

B. Sedum. reflexum 

 0% 6% 12% 18% 24% 30% 

0%   < 0.01    

6%   < 0.01  < 0.05 < 0.05 

12% < 0.01 < 0.01  < 0.05   

18%   < 0.05    

24%  < 0.05     

30%  < 0.05     
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C. Sedum. kamtschaticum 

 0% 6% 12% 18% 24% 30% 

0%  < 0.01  < 0.01 < 0.001 < 0.0001 

6% < 0.01     < 0.05 

12%      <0.01 

18% < 0.01     < 0.05 

24% < 0.001      

30% < 0.0001 < 0.05 <0.01 < 0.05   
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 App. Table C.2. Summary of simple effects in average shoot Zn concentration in S. 

kamtschaticum as a result of increasing proportions of CR. (P-values for the 

significant differences are indicated).  

 

Shoot average concentration of Sedum. kamtschaticum 

 0% 6% 12% 18% 24% 30% 

0%  < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

6% < 0.0001   < 0.001 < 0.0001 < 0.0001 

12% < 0.0001   < 0.01 < 0.0001 < 0.0001 

18% < 0.0001 < 0.001 < 0.01  < 0.05 < 0.001 

24% < 0.0001 < 0.0001 < 0.0001 < 0.05   

30% < 0.0001 < 0.0001 < 0.0001 < 0.001   
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 App. Table C.3. Multiple means comparison of average root dry mass of S. 

kamtschaticum root Zn concentration and root Zn content between the three 

Zn treatments and two substrates, rooflite® and glass beads grown in the 

greenhouse (P-values for significant differences are indicated). 

 

A. AVERAGE ROOT DRY MASS 

  rooflite® 

  Low Zn Medium Zn High Zn 

Glass beads 

Low Zn < 0.01 < 0.05 < 0.05 

Medium Zn < 0.0001 < 0.0001 < 0.0001 

High Zn < 0.0001 < 0.0001 < 0.0001 

 

A. AVERAGE ROOT Zn CONCENTRATION 

  rooflite® 

  Low Zn Medium Zn High Zn 

Glass beads 

Low Zn    

Medium Zn < 0.0001  < 0.0001 < 0.0001 

High Zn < 0.0001 < 0.0001 < 0.0001 

 

C. AVERAGE ROOT Zn CONTENT 

  rooflite® 

  Low Zn Medium Zn High Zn 

Glass beads 

Low Zn   < 0.05 

Medium Zn < 0.0001 < 0.001 < 0.01 

High Zn < 0.0001 < 0.0001 < 0.001 
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App. Table C.4. Multiple means comparison of average shoot dry mass of S. 

kamtschaticum shoot Zn concentration and shoot Zn content between the three 

Zn treatments and two substrates, rooflite® and glass beads grown in the 

greenhouse (P-values for significant differences are indicated). 

 

A.   AVERAGE SHOOT DRY MASS 

  rooflite® 

  Low Zn Medium Zn High Zn 

Glass beads 

Low Zn < 0.001 < 0.001 < 0.001 

Medium Zn < 0.0001 < 0.0001 < 0.0001 

High Zn < 0.0001 < 0.0001 < 0.0001 

 

B. AVERAGED SHOOT Zn CONCENTRATION 

  rooflite® 

  Low Zn Medium Zn High Zn 

Glass beads 

Low Zn    

Medium Zn < 0.05   

High Zn < 0.0001 < 0.01 < 0.01 

 
 

C. AVERAGED SHOOT Zn CONTENT 

  rooflite® 

  Low Zn Medium Zn High Zn 

Glass beads 

Low Zn  <0.001 <0.0001 

Medium Zn  <0.01 <0.0001 

High Zn  <0.1 <0.0001 
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App. Table C.5. Multiple means comparison of average root dry mass of S. 

kamtschaticum root Zn concentration and root Zn content between the three 

Zn treatments and two substrates, rooflite® and glass beads grown in the 

growth chamber (P-values for significant differences are indicated). 

 

A. AVERAGE ROOT DRY MASS 

  rooflite® 

  Low Zn Medium Zn High Zn 

Glass beads 

Low Zn    

Medium Zn < 0.01 < 0.001 < 0.01 

High Zn < 0.01 < 0.001 < 0.01 

 

B. AVERAGE ROOT Zn CONCENTRATION 

  rooflite® 

  Low Zn Medium Zn High Zn 

Glass beads 

Low Zn    

Medium Zn < 0.0001 < 0.0001 < 0.0001 

High Zn < 0.0001 < 0.0001 < 0.0001 

 

C. AVERAGE ROOT Zn CONTENT 

  rooflite® 

  Low Zn Medium Zn High Zn 

Glass beads 

Low Zn    

Medium Zn  < 0.05   

High Zn < 0.0001 < 0.001 < 0.01 
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App. Table C.6. Multiple means comparison of average shoot dry mass of S. 

kamtschaticum shoot Zn concentration and shoot Zn content between the three 

Zn treatments and two substrates, rooflite® and glass beads grown in the 

growth chamber (P-values for significant differences are indicated). 

 

A. AVERAGE SHOOT DRY MASS 

  rooflite® 

  Low Zn Medium Zn High Zn 

Glass beads 

Low Zn  < 0.05 < 0.05 

Medium Zn < 0.001 < 0.001 < 0.001 

High Zn < 0.001 < 0.001 < 0.001 

 

B. AVERAGE SHOOT Zn CONCENTRATION 

  rooflite® 

  Low Zn Medium Zn High Zn 

Glass beads 

Low Zn    

Medium Zn    

High Zn < 0.0001 < 0.0001 < 0.0001 

 

C. AVERAGE SHOOT Zn CONTENT 

  rooflite® 

  Low Zn Medium Zn High Zn 

Glass beads 

Low Zn  < 0.01 < 0.001 

Medium Zn  < 0.01 < 0.001 

High Zn   < 0.05 
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App. Fig. C1. Comparison of average shoot dry mass of S. kamtschaticum for three 

Zn treatments (0.3, 80 and 160 mg Zn/L), grown for twelve weeks  in (A) 

rooflite® and (B) glass bead substrates, in a greenhouse environment. 
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App. Fig. C2. Comparison of average shoot dry mass of S. kamtschaticum for three 

Zn treatments (0.3, 80 and 160 mg Zn/L), grown for twelve weeks in (A) 

rooflite® and (B) glass bead substrates, in a growth chamber environment. 
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App. Fig. C3. Comparison of average root dry mass of S. kamtschaticum for three Zn 

treatments (0.3, 80 and 160 mg Zn/L), grown for twelve weeks in (A) 

rooflite® and (B) glass bead substrates, in a greenhouse environment. 
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App. Fig. C4. Comparison of average root dry mass of S. kamtschaticum for three Zn 

treatments (0.3, 80 and 160 mg Zn/L), grown for twelve weeks  in (A) 

rooflite® and (B) glass bead substrates, in a growth chamber environment. 
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App. Fig. C5. Comparison of average shoot Zn concentration in S. kamtschaticum for 

three Zn treatments (0.3, 80 and 160 mg Zn/L), grown for twelve weeks  in 

(A) rooflite® and (B) glass bead substrates, in a greenhouse environment. 
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App. Fig. C6. Comparison of average shoot Zn concentration in S. kamtschaticum for 

three Zn treatments (0.3, 80 and 160 mg Zn/L), grown for twelve weeks  in 

(A) rooflite® and (B) glass bead substrates, in a growth chamber 

environment. 
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App. Fig. C7. Comparison of average root Zn concentration in S. kamtschaticum for 

three Zn treatments (0.3, 80 and 160 mg Zn/L), grown for twelve weeks  in 

(A) rooflite® and (B) glass bead substrates, in a greenhouse environment. 
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App. Fig. C8. Comparison of average root Zn concentration in S. kamtschaticum for 

three Zn treatments (0.3, 80 and 160 mg Zn/L), grown for twelve weeks  in 

(A) rooflite® and (B) glass bead substrates, in a growth chamber 

environment. 
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App. Fig. C9. Comparison of average shoot Zn content in S. kamtschaticum for three 

Zn treatments (0.3, 80 and 160 mg Zn/L), grown for twelve weeks  in (A) 

rooflite® and (B) glass bead substrates, in a greenhouse environment. 
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App. Fig. C10. Comparison of average shoot Zn content in S. kamtschaticum for three 

Zn treatments (0.3, 80 and 160 mg Zn/L), grown for twelve weeks  in (A) 

rooflite® and (B) glass bead substrates, in a growth chamber environment. 
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App. Fig. C11. Comparison of average root Zn content in S. kamtschaticum for three 

Zn treatments (0.3, 80 and 160  mg Zn/L), grown for twelve weeks  in (A) 

rooflite® and (B) glass bead substrates, in a greenhouse environment. 
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App. Fig. C12. Comparison of average root Zn content in S. kamtschaticum for three 

Zn treatments (0.3, 80 and 160 mg Zn/L), grown for twelve weeks  in (A) 

rooflite® and (B) glass bead substrates, in a growth chamber environment. 
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