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Abstract

We give two simple sufficient conditions under which the multiaffine image on the
complex plane of an m-dimensional cube is a convex polygon. A third condition which,
in some generic sense, is necessary and sufficient is then obtained. The conditions involve
checking the locations of the image of the vertices of the cube. These results help determine
whether a family of parametrized polynomials is stable, and provide a tool for robust

control analysis.
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1. Introduction and Preliminary Results

Many problems in robust control (e.g., see [3,4,5,8,10,12]) can be formulated in terms

of stability of a family of parametrized polynomials

p(s,7) = 8" +a1(7)s" 7 + -+ an(7), (1)

where the parameter 4 runs through the set

K:{(7l,'--77m): 11S71S7Z,Z=1,,m}

with given —oo <7, <7%; < 0, and where ay, ..., a, are real valued multiaffine functions
of 7. Here a function is multiaffine if and only if it is affine (i.e., is a sum of a linear function
and a constant function) in each coordinate of its variable y with the remaining coordinates
fixed. By properly scaling and shifting the parameters 71, . . . , Ym, and absorbing the scaling
factors and shifting offsets into the functions a;, one may assume without loss of generality
that K is the m-dimensional hypercube [0, 1]™.

Suppose it is known that one member of the polynomial family (1) is (Hurwitz) stable,
i.e., all its zeros have negative real parts. Then a simple continuity argument shows that
the whole family (1) is stable if and only if

0¢ {p(jw,7):7€ K} Vwe|[0,00) (2)

(zero exclusion principle; e.g., see [2]). For each w € [0,00), define f, : R™ — C by
fu(7v) = p(jw,7). Then (2) is equivalent to

0¢ fu(K) Ywe|[0,00).

Notice that f, is multiaffine. It is then of interest to know when the image of K under a
multiaffine function can be easily characterized, so that a simple method can be devised

to determine if it contains the origin.

For notational convenience, we will drop the symbol w and simply write f,, as f, which

denotes a general multiaffine function from R™ to C.

Let us denote the set of vertices of K by V = {0,1}™. For any v = (71,...,7m) € R™,
since f is multiaffine, we have (see [11], pg 474)

F(viseeosym) = (L =4) (11, Yim1,0,%ig 1, -, Ym) F i F (155 Yie1s L Yit 1y -+« Tm)
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for i =1,...,m. From this, one deduces that

o)=Y aly,v)f(v), (3)

veV

where

u 1—v ifvi=0;
o) =TT o) = {177 Hu=d @

The representation of f by (3) implies that any multiaffine f : R™ — C is unmquely
determined by the family {f(v)}.ev of 2™ elements in C that are the image of the vertices

of K under f. Moreover, by observing that Y a(y,v) =1, and a(y,v) > 0if vy € K, one
vEV

sees from (3) that f(v) is actually a convex combination of elements in f(V) if v € K.
This gives the following Mapping Theorem of Zadeh and Desoer ( [11], pg 476):

Mapping Theorem. conv f(K) = conv f(V).
As a result, if f(K) is convex then it must be the polygon conv f(V).

For any z,y in a vector space X, the line segment joining x and y is defined by
[z,y] = {(1 =)z +ty : t € [0,1]}. An edge of K is a line segment [v!,v%] where v!,v? € V
are vertices of K that differ from each other by exactly one coordinate. As f is multiaffine,
it follows that the image of an edge [v',v?] of K is the line segment [f(v!), f(v?)]. The
Mapping Theorem imply the following [1]:

Suppose the edges of the convex polygon conv f(V') are covered by the image of the edges
of K, and that f(K) is simply connected. Then f(K) is the conves polygon conv f(V).

Notice that f(K) may fail to be simply connected, and a counter-example is given in
[1]. This disproves a conjecture of Hollot and Xu [6] that f(K) is a convex polygon if and
only if all the edges of conv f(V') are mapped from edges of K.

The following result is proved in [1] with induction argument and detailed analysis of

the m = 2 case. For the sake of completeness, we give here a simple proof based on the

formula (3).

Proposition 1. Let x € C be on an edge of conv f(V). If z € f(K), then x is covered by
the image of edges of K.

Proof. Let v = (y1,...,7m) € K, and let z = f() be on an edge F of conv f(V'). Define
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a nonempty subset V(v) of V by
V(y) = {(v1,...,0m) €V :v; = ; if vi = 1 or 0},

i.e., V(v) is the set of vertices of the “smallest face” of K that contains 7. One can
check directly that for v € V and the function o defined in (3) and (4), a(y,v) >
0 if and only if v € V(). If v € V is such that f(v) is not on the edge E, then the
coefficient a(7y,v) in the convex combination formula (3) must be zero (otherwise f(7v)
could not be on E). Hence f(V(v)) C E, and we may rewrite (3) as the convex combi-
nation formula z = f(v) = 3 ,cv(+) a(y,v)f(v). Let v,w € V(v) be such that f(v) and
f(w) be farthest apart, so that = € [f(v), f(w)]. Let k (> 1) be the number of coordi-
nates in which v differs from w. It is clear from the definition of V() that there exist
v0(= v),0, ..., 0" vk (= w) € V(v) such that [v"~1,v'] (i = 1,...,k) are edges of K.
As f(V(v)) C E, one concludes that the image U [f(v'1), f(v')] of these edges of K
covers [f(v), f(w)] and hence z. O

———

As f(K) may not be simply connected, one may consider the subset f(K) which is

the union of f(K) and the “holes” of it. More precisely, f@) = {z € C : z is either in
f(K) or there is a simple closed curve in f(K) that encircles z}. The following result,
which is a variation of the Hollot and Xu conjecture, follows from the Mapping Theorem

and Proposition 1 (see also [1]).

Proposition 2. f(I?) is convez (and 1s equal to the polygon conv f(V')) if and only if the
edges of conv f(V') are covered by the image of edges of K.

In [9] and [1], suflicient conditions for f(K) to be a convex polygon are given. These
conditions involve the computation of the partial derivatives g—{_ on either K or V. As
we have pointed out in connection with (3), f depends only on the the family {f(v)}.ev-
This suggests that the condition for f(K) to be a polygon may solely rely on the position
of those f(v) (v € V). Two such sufficient conditions will be given in Section 3. They are
based on a general result on closed loops which will be presented in Section 2. It turns out
that our sufficient conditions are implied by the sufficient conditions given in [9] and [1]
(and hence our results imply those in [9] and [1]) and are easier to check. Our sufficient
conditions also lead to a third simple condition (see Section 3) which is, in some generic

sense, necessary and sufficient for f(K) to be a convex polygon.
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2. Closed Loops and Their Interior

We now establish a general result on closed loops in manifolds. This will provide the

tool for obtaining our main results in Section 3.

Let D be the unit disk {re? : r € [0,1], 8 € [0,27]} and 8D the unit circle {e? :
6 € [0,2x]}. For any subset M of either R™ or €, a continuous function ¢ : 0D — M is
called a closed loop in M. It is clear that if M is simply connected then any closed loop ¢
in M can be extended to a continuous function C' : D — M with C| ap = € In addition,
if M = C then we define the interior of ¢ by

inte= (1) C(D)

CEeC(c)

where C(c) is the class of all continuous functions C : D — € that satisfy C|aD = c.
Accordingly, ¢ € € is not in int c if and only if there exists a continuous function C': D — C
such that C’|8D = c and z € C(D). For this continuous C, if we define ¢; : D — C by
c(e9%) = C(ted?) for ¢t € [0,1], then ¢; is a continuous deformation of ¢ into a constant
function when ¢ decreases from 1 to 0. Hence z € C is not in int ¢ if and only if the closed
loop ¢ can be deformed in € continuously into a single point without hitting . Note that,
in the above, M could be any topological space in the definition of the closed loop, and €

could be replaced by any simply connected 2-dimensional manifold in the definition of the

interior.

Lemma 1. Let M be a simply connected subset of R™ or €. Suppose c 1s a closed loop
i M, and g : M — C s continuous. Then

int(goc) C g(M).

Proof. It 1s clear that g o ¢ is a closed loop in €. Since M is simply connected, ¢ can
be extended to a continuous C : D — M with ClaD = c¢. Now that goC : D — C is

continuous and g o CIBD =goc, wehaveint(goc) CgoC (D) =g(C(D)) Ccg(M). O

Thus for any continuous map ¢, the interior of the image under ¢ of a closed loop in
M is contained in the image of M. We remark that Lemma 1 still holds if M is any simply
connected topological space and g is any continuous map from M to a simply connected

2-dimensional manifold.



3. Main Results

Given z°,...,2F ! € X, where k > 2 and X is a topological vector space (e.g.,

X = R™ or ©), let z* = 2°, call closed loop with k nodes z°,...,z*"! the closed loop
¢: 0D — X defined by

c(exp(jgzr—(—l]c+—t))) =(1—-t) t+td' Vi=1,...,k t€]0,1],

and denote it by c[zo_,k-1. The ordering of the nodes is important in determining the
interior of czo, ;k-1}, in case X has real dimension 2 (and thus X is a simply connected 2-
dimensional manifold). For example, in Figure 1, « is in the interior of ¢z, z,,2,,25,24,25,23]

but not in the interior of ¢[z ¢, ,25,55,25,24,25]

Theorem 1. Suppose v°,...,v* "1 € V are k > 2 wvertices of K such that [vi71, v
(i=1,....,k—1) and [vF~1,v°] are edges of K. Then for any multiaffine f : R™ — C,

int c[f(vo),...,f(vk‘l)] C f(I()

Proof. Let v°,...,v*¥"1 € V satisfy the hypotheses of the theorem. Since K is simply

connected and f is continuous, Lemma 1 ensures that int (f o ¢, x-17) C f(K). As
f is multiaffine and [v'=!,v'] (: = 1,...,k — 1) and [v*7!,v°] are edges of K, we have

focpo, . wk-1] = ¢[f(v9),..., f(vk-1)]- The result then follows. |

The significance of Theorem 1 is that it gives certain subsets of f(J) in terms of the
image of the vertices of K. This should be compared with the Mapping Theorem of Zadeh
and Desoer, which gives a superset of f(K) (namely, conv f(V')) which is also determined
by the image of the vertices of K. These two results give the following sufficient condition

for f(K) to be a convex polygon.

Corollary 1. Suppose
(I) there ezist vertices v°,...,v*" 1 (k > 2) of K such that [v'™1,0"] (i =
1,...,k — 1) and [v*7},0°] are edges of K, and that conv f(V) C
b C4(00),.., f (0= 1)]-
Then f(K) is the convez polygon conv f(V).

Proof. Suppose condition (I) holds. Then by Theorem 1 and the Mapping Theorem,
conv f(V) Cint¢pp(p0),... fwi-1y] C f(K) C conv f(V) and the result follows. O
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If the closed loop ¢ = Cf(0),..., f(v*-1)] crosses itself many times (i.e., there are many
pairs of distinct z,y € dD that satisfy c(z) = c(y)), then it may not be easy to check
whether conv f(V') is a subset of int Clf(v0),..., f(v+-1)] Or not. However, if c traverses
the boundary of conv f(V) exactly once and never crosses itself, then clearly we have

conv f(V)) Cintefs(y0y,.. p(vr-1)]. This results in the following weakened version of Corol-
lary 1.

Corollary 2. Suppose

(1) there exist vertices v°,...,v*"1 (k > 2) of K such that [v""1 v¥] (i =
L...,k—1) and [vF71,0°%] are edges of K, and f(v°),..., f(v*~) are all

the successive vertices of conv f(V') in order.

Then f(K) is the convez polygon conv f(V).

Suppose now K' is a simply connected subset of K containing the vertices v, ..., vF~!
in the statement of Theorem 1 or in conditions (I) or (II). Then, by Lemma 1,
nt ¢4, s(v*~1)] C F(K'). In particular, if K' is a union of 2-dimensional faces of
K and is simply connected and contains the vertices v°,...,v*~! in conditions (I) or (II),

then conv f(V) = f(K) = f(K'), i.e., the image of K’ fills up the polygon conv f(V).
In [9], it is given that if

(I1I) %(7) # 0 and arg ( + ?%{'(7)) # arg (%(7)) foralle=1,...,m, 1<k<
£<m,vy€eK,

then f(K) is a convex polygon. In [1] it is shown (in an equivalent form) that if

(IV) %:—('y) # 0 and the imaginary parts of 3@%(7)/—5—%(7) are either all positive

or all negative forall i =1,...,m, 1 <k<f<m,y€V,
then f(K) is a convex polygon. Simple continuity argument shows that condition (III)
implies condition (IV), and hence the result in [1] implies that in [9]. Also, it is proved
in [1] that if condition (IV) holds then, after possible reordering of the coordinates in 7,
the points f(u®),..., f(u™), f(w'),..., f(w™ ') are the successive vertices of conv f(V)
traversed in counter-clockwise direction. Here u’ (resp., w') € V (i = 0,...,m) is such that
all but the last ¢ of its coordinates are 0 (resp., 1). Observe that [u'~! uf] (i =1,... ,m),
[u™,w'], W= w'] (i = 2,...,m —1), and [w™ !, u°] are edges of K. Hence condition
(IV) implies condition (II). Therefore the sufficient conditions given in [9] and [1] for f(K)

to be a convex polygon follow from our Corollary 2.



The following example shows that conditions (I) and (II) are not necessary for f(K)

to be a convex polygon.

Example. Let f : R* — € be the unique multiaffine function defined by
f(0,0,0,0) = f(0,1,1,1) = 0;

£(0,0,0,1) = £(0,0,1,0) = f(0,1,0,0) = £(1,0,0,0) = f(1,1,1,1) = 25;
£(0,0,1,1) = £(0,1,0,1) = £(0,1,1,0) = 2;
£(1,0,0,1) = £(1,0,1,0) = f(1,1,0,0) = 1+ j;
f(1,0,1,1) = £(1,1,0,1) = f(1,1,1,0) = J.

Then one can show that f(K) is the convex polygon conv f(V') = conv {0,2,2;j} by plotting
the image of line segments in (some 2-dimensional faces of) K that are parallel to the
coordinate axes (Figure 2). However, direct checking shows that conditions (I) and (II)
are not satisfied. Thus the sufficient conditions given in Corollary 1 and Corollary 2 are

not necessary for f(K) to be a convex polygon.

While conditions (I) and (II) are in general not necessary for f(K) to be convex,
under a certain assumption on f ((*) below), we have the following simple necessary and

sufficient condition.

Theorem 2. Suppose

(*) each vertez of conv f(V) is the image of a unique vertez of K, and no other

vertex of K has its image on an edge of conv f(V).

Then f(K) is a convez polygon (and equals conv f(V')) if and only if the edges of conv f(V')
are mapped from edges of K.

Proof. Suppose (*) holds. Then there exist unique vertices v°,... ,v¥~1 of K such that
f(@°),..., f(v*¥™1) are successively the vertices of conv f(V') in order. For simplicity of
argument and notation we write v¥ = v%. If f(K) is convex then, by Proposition 1 and
(%), each z on an edge [f(v*™1), f(v*)] (: = 1,...,k) must be covered by the image of
[vi1, vi]. Hence each edge of conv f(V) is mapped from an edge of K. Conversely, if each
edge [f(v'™1), f(v*)] (: = 1,...,k) of conv f(V) is an image of an edge of K then, by (%),
that edge of K must be [vi™! v?]. Now that [vi™!,v!] (: = 1...,m) are edges of K, it
follows from Corollary 2 that f(K) is the convex polygon conv f(V). |
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Notice that the necessary and sufficient condition in Theorem 2 is exactly that conjec-
tured by Hollot and Xu [6] (without assumption (*)), and is similar to that in Proposition
2. Accordingly, what Theorem 2 says is that if f satisfies (*) and if the edges of conv f(V)
are mapped from edges of K, then f(K) is simply connected.

The complexity in checking condition (IV) directly is of order O(m?2™). Checking
condition (III) is difficult because the set K is infinite. On the other hand, there are
efficient algorithms (e.g., see [7], Section 2.3) of complexity order O(m2™) for finding the
vertices of the polygon conv f(V'). Thus condition (II) in Corollary 2 and the necessary
and sufficient condition in Theorem 2 (i.e., that the edges of conv f(V') are mapped from

edges of K) can be checked in O(m2™) time (or even in O(m(1+ -Zpi)) time if p processors

are available; see [7], Section 1.5 and Theorem 6.2).

We conclude by showing that condition (%) is generically satisfied when the set of
multiaffine functions is equipped with some natural topologies. Recall that a multiaffine f :
IR™ — € is uniquely determined by the family {f(v)},ev via (3). Another representation
of f is by writing f(v) = Y ,cy 6(v)7v, where 6(v) € C is the coeflicient of the term

Yo = [[ 7" for v = (v1,...,vm) € V, so that f is uniquely determined by the family
2

{5(0)}vev-

Suppose we order the vertices of K as v°,...,v2" ~! in such a way that the coordinates

of v = (vi,...,v},) give the binary representation of i (i.e., 1= Y vi2™=F) and define a
k=1

partial ordering < on V by v = (v1,...,0m) < w = (w1, ...,wy) if and only if v; < w; for

allz=1,...,m. Thenforallve V,
fv) =3 b(w). (5)
w<v

Now identify the class of all multiaffine f : R™ — € with €2 (with usual topology) by

either
Fe— (fO°),... . f*" 1) (6)
fe— (6(°),..., 6% 1)) (7).

From (5), one sees that (6) and (7) are related through the homeomorphism ¢ on %"
defined by

$(8(v°),. ., 6(* ) = (D] b(w),..., Y. §w)).

w~v0 w=<p2Mm-1
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