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Endocrine disrupting chemicals (EDCs) are compounds that alter the production, 

secretion, action, and elimination of endogenous hormones.  EDCs have been shown to 

be responsible for disrupting development, reproduction, immune function, behavior, and 

all other life functions mediated by hormones.  In the environment, organisms are 

exposed to many different types of EDCs at any one time, each with different 

mechanisms of action, many of which are not fully understood at present.  Most research 

done with EDCs has focused on the effects of these chemicals on the estrogen and 

thyroid systems, however, many of these same chemicals also exert strong effects on the 

androgen system.  Also, many studies assessing the effects of EDCs on wildlife have 

focused on reproductive measures of exposure, often overlooking potential effects on the 

immune system.  We have demonstrated that embryonic exposure to androgen-active 

EDCs, anti-androgenic DDE and androgenic trenbolone acetate, impairs development of 



the bursa of Fabricius in Japanese quail, providing a possible mechanism for EDC-

induced immunosuppression.  The bursa is a primary immune organ responsible for 

development of the humoral part of the immune system.  We have also demonstrated that 

the bursa can be resilient to embryonic exposure to EDCs, if post-hatch exposure to these 

chemicals is prevented.  Measures of reproduction, behavior, growth, and developmental 

stability were also taken in this study.  Male and female rates to sexual maturity were 

altered by the one-time in ovo exposure to DDE and trenbolone.  Male reproductive 

behavior, as measured by attempts to mount and successful cloacal contacts achieved, 

was suppressed by both chemicals.  Vocalization was abolished in one and two week old 

chicks from the highest trenbolone acetate treatment levels.  Although environmentally 

relevant, the levels of DDE used in this study were below those reported to affects avian 

reproduction.  Environmental levels of trenbolone acetate are unknown, however, 

previous studies have concluded trenbolone acetate to be safe to wildlife and non-

teratogenic.  The myriad of endpoints used in this study has been compiled to provide 

toxicologists with a list of sensitive and persistent measures that can be used as reliable 

biomarkers of exposure to androgen-active EDCs in birds. 
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Chapter 1:  Introduction 
 
BACKGROUND 
 

Endocrine disrupting chemicals (EDCs) are compounds that alter the production, 

secretion, action, and elimination of endogenous hormones when encountered in the 

environment.  They are responsible for disrupting development, reproduction, immune 

function, behavior, and all other life functions mediated by hormones.  Most research 

done with EDCs to date has focused on the effects of these chemicals on the estrogen and 

thyroid systems.  Also, since early studies focused on the effects of estrogenic 

compounds, traditional research with EDCs had used mainly reproductive measurements.  

Therefore, until recently, many other organ systems have been largely ignored in the field 

of toxicology.  An overwhelming amount of evidence has since shown a large amount of 

“crosstalk” to exist between the endocrine and other organ systems, revealing both subtle 

and vital modulatory roles for many hormone systems in the development and 

maintenance of the body’s organ systems.  This dynamic connection between endocrine 

systems and the rest of the body creates the potential for EDC exposure to disrupt the 

development and functioning of a myriad of functions. 

Toxicology is a relatively new discipline, especially with consideration of 

compounds that target endocrine systems.  Although many observational studies have 

correlated EDC exposure with a wide variety of biological effects, the mechanisms 

behind these effects remain elusive.  Laboratory studies have been successful in 

establishing causality with various classes of EDCs.  However, the difficulty in being 

able to accurately document and predict effects largely come from organisms being 

exposed to many different types of EDCs at any one time in the environment.  Each class 
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of EDCs has its own mechanism of action, many of which are not yet fully understood.  

Individual EDCs also have more than one potential mechanism of action, and exposure to 

multiple EDCs may have additive or multiplicative effects, making the link between 

cause and effect even more difficult to ascertain.   

This dissertation was initiated as an investigation of the effects of androgen active 

EDCs on the development and function of the avian immune system.  As reproduction, 

growth, and behavioral data were also monitored to determine if there were associations 

between effects, we have gathered a great deal of data which has revealed some striking 

and unexpected effects.  Just as androgen active EDCs are often overlooked in favor of 

estrogenic and thyroid active EDCs, birds have been overlooked in favor of studies using 

mammals.  Therefore, since there is a scarcity of available data on the effects of androgen 

active EDCs on the development and activation of avian systems, the opportunistic data 

taken together with the intended immune response data provides a timely report on the 

interactions between these chemicals and biological systems.  This study also further 

illustrates how finely interconnected and stongly influenced many systems are with the 

neuroendocrine systems.  Currently, a call has gone out to the scientific community to 

help establish reliable endpoints, or biomarkers, of EDC exposure in birds.  The results of 

this study will contribute to the identification of sensitive and reliable biomarkers of 

androgen active EDC exposure in Japanese quail.  Two types of environmentally relevant 

androgen active EDCs were used in this study: an androgenic compound, trenbolone 

acetate, and an anti-androgenic compound, p,p’-DDE, to discern effects of both types of 

androgen disruption. 
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ENDOCRINE INTERACTIONS WITH SYSTEMS STUDIED 
 
 
A.  Immune system 
 

It is well known that many hormones influence the development of lymphoid 

organs and cells, and that many lymphoid cells secrete a wide variety of hormones and 

cytokines that interact to some degree with most organ systems.  Neuroendocrine and 

immune system “crosstalk” is discussed in detail by Marsh and Scanes (1994).  So much 

of this crosstalk occurs that the thymus and bursa of Fabricius are sometimes referred to 

as endocrine organs as well as immune organs.  The avian endocrine and humoral 

immune systems appear to communicate via gonadal steroid receptors on bursal epithelial 

cells and glucocorticoid receptors on bursal B cells  (Sullivan and Wira, 1979). 

Therefore, it is not surprising that androgens and glucocorticoids exert strong effects on 

the development and functioning of the bursa.  Further evidence for the bursa's role as an 

endocrine organ is found in the effects of the bursa’s main hormonal/growth factor 

product, bursin, on the immune and adrenocorticotropin systems.   

Sex differences in immune response have been observed in many animals (Zuk, 

1990).  In general, females tend to be more resistant to infection than males.  Females 

also have a greater ability to reject skin grafts and are more efficient in antibody 

production in response to antigen challenges (Novotny et al., 1983).  Three explanations 

have been hypothesized by evolutionary biologists for these sex differences in immune 

function (Moller et al., 1998).  First, activities related to sexual selection impose a 

resource drain on males that reduce the resources available for immune function; i.e. 

energy and nutrients that are spent on courtship and mating cannot be used to prevent or 
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fight infection.  Second, males may have higher levels of potential exposure to endo- and 

ectoparasites than females.  This higher level of exposure may be associated with 

increased interactions between males in territory defense and matings with more than one 

female in polygamous species.  Lastly, Folstad and Karter (1992) proposed that higher 

levels of androgens in males responsible for the development of secondary sexual 

characteristics and sexual displays might negatively impact immunocompetence.  

Conversely, just as higher levels of androgens in males have been found to be 

immunosuppressive, estrogens appear to enhance immune responses in females (Novotny 

et al., 1983).  

Many studies have shown that androgens often have a strong immunosuppressive 

effect in many species of birds.  Serum lysozome activity, an index of macrophage 

activity, is reduced in birds treated with testosterone (Al-Afaleq and Homeida, 1998).  

Testosterone treatments also resulted in a reduction in the total number of leukocytes and 

lymphocytes in developing chicks.  The first clue of an interaction between androgens 

and humoral immunity was the negative relationship found between testicular maturation 

and bursal regression; the bursa begins to regress as the testes mature and steroidogenesis 

increases.  Moreover, the bursa is exquisitely sensitive to testosterone (Glick, 1983), 

compared to the other primary lymphoid organs, such as the spleen and thymus, which 

appear to be unresponsive to exogenous androgens (Al-Afaleq and Homeida, 1998). 

Administration of many different types of androgens, including androsterone, 

androstene-3, 17-dione, methylandrostene diol, 5α-dihydrotestosterone (5α-DHT), 

testosterone propionate (TP), and 19-nortestosterone, disrupts embryonic development of 

the bursa (Glick, 1980).  DHT treatments resulted in reduced numbers of proliferating 
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bursal cells in broiler chicks (Novotny et al., 1983), and were found to stimulate testes 

growth (Leitner et al., 1996).  Bursas from chicken embryos treated with TP at E 3 were 

considerably smaller than controls on E 10 (Olah et al., 1986).  Most of the mesenchymal 

cells did not differentiate into light and dark cells.  A small number of dark cells that did 

develop were able to enter the epithelium, but lacked the characteristic cytoplasmic 

granules.  These dark cells have been termed “bud inducers” because they are necessary 

for epithelial bud formation.  The few granule-lacking bud inducing dark cells that 

formed under TP treatment and entered the epithelial tissue were not able to initiate bud 

formation.  Although the epithelium did not appear to be altered by the TP treatment, it 

did not accept any hemopoietic stem cells for B cell maturation (Olah et al., 1986).  Mase 

and Oishi (1991) found that Japanese quail treated with testosterone developed wrinkled 

epithelium in the bursas.  Also, the plicas, or buds, did not develop and the follicles were 

empty, rather than being filled with lymphocytes. 

Some discrepancies have been found relative to the effects of testosterone on 

avian immunocompetence.  Ros and coworkers (1997) have shown that exogenous 

testosterone enhanced antibody titers in response to sheep red blood cells (SRBC) in 

black-headed gull chicks, but caused no effect on antibody titers in 9 mo old juveniles.  

One explanation for these effects is that testosterone may not have as strong of an effect 

on the amount of antibodies produced as it does on the types of antibodies produced.  

Testosterone has a negative effect on IgG production, and testosterone treated chicks 

have been found to have higher levels of IgM than controls (Deyhim et al., 1992).  The 

inhibition of affinity maturation by testosterone may prevent normal isotype switch of 

IgM production to IgG production by lymphocytes.  Although the overall amount of 
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antibodies produced in response to foreign antigens may not significantly decrease under 

testosterone treatments, the antibodies produced may not be specific to the particular 

antigen.    

The bursa of Fabricius is a lymphoid organ unique to birds that is responsible for 

B-lymphocyte maturation, the leukocytes responsible for antigen production (Glick et al., 

1956).  Hieronymus Fabricius first described the bursa as “a cavity...which is situated 

near the podex and connected with the uterus” and “a double sac which in its lower 

portion projects toward the pubic bone and appears visible to the observer as soon as the 

uterus...presents itself into view” (Adelmann, 1967; Glick, 1980).  More succinctly, it is a 

dorsal diverticulum or cul-de-sac of the proctodeal region of the cloaca (Glick, 1983).  

Because of its location in the avian body, being close to the testes, ovaries, colon, and 

intestines, some early suggested functions included: semen reservoir, egg reservoir, 

seminal vesicle, Cowper's gland, anal pouch, urinary vessel, bladder, and third caecum.  

Thanks to a serendipitous experiment performed by one of Glick's graduate students, we 

now know that its true purpose deals with the immune system rather than that of 

digestion, reproduction, or excretion (Glick, 1991).  The bursa directs the differentiation 

of lymphocyte precursor cells into immunologically competent B cells (Assenmacher, 

1973).  It acts as a primary lymphoid organ during early stages of development, but later 

regresses into either a peripheral lymphoid organ or a non-functional remnant organ, 

depending on the species (Pasanen et al., 1998).  In precocial birds, the bursa increases to 

maximum size between the fifth and twelfth week of age, and then regresses before 

sexual maturity (Glick, 1977).  In the Japanese quail, the bursa remains throughout 

adulthood, possibly serving as a secondary lymphoid organ. 
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As suggested by its function in B cell development, the bursa’s main role in 

immune function is humoral.  The avian humoral branch of the immune system protects 

birds from foreign pathogens through the production of antibodies, which is dependent on 

the normal development of the bursa (Glick, 1973).  Early studies demonstrated that 

antibody production was suppressed in bursectomized birds, suggesting that 

immunoglobulin synthesis was solely dependent on the bursa (Long and Pierce, 1963; 

Kincade et al., 1970).  However, further research revealed that although immunoglobulin 

production is reduced in bursectomized birds, there is not complete inhibition of antibody 

production (Glick, 1991).  Embryonically bursectomized birds are able to produce serum 

and surface immunoglobulin (Ig) M, IgG, and IgA class immunoglobulins, although they 

cannot make specific antibodies even after heavy immunization (Jalkanen et al., 1984; 

Guellati et al., 1991).  The degree of antibody suppression is dependent on the timing of 

bursectomy.  When normal maturation of B cells is allowed to occur, immunoglobulin 

synthesis also takes place in the spleen and intestinal mucosa (Thorbecke et al., 1968; 

Bienenstock et al., 1973).  However, during embryonic development, immunoglobulin 

synthesis is solely dependent on the bursa (Seto, 1981).   

Another vital function for the formation of a healthy immune system that is 

dependent on proper development of the bursa is the creation of antibody diversification.  

One of the main ways to achieve this is through diversification of immunoglobulin 

molecules by gene conversion of variable gene segments of the immunoglobulin heavy 

and light chain genes.  This occurs only during the early stages of development and 

appears to be dependent on the bursa alone (Masteller and Thompson, 1994).  The bursa 
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is also the site of antibody isotype switch, the conversion of one antibody class to another 

from the rearrangement of constant regions in the B cell heavy chains. 

The bursal follicles are the sites of B cell maturation.  They develop from 

endothelial buds, and are made up of a cortex and medulla.  The cortex contains 

lymphoblasts, lymphocytes, macrophages, and plasma cells.  In addition to the above 

described contents, the medulla also contains reticular cells (Olah et al., 1975; Glick, 

1983).  The formation of the endothelial buds and the maturation of blood borne 

lymphoid stem cells into immunocompetent B cells are dependent on the mesenchyme.  

Hemopoeitic cells first migrate to the mesenchyme from the blood stream, but before this 

happens, mesenchymal cells must develop into either a cell type with a large pale nucleus 

with one or two small nucleoli (light cells), or a cell type with a polygonal nucleus with a 

large nucleoli that stains heavily (dark cells).  This differentiation of the mesenchymal 

cells occurs at embryonic day (E) 8 in the chicken (Olah et al., 1986).  At E 12, some 

dark cells begin to move toward an epithelial niche where they begin to produce small 

dark granules in their cytoplasm.  They invade the epithelium that immediately responds 

by forming a bud.  More dark cells surround the bursal bud as it grows and matures.  The 

fully formed bursal follicle is then able to receive blood borne lymphoid stem cells for 

lymphocyte maturation to take place (Olah et al., 1986).   

 There is literature that links exposure to EDCs with immunosuppression in birds 

(review in Crisp et al., 1998).  Planar halogenated aromatic hydrocarbons, such as 

polychlorinated biphenyls (PCBs) and 2,3,7,8-tetrachlorodibenzo-p-dioxin have been 

shown to have immunotoxic effects (Grasman and Fox, 2001), including developmental 

effects on the bursa.  PCB 126 caused decreases in bursa weight and numbers of 
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developing B lymphocytes in the bursas of chicken embryos (Fox and Grasman, 1999).  

PCBs and dioxins have also been linked to thymic atrophy and suppression of mitogen-

induced proliferation, mixed lymphocyte responses, cell-mediated cytotoxicity, delayed-

type hypersensitivity reactions, and humoral responses (reviewed in Grasman and Fox, 

2001).  However, while these studies have established the association of selected EDCs 

with effects in laboratory and field birds, much more data are needed to establish the 

extent of impact from EDCs and the classes of these compounds that are most 

deleterious. 

However, even these laboratory studies have their limits when attempting to 

establish links between individual chemicals and their immunotoxic effects.  Many 

individual EDCs, including polychlorinated biphenyls (PCBs) and pesticides such as 

methoxychlor (MXC), have more than one mechanism of action.  Until recently, people 

have focused on the estrogenic and thyroid effects of these compounds, even when 

previous studies have shown these same chemicals to have strong effects on the androgen 

system.  As a result, the androgenic properties, which have almost always been thought 

of as being immunosuppressive, have often been overlooked. 

 
B.  Reproductive System 
  
 

In avian species, gonadal differentiation occurs during early embryonic 

development.  A sexually dimorphic pattern of gonadal steroids that are produced during 

this time helps to modulate the sexual differentiation of accessory sex structures and 

neuroendocrine systems that regulate endocrine and behavioral components of 

reproduction (reviewed in Ottinger et al., 2001).  This, as well as differentiation of the 

 9



hypothalamic-pituitary-gonadal (HPG) axis, occurs mainly during late embryonic and 

early posthatch development (Ottinger 1989).  This “critical period” later determines not 

only male or female endocrine patterns, but sexually dimorphic behavioral patterns as 

well (Ottinger et al., 2001; Ottinger, 1989).  The feedback system between gonadotropin-

releasing hormone (GnRH) and gonadal steroids is initiated by embryonic day (ED) 10.  

Changes in the relative ratio of the concentration of testosterone to that of estradiol play 

more of a role in sexual differentiation of the HPG axis than absolute amounts of either 

individually (Ottinger 1989).  This ratio could be altered by exposure to androgen active 

EDCs, thereby altering the feedback system between GnRH and the gonadal steroids.   

 Male reproductive behavior is often used as a measurement of the influence of 

gonadal steroids on the neuroendocrine development in Japanese quail.  Recently, 

methods to quantify differences in female reproductive behavior have been successfully 

tested (Domjan et al., 2003), however, this measure has not yet been used in great 

frequency.  Copulatory behavior in males is controlled by the sexually dimorphic medial 

preoptic area (POA) or nucleus (Balthazart et al., 2000).  Many studies have elucidated 

the early embryonic changes in the anatomy and neurochemistry of the POA that set into 

place the mechanisms behind the activation of adult reproductive behavior (reviewed in 

Castagna et al., 1999).  Male Japanese quail copulatory behavior has been experimentally 

demasculinized by embryonic exposure to either estrogen or androgens (Ottinger et al, 

2001; Schumacher et al, 1989).  Again, this suggests that the development of these 

mechanisms might also be modulated by a balance of both gonadal steroids.  Embryonic 

exposure to exogenous androgens has already been shown to disrupt development of the 

POA.  Although the size of the POA is unaltered by exogenous androgens, the size of the 
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neurons and the volume of their nuclei in the dorsolateral area of the POA become 

permanently altered (Castagna, 1999; Panzica et al., 1999). 

Exposure to exogenous gonadal steroids and aromatase inhibitors have been often 

shown to alter the development of the avian reproductive system.  Embryonic exposure to 

exogenous estrogen has been shown to cause feminization in male Japanese quail, 

resulting in persistent Mullerian ducts and incomplete differentiation of the gonads as 

exhibited by ovotestes (Abdelnabi et al., 1997).  Aromatase is the enzyme responsible for 

the conversion of testosterone to estradiol.  Embryonic exposure to aromatase inhibitors, 

such as tamoxifen and fadrozole, has been shown to defeminize the ovary and accessory 

structures (Ottinger and vom Saal, 2002).  In chickens, females developed bilateral testes 

that were capable of complete spermatogenesis (Elbrecht and Smith, 1992).  These 

females not only had the physical appearance of males, but exhibited the behavior of 

males as well.   

Since most of the sexual differentiation of the reproductive tract occurs by the last 

third of embryonic development, timing of steroid exposure, and thus EDC exposure, 

plays an important role in the resulting effects.  For example, embryonic exposure to 

estradiol or testosterone by embryonic day (ED) 12 results in sex differences in adult 

male or female behavior (Aste et al., 1996).  Administration of either of these treatments 

after ED12, however, is ineffective in altering adult sexual behavior in Japanese quail 

(reviewed in Ottinger and vom Saal, 2002).   
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C.  Vocalization 
 
 
 Very few studies have investigated the effects of gonadal steroids on vocalization 

in non-singing avian species.  Testosterone, androstenedione, and 5α-dihydrotestosterone 

have induced calling in adult male Japanese quail (Adkins and Pniewski, 1978; Wada 

1982; Wada 1984).  Other studies have demonstrated testosterone’s ability to stimulate 

vocalization in ring doves and pigeons (Pietras and Wenzel, 1974; Cheng and Lehrman, 

1975).  These experiments had only investigated the activational effects of implanted or 

injected androgens on adult vocalization.  The mechanisms behind steroid effects on the 

activation of vocalization is not yet fully understood, although two main steroid sensitive 

areas exist: the brain and the syrinx, or avian voice-box. 

The intercollicular nucleus of the mesencephalon is the part of the vocal neural 

system responsible for producing the distress call (Yazaki et al., 1997), the type of 

vocalization assessed in this dissertation, in Japanese quail chicks.  Adult male neurons 

from the intercollicular nucleus have many more dendrites than those of females, 

suggesting that the development of these neurons may be influenced by differences in sex 

steroids between the sexes, although it has not yet been determined if this difference is 

indeed caused by testosterone (Yazaki et al., 1999).  Testosterone has been shown to 

affect this vocal neural system during development, modulating the amplitude, frequency, 

and behavior of the adult male crow.  Furthermore, following electrical stimulation of the 

intercollicular nucleus, females were able to produce the male crow four days after 

subcutaneous implantation of testosterone (Yazaki et al., 1999).  It is known that 

testosterone can alter the structure of the intercollicular nucleus in adults and induce male 
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crowing, however, it is unknown if testosterone is able to modulate this area of the brain 

for production of the distress call in chicks.   

Syrinx mass has been shown to be greater in male zebra finches than females 

(Lohmann and Gahr, 2000), again suggesting a possible role of sex steroids during 

development.  The zebra finch syrinx has been found to contain androgen receptor 

mRNA by embryonic day 10, presumably in order to prepare the chick for post-hatch 

food begging behavior (Godsave et al., 2002).  One study has shown that Silastic 

implants of testosterone in adult zebra finches caused significant increases in syrinx mass 

and the size of the ventralis and dorsalis syrinx muscles, and implants of flutamide, an 

anti-androgenic chemical, decreased syrinx weight (Wade and Buhlman, 2000).  

However, results from the few studies that investigate the effects of gonadal steroids on 

syrinx development are inconsistent.  It is clear that the effects of these hormones on 

syrinx development is complicated, and it is generally agreed that they do not appear to 

be directly responsible for the stimulation and control of the overall process of sexual 

differentiation of the syrinx.  However, it should be noted that areas of the forebrain that 

lead to the syrinx can be altered by exposure to exogenous gonadal steroids (Wade et al., 

2002). 

  

CHEMICAL TREATMENTS 
 
 
A.  Trenbolone Acetate 
 
 

Many studies have shown sex hormones released from human and animal wastes 

to have endocrine-disrupting effects, and have most often focused on the effects of 
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natural and synthetic estrogens (Tilton et al., 2002; Metcalfe et al., 2001; Purdom et al., 

1994).  A lot of attention has been directed towards the synthetic estrogens since they are 

more environmentally stable and more resistant to microbial degradation than the natural 

steroids (Tabak et al., 1981; Tabak and Bunch, 1970).  Fewer studies have looked at 

possible endocrine-disrupting activities of androgens from human and animal excreta, 

and as such, are less clear.  Trenbolone acetate (17β-acetoxyestra-4,9,11-triene-3-one) is 

a synthetic androgen that is used in many meat-exporting countries.  Upon release into 

the blood from subcutaneous implants usually in an animal's ear, trenbolone is almost 

immediately hydrolyzed to the active trenbolone-17β (TbOH-17β; Schiffer et al., 2001).  

Only one metabolic route has been observed in the heifer, oxidation of TbOH-17β to 

trendione (TbO), followed by reduction to TbOH-17α.  This epimerization between 

TbOH-17β and TbOH-17α can go back and forth until the molecules are excreted.  

TbOH-17β is the compound responsible for most of the anabolic activities since the 

potency of TbOH-17α is only 5% of that of TbOH-17β (Pottier and Cousty, 1981).  The 

affinity of TbOH-17β to the recombinant human androgen receptor is similar to 

dihydrotestosterone, and that of TbOH-17α is only 5% of the TbOH-17β value (Bauer et 

al., 2000). 

 The half-life of TbOH's 17α isomer in liquid manure was found to be 267 days, 

and that of the 17β isomer is 257 days (Schiffer et al., 2001).  Also, TbOH was traceable 

in soil fertilized with solid dung collected from cattle that received trenbolone implants 

for up to 58 days.  The long half-life of TbOH and its persistence in soils treated with 

manure from animals given trenbolone implants, create the potential for this synthetic 

androgen to accumulate in soils and in higher trophic levels of food webs.  The potential 
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for problems is evident when considering that in the US alone, several tons of trenbolone 

acetate are applied each year (Schiffer et al., 2001).   

 
B.  p,p’-DDE 
 
 

DDE, or ethylene, 1,1-dichloro-2,2-bis(p-chlorophenyl), is the main metabolite of 

the pesticide DDT, or 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane.  DDT was used 

widely as a potent contact poison against arthropods from the 1940s until its ban in most 

major industrial countries in the 1970s.  A few countries still use DDT in small quantities 

to help control the spread of diseases such as typhus and malaria (Raloff, 2000).  Since its 

ban, levels of DDT have been steadily declining, however DDE still remains relatively 

high in the world's environmental and organismal systems, as it is chemically more stable 

and biologically more persistent than its parent compound.  DDE is only found in the 

environment as a result of contamination or breakdown of DDT. 

 DDT and its metabolites are all lipid soluble compounds, being distributed to all 

body tissues via the blood and lymph, stored in proportion to organ lipid content 

(Clement, 1994).  In the mammalian body, DDT is broken down to two main metabolites, 

DDD [1,1-(p-chlorophenyl)-2,2-di-chloroethane] and DDE, before being further broken 

down to the excretory metabolite, DDA [bis(p-chlorophenyl)acetic acid].  In Japanese 

quail, the two main metabolites are DDE (31%) and DDA (35%); DDD has been reported 

to have been found as an avian metabolite of DDT, but is thought to arise postmortem, 

produced by anaerobic reductive dechlorination by bacteria in the gut or feces (Ahmed 

and Walker, 1979; Jefferies and Walker, 1966).  As stated above, DDE is chemically 

more stable and biologically more persistent than its parent compound.  The ranking of 

 15



biological half-lives and affinity for storage in lipid tissue is: DDE>DDT>DDD; some 

scientists speculate that the in vivo persistence of DDE is so high, that most of the DDE 

that enters the body or is created in the body by metabolism of DDT remains in adipose 

tissue until death (reviewed in Clement, 1994).  After Phase I metabolism in mammals, 

DDA is excreted through the urine mostly in conjugated form.  Some debate exists as to 

how much of what particular metabolites are excreted in urine and feces; this is further 

complicated in the bird because urine and feces are combined in the droppings.  In both 

cases, however, the main end metabolite remains DDA. 

It took about 50 years after the initial use of DDT as a pesticide to understand 

some of the mechanisms of action of its main metabolite DDE.  This is due in part to 

much of the early research concentrating on the estrogenic effects of o,p’-DDT, which 

only made up about 15% of technical DDT (Clement, 1994).  o,p’-DDT was shown to 

cause estrogenic effects in female rats.  It wasn’t until studies began to show phenotypic 

effects of this chemical on male rats that were very similar to those observed with 

exposure to known androgen receptor blocking chemicals that scientists first began to 

speculate about p,p’-DDE’s antiandrogenic nature (Kelce et al., 1995).  It is now known 

that DDE is a potent androgen receptor antagonist and a very potent testosterone 

hydroxylase modulator.  Its androgen receptor blocking ability is almost equal to that of 

the anti-androgen hydroxyflutamide (Kelce et al., 1995).  Moreover, its effects on 

enzymatic activities are considered secondary mechanisms of action, which are also anti-

androgenic.  DDE has been shown to induce 6β-, 16β-, and 17β–testosterone hydroxylase 

in rats.  17β- testosterone hydroxylase acts in the liver to convert testosterone to 

androstenedione, a less potent androgen (You, 2000).  It has also been shown to cause 
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increases in hepatic aromatase, which could further decrease levels of testosterone 

through its conversion to 17β–estradiol.   
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Chapter 2:  Effects of DDE on the Immune System 
 
 
INTRODUCTION 
  
 

Environmental contaminants are known to be immunotoxic to a number of 

different taxa, however few studies have assessed the relationship of contaminants and 

immune function in birds (Bustnes et al., 2004).  The avian neuroendocrine system 

controls many aspects of lymphoid organ differentiation and development and can 

regulate immediate immune responses (reviewed by Glick, 1984).  In turn, immune 

organs and cells can produce a number of hormones and cytokines that mediate a variety 

of neuroendocrine responses (Marsh and Scanes, 1994).  This intimate interaction 

between the neuroendocrine and lymphoid systems makes the potential effects of 

endocrine disrupting chemical (EDC) exposure on these systems of great concern to 

ecotoxicologists.   

P,p’-DDE [ethylene, 1,1-dichloro-2,2-bis(p-chlorophenyl)] is an anti-androgenic 

metabolite of the pesticide DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane].  DDE 

was largely responsible for the decline of many bird populations through severe eggshell 

thinning (Weseloh et al., 1983).  After DDT was banned in 1972, the incidence of 

eggshell thinning syndrome decreased, and bird populations rebounded (Custer et al., 

2000).  However, because DDE is highly persistent and lipophilic, great potential 

continues to exist for bioaccumulation and biomagnification.  Current studies show that 

DDE still has significant effects on avian reproduction and eggshell thinning (Custer et 

al., 1999; Custer et al., 2000).  Current studies also suggest that exposure to DDE may 
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alter aspects of avian immune function (Grasman and Fox, 1999), however the full extent 

of these alterations and the mechanisms behind them are largely unknown. 

The bursa of Fabricius is a primary lymphoid organ unique to birds that is 

essential for normal development of the humoral immune system.  Restricting its 

development or removal at hatch drastically reduces immunoglobulin production and 

depresses plasma cell and germinal center formation.  The bursa is extremely sensitive to 

testosterone (Glick, 1983), compared to the other primary lymphoid organs, such as the 

thymus and spleen, which appear to be unresponsive to exogenous androgens (Al-Afaleq 

and Homeida, 1998).  Administration of many different types of androgens, including 

androsterone, androstene-3, 17-dione, methylandrostenediol, 5α-dihydrotestosterone (5α-

DHT), testosterone propionate (TP), and 19-nortestosterone, disrupts embryonic 

development of the bursa (Glick, 1980).  Embryonic exposure to exogenous androgens 

has caused inhibition of the development of bursal buds and follicles, most likely through 

inhibition of mesenchymal cell differentiation (Olah et al., 1985; Ledouarin et al., 1980).  

The follicles are areas of the bursa that are responsible for B cell maturation.  Inhibition 

of follicle development may, therefore, result in lasting effects on antibody response 

quality.  Androgens also have been shown to affect the development of the bursal 

epithelial anlage, resulting in inhibition of acceptance of hemopoietic stem cells that 

migrate to the bursa in order to undergo B cell maturation. 

Since the bursa is exquisitely sensitive to androgens, embryonic exposure to 

androgen active EDCs should affect its development. The purpose of this study was to 

assess the effects of an anti-androgenic EDC on the development of the bursa of 

Fabricius.  The first objective of this study was to determine if embryonic exposure to 
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DDE would disrupt the development of the bursa’s follicles and epithelium.  The second 

objective was to ascertain if this one time embryonic exposure would have lasting effects 

on immunocompetence throughout adulthood. 

 
METHODS 
 
 

Japanese quail (Coturnix japonica) was chosen as a model species in this study 

because they are well suited for toxicity tests (Fair et al., 1999).  Japanese quail are 

particularly useful in studies that examine bursal development and function because 

unlike most avian species, the quail maintains a bursa throughout life (Pardue, 1981).  

Eggs were collected from a random bred colony at the Department of Animal and Avian 

Sciences at the University of Maryland, College Park.   

One hundred eggs per treatment were randomly assigned to either control (sesame 

oil vehicle) low DDE (20 ug/egg) or high DDE (40 ug/egg) treatments.  All treatments 

were administered into the yolk at a volume of 20 µl to mimic maternal deposition of the 

EDC.  The low dose reflects environmentally relevant levels that should not affect 

reproduction, but should have an effect on the development of the bursa; the high dose 

reflects environmentally relevant levels that have been found to affect reproduction 

(Nisbet 1989, Henny and Herron, 1989; White et al., 1988; Custer and Mitchell, 1987; 

Henny et al., 1984; Custer et al., 1983).  Holes from the injection site were immediately 

sealed with paraffin, and the eggs were immediately set to incubate.   

Samples were collected from 20 birdsd on day of hatch.  Spleens and bursas were 

collected, weighed, and stored in Bouin’s solution.  Bursas and spleens were embedded in 

paraffin, sectioned at 10 µm, and stained with hematoxylin and eosin (according to 
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Addison, 1929).  The slides were then read at 400x and the images were digitized by 

IPLab for Windows (Scanalytics, Inc., Fairfax, VA).  Follicle size was analyzed as an 

average of 10 follicles per individual bursa.  The number of follicles per section was 

determined by averaging the numbers of follicles from sections taken in 3 different 

locations along each bursa.  Blood was collected to measure serum IgG levels and to 

make slides for total and differential leukocyte counts.  The remaining quail were placed 

into heated brooders with diet (Purina Gamebird Startina, St. Louis, MO) and water 

provided ad libitum.  Sexually mature adults were euthanized and bursas and spleens 

were collected and processed similarly to those collected from chicks. 

Two blood smears were made per individual.  The blood was fixed with 100% 

methanol and stained with Wright stain.  The slides were immersed in 100% stain for 30 

sec and then placed in a 1:1 dilution of stain in distilled water for 90 sec.  The slides were 

then rinsed with distilled water and allowed to air dry.  The total number of leukocytes 

was determined by counting at 400x magnification and averaging the number of 

leukocytes found in ten different randomly selected fields.  The number of leukocytes per 

ml of blood was estimated by multiplying this value by 2000.  Percents of lymphocytes, 

monocytes, heterophils, and eosinophils, and the heterophil:lymphocyte (H:L) ratio were 

also determined by counting 200 leukocytes per individual under 1000x magnification.  

The measurement of antibody production in response to foreign red blood cells is 

a common method for assessing humoral immunity (Fair et al., 1999).  Quail were 

immunized with chukar partridge (Alectoris chukar) erythrocytes (CRBCs) because 

Japanese quail are minimally sensitive to sheep, human, chicken, turkey, and duck 

erythrocytes and do not produce immunoglobulins to human, bovine, and mouse 
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albumins (Benton et al., 1977; Pardue, 1981).  CRBCs were collected from birds raised at 

Mason-Dixon Game Outfitters game farm (Pylesville, MD).  Adult quail received 0.1 ml 

of a 1.0% suspension of CRBCs in sterile saline injected into the jugular vein.  Serum 

was collected from the jugular vein one week after the CRBC injection, and serum was 

stored at –80o.  Total (IgM and IgG) and 2-mercaptoethanol-resistant (IgG) antibody 

activities were measured by microtiter activity methods described by Grasman et al. 

(1996). 

Cell mediated response was measured at 8 weeks of age using a 0.1 ml dose of 1 

mg/ml PHA-P (Sigma, St. Louis, MO) in phosphate-buffered saline (PBS). Feathers were 

plucked from both wing webs. One wing web was injected with the PHA solution while 

the other wing web received an injection of PBS alone. The thickness of each wing web 

was measured to the nearest 0.01 mm immediately before and 24 hr after the injections 

using pressure-sensitive micrometers with a low-tension spring that did not crush the skin 

(model P.N. 50059, Chicago Brand, Fremont, CA, USA). A stimulation index was 

calculated as the difference in the change in thickness of the PHA-injected wing web 

from the change in thickness of the PBS-injected wing web. 

Serum IgG was measured in blood collected from day old chicks by an enzyme 

linked immunosorbent assay (chicken IgG ELISA, Bethyl Laboratories, Montgomery, 

TX, USA).  The ELISA was validated for IgG measurements in Japanese quail by 

demonstrating parallelism of the standard curve and samples of quail serum.  Sensitivity 

was 1.2 ng/ml and precision, calculated as percent coefficient of variation, was 4.3%.

 The Statistical Analysis System (SAS Institute, Inc., Cary, NC) was used for all 

statistical analyses.  Assumptions for parametric statistics were examined prior to 
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analysis.  Data were analyzed separately by sex when sex-by-treatment interactions were 

significant.  All measurements were analyzed by two-way analysis of variance, and 

Tukey tests were used for post hoc pairwise comparisons.   

 
 
RESULTS 
 
 
 The bursas of Fabricius from the low and high treated day old chicks were 

significantly larger than controls (p<0.01; Fig. 1).  Spleen weights did not differ 

significantly.  Day old bursas from the control and DDE treatments looked radically 

different from each other (Fig. 2).  The low and high DDE-treated bursas lost the 

characteristic shape of the folds, or buds, that contain the follicles.  Vacuolization of the 

follicles was also apparent in a number of hatchling DDE-treated bursas, but not in 

controls.  No differences in the appearance of the epithelium were apparent among the 

treatments.  Although the size of the bursal follicles did not change, bursas from DDE-

treated birds contained significantly fewer follicles than controls (p<0.05; Fig. 3).  In 

adults, bursas from all treatments no longer exhibited any differences in appearance or in 

any of the quantifiable measurements.  Spleens collected from hatchlings and adults were 

similar in appearance among all the treatments. 

 The numbers of total serum leukocytes from day old quail in both the low and 

high DDE treatments were more than twice as high as those found in birds from the 

control treatment (p<0.05; Fig. 4).  No significant differences were observed with the 

differential leukocyte count; the numbers of all types of leukocytes increased similarly in 

the DDE-treated birds.  Levels of IgG in hatchling serum did not differ among treatments. 
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Figure 1.  Bursa / body weight indices (mean +/- SEM) in one day old Japanese quail.  
Significant differences between treatments are indicated by letters (p<0.05).   
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Figure 2.  Photographs illustrating the effects of embryonic exposure to DDE on the 
development of bursas of Fabricius from one day old Japanese quail.  Organization of the 
plicas from bursas collected from DDE treated quail was altered.  Vacuolization of the 
follicles was also apparent in many of the bursas from DDE treated birds.  
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Figure 3.  Number of follicles per section (mean +/- SEM) collected from one day old 
Japanese quail.  Significant differences between treatments are indicated by uppercase 
letters for hatchlings and lowercase letters for adults (p<0.05).   
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Figure 4.  Number of leukocytes per ml blood (mean +/- SEM) collected from one day 
old Japanese quail.  Data was averaged from observations made with two blood smear 
slides.  Significant differences between treatments are indicated by letters (p<0.05).   
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 Although significant differences were observed in regard to the structure and 

morphology of the bursa, no significant differences in the adult humoral response to a 

CRBC challenge were observed with either IgM or IgG production.  Similarly, although 

the cell-mediated responses tended to be lower in both adult DDE treatments than 

controls, these differences were only marginally significant (p<0.1).  

 
DISCUSSION 
 
 
 This study has demonstrated that embryonic exposure to DDE, an anti-androgenic 

EDC, alters the development of the bursa of Fabricius.  Previous studies have shown 

embryonic exposure to androgens to inhibit bursal growth (Meyer et al., 1959; 

Bruggeman et al., 2003).  As hypothesized, embryonic exposure to this anti-androgenic 

chemical had an opposing effect in developing Japanese quail; natural regression caused 

by the release of endogenous androgens was reduced in quail exposed to DDE.  This 

reduction of embryonic bursal regression has also been demonstrated in a study using the 

anti-androgenic chemical flutamide  (Burke, 1996).  Although the histology from this 

study showed obvious differences in the appearance of the cross-sections of the DDE-

treated and control bursas, finding measurements to quantify these differences was 

challenging.  Since B cells mature in the follicles, it is assumed that disruption in the 

development of these structures would impact B cell maturation.  Vacuoles were found in 

a number of follicles in bursas that were grown under DDE exposure, however none were 

found in control bursas.  Also, the number of sites of B cell maturation were significantly 

reduced in DDE-exposed bursas.  As one might have expected, we observed a larger 

leukocyte count in individuals possessing larger primary lymphoid organs.   
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 From observing differences in the appearance of bursal follicles and lymphoid 

cell numbers, we expected to see differences in the amount of serum IgG in day old quail.  

All immunoglobulins in day old serum would have come from one of two sources: 

deposition by the hen as the egg was being formed in the oviduct or production by the 

embryo.  All antibodies that are produced by the embryo at day one only come from B 

cells that matured in the bursa, whereas after hatch, B cell maturation can occur in other 

lymphoid organs.  Therefore, assuming that maternal deposition of IgG into the eggs was 

similar among the hens of the colony, any differences that may have been observed 

would have been due to differences in the chick’s B cell population.  None were 

observed, suggesting that although the structure of the bursa was altered by DDE, stem 

cells were still able to mature within the bursa and produce antibodies. 

This measure of hatchling serum IgG was also used to detect possible differences 

in isotype swich, the conversion of one antibody class to another from the rearrangement 

of constant regions in the B cell heavy chains.  Androgens have been shown to cause 

increases in IgM and decreases in IgG (Deyhim et al., 1992).  These changes may be due 

to inhibition of isotype switch by androgen disruption of affinity maturation.  Since no 

differences in hatchling serum IgG were observed, it appears that isotype switch was 

unaffected by embryonic exposure to DDE. 

 We did not predict differences in the development of the spleen or differences in 

the cell mediated responses since the avian spleen and thymus are known to be resistant 

to androgens.  We did, however, expect to see differences in the humoral response due to 

differences observed in the structure of the bursa.  After completing the histology of the 

adult bursas, it was obvious as to why no differences in humoral responses were 

 29



observed; without subsequent exposure to DDE post-hatch, the bursas were able to 

overcome the early developmental disruption and resume normal maturation.  Because 

we were conservative with the age at which the humoral response was conducted, quail 

were tested when they were immunologically mature.  This enabled observation of a 

healthy response that theoretically would have been large enough for any differences to 

be observable.  In doing so, however, we may have missed testing one of the birds’ most 

immunologically vulnerable stages of life. 

 These data are encouraging for DDE exposure in wild populations because we did 

not detect significant differences in the immune responses in adult quail that were 

exposed to levels of DDE that were strong enough to alter bursal development.  This 

study, however, mimics only maternal deposition of DDE into the yolk.  Considering that 

birds in the wild are continually exposed to this chemical, and a multitude of others, 

through their diet throughout their entire lives, the full potential of the bursa’s resilience 

to androgen active EDC exposure may not be fully realized in the environment.  Further 

studies are needed to not only test the humoral response in younger birds, but also to test 

bursa response with continued posthatch exposure to DDE. 

 It is clear that embryonic exposure to DDE disrupts the normal development of 

the bursa of Fabricius.  Although studies have associated EDC exposure with altered 

lymphocyte organ development and immune responses, none have yet addressed how this 

EDC-induced immunosuppression may be occurring.   By demonstrating how strong an 

effect this anti-androgenic contaminant can have on the development of the bursa of 

Fabricius, this study suggests that disruption of the development of the bursa may be a 

key factor in the cause of EDC-induced immunosuppression. 
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Chapter 3:  Effects of Trenbolone Acetate on the Immune Sytem 
 
 
INTRODUCTION 
 

 Many studies have shown sex hormones released from human and animal 

wastes to have endocrine-disrupting effects, and have most often focused on the effects of 

natural and synthetic estrogens (Tilton et al., 2002; Metcalfe et al., 2001; Purdom et al., 

1994).  Fewer studies have considered possible endocrine-disrupting activities of 

androgens from human and animal excreta, and as such, effects are less clear.  

Trenbolone acetate (17β-acetoxyestra-4,9,11-triene-3-one) is a synthetic androgen that is 

used as a growth promoter for beef cattle in many countries.  Upon exposure, trenbolone 

is almost immediately hydrolyzed to the active trenbolone-17β, which has an affinity to 

the recombinant human androgen receptor similar to dihydrotestosterone (Bauer et al., 

2000).  The half-life of trenbolone and its metabolites can reach over 250 days in liquid 

manure and be found in soil fertilized with solid dung collected from cattle that received 

trenbolone implants for about 2 months (Schiffer et al., 2001).  The long half-life of 

trenbolone and its persistence in soils treated with manure from animals given trenbolone 

implants, create the potential for this synthetic androgen to accumulate in soils and in 

higher trophic levels of food webs.   

The bursa of Fabricius is a primary lymphoid organ unique to birds that is 

responsible for the maturation of lymphocyte precursor cells into immunologically 

competent B cells (Glick et al., 1956; Assenmacher, 1973).  It acts as a primary lymphoid 

organ during early stages of development, but later regresses into either a peripheral 

lymphoid organ or a non-functional remnant organ, depending on the species (Pasanen et 
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al., 1998).  In precocial birds, the bursa increases to maximum size between the fifth and 

twelfth week of age, and then regresses before sexual maturity (Glick, 1977).  In the 

Japanese quail, the bursa remains throughout adulthood, possibly serving as a secondary 

lymphoid organ. 

This natural regression is initiated embryonically as the testes mature and 

steroidogenesis increases.  The bursa has been described as being exquisitely sensitive to 

androgens compared to the other primary lymphoid organs, such as the spleen and 

thymus, which appear to be unresponsive to exogenous androgens (Glick, 1983; Al-

Afaleq and Homeida, 1998).  Embryonic exposure to exogenous androgens including 

androsterone, androstene-3, 17-dione, methylandrostene diol, 5α-dihydrotestosterone 

(5α-DHT), testosterone propionate (TP), and 19-nortestosterone, have been shown to 

disrupt bursal development as evidenced by bursas with smaller masses, greater number 

of morphological alterations, and reduced numbers of proliferating cells (Glick, 1980; 

Novotny et al., 1983; Olah et al., 1986; Mase and Oishi, 1991).  B cells are responsible 

for antibody production, and as a result, alterations in the bursa’s development also 

negatively impacts antibody production.  Not only are the numbers of antibodies reduced 

in birds embryonically exposed to androgens (Bhanushali, 1985; Yoshikawa 1978), but 

the quality of the fewer antibodies produced may also be compromised, as illustrated by 

inhibition of normal isotype switch of IgM production to IgG production by lymphocytes 

(Deyhim et al., 1992; Bhanushali and Ragland, 1985; Hirota et al., 1980).   

Many studies have been done to assess potential teratogenic effects of trenbolone, 

however much of this data was collected in industry laboratories and remains 

unpublished (Wilson et al., 2002).   The potential for endocrine disrupting problems is 
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evident when considering that in the US alone, several tons of trenbolone acetate are 

applied each year (Schiffer et al., 2001).  Very few studies have been conducted to assess 

effects of trenbolone on wildlife, and none have been published to date that investigate its 

effects in avian species.  The purpose of this study, therefore, was to test for endocrine 

disrupting effects of this androgenic chemical on the development and functioning of 

androgen-sensitive areas of the immune system.  We hypothesized that embryonic 

exposure to trenbolone would act much like other androgens in causing an inhibition of 

growth or by causing premature regression of the bursa of Fabricius.  We also 

hypothesized that disruption of natural development of the bursa would cause 

immunosuppression throughout adulthood, especially in regard to immunoglobulin 

production and humoral responses. 

 
METHODS 
 

Japanese quail (Coturnix japonica) was chosen as a model species in this study 

because they are well suited for toxicity tests (Fair et al., 1999).  Japanese quail are 

particularly useful in studies that examine bursal development and function because 

unlike most avian species, the quail maintains a bursa throughout life (Pardue, 1981).  

Eggs were collected from a randomly bred colony at the Department of Animal and 

Avian Sciences at the University of Maryland, College Park.   

Ninety eggs per treatment were randomly selected to receive either sesame oil 

(control), 0.05, 0.5, 5 or 50 µg trenbolone acetate (Sigma Chemical Co., St. Louis, MO, 

USA).  Trenbolone was dissolved in sesame oil and injected into yolks at a volume of 20 

µl on day four of incubation.  Treatments were injected into the yolk to mimic maternal 
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deposition.  Levels of trenbolone in yolks in the environment are unknown; the levels of 

trenbolone used in this study were determined as part of a larger range finding study.  

Holes in the egg shell from the injection site were immediately sealed with paraffin, and 

the eggs were immediately set to incubate.   

Samples were collected from 20 birds on day of hatch.  Spleens and bursas were 

collected, weighed, and stored in Bouin’s solution.  Bursas and spleens were embedded in 

paraffin, sectioned at 10 µm, and stained with hematoxylin and eosin (according to 

Addison, 1929).  The slides were then read at 400x and the images were digitized by 

IPLab for Windows (Scanalytics, Inc., Fairfax, VA).  Follicle size was analyzed as an 

average of 10 follicles per individual bursa.  The number of follicles per section was 

determined by averaging the numbers of follicles from sections taken in 3 different 

locations along each bursa.  Blood was collected to measure serum IgG levels and to 

make slides for total and differential leukocyte counts.  The remaining chicks were placed 

into heated brooders with diet (Purina Gamebird Startina, St. Louis, MO) and water 

provided ad libitum.  Sexually mature adults were euthanized and bursas and spleens 

were collected and processed similarly to those collected from chicks. 

Two blood smears were made per individual.  The blood was fixed with 100% 

methanol and stained with Wright stain.  The slides were immersed in 100% stain for 30 

sec and then placed in a 1:1 dilution of stain in distilled water for 90 sec.  The slides were 

then rinsed with distilled water and allowed to air dry.  The total number of leukocytes 

was determined by counting at 400x magnification and averaging the number of 

leukocytes found in ten different randomly selected fields.  The number of leukocytes per 

ml of blood was estimated by multiplying this value by 2000.  Percents of lymphocytes, 
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monocytes, heterophils, and eosinophils, and the heterophil:lymphocyte (H:L) ratio were 

also determined by counting 200 leukocytes per individual under 1000x magnification.  

The measurement of antibody production in response to foreign red blood cells is 

a common method for assessing humoral immunity (Fair et al., 1999).  Quail were 

immunized with chukar partridge (Alectoris chukar) erythrocytes (CRBCs) because 

Japanese quail are minimally sensitive to sheep, human, chicken, turkey, and duck 

erythrocytes and do not produce immunoglobulins to human, bovine, and mouse 

albumins (Benton et al., 1977; Pardue, 1981).  CRBCs were collected from birds raised at 

Mason-Dixon Game Outfitters game farm (Pylesville, MD).  Adult quail received 0.1 ml 

of a 1.0% suspension of CRBCs in sterile saline injected into the jugular vein.  Serum 

was collected from the jugular vein one week after the CRBC injection, and serum was 

stored at –80oC.  Total (IgM and IgG) and 2-mercaptoethanol-resistant (IgG) antibody 

activities were measured by microtiter activity methods described by Grasman et al. 

(1996). 

Cell mediated response was measured at 8 weeks of age using a 0.1 ml dose of 1 

mg/ml PHA-P (Sigma, St. Louis, MO) in phosphate-buffered saline (PBS). Feathers were 

plucked from both wing webs. One wing web was injected with the PHA solution while 

the other wing web received an injection of PBS alone. The thickness of each wing web 

was measured to the nearest 0.01 mm immediately before and 24 hr after the injections 

using pressure-sensitive micrometers with a low-tension spring that did not crush the skin 

(model P.N. 50059, Chicago Brand, Fremont, CA, USA). A stimulation index was 

calculated as the difference in the change in thickness of the PHA-injected wing web 

from the change in thickness of the PBS-injected wing web. 
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Serum IgG was measured in blood collected from day old chicks by an enzyme 

linked immunosorbent assay (chicken IgG ELISA, Bethyl Laboratories, Montgomery, 

TX, USA).  The ELISA was validated for IgG measurements in Japanese quail by 

demonstrating parallelism of the standard curve and samples of quail serum.  Sensitivity 

was 1.2 ng/ml and precision, calculated as percent coefficient of variation, was 4.3%.  

 The Statistical Analysis System (SAS Institute, Inc., Cary, NC) was used for all 

statistical analyses.  Assumptions for parametric statistics were examined prior to 

analysis.  Data were analyzed separately by sex when sex-by-treatment interactions were 

significant.  All measurements were analyzed by two-way analysis of variance, and 

Tukey tests were used for post hoc pairwise comparisons.   

 
RESULTS 
 
 
 As hypothesized, the bursa of Fabricius was smaller in birds that were 

embryonically exposed to trenbolone acetate (Fig. 5A; p<0.0001).  Bursas that were 

collected from day old chicks that were exposed to the 5 µg trenbolone were about one-

forth smaller than controls (p<0.05).  Bursas from quail exposed to 50 µg trenbolone 

were approximately three-forths smaller than controls and half as large as those from 

birds exposed to 5 µg trenbolone (p<0.05).  No significant differences in size were 

observed with bursas collected from adult quail.  Although no significant differences  
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Figure 5.  Bursa (A) and spleen (B) / body weight indices (mean +/- SEM) in one day old 
Japanese quail.  Significant differences between treatments are indicated by letters 
(p<0.05).   
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were observed in hatchling spleen size across treatments, there was a slight decrease in 

size as exposure levels of trenbolone increased (Fig. 5B).  Spleens from adults were 

similar across treatments. 

The appearance of the bursas from day old chicks grown under exposure to 

trenbolone was radically different from controls (Fig 6A).  The characteristic folds that 

are apparent in the control bursas were reduced in those treated with trenbolone.  Many 

bursas that were collected from birds belonging to the 50 µg treatment did not appear to 

have any folds whatsoever.  Often, follicles could not be found in the bursas collected 

from this treatment group.  Many of the trenbolone-treated bursas that did have follicles 

within their folds also exhibited vacuolization within these follicles.  The epithelial cell 

layer that bordered the folds was also much thicker than those observed in control bursas.   

Although bursas from the trenbolone-treated quail appeared to develop similarly 

to controls, some differences were apparent in bursas collected from adult birds (Fig 6B).  

Compared to controls, the number of follicles found in trenbolone-treated bursas 

appeared to be reduced and larger in size.  Trenbolone-treated bursas also appeared to 

contain less lymphoid tissue than bursas collected from control birds.  The differences in 

the thickness of the epithelial layers, however, were no longer apparent in the adult 

bursas. 

Quantifiable differences in hatchling and adult bursal morphology existed.  There 

was some variation in the differences in follicle size from hatchling bursas across 

treatments (Fig 7).  Follicles from the 0.05 µg trenbolone treatment were significantly 

larger than controls (p<0.05).  Hatchling follicles from the highest treatment level were  
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Figure 6.  Photographs illustrating the effects of embryonic exposure to trenbolone 
acetate on the development of follicles and epithelium in bursas of Fabricius from 
Japanese quail.  Bursas collected from one day old quail (A) tended to have smaller and 
fewer follicles per section.  The epithelium surrounding the folds, or plicas, was most 
often more than twice as thick as controls.  Follicle number was also reduced in 
trenbolone-treated bursas collected from adult quail (B). 
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Figure 7.  Size of follicles (mean +/- SEM) collected from one day old Japanese quail.  
Significant differences between treatments are indicated by letters (p<0.05).   
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smaller than controls (p<0.05).  Although the follicles from trenbolone-treated adult quail 

appeared to be larger than controls, differences in follicle size were not significant.    

Although there was some variation in the number of follicles per section from hatchling 

bursas from 0.05 to 5 µg trenbolone (Fig 8), there were only about one forth of 

the number of follicles from the 50 µg treatment group than controls (p<0.01).  These 

significant reductions in follicle number remained throughout adulthood.  There were less 

than half of the number of follicles found in bursas from the 5 and 50 µg treatment levels 

than found in controls (p<0.001).       

 Total leukocyte counts in the 0.5, 5, and 50 µg treatments were approximately 

half as large as controls (Fig 9; p<0.05).  The heterophil:lymphocyte ratio in chicks from 

the 50 µg treatment was twice as large as those from all other treatments (Fig 10; 

p<0.05).  No significant differences were observed in adult total or differential leukocyte 

counts.  Hatchling serum IgG levels were significantly elevated in the 0.05 and 0.5 µg 

treatment groups (p<0.05), but returned to levels similar to controls at 5 and 50 µg (Fig 

11).  No significant differences were observed in either of the two humoral response tests 

nor the two cell mediated response tests. 

 
DISCUSSION 
 
 
 The teratology studies conducted by industrial laboratories have reported 

trenbolone acetate to be “nonteratogenic” (IPCS and CCOHS, www.inchem.org/ 

documents/jecfa/jecmono/v25je08.htm; 2005), however the current study has shown 

embryonic exposure to trenbolone acetate to cause abnormal development of the bursa of 

Fabricius in Japanese quail.  As seen in studies using exogenous androgens  
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Figure 8.  Number of follicles per section (mean +/- SEM) collected from one day old 
(white bars) and adult (dark bars) Japanese quail.  Significant differences between 
treatments are indicated by uppercase letters for hatchlings and lowercase letters for 
adults (p<0.05).   
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Figure 9.  Number of leukocytes per ml blood (mean +/- SEM) collected from one day 
old Japanese quail.  Data was averaged from observations made with two blood smear 
slides.  Significant differences between treatments are indicated by letters (p<0.05).   
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Figure 10.  Heterophil:lymphocyte ratio (mean +/- SEM) measured using blood slides 
made from blood collected from one day old Japanese quail.  Significant differences 
between treatments are indicated by letters (p<0.05).   
 

 

 

 

 

 

 

 

 

 

 

 44



Figure 11.  Serum immunoglobulin G (IgG) concentrations (mean +/- SEM) collected 
from one day old Japanese quail.  Significant differences between treatments are 
indicated by letters (p<0.05).   
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(Glick, 1983; Al-Afaleq and Homeida, 1998), trenbolone caused significant reductions in 

bursa but not spleen size.  Morphological observations revealed that the bursas grown 

under trenbolone treatment were very similar to those that developed in Japanese quail 

given testosterone implants at 4 weeks of age (Mase and Oishi, 1991).  Formation of the 

folds, or plicas, was reduced and sometimes non-existent in many of the trenbolone-

treated bursas.  Also, the fewer follicles that were able to develop under trenbolone 

treatments exhibited vacuoles, although not to the extent as described by Mase and Oishi 

(1991).  Alterations in follicular development are of great concern since these are the 

areas of the bursa responsible for B-cell maturation.  The differences that were observed 

in the appearance of the epithelium is also important to note since alterations in this part 

of the bursa have been known to cause inhibitory effects on the ability of embryonic stem 

cells to penetrate the bursa from their spleenic migration (Olah et al., 1986).  It should be 

stated, however, that prebursal stem cells seed bursal follicles much earlier than these 

differences were detected; it is not known if similar changes were occurring at this time. 

After observing the ability of adult Japanese quail bursas to recover from 

significant morphological alterations caused by a similar one-time embryonic exposure to 

DDE (Quinn et al., IN REVIEW), an anti-androgenic endocrine disrupting chemical, we 

were surprised to see significant differences in the adult bursas that were collected from 

the birds in this study that were exposed to a one-time embryonic injection of trenbolone.  

In many birds, the bursa of Fabricius naturally regresses into a non-functional remnant 

organ (Pasanen et al., 1998).  In Japanese quail, however, the bursa remains throughout 

adulthood, possibly serving as a secondary lymphoid organ.  Therefore, significant 
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differences observed in the appearance of the adult bursa may indicate altered ability of 

this organ to function normally.   

The heterophil:lymphocyte ratio is a marker of the balance between the 

nonspecific defenses of heterophils and the antigen-specific defenses of lymphocytes 

(Shini, 2003).  The enhanced heterophil:lymphocyte ratio, therefore, suggests that either 

antigen specific immune responses may be reduced, or innate responses may be 

enhanced.  Although we did not quantify numbers of  B lymphocytes in day old chicks, 

from our histological observations and from studies that examined bursal B cell 

maturation under androgen treatments, it is reasonable to suggest that B cell maturation 

may have been impaired in chicks that received the higher treatment levels of trenbolone.   

At the lower treatment levels however, we observed initial increases in the 

amount of day old plasma IgG.  As such, it appears that isotype switch was not inhibited 

at the lower levels of exposure to trenbolone.  Isotype switch may have been inhibited, 

however, at the 5 and 50 µg treatment levels of trenbolone, as levels of plasma IgG 

decreased at these doses.  Higher levels of IgG could have resulted from either greater 

numbers of B lymphocytes producing amounts of antibodies similar to controls, or from 

smaller numbers of B lymphocytes producing significantly greater amounts of antibodies 

than controls.  The decreases in plasma IgG at the two highest treatment levels may have 

been caused by inhibition of B cell maturation, as suggested by smaller bursas, lower 

levels of circulating leukocytes, and higher heterophil:lymphocyte ratios (higher ratios 

possibly being caused by decreased numbers of functional B lymphocytes).  In addition, 

declines in IgG could also be attributed to decreased maturation or increased apoptosis of 

B cells.  It should also be noted that the antibody that was used in the ELISA for the 
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quantification of serum levels of IgG bound to the constant region of the immunoglobulin 

molecule.  As such, only relative IgG numbers were measured in this study; antibody 

quality or specificity was not assessed. 

Despite the alterations in the structure of the bursa and lymphoid cell population, 

no significant differences were observed in the CRBC humoral response test or the PHA 

wing web cell mediated response test.  If the increased heterophil:lymphocyte ratios were 

caused by significant reductions in lymphocytes, one would expect one or both of these 

tests of antigen specific immune responses to be altered.  However, previous studies have 

shown Japanese quail immune systems to be very resilient to a one-time exposure to 

androgen active endocrine disrupting chemicals (Quinn et al., IN REVIEW).  Also, the 

immune challenges used in this study were given to the quail as juveniles or adults.  

Perhaps we would have observed significant differences in immune responses if the 

challenges were given to the quail as chicks, when the immune system has not yet had a 

chance to recover from the effects of trenbolone.  At this age, immunocompetence is 

further reduced by the immature status of the immune system.  A better test of 

immunocompetence for Japanese quail embryonically exposed to an endocrine disrupting 

chemical, therefore, may be one given to individuals soon after hatch. 

This study has shown trenbolone to be teratogenic to the development of the bursa 

of Fabricius in Japanese quail.  Since development of a healthy avian immune system is 

dependent on normal growth and development of the bursa, disruption of bursal 

development may impact individual survival and have subsequent effects on a population 

level.  More studies are needed to further assess the potential of trenbolone as an 

endocrine disrupting chemical and to determine exposure levels in wild bird populations. 
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Chapter 4:  Effects of DDE on the Reproductive System 
 
 
INTRODUCTION 
  
 

Endocrine disrupting chemicals (EDCs) are environmental contaminants that act 

as hormone agonists or antagonists.  As such, these chemicals have the potential to alter 

the development and function of all systems that are influenced by the endocrine system.  

The effects of these chemicals on the reproductive system have traditionally been of great 

concern due to the structural similarities that many share with sex steroids.  Also, there is 

a growing literature, that demonstrates the ability of these chemicals to disrupt 

reproductive function, thereby creating potential negative effects on individual fitness 

and population dynamics (Fry, 1995).  Many EDC-induced effects on reproduction, 

growth, behavior, and declines in wild populations have been reported for birds over the 

past three decades (Fox et al., 1978; Kubiak et al., 1983; Becker et al., 1993).  What 

remains ambiguous, however, are the underlying mechanisms for these effects. 

A sexually dimorphic pattern of gonadal steroids modulates the sexual 

differentiation of accessory sex structures and neuroendocrine systems that regulate 

endocrine and behavioral components of reproduction (reviewed in Ottinger et al., 2001).  

This differentiation of the hypothalamic component of the hypothalamic-pituitary-

gonadal (HPG) axis occurs mainly during late embryonic and early posthatch 

development (Ottinger 1989).  Competition between endogenous hormones and EDCs 

could alter the relative exposure to androgens and estradiol, thus altering normal 

development of both the endocrine and behavioral components of reproduction.  Steroid 

hormones also activate many sex-specific endocrine and behavioral responses during 
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puberty.  The success of this activation, however, relies on appropriate organization of 

these neural systems during embryonic development.  If development of these responses 

was altered by embryonic exposure to EDCs, the likelihood of proper activation at 

puberty and adulthood is reduced. 

DDE [ethylene, 1,1-dichloro-2,2-bis(p-chlorophenyl)] is a an anti-androgenic 

EDC that acts as a potent androgen receptor antagonist (Kelce et al., 1995).  DDE is the 

primary metabolite of the pesticide DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane], 

which was used widely as a potent contact poison against arthropods from the 1940s until 

its ban in most major industrial countries in the 1970s.  Since its ban, levels of DDT have 

been steadily declining, however DDE still remains relatively high in the world's 

environmental and organismal systems, as it is chemically more stable and biologically 

more persistent than its parent compound.  DDE is an effective testosterone hydroxylase 

modulator as well as an inducer of hepatic aromatase (You, 2000).   Increased activity of 

these enzymes reduce circulating testosterone through its conversion to either 

androstenedione, a less potent androgen, or 17β–estradiol.   

Many observational studies have examined potential associations between DDE 

exposure and reproductive effects with varying results (Nygard and Gjershaug, 2001; Gill 

et al., 2003; Rattner et al., 2004; Reynolds et al., 2004).  One of the major limitations of 

observational studies is that exposure to other EDCs cannot be controlled for, precluding 

any possibilities of determining causality.  Many studies have focused on DDE’s effects 

on eggshell thinning (Hazeltine, 1972; Bowerman et al., 1995; Blus et al., 1997), paying 

less attention to more subtle reproductive effects such as behavior and maturation.  

Finally, many of the laboratory studies conducted to determine the reproductive effects of 
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DDE in birds used dietary treatments.  Although dietary studies are crucial for the 

complete understanding of the effects of a chemical on environmentally relevant 

reproductive measures, only post-hatch exposure occurs.  Since DDE is lipophilic, 

maternal deposition into the yolk is the primary route of exposure for embryos, which 

impacts development of the reproductive system.  Assessment of overall reproductive 

effects must consider embryonic exposure.   

The developing embryo often becomes exposed to a myriad of EDCs during one of 

the most sensitive stages of development.  Furthermore, many of the developing 

endocrine systems are vulnerable to environmentally relevant levels of EDCs at different 

stages in ontogeny, and the resulting impact may be subtle.  Therefore, traditional 

toxicological measures are not always sufficient to measure long-term, chronic effects 

that lead to population-level impacts.  The objective of this study was to examine the 

effects of an androgen-active EDC on reproductive developmental and behavioral 

responses in Japanese quail (Coturnix japonica).  Japanese quail was chosen as a model 

species in this study because they are well suited for toxicity tests (Fair et al., 1999).  

Japanese quail are particularly useful in studies that examine bursal development and 

function because unlike most avian species, the quail maintains a bursa throughout life 

(Pardue, 1981).  Exposure to DDE was hypothesized to disrupt sexual differentiation of 

the gonads and brain, as measured by onset of puberty, gonad size and morphology, and 

adult male reproductive behavior.  The data produced by this study provide a more 

realistic view of the capacity of an avian species to respond to EDC challenges during 

sensitive phases in development and examine long-term consequences of exposure on the 

reproductive system critical to the fitness of the individual.  Furthermore, this study will 

 51



add to the literature on EDC effects in Japanese quail as as avian model for regulatory 

toxicity testing.   

  
METHODS 
 
 

Eggs were collected from the Department of Animal and Avian Sciences Japanese 

quail (Coturnix japonica) colony that is a random bred white egg producing strain.  The 

colony is maintained under controlled light (15L:9D), temperature, and humidity 

according to Institutional Animal Care and Use Committee (IACUC) approved standard 

operating procedures.  Feed (Purina Game Bird Layena, Purina, St. Louis, MO) and water 

were available ad libitum. This strain of Japanese quail are relatively small (100-130 gm), 

and reproductive function is entirely regulated by long photoperiod. 

One hundred eggs per treatment were randomly assigned to either control (sesame 

oil) low DDE (20 µg/egg) or high DDE (40 µg/egg) treatments.  Treatments were injected 

into the yolk (20 µl) to mimic maternal deposition of the EDCs.  The low dose was 

selected to reflect environmentally relevant levels that should not affect reproduction, but 

may affect bursal development, whereas the high dose was also environmentally relevant 

at a level previously found to impact reproduction (Henny et al., 1984; Custer et al., 

1983; Custer and Mitchell, 1987; White et al., 1988; Henny and Herron, 1989; Nisbet, 

1989).  Holes at the injection site were made with a 20-gauge needle at the apex of the 

egg after being cleansed of fecal material and blood with 70% ethanol.  The injection 

sites were immediately sealed with melted paraffin, and the eggs were immediately set to 

incubate.   
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After hatch, quail were allowed to dry in the incubator and then placed into heated 

brooders (95oF, 24 h light; temperature was reduced 5oF every week) until four weeks of 

age.  Diet and water were provided ad libitum (Purina Gamebird Startina, Purina, St. 

Louis, MO, USA).  At four weeks, quail were separated and housed in individual cages at 

room temperature and on a long-day photoperiod (16:8 light:dark) so onset of puberty 

could be monitored in individuals.  Chicks were switched to adult diet (Purina Gamebird 

Layena, Purina, St. Louis, MO, USA), and feed and water were provided ad libitum.   

Onset of puberty was assessed in females as the first day of egg production.  In 

males, onset of puberty was measured as the first day of foam production from the 

proctodeal gland.  The proctodeal, or cloacal, gland is an androgen-sensitive secondary 

sex character in Japanese quail and an external index of sexual maturity in the male 

(Watson and Adkins-Regan, 1989; Mohan et al., 2002).  Cloacal gland area (length X 

width) was determined at eight weeks of age, a time that 90% of the control quail were 

sexually mature to serve as a comparison of status of maturation across the treatments.  

Male copulatory behavior was also assessed at 8 weeks of age, to assess sexual 

maturation and behavioral responses.  Males were individually housed at 4 weeks of age 

and each male was tested on three consecutive days.  In each test, male behavior was 

observed for three minutes following introduction of a sexually receptive female into the 

male’s cage.  Females were similarly aged and taken from the colony; a female was 

replaced if she was aggressive or unreceptive.  Time of latency to mount, the number of 

mount attempts, and the number of successful cloacal contacts were recorded.   

After the reproductive behavior tests were completed, males and females were 

paired.  Birds were given one week to adjust, and then at 10 weeks of age, egg production 
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was measured as the average number of eggs produced per individual in one week.  Eggs 

were collected over the following week and stored at 7oC, incubated, and examined at 14 

days incubation to determine fertility and development.  Percent fertility was calculated 

as the average number of eggs that were fertililized, and percent viability was calculated 

as the average number of embryos that were alive when the eggs were opened.   

At 12 weeks of age, three eggs were collected per pair and prepared for analysis 

of sperm penetration of the perivitelline layer as described by Donoghue (1996).  Briefly, 

the perivitelline membrane was excised, mounted on a slide, and stained with Schiff’s 

reagent.  The germinal disc was centered in the field of view and all holes caused by 

sperm digestion were counted at 100x under light microscope.  The data were analyzed as 

the average number of holes observed in the three samples per pair. 

All adult birds were sacrificed at 18 weeks of age.  Combined testes weights were 

expressed as relative to body weight.  The left testes was fixed in Bouin’s solution 

immediately after collection.  Testes were washed three times in 50% ethanol (6 h each), 

dehydrated through a series of increasing concentrations of alcohol, and infiltrated and 

embedded in paraffin blocks. The blocks were sectioned at 10µm thickness on a rotary 

microtome and mounted on slides.  Sections were deparaffinized, rehydrated, and stained 

with hematoxylin and eosin according to Addison (1929).  The relative area occupied by 

spermatazoa within a seminiferous tubule was measured, and spermatogenic stages were 

checked to verify normal spermatozoan maturation. The area within the testis occupied 

by sperm cells was determined using image analyses (IP Lab 3.6 for Windows, 

Scanalytics Inc., Fairfax, VA, USA).  The area occupied by cells within a seminiferous 
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tubule was also determined, which would include both spermatozoa and Sertoli cells. 

Five randomly selected seminiferous tubules were measured and averaged for each bird.   

Immediately after the dissection of the left epididymis, a drop of epididymal fluid 

containing spermatozoa was collected from the end of the caudal portion of the 

epididymis. The sample was placed on a prewarmed slide (37 °C) with two drops of 

phosphate-buffered saline and was coverslipped.  Slides were analyzed under ×400 by 

two independent observers, who examined five separate fields for each sample/observer.  

The percentage of sperm that was motile was estimated.  A spermatozooa was considered 

motile if it showed forward movement in a progressive consistent path.  Motility was 

estimated to the nearest 10% for each sample, and the two ratings were averaged per 

sample.  Ovary weights relative to body mass and the number of mature yellow follicles 

were measured in females. 

The Statistical Analysis System (SAS Institute, Inc. 1987) was used for all 

statistical analyses.  Assumptions for parametric statistics were examined prior to 

analysis.  Data were analyzed separately by sex when sex-by-treatment interactions were 

significant.  All measurements were analyzed by two-way analysis of variance, and 

Tukey tests were used for post hoc pairwise comparisons.   

 
RESULTS 
 
 

Onset of puberty was accelerated in females from the 20µg treatment group by 

approximately one week compared to controls (Fig. 12; p< 0.05), as measured by date of 

first egg laid.  No differences in onset of puberty in males or cloacal gland size were 

observed among treatments.   
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Figure 12.  Day of onset of puberty in females (mean +/- SEM) measured as first day of 
egg laid in Japanese quail.  Significant differences between treatments are indicated by 
letters (p<0.05).   
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Significant differences in copulatory behavior were observed only on the first day 

of testing.  During the first day’s test, males from the 20 and 40 µg treatment groups 

attempted to mount females about only 75% the number of times as controls (Fig. 13; 

p<0.05).   Also, males from the 40 µg treatment group took approximately twice as long 

to achieve a successful copulation as control quail (Fig 14; p< 0.05).  Although it took 

males from the high treatment level of DDE longer to achieve successful cloacal contacts, 

the resulting number of successful contacts that were made within the test’s limit of three 

minutes did not differ among treatments.   

Differences in the area of seminiferous tubules approached significance (p = 

0.07); seminiferous tubules in testes from quail of the 40 µg treatment group were 15% 

larger than controls.  No other morphological differences were observed; testes weight 

and sperm motility did not differ among treatments.  Also, no significant differences were 

observed among females with ovary weights and numbers of mature yellow follicles.   

 
DISCUSSION 
 
 

Recent studies have reported increasing avian populations in traditionally highly 

polluted areas following the ban of DDT in the early 1970s (Rattner et al., 2004 and 

2000; Fasola et al., 1987; Spitzer et al., 1978).  Many previously threatened populations 

have also begun to even attain numbers comparable to dates preceding heavy use of 

organochlorines.  This increase in bird numbers correlates with a decrease in DDE 

residues found in eggs and individuals; the levels of contamination found in post-ban 

populations often have been below the critical threshold for reproductive effects (Rattner 

et al., 2000; Fasola et al., 1987). Specific effects, such as eggshell thinning and  
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Figure 13.  Number of times male Japanese quail attempted to mount females (mean +/- 
SEM) in the first of three reproductive behavioral test trials.  Significant differences 
between treatments are indicated by letters (p<0.05).   
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Figure 14.  Amount of time to achieve successful copulations (mean +/- SEM) during the 
first of three reproductive behavioral test trials by adult male Japanese quail.  Significant 
differences between treatments are indicated by letters (p<0.05).   
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reproductive output, have also been restored as DDE contamination decreases, leading 

many to conclude that the current impacts of DDE in certain populations are negligible.  

Although encouraging, one should be cautious in using this data to make predictions for 

all wild bird populations.  Even in those populations where numbers of individuals are on 

the rise, the potential exists that these are still insufficient enough to sustain some 

populations.   

Other studies have shown that DDE is still prevalent in many food webs, 

suggesting that DDE contamination is still a significant factor in wild populations (Custer 

et al., 2001).  Our study demonstrates effects of DDE on the onset of puberty in females.  

This effect may have positive as well as potentially negative impacts on the reproductive 

performance of the individual.  Data in domestic poultry have shown that early 

stimulation of egg laying by photostimulating young hens impacts egg weight and causes 

reductions in chick weight (Siopes, 1992; Joseph et al., 2002).   Conversely, acceleration 

of the onset of reproductive ability may create the potential for contaminated individuals 

to reproduce earlier and gain a reproductive advantage.  This could have far reaching 

effects at the population level if less fit genes become contributed to future generations.  

Also, although no significant differences were observed with gonadal physiology or 

morphology, reproductive behavior was inhibited.  Clearly, an individual cannot 

contribute to the fitness of a population if they show no sexual behavior, even if gonadal 

function is completely functional.   

Contamination levels of DDE still remain high in some avian populations 

(Bartuszevige et al., 2002; Nygard and Gjershaug, 2001), sometimes being the most 

prevalent organochlorine compound to be detected.  However, the reproductive effects do 
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not always relate to the detected contamination levels, possibly due to differential 

species’ sensitivity to DDE exposure (Nygard and Gjershaug, 2001; Lundholm, 1997; 

Longcore et al., 1971).  Discrepancies in the effects of DDE may also be due to exposure 

to different congeners of DDE, as described by Lundholm (1997).  Further, birds feeding 

in varied trophic guilds differ in accumulation of DDE.  For example, insectivorous 

passerines have significantly higher levels of DDE than omnivores and granivores 

(Bartuszevige et al., 2002).  Golden eagles, whose prey consists chiefly of marine birds, 

have higher levels of DDE than eagles preying on terrestrial herbivores (Nygard and 

Gjershaug, 2001).  These variables must be considered when determining the potential 

impact of DDE and its congeners on avian species. 

Finally, adult birds often appear to adapt to low levels of contaminant exposure, 

and as such, traditional reproductive measures of toxicity may not be adequate to assess 

overall effects on fitness.  This adaptability was observed in captive black ducks that 

continued to reproduce while fed DDE-contaminated feed for two years.  They showed 

improved reproductive success and eggshell quality when placed on untreated food for an 

additional two years (Longcore and Stendell, 1977).  Moreover, as mentioned above, 

DDE impacts other physiological systems, including the immune system.  In the current 

study, these quail chicks exposed to DDE  also exhibited severe immune impairment, 

which disappeared as the birds reached adulthood (Quinn et al., in review).  Again, 

although results such as these are encouraging for the resilience and survival of the 

adults, at some point effects on the chicks will impact the population as a whole.  

Japanese quail have been shown to be fairly resistant to DDE-induced reproductive 

impairment to dietary doses as high as 200 ppm as measured by number of eggs laid, egg 
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weight, or eggshell thickness (Davison et al., 1976).  However, in the current study, low 

one-time in ovo exposure to DDE resulted in significant reductions in copulatory 

behavior.  Although testis morphology and other measures of reproductive function 

appeared unaffected, these males would not be predicted to have normal fertility due to 

the decrease in appropriate behavior.  This study suggests that the neuroendocrine system 

may be more sensitive and less resilient to embryonic contaminant exposure than 

traditional measures of reproductive success, and should be considered more often in 

toxicity tests. 
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Chapter 5:  Effects of Trenbolone Acetate on the Reproductive 
System 
 
 
INTRODUCTION 
  
 

Many studies have shown sex hormones released from human and animal wastes 

to have endocrine-disrupting effects, and have most often focused on the effects of 

natural and synthetic estrogens (Tilton et al., 2002; Metcalfe et al., 2001; Purdom et al., 

1994).  A lot of attention has been directed towards the synthetic estrogens since they are 

more environmentally stable and more resistant to microbial degradation than the natural 

steroids (Tabak et al., 1981; Tabak and Bunch, 1970).  Few studies have considered 

possible endocrine-disrupting activities of androgenic compounds in human and animal 

excreta, especially residues from agents in the feed of domestic species.   

Trenbolone acetate (17β-acetoxyestra-4,9,11-triene-3-one) is a synthetic androgen 

that is used in many meat-exporting countries.  Upon consumption, trenbolone is almost 

immediately hydrolyzed to its active metabolite trenbolone-17β, which has an affinity to 

the recombinant human androgen receptor similar to dihydrotestosterone (Bauer et al., 

2000).  The long half-life of trenbolone and its persistence in soils treated with manure 

from animals given implants (Schiffer et al., 2001) create the potential for this synthetic 

androgen to accumulate in soils and in higher trophic levels of food webs.  The potential 

for endocrine disrupting problems is evident when considering that in the US alone, 

several tons of trenbolone are applied each year (Schiffer et al., 2001).   

Although many studies have assessed the potential teratogenic effects of 

trenbolone, much of these data, collected in industry laboratories, remain unpublished 

(Wilson et al., 2002).  Despite the potential for environmental effects, very few studies 
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have been done to test trenbolone’s effects on wildlife.  Teratological studies conducted 

by industrial laboratories have reported trenbolone to be “nonteratogenic” (IPCS and 

CCOHS, www.inchem.org/documents/jecfa/jecmono/v25je08.htm; 2005).  In separate 

analyses, we have demonstrated that in ovo exposure to trenbolone inhibited proper 

development and function of the immune system in Japanese quail (Quinn et al., in 

review).  It is, therefore, important to reevaluate the potential of trenbolone to act as an 

endocrine disrupting chemical (EDC) with teratogenic properties. 

During ontogeny, male and female embryos experience a sexually dimorphic 

pattern of gonadal steroids, which organizes the sexual differentiation of accessory sex 

structures and neuroendocrine systems that regulate endocrine and behavioral 

components of reproduction (Ottinger et al., 2001).  This differentiation of the 

hypothalamic-pituitary-gonadal (HPG) axis occurs mainly during embryonic 

development, with organization of hypothalamic neural systems occurring during late 

embryonic and early posthatch development (Ottinger 1989).  As such, embryonic 

exposure to chemicals that mimic or alter the signals of hormones can disrupt the natural 

development of this system and have lasting effects that may persist throughout 

adulthood.   

The purpose of this study was to examine the consequences of embryonic 

exposure to trenbolone acetate on reproductive development and copulatory behavior in 

Japanese quail.  Therefore, we hypothesized that in ovo exposure to trenbolone acetate 

would disrupt sexual differentiation of the gonads and brain through its androgenic 

activity, and that the endocrine disruption would be expressed by altered onset of puberty 

and diminished adult reproductive function.  These data, in combination with observed 
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detrimental effects on the development and function of the immune system (Quinn et al., 

in review), help document the scope of effects of varied classes of EDCs in birds and 

help to identify appropriate measurement end points for use in ecological risk assessment. 

 
METHODS 
 
 

Japanese quail (Coturnix japonica) was chosen as a model species in this study 

because they are well suited for toxicity tests (Fair et al., 1999).  Eggs were collected 

from a colony at the Department of Animal and Avian Sciences at the University of 

Maryland, College Park.  Ninety eggs per treatment were randomly selected to receive 

either sesame oil (control), 0.05, 0.5, 5 or 50 µg trenbolone acetate (Sigma Chemical Co., 

St. Louis, MO, USA).  Trenbolone was dissolved in sesame oil and injected into yolks at 

a volume of 20 µl on day four of incubation.  Treatments were injected into the yolk to 

mimic maternal deposition.  Levels of trenbolone in yolks in the environment have not 

been determined.  Holes at the injection site were made with a 20-gauge needle at the 

apex of the egg after being cleansed of fecal material and blood with 70% ethanol.  The 

injection sites were immediately sealed with melted paraffin, and the eggs were 

immediately set to incubate.   

After hatch, quail were placed into heated brooders (95oC, 24 h light) until four 

weeks of age.  Diet and water were provided ad libitum (Purina Gamebird Startina, St. 

Louis, MO, USA).  At four weeks, quail were separated and housed in individual cages at 

room temperature and on a long-day photoperiod (16:8 light:dark) so onset of puberty 

could be monitored in individuals.  Diet and water were provided ad libitum (Purina 

Gamebird Layena, St. Louis, MO, USA).   
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Onset of puberty was assessed in females as the first day of egg production.  In 

males, onset of puberty was measured as the first day of foam production from the 

proctodeal gland.  The proctodeal, or cloacal, gland is an androgen-sensitive secondary 

sexual characteristic in Japanese quail (Watson and Adkins-Regan, 1989; Mohan et al., 

2002).  At approximately eight weeks of age, after 90% of the quail had been sexually 

mature for two weeks or longer, the area of the proctodeal gland was measured.   

Male copulatory behavior was also assessed at 8 weeks of age.  These tests were 

conducted over three consecutive days for each male.  For each test, behavior was 

observed for three minutes as soon as a sexually receptive female was introduced into the 

male’s cage.  Females were replaced if found to be aggressive or unreceptive.  Time of 

latency to mount, the number of mount attempts, and the number of successful cloacal 

contacts were recorded.   

After the reproductive behavior tests were completed, males and females were 

paired by similar weights.  At 10 weeks of age, egg production was measured as the 

average number of eggs produced per individual in one week, after which, eggs were 

collected over the following week and stored at 7oC.  Eggs were then incubated and 

opened after two weeks.  Percent fertility was calculated as the average number of eggs 

that were fertililized, and percent viability was calculated as the average number of 

embryos that were alive when the eggs were opened.   

At 12 weeks of age, three eggs were collected per pair and prepared for analysis 

of sperm penetration of the perivitelline layer as described by Donoghue (1996).  When 

the slides were ready for quantification of the holes caused by sperm digestion, the slides 

were observed at 100x under a light microscope.  The germinal disc was centered in the 
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field of view and all holes in this field were counted.  Data were analyzed as the average 

number of holes observed in the three samples per pair. 

All adult birds were sacrificed at 18 weeks of age.  Testes weights relative to body 

size were analyzed in males.  Immediately after the dissection of the left epididymis, a 

drop of epididymal fluid containing spermatozoa was collected from the end of the 

caudal portion of the epididymis. The sample was placed on a prewarmed slide (37 °C) 

with two drops of phosphate-buffered saline and was coverslipped.  Slides were analyzed 

under 400× by two independent observers, who examined five separate fields for each 

sample/observer.  The percentage of sperm that was motile was determined.  A 

spermatozooa was considered motile if it showed forward movement in a progressive 

consistent path.  Motility was estimated to the nearest 10% for each sample, and the two 

ratings were averaged per sample.  Ovary weights relative to body mass and the number 

of mature yellow follicles were measured in females. 

The Statistical Analysis System (SAS Institute, Inc. 1987) was used for all 

statistical analyses.  Assumptions for parametric statistics were examined prior to 

analysis.  Data were analyzed separately by sex when sex-by-treatment interactions were 

significant.  All measurements were analyzed by two-way analysis of variance, and 

Tukey tests were used for post hoc pairwise comparisons.   

 
RESULTS  
 
 
 Onset of puberty was delayed in males from the 50 µg treatment group by 

approximately one month longer than controls (Fig.15; p < 0.001), as measured by initial 

date of foam production by the cloacal gland.  Adult cloacal gland area (Fig. 16) was  
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Figure 15.  Day of onset of puberty in males (mean +/- SEM) measured as first day of 
foam production by the proctodeal gland in Japanese quail.  Significant differences 
between treatments are indicated by asterisk (p<0.001).   
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Figure 16.  Size of proctodeal gland (mean +/- SEM) in adult Japanese quail.  Significant 
differences between treatments are indicated by asterisk (p<0.0001).   
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approximately 40% smaller than controls in the 5 µg treatment group and about half as 

large as controls in the 50 µg treatment group (p < 0.0001).  No differences in onset of 

puberty were observed in females, as measured by date of first egg laid.  No differences 

in gonadal physiology or morphology were observed in either sex.   

 Significant differences in copulatory behavior were found in the first of the three 

days of testing suggesting an effect of experience.  Adult males from the 50 µg treatment 

group attempted to mount females (Fig. 17) less than one-third the number of times as 

controls (p<0.05).  The number of mount attempts observed in quail from the 0.05, 0.5, 

and 5 µg treatment groups did not differ significantly from controls or the 50 µg 

treatment group, however the number of attempts in this middle range was approximately 

one-half of that observed in controls.  The number of successful copulations achieved by 

males was significantly reduced in all treatment levels compared to those from the 

control treatment (Fig. 18; p < 0.01).  No differences among treatments were observed 

with latency to mount. 

 
DISCUSSION 
 
 
 An individual’s fitness is its relative contribution to the gene pool of future 

generations.  Therefore, fitness contributes to a population’s survivorship, which is 

benefited by having the heartiest individuals reproduce.  If exposure to trenbolone delays 

the onset of puberty in males, it is possible that less fit individuals who are not exposed to 

the chemical might get a reproductive advantage over more fit ones who are.  In this 

study, puberty was delayed by about a month in the highest treatment level.  If less fit 

males were able to reproduce before more fit males, population effects could result where  
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Figure 17.  Number of times male Japanese quail attempted to mount females (mean +/- 
EM) in the first of three reproductive behavioral test trials.  Significant differences 

 

S
between treatments are indicated by asterisk (p<0.05).   
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Figure 18.  Number of successful copulations (mean +/- SEM) achieved during the first 
of three reproductive behavioral test trials by adult male Japanese quail.  Significant 
differences between treatments are indicated by asterisk (p<0.01).   
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less fit genes become added to the genotype of the population rather than ones that might 

 cloacal gland first 

became ctive 

l axis 

 or 

, which 

 

l 

 neuroendocrine system may be one of the most sensitive areas to be affected 

by EDC

contribute strength, greater immunocompetence, and fertility.   

Onset of puberty was measured by the time at which the

 functional.  Cloacal gland area is often used as an indicator of male reprodu

development, as its growth and function are dependent on circulating levels of 

testosterone (Ottinger and Brinkley, 1978).  The hypothalamic-pituitary-gonada

(HPG axis) begins to become sexually dimorphic in late embryonic development in 

Japanese quail, during what is termed the “critical period” that later determines male

female endocrine and behavioral patterns (Ottinger et al., 2001; Ottinger, 1989).  

Disruption of the formation of the HPG axis would likely affect its later activation

could impact the onset of puberty.  The feedback system between gonadotropin-releasing 

hormone (GnRH) and gonadal steroids is initiated by embryonic day (ED) 10.  Changes 

in the relative ratio of the concentration of testosterone to that of estradiol play more of a

role in sexual differentiation of the HPG axis than absolute amounts of either individually 

(Ottinger 1989).  This ratio could have been altered by exposure to androgenic 

trenbolone, thereby altering the feedback system between GnRH and the gonada

steroids.   

The

s during embryonic development, and alterations to its development could have 

long lasting effects on behavior exhibited throughout adulthood.  Specifically, in this 

study, our data suggests that the neuroendocrine system responsible for the development 

and interaction of the reproductive system may be more sensitive to embryonic exposure 

to trenbolone acetate than the gonads.  No differences in male or female gonadal function 
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were detected, however, reproductive behavior was inhibited.  The use of behavioral 

measurements as biomarkers of exposure to EDCs often gets overlooked in reviews of

appropriate and sensitive EDC-exposure endpoints (Fossi et al., 1999).  Tests that solely

examine the effects of EDCs on the morphology and functioning of organ systems may 

not be adequate enough to determine the complete toxicity of a compound.  Intact and 

functional gonads do not contribute to an individual’s fitness if the performance of 

reproductive behavior is impaired.  Behavior should, therefore, be included in tradit

toxicity tests, as it is not only a non-lethal method to measure alterations in brain 

development, but also provides a method of linking physiological function with 

ecological processes (Scott and Sloman, 2004). 

 Copulatory behavior in male Japanese qu

 

 

ional 

ail is controlled by the sexually 

imorp  studies 

ior 

ance 

s, 

e 

d hic medial preoptic area (POA) or nucleus (Balthazart et al., 2000).  Many

have elucidated the early embryonic changes in the anatomy and neurochemistry of the 

POA that set into place the mechanisms behind the activation of adult reproductive 

behavior (reviewed in Castagna et al., 1999).  Male Japanese quail copulatory behav

has been experimentally demasculinized by embryonic exposure to either estrogen or 

androgens before ED 12 (Ottinger et al, 2001; Schumacher et al, 1989).  Again, this 

suggests that the development of these mechanisms might also be modulated by a bal

of both gonadal steroids.  In ovo exposure to androgenic trenbolone could disrupt this 

balance and cause immediate morphological differences, and later functional difference

in the POA.  Embryonic exposure to exogenous androgens has already been shown to 

disrupt development of the POA.  Although the size of the POA is unaltered by 

exogenous androgens, the size of the neurons and the volume of their nuclei in th
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dorsolateral area of the POA become permanently altered (Castagna, 1999; Panzica

1999). 

 et al., 

A balance of the gonadal steroids is needed for appropriate morphological 

differen ds may 

to 

 

tiation to occur.  Any EDC that mimics or blocks the effects of these steroi

upset this balance and disrupt normal development.  The development of some structures 

may be more resistant or resilient to chemical exposure than others.  Morphological, 

functional, and behavioral measures should all be included in toxicity tests to be able 

fully characterize the effects of environmental chemicals on fitness and survival. 
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Chapter 6:  Effects of Androgen-Active EDCs on Vocalization 
and Motor Behavior 

 

f research has characterized physiological effects of toxicity in birds 

xposed to environmental contaminants, however, effects of these chemicals on behavior 

are less frequently studied (Scott and Sloman, 2004).  The use of behavioral 

measurements as biomarkers of exposure to endocrone disrupting chemicals (EDCs) 

often gets overlooked in reviews of appropriate and sensitive EDC-exposure endpoints 

(Fossi et al., 1999).  Measures of behavior should be used more often to assess effects of 

embryonic exposure to EDCs since the developing brain is not only one of the most 

sensitive targets of EDCs, but also one of the least resilient.  Assessment of behaviors 

that are necessary for survival and fitness is not only a non-lethal method to measure 

alterations in brain development, but also provides a method of linking physiological 

function with ecological processes (Scott and Sloman, 2004). 

Methods to assess behavior in Japanese quail (Coturnix japonica), a model 

species well suited for toxicity tests (Fair et al., 1999), are limited.  Procedures to assess 

male copulatory behavior are well established and frequently used (Ottinger et al., 2002).  

Recently, methods to quantify differences in female reproductive behavior have been 

successfully tested (Domjan et al., 2003).  Although a wide variety of tests have been 

developed to study neurotoxicant-related changes in motor function, a need for simple 

and specific tests of motor movements exists (Samsam et al., 2004).  Wada has measured 

locomotor activity by floor deflection in adult male Japanese quail (1982).  Here, we 

present a novel modified open field test that is effective in testing an important chick 

 
 
INTRODUCTION 
 
 

A great deal o

e
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survival skill: locating and returning to it’s brood when separated.  Japanese quail are 

precocial birds, being able to leave the nest and find their own food at day of hatch.  It

necessary for chicks to remain with the brood after hatch for protection from predators

and for thermoregulation.  If a chick becomes separated from its brood, it calls to its 

conspecifics.  Siblings vocally respond to the chick’s separation call, which helps the 

separated individual to locate and return to the rest of the brood. 

Androgens have been shown to modulate motor behavior and vocalization in 

birds.  Testosterone and androstenedione induced locomotor activ

 is 

 

ity in castrated adult 

male Ja

 

’s 

n 

id systems, however, many of these same chemicals also exert 

strong 

 

ogen.  

panese quail (Wada 1984 and 1982).  Testosterone, androstenedione, and 5α-

dihydrotestosterone have also induced calling in adult male Japanese quail (Wada 1984

and 1982; Adkins and Pniewski, 1978).  Other studies have demonstrated testosterone

ability to stimulate vocalization in ring doves and pigeons (Cheng and Lehrman, 1975; 

Pietras and Wenzel, 1974).  These experiments investigated the effects of implanted or 

injected androgens on adult motor behavior and vocalization.  We are not aware of any 

studies that have examined the effects of embryonic exposure to androgens on these 

endpoints in chicks.   

Most research done with EDCs has focused on the effects of these chemicals o

the estrogen and thyro

effects on the androgen system.  We have developed a method to assess the 

influence of EDC exposure on motor behavior and vocalization in week and two-week

old chicks that had developed in ovo exposed to trenbolone acetate, a synthetic andr

Trenbolone is used as a growth promoter in beef cattle and has been shown to persist in 
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the environment long after excretion (Schiffer et al., 2001), where it could enter the food

web and act as a potential androgen disrupting chemical.   

The main objective of this experiment was to determ

 

ine if embryonic exposure to 

trenbol

METHODS 

Japanese quail, an avian laboratory species well suited for toxicity tests (Fair et 

al., 199 's 

25 

en 

t 

one acetate would disrupt the early Japanese quail survival behavior of being able 

to locate and return to the brood when separated.  The first hypothesis was that in ovo 

exposure to trenbolone would alter the motor behavior of individuals associated with 

returning to conspecifics after isolation.  The second hypothesis was that embryonic 

exposure to trenbolone would impact individuals’ abilities to vocalize and therefore 

effectively communicate with and locate conspecifics when isolated.   

   

 

9), used in this study were offspring from a colony at the University of Maryland

Animal and Avian Sciences department, College Park, Maryland, USA.  For the first 

trial, ninety eggs per treatment were randomly selected to receive either sesame oil 

(control), 0.05, 5, or 50 µg trenbolone acetate (Sigma Chemical Co., St. Louis, MO, 

USA).  For the second trial, eggs were randomly assigned to either control, 5, 50, or 1

µg treatment levels.  Environmental levels of trenbolone in bird eggs are unknown.  The 

treatment levels of trenbolone selected for this study were chosen as part of a larger 

range-finding study.  Trenbolone treatments were first dissolved in sesame oil and th

injected into yolks at a volume of 20 µl per egg on day four of incubation.  Eggs were 

candled before injections so that only fertilized eggs received treatments.  After hatch, 

quail were randomly assigned by treatment to heated brooders (72x27x25 mm), and die
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and water were provided ad libitum.  After differences in vocalization from the first trial 

were apparent, a second trial was performed to replicate and further quantify those 

differences.  Since the differences were observed at the higher treatment levels, we 

performed similar yolk injections of trenbolone acetate at 5, 50, and 125 µg per egg.

All measurements were conducted in a modified open field runway test at wee

 

ks 

1 and 2

 to 

 into 

 

 stress responses 

in pigs 

as also 

l, vocalization was measured by observing whether or not 

individ for the 

 

 posthatch for both trials.  Ten quail per treatment were randomly selected for 

each week’s test.  Individual quail were separated from their conspecifics and allowed

call and return to the group at the opposite end of a runway (182 cm long) within three 

minutes.  Separated quail were able to see and hear the rest of the chicks that were 

contained in a 1728cm3 cage at the far end of the runway.  The runway was divided

five lanes that were each 12 cm wide.  Motor behavior was assessed by measuring the 

amount of time it took individuals to reach conspecifics and the number of lanes 

individuals crossed.  If individuals did not reach their conspecifics, the maximum

distance individuals traveled within the three minutes was recorded.   

Defecation rate is a measurement that has been used to measure

(Desautes et al., 2002).  In this study, the number of defecations made by 

individuals separated from their conspecifics within the three minutes of testing w

used to assess stress. 

In the first tria

uals called to their separated conspecifics or not.  Therefore, vocalization 

first trial is expressed as the percentage of individuals per treatment that performed stress

vocalizations.  Unexpected results in vocalization observed at the higher treatment levels 

prompted a second trial to be made to confirm the effects of embryonic exposure to 
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trenbolone on vocalization.  Calling behavior in the second trial was quantified at bo

weeks 1 and 2 of age by measuring the number of calls produced by individuals.   

 The Statistical Analysis System (SAS Institute, Inc. 1987) was used for all 

th 

es.  All 

 
ESULTS 

At week 1 of age, isolated Japanese quail chicks that were embryonically exposed 

ne 

utes of 

 week.   

statistical analyses.  Assumptions for parametric statistics were examined prior to 

analysis.  Chi-square tests were performed to assess results expressed as percentag

other measurements were analyzed by two-way analysis of variance, and Tukey tests 

were used for post hoc pairwise comparisons.  Data were analyzed separately by sex 

when sex-by-treatment interactions were significant.   

 

R
 
 
 

to trenbolone acetate reached their conspecifics faster than controls (Fig. 19; p<0.05).  

Quail that received the 0.05 µg treatment reached other members of their brood about 

80% as quickly as controls (p<0.05).  Chicks that were exposed to 5 and 50 ug trenbolo

reached their conspecifics in about one-fourth the amount of time as controls (p<0.05 for 

both).  These differences in the amount of time required to reach conspecifics no longer 

existed when quail were tested at 2 weeks of age.  The distance traveled by quail did not 

significantly differ among treatments for either week; the majority of individuals, 

regardless of treatment, reached the other members of their brood within the 3 min

testing.  The number of lanes individuals crossed while traveling towards their 

conspecifics was also not significantly different among the treatments for either
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Figure 19.  Time required (mean +/- SEM) for isolated Japanese quail chicks to rejoin 
conspecifics 182 cm away at one and two weeks of age.  Significant differences between 
treatments are indicated by asterisks (p<0.01).   
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Treatment and defecation were not independent for the week 1 measurements 

[Fig. 20; X2(4, N = 50) = 10.0).  At week 1 of age, no quail from the 50 µg treatment 

level was observed to defecate within the 3 minute testing period.  At week 2, individuals 

from the 50 µg treatment group defecated a similar number of times as control quail. 

 In the first trial, treatment and calling were not independent [Fig. 21; X2(4, N=50) 

= 19.6).  Stress vocalizations were reduced in the 5 and 50 µg treatment groups for both 

weeks one and two.  No vocalizations from birds of the 50 µg treatment group were heard 

by the observer.  In the second trial, the number of vocalizations made by individuals 

were significantly fewer than controls (Fig. 22) when measured at both 1 and 2 weeks of 

age (p<0.05).  Zero vocalizations were recorded at the 50 and 125 µg treatment levels.  

 
 
DISCUSSION 
 
 

A great deal of previous research has characterized physiological mechanisms of 

toxicity in animals exposed to contaminants, however, effects of contaminants on avian 

behavior are less frequently studied.  Studies that have examined the effects of EDCs on 

avian behavior most often exposed subjects to treatments post-hatch.  Similarly, studies 

that have characterized the hormonal mechanisms behind avian behavior have focused on 

how hormones elicit behaviors in juveniles or adults that have not been embryonically 

exposed to exogenous hormones.  These types of studies that administer hormonal or 

EDC treatments in feed or implants have shed a great deal of light on how neural 

pathways are triggered, but they speak little about how the endocrine system influences 

embryonic development of these circuits.   
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Figure 20.  Percent of Japanese quail chicks that defecated during a three-minute motor 
behavior test at one and two weeks of age.   
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Figure 21.  Percent of isolated Japanese quail chicks that called to conspecifics during a 
three-minute motor behavior test at one and two weeks of age.   
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Figure 22.  Number of vocalizations (mean +/- SE) made by isolated Japanese quail 
chicks that called to conspecifics during a three-minute motor behavior test at one and 
two weeks of age.  Significant differences are indicated by asterixes for week one and 
crosses for week two.  
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Few studies examining the effects of hormonal influence of sex steroids on avian 

motor behavior have been published since those of Wada (1982, 1984).  In these studies, 

it was shown that testosterone and androstenedione enhanced locomotor activity in 

Japanese quail, as measured in light-tight boxes by the number of floor deflections 

(described in Wada, 1981).  The routes of exposure for the androgens were either 

implants of Silastic capsules or pellets.  Treatments were administered to quail that were 

7 weeks of age, having been castrated 2 weeks before implantation.  Although these 

studies have shown that locomotor activity is androgen dependent in Japanese quail that 

were allowed to develop normally as embryos, no inferences can be made here 

concerning the effects of androgens on the development of the areas of the brain 

responsible for locomotor activity, possibly around the third ventricle at the medial basal 

portion (Wada, 1984).  If this is indeed an area of the brain responsible for androgen 

dependent locomotor activity, the results of the current study suggests that it is possible 

that the development of it is also androgen dependent, or at least sensitive, and therefore 

susceptible to disruption by embryonic exposure to androgen-active EDCs. 

The effect of trenbolone on defecation was not expected.  This measurement was 

made to quantify a stress response.  After necropsies of chicks from the higher treatment 

groups were completed, it was very obvious that reduced defecation was not a behavioral 

response, but a physiological one.  Many of the chicks that did not defecate simply could 

not.  Their colons were impacted with feces, and this was most likely the cause of their 

death.  Thus, the increased rate of defecation at week two at the high levels of trenbolone 

treatments is most likely due to a survivor effect.  Those individuals that survived the 
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second week were most likely the individuals that were able to defecate.  The majority of 

the individuals with seriously impacted colons probably died within the first week. 

The differences in vocalization that were observed in this study could be due to 

either of two reasons.  The intercollicular nucleus of the mesencephalon has been 

identified as the vocal neural system responsible for producing the distress call in 

Japanese quail chicks (Yazaki et al., 1997).  Neurons from the intercollicular nucleus of 

adult males have many more dendrites than those of females.  This difference suggests 

that the development of these neurons may be influenced by differences in sex steroids 

between the sexes, although it has not yet been determined if this difference is indeed 

caused by testosterone (Yazaki et al., 1999).  Testosterone has been shown to affect this 

vocal neural system during development, modulating the amplitude, frequency, and 

behavior of the adult male call.  Furthermore, following electrical stimulation of the 

intercollicular nucleus, females were able to produce the male crow four days after 

subcutaneous implantation of testosterone (Yazaki et al., 1999).  So although it is known 

that testosterone can alter the structure of the intercollicular nucleus in adults and induce 

male crowing, it is unknown if testosterone is able to modulate this area of the brain for 

production of the distress call in chicks.   

Trenbolone inhibited the production of sound in the quail of the current study, but 

the authors do not believe that the calling behavior was abolished.  Likewise, the authors 

do not believe that trenbolone caused disruption of development of the intercollicular 

nucleus in a way that caused inhibition of the functioning of the neural mechanism 

behind the stress vocalizations.  During observations recorded in the second trial, it was 

noticed that the majority of the birds that were unable to produce sound were straining 
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and moving their beaks when isolated, resembling the stress response behavior of the 

control birds.  Thus, the behavior remained intact; separated individuals were able to 

respond to the stress of being separated from their conspecifics, but were unable to 

effectively vocalize.  

Neural projections connect the intercollicular nucleus with the hypoglossal 

nucleus, the control center of the syrinx (Wild, 1993).  The syrinx is the avian vocal cord 

located at the junction of the trachea into the primary bronchi.  Syrinx mass is greater in 

male zebra finches than females (Lohmann and Gahr, 2000).  Although the mechanisms 

behind this dimorphism are unknown, it suggests a possible role of sex steroids during 

development.  Indeed, most of the research investigating the effects of gonadal steroids 

on syrinx development has used this species.  The zebra finch syrinx has been found to 

contain androgen receptor mRNA by embryonic day 10, presumably in order to prepare 

the chick for post-hatch food begging behavior (Godsave et al., 2002).  One study has 

shown that Silastic implants of testosterone in adult zebra finches caused significant 

increases in syrinx mass and the size of the ventralis and dorsalis syrinx muscles, and 

implants of flutamide, an anti-androgenic chemical, decreased syrinx weight (Wade and 

Buhlman, 2000).  However, results from the few studies that investigate the effects of 

gonadal steroids on syrinx development are inconsistent.  It is clear that the effects of 

these hormones on syrinx development is complicated, and it is generally agreed that 

although they do not appear to be directly responsible for the stimulation and control of 

the overall process of sexual differentiation of the syrinx, areas connecting the 

vocalization-modulating areas of the forebrain to the syrinx can be altered by exogenous 

administration of them (Wade et al., 2002). 
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Regardless of the mechanisms behind the observed trenbolone-induced 

suppression of vocalization, one must consider the ecological implications of this effect.  

The vocalization behavior measured in this experiment is a survival behavior for chicks; 

suppression of this behavior can obviously increase individual mortality and have 

detrimental effects on viability at a population level.  Suppression of other types of avian 

vocalizations may also have detrimental, albeit more subtle, population effects.  Birds 

vocalize for a number of critical behaviors to ensure individual survival and fitness: food 

begging in chicks, mate attraction, sexual selection, and announcement and defense of 

territories. Although the measurement of vocalizations in this experiment was not initially 

the main drive of the study, the importance of this serendipitous finding is clear when 

considering the potentially devastating impacts of androgen active EDCs on this function 

at population levels.  Very little is known about environmental effects of trenbolone; 

although considered to be safe, most of the data collected by industrial laboratories 

concerning the effects of this chemical on embryonic development are unpublished (IPCS 

and CCOHS, www.inchem.org/documents/jecfa/jecmono/v25je08.htm).  From the results 

of this study, the authors strongly encourage that its status as “non-teratogenic“ should be 

reconsidered, and effects of this chemical and other androgen-active EDCs on avian 

vocalization assessed. 
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Chapter 7:  Effects of Androgen-Active EDCs on Growth and 
Developmental Stability 
 
 
INTRODUCTION 
  
 

Growth and developmental stability are often used as measures of chemical 

stresses experienced during development.  Individual growth rates have been measured in 

a number of taxa to assess the effects of chemical pesticides, biological pesticides, and 

heavy metals on development (Hatakeyama et al., 1997; Willingham, 2001; Spahn and 

Sherry, 1999; Norton et al., 2001).  Disruption of early development can have permanent 

effects on the adult individual that may affect the population to which the individual 

belongs.  In birds, even reduced growth experienced during the first two weeks of 

development may have important consequences at the population level (Norton et al., 

2001; Fairbrother et al., 1994). 

Fluctuating asymmetry (FA) in morphology has often been used to indicate stress 

that was experienced during an individual’s development.  Since the development of 

morphological structures on each side of a bilaterally symmetrical animal is under genetic 

control, it is assumed that they would develop identically as they are products of the same 

genome (Leary and Allendorf, 1989).  Although the relevance of patterns of differences 

in symmetry in bilateral organisms is often debated (Palmer and Strobeck, 1986), it is 

generally recognized that FA, or deviations in aspects of the right and left sides of an 

organism, is almost entirely environmentally induced (Bortolotti and Gabrielson, 1995).   

FA is only one type of morphological asymmetry; antisymmetry and directional 

asymmetry are two other types first described by Van Valen (1962).  Antisymmetry is 

characterized by a bimodal distribution of right/left differences about a mean of zero, and 
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directional asymmetry is characterized by a normal distribution of right/left differences, 

except that the mean is displaced positively or negatively from zero (Palmer and 

Strobeck, 1986).  FA is characterized as having a normal distribution of right/left 

differences with a mean of zero.  Antisymmetry and directional asymmetry have a 

genetic component, but FA is thought to be caused purely by environmental factors 

(Novak et al., 1993), and as such is most often used to indicate the effects of 

environmental stress on development.   

Only a limited number of studies have tested the use of FA as a potential indicator 

of embryonic exposure to environmental contaminants, and most studies have only 

examined correlational relationships between pollutants and FA.  Eeva et al. (2000) 

reported increased asymmetry of the tarsus length in pied flycatchers (Ficedula 

hypoleuca) and the primary feather length in great tits (Parus major) in individuals found 

closer to a copper smelter.  This suggested a positive association between heavy metal 

exposure and FA.  FA was higher in common shrews (Sorex araneus) from areas of high 

metal contamination compared to shrews collected at reference sites (Pankakoski et al. 

1992).  One study directly linked increasing FA with increasing chemical exposure 

(Mpho et al. 2001).  In this case, FA in wing characters of male mosquitos (Culex 

quinquefasciatus) increased as levels of organophosphate treatments increased.  This is 

the only study that we are aware of, however, to link causality to pesticide exposure and 

FA in spite of the use of over 100,000 chemicals as pesticides worldwide (Allenbach et 

al., 1999). 

 The objective of this study was to examine the effects of a one time in ovo 

exposure of androgen disrupting chemicals (ADCs) on growth and developmental 
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stability as measured by FA in the Japanese quail (Coturnix japonica).  ADCs target 

androgenic systems and androgen dependent responses, resulting in altered synthesis, 

release, or action of androgens.  Embryos were exposed to either an androgenic ADC, 

trenbolone acetate, or an anti-androgenic ADC, p,p'-DDE [ethylene, 1,1-dichloro-2,2-

bis(p-chlorophenyl)].  Trenbolone acetate is a synthetic androgen used as a growth 

promoter in beef cattle.  DDE is the major metabolite of the pesticide p,p'-DDT [1,1,1-

Trichloro-2,2-bis(p-chlorophenyl)ethane] that acts as an androgen receptor blocker that is 

chemically more stable and biologically more persistent in than its parent compound 

(You, 2000).  This study examines embryonic ADC exposure and FA in an avian model 

to validate FA as a potential biomarker for endocrine disrupting chemical (EDC) 

exposure. 

 
METHODS 
 
 
 Japanese quail, an avian laboratory species well suited for toxicity tests (Fair et 

al., 1999), used in this study were offspring from a colony at the University of Maryland's 

Animal and Avian Sciences department, College Park, Maryland, USA.  All FA 

measurements were performed on ten male and ten female day old chicks per treatment.  

Quail that were measured for growth were randomly assigned by treatment to heated 

brooders (72x27x25 mm).  Diet and water were provided ad libitum.  Chicks received 

Purina Game Bird Startena BMD 50 diet, and adults received Purina Game Bird Breeder 

Layena Complete Ration (St. Louis, MO, USA). 

 Ninety eggs per treatment were randomly selected to receive either sesame oil 

(control), 20.0 or 40.0 µg of p,p'-DDE, or 5 or 50 µg trenbolone acetate (Sigma Chemical 
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Co., St. Louis, MO, USA).  Chemical treatments were dissolved in sesame oil and 

injected into yolks at a volume of 20 µl on day one of incubation.  The low dose of DDE 

reflects environmentally relevant levels that should not affect reproduction, but should 

have an effect on development; the high dose reflects environmentally relevant levels that 

have been found to affect reproduction (Nisbet 1989, Henny and Herron 1989, Custer and 

Mitchell 1987, Henny et al. 1984, Custer et al. 1983, and White et al. 1988).  Levels of 

trenbolone in yolks in the environment are unknown; the levels of trenbolone used in this 

study were determined as part of a larger range finding study. 

 We measured body weight every other day to the nearest 0.01 g by digital balance 

(Mettler Type MT5, Mettler, Hightstown, New Jersey, USA) and right tarsus length 

(section of the foot between the metatarsus and leg) and culmen length (from the tip of 

the upper mandible to the beginning of the cere) every third day to the nearest 0.01 mm 

by digital calipers (Traceable, Friendswood, Texas, USA) from day one until day 29.  

Ten individuals per treatment were randomly selected for measurements.   

The characters used in the FA measurements included the tarsus, the radius, the 

zygomatic process, and the premaxilla.  These measurements were made on the bodies of 

day 1 birds to the nearest 0.01 mm with the same digital calipers as described above.  

Each bilateral trait was measured twice by the same individual with an interval of 5-8 

days between the two measurements as suggested by Merila and Bjorklund (1995) to help 

avoid measurement error. 

 The Statistical Analysis System (SAS Institute, Inc. 1987) was used for all 

statistical analyses.  Assumptions for parametric statistics were examined prior to 

analysis.  The growth measurements were analyzed by two-way analysis of variance 
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(ANOVA).  Two-way ANOVAs with two repeated measurements were made by the 

same person for all the FA measurements except wing web thickness.   

 
RESULTS 
 
 
 Individuals that were embryonically exposed to both treatment levels of DDE 

experienced steady increases in body weight and tarsus and culmen lengths.  No 

differences were observed in body weight at day of hatch.  Similarly, no differences were 

found among treatments for growth as measured by body weight and tarsus and culmen 

lengths over time.  Also, no significant differences were observed among DDE treatments 

in FA of the tarsus, radius, zygomatic process, or premaxilla. 

 Similarly, quail that were embryonically exposed to trenbolone had no significant 

differences in body weight at day of hatch.  From day 5 through day 19, however, quail 

that were exposed to 50 µg trenbolone exhibited lower body weights than controls 

(p<0.01; Fig. 23).  On day 19, quail that were exposed to 5 µg trenbolone also weighed 

significantly less than controls (p<0.05).  No significant differences were observed in 

tarsus or culmen lengths at day of hatch for quail exposed to trenbolone (Fig. 24 and 25), 

however tarsus lengths from chicks exposed to 50 µg trenbolone grew at a shorter rate 

from day 8 until 19 (p<0.007; Fig. 2).  Growth of the culmen in birds treated with 50 µg 

trenbolone was reduced by day 19 (p=0.01; Fig 3).  No differences among treatments 

were observed with FA in trenbolone treated birds. 
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Effects of Tb on Body Weight
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Figure 23.  The effects of a one time embryonic exposure of trenbolone acetate at day one 
of incubation on growth from day of hatch until day 19 as measured by body weight 
(mean +/- standard error).  Treatment levels include control (sesame oil only), low (5.0 
µg), or high (50.0 µg). 
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igure 24.  The effects of a one time embryonic exposure of trenbolone acetate at day one 
of incubation on growth from day of hatch until day 19 as measured by length of the right 

re 24.  The effects of a one time embryonic exposure of trenbolone acetate at day one 
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tarsus (mean +/- standard error).  Treatment levels include control (sesame oil only), low 
(5.0 µg), or high (50.0 µg).  
 

tarsus (mean +/- standard error).  Treatment levels include control (sesame oil only), low 
(5.0 µg), or high (50.0 µg).  
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Figure 25.  The effects of a one time embryonic exposure of trenbolone acetate at day one 
of incubation on growth from day of hatch until day 19 as measured by culmen length 
(mean +/- standard error).  Treatment levels include control (sesame oil only), low (5.0 
µg), or high (50.0 µg).  
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DISCUSSION  
 

 The lack of significant differences observed with the DDE treatments suggests 

at our treatment levels were not high enough to affect developmental stability.  

er 

 et al., 

e 

 

th.  Most experiments have not examined 

uld 

role 

n 

1).  

 

th

However, other measurements taken from the same birds showed that behavior and oth

androgen dependent characteristics had indeed been affected by treatments (Quinn

unpublished data).  Specifically, weights of the bursa of Fabricius, a primary lymphoid 

organ, were significantly larger in day old DDE-treated birds than in controls.  Total 

leukocyte numbers were also significantly higher in the day old DDE-treated birds than 

controls.  Female quail in the high DDE dose group reached puberty approximately on

week before the other treatments.  Male sexual behavior was also disrupted by the one 

time in ovo exposure to DDE.  Treated males attempted to mount females half as many 

times than controls and required approximately twice the amount of time to accomplish

successful cloacal contacts with females. 

 Body mass is often the only measurement of growth taken in the few studies that 

have examined the effects of DDE on grow

effects of DDE exposure on growth as measured by length of skeletal characters.  If 

growth of skeletal characters is to be affected by DDE, growth of these characters sho

be sensitive to androgens.  Therefore, the second question to arise was, what kind of 

do androgens have on skeletal growth?   Although the mechanism by which androgens 

induce skeletal growth is not yet fully understood, it is known that they interact with 

other gonadal steroids, growth hormone (GH), and insulin-like growth factor-I (IGF-I) o

the epiphyseal growth plate (Mauras et al., 1996; Maor et al., 1999; Zmuda et al., 200
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Androgens stimulate GH secretion by their aromatization to estrogen (Keenam et al., 

1993).  Testosterone directly stimulates local production of IGF-I and IGF-I receptors in 

chondrocyte cell layers of the murine mandibular condyle, which may or may not 

necessarily represent growth centers of longitudinal bones (Maor et al., 1999).  Further 

studies are needed to understand the individual actions and interactions of androge

other hormones, growth factors, and receptors.   

 Although androgens are known to induce skeletal growth, exposure to the 

synthetic androgen trenbolone acetate inhibited a

ns and 

ll measures of growth. Observations and 

nction 

ld 

e 

egree of measurement error in 

skeleta

ers 

ten 

necropsies of chicks indicated that trenbolone may have caused disruption in the fu

of the gastrointestinal tract (GI).  Chicks were often observed to have a large build-up of 

fecal material around the cloaca.  In some cases, it appeared to make defecation difficult.  

Necropsies of chicks that died in between day 1 and 19 revealed that birds that had a 

large build-up of feces around the cloaca also had an abnormally large amount of fecal 

material concentrated in the end of the colon.  The inhibition of growth, therefore, cou

have been caused more by trenbolone’s effects on the development and functioning of th

GI tract, rather than its direct effects on skeletal growth.   

Again, measures of FA in trenbolone also revealed no significant differences 

among treatments.  An important consideration is that the d

l measurements is reported to be often fairly high (Lougheed et al., 1991).  As 

such, it is not surprising for estimates of FA involving morphometric characters to be 

very sensitive to measurement error (Merila and Bjorklund, 1995).  Despite many pap

stressing the importance of considering measurement error in studies of FA, studies of

either continue to neglect accounting for it or do so incorrectly (Merila and Bjorklund, 
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1995).  We accounted for the bias due to measurement error by using the two-way 

ANOVA with two repeated measurements, as suggested by Merila and Bjorklund (1995

and Palmer and Strobeck (1986).   

It is suggested that FA has good potential as a biomarker in ecotoxicologic 

research when used correctly (Palm

) 

er, 1996).  Many FA measurements can be obtained 

through r 

. 

e 

 

ide 

es of 

endocri

 noninvasive techniques.  This is beneficial when working with threatened o

endangered species, or when employing a mark/recapture program.  Some of the most 

often used avian measures of FA include tarsus length, feather length, and wing length

(Lens et al., 2002; Ohlsson and Smith, 2001; Anciaes and Marini, 2000, Eeva et al., 

2000).  Fair et al. (1999) used the masses of primary feathers as FA measurements in 

Japanese quail.  Since these measurements require no specialized equipment, they ar

easy to perform and are cost effective.  FA also appears to be generally applicable to a

wide range of circumstances (Allenbach et al., 1999); it is a measurement that can be 

used on a wide variety of species and is affected by a variety of stressors.  

In conclusion, although growth and FA can serve as reliable biomarkers in a w

variety of circumstances, these measures do not appear to be sensitive indic

ne disruption by DDE or trenbolone acetate at the exposure levels used in this 

study in Japanese quail.   
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Chapter 8:  Conclusion 
 

reatly from its original direction of focusing solely on 

e effects of androgen-active EDCs on the development and function of the immune 

system.  We were very opportunistic in taking advantage of the animals and treatments 

used by including measures of reproduction, growth, developmental stability, motor 

behavior, and vocalization.  Some findings were surprising and have fostered new 

directions in our research, including consideration of the effects of EDCs on chick 

vocalization.  Thus, the main challenge in completing this project has become compiling 

all of the information in a clear manner that will be most useful to the toxicology and 

neurotoxicology communities.  One of the most pressing current needs is the 

determination of reliable biomarkers of exposure to environmental contaminants in avian 

species.  Because the traditional toxicological measures appear to be largely insensitive to 

the more subtle effects of EDCs on endocrine systems, it has been critical to evaluate 

appropriate endocrine-based measures that would serve as indices in laboratory studies 

and eventually for wild populations.  Certainly in our own studies, we have determined 

specific various measures that have proven to be more sensitive to EDC exposure than 

other basic toxicological measures.  Also, some EDC associated alterations in 

development that were observed in chicks had disappeared in adults.  Thus, adult birds 

often appear to adapt to low levels of contaminant exposure, and as such, traditional 

reproductive measures of toxicity conducted in adults may not be adequate to assess 

overall effects on fitness. 

In these experiments, immune measures proved to be responsive end points to 

androgen-active compounds.  The most sensitive morphological measures of exposure in 

 
This study had evolved g

th
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this stu

n.  Since 

B lymp

exposure.  Both DDE and trenbolone acetate caused significant 

reductions in the number of attempts to mount females.  DDE exposure resulted in an 

dy were those of the bursa of Fabricius.  Initial alterations in development 

observed in bursas from chicks treated with either p,p’-DDE or trenbolone acetate were 

immediately obvious.  Few articles have been published that describe observed 

differences in bursal morphology following exposure to exogenous androgens. Those that 

exist were very descriptive and only provided qualitative data.  Once the bursas were 

known to appear different, the next challenge soon became to answer the question, how 

different are they?  Quantitative measurements would be the only way to accurately 

answer this question, and none have yet been reported in the current literature.   

In determining the best way to make quantitative measures of bursal morphology, 

I selected the parts of the bursal that played the strongest role in B cell maturatio

hocytes mature in the follicles, measurements of these structures were the obvious 

first choice, and indeed, they were very sensitive endpoints.  Although not quantified, 

another sensitive bursal biomarker of exposure was the lobe-shape of the bursal folds or 

plicae, which was distorted or absent in most of the day-old bursas from both DDE and 

trenbolone-treated quail.  It should also be noted that although bursal morphology 

appeared to be greatly altered in chicks, differences greatly diminished in adult bursas.  

This suggests that, the bursa may be fairly resilient to embryonic EDC-induced 

disruption, provided that not further exposure occurs post-hatch.  Therefore, although few 

differences existed in adult bursal morphology, this biomarker of exposure may be most 

appropriate in chicks. 

Reproductive behavior also proved to be a sensitive and appropriate biomarker for 

androgen-active EDC 
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increas

s.  Commonly, individuals who mature 

faster g

e in the amount of time to achieve successful copulations, and trenbolone caused a 

reduction in the number of successful copulations achieved.  All of these differences were 

observed in the first of three tests only.  This suggests that males were able to compensate 

for the initial behavioral impairment through experience.  However, it should be noted 

that the males and females were confined in a small cage throughout the tests.  Males that 

were finally able to achieve a successful mating often did so with great difficulty, having 

to chase the female around the cage for most of the three minutes required of the test.  

Males might not have this type of opportunity in the wild to gain the experience needed 

to overcome their initial behavioral impotence.  Likewise, if females in the wild deem a 

male unacceptable for mating, they would be free to leave the male to seek out a more fit 

suitor.  By its very nature, non-random mating strategies are often very competitive.  

Therefore the resilience that we have observed in male copulatory behavior may not be 

fully realized in a natural environmental setting. 

Onset of puberty may also be a sensitive biomarker for androgen active EDC 

exposure.  Timing to sexual maturation becomes very important to an individual’s 

potential to pass its genes on to future generation

ain a reproductive advantage over those who mature later.  This natural variation 

in timing to onset of puberty plays a role in contributing to a population’s fitness.  If 

exposure to EDCs causes disrupts the natural variability in a population’s timing to onset 

of puberty, alterations in the population’s fitness may result if less fit individuals are able 

to mature faster than more fit ones.  Some studies show correlations between onset of 

reproductive ability and egg quality (Gous et al., 2000; Joseph et al., 2002).  Most of 

these studies, however, were conducted for application in the poultry industry, and as 
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such, results from these studies can only be used to imply ecological implications to 

differences in onset of sexual maturation.  Most of these types of studies done for the 

poultry industry measure egg weight and number of eggs laid and interpret the results in 

regard to effects on egg efficiency.  Eggs from these studies are seldom incubated.  

Incubation of the eggs would allow the assessment of fertility and viability, and would 

be, therefore, more appropriate in determining the effects of onset of puberty on a 

population’s fitness.   

The most surprising finding in this study was that embryonic exposure to 

trenbolone acetate inhibited chick vocalization.  It was originally hypothesized that motor 

behavior would have been more affected than vocalizations.  Also, it was initially thought 

that an

a 

biomarker’s usefulness.  Sensitive endpoints are desirable because they are more likely to 

y differences in vocalization would be due to behavioral reasons and not 

mechanical ones, meaning that we did not expect the ability of calling to be completely 

abolished.  It also appeared that calling was more strained in the lower treatment levels, 

and that the volume of the calls produced by these quail was lower than those from 

control birds.  However, we were unable to quantify these apparent differences.  

Although there was little room in this dissertation to allow for the exploration of possible 

mechanisms behind the inhibition of vocalization, the results from this part of the study 

do show that this measure was a sensitive biomarker for exposure to trenbolone.  Thus 

potentially, vocalization may be a useful measure of exposure to other classes of EDCs. 

This last statement begs the question, what makes a biomarker “useful”?  

Biomarkers are useful when they can accurately indicate exposure to environmental 

chemicals.  As already discussed, endpoint sensitivity is often used to assess 
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be able

g enough to cause effects that would impact measures of fitness such as 

 to demonstrate lower levels of contamination.  Another factor that determines the 

usefulness of biomarkers is the ecological implications that can be drawn from them.  

Traditionally, laboratory experiments have primarily used biomarkers that are able to 

reveal or attempt to predict something about the effects of a chemical on the fitness of a 

population, such as reproductive measurements.  Fitness is the relative contribution of 

individuals’ alleles to the gene pool of future generations.  Therefore, fitness contributes 

to a population’s survivorship, which is benefited by having the heartiest individuals 

successfully reproduce.  In the current study, the most sensitive indicators of exposure to 

androgen active EDCs that can be used to assess potential effects on a population’s 

fitness are those that measure reproductive behavior.  Physiological reproductive 

measures in this study revealed no significant effects; gonadal development appeared to 

not be impacted by embryonic exposure to either DDE or trenbolone acetate.  Intact and 

functional gonads do not make any contributions to fitness, however, if the performance 

of reproductive behavior is impaired.  Also, with the potential of some of the more 

resilient biomarkers used in this study only being appropriate in chicks, behavior appears 

to be an even more reliable fitness-type biomarker since tests of behavior were conducted 

in adults.  As such, future biomarkers that assess effects of chemicals on reproduction 

may include measures of the neuroendocrine systems responsible for the activation of 

these behaviors. 

Besides testing fitness, a measure of a population’s potential survivability, studies 

should also focus more on subtle measures of individual survivability.  Environmentally 

relevant exposure levels to EDCs can oftentimes be quite low, and the resulting effects 

might not be stron
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reprodu

ty tests are still debated heavily by the Organisation for Economic Co-

operati

ction.  Biomarkers that assess the potential for individual survivability are a 

necessary complement to the traditional fitness measures because reproductive ability 

means little if individuals do not live long enough to reach puberty.  As such, measures of 

individual survivability, such as immunocompetence, are challenging in a laboratory 

setting.  In the environment, animals are often exposed to larger numbers and varieties of 

pathogens than in a laboratory setting, which is oftentimes relatively cleaner.  As such, 

individuals that are immunocompromised and might not have made it to adulthood in the 

wild might live longer in a laboratory study, and not provide the most accurate measure 

of potential survivability.  In this study, the bursal morphology measures, as discussed 

above, were the most appropriate biomarkers that addressed potential individual 

survivability.   

It is essential that studies that attempt to assess the potential effects of EDCs in 

birds be able to measure the impact of these chemicals on both the embryonic 

organization and adult activation of endocrine-mediated systems.  Currently, guidelines 

for avian toxici

on and Development (OECD), and no established methods for such tests have 

been accepted yet.  The current study has identified sensitive and reliable biomarkers for 

exposure to androgen-active EDCs.  Since one of the current areas of debate within the 

OECD is the development of an appropriate avian two-generation toxicity test, the next 

step is to determine if the biomarkers identified in this study are as reliable in a 

subsequent generation.  This is an exciting time in toxicology, where harmful effects of 

EDCs are being identified faster than the mechanisms behind them.  I believe that the 

identification of reliable endpoints can be realized in the near, if not immediate, future.  
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The majority of energy and efforts should be used in ascertaining how to amend and 

prevent the harmful effects of EDCs.  The biomarkers that are identified now will help to 

direct where these efforts are focused. 
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Appendices 

I. Effects of DDE on hatchability 
 

 
 

   trenbolone µg/egg   

control 0.05 0.5 5 50 

 
 

 

 
 
 

II. Effects of trenbolone acetate on hatchability 
 

 
  
  
# fertile eggs injected 84 80 84 80 120 
enbryonic + pipping mortality 19 16 14 17 65 
hatchability 77% 80% 83% 79% 46% 
 
 
 

DDE µg/egg
control 20 40

 injected 95 95 95
onic + pipping mortality 41 35 35

a 57% 63% 63%

# fertile eggs
enbry
h tchability
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III. Immune Results Summary 

 

DDE trenbolone
chick adult chick adult

bursa weight ? NE ? NE
spleen weight NE NE NE NE
follicle number ? NE ? ?
f le E NE ?,? NE
bursal cell area NE NE NE NE
spleen morphology NE NE

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ollic size N

X X
total leukocytes ? NE NE X
differential counts NE NE H:L ? X
serum IgG NE X ?,? X
humoral response X NE X NE
cell-mediated response X NE X NE

NE = no effect
X = not measured
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IV. Reproduction Results Summary 

 
 
 

 
 
 
 
 
 
 
 
 
 

DDE trenbolone
male onset to puberty NE ?
f male onset to puberty ? NE
o arian follicle counts NE NE
f  g NE ?
ovarian weight NE NE
testes weight NE NE

e
v
oam land size

sperm motility NE NE
sperm penetration NE NE
latency to mount NE NE
latency to successful sex ? NE
number of mount attempts ? ?
number of cloacal contacts NE ?

NE = no effect
X = not measured
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V. Growth and Fluctuating Asymmetry Summary 
 
 
 
 
 
 
 
 
 

 

DDE trenbolone
body weight NE ↓
tarsus length NE ↓

lm ↓
 tarsus NE NE
 radius NE NE
 zygomatic process NE NE

A premaxilla NE NE

 cu en length NE
 FA
 
 FA
 FA
 
 F
 
 
 
VI. Motor Behavior and Vocalization Summary 
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