
E�cient Support for Irregular Applicationson Distributed-Memory Machines�
Appears in ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming (PPoPP), July 1995.Princeton CS TR-488-95, Maryland CS-TR-3453 & UMIACS-TR-95-46, & Wisconsin CS TR 1271.

Shubhendu S. Mukherjeey, Shamik D. Sharmaz,Mark D. Hilly, James R. Larusy, Anne Rogers?, and Joel SaltzzyComputer Sciences DepartmentUniversity of Wisconsin{Madison1210 West Dayton StreetMadison, WI 53706, USAfshubu,markhill,larusg@cs.wisc.edu zDepartment of Computer ScienceUniversity of Maryland4166 A.V. Williams BuildingCollege Park, MD 20742, USAfshamik,saltzg@cs.umd.edu ?Department of Computer SciencePrinceton University35 Olden StreetPrinceton, NJ 08544, USAamr@cs.princeton.eduAbstractIrregular computation problems underlie many important sci-enti�c applications. Although these problems are computa-tionally expensive, and so would seem appropriate for parallelmachines, their irregular and unpredictable run-time behav-ior makes this type of parallel program di�cult to write andadversely a�ects run-time performance.This paper explores three issues|partitioning, mutual ex-clusion, and data transfer|crucial to the e�cient executionof irregular problems on distributed-memory machines. Unlikeprevious work, we studied the same programs running in threealternative systems on the same hardware base (a ThinkingMachines CM-5): the CHAOS irregular application library,Transparent Shared Memory (TSM), and eXtensible SharedMemory (XSM). CHAOS and XSM performed equivalently forall three applications. Both systems were somewhat (13%) tosigni�cantly faster (991%) than TSM.1 IntroductionIrregular computation problems underlie many im-portant scienti�c applications. These problemsarise in computational
uid dynamics, computational�This research was supported in part by Wright Laboratory Avionics Di-rectorate, Air Force Material Command, USAF, under grant #F33615-94-1-1525 and ARPA order no. B550, NSF PYI/NYI Awards MIPS-8957278, andCCR-9357779, NSF Grants CCR-9101035 and MIP-9225097, DOE Grant DE-FG02-93ER25176, ARPA (NAG-1-1485), NSF (ASC 9213821), ONR (SC292-1-22913), EPRI (RP3103-6), ARPA I3 Initiative (N00014-94-10907), NASA(NAG-11560), University of Wisconsin Graduate School Grant, WisconsinAlumni Research Foundation Fellowship and donations from A.T.&T. BellLaboratories, Digital Equipment Corporation, Sun Microsystems, and Think-ing Machines Corporation. The Wisconsin Thinking Machines CM-5 was pur-chased through NSF Institutional Infrastructure Grant No. CDA-9024618with matching funding from the University of Wisconsin Graduate School.The U.S. Government is authorized to reproduce and distribute reprints forGovernmental purposes notwithstanding any copyright notation thereon. Theviews and conclusions contained herein are those of the authors and shouldnot be interpreted as necessarily representing the official policies or endorse-ments, either expressed or implied, of the Wright Laboratory Avionics Direc-torate or the U.S. Government.
0

molecular dynamics, and particle-in-cell computa-tions. A de�ning characteristic of these computationsis that their data structures are not regular densematrices and their data-access patterns are unknownuntil run time. In Fortran 77, irregular programs typ-ically use index arrays (also called indirection arrays)to introduce a level of indirection in array accesses.Although these problems are computationally ex-pensive, and so would seem appropriate for parallelmachines, their irregular and unpredictable run-timebehavior makes this type of parallel program di�-cult to write and adversely a�ects run-time perfor-mance. Message-passing machines are poorly suitedto support these programs directly for two reasons.First, most of these machines o�er high-bandwidth,high-latency communication, which favors large, in-frequent messages, not the short, frequent messagesthat result from irregular computations. Second,message-passing machines rarely support a shared ad-dress space. Irregular applications distribute com-plex data structures among processors' local addressspaces, and hence, must provide mechanisms to nameand access remote data. Shared-memory machinesalleviate these problems, but introduce new ones.These machines typically use caches to reduce bothmemory latency and bandwidth requirements. A co-herence protocol manages the caches and ensures thatall processors see a consistent view of memory. How-ever, when a machine's protocol does not match aprogram's sharing pattern, the protocol can cause ex-cessive communication and overhead.The CHAOS system is a well-proven library thatsupports irregular applications [9] and mitigates theproblems of message-passing machines. CHAOS of-fers parallel data partitioners, a global address spacefor distributed arrays , and operations to move databetween processors. It greatly eases the task ofprogramming irregular applications by hiding com-munication and bu�er management and by provid-ing a portable framework for programming these ap-plications. Previous research showed that CHAOS
1

achieved good speedups on message-passing machinesfor irregular applications [9, 16, 24]. In this paper, weuse an implementation of CHAOS on a Thinking Ma-chines CM-5.Recent research in computer architecture has ledto another alternative: hybrid shared-memory andmessage-passingmachines that o�er programmers theopportunity to select coherence protocols and fallback to message-passing communication [13, 14, 19].The Wisconsin Wind Tunnel project's approach isa portable, user-level interface called Tempest [11,19, 18], which provides message-passing communi-cation and mechanisms to construct shared-memoryprotocols. In particular, Tempest provides programswith the novel ability to copy and move data with-out changing its address (renaming it). In this paper,we use an implementation of Tempest called Blizzard[23] that runs on a CM-5.Tempest is a general-purpose parallel programminginterface that is not focused on particular applicationdomains. This research used Tempest in two ways.First, transparent shared memory (TSM) is a Tem-pest library that provides programs with sequentially-consistent shared memory using a write-invalidateprotocol and program-selected block sizes. From theprogram's perspective, the program appears to berunning on a shared-memory machine. Second, ex-tensible shared memory (XSM) improves on TSMby using Tempest features to communicate selecteddata structures through custom shared-memory ormessage-passing protocols.Figure 1 illustrates the structure of the three sys-tems: CHAOS, TSM, and XSM. The systems pro-vide a unique opportunity to understand the essen-tial characteristics of irregular problems by compar-ing three di�erent approaches to programming themon the same hardware platform. We used threecomplete irregular applications|unstructured, mol-dyn, and DSMC. CHAOS has speedups of 20.4, 23.1,and 19.2, respectively (all numbers on 32 processors).TSM achieves speedups of 1.9, 20.3, and 17.2. XSMhas speedups of 20.9, 23.1, and 20.9. The bottom lineis that CHAOS and XSM are roughly equivalent andboth are better than TSM.In general, we found a lot of similarity betweenthe techniques necessary to achieve good performancefor these three approaches. This result should notbe surprising since all three ran the same applica-tion code on the same hardware and, consequently,mapped the same program abstractions to the samehardware constraints. We identi�ed three crucial is-sues for achieving high performance on distributedmemory machines.� Partitioning. Irregular programs typically op-erate on �ne-grain data (4{100 bytes). The

Transparent
Shared Memory
(TSM) Parallel
Programs

CHAOS
TSM Protocol
Library

CMMD
Blizzard Implementation of the

Tempest Interface

Irregular
Data Parallel
Programs

Thinking Machines CM−5

XSM Protocol
Library

Extensible
Shared Memory
(XSM) Parallel
Programs

Figure 1: CHAOS, TSM, and XSM Approaches.This �gure illustrates the three software approaches studied inthis paper. All run on a Thinking Machines CM-5. CHAOSuses the CMMD message-passing library for communication.TSM provides shared memory using the Blizzard implementa-tion of the Tempest interface. XSM uses customized protocolson the same Blizzard substrate.structure of a problem de�nes interactions anddata dependences among operations on the data.For example, a computation on a node in anunstructured mesh may need values from nodesconnected by mesh edges. To run this problemon a parallel machine, a programmer must parti-tion both the program that iterates over data andthe data itself. A simple block or cyclic partitionmay be ine�cient because problem irregularitiesmay lead to load imbalance or excessive commu-nication among processors. In such cases, parti-tioners must be aware of the problem's structure.� Mutual Exclusion. Irregular programs requiree�cient mutual exclusion to support remoteatomic updates and global reductions. Locksperform poorly in both roles. A better approachis for each processor to accumulate local contri-butions until it can update a shared resource ef-�ciently.� Data Movement. Fine-grained data distri-bution and irregular data-access patterns com-plicate e�cient communication. Vectorizing orcombining messages to be transferred betweentwo processors amortizes message-sending over-head and reduces the overhead of communica-tion. Careful partitioning of data and loop iter-ations and caching data can reduce the volumeof communication.The rest of this paper examines these three issuesfor three irregular applications (unstructured, mol-dyn, and DSMC) running on three systems (CHAOS,
2

for (i = 0; i < number timesteps; i++)f ...for (j = 0; j < number edges; j++)f n1 = edge[j].left node;n2 = edge[j].right node;w = f(n1, n2, j);y[n1] + = g1(x[n1], x[n2], w);y[n2] + = g2(x[n1], x[n2], w);gg Figure 2: Sequential irregular loopTSM, and XSM). Section 2 discusses related work.Section 3 and Section 4 discuss CHAOS and Tem-pest, respectively, and show how to parallelize an ir-regular loop with these systems. Section 5 describesthe three applications in detail and focuses on howwe handle partitioning, mutual exclusion, and datatransfer. Section 6 gives a general discussion and dis-cusses two additional issues|address space manage-ment and bu�er management. Section 7 presents ourconclusions.2 Related WorkMost work on irregular applications has focusedon message-passing distributed-memory machines.Koelbel and Mehrotra built a system, Kali [12], thatis similar to PARTI [20], CHAOS' predecessor. Culleret al. [7] discuss many of the same issues as this pa-per in describing their improvements to EM3D run-ning under Split-C. Chakrabarti and Yelick [4] de-scribe parallelizing the Gr�obner basis problem, whichis an irregular application with a �ner granularity ofsharing than those in this paper. Unlike this paper,previous work did not compare alternative implemen-tations.Two recent papers address some issues on shared-memory machines. Tomko and Abraham [25] showthat careful data reordering techniques for an irregu-lar application improved performance between 8%{16% on a Kendall Square KSR-1. Mirchandaneyet al. [15] suggest protocol enhancements to Tread-Marks [6]|a distributed shared-memory system|to improve mutual exclusion and communication forirregular scienti�c problems.Falsa� et al. [10] describe how custom Tempest pro-tocols improved the performance of two irregular ap-plications (Barnes [1] and EM3D). They do not com-

Partition x and yPartition iterations of inner loopBuild translation tables for x and yInspectorfor (i = 0; i < number timesteps; i++)f ...Gather xfor (j = 0; j < local number edges; j++)f n1 = local edge[j].left node;n2 = local edge[j].right node;w = f(n1, n2, j);y[n1] + = g1(x[n1], x[n2], w);y[n2] + = g2(x[n1], x[n2], w);gScatter ygFigure 3: Irregular loop parallelized with CHAOSpare Tempest against alternative implementations,such as CHAOS.3 CHAOSCHAOS [21]|the successor to the PARTI library[20]|is a library that supports parallel execution ofirregular applications.3.1 CHAOS OverviewCHAOS provides four types of support for irregularapplications:Data and Iteration Partitioners. CHAOS sup-ports data partitioners, such as recursive coordinatebisection (RCB) [2], recursive spectral bisection [17],and others. It also provides loop iteration partition-ers for rules like owner-computes and almost-owner-computes.Support for Global Address Space. CHAOSimplements a global address space for irregularly dis-tributed arrays. It maintains a translation table thatmaps global indices to local indices for each such arrayon every processor. The application sees only one ad-dress space because CHAOS copies remote data intoa processor's local address space and then hides therenaming by changing the indirection array to pointto the local copy.Inspector/Executor Primitives. At the heartof CHAOS is the inspector/executor model [22]. Be-
3

fore a computation, a preprocessing step, called aninspector , identi�es the communication in subsequentloops. When the loops execute, CHAOS primitives,such as gather and scatter, use the information col-lected by the inspector to communicate values in dis-tributed arrays. The information permits several op-timizations, such as vectorizing communication andretrieving a single copy of multiply-referenced o�-processor data. Section 3.2 illustrates the use of theseprimitives with an example.Bu�er Management. CHAOS uses softwarecaching|implemented with hash tables|to store re-mote data in a processor's local memory.3.2 Programming ExampleFigure 2 shows an irregular loop from unstructured.Figure 3 shows this loop expressed with CHAOSprimitives. CHAOS executes the same code on allN processors, using the single-program-multiple-data(SPMD) computation model. Processors perform dif-ferent work, because each proccessor's data and meta-data (e.g., indirection arrays) are di�erent. A pro-grammer must insert calls to CHAOS primitives be-fore the outer loop to: partition arrays x and y, parti-tion inner loop iterations, build translation tables forx and y, and inspect the communication pattern ofthe arrays. Within the inner loop, the programmerinserts the CHAOS primitive gather to collect themost recent values of x from other processors. Simi-larly, after the inner loop, the programmer inserts theCHAOS primitive scatter to send updated values ofy to other processors.4 TempestThis section provides an overview of the Tempest in-terface, on which we implemented both transparentshared memory (TSM) and extensible shared memory(XSM).4.1 Tempest OverviewTempest in an interface to a portable substrate forparallel program communication. Tempest providesmechanisms that allow programmers, compilers, andprogram libraries to implement and use message pass-ing, shared memory, and other hybrid models. Tem-pest is designed so that it can be supported on manyplatforms, providing portability across these systems.The Blizzard system implements the Tempest sub-strate on a Thinking Machines CM-5 and is beingported to the Wisconsin COW (Cluster of Worksta-tions) [11].

for (i = 0; i < number timesteps; i++)f ...for (j = start edge; j <= end edge; j++)f n1 = edge[j].left node;n2 = edge[j].right node;w = f(n1, n2, j);lock(y lock[n1]);y[n1] + = g1(x[n1], x[n2], w);unlock(y lock[n1]);lock(y lock[n2]);y[n2] + = g2(x[n1], x[n2], w);unlock(y lock[n2]);ggFigure 4: Irregular loop parallelized in TSMThe Tempest mechanisms are low-overhead \ac-tive messages," bulk data transfer, virtual memorymanagement, and �ne-grained memory access con-trol. Memory access control allows a programmer toprevent access to an aligned memory block (e.g., 32 ormore bytes). Inappropriate accesses (e.g., a store intoa ReadOnly block) generate faults that are vectoredto a user-level handler. The Tempest Interface Speci-�cation [18] and several other papers discuss Tempestin more detail [10, 11, 19].TSM uses a COMA-like transparent shared-memory cache-coherence protocol called stache [19].The stache protocol uses a fraction of the local mem-ory as a large, fully-associative cache to hold dataevicted from the hardware cache. A stache miss oc-curs when a processor references shared data that isnot currently cached in its local memory. This paperuses two stache block sizes|32 bytes and 1024 bytes.Tempest also provides a synchronization library (im-plemented with Tempest messages) for mutual exclu-sion. XSM adds custom protocols to the TSM baseprotocol.4.2 Programming ExampleThis section shows how to parallelize the irregu-lar loop in Figure 2 for transparent shared memory(TSM) and how to improve its performance with cus-tom user-level protocols.The programming model for TSM is SPMD witha single global address space. Arrays x and y areglobally shared arrays. The easiest way to parallelizethis loop is to block partition edges among processorsand protect updates to y[n1] and y[n2] with locks.
4

for (i = 0; i < number timesteps; i++)f ...for (j = start edge; j <= end edge; j++)f n1 = edge[j].left node;n2 = edge[j].right node;w = f(n1, n2, j);y[n1] + = g1(x[n1], x[n2], w);y[n2] + = g2(x[n1], x[n2], w);greduce ygFigure 5: Irregular loop parallelized with XSMFigure 4 contains the code executed by all proces-sors. The variables start edge and end edge de�nethe range of global edges for each processor. Arrayy lock contains the locks for nodes of array y.To improve the performance of the TSM code, wecan implement a custom protocol to manage commu-nication through arrays x and y. In addition, we caneliminate locks on array y with a reduction protocol(Figure 5) that accumulates values for y locally, andreduces the entire array after execution of the innerloop. With this change, however, processors will stillneed to fault in array x. We can improve this imple-mentation further by writing an update protocol thatcaptures the sharing of blocks in array x during the�rst iteration and directly sends updates before theinner loop in subsequent iterations. Falsa� et al. [10]discuss several
avors of custom update protocols.5 ResultsThis section describes how we ran three irregularapplications|unstructured, moldyn, and DSMC|using three alternative systems: CHAOS, transparentshared memory (TSM) on Tempest, and extensibleshared memory (XSM) on Tempest. For each ap-plication, it describes partitioning, mutual exclusion,and data transfer in the three systems. In Section 6,we discuss two other issues|address space and bu�ermanagement. Table 1 describes the input sets usedfor our three applications.5.1 UnstructuredUnstructured is abstracted from a computational
uiddynamics application that uses an unstructured mesh

to model a physical structure, such as an airplanewing or body. The mesh is represented by nodes ,edges that connect two nodes, and faces that connectthree or four nodes. The mesh is static, so its con-nectivity does not change. The computation containsa series of loops that iterate over nodes, edges, andfaces.Table 2 shows the CHAOS, TSM, and XSM exe-cution times and speedups of the parallel phase ofunstructured running on 32 processors. The �rst rowcontains the CHAOS timing and speedup. The restof the table details improvements achieved with TSMand XSM. The �rst column lists the optimizations,which are described and discussed in the body of thepaper. The second column lists the stache block size,the third column reports the execution time on 32processors, and the fourth column gives the speedup.Note, the unstructured times do not include prepro-cessing (inspector and partitioning), since some ofthese steps are not completely parallelized for theTSM and XSM versions. However, in CHAOS, theyconstitute less than 6% of the total time and can beamortized over the large number of iterations typicalof production runs of this code.5.1.1 PartitioningThe structure of the mesh, which is static but un-known until run time, determines interactions amongprocessors. The mesh is described by associatingnames with the nodes, edges, and faces. Unfortu-nately, these names usually do not re
ect the mesh'sstructure. As a result, block or cyclic partitions canlead to excessive communication. To rectify this,all three implementations (CHAOS, TSM, and XSM)partition the nodes using recursive coordinate bisec-tion (RCB) [2], which groups related nodes. Oncethe nodes have been grouped, a simple partitioningscheme su�ces for the edges. An edge that connectstwo nodes in the same partition is assigned to thatpartition and an edge that crosses between partitions,known as a cut edge, is assigned to the partition withfewer edges. Faces are partitioned in a similar fash-ion.The three implementations partition the data inthe same way, but di�er in how they use these par-titions. The CHAOS implementation changes the in-direction arrays to re
ect a node's new location andthen assigns data to processors based on the parti-tioning. Data in a single partition is assigned to oneprocessor's local memory. The TSM and XSM ver-sions also change the indirection arrays, but insteadof assigning a partition to a processor, these versionsreorder the array so that data in the same partitionis placed in contiguous addresses in shared memory.Once the data is partitioned, loops that iterate over
5

Table 1: Input data sets for the three applications.Application Scienti�c Domain Input Data Set Mesh Statisticsfor 32 Processorsunstructured Computational Fluid 9428 nodes, 59863 edges, 32% cut edges withDynamics (CFD) 5864 faces, 50 iterations recursive coordinate bisectionpartitionermoldyn Molecular Dynamics 8788 nodes, 1 million interactions, 58% cut interactions withinteraction list rebuilt twice, recursive coordinate bisection30 iterations partitionerDSMC Particle in cell initially 48600 particles, Average out
ux per processoreventually 72693 particles, = 176 particles per iteration9720 cells, 400 iterations Average in
ux per processor= 174 particles per iterationthe nodes, edges, and faces are partitioned in the ob-vious way.Partitioning reduces communication and improvesperformance dramatically. The number of cut edgesis a good metric for communication cost. For theinput mesh, the RCB partitioner reduces the numberof cut edges from 99% (block partitioner) to 32%.This reduction in cut edges reduces the number ofstache misses from 84.6 million in TSM-initial to 25.9million in TSM-partition (level 1) and accounts forthe substantial performance improvement (156%) inTSM-partition (level 1).CHAOS's gather primitive explicitly packs nodesfor another processor (those part of cut-edges) beforesending them. The TSM implementation acquiresdata through stache misses. To reduce the stachemisses caused by cut edges, we reorder data withineach partition a second time using RCB. This re-ordering called TSM-partition (level 2) groups relatednodes within a partition and increases spatial local-ity, which reduces the number of stache misses causedby cut-edges by 2.6% and improves performance overTSM-partition (level 1) by 13%.Stache misses in the TSM implementation arisefrom both true sharing through cut edges and falsesharing of di�erent nodes residing in the same stacheblock. In TSM-partition (level 2), we reduced thestache misses caused by true sharing by rearrangingeach processor's local portion of the mesh. Paddingthe partitions to block boundaries (TSM-padding) re-duces false sharing, decreases the number of stachemisses by 15%, and improves performance by 23%.5.1.2 Mutual ExclusionThe computation in unstructured consists of a seriesof loops over nodes, edges, and faces. For each itera-tion of a typical edge loop, the loop updates variablesassociated with nodes n1 and n2 to include the contri-bution represented by the edge hn1; n2i. The updates

for a node form a reduction that can be performed inany order, so long as each update occurs atomically.All three implementations perform reductions di-rectly. In CHAOS, a reduction requires three steps.First, the inspector discovers the connectivity of themesh, which determines the sharing patterns. Sec-ond, each processor computes its local contributionto each node. And third, scatter, a library primi-tive, uses the connectivity information to send localcontributions to nodes' owners.The TSM implementations perform a preprocess-ing step to split nodes in the partitioned graph intotwo groups: internal nodes, which have no incidentcut edges, and external nodes. For our input matrix,approximately 28% of the nodes are internal after thepartitioning. Internal nodes are only locally updated.Updates to external nodes require mutual exclusionto guarantee atomicity. The TSM implementationsuse locks for this purpose. Locks, however, performpoorly for two reasons. First, locks in Blizzard are ex-pensive. Second, sharing, both true and false, forcessome stache blocks to ping-pong between processors,which causes a large number of misses.The �nal TSM version (TSM-reduction) imple-ments the reduction directly. First, each processorcomputes its local contributions to the nodes andthen participates in a global reduction. The globalreduction operates in a pipelined fashion by divid-ing the global array into N pieces and having eachof N processors update a di�erent piece in N � 1steps. TSM-reduction also removes the padding tomake the data structures compact. Since the sharedarrays are updated only during the reduction phase,severe ping-ponging due to false sharing no longeroccurs. These optimizations reduce the number ofstache misses from 21.4 million to 2.3 million and im-prove performance by 823% over TSM-padding .The XSM version implements the reduction witha custom protocol called direct-reduction, which alsooptimizes the data transfer. We discuss this in the
6

Table 2: Unstructured results.Version Block Time SpeedupSize(bytes) (seconds)CHAOS 33 20.38TSMinitial 1024 11628 0.06partitionlevel 1 1024 4550 0.15level 2 1024 4011 0.17padding 1024 3257 0.21reduction 1024 353 1.91XSMdirect-reduction 1024 128 5.26block-update 32 54 12.49node-update 1024 32 20.86next subsection.5.1.3 Improving Data TransferAs mentioned in Section 1, the irregular and �ne-grain data dependences in irregular problems compli-cate e�cient message-passing communication. TheCHAOS implementation of unstructured used highlyoptimized gather and scatter routines that exploitinformation collected by the inspector to collect mul-tiple messages to a processor into a single transferand to eliminate redundant communication.TSM-reduction reduced communication overheadwith a larger block size, which reduces the number ofstache misses (from 21.4 million with 32-byte blocksto 2.3 million with 1024-byte blocks). The partition-ing and reduction optimizations discussed previouslymake large block sizes practical by increasing spatiallocality and reducing false sharing.XSM versions replace the \all-purpose" protocol ofTSM with three custom protocols that both reducecommunication and execution time. The �rst, direct-reduction, uses information about the mesh's connec-tivity and Tempest's virtual channel mechanism toimprove reductions. The other two, block-update andnode-update, use information about the mesh's con-nectivity to reduce the cost of acquiring data.Direct-reduction determines the mesh's connectiv-ity through a preprocessing step similar to CHAOS'sinspector phase and then uses this information to es-tablish virtual channels between processors that sharecut-edges. Direct-reduction then sends local contri-butions directly to the processor that owns the data.This reduces the message tra�c for reductions sub-stantially (the tra�c volume decreases by 21% andthe number of messages decreases by 50%) and im-proves performance over TSM-reduction by 175%.Although partitioning and renaming nodes im-

proves spatial locality and reduces communication,references in the edge- and face-loops to nodes up-dated in earlier loops still cause stache misses. Anupdate protocol can avoid these misses by sendingupdated nodes directly to consumers. Our �rst up-date protocol (block-update) captures nodes' shar-ing lists during the program's �rst iteration by run-ning a modi�ed version of the TSM protocol thatrecords sharing. In subsequent iterations, the proto-col sends shared stache blocks directly between pro-cessors using virtual channels. Note that since shar-ing is recorded in the protocol and a node has thesame address on all processors, this improvement doesnot require inspector code and a loop's computationportion need not change. This update protocol re-duces communication volume by 74% and improvesperformance by 137% over direct-reduction.Block-update captures the sharers at the granular-ity of a block, which is too coarse and results in somenodes being sent unnecessarily. Using small blocks(32 bytes versus 1024 bytes) reduces this e�ect, butdoes not eliminate it entirely. Our second update pro-tocol (node-update) eliminates this e�ect by recordingsharing information on a per node rather than a perblock basis. Node-update examines the partitionedmesh to determine the sharing patterns and estab-lishes virtual channels at the start of the program.This reduces communication volume by 49% and im-proves performance by 67% over block-update.In summary, properly partitioning data and e�-ciently performing reductions improves transparentshared memory's performance by a factor of 33. Atthis point, it becomes necessary to manage unstruc-tured's primary data structures with a custom proto-col, which further improves the reductions and dis-tributes data through an update, rather than an in-validation, protocol. These changes produce anotherfactor of 11 improvement, which brings the perfor-mance to the level of CHAOS.5.2 MoldynMoldyn is a molecular dynamics application. Its com-putational structure resembles the non-bonded forcecalculation in CHARMM [3]|a well-known molecu-lar dynamics code used at NIH to model macromolec-ular systems. Molecules in moldyn are uniformly dis-tributed over a cuboidal region with a Maxwelliandistribution of initial velocities. A molecule's velocityand the force exerted by other molecules determinethe molecule's position. The force computation limitsinteractions to molecules within a cut-o� radius. Aninteraction list|rebuilt every 20 iterations|recordspairs of interacting molecules. Table 3 shows the re-sults for our implementations of moldyn.
7

Table 3: Moldyn results.Version Block Time SpeedupSize(bytes) (seconds)CHAOS 38 23.13TSMlate-commit 1024 474 1.85reduction 1024 43 20.32XSMbulk-reduction 1024 38 23.115.2.1 PartitioningMoldyn has two main data structures, a molecule listand an interaction list, and two main loops, the in-teraction list computation and the force computa-tion. The CHAOS implementation uses the RCBpartitioner to assign molecules to processors. Thepartition for the molecules also partitions the in-teraction list, the interaction list computation loop,and the force computation loop. The processor withthe lower-numbered molecule handles interactions be-tween pairs of molecules. The processor that holds aninteraction computes iterations of the force computa-tion loop, which walks over the interaction list. Thispartitioning eliminates the need to communicate databetween the interaction list computation and forcecomputation, but may lead to an imbalance in num-ber of interactions assigned to each processor in theforce computation phase.Both the TSM and XSM versions rename and re-order molecules in shared memory using the parti-tioning generated by RCB. These implementations donot use the same assignment algorithm as the CHAOSimplementation for the interaction list, the interac-tion list computation loop, and the force computa-tion loop. Instead, they use an assignment that triesto equalize the computation to generate the interac-tions and distribute remote interactions evenly acrossthe interaction list. The sequential code to computethe interaction list is a triangular loop over pairs ofmolecules:for (i = 0; i < num molecules; i++)for (j = i + 1; j < num molecules; j++)f ... gBecause iterations of the outer loop have unequalnumbers of inner loop iterations, block partitioningthe outer loop would cause a load imbalance. To rec-tify this, we rewrite the loop in the following way:

for each processorCompute interactions among local moleculesfor (p = 0; p < num procs; p++)for (q = p + 1; q < num procs; q++)Compute interaction between p's moleculesand q's moleculesWe divide up the iterations of the p and q loops todistribute the hp; qi pairs equally and then assign in-teractions to the processor that generates them. Thisyields an irregular block distribution, which is alsoused for the force computation loop.5.2.2 Mutual ExclusionWhen a processor generates an interaction, it mustappend it to the interaction list, which is a reduc-tion. In the CHAOS implementation, mutual exclu-sion is unnecessary, because a processor only appendsentries to its local interaction list. With shared mem-ory, the list is shared and mutual exclusion is requiredwhile building the list and computing forces. Our ini-tial TSM implementation, which is not shown in thetable, used a global counter, protected by a lock, toindicate the next free entry. This implementation hadtwo problems: the counter was a bottleneck and lockswere expensive. We eliminated both problems witha late-commit reduction, in which each processor col-lects its interactions into a local bu�er. At the end ofthe loop, each processor knows how many interactionsit generated and joins a partial sum computation to�nd a starting index in the global list. Each processorthen copies its local list to the global interaction list.The late-commit version also optimizes the mutualexclusion in the force computation loop by splittingthe loop into two parts. The �rst part computesthe forces for local interactions (roughly 42% of totalinteractions) and does not need locks. The secondpart computes the forces for cut interactions and stillneeds locks to protect updates to remote molecules.The force computation in moldyn, however, is alsoa reduction like the interaction list computation. TheCHAOS and TSM implementations use the samemechanisms as the reductions in unstructured. OurXSM implementation uses bulk-reduction, an opti-mized version of the shared memory reduction. Bulk-reduction mimics the data movement in the sharedmemory reduction, but uses Tempest's virtual chan-nel mechanism to reduce communication overhead.Using bulk-reduction improves performance by 13%over TSM-reduction. This performance gain comeslargely from reducing the number of messages by60%. (The communication volume actually increasesby 25% over TSM-reduction.) We do not use the
8

Table 4: DSMC results.Version Block Size Time Speedup(bytes) (seconds)CHAOS 86 19.16TSM 1024 97 17.17XSM 1024 79 20.89more optimized direct reduction protocol from un-structured for moldyn, because the force computationis very computation intensive and, although 58% ofthe interactions involve molecules on di�erent proces-sors, communication overhead is only a small fractionof the total time.5.2.3 Improving Data TransferAs in unstructured, our CHAOS implementation usesthe highly optimized gather and scatter primitivesfrom the CHAOS library. However, we must run theinspector every time the interaction list is rebuilt todetermine the sharing pattern of the molecules. Likeunstructured, our TSM implementation uses a largeblock size to reduce the number of stache misses.The interaction list is generated carefully to providethe necessary spatial locality. However, unlike un-structured, the XSM implementation uses a simplerreduction protocol (bulk-reduction) that reduces thenumber of messages communicated in TSM-reductionsubstantially. We do not use an update protocol forthe molecules, because the number of misses frommolecule reads is very small relative to the size of theinteraction list. The simple reduction protocol andabsence of an update protocol in XSM avoids any ofthe preprocessing that is necessary in the CHAOSimplementation.In summary, as in unstructured, properly partition-ing the data and e�ciently implementing reductionswere crucial to achieving good performance. In ad-dition, replacing the global lock protecting the inter-action list with a more distributed computation wasalso important.5.3 DSMCDSMC studies properties of a gas by simulating themovement and collision of a large number of particlesin a three-dimensional domain with a direct simula-tion Monte Carlo method [26]. DSMC divides thedomain into cells in a static Cartesian grid. Each cellcontains particles, which collide only with other par-ticles in the cell. Particles enter the domain througheither a jet-stream or the sides of the domain andleave through the sides of the domain. Each parti-

cle has associated physical quantities, such as veloc-ity, rotational energy, and position, that change overtime. The list of particles is stored in compressedsparse row format. Each cell contains its starting in-dex in the particle list and the number of particlesassigned to it.The DSMC computation is divided into three dis-tinct phases: collision, move, and index. The collisionphase performs collisions between pairs of randomly-chosen particles in each cell. The move phase assignsparticles to cells based on their coordinates and bringsin new particles through the jet stream and sides ofthe domain. And the index phase reconstructs thecell-to-particle mapping based on the cell assignmentcomputed for the particles in the move phase. Table 4shows the results for our implementations of DSMC.5.3.1 PartitioningAll three of our implementations (CHAOS, TSM, andXSM) block partition the cells among the processors.We partition along the x-dimension �rst, becausemore than 65% of the moves from a cell are along thex-direction (parallel to the jet-stream
ow). This par-tition induces an initial partition for the molecules: amolecule is assigned to the processor that owns thecell that holds it. As a particle moves between cells,it is reassigned as necessary.5.3.2 Mutual ExclusionSince particles can move across processors, some formof mutual exclusion is needed to synchronize updatesto the cell data structures (for example, the numberof particles in a cell). We avoid locks because they areexpensive and cause false sharing. Instead, all threeof our implementations use a late-commit model.CHAOS uses a primitive called scatter append thatappends to a cell the particles that move into it. Dur-ing the move phase, CHAOS accumulates changesto the state of the particles locally. At the end ofthe move phase, CHAOS determines which particlesmove to other processors and sends them with thescatter append primitive.Our TSM and XSM implementations exploit theobservation that most particles move to one of a pro-cessor's four neighbors. Therefore, we �rst recordparticles that move from a processor in a local stack|one for each of four neighboring processors. Then, infour phases each processor writes to dedicated receivebu�ers on the neighboring processors. In the TSMversion, the four phases are demarcated by barriers.To handle the infrequent case of a particle moving tosome other processor, we lock that processor's sharedreceive bu�er and perform a write. In the XSM ver-sion we replaced the remote writes with active mes-
9

sages, one message per particle, that performed thewrite directly on the receiver. This allowed us toremove the barriers and perform all writes simulta-neously, since writes to the same receive bu�er bydi�erent processors are synchronized through the ac-tive message handlers, which execute atomically withrespect to other handlers.5.3.3 Improving Data TransferOur CHAOS implementation uses the highly opti-mized scatter append primitive from the CHAOS li-brary. Our TSM version uses large stache blocks(1024 bytes), which reduces the number of stachemisses by 94% over 32-byte blocks. Large stacheblocks improve performance because they allow thededicated receive bu�er to stay with the writing pro-cessor for the entire duration of its batched write.Finally, our XSM implementation replaces writes tothe dedicated receive bu�er with direct sends usingTempest active messages (one per particle), whichimproves performance over the TSM version by 22%.This optimization reduces the volume of message traf-�c dramatically (by 88%) at the cost of an increasein messages (roughly 73%).In summary, carefully partitioning the data and us-ing a late-commit model achieved good performancefor DSMC. In addition, using Tempest's mechanismsto replace a request-reply protocol with direct mes-sages helped to improve performance over our TSMimplementation.16 DiscussionThis paper examines three approaches to program-ming irregular applications on a message-passingcomputer (a CM-5). CHAOS is a library designed tosupport this type of application. Transparent sharedmemory (TSM), running on Tempest, uses a �xedcoherence protocol to provide an application witha shared address space and cache coherence. Fi-nally, extensible shared memory (XSM) uses Tempestmechanisms to improve the communication of impor-tant data structures.The paper focuses on three issues|partitioning,mutual exclusion, and data transfer|that are cru-cial to achieving good performance for irregular ap-plications. Not surprisingly all three approaches usesimilar techniques to improve performance. Most1Moon and Saltz's dynamic load balancing technique [16]improved upon the performance of the CHAOS implementa-tion reported in Table 4 by 16%. We did not use that loadbalancing technique in any of our DSMC implementations dueto insu�cient time.

unstructured moldyn DSMC
0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e 1024-byte blocks

 32-byte blocks

Figure 6: E�ect of block size for the best TSM ver-sions. The vertical axis denotes execution time di-vided by the execution time for 32-byte blocks.important is to partition data and loop iterationscarefully to balance computational load and decreasecommunication. Because of processors' distinct ad-dress spaces, CHAOS must divide, in advance, alldata and loop iterations. With TSM and XSM, com-plete data partitioning is not always necessary. In-stead, a programmer's e�ort can be focused on thecomputationally-important data structures, while ev-erything else is left in transparent shared memory.Both CHAOS and the tuned TSM and XSM pro-grams avoid protecting updates of global data withmutual exclusion by accumulating changes locallyand globally reducing the partial values in a sepa-rate phase. This is particularly important for TSMand XSM, in which locks are expensive and often in-troduce problems with false sharing.The TSM programs improve communication by us-ing a large block size (1024 bytes versus 32 bytes) toreduce the number of stache misses. This optimiza-tion is only practical if false sharing does not increase,which requires carefully partitioning of data and loopiterations to increase spatial locality and requires re-placing locks with reductions. Figure 6 shows thatthe 1024-byte block implementations are 27% { 61%faster than the corresponding 32-byte block ones.The CHAOS and XSM programs improve datatransfer through preprocessing, software caching,communication vectorization, and bulk transfer. TheCHAOS programs rely on an inspector to deter-mine a program's sharing patterns, which are usedby the library primitives (gather, scatter, andscatter-append) to combine messages and eliminateunnecessary communication. In XSM, communica-tion patterns can be found, if necessary, either by aninspector or a modi�ed version of the TSM protocol.In addition to these three issues, two other issues|address space management and bu�er management|are important for supporting these applications, butare less speci�c to an application than to a system.
10

CHAOS implements a global address space by dis-tributing arrays and modifying translations of arrayelements to support irregular data distributions. Thetranslation table is the same size as a distributed ar-ray. Tempest, on the other hand, provides a sharedaddress space by using virtual memory hardware andmaintains translations at page granularity (typically,4KB). Thus, both TSM and XSM require less spacefor translations and, in most cases, do not need ex-plicit code in the program to establish or use trans-lations.Page-granularity translations, however, increasememory overhead if some storage on a page is not inactive use. CHAOS does not introduce this concern,at it stores remote data compactly in a processor'smemory by renaming (changing its virtual address)data from other processors. Remote array elementsare stored after the local part of a distributed ar-ray. TSM and XSM programs use Tempest to allocatedata in shared memory at the same virtual addresson all processors. Tempest allocates an entire pageif any block on that page is accessed. Hence, someblocks on an allocated page may be unused. In thethree applications, the percentage of allocated, butnot accessed, blocks is low to moderate|5% for mol-dyn, 40% for DSMC, and 51% for unstructured fortheir best XSM versions with 32-byte blocks.27 ConclusionsThis paper examines three irregular applications|unstructured, moldyn, and DSMC|run using threesoftware systems|CHAOS, TSM, and XSM|on acommon hardware base|a 32-processor ThinkingMachines CM-5. CHAOS is a library designed to sup-port irregular applications on message-passing ma-chines. Transparent shared memory (TSM) is �ne-grain distributed shared memory using a �xed cache-coherence protocol implemented with Tempest. Ex-tensible shared memory (XSM) extends TSM by al-lowing a program to use message-passing and customprotocols to improve the communication of crucialdata structures.After extensive performance tuning of programs onall three systems, experiments showed that CHAOSand XSM performed best, with TSM trailing re-spectably on two of the three applications. CHAOSachieved 32-processor speedups of 20.4, 23.1, and 19.2for unstructured, moldyn, and DSMC, respectively.TSM achieved speedups of 1.9, 20.3, and 17.2, thus2We use 32-byte blocks to collect these statistics instead ofthe expected 1024-byte blocks, because larger blocks sizes tendto hide unused portions of a page.

performing poorly on one application and competi-tively for the other two. XSM achieved speedups of20.9, 23.1, and 20.9, which are similar to CHAOS's.By �xing the applications and hardware, our exper-imental setup allowed us to evaluate the techniqueseach software system used to map program abstrac-tions to the restricted world of message passing. Thebest performing programs shared similar techniquesin three key respects. First, computation and datamust be partitioned to ensure that data is local tothe processor that uses it. Irregular applications re-quired sophisticated partitioning since simple blockor cyclic partitions failed to distribute the load ade-quately. Second, the common operation of reducingshared data is best done by exploiting an operator'sassociativity to perform reductions locally and thenreduce the partial sums with a coordinated globalupdate. Standard techniques for mutual exclusion,such as locks, did not achieve acceptable performance.Third, using message vectorization to reduce mes-sage overheads was critical. Programs that ignorecommunication considerations|such as naive TSM|perform poorly.The three systems o�er a disparate set of advan-tages that make direct comparison di�cult. However,based on our experience, we believe that:� CHAOS is an e�cient and portable run-time li-brary for irregular applications. Its main advan-tage is that it requires only clearly-de�ned mod-i�cations to source code. The CHAOS project isexploring ways to extend the library to a widerrange of irregular applications [5].� TSM performs well for applications whose nat-ural partitions result in acceptable communica-tion overhead (e.g., have good spatial and tem-poral shared data locality). TSM also supportsany application in a straight-forward manner.However, achieving good performance with TSMcan require signi�cant programming e�ort to re-structure a computation to improve data locality.TSM performance, moreover, is not robust andthe performance bottlenecks can be obscure.� XSM o�ers an attractive alternative to TSM. Ito�ers the possibility of robust performance opti-mization that requires modest changes to TSMprograms. These changes can often be encapsu-lated in libraries. Nevertheless, developing a newprotocol can require considerable e�ort to under-stand a program's communication bottlenecks.Although this paper considered hand-written appli-cations, a more important use of these systems maybe as a compiler run-time system. CHAOS is alreadybeing used in this role [8].
11

AcknowledgementsWe are indebted to the members of the Wiscon-sin Wind Tunnel3 and CHAOS4 projects for helpwith Blizzard, CHAOS, and applications. In par-ticular, we would like to thank Steve Reinhardt forhelp with the Tempest interface, Bongki Moon forhelp with DSMC, and Madhusudan Talluri for sug-gesting a way to remove some locks in unstruc-tured . We would also like to thank Satish Chan-dra, Sashikanth Chandrashekaran, Douglas Clark,and Mukund Raghavachari for helpful comments onthis paper.References[1] J.E. Barnes and P. Hut. A Hierarchical O(N log N) ForceCalculation Algorithm. Nature, 324(4):446{449, December1986.[2] M. J. Berger and S. H. Bokhari. A Partitioning Strategy forPDEs across Multiprocessors. In Proceedings of the 1985 In-ternational Conference on Parallel Processing, August 1985.[3] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D . J. States,S. Swamintathan, and M. Karplus. Charmm: A program formacromolecular energy, minimization, and dynamics calcula-tion. Journal of Computational Chemistry, 4(187), 1983.[4] Soumen Chakrabarti and Katherine Yelick. Implementing anIrregular Application on a Distributed Memory Multiproces-sor. In Fourth ACM SIGPLAN Symposium on Principles &Practice of Parallel Programming (PPOPP), pages 169{178,May 1993.[5] Chialin Chang, Alan Sussman, and Joel Saltz. Support forDistributed Dynamic Data Structures in C++. Technical Re-port CS-TR-3416 and UMIACS-TR-95-19, Computer ScienceDepartment, University of Maryland, College Park, January1995.[6] Alan L. Cox, Sandhya Dwarkadas, Pete Keleher, HonghuiLu, Ramakrishnan Rajamony, and Willy Zwaenepoel. Soft-ware Versus Hardware Shared-Memory Implementation: ACase Study. In Proceedings of the 21st Annual InternationalSymposium on Computer Architecture, pages 106{117, April1994.[7] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy,S. Lumetta, T. von Eicken, and K. Yelick. Parallel Program-ming in Split-C. In Proceedings of Supercomputing '93, pages262{273, November 1993.[8] Raja Das, Joel Saltz, and Reinhard von Hanxleden. SlicingAnalysis and Indirect Accesses to Distributed Arrays. In SixthAnnual Workshop on Languages and Compilers for ParallelComputing, chapter e. To appear, August 1993.[9] Raja Das, Mustafa Uysal, Joel Saltz, and Yuan-Shin Hwang.Communication Optimizations for Irregular Scienti�c Com-putations on Distributed Memory Architectures. Journal ofParallel and Distributed Computing, 22(3):462{479, Septem-ber 1994.[10] Babak Falsa�, Alvin Lebeck, Steven Reinhardt, IoannisSchoinas, Mark D. Hill, James Larus, Anne Rogers, and DavidWood. Application-Speci�c Protocols for User-Level SharedMemory. In Proceedings of Supercomputing '94, pages 380{389, November 1994.3URL http://www.cs.wisc.edu/~wwt4URL http://www.cs.umd.edu/projects/hpsl.html

[11] Mark D. Hill, James R. Larus, and David A. Wood. Tempest:A Substrate for Portable Parallel Programs. In COMPCON'95, pages 327{332, San Francisco, California, March 1995.IEEE Computer Society.[12] Charles Koelbel and Piyush Mehrotra. Compiling GlobalName-Space Parallel Loops for Distributed Execution. IEEETransactions on Parallel and Distributed Systems, 2(4):440{451, October 1991.[13] David Kranz, Kirk Johnson, Anant Agarwal, John Kubiatow-icz, and Beng-Hong Lim. Integrating Message-Passing andShared-Memory: Early Experience. In Fourth ACM SIG-PLAN Symposium on Principles & Practice of Parallel Pro-gramming (PPOPP), pages 54{63, May 1993.[14] Je�rey Kuskin et al. The Stanford FLASH Multiprocessor.In Proceedings of the 21st Annual International Symposiumon Computer Architecture, pages 302{313, April 1994.[15] Ravi Mirchandaney, Seema Hiranandani, and Ajay Sethi. Im-proving the Performance of DSM Systems via Compiler In-volvement. In Proceedings of Supercomputing '94, pages 763{772, 1994.[16] Bongki Moon and Joel Saltz. Adaptive Runtime Support forDirect Simulation Monte Carlo Methods on Distributed Mem-ory Architectures. In Scalable High Performance ComputingConference (SHPCC '94), pages 176{183, May 1994.[17] A. Pothen, H. D. Simon, and K. P. Liou. Partitioning SparseMatrices with Eigenvectors of Graphs. SIAM J. Mat. Anal.Appl., 11:430{452, June 1990.[18] Steven K. Reinhardt. Tempest Interface Speci�cation (Revi-sion 1.2.1). Technical Report 1267, Computer Sciences De-partment, University of Wisconsin{Madison, February 1995.[19] Steven K. Reinhardt, James R. Larus, and David A. Wood.Tempest and Typhoon: User-Level Shared Memory. In Pro-ceedings of the 21st Annual International Symposium onComputer Architecture, pages 325{337, April 1994.[20] Joel Saltz, Harry Berryman, and Janet Wu. Multiprocessorsand Run-time Compilation. Concurrency: Practice and Ex-perience, 3(6):573{592, December 1991.[21] Joel Saltz, Ravi Ponnusamy, Shamik D. Sharma, BongkiMoon, Yuan-Shin Hwang, Mustafa Uysal, and Raja Das. AManual for the CHAOS Runtime Library. Technical Report3437, Computer Science Department, University of Maryland,College Park, March 1995.[22] Joel H. Saltz, Ravi Mirchandaney, and Kay Crowley. Run-Time Parallelization and Scheduling of Loops. IEEE Trans-actions on Computers, 40(5):603{612, May 1991.[23] Ioannis Schoinas, Babak Falsa�, Alvin R. Lebeck, Steven K.Reinhardt, James R. Larus, and David A. Wood. Fine-grainAccess Control for Distributed Shared Memory. In Proceed-ings of the Sixth International Conference on ArchitecturalSupport for Programming Languages and Operating Systems(ASPLOS VI), pages 297{307, October 1994.[24] Shamik D. Sharma, Ravi Ponnusamy, Bongki Moon, Yuan-Shin Hwang, Raja Das, and Joel Saltz. Run-time andCompile-time Support for Adaptive Irregular Problems. InProceedings of Supercomputing '94, pages 97{106, November1994.[25] Karen A. Tomko and Santosh G. Abraham. Data andProgram Restructuring of Irregular Applications for Cache-Coherent Multiprocessors. In Proceedings of the 1994 In-ternational Conference on Supercomputing, pages 214{225,1994.[26] Richard G. Wilmoth. Direct Simulation Monte Carlo Analysisof Rare�ed Flows on Parallel Processors. AIAA Journal ofThermophysics and Heat Transfer, 5(3):292{300, July-Sept1991.
12

