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ABSTRACT: This paper analyzes a connection between risk-sensitive
and minimax criteria for discrete-time, �nite-state Markov Decision Pro-
cesses (MDPs). We synthesize optimal policies with respect to both cri-
teria, both for �nite horizon and discounted in�nite horizon problems. A
generalized decision-making framework is introduced, leading to stationary
risk-sensitive and minimax optimal policies on the in�nite horizon with
discounted costs.
We introduce the mixed risk-neutral/minimax objective, and utilize re-
sults from risk-neutral and minimax control to derive an information state
process and dynamic programming equations for the value function. We
synthesize optimal control laws both on the �nite and in�nite horizon, and
establish the e�ectiveness of the controller as a tool to trade o� risk-neutral
and minimax objectives.

KEYWORDS: Markov Decision Processes, Risk-Sensitive Control, Mini-
max Control, Mixed Risk-Neutral/Minimax Control

1 Introduction

In the classical, risk-neutral approach to stochastic control, one seeks to
minimize the expected total cost (or average cost) incurred in the evolution
of a dynamical system. Risk-sensitive control is a generalization of this
approach whereby we consider higher order moments of the probability
distribution for the total cost as well. In minimax control, one is interested
in minimizing the worst-case behavior of a dynamical system.
An early formulation of the risk-sensitive control problem is due to [HM72].
In the LQG setting, the problem was �rst studied by [Jac73], where it was
found that in the risk-sensitive setting, the certainty equivalence principle
does not hold in its original form. Extensions to the partially observed
setting include [Whi81] and [BS85]. A somewhat surprising result is that
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the conditional distribution of the state given past observations does not
constitute an information state.
A good survey of work in nonlinear risk-sensitive control is given by [McE96a]
and [McE96b]. The partially-observed MDP setting has been studied in
[BJam], where an information state and dynamic programming equations
for the value function on the �nite horizon are introduced. Structural re-
sults for the value function are due to [FGMar].
Early work in minimax control of stochastic systems includes [BR71], where
the connection between stochastic and deterministic descriptions of uncer-
tainty is addressed. In the LQG setting, a connection between risk-sensitive
control and H1 control is established in [GD88]. The connection between
minimax and robust control is explored in [BB95]. In [BJam], a �nite-state
robust control problem is studied as the small-noise limit of a particular
risk-sensitive control problem. Further connections between risk-sensitive
control and a particular minimax control problem are explored in an inter-
esting recent work (see [PJD97]).
An interesting fact both in risk-sensitive and minimax control is that in
general, on the in�nite horizon and with stationary discounted costs, there
does not exist a stationary optimal policy. This is the case in the �nite-
state MDP setting as well. Dynamic programming equations in the full
state observations case are derived in [CS87]. Alternate approaches to risk-
sensitive control which lead to stationary optimal policies are developed in
[Por75], [KP78], and [Eag75]. An alternate approach in the LQG setting
is developed in [HS95]. Average cost approaches, which also lead to opti-
mal stationary policies on the in�nite horizon, are pursued in [MFHCF97],
[FHH(1)], [FHH(2)], [HHM96], [HHM97].
While risk-neutral and minimax controllers are limiting special cases of the
risk-sensitive controller, we show that in general the risk-sensitive controller
does not e�ectively trade o� risk-neutral and minimax objectives. We intro-
duce a mixed risk-neutral/minimax objective, solve the associated optimal
control problem, and show that it does e�ectively trade o� risk-neutral and
minimax objectives, at the cost of increased controller complexity with re-
spect to the risk-sensitive controller. Our mixed risk-neutral/minimax for-
mulation parallels the mixed H2=H1 criterion that has been introduced in
the linear systems setting. See [ZGBD94] and [DZGB94] for details.
This paper is organized as follows. In Section 2 we discuss our results on
risk-sensitive and minimax control. In Section 3, we de�ne and address the
mixed risk-neutral/minimax problem, and motivate its usefulness as a tool
to trade o� risk-neutral and minimax objectives. We note that throughout
our presentation, proofs are omitted due to space constraints. For detailed
proofs of our results and further discussion, the reader is referred to [Cor97].
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2 Risk-Sensitive and Minimax Control

We consider the class of discrete-time MDPs with �nite state spaceX , �nite
control space U , and �nite observation space Y . We denote the cardinality
of these spaces by jX j, jU j, and jY j. The probability transition matrix P (u)
is de�ned by Pij(u) = pr(xk+1 = jjxk = i; uk = u), and the observation
matrix Q(u) is de�ned by Qij(u) = pr(yk = jjxk = i; uk�1 = u). We de�ne
ck(xk; uk) � 0 to be the (possibly discounted) cost incurred by the system
at time k � 0, given that it is in state xk 2 X and that control uk 2 U is
used. If there is a �nite horizon size N , there is a terminal cost cN (xN ) � 0.

A partial sum of costs is denoted by Ci;N =
Pk=N�1

k=i ck(xk ; uk) + cN (xN ).
The vector of terminal costs is denoted by cN .
The risk-neutral objective is given by

J(�; �0) = E�;�0 [
X
k

ck(x; u)]; (1.1)

where � is a non-anticipative policy and �0 is the probability distribution
on the states of the system at time k = 0. A policy or control law is a
sequence of mappings from available information to control actions. Let us
denote by M this set of (non-anticipative) policies. Good references for the
risk-neutral control of MDPs include [KV86], [Ber95], and [Put94].
If the state is observed, that is yk = xk , there exists a Markov policy that
is optimal. In the partially observed setting, the conditional distribution
of the state given past observations is an information state. It is de�ned
recursively as follows:

�k+1 = r(�k ; uk; yk+1) =
�kP (uk) �Q(yk+1; uk)

�kP (uk) �Q(yk+1; uk)1
(1.2)

where �Q(�; �) is a diagonal matrix with �Qii(y; u) = pr(yk+1 = yjxk+1 =
i; uk = u), and 1 = [1; : : : ; 1]0. The information state at each time k is a

jX j-dimensional vector belonging to the space �, the unit simplex in <
jXj
+ ,

where <+ is the set of non-negative real numbers. The value function has
the important properties that it is piecewise linear and concave in �k .
The risk-sensitive objective is given by

J
(�; �0) =
1



logE�;�0 [exp (


X
k

ck(x; u))]: (1.3)

For small 
, (1.3) takes the form

J
(�; �0) ' E�;�0 [
X
k

ck(x; u)] +



2
V ar�;�0 [

X
k

ck(x; u)]; (1.4)

and in the limit 
 ! 0, (1.3) reverts to the risk-neutral objective (1.1). The
parameter 
 allows one to incorporate an aversion or preference for risk,
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or variability in the cost incurred in the system's evolution. For 
 > 0, we
are penalized for variability in the cost incurred, so we say that we have a
risk-averse objective.
An equivalently objective to (1.3) is given by

Ĵ
(�; �0) = E�;�0 [exp (

X
k

ck(x; u))]: (1.5)

In [BJam], an information state process for the MDP with respect to cri-
terion (1.5) is de�ned, satisfying the following recursion:

�
0 = �0; (1.6)

�
k+1 = jY j�
kD

(k; uk) �Q(yk+1; uk); (1.7)

where
D

ij(k; u) := Pij(u) exp (
ck(i; u)); (1.8)

and �Q(�; �) is a diagonal matrix with �Qii(y; uk) = pr(yk+1 = yjxk+1 =

i; uk = u). The information state belongs to the space R
jXj
+ , where R+ is

the space of non-negative real numbers. On the �nite horizon, the value
function associated with this information state is given by

S
k;N (�) := inf
�2M

Ey[�
N � exp(
cN )j�


k = �]: (1.9)

where the exp operator is de�ned component-wise, M denotes the set of
non-anticipative policies, and y denotes a reference probability measure,
under which all observations y 2 Y are independent and equiprobable at
every time k. Dynamic programming equations for (1.9) are given by

S
N;N(�

) = �
 � exp(
cN ); (1.10)

S
k;N (�

) = min

u2U
Ey[S
k+1;N (jY j�


D
(k; u) �Q(yk+1; u)]: (1.11)

It has been shown in [FGMar] that S
k;N (�) is a concave and piecewise-linear
function. These structural properties together with a normalized informa-
tion state can be exploited to develop an algorithm to synthesize an optimal
policy, similar to the algorithm given in [SS73] for risk-neutral control (with
a minor correction in [Lov89]). See [Cor97] for details.
The minimax objective is given by

�J(�; �0) = sup
!2
�

X
k

ck(xk; uk); (1.12)

where 
� is the set of trajectories of the form (x0; u0; x1; u1; : : :) that occur
with non-zero probability under policy �. Note that, with respect to the
minimax objective, the probability with which each trajectory occurs under
a �xed policy � is signi�cant only to the extent that it is zero or non-zero.



Risk-Sensitive, Minimax, andMixed Risk-Neutral/Minimax Control of Markov Decision Processes 5

2.1 Finite Horizon Results

The following result will be useful in establishing a connection between
the risk-sensitive and minimax criteria. Its proof is similar to that of the
Varadhan-Laplace Lemma, given e.g. in [BJam].

Lemma 1 (Modi�ed Varadhan-Laplace Lemma). Let F 
 ; F be real
valued functions de�ned on a �nite set 
, where for all ! 2 
 we have
F (!) = lim
!1 F 
(!). Also, let p(!) be a nonnegative real number 8! 2 
,
independent of 
. Then

lim

!1

1



log
X
!2


p(!) exp [
F 
(!)] = max
!2
;p(!)6=0

F (!): 2 (1.13)

Using Lemma 1, it can be shown that on the �nite horizon, lim
!1 J
(�; �) =
�J(�; �). That is, the large-risk limit of the risk-sensitive objective is the min-
imax objective. Let us de�ne a statistic for the MDP by

sk := lim

!1

1



log�
k ; 8k; (1.14)

where the log operator is de�ned component-wise. Again using Lemma 1,
it can be shown that the statistic satis�es the following recursion, where
by s[x] we mean the xth component of vector s:

s0[x] =

�
0 if �0[x] 6= 0,
�1 otherwise,

(1.15)

sk+1[x
0] = fk(sk; uk; yk+1): (1.16)

The function fk(�; �; �) is given by

fk(sk; uk; yk+1) =

8<
:

maxx2 ~X(x0;uk)
[sk[x] + ck(x; uk)] if

~X(x0; uk) 6= ;;

x0 2 ~Y (yk+1; uk)
�1 otherwise,

(1.17)
where ~X(x0; uk) is the set of states at time k from which, using control
uk 2 U , there is a nonzero probability that the state of the system at time
k+1 will be x0; ~Y (yk+1; uk) is the set of states at time k+1 that can result
in observation yk+1 at time k + 1, if the control at time k is uk.
It can be shown that the statistic and the objective (1.12) on the �nite
horizon are related by the following:

�J(�; �0) = max
y1;:::;yN

max
i2X

sN [i]: (1.18)

This motivates the following de�nition for the value function:

Wk;N (s) := min
�2M

max
yk+1;:::;yN

max
i2X

sN [i]; where sk = s: (1.19)
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Indeed, we have

W0;N (s0) =W0;N ( lim

!1

1



log�0) = min

�2M

�J(�; �0): (1.20)

The value function at time k can be thought of as the worst case total cost
incurred in the system's evolution, given an information state at time k,
and given that an optimal policy is used thereafter.
The following result establishes that the statistic satisfying (1.15), (1.16)
is an information state, and that there exists an optimal separated policy
that can be computed by using the dynamic programming equations for
the value function (1.19). First, we introduce the following notation for the

set of all information states. De�ne ~R
jXj
+ := fR+;�1gjXj.

Theorem 1 (Minimax Finite Horizon Dynamic Programming).

The value function satis�es the following, 8s 2 ~R
jXj
+ :

WN;N(s) = max
i2X

s[i]; (1.21)

Wk;N (s) = min
u2U

max
y2Y

Wk+1;N (f(s; u; y)): (1.22)

A policy that achieves the minimum in equations (1.21) and (1.22), also
achieves the minimum in (1.19). Furthermore, the policy is separated and
is optimal with respect to (1.12). 2

In risk-neutral and risk-sensitive control, the determination of optimal poli-
cies for partially observed MDPs typically involves the use of structural
results for the value function. See [Cor97] for details. Without such results,
the minimization in (1.11) over a continuum of information states (the
unit simplex), is intractable. In the minimax control setting, the situation
is greatly simpli�ed since, on the �nite horizon, we need only consider a
�nite number of information states. At time k = 0, there are 2jXj�1 values
that the information state s0 can take, corresponding to all possible sub-
sets of X of feasible initial states. At time k > 0, in the worst case there
are (2jXj � 1)(jU j � jY j)k feasible information states. A possible scheme for
determining optimal policies on the �nite horizon is the following:

1. Generate all information states of interest.

2. Use the dynamic programming equations (1.21), (1.22) to �nd the
optimal control at each state of interest.

2.2 The In�nite Horizon Case

One way to insure that the objectives (1.1), (1.3), and (1.12) are bounded
on the in�nite horizon is to introduce a discounted cost structure. That is,
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we set ck(�; �) = �kc(�; �), where 0 < � < 1. In [CS87] it is shown that the
limit

Ŝ
k (x) := lim
N!1

Ŝ
k;N (x) (1.23)

exists, for all x 2 X and 
 > 0, where Ŝ
k;N (x); x 2 X is the value function
in the case of full state observations. Furthermore, the in�nite horizon value
function can be characterized as follows:

Ŝ
0 = min
u2U

fD
(0; u)Ŝ�
0 g; (1.24)

where the minimum is taken separately for each component of the vector
equation. Analogously, in the partially observed setting we have the follow-
ing.

Theorem 2 (Risk-Sensitive In�nite Horizon Dynamic Program-

ming). For all � 2 <
jXj
+ , and 
 > 0, de�ne

S
k (�) := lim
N!1

S
k;N (�); (1.25)

where S
k;N is de�ned in (1.9). The limit in (1.25) exists, and

S
0 (�) = min
u2U

Ey[S�
0 (jY j�D
(0; u) �Q(y1; u))]: 2 (1.26)

Proceeding in a similar fashion for the minimax objective, we introduce the
following in�nite horizon value function:

Wk(s) := lim
N!1

Wk;N (s): (1.27)

We can verify that the limit in (1.27) is well-de�ned by recalling that
Wk;N = lim
!1

1

 logS



k;N (exp(
s)), and limN!1 Sk;N is well-de�ned.

Thus

Wk(s) = lim

!1

1



logS
k (exp(
s)) (1.28)

We can relate the value function to the criterion (1.12) by taking the limit
in (1.20) as N !1. We obtain:

W0(s0) = inf
�2M

�J(�; �0) (1.29)

The following result characterizes the in�nite horizon value function.

Theorem 3 (Minimax In�nite Horizon Dynamic Programming).

The value function (1.27) satis�es the following, 8s 2 ~R
jXj
+ :

W0(s) = min
u2U

max
y2Y

�W0(
f0(s; u; y)

�
): 2 (1.30)
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In risk-neutral control, with �nite state and action spaces, there exists a sta-
tionary optimal policy. In the full state observations setting, this policy can
be determined through policy or value iteration techniques. Unfortunately,
both in the risk-sensitive and the minimax settings, in general there does
not exist a stationary optimal policy. Thus, the optimal policies satisfying
equations (1.26) and (1.30) are di�cult to determine. Given a tolerance
bound � > 0, we can consider the truncation of the in�nite horizon to a �-
nite horizon of N = max fd�e; 1g, where � = log[(1��)�= k c k]= log�, and
k c k:= maxx2X;u2U jc(x; u)j. Both for risk-sensitive and minimax criteria,
if we solve the �nite horizon dynamic programming equations with horizon
sizeN and no terminal cost, and use a �xed, arbitrary policy thereafter, the
resulting objectives (1.3) and (1.12) are within � of optimal. See ([Cor97])
for details.

2.3 A Generalized Decision-Making Framework

Motivated by the the lack of stationary optimal policies for discounted
risk-sensitive and minimax criteria, and the complexity associated with
solving the dynamic programming equations (1.10), (1.11) or (1.21), (1.22)
for a large horizon N , we would like to formulate optimal risk-sensitive and
minimax decision-making in a more general setting, leading to stationary
discounted optimal policies on the in�nite horizon. An additional motiva-
tion is provided by decision theorists, many of whom argue (see e.g. [EZ89])
that a normative theory for decision-making must lead to stationary opti-
mal policies on the in�nite horizon.
Assume that the state of the MDP is observed. On the �nite horizon, the
value function corresponding to the risk-sensitive criterion (1.3) can be
de�ned as

s
k;N (i) := min
�

1



logE�[exp(
Ck;N )jxk = i]; i 2 X (1.31)

Recall that Ck;N =
PN�1

j=k cj(xj ; uj)+ cN (xN ). The dynamic programming
equations for (1.31) are given by

s
k;N (i) = min
u2U

fck(i; u) +
1



log[
X
j

Pij(u) exp(
s


k+1;N (j))]g;(1.32)

s
N;N(i) = cN (i): (1.33)

In the small-risk limit, 
 ! 0, (1.32), (1.33) revert to the usual risk-neutral
dynamic programming equations. On the in�nite horizon, we have

s
k(i) = min
u2U

fck(i; u)+
1



log[
X
j

Pij(u) exp(
s


k+1(j))]g; k = 0; : : : : (1.34)



Risk-Sensitive, Minimax, andMixed Risk-Neutral/Minimax Control of Markov Decision Processes 9

If ck(�; �) = �kc(�; �), it can be shown that time-shifted value functions are
related as follows:

s
k+1(�) = �s�
k (�): (1.35)

Equation (1.35) also reverts to a well-known relationship in the risk-neutral
case:

s0k+1(�) = �s0k(�): (1.36)

A more general set of optimality equations than (1.32), (1.33) can be de-
�ned as follows:

h
k;N (i) = min
u2U

fck(i; u) +

�0



log[
X
j

Pij(u) exp(
�
00h
k+1;N (j))]g; (1.37)

h
N;N(i) = cN (i): (1.38)

An interpretation for these optimality equations is that the value function
at time k equals the cost incurred at time k, plus a (possibly discounted)
contribution accounting for future costs. Note that if we set �0 = �00 = 1,
we revert to the classical risk-sensitive dynamic programing equations. If
we set � = �00 = 1, we obtain the formulation that has been studies in
a series of papers including [Por75] and [KP78], which we refer to as the
Porteus formulation. A similar formulation in the LQG setting has been
proposed recently in [HS95]. If we set � = �0 = 1, we obtain the formulation
introduced in [Eag75], which we refer to as the Eagle formulation.
On the in�nite horizon, setting ck(�; �) = �kc(�; �), the generalized optimality
equation is given by

h
k(i) = min
u2U

f�kc(i; u) +
�0



log[
X
j

Pij(u) exp(
�
00h
k+1(j))]g; k = 0; : : : :

(1.39)
Once again we obtain the classical, Porteus, and Eagle formulations as
special cases of (1.39). A key feature of the generalized formulation (1.39)
is that it is su�cient for one of �, �0, and �00 to be less than 1, provided the
others are set to 1, to insure boundedness of the value function h
k . Thus, by
setting either �0 or �00 to be less than one, we can set � = 1. It can then be
shown that h
k(�) = h
(�), that is we have a time-invariant value function,
and furthermore there is a stationary policy that achieves the minimum in
(1.16). It can further be shown that policy and value iteration techniques
can be used to synthesize an optimal policy. See [Cor97] for details, and for
extensions to the partial state observations setting.
The nature of the discount factors �, �0, and �00 can be better understood by
considering the small-risk limit, 
 ! 0, of (1.39). We obtain the following:

h0k(i) = min
u2U

f�kc(i; u) + �0�00
X
j

Pij(u)h
0
k+1(j)g; k = 0; : : : : (1.40)
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Note that this optimality equation is more general than the risk-neutral
dynamic programming equation. On the other hand, each of the three spe-
cial cases of (1.39) that we have considered (classical, Porteus, Eagle) is
equivalent to risk-neutral control in the small-risk limit.
A generalized minimax formulation is given by

�hk;N (i) = min
u2U

fck(i; u) + �0�00 max
j2 ~X0(i;u)

�hk+1;N (j)g; (1.41)

�hN;N(i) = cN(i); (1.42)

where once again ~X 0(i; u) is the set of states that the system reaches in one
transition with nonzero probability, given that it is in state i and control u
is used. On the in�nite horizon and with ck(�; �) = �kc(�; �), the generalized
minimax formulation is given by

�hk(i) = min
u2U

f�kc(i; u) + �0�00 max
j2 �X0(i;u)

�hk+1(j)g: (1.43)

It can be shown that the generalized minimax formulation is the large-
risk limit of the generalized risk-sensitive formulation. It follows that when
� = 1 and at least one of �0; �00 is less than 1, once again the value function
is time-invariant, and there exists a stationary optimal policy that can be
determined by policy or value iteration techniques.
An interesting consequence of introducing the additional discount param-
eters �0 and �00 in the risk-sensitive formulation is that, unlike (1.32),
(1.33), the equations (1.37), (1.38) are not dynamic programming equa-
tions. By this we mean that, in general, a policy �? achieving the mini-
mum on the r.h.s. of equations (1.37), (1.38) does not minimize a criterion
of expected utility form. More precisely, in general there does not exist a
U : <+ ! <+, such that the objective E�[U(

P
k ck(xk; uk))] is minimized

by policy �?. The same comment applies to the in�nite horizon optimality
equation (1.39). This can be understood in light of the axiomatic foun-
dation of Utility Theory (see e.g. [HS84]), and some dynamic extensions
discussed in [KP78].

3 Mixed Risk-Neutral/Minimax Control

The approach for de�ning the mixed risk-neutral/minimax objective is the
following. We let a bound be given on the worst-case cost incurred, as a
function of the probability distribution on x0 2 X . Subject to this bound,
an optimal policy is one for which the expected cost incurred is minimized.

Speci�cally, let �(�) : ~<
jXj
+ ! <+ be given, such that �(s0) � �0(s0), 8s0 2

~<
jXj
+ , where �0(s0) = min�2M �J(�; s0). Recall that s0 depends on �0 as

given by (1.15). Given the functional dependence of �J(�; �0) on �0, by a
slight abuse of notation we may write �J(�; s0) instead.
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We de�ne M(�(�)) �M to be the set of feasible policies such that for each
initial probability distribution �0 2 �, where � denotes the unit simplex,
the worst-case cost incurred does not exceed �(s0). That is, for � 2M(�(�))

and for s0 2 ~<
jXj
+ ,

�J(�; s0) = max
!2
0;p�;�0 (!)6=0

X
k

ck(x; u)(!) � �(s0): (1.44)

We seek a policy �? that minimizes the risk-neutral objective subject to a
constraint on the allowable worst-case cost. That is, given �(�) � �0(�), an
optimal policy �? is one which satis�es

J(�?; �0) = min
�2M(�(�))

J(�; �0); (1.45)

for all �0 2 �. Again, recall that s0 depends on �0 as given by (1.15).

3.1 Finite Horizon Results

In the general, partially observed setting, we wish now to address the task
of determining an optimal policy �? as de�ned by (1.45), for a given �(�) >
�0(�). We will need to introduce an appropriate su�cient statistic, as well
as dynamic programming equations for the value function.
We introduce the following statistic which combines the risk-neutral and the
minimax information states. This statistic will be our candidate informa-
tion state (su�cient statistic). This statistic is given by fgkg; k = 0; 1; : : :,
where gk := (�k ; sk).
We now introduce a number of de�nitions. Let 
k be the set of trajectories
of the system beginning at time k. That is, elements of 
k are of the
form (xk ; uk; xk+1; : : :). Let p

�;g;k(!); ! 2 
k, denote the probability of
trajectory ! given that the information state at time k is gk = g. Let
M(�(s0); g; k) �M be the set of policies such that

max
!2
k;p�;g;k(!) 6=0

[s[xk ] +
NX
l=k

cl(xl; ul)](!) � �(s0): (1.46)

That is, a policy � is in M(�(s0); g; k) if the worst case cost incurred, given
that the information state is g at time k, is no greater than �(s0). We say
that an information state g is feasible at time k with respect to �(s0) if
G(�(s0); g; k) 6= ;. Let U(�(s0); g; k) � U be the set of feasible controls,
that is for u 2 U(�(s0); g; k), 9� 2M(�(s0); g; k) such that �k(g) = u.
De�ne the value function V �(s0) as follows:

V
�(s0)
k;N (g) := min

�2M(�;g;k)
E[

NX
l=k

cl(xl; ul)jgk = g]: (1.47)



Risk-Sensitive, Minimax, andMixed Risk-Neutral/Minimax Control of Markov Decision Processes 12

In particular, we have

V
�(s0)
0;N (g0) = min

�2M(�(s0);g0;0)
J(�; �0) = J(�?; �0); (1.48)

using equation (1.45).

Theorem 4 (Dynamic Programming). The value function de�ned in
equation (1.47) satis�es the following dynamic programming equations for
all feasible g:

V
�(s0)
N;N (g) = � � cN ; (1.49)

V
�(s0)
k;N (g) = min

u2U(�(s0);g;k)
E[ck(x; u) + V

�(s0)
k+1;N (gk+1)jgk = g]:(1.50)

Furthermore, a policy �?s that achieves the minimum in equations (1.49)
and (1.50) also achieves the minimum in (1.47). The optimal separated pol-
icy �?s is optimal within the larger class M(�(s0); (�0; s0); 0) of all feasible
policies. 2

Note that for a given time k, the feasible information states g for which we
are interested in the minimization in (1.50) will be uncountably in�nite in
general. Thus we need structural results for the value function to make the
minimization tractable. The following two lemmas will be useful to address
this.

Lemma 2 [Ast69]. Let f1(x) and f2(x) be concave functions. The func-
tion f(x) = min ff1(x); f2(x)g is also concave. 2

Lemma 3 [Ast69]. Let the function g : �! < be concave and let A be a
linear transformation from � into �. Then the function f : �! < de�ned
by

f(x) =k Ax k �g(
Ax

k Ax k
); x 2 �; (1.51)

is also concave. 2

Using these two lemmas, we can show the following.

Theorem 5 (Concavity). The value function V
�(s0)
k;N (g) = V

�(s0)
k;N (�; s) is

concave as a function of �. 2

Theorem 6 (Piecewise Linearity). The value function V
�(s0)
k;N (g) =

V
�(s0)
k;N (�; s) is piecewise linear as a function of �. 2
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The determination of optimal policies on the �nite horizon can be achieved
by generalizing the methodology used for risk-neutral control. A key ob-
servation is that only a �nite number of values of the minimax information
state will be of interest. Thus a scheme for determining optimal �nite hori-
zon policies is the following:

1. Generate all minimax information states sk of interest, for k = 0; 1; : : :
Discard those information states such that the corresponding g will
be infeasible.

2. Implement a backwards dynamic programming iteration using (1.49),
(1.50). For each k; 0 � k < N , we must consider states g = (�; s)
such that s is generated by step (1) and � 2 �. For each value s, a
risk-neutral methodology can be utilized.

In the worst case, the number of minimax information states will increase
polynomially in the size of the horizon as follows:

jskj = (2jXj � 1)(jU j � jY j)k : (1.52)

Also, in the worst case, the number of vectors needed to represent the value
function Vk;N (s; �) is given by

jU j(jY j
N�k�1)=(jY j�1): (1.53)

This can be derived by noting that the number of vectors needed at time
k, or jAkj, increases as follows:

jAk j � jU j � jAk+1j
jY j: (1.54)

Thus, the controller complexity at time k is bounded by the product of
(1.52) and (1.53).
A slight reduction in the complexity of the algorithm can be obtained
with the following observation. Our algorithm is such that at time k, we
consider separately information states gk = (�; s) and g0k = (�; s0), with
corresponding bounds given by �(s0) and �(s00), respectively. Note that if
�(s0)1 � s0 = �(s00)1 � s00, we need not repeat the minimization in (1.50)
both for sk = s and sk = s0. This observation leads to a more e�cient
procedure to determine an optimal policy in many instances, though the
worst-case complexity is the same.
In the special case where the state of the system is observed, we know that
both in risk-neutral and in minimax control there is a Markov policy that
is optimal. Unfortunately this is not the case for the mixed control prob-
lem. The information state process gk; k = 0; 1; : : :, cannot be simpli�ed
in this manner. Intuitively, this follows from the fact that at time k, the
optimal policy depends not only on the state of the system but on the total
accumulated cost up to time k.
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The complexity of the mixed risk-neutral/minimax controller is greater
than that of the risk-sensitive controller in general. In the fully observed
setting, it is well known that Markov policies are optimal for the risk-
sensitive criterion (see [HM72]). In the general, partially observed setting,
it has been shown (see [Cor97]) that the complexity of the risk-sensitive
controller is the same as the risk-neutral controller.

3.2 The In�nite Horizon Case

We derive dynamic programming equations characterizing the value func-

tion on the in�nite horizon. De�ning V
�(s0)
k := limN!1 V

�(s0)
k;N , we obtain

the following, using (1.50):

V
�(s0)
k (g) = min

u2U(�(s0);g;k)
E[ck(x; u) + V

�(s0)
k+1 (gk+1)]: (1.55)

Assuming ck(�; �) = �kc(�; �), time-shifted value functions can be related by
observing that

V
�(s0)
k+1 (�; s) = �V

�(s0)

�

k (�;
s

�
): (1.56)

Combining (1.55) and (1.56), we obtain the following equation character-
izing the value function:

V
�(s0)
k (�; s) = min

u2U(�(s0);(s;�);0)
E[c(x; u) +

�V
�(s0)

�

k (r(�; u; yk+1);
fk(s; u; yk+1)

�
)]: (1.57)

This equation reverts to the risk-neutral dynamic programming equation
as �(s0)!1, that is as we relax the constraint on worst-case cost.
On the in�nite horizon the optimal policy will be non-stationary in general,
as with the minimax control problem. This fact makes it di�cult to directly
utilize equation (1.57) in constructing an optimal policy. A near-optimal
policy can be determined by considering an appropriate �nite horizon ap-
proximation, as established by the following result.

Theorem 7 (Finite Horizon Approximation). Consider the MDP on
the in�nite horizon, with initial distribution �0 on the states, and �(�) >
�0(�). Let � > 0 be given. Then 9N > 0 such that the policy ĝ satis�es the
following, 8�0 2 �:

J(�̂; �0)� J(�?; �0) < �; (1.58)

�J(�̂; �0) < �(s0) + �; (1.59)

where �? is an optimal mixed risk-neutral/minimax policy with robustness
bound �(�), and �̂ is an optimal mixed risk-neutral/minimax �nite horizon
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policy on (0; N � 1), with cN = 0 and robustness bound �(�). The policy �̂
on (N; : : :) is arbitrary but �xed. 2

In general, it is not possible to construct a near-optimal policy through
a �nite horizon approximation if we require the worst-case cost to be no
greater than �(s0). That is, it is necessary to relax the bound on worst-case
cost by �, in order to achieve near-optimality in performance.

3.3 Control for Performance and Robustness

We will refer to the risk-neutral objective, which indicates expected total
cost incurred, as a system's performance. Also, we will refer to the mini-
max objective, which indicates worst-case total cost incurred, as a system's
robustness. When both objectives are of interest, we would like to utilize a
family of controllers that provides a good way to trade o� performance and
robustness. In this section we will quantify what we mean by \good", and
we will examine both the mixed risk-neutral/minimax and the risk-sensitive
families of controllers in this light.
It is easy to see that the mixed risk-neutral/minimax controller has risk-
neutral and minimax controllers as limiting cases. Speci�cally, as �(s0) !

1 we haveM(�(s0); g0; 0)!M , so that lim�(s0)!1 V
�(s0)
0;N (g0) = V0;N (�0)

using (1.48). That is, as we relax the constraint on worst-case behavior
we recover the risk-neutral formulation. Similarly, as �(s0) ! �0(s0), the
mixed risk-neutral/minimax controller will be an optimal minimax con-
troller. In general, there may be more than one minimax controller, since
there may be more than one policy achieving the robustness bound �0(s0).
As noted earlier, the risk-sensitive controller also has risk-neutral and min-
imax controllers as limiting cases, as 
 ! 0 and 
 !1, respectively.
While both families of controllers provide a link between the risk-neutral
and minimax objectives, this itself is not su�cient to motivate the use of
either family to trade o� performance and robustness. Additional prop-
erties of the families of controllers are required. We proceed by �rst in-
troducing some terminology. For the purposes of this discussion, we will
not distinguish between two policies for which the performance (1.1) and
the robustness (1.12) are the same. The terminology that we introduce in
this section is in part borrowed from the language of portfolio theory. See
[Sha70] for details.
We say that a policy � dominates another policy �0 if the performance and
robustness characteristics of � are both at least as good as those of �0, for
all probability distributions �0 2 � on the initial state x0. We say that a
policy is e�cient if it is dominated by no policy other than itself. We say
that a family of policies is e�cient if each policy in the family is itself an
e�cient policy. We say that a family of policies is complete if it is e�cient,
and if every e�cient policy belongs to the family. We say that a family of
policies is monotonic in a parameter if, for each probability distributions
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�0 2 � on the initial state x0, a decrease (increase) in the parameter does
not worsen performance, and an increase (decrease) in the parameter does
not worsen robustness.
In order to e�ectively determine a policy which trades o� performance and
robustness as desired, one would like to identify a family of policies indexed
by a parameter, that is both monotonic in the parameter and e�cient.
Then, one can search among this class of e�cient policies, adjusting the
parameter in a straighforward manner. If the family is also complete, one
can achieve a more precise tradeo� than if it is not.
In the family of all risk-neutral optimal policies, there is exactly one that
is e�cient, the policy for which criterion (1.12) is smallest. Likewise, in
the family of all minimax optimal policies, there is exactly one e�cient
policy, the policy for which criterion (1.1) is smallest. Other policies in these
families, if they exist, are not e�cient, though they are not dominated by
any policy not in the respective family. Clearly then, the family of all risk-
neutral optimal policies is only e�cient if it consists of a single policy. The
same is true of the family of all minimax optimal policies. Both families
are complete if and only if there is a unique risk-neutral optimal policy, a
unique minimax optimal policy, and these are the same.
By construction, for a given �(�) � �0(�), the mixed risk-neutral/minimax
optimal policy is e�cient. It follows immediately that the family of all
mixed risk-neutral/minimax policies, f��; �(�) � �0(�)g, is e�cient. Fur-
thermore, the family is complete. Indeed, let � be any e�cient policy,
and let �(�) be its corresponding robustness. Since there is a mixed risk-
neutral/minimax policy with threshold �(�), it follows that � must be a
mixed risk-neutral/minimax optimal policy. Finally, the family is mono-
tonic in �(�). Indeed, as we increase �, we degrade the robustness charac-
teristics and monotonically improve performance. This follows by observing
(1.50) and noting that for �2(s0) > �1(s0), U(�1(s0); g; k) � U(�2(s0); g; k),

8g; k. It follows that V
�2(s0)
k;N (g) � V

�1(s0)
k;N (g).

E�cient policies are deterministic.Note that since the family of mixed
risk-neutral/minimax optimal policies is a (complete) family of determin-
istic policies, it follows that every e�cient policy is deterministic. Another
simple way that this property of an e�cient policy can be established is the
following. Let �nd be a non-deterministic policy whereby with probability
p we choose the (deterministic) policy �d1, and with probability (1� p) we
choose the (deterministic) policy �d2; �d2 6= �d1. We will show that �nd
is not e�cient. Since every non-deterministic policy can be expressed as a
convex combination of deterministic policies, we will conclude that every
e�cient policy is deterministic. Let �0 2 � be given. Let the performance
under the two deterministic policies be pd1 and pd2 respectively, and let the
robustness be rd1 and rd2. The worst-case cost incurred under policy �nd
will equal the greater of that for �d1 and for �d2. That is,

rnd = maxfrd1; rd2g: (1.60)
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The performance under policy �nd is given by

pnd = p � pd1 + (1� p) � pd2: (1.61)

If pd1 < pd2, we have pd1 < pnd and rd1 � rnd, so that �nd is dominated
by �1 and so is not e�cient. Similarly, if pd2 < pd1, we have pd2 < pnd
and rd2 � rnd, so that �nd is dominated by �1 and so is not e�cient. If
pd1 = pd2, then since �d1 6= �d2, it must be that rd1 < rd2 or rd1 < rd2.
Assume w.l.o.g. that rd1 < rd2. Then pd1 = pnd and rd1 < rnd, so again we
conclude that �nd is not e�cient. We conclude that every e�cient policy
is deterministic.
A Risk-Sensitive Example. The following example shows that, in gen-
eral, the family f�
 ; 
 > 0g of risk-sensitive controllers is not e�cient,
and is not monotonic in 
. Consider a fully observed MDP evolving on a
horizon of size N = 1, with state space X = f1; 2; 3g, and control space
U = f1; 2; 3g. Let the probability transition matrices P (u); u 2 U be given
by

P (u) =

2
4 0:5� �(u) 2�(u) 0:5� �(u)
0:5� �(u) 2�(u) 0:5� �(u)
0:5� �(u) 2�(u) 0:5� �(u)

3
5 ; (1.62)

where 0 � �(u) � 0:5, u 2 U . Let the cost at time 0 be given by c0(x; 1) = 0,
c0(x; 2) = �, c0(x; 3) = 2�, with � > 0, for x 2 X . Let the terminal cost at
time 1 be given by c1(1) = 0, c1(2) = c, and c1(3) = 2c. In particular, set
� = 0:01, c = 1, �(1) = 0, �(2) = 0:49, �(3) = 0:5.
It is easy to verify the following. The risk-neutral policy is to select action
u = 1 at time 0, for any initial states x 2 X . The minimax policy is to
select action u = 3 at time 0, for any initial states x 2 X . For 
 = 0:1,
the risk-sensitive policy is to select action u = 2 at time 0, for any initial
states x 2 X . The risk-sensitive policy with 
 = 0:1 is dominated by the
risk-neutral policy, showing that the family of risk-sensitive policies is not
e�cient and is not monotonic in 
.

4 Conclusions

This paper overviews a number of contributions to the literature on risk-
sensitive and minimax control for �nite state systems. Key results include
a large-risk-limit connection between risk-sensitive and minimax control in
the MDP setting, in�nite horizon discounted dynamic programming equa-
tions for both risk-sensitive and minimax criteria, and a generalized frame-
work for discounted optimal decision-making, allowing for controllers that
retain risk-sensitivity without sacri�cing stationarity on the in�nite hori-
zon.
In addition, the paper discusses a mixed risk-neutral/minimax objective.
The optimal control problem is addressed by generalizing known results
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for risk-neutral and minimax control. On the in�nite horizon, �-optimal
policies are constructed by considering a su�ciently large, �nite horizon
approximation. The mixed risk-neutral/minimax objective provides a fam-
ily of controllers that can be used to e�ectively trade o� performance and
robustness in controller design.
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