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Chapter 1: Dissertation Outline

This dissertation covers two separate projects that employ neutral rubidium

atom vapors as sensors of electro-magnetic fields. Since neutral atom ensembles are

constituted of identical atoms, these vapors provide a platform of many identical

quantum systems that behave as identical detectors of external fields. Both projects

employ probing techniques that excite coherent states in the atomic ensembles that

are uniquely sensitive to the externally applied fields while also providing optical

readout. One chapter is dedicated to each project, with both chapters being self-

contained works.

In Chapter 2, I describe the observation of new “twists” in Nonlinear Magneto-

Optical Rotation (NMOR) signals. NMOR is a well-known technique often used in

single-axis atomic magnetometers. It employs coherences between ground states

of alkali atoms to create atomic polarizations that can be extremely sensitive to

perturbations from magnetic fields. Typically great care is taken to ensure magnetic

fields transverse to the magnetometer axis are minimized to avoid complications

from mis-alignment of the quantization axis relative to the sensing axis. However,

in systems where both optical access and complete magnetic control is difficult to

achieve, these complicating fields must be considered. Here I explore “twists” in the

1



typical NMOR signal due to transverse fields as a method to characterize transverse

field orientation, strengths, and gradients within an operating, compact cold-atom

system. I also present numerical and analytical models to ascertain the underlying

physical phenomenon responsible for these “twists.”

In Chapter 3, I introduce the Rydberg receiver, an atom-based receiver of clas-

sical, digital information. This receiver is based on Rydberg atoms in a warm vapor

cell which has been previously shown to be a precision sensor of electric fields. In

particular, Rydberg states have very strong sensitivity to RF electric fields ranging

from quasi-DC to 1 THz. Using Electromagnetically Induced Transparency (EIT),

coherences between the Rydberg state and a probing ground state allows for record

sensitivity when measuring RF electric field amplitudes. In this work I apply this

exquisite electric field sensor to the realm of digital communication as a receiver,

where information is communicated using modulated RF carriers. I demonstrate

phase-sensitive detection of the modulation on the carrier and characterize the Ry-

dberg receiver bandwidth and sensitivity. I also derive the Standard Quantum Limit

(SQL) for channel capacity, or max potential data rate, and demonstrate that the

receiver performance scales with this limit for an effective atom number ofNeff ≈ 60.

Also included are two appendices. Appendix A describes my implementation

of the open-source labscript experiment control system. In particular it highlights

custom code I wrote to control hardware unique to the lab in which I worked. Ap-

pendix B includes example source code used for some of the calculations I undertook.

This code is included to so that these calculations might be easier to reproduce by

the interested reader.
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1.1 Contributions

The work described in this dissertation was not performed in isolation; I was

part of a group of researchers that included Fredrik Fatemi, Paul Kunz, Kevin

Cox, and (more recently) Zachary Castillo. Throughout this dissertation I will

occasionally use the pronoun “we” to reflect this reality, where appropriate.

While I was involved in all aspects of the presented work, I was the primary

contributor to the following aspects.

In Chapter 2: data collection and analysis of the NMOR data, the numerical

modeling of the NMOR data, and the extension of the perturbation model (outlined

for us initially by Dr. Simon Rochester of Rochester Scientific, LLC) to arbitrary

magnetic field angles.

In Chapter 3: building the Rydberg apparatus from scratch, initiating the idea

of using a Rydberg electrometer to receive digital communication, data collection

and most of the subsequent analysis, as well as the modeling (excluding the quantum

noise model which Kevin derived).

I was also responsible for programming-related tasks, including standing up

the labscript experiment control system for all experiments in the neutral atom

lab.

Portions of this dissertation are drawn from previously published works of

which I am a co-author. [1–3] I have also co-authored two related works, [4,5] which

are not directly covered in this dissertation.
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Chapter 2: Twists in Nonlinear

Magneto-Optical Rotation

Nonlinear magneto-optic rotation (NMOR) has been extensively studied, par-

ticularly as a tool for sensitive magnetometry. [6, 7] In typical NMOR experiments

such as that shown in Fig. 2.1, a linearly polarized optical beam simultaneously

pumps and probes atoms as a magnetic field (collinear to the beam propagation

axis) is swept through zero. The polarization of the transmitted optical beam fol-

lows a dispersive-shaped resonance centered on the magnetic zero. For sufficiently

small fields, the amount of polarization rotation is proportional to the magnetic

field magnitude. This resonance can always be used to determine the field zero

accurately and the linear slope can be used to accurately measure small fields as

well. The sensitivity of this measurement depends on the slope of the resonance

which depends on the signal-to-noise ratio of the polarization measurement and the

resonance width. In general, these resonances can be much narrower (≤ 1 Hz [8])

than typical optical atomic resonances as they rely on the spin-coherence lifetime of

the atoms’ ground state, which is long-lived.

If magnetic fields transverse to the optical beam path are present, the typical

4
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Figure 2.1: Example NMOR data showing the dispersive-resonance of the polar-
ization rotation as a function of axial magnetic field magnitude.

dispersive shape of the NMOR signal can be greatly distorted. These distortions

include both broadening and even sub-features, both of which limit the sensitiv-

ity. As a result, most NMOR-based magnetometers are used in highly shielded

environments to limit these corrupting fields.

In this chapter I will discuss the application of NMOR magnetometry in an

un-shielded environment where these transverse fields cannot be ignored. In par-

ticular I discuss our observation of a particular sub-feature due to transverse fields

that has been dubbed the “twist” in the literature where it was not extensively

studied. I demonstrate that this “twist” can be used to accurately determine the

transverse magnetic field amplitude and direction. Specifically, I show that the

width of the “twist” is proportional to the transverse field amplitude. I also show

that standard numerical models accurately predict this behavior. I also develop

an analytical model that describes the underlying physics of this phenomenon and

5



confirms the observed linear relationship. Taken together, the “twist” allows for

an NMOR magnetometer that can accurately characterize magnetic fields with ar-

bitrary orientation. Finally I demonstrate that a simple modification of the po-

larization measurement can lead to simultaneous sensitivity to transverse magnetic

gradients.

The experimental portions of this chapter are based on a previously published

work. [1]
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2.1 Introduction

An example NMOR trace showing the sub-feature that will be extensively

studied is shown in Fig. 2.2. The sub-feature takes a similar dispersive form to the

overall NMOR resonance, though with opposite slope. A similar nested coherence

was observed in warm vapor, [8] where it was termed a “twist.” It appears when

a transverse magnetic field, parallel to the probing optical beam’s linear polariza-

tion, is present with a magnitude comparable to the width of the NMOR feature.

In this prior work it was ascribed to couplings among multiple hyperfine levels,

which are unresolved due to Doppler broadening in the warm vapor, causing mul-

tiple atomic polarization subsystems. These subsystems derive from independent

velocity classes of atoms that were optically pumped to different magnetic sublevels

depending on the excited hyperfine state that Doppler-shifted into resonance with

the light. These polarization subsystems can be orthogonal to each other result-

ing in optical polarization rotation towards opposite directions depending on which

subsystem dominates.

Another similar “twist” feature in warm vapor was reported in double-resonance

magneto-optic experiments, [9–11] where a combination of resonant optical and

radio-frequency (RF) fields were used. Zigdon et al. thoroughly explained the mech-

anism behind their “twist” through the evolution of the atomic alignment tensor

(the rank-two tensor components in the polarization moment series expansion [12]).

They described how the atomic alignment transforms between two distinct polariza-
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Figure 2.2: Typical NMOR data showing a “twist” as the axial magnetic field
is swept through zero. This data was taken with a 10.6 µW probe beam of 1 mm
diameter that is detuned 27 MHz from the zero-field atomic resonance. A static
transverse field of 55 mG is applied parallel to the polarization vector.

tion moments in the series expansion, which have perpendicular axes of symmetry,

due to the averaging effect of the off-axis magnetic field. These two different axes

of symmetry rotate the light’s polarization in opposite directions resulting in their

observed “twist.”

Here, I discuss cold atoms in which the excited hyperfine levels are well re-

solved and individually addressable, which suppresses the complication of multiple

excited state hyperfine levels. This excludes the “twist” mechanism described in [8],

where competition among excited hyperfine levels was responsible. The mechanism

behind the “twist” in our system is also distinct from that of the double-resonance

experiments in that, aside from the lack of RF fields, ours is dominated by atomic

orientation (the rank-one tensor components in the polarization moment series ex-
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pansion). Acting alone, linearly polarized light can only induce alignment because

the electric field has a preferred axis but not a preferred direction or orientation.

In other words, averaged over a wavelength the light’s electric field points equally

in opposite directions along its polarization axis, thus no orientation. But when a

magnetic field is present and directed at some non-perpendicular angle to the opti-

cal polarization, then alignment-to-orientation conversion (AOC) occurs [13]. The

AOC mechanism relies on AC Stark shifts from the probe light, and rotation due

to AOC will dominate over that of alignment when the Stark shifts (∼ Ω2
R/∆p)

exceed the optical pumping rate (∼ ΓΩ2
R/∆

2
p). Using a detuned probe with optical

intensities near saturation ensures the system is in the AOC-dominated regime.

In this chapter I outline the experimental conditions necessary to observe the

NMOR resonances discussed, the theoretical formalism used for modeling the sys-

tems presented, simplified models to describe the underlying physical mechanisms,

and finally the experimental characterization of the “twist.”

2.1.1 Observing NMOR

NMOR itself is the result of coherent interactions between an optical probing

field and the atomic sublevels of the hyperfine transition being probed. An intuitive

way to picture this interaction is to consider NMOR as the result of a coherent inter-

action of an atom with multiple, linearly-polarized probe photons. For concreteness

I will consider a F = 1 → F ′ = 0 hyperfine transition, as shown in Fig. 2.3(b).

The atom is initially un-polarized (i.e. has equal probability for being in any of

10
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Figure 2.3: (a) Basic Configuration for NMOR. Light propagating along ẑ with lin-
ear polarization along x̂ transmits through an atomic ensemble. An axial magnetic
field ~B causes polarization rotation. (b) F = 1 → F ′ = 0 transition used in exam-
ples and theory models. Linearly polarized light, broken into circular components,
couples |mF −mF ′ | = 1 sublevels. Coherence between the mF = 1 and mF = −1
sublevels polarizes the atom. These same levels are Zeeman shifted by ΩL/2, caus-
ing rotation of the atomic polarization. (c) F = 2 → F ′ = 3 transition used in full
numeric models and experimental measurements. The circular components allow
for multiple coherences in the ground state that all contribute to the NMOR signal.

the ground states) when the atom absorbs a linearly-polarized probe photon. This

polarizes the atom parallel to the linear polarization of the light. The atomic polar-

ization precesses when an axial magnetic field is present, rotating the polarization

axis which acts as a polarizer for a second probe photon, effectively rotating the

transmitted light polarization (see Fig. 2.3(a)).

The tools necessary to observe NMOR are fairly simple. I first require an

atomic sample with magnetically sensitive hyperfine sublevels. This work employs

87Rb atoms that have been laser-cooled using a Magneto-Optical Trap (MOT) to a

temperature of ∼ 100µK. Rubidium has a multitude of optical hyperfine transitions

within its first excited state, but the focus is on the F = 2 → F ′ = 3 cooling

transition, see Fig. 2.3(c). Since this transition is closed,1 it gives high signal relative

1i.e. by electric dipole transition selection rules, atoms that decay from F ′ = 3 return to the
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to the other potential transitions when performing the optical measurement. This

transition has 12 magnetic sublevels. As a result, theoretical modeling quickly

becomes cumbersome. In this work I use numerical modeling of the F = 2→ F ′ = 3

system to match measured data to theory and use a simpler F = 1 → F ′ = 0

transition for analytical models. Qualitatively the two systems are similar enough

that intuition derived from the simpler system can translate to the real experimental

system.

I also require an axis of optical access that allows one to measure transmitted

light through the atomic sample. The optical field should to be linearly polarized and

have an intensity on par with saturation for the atomic transition to be interrogated.

In a cold atom system, one should also detune from atomic resonance in order to

avoid heating/pushing of the cooled atoms via scattering events with the probing

light.

Finally, I require a magnetic environment where the applied fields cause Zee-

man shifts on order with the natural linewidth of the probing transition. Since

NMOR is a coherent effect between the magnetic sublevels of the hyperfine lev-

els being probed, stray magnetic fields that split these levels beyond the natural

linewidth prevent any such coherent effects. While this makes NMOR a highly

sensitive method for finding magnetic field zeros, it also proves a fairly stringent

requirement limiting maximum allowed magnetic fields strengths to the sub-Gauss

level. Even Earth’s magnetic field of 500 mG can be significant enough to make

F = 2 ground state which keeps them within the system. In reality a weak quadrupole transition
also exists so a small fraction decay to F = 1, which is why the MOT itself requires some repump
light to return these atoms to the cycling transition.
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observation of NMOR difficult, necessitating shielding or active field cancellation.

Furthermore, the cold atom system used to demonstrate the following results

requires significantly stronger magnetic fields in order to initially trap the cooled

atoms and is designed to be compact. As a result, complete, arbitrary control of the

magnetic field across the entire sample is difficult and even complete cancellation of

the background fields below the measurement resolution was not possible. In fact, it

was the characterization of these non-ideal magnetic field conditions that originally

motivated this work.

Efficient cooling and capture of a large number of atoms in a MOT generally

requires minimized stray magnetic fields and accurate control of the applied trapping

fields, often derived from nearby Helmholtz coils. NMOR allows for highly accurate

measurement of field zeros and even some coil calibration, but only if the magnetic

field is small enough to allow for NMOR to be present. This is typically not the

case for a new, uncharacterized system, so other less sensitive measures of magnetic

field are required when initially setting up a system.

One such method that requires no modification of the NMOR experiment is

to measure the linear Faraday effect, as shown in Fig. 2.4(a). The linear Faraday

effect is the lowest order magneto-optical rotation signal and is the result of cir-

cular birefringence (i.e. left and right circular polarizations of light have different

interactions). When light is resonant with a hyperfine transition, a single disper-

sion resonance is observed in the polarization rotation versus axial magnetic field

strength as the shifting magnetic levels absorb either left or right circularly po-

larized light more strongly. When performing this measurement with cold atoms,
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(a) Circular Birefringence causes the linear
Faraday effect near the two resonances. At
each resonance, one circular component of
the linear light field interacts causing an
overall rotation of the light polarization
angle.
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(b) When one of the circular components
is resonant, the overall absorption of the
light field is increased, resulting in reduced
transmission at each resonance. Data is
normalized to the total probe transmis-
sion.

Figure 2.4: Linear polarization rotation and absorption from the F = 2 → F ′ =
3 hyperfine transition in 87Rb. Here the probe light is detuned from the atomic
resonance by ∼ 5Γ. Linear resonances occur when the axial magnetic field causes
the |F = 2,mF = ±2〉 → |F ′ = 3,mF ′ = ±3〉 transitions to be resonant. Note the
visible NMOR near zero magnetic field. There is also EIA present in the transmission
spectrum, though with significantly reduced contrast.
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the probing field must be detuned significantly from resonance to avoid scattering

events that heat the atoms. The result is two resonances symmetrically split from

atomic resonance, shifted from zero by the detuning. These resonances occur when

the axial magnetic field shifts a pair of sublevels into resonance with the detuned

light. These levels will only be able to absorb left or right circularly polarized light,

leading to effective rotation of the linear polarization axis as well as significant ab-

sorption. This can be seen in the corresponding transmission, shown in Fig. 2.4(b).

If the optical detuning is well known, this splitting of resonances provides a reliable

initial calibration of the axial field strength since the Zeeman shifts are accurately

known.

Figure 2.4(a) also shows NMOR relative to this linear effect. It is centered at

zero axial field and has a significantly smaller contrast. This trace was taken without

any transverse field applied; applying a transverse field reduces the contrast and

eliminates NMOR entirely when the field is strong enough. Again, this highlights

the need for some initial level of magnetic field control in order to see NMOR which

allows the techniques outlined below to enact very precise control and calibration

of magnetic fields.

2.1.2 Relation to EIT & EIA

Systems that exhibit NMOR also exhibit non-linear absorptive effects in much

the same way systems that exhibit linear polarization rotation like the linear Fara-

day effect also exhibit absorptive effects (see Fig. 2.4(b)). Nonlinear absorptive ef-
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fects can be divided into two sub-classes: Electromagnetically Induced Transparency

(EIT) and Electromagnetically Induced Absorption (EIA).

EIT occurs when the generated atomic coherence responsible for NMOR forms

an optical dark state. This occurs when the atomic polarization of the ground state

takes the form of a superposition state that is not coupled to the optical transition.

This results in a transparency window where the material absorbs less light. This

can be seen by inspecting the eigenstates of the F = 1 → F ′ = 0 Hamiltonian, the

derivation of which is explained in more detail below.

A simplified version of the Hamiltonian in the Zeeman basis is

H = ~



−ΩL 0 0 Ωp

0 0 0 0

0 0 ΩL −Ωp

Ωp 0 −Ωp 0


(2.1)

where ΩL is the Larmor frequency of an axial magnetic field and Ωp is the Rabi

frequency of the resonant probing light. Assuming ΩL � Ωp, the eigenstates of this

Hamiltonian are

~e1 = (0, 1, 0, 0) (2.2)

~e2 = (1, 0, 1,ΩL/Ωp) (2.3)

~e3 =
(

1/
√

2 + ΩL/2Ωp, 0,−1/
√

2 + ΩL/2Ωp, 1
)

(2.4)

~e3 =
(

1/
√

2− ΩL/2Ωp, 0,−1/
√

2− ΩL/2Ωp, 1
)

(2.5)
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to first order in ΩL.

The first state ~e1 is the |F = 1,mF = 0〉 incoherent dark state which is not

coupled to the circular components of the probing light. The second state ~e2 also

does not couple to the excited state when the magnetic field is zero, yet has popu-

lation in both |F = 1,mF = ±1〉 stretch states that would nominally be coupled to

the light field. This state is the coherent dark state where optical pumping results

in a coherent superposition of ground states. Atoms optically pumped into this

state are polarized and sensitive to the magnetic field (leading to NMOR) while also

having increased transparency to the probe field overall.

The final two states ~e3 and ~e4 are also superposition states, but these are

strongly coupled to the excited state for all magnetic fields making them bright

coherent states. If Fg and Fe are non-zero it is possible to optically pump into such

bright states. [14] The process involves creating atomic coherences in the excited

state and having those coherences spontaneously decay to the ground state. [15]

In general, NMOR systems with Fg,e 6= 0 can, in principle, exhibit both EIT and

EIA as both optical pumping processes are possible. EIA is the dominant factor

when Fe > Fg, [16] assuming the excited state coherence lifetime is not significantly

reduced by a secondary dephasing process. [14] Furthermore, the optical pumping

rate for the EIA coherence tends to be smaller than that for EIT, resulting in

absorptive resonances with smaller contrast in comparison.

Since the experimental system uses the F = 2→ F ′ = 3 hyperfine transition,

EIA is expected. Figure 2.5 shows the near-zero axial magnetic field portion of the

transmission trace from Fig. 2.4(b). Near zero magnetic field there appears to be
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Figure 2.5: Probe transmission data corresponding to Fig. 2.1. The lines simply
connect the data points in order to guide the eye. Noisy, low-contrast EIA is observed
near Baxial = 0.

decreased transmission (increased absorption) that could correspond to EIA. It is

difficult to be certain since the dip in transmission is on the order of the noise. A

significant portion of this noise is due to amplitude drifts in the probe from shot-

to-shot, as described in Section 2.4. In any case, I am confident that this signal

represents EIA as it has the correct signatures, including small contrast.

While this chapter focuses on NMOR, being aware of these other coherent

effects can be beneficial. A number of underlying physical processes that lead to

NMOR are simpler to visualize in terms of the absorptive effects. Conversion be-

tween NMOR and EIT/EIA signals can be done via Kramers-Krönigs relations due

to the underlying dependence of both absorptive and refractive effects on the same

complex quantity, the susceptibility tensor. [17] While not generally true for higher-
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order non-linear interactions, the Krames-Krönigs relations often reduce to a simple

derivative relationship (i.e. one is proportional to the derivative of the other). By

considering both manifestations of the non-linear interaction, deeper understanding

of the underlying physical mechanism in the interaction is available.

Finally, it is interesting to note that the EIA shown in Fig. 2.5 is the ab-

sorptive resonance that corresponds to the NMOR of Fig. 2.1 (both plots derive

from the same measurements). While the absorptive effect is small with low signal-

to-noise ratio, the refractive effect has a much larger signal-to-noise ratio. This is

partly due to the typical signal reduction of EIA described above. However there is

also common-mode noise reduction for polarization measurements since two photo-

detector signals are subtracted, effectively normalizing the measurement to the total

power. This significantly reduces amplitude noise allowing for much more precise

measurements of the atomic coherence.
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2.2 Formalism Primer

In order to better understand the experimental observations and determine the

physical origin of the “twist,” I must model the atomic system. In this work I will

pursue two models based on the density matrix formalism: (1) a full numerical model

of the F = 2→ F ′ = 3 transition in order to capture the complete dynamics of the

experimental system and attempt extraction of unknown experimental parameters

for characterization purposes; (2) an analytical model derived using perturbative

solutions of the simpler F = 1 → F ′ = 0 transition to establish the physical origin

of the “twist.”

In this section I will briefly outline the density matrix formalism and use it

to answer some basic questions about the physical phenomena of interest. This

treatment closely follows that developed by Simon Rochester et.al. to model NMOR

in warm vapors. [12,18–20] The goal of this section is not to re-derive the formalism

but rather familiarize the reader with the symbols, terms, and the results thereof.

I begin with the standard equation of nonlinear optics that relates the aver-

age atomic polarization to the applied electric field via a constant known as the

susceptibility tensor ←→χ :

~P = ε0
←→χ · ~E. (2.6)

This tensor can be approximated to arbitrary order by performing a Taylor expan-
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sion in the electric field to produce

~P = ε0
←→χ · ~E ' ε0

(←→χ (1) · ~E +←→χ (2) · ~E2 +←→χ (3) · ~E3 + . . .
)

, (2.7)

where the successive susceptibility tensors correspond to nonlinear processes of in-

creasing order in the electric field. Within this framework different nonlinear interac-

tions can be categorized and solved independently; e.g. ←→χ (1) dictates the processes

of linear refraction and absorption, ←→χ (2) the second-order effects such as second

harmonic and sum/difference frequency generation, and←→χ (3) the third-order effects

such as two-photon absorption, four-wave mixing, and stimulated Raman scatter-

ing. [17, 21]

Following the typical nonlinear optics formalism I could, in principle, try to

use the expansion in Eq. 2.7 to write down a set of coupled differential equations for

the slowly varying electric field amplitudes that would allow me to solve for changes

in the electric fields due to the nonlinear material. For nonlinear magneto-optics

this approach is less desirable since it works best far off-resonance, which limits the

utility; and assumes that the susceptibility is fixed and known, which is not always

the case for atomic vapor ensembles.

Instead a more direct approach is to use Eq. 2.6 and allow the susceptibility to

depend on the electric and magnetic fields. The average atomic polarization ~P can

be determined via the density matrix formalism as a function of the probe light and

magnetic field which can then be related to the initial probe field using the wave
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equation for polarizable media:

(
k2 +

d2

dz2

)
~E = −4πk2 ~P . (2.8)

It is this process that will be outlined in the following sections.

Note that much of this section is pedagogical in nature and covers common

theoretical elements in atomic physics. As such, much of it can be skipped by

an experienced atomic physicist. The exception is Section 2.2.6 which covers the

polarization moment basis for representing polarized atomic states. This basis is not

as commonly known to the general atomic physicist and is critical to the perturbative

models I developed for describing the origins of the “twist.” It is suggested this

particular subsection be read in its entirety.

2.2.1 The Density Matrix

The description of a pure state of a quantum system is given by its state vector,

known as a ket. This vector spans the Hilbert space of possible quantum states of

the system. The density matrix of any quantum mechanical state |ψ〉 can be written

ρ = |ψ〉 〈ψ| (2.9)

which produces a matrix of probabilities and couplings that describes the state.

The diagonal elements represent probabilities for measuring each basis state of the

Hilbert space. The off-diagonal elements represent coherences between these basis
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states.

As an example, consider an atomic system with two hyperfine levels F = 1

and F ′ = 0. The general density matrix is written as

ρ =



ρ(1,1),(1,1) ρ(1,1),(1,0) ρ(1,1),(1,−1) ρ(1,1),(2,0)

ρ(1,0),(1,1) ρ(1,0),(1,0) ρ(1,0),(1,−1) ρ(1,1),(2,0)

ρ(1,−1),(1,1) ρ(1,−1),(1,0) ρ(1,−1),(1,−1) ρ(1,1),(2,0)

ρ(2,0),(1,1) ρ(2,0),(1,0) ρ(2,0),(1,−1) ρ(2,0),(2,0)


(2.10)

where each diagonal element represents a state population and each off-diagonal

element ρ(F1,mF1
),(F2,mF2

) represents a coherence between the |F1,mF1〉 and |F2,mF2〉

states. This matrix can be interpreted to represent the state of a single atom or the

average quantum mechanical state of an ensemble of atoms.

To simplify the discussion (which the interested reader can find in [22]), I

provide three specific density matrices for some common ensemble states we will see

in this work that illustrates how to interpret a density matrix.

First is an unpolarized ensemble of atoms in the ground state.

ρ =
1

3



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0


(2.11)

If you were to measure the state of an atom in this ensemble, you would find it to
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be in any of the three ground states with equal probability of 1/3.2 By extension,

if you were to measure the state of every atom in the ensemble, you would find 1/3

of the total atom number in each state. Note that the trace of the density matrix

must always be equal to 1 in order to preserve atom number in the system.

The next example describes a polarized atomic sample.

ρ =
1

2



1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0


(2.12)

Here the atoms are all either in the |F = 1,mF = 1〉 or |F = 1,mF = −1〉 states.

Measuring the states of individual atoms in this ensemble, you would find no atoms

in the mF = 0 ground state.

The final example shows an atomic ensemble that has a light field applied to

excite atoms to the excited state |0, 0〉.

ρ =
1

6



0 0 0 0.5

0 5 0 0

0 0 0 −0.5

0.5 0 −0.5 1


(2.13)

In this example, 1/6 of the atoms have been excited with the remaining atoms

in the |0, 0〉 ground state. Couplings between the other ground states and the

2Predicting measurements using the density matrix is discussed in Section 2.2.5
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excited state are also present in the form of off-diagonal elements. In the case of an

optical transition, these matrix elements would be proportional to the absorption

and refractive index of the atomic ensemble to the light field, which will be covered

in more detail in Section 2.2.5.

2.2.2 Defining the Hamiltonian

While the density matrix defines the state of the atoms, the Hamiltonian

defines the interactions of the atoms with their environment. In this section I will

briefly review the external field interactions we are going to see when considering

NMOR and how those fields are represented in the system Hamiltonian. I will build

the Hamiltonian for the F = 1→ F ′ = 0 hyperfine transition as a concrete example.

I begin by defining the bare Hamiltonian for an alkali hyperfine transition:

H0 =
F∑

mF=−F

|F,mF 〉 〈F,mF |+
F ′∑

mF ′=−F ′
~ω0 |F ′,mF ′〉 〈F ′,mF ′ | , (2.14)

where ~ω0 is the optical transition energy separating the hyperfine transitions. This

Hamiltonian has two multiply degenerate manifolds of magnetic sublevels. For the

F = 1→ F ′ = 0 transition this Hamiltonian is written as

H0 =
~
2



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 2ω0


. (2.15)
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The addition of optical and magnetic fields will break the degeneracy of the ground

state (adding to the diagonal elements) and induce couplings between levels (adding

to the off-diagonal elements).

I next apply an optical field with amplitude E0 and frequency ωp = ω0 + ∆p

that is nearly resonant with the optical transition. I will also take the polarization

of the field to be along the x-axis and the propagation along the z-axis. The light

interaction Hamiltonian is then written, with the aid of the optical dipole moment

operator ~d, as

HL = − ~E · ~d = E0dx cos (ωpt), (2.16)

where dx is the x-component of the dipole operator. This operator can be reduced

using the Wigner-Eckart theorem to a common reduced dipole matrix element, d0 =

〈F |er|F ′〉, that depends only on the radial overlap of the coupled states, and Clebsch-

Gordon coefficients determined by the angular components that depend on mF and

mF ′ . It is common to define a new parameter that describes the strength of the

optical coupling known as the Rabi frequency ΩR = E0d0/~. As its name suggests,

this quantity is given in units of angular frequency and depends on the amplitude

of the coupling field and the strength of the reduced dipole moment. In the case of

a coherent drive of population between two states, the Rabi frequency is the rate at

which the population cycles between the two coupled states.

Using the z-axis as the quantization axis, the linear light polarization can be

broken into a sum of left and right circular components (dx → (dσ+ − dσ−)/
√

2).

These circular components couple levels with |mF −mF ′ | = ±1. This allows me to
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write the light interaction Hamiltonian for our example system as

H = H0 +HL =
~
2



0 0 0 ΩR cos (ωpt)/
√

6

0 0 0 0

0 0 0 −ΩR cos (ωpt)/
√

6

ΩR cos (ωpt)/
√

6 0 −ΩR cos (ωpt)/
√

6 2ω0


.

(2.17)

In order to remove the time dependence of the Hamiltonian, I will move into a

rotating frame that oscillates at the optical frequency. This is accomplished by the

unitary transformation

U =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e−iω0t


. (2.18)

This will result in matrix elements that have a quasi-static component and a com-

ponent that oscillates at 2ω0. Assuming the optical frequency is large and there are

no other relevant atomic levels at 2ω0, I can safely ignore those components. This

is known as the rotating wave approximation. The interaction Hamiltonian under

the rotating wave approximation becomes

Hrot = U−1 · H · U ≈ ~
2



0 0 0 ΩR/2
√

6

0 0 0 0

0 0 0 −ΩR/2
√

6

ΩR/2
√

6 0 −ΩR/2
√

6 −2∆p


. (2.19)
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I next allow for a magnetic field. The magnetic interaction Hamiltonian is due

to the magnetic dipole moment ~µ.

HB = −~µ · ~B = gFµB ~F · ~B (2.20)

In a similar manner to that of the optical coupling, the magnetic moment can be

re-written as orthogonal operators Fx,y,z that depend on the F of the state, a fixed

moment due to the electron known as the Bohr magneton µB, and the Lande g-

factor gF . Equivalent with the Rabi frequency, the Larmor frequency is defined as

ΩL = µBB/~.

In the case of a weak axial magnetic field (i.e. along the quantization axis z),

the field breaks the degeneracy of the magnetic sublevels in what is known as the

Zeeman effect. The Hamiltonian can be explicitly written as

Hrot = H0 +HL +HB ≈
~
2



−ΩL 0 0 ΩR/2
√

6

0 0 ΩL 0

0 0 0 −ΩR/2
√

6

ΩR/2
√

6 0 −ΩR/2
√

6 −2∆p


. (2.21)

Note that the magnitude of the level splitting depends not only on the magnetic

field in ΩL but also the value of mF . For a particular F level, the magnetic sublevels

then split symmetrically about the zero field energy, depending on the sign of mF .

Transverse fields are more complicated, with their effect being to couple mag-

netic sublevels with |∆mF | = ±1 in the same F manifold. A simple, though not
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necessarily intuitive way to picture this is to apply the same Hamiltonian as the axial

field case, then rotate the basis such that the applied field is now transverse to the

quantization axis. This rotation will mix sublevels in the rotated basis, which takes

the form of couplings between those levels. Larmor frequencies for these couplings

can also be defined δωi = µBBi/~.

A final, total Hamiltonian showing all of these coupling for a F = 1→ F ′ = 0

hyperfine transition, in the rotating frame, is

Htot =
~
2



−ΩL −(δωx − iδωy)/
√

2 0 ΩR/2
√

6

−(δωx + iδωy)/
√

2 0 −(δωx − iδωy)/
√

2 0

0 −(δωx + iδωy)/
√

2 ΩL −ΩR/2
√

6

ΩR/2
√

6 0 −ΩR/2
√

6 −2∆p


.

(2.22)

Hamiltonians for hyperfine transitions between levels with larger F numbers

will look approximately the same, though the numerical prefactors will differ due

to Clebsch-Gordon coefficients and mF quantum numbers. The ADM Mathematica

package developed by Simon Rochester is very effective at building these Hamilto-

nians for arbitrary system configurations. [23]

This Hamiltonian can be used with the time dependent Schrödinger equation

to obtain equations of motion that would allow us to take atoms with a defined

initial state and determine their state at any later time. Combining the Schrödinger

equation with the density matrix formalism gives the Liouville equation that defines
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these equations of motion in terms of the density matrix:

i~
d

dt
ρ = [H, ρ] . (2.23)

2.2.3 Dephasing Mechanisms

The above equation of motion ignores one very important aspect of any quan-

tum system: interactions with the environment. In order for the above to account

for these interactions, the entire environment would need to be included in the

Hamiltonian. Since this is wildly impractical, an alternative formalism is needed. I

will use the Lindblad modification of the Liouville equation that treats dissipation

as interactions with a thermal bath, which results in dephasing of populations and

coherences produced under the action of the system Hamiltonian. This will be de-

scribed in more detail in the next section, but first I need to define the dephasing

mechanisms to be considered.

I first consider the natural lifetime of the excited state. When an isolated

atom absorbs a photon and transitions to the excited state, it would remain there

indefinitely. In reality the atom is coupled to the vacuum modes of free space. In

time fields arising from quantum fluctuations in these modes will stimulate emission

of the atom and it transitions to the ground state while emitting a photon. The

average time for this to occur is the natural lifetime of the state. For the first excited

state of the D2 transition in 87Rb, the natural lifetime is 27 ns which corresponds to a

dephasing rate of 2π × 6.0666 MHz. Thus any excitation on this transition will relax,

30



on average, at this rate. Since the quantum vacuum fluctuations that stimulate this

dephasing are not polarized or directed, the resulting photons emitted will not be

polarized or directed. In other words, the photons are randomly distributed into

free-space with random polarization relative to each other.

Excited state populations are not the only thing that can relax due to this

spontaneous mechanism; coherences between excited states can also spontaneously

dephase. A simple argument for this follows from allowing arbitrary rotations of

the atomic basis. Any coherence between sublevels of the same transition can be

converted into populations with the correct rotation of the basis states. Given this

and the fact that the quantum vacuum fluctuations are un-polarized and omni-

directional, there is always potential for a population changing event that appears

as a change in coherence in a different basis. What is perhaps more curious is that

this relaxation can preserve at least some of the coherence of the excited state in the

resulting ground state. This mechanism is crucial to observing EIA in transitions

between hyperfine states, as demonstrated in [15,16].

The second dephasing mechanism I will consider amounts to the lifetime of the

atomic coherences themselves. The “natural” lifetime of coherences in the ground

state can be on the order of seconds, which is effectively infinite compared with the

excited state. Instead the primary limitation to the coherence time is instead the

interaction time of the atoms with the light. In the context of warm atoms this

time is known as the transit time and is due to the time it takes for thermal atoms

to traverse the probing beam profile. The coherences responsible for NMOR, EIT,

and EIA are created only when the light and the atomic ensemble interact. By
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limiting the interaction time, the resonances become Fourier broadened. For room

temperature rubidium with a 1 mm diameter probe beam the transit dephasing rate

due to this time is on the order of a few hundred kilohertz.

There exist many experimental methods for increasing the coherence time in

NMOR in warm atoms. These include using buffer gases to slow the mean-free

path of the atoms, [24] using a hollow pump beam around a small probe to obtain

a Ramsey interrogation, [25] or employing spin anti-relaxation coatings. [26] The

final method has proven particularly effective. A simple coating of paraffin on the

inner surface of the vapor cell mitigates the randomizing wall collisions, allowing

up to thousands of collisions before coherence is lost. This results in an effective

Ramsey measurement as the atoms are optically-pumped then precess in the field

between many collisions and are ultimately probed again resulting in polarization

rotation. With the proper coating and significant care taken to ensure a uniform

field throughout the vapor cell, effective transit rates below 1 Hz have been observed

leading to highly sensitive magnetometers. [8]

Performing NMOR measurements in cold atoms have a close analog to the

transit rate of warm atoms. While the cold atoms typically do not move through

the transverse beam profile, the light-atom interaction time is still limited. Even

with detuned probing light, extended optical interrogation will eventually disperse

the atomic cloud as absorption of the light will push the atoms. In the presented

data the interrogation time is 1.5 ms, which is equivalent to a transit dephasing rate

of 2π × 100 Hz. As expected, this rate is significantly smaller than in thermal atoms.
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2.2.4 The Lindblad Equation

Modifying the Liouville equation (Eq. 2.23) to include dissipation mechanisms

requires a few approximations. It revolves around approximating the environment

the Hamiltonian system is coupled to as a large reservoir. Two specific approxi-

mations are necessary to decouple the internal dynamics of the reservoir with the

internal dynamics of the atomic system. The first is known as the Born approxima-

tion, which assumes that the reservoir is large and weakly coupled to the system of

interest. This results in the reservoir states being weakly perturbed by the system

of interest making the two systems separable. The second is known as the Born-

Markov approximation, which assumes the dynamics of the system do not depend

on the past state of the system. This equates to a statement that the reservoir dy-

namics are fast relative to the dynamics of the system which prevents history of the

system from being preserved and influencing the system dynamics at a later time.

In this work I use the definition of the Lindblad equation defined in [12]:

i~
d

dt
ρ = [H, ρ]− i~1

2
(Xρ+ ρX) + i~Λ, (2.24)

where X is a matrix that encapsulates relaxation mechanisms due to dephasing

and Λ another matrix that accounts for repopulation mechanisms. The relaxation

matrix X is diagonal with each term being the sum of total dephasing mechanisms
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for each level. For the example F = 1→ F ′ = 0 system the matrix X is

X =



γ 0 0 0

0 γ 0 0

0 0 γ 0

0 0 0 γ + Γ


, (2.25)

where γ is the transit dephasing that effects atoms in all levels and 1/Γ is the natural

lifetime of the excited state.

The repopulation matrix Λ encapsulates which states the relaxing states decay

to. In our example system this matrix is

Λ =
1

3



γ + Γρ(2,0),(2,0) 0 0 0

0 γ + Γρ(2,0),(2,0) 0 0

0 0 γ + Γρ(2,0),(2,0) 0

0 0 0 0


. (2.26)

Off-diagonal elements are possible, representing the potential for spontaneous decay

of coherence as well as population. This matrix also enforces proper normalization

of the atomic population in the ensemble.

Taken together, the relaxation and repopulation matrices account for the de-

phasing mechanisms present in the system. The natural lifetime of the excited state

relaxes atoms in the excited state at a rate of Γ into the individual ground states at

a rate of Γ/3 since the excited state decays to any of the ground states with equal
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probability. The transit dephasing mechanism dephases all populations and coher-

ences at a rate of γ as atoms leave the probing field. Atoms enter the probe field

unexcited at a rate γ/3 and are assumed to be de-polarized (i.e. equally populating

the ground states).

The Lindblad equation gives (2 (F + F ′ + 1))2 coupled differential equations

of motion for the atomic ensemble known as Optical Bloch Equations (OBEs). If I

assume the measurement time is long compared with the internal system dynamics

our measurements will actually reflect the steady-state solution. One can find the so-

lution for the steady-state density matrix by setting the time derivatives to zero and

solving the coupled system of linear equations. This solution can be found numeri-

cally using any number of computational packages. However, complex Hamiltonians

or systems with large numbers of sublevels increase the complexity, and therefor the

solving time, significantly.

2.2.5 Observables Derivation

With the steady-state solution of the light-atom system in hand, I now need

to derive the effects of the atomic polarization on the probe light in terms of an ob-

servable quantity. For any physically observable quantity one can find the expected

outcome for a given atomic state using

O = Tr
(
ρ̂ · Ô

)
, (2.27)
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where O is the observable outcome, Ô is the operator that corresponds to that

observable, and Tr ( ) represents the trace operation. For the average atomic polar-

ization observable this equation becomes, in direct correspondence to Eq. 2.6,

~P = Tr (p̂ · ℘̂) (2.28)

where ℘̂ is the electric dipole operator. This relation gives the average atomic polar-

ization in terms of the steady-state density matrix elements which can be obtained

using the Lindblad equation as described above.

To see how incident probe light is modified by the atomic polarization, one

solves for the differential changes in the four parameters using the standard wave

equation for a polarizable medium:

(
k2 +

d2

dz2

)
~E = −4πk2 ~P . (2.29)

I will parameterize ~E & ~P in terms of field amplitude, phase, linear polarization

angle and polarization ellipticity; being careful to divide each into orthogonal po-

larizations. Without loss of generality I will take the propagation direction to be

along the ẑ axis while the polarization angle α is measured relative to the x̂ axis.

The magnitude of the electric field and overall phase are E and ϕ respectively. The

ellipticity, ε, is the arctangent of the ratio of the minor to major axes of the polar-

ization ellipse. The important values of ε are 0,±π/4 corresponding to linear and
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σ± circular polarization of light, respectively.

~E (z, t) =
1

2

(
− E0√

2
ei(ϕ+α)ei(kz−ωt) (cos ε− sin ε) + c.c.

)
σ̂+

+
1

2

(
E0√

2
ei(ϕ−α)ei(kz−ωt) (cos ε+ sin ε) + c.c.

)
σ̂− (2.30)

~P (z, t) =
1

2

(
P̃σ+ei(kz−ωt) + c.c.

)
σ̂+ +

1

2

(
P̃σ−e

i(kz−ωt) + c.c.
)
σ̂− (2.31)

Substituting Equations 2.30 & 2.31 into Eq. 2.29 and assuming a slowly varying

wave approximation to discard all second-order derivatives I obtain the following

complex equations for the two circular polarizations.

4πkP̃σ+ =
√

2 [iE0(z)ε′(z)(sin(ε(z)) + cos(ε(z)))

− (cos(ε(z))− sin(ε(z)))
(
iE0
′(z)− E0(z) (ϕ′(z) + α′(z))

)]
ei(ϕ(z)+α(z))

(2.32)

4πkP̃σ− =−
√

2 [iE0(z)ε′(z)(sin(ε(z))− cos(ε(z)))

+ (cos(ε(z)) + sin(ε(z)))
(
iE0
′(z)− E0(z) (ϕ′(z)− α′(z))

)]
ei(ϕ(z)−α(z))

(2.33)

Splitting these equations into real and imaginary components, I obtain a set

of four coupled equations. It is then a simple matter of solving the system for

the differential changes in electric field amplitude, optical phase, linear polarization

angle, and ellipticity. It is important to note these results only apply in the case of

an optically-thin medium where observables do not change appreciably through the

medium and can thus be approximated to their initial values (O (z) ' O (0) ≡ O).
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I then find

1

E0

dE0

dz
=
−
√

2πk

E0

[(
Im
(
P̃σ+

)
cos (α + ϕ)−Re

(
P̃σ+

)
sin (α + ϕ)

)
(cos (ε)− sin (ε))

+
(
Im
(
P̃σ−

)
cos (α− ϕ) +Re

(
P̃σ−

)
sin (α− ϕ)

)
(cos (ε) + sin (ε))

]
(2.34)

dϕ

dz
=

√
2πk

E0

[(
−Im

(
P̃σ−

)
sin (α− ϕ) +Re

(
P̃σ−

)
cos (α− ϕ)

)
(cos (ε)− sin (ε))

+
(
Im
(
P̃σ+

)
sin (α + ϕ) +Re

(
P̃σ+

)
cos (α + ϕ)

)
(cos (ε) + sin (ε))

]
(2.35)

dα

dz
=

√
2πk

E0

[(
Im
(
P̃σ−

)
sin (α− ϕ)−Re

(
P̃σ−

)
cos (α− ϕ)

)
(cos (ε)− sin (ε))

+
(
Im
(
P̃σ+

)
sin (α + ϕ) +Re

(
P̃σ+

)
cos (α + ϕ)

)
(cos (ε) + sin (ε))

]
(2.36)

dε

dz
=
−
√

2πk

E0

[(
Im
(
P̃σ−

)
cos (α− ϕ) +Re

(
P̃σ−

)
sin (α− ϕ)

)
(cos (ε)− sin (ε))

+
(
−Im

(
P̃σ+

)
cos (α + ϕ) +Re

(
P̃σ+

)
sin (α + ϕ)

)
(cos (ε) + sin (ε))

]
(2.37)

With the optically-thin approximation, the total change is the integration of

these equations over the length of the medium. It is convenient to express these dif-

ferential changes in terms of an experimental length. I choose to use the unsaturated

absorption length `0 of the sample, defined as the distance light must travel through

a uniform sample to have its intensity reduced by a factor of 1
e
. The unsaturated
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absorption length for a given transition within this framework is defined as

`0 ≡ (nσabs)
−1 = lim

ΩR,γ→0

[−2

E0

dE0

dz

]−1

~B,∆=0

(2.38)

where n is the atomic number density and σabs is the absorption cross section of the

transition.

To demonstrate the utility of developing these equations in the circular basis,

consider Eq. 2.36 for a typical experimental configuration with an x̂-linearly po-

larized probe, chosen to have ϕ (0) = 0. In this case, the differential polarization

rotation due to the interaction with the polarized atomic system reduces to

dα

dz
=

√
2πk

E0

[
Re
(
P̃σ+

)
−Re

(
P̃σ−

)]
. (2.39)

If I further assume the medium is lossless (which it generally is not), I can rewrite

Eq. 2.6 to be P̃σ± = ε0χ± · Ẽσ± = ε0 (n± − 1) · Ẽσ± . Substituting into Eq. 2.39 and

noting that Re
(
Ẽσ+

)
= Re

(
Ẽσ−

)
= E0/

√
2 for linearly polarized light I obtain

dα

dz
= πk (n+ − n−) . (2.40)

Thus the polarization rotation is proportional to the difference in refractive indexes

for the left and right circular polarizations of the probe light, which is classified as

circular birefringence.
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2.2.6 The Polarization Moments Basis

Atomic physics problems using the density matrix formalism are often written

in the Zeeman basis, i.e. using the Zeeman sublevels as the basis for representation.

Due to symmetries in the problems considered in this work, another basis known

as the polarization moment basis has proven useful and will be briefly outlined

here. [27] This section draws from the treatment found in Ref. [12] and the reader

is directed there for the more rigorous treatment.

2.2.6.1 Changing Bases

The density matrix can be thought of as a decomposition of a general density

operator into a complete basis set of operators. The basis operators used above are

the projection operators for the various magnetic sublevels present in the system,

which summed together produce the identity operator. Considering the example of

an atomic state with angular momentum F , the density operator is decomposed as

ρ̂ =
∑
mm′

ρmm′ |m〉 〈m′| , (2.41)

where ρmm′ represents the density matrix element corresponding to the |m〉 〈m′|

projection. While this is the common decomposition, the density operator can be

decomposed using any complete basis set.

One basis set of particular interest, considering the symmetries that often arise

when analyzing nonlinear optical interactions, is the polarization operator basis.
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This basis corresponds to the spherical harmonics Y m
l (θ, φ) and are defined using

irreducible spherical tensor operators T κq, where κ defines the rank of the tensor.

Using this basis, the density matrix can be written

ρ̂ =
2F∑
κ=0

κ∑
q=−κ

ρκqT
κq, (2.42)

where ρκq is known as a polarization moment. The polarization moments are related

to the density matrix elements of Eq. 2.41 by

ρκq =
∑
mm′

(−1)F−m
′ 〈F,m, F,−m′| κq〉 ρm′m, (2.43)

where 〈F,m, F,−m′| κq〉 is a Clebsch-Gordon coefficient. The inverse statement

defining the density matrix elements in terms of the polarization moments is

ρm′m =
∑
κq

(−1)F−m
′ 〈F,m, F,−m′| κq〉 ρκq . (2.44)

Some general properties of the polarization moments can be inferred from these

relationships. Considering the Clebsch-Gordon coefficients, one can see that ρκq 6= 0

only when m′−m = q is satisfied. When applied to Eq. 2.43, polarization moments

with q = 0 can only depend on matrix elements with m = m′, i.e. the populations

ρmm. As a result, these polarization moments only describe polarization aligned

with the quantization axis of the Zeeman basis states. Considering polarization

moments with q 6= 0, the Clebsch-Gordon coefficients imply that only matrix ele-

ments corresponding to coherences between neighboring sublevels with |∆m| = |q|
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are present. As a result, |∆m| = 2 coherences responsible for NMOR, as described

above, generate polarization moments that are transverse to the quantization axis.

From these considerations, one can see that q governs only the spatial direc-

tions of a given atomic polarization of rank κ. The rank of polarization gives the

type of polarization involved and is often given a name corresponding to the rank of

expansion of a static electric field into multipole moments. For example ρ0 is known

as the monopole moment, ρ1 the dipole moment, ρ2 the quadrupole moment, and

so forth.

2.2.6.2 Orientation vs. Alignment

While a given atomic state supports polarization moments up to rank κ = 2F ,

the nonlinear effects considered in this work can be described using only the three

lowest rank moments, known as the isotropic moment, orientation, and alignment

corresponding to κ = 0, 1, 2 respectively. These terms derive from the physical

interpretation of the atomic polarization they describe and can be visualized using

spherical harmonics.

Note that being able to restrict our attention to the three lowest rank moments

is an important simplification when considering hyperfine transitions with F > 1.

In effect, it implies these transitions can be mapped to the simplest system that

supports these three moments, F = 1→ F ′ = 0.

Spherical harmonics, scaled by the polarization moments of the atomic state,

allow the average atomic polarization to be visualized using what is known as an
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Angular Momentum Probability Surface (AMPS). [27] The AMPS for an atomic

state is defined as

ρFF (θ, φ) =

√
4π

2F + 1

2F∑
κ=0

κ∑
q=−κ

〈F, F, κ, 0|FF 〉 ρκqY q
κ (θ, φ) , (2.45)

where 〈F, F, κ, 0|FF 〉 is a Clebsch-Gordon coefficient. Plotting the real part of this

equation in three dimensional space versus the angles θ and φ gives a surface of

variable radial distance. The resulting AMPS is interpreted as the probability of

finding the maximum projection of angular momentum along the (θ, φ) direction.

These surfaces provide a quick way to identify symmetry axes and the different

tensor components of the atomic polarization. I illustrate this by showing a few

examples of AMPS and their corresponding density matrices in the Zeeman basis

for an F = 1 atomic state.

The simplest example is that of an isotropic polarization moment. An isotrop-

ically polarized F = 1 atomic state has a density matrix of the form

ρ̂0 =
1

3


1 0 0

0 1 0

0 0 1

 . (2.46)

In the polarization moment basis only ρ0
0 = 1/

√
2F + 1 is non-zero. Applying

Eq. 2.45, the AMPS is determined to be ρFF (θ, φ) = 1/3. The corresponding

AMPS is plotted in Fig. 2.6a. As expected, an isotropically polarized atomic state

is represented by a sphere centered at the origin.
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An example of atomic orientation along the z-axis is given as

ρ̂1 =


1 0 0

0 0 0

0 0 0

 (2.47)

in the Zeeman basis. The AMPS for this state takes the from of ρFF (θ, φ) =

cos (θ/2)4 and is plotted in Fig. 2.6b. This state is also a sphere, though it is oriented

along the +z direction. It is for this reason the rank-1 polarization moment is known

as orientation—an oriented atomic polarization has polarization along a preferred

direction.

An example of atomic alignment along the z-axis is given as

ρ̂2 =
1

2


1 0 0

0 0 0

0 0 1

 (2.48)

in the Zeeman basis. The AMPS for this state takes the form of ρFF (θ, φ) =

(3 + cos (2θ)) /8 and is plotted in Fig. 2.6c. This state has a more complicated

shape resembling a dumbbell or peanut, aligned with the z-axis. This alignment

along an axis is the reason the rank-2 polarization moment is known as alignment.

In contrast with orientation, an aligned atomic polarization does not have a preferred

direction, but rather a preferred axis.
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(a) The rank-0 polarization moment rep-
resents the isotropic portion of the atomic
polarization.

(b) The rank-1 polarization moment
represents oriented atomic polariza-
tion—polarization with a preferred
direction.

(c) The rank-2 polarization moment
represents aligned atomic polariza-
tion—polarization that has a preferred
axis.

(d) This AMPS represents an optically-
pumped state that is the sum of rank-0
and rank-2 polarization moments. This
state arrises from x̂-polarized light align-
ing the atomic polarization the the applied
electric field.

Figure 2.6: Example Polarization Moments visualized using their corresponding
AMPS.
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As a final example consider the following density matrix,

ρ̂EIT =
1

4


1 0 1

0 2 0

1 0 1

 . (2.49)

This density matrix arises when considering the ground state in the case of perfect

optical pumping in an F = 1→ F ′ = 0 system with linearly polarized light. While

not obvious at first glance, this state is clearly seen to be aligned with the x-axis

when converted to the polarization moment basis. In that basis, only the constant

isotropic term (ρ0
0 = 1/

√
3) and the rank-2 terms ρ2

0 = −1/2
√

6, ρ2
±2 = 1/4 are

non-zero. The corresponding AMPS is plotted in Fig. 2.6d.

The physical basis for both the EIT and NMOR observed in this system are

simple to visualize when considering the atomic polarization acts analogously to

a linear polarizer. When a magnetic field is applied along the light propagation

axis (z-axis), the atomic polarization will precess. The transmitted light polariza-

tion then follows the precession in much the same way it would follow a rotating

polarizer, leading to rotation of the transmitted polarization. Considering the light

transmission, maximum transmission obviously corresponds to no precession or zero

magnetic field, leading to a transparency window or EIT.
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2.2.7 Frame Rotations

Proper analysis of the models developed in Section 2.3 requires the ability

to rotate between arbitrary reference frames. This is accomplished using rotation

operators constructed from Wigner-D functions. In a contracted form, the operator

for a rotation θ about the axis n̂ is given by D̂ = e−i
~J ·n̂θ where ~J = (Jx, Jy, Jz) is

the angular momentum operator. Using this construction an arbitrary rotation is

easily written using the Euler angles α, β, γ such that

D̂ (γ, α, β) = e−iJzγe−iJyαe−iJzβ. (2.50)

This particular parameterization follows that implemented in the ADM Mathemat-

ica package and can be thought of as a rotation of β about the z-axis, then a rotation

of α about the rotated y′ axis, and finally a rotation of γ about the doubly rotated

z′′ axis. This provides a general framework of rotations to change between refer-

ence frames to facilitate understanding of the atomic polarizations present in the

systems studied. I will provide two examples of frame rotations that are commonly

used throughout this work.

I will first demonstrate that the density matrix of Eq. 2.49 represents a pure

atomic alignment polarization directed along the x-axis; something not directly

obvious from the density matrix in the Zeeman basis itself but is a natural result

of optically pumping an atomic sample with linearly polarized light. To see this

I rotate frames such that the quantization axis will be along the x-axis or light
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polarization direction. This is done using Eq. 2.50 with β = γ = 0 and α = π/2

giving a 90°rotation about the y-axis. With a total angular momentum J = 1 the

resulting rotation operator and rotated density matrix produce

ρ̂
(x)
EIT = D̂ (0, π/2, 0) · ρ̂(z)

EIT =
1

2


1 −

√
2 1

√
2 0 −

√
2

1
√

2 1

 ·
1

4


1 0 1

0 2 0

1 0 1

 =
1

2


1 0 0

0 0 0

0 0 1

 .

(2.51)

This is exactly equal to the aligned density matrix example given above in Eq. 2.48

demonstrating that optically-pumped state is in fact an aligned polarization mo-

ment.

The next example involves the more complicated scenario of changing frames

between the light propagation axis ~k and the total magnetic field or quantization

axis in an NMOR experiment. In a standard NMOR experiment these two axes are

co-linear with only the magnitude and sign of the magnetic field changing during

an experiment. In this work I must include the effect of constant transverse field as

well—the total magnetic field direction can take on arbitrary direction relative to the

light propagation direction. I begin by defining the total magnetic field components

in the lab frame as

~B = {Bx, By, Bz} . (2.52)

I then take the z-axis as the light propagation direction and the x-axis as the light

polarization direction. In terms of these directions I will often refer to the magnetic

field component Bz as the axial magnetic field and Bx, By as the transverse magnetic
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fields.

In a typical NMOR experiment, the change in direction can be completely

specified using the Euler angles α and β. I define them such that −π/2 ≤ α ≤ π/2

as the axial field is swept through zero and β is the angle of the transverse field

relative to the y-axis as follows:

tan (α) =
Bz√

B2
x +B2

y

, tan (β) =
By

Bx

. (2.53)

This parameterization assumes that the transverse field along the x-axis is always

present and best represents the experimental work presented below. Using these

angles the total magnetic field may be written as

~B =
∥∥∥ ~B∥∥∥ {cos (α) cos (β) ,− cos (α) sin (β) , sin (α)} . (2.54)

Considering the same J = 1 system above the rotation operator becomes

D̂ (0, α− π/2, β) =
1

2


e−iβ (sin (α) + 1)

√
2 cos (α) eiβ (sin (α)− 1)

√
2e−iβ cos (α) 2 sin (α)

√
2eiβ cos (α)

e−iβ (sin (α)− 1) −
√

2 cos (α) eiβ (sin (α) + 1)

 . (2.55)

By applying this rotation operator I can move the reference frame to follow the total

magnetic field quantization axis for an NMOR experiment as the axial magnetic field

is swept through zero. Taking the specific, optically-pumped scenario of Eq. 2.49,

ignoring By oriented transverse fields by letting β = 0, and further letting α = π/4
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corresponding to a point in the NMOR experiment when the axial field is equal

in magnitude to the transverse field I can find the resulting density matrix of the

optically-pumped state in the quantization axis reference frame:

ρ̂
(α=π/2)
EIT =

1

8


3

√
2 1

√
2 2 −

√
2

1 −
√

2 3

 . (2.56)

As expected, the optically-pumped aligned state is not purely along the quantization

axis (as indicated by the non-zero off-diagonal elements). While certainly an obvious

conclusion, the result is important to note since, as I will demonstrate in the next

section, alignment parallel to the magnetic field has a different effect on NMOR

than that of alignment perpendicular to the magnetic field; the typical condition

considered in the literature.
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2.3 NMOR Models

I will now apply the above formalism to the problem of Nonlinear Magneto-

Optical Rotation. In the vernacular of nonlinear optics, NMOR is a χ(3) nonlinearity,

intensity-dependent process where a linearly-polarized probe beam experiences re-

fraction upon interacting with the atomic medium and an external magnetic field.

The χ(3) nonlinearity is the result of optically-pumped, long-lived atomic coherences

in the ground state. The interaction of these coherences with the external magnetic

field and the probe light ultimately give rise to NMOR. In this section I present

a number of theoretical models in order of increasing complexity as I generalize to

account for greater probe intensity and arbitrary external magnetic field orientation.

2.3.1 Single-Axis Models

2.3.1.1 Low Probe Intensity – Linear Polarizer Model

The the linear polarizer model was first proposed by Karnorsky et. al. [28]

and is the simplest model of NMOR. In this model the simultaneous and continuous

processes of NMOR are broken into three distinct steps. (1) The isotropic atomic

vapor is optically pumped by the probe light; the optical pumping resulting in

a polarized atomic system. (2) The polarized atomic system is then allowed to

precess by interaction with the magnetic field. (3) The precessed atomic polarization

then interacts with the probe light, causing rotation of the light polarization. The

visual power of this model becomes apparent when I note that the optically-pumped
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Figure 2.7: The linear polarizer model for low probe intensity NMOR. The light
polarizes the atoms via optical pumping (blue region), this polarization precesses
in the axial magnetic field (red region), the precessed atomic polarization acts as a
linear polarizer, rotating the light polarization via linear dichroism (green region).

atomic polarization from step (1) is an aligned state like that shown in Fig. 2.6d.

This polarization behaves as a linear polarizer with a transmission axis parallel to

the axis of alignment. As the polarizer precesses about the axial magnetic field,

the transmission axis also precesses leading to an observed rotation of the probe

polarization axis (see Fig. 2.7).

This model provides simple intuition about the NMOR process. Most impor-

tantly it predicts a linear relationship between the observed polarization rotation

and the applied axial field near the magnetic field zero. This linear relationship is

limited due to two physical realities not included in the model: the simultaneous and

continuous nature of the probing. Since the three steps of the model are in actuality

occurring simultaneously a fundamental limit to the maximum observable rotation
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is met as precessed polarization states become re-pumped to the initial polarization

state over time. Since the steps of the model are continuously being excited, the

observed polarization rotation is in fact a steady-state in the light-atomic system.

In steady-state the width of the observed resonance is limited by the inverse of the

coherence time for the optically-pumped atomic polarization. For many experimen-

tal realizations of NMOR (including the one I am presenting here) the coherence

time is limited by the interaction time of the light with an average atom in the

atomic system. Both of these considerations result in the damping of the linear

relationship as the axial magnetic field strength is increased leading to the typical

dispersion resonance of NMOR.

The final limitation is in the assumption that the atomic polarization acts

as a linear polarizer. As will be discussed below this in not true for higher probe

powers. More specifically, this model should only hold when the probe light is well

below saturation of the NMOR transition: Ω2
R/γΓ� 1, where ΩR is the probe Rabi

frequency, Γ the excited state decay rate, and γ the ground state coherence decay

rate (aka transit rate). Since the ground state coherence time tends to far exceed the

excited state lifetime, saturation of the NMOR transition occurs with much lower

power than the bare excited state transition.

Beyond the narrow context of this model it is important to consider the limita-

tions of the simultaneous and continuous damping effects on the typical application

of NMOR: magnetometry. While limitations to maximum polarization rotation can

be largely mitigated using high-quality detectors and a low-noise amplifier, the reso-

nance width ultimately limits the attainable slope of the linear response to magnetic
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field which in turn limits the sensitivity of the measurement. As a result methods for

increasing the coherence time in NMOR have been of prominent importance within

the field.

2.3.1.2 High Probe Intensity – AOC Model

When the NMOR transition nears saturation (Ω2
R/γΓ ' 1) the three-step

model described above requires modification as the linear polarizer assumption

breaks down. As described by Budker et. al., the electric field of a higher power

probe must be accounted for in the precession stage of the three-step model which re-

sults in a phenomenon known as Alignment-to-Orientation Conversion (AOC). [13]

This oriented atomic polarization also produces polarization rotation, though via

circular birefringence in contrast with the linear dichroism of aligned polarization.

The polarization rotation due to these mechanisms differs in the response to probe

detuning. All other things being equal, linear dichroism has a symmetric lorentzian

response versus detuning while circular birefringence has an anti-symmetric disper-

sion response.

The modification is done by including a DC electric field in the precession

stage such that the resulting DC Stark shift of the model is equal to the AC Stark

shifts due to the interaction of the atoms with the probe’s electric field. Considering

an F = 1 ground state in the semi-classical limit for small fields relative to the

ground state coherence rate the AOC process is reasonably approximated as

ρ̂1 ∝ ~dind × ~E ∝
[(
~B ×←→Q

)
· ~E
]
× ~E, (2.57)
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Figure 2.8: AOC model for high intensity NMOR. This uses the same three regions
as the linear polarizer model, but the precession region includes the Stark shifts from
the probe field. These Stark shifts cause a torque on the precessing alignment that
generates orientation. The resulting atomic alignment then contains both alignment
and orientation that can cause polarization rotation due to dichroism and circular
birefringence, respectively.

where ~dind ∝
(
~B ×←→Q

)
· ~E is the induced atomic dipole,

←→
Q is the ground state

quadrupole moment resulting from optical pumping, and ρ̂1 the generated orienta-

tion from the initially aligned atomic state. [29,30] In short, the electric field induces

an electric dipole moment that then experiences a torque from the same electric field

to produce orientation from an aligned polarization state.

Analyzing some simple cases will build intuition regarding the AOC mecha-

nism. I begin by considering the standard NMOR geometry where the magnetic

field is perpendicular to the electric field of the probe light. The resulting
←→
Q due

to optical pumping is then an aligned state that can be described as the sum of

a rank-0 isotropic polarization moment and a rank-2 aligned polarization moment
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that is parallel to the optical pumping electric field. If there is no magnetic field,

the induced dipole is then parallel to the electric field. The resulting torque from

the electric field is then zero by definition. As the magnetic field is increased the

atomic alignment is rotated around the magnetic field which in turn generates an

induced dipole that is no longer parallel to the electric field. This induced dipole

can then experience the torque to produce orientation along the light propagation

direction.

It is important to note that the AOC process is rarely 100% efficient. Therefore

as the probe intensity is increased both alignment and orientation will be generated

with polarization rotation resulting from both. In warm atoms this interplay can be

rather complex and is described in depth in Ref. [13]. In cold atoms the interplay is

greatly simplified since optimal signal is achieved when the probe is detuned from

resonance to avoid resonant heating of the atoms. Detunings larger than the natural

linewidth significantly suppress the polarization rotation due to linear dichroism.

As a result, observed polarization rotation is due solely to the circular birefringent

effect made possible by AOC. Since this work is in cold atoms, the effects of atomic

alignment can be ignored moving forward.

2.3.2 Multi-Axis Perturbation Model

The above three step models can be used to obtain algebraic solutions for

NMOR systems by perturbatively solving the optical Bloch equations (OBEs) in the

optical Rabi frequency for each step. For the AOC model, one takes an isotropic,
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un-polarized atomic system and solves the OBEs to 2nd order in the probe Rabi

frequency without the magnetic field. This results in an aligned polarization in the

atomic system. This alignment is then allowed to experience the AOC effect and

Larmor precession by solving the OBEs again to 2nd order with magnetic field and

equivalent stark shifts applied. The resulting orientation is then probed by solving

the OBEs to 1st order.

The reason full perturbative solutions to the OBEs were not used in the AOC

model above is because they can be simplified to the closed-form approximation

outlined in Eq. 2.57. This approximation relies on two assumptions: (1) the mag-

netic quantization axis and the light propagation axis are parallel; (2) the magnetic

and electric fields that produce AOC are perpendicular. Obviously, when transverse

magnetic fields are present these assumptions are no longer valid and the method

of accounting for AOC above does not work. As a result, I first attempted using

full perturbative solutions of the OBEs to obtain algebraic solutions. Thanks to

Dr. Simon Rochester, our theorist on retainer, this method was successful but it

also required significant computational resources for even the simplest transitions.

It also did not provide much intuition to the underlying physical process since all

the heavy lifting was done internally to the 2nd order perturbative solve for the AOC

step.

With some more time, Dr. Rochester devised a simpler method that works for

most NMOR transitions and does not require explicit perturbative solutions to the

OBEs. I say explicit because the method uses known, closed-form results from the

perturbation calculations. The basic principle is that the AOC step can be further
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Figure 2.9: 5-Step AOC Model for NMOR. This model generalizes the AOC model
by breaking the precession region into three steps. The first step allows for Larmour
precession of the optically-pumped atomic polarization. The next region applies
the Stark shifts from the probe field that gives AOC, the final step then precesses
the remaining alignment and the generated orientation in the magnetic field. The
resulting atomic polarization is again probed in the final stage.
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broken down into three distinct steps: Larmor precession, alignment-to-orientation

conversion, then another Larmor precession (see Fig. 2.9). Each of these steps have

simple, known, closed-form solutions, resulting in an overall model that is much

easier and faster to calculate. Furthermore, it is easy to break down the alignment

and orientation tensors into components and determine their contribution to the

end signal which allows for significant physical intuition.

In the next two sections I will describe this simple 5-step model when the trans-

verse field is parallel to the light polarization axis and then for arbitrary transverse

fields.

2.3.2.1 2-Axis Solution

In this section I discuss the 5-step model when a transverse magnetic field

is present and parallel to the light polarization axis while an axial magnetic field

is swept through zero. A diagram of the relevant axes and directions is shown

in Fig. 2.10. There are two coordinate systems of interest. The first is the lab

coordinate system where the light propagation direction is the z-axis and the light

polarization direction is the x-axis. The second is the primed coordinate system

aligned to the total magnetic field quantization axis, ẑ′ ‖ ~Btot. As the axial magnetic

field is swept through zero, this coordinate system will rotate about the y-axis. I

define the angle tan(α) = Baxial/Btrans to parameterize this rotation, where Baxial

is the magnetic field along the z-axis and Btrans is the magnitude of the transverse

magnetic field (restricted to the x-axis in this section).
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Figure 2.10: Axes definitions for the 5-Step Model. The un-primed axes are the lab
frame with light propagation along the z-axis and the light polarization along the
x-axis while the primed axes are the rotated coordinates such that ẑ′ ‖ ~Btot. The
angle α is between the light polarization axis and the total magnetic field direction
in the x̂− ẑ plane.

Before I get into the details of the model, I need to discuss the various magneto-

optical effects that could be present and justify my focus on only one of them. I do

this by analyzing perturbative solutions of the OBEs in the probe Rabi frequency

for the F = 1→ F ′ = 0 transition.

At zeroth order in the Rabi frequency is the linear Faraday effect that depends

on magnetic field being present in the probing stage. This optical rotation is given

by

`0
dφ

d`
=

ΩLΓ(Γ2 − 4∆2
p) sin(α)

4(Γ2 + 4∆2
p)

2
∝ ΩLΓ

∆2
p

(2.58)

where ` represents the path length through the sample. The factor `0 is the unsat-

urated absorption length. This resonance does not depend on the light power and

has a width of Γ. The scaling for large detunings, ∆p � Γ,ΩL, γ, is also shown.
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Over the narrower NMOR region, which has width on the scale of γ this term is

largely constant.

The next order effect is second order in the Rabi frequency and is due to ori-

entation that results from optical pumping in the presence of a magnetic field. The

Zeeman shifts of the ground state sublevels result in local detunings that differen-

tially pump on mF → mF ′ = mF ± 1 transitions resulting in circular birefringence.

`0
dφ

d`
=

Ω2
RΩLΓ2∆2

p sin(α)

12γ(Γ2 + 4∆2
p)

3
∝ ΩL

γ

Ω2
RΓ2

∆4
p

(2.59)

This resonance also has a width of Γ and so is not overly important to the features

in the NMOR resonance region.

There is another second order effect that corresponds to the low probe intensity

NMOR described earlier: optical pumping generates alignment, which precesses in

the field and is probed resulting in linear dichroism. The polarization rotation due

to this effect is

`0
dφ

d`
= −Ω2

RΓ3(3 cos(2α) + 5) sin(α)

192ΩL(Γ2 + 4∆2
p)

2
∝ − Γ

ΩL

Ω2
RΓ2

∆4
p

. (2.60)

This resonance has with of γ and so could contribute to the NMOR region. However,

at large detunings the scaling with Γ/ΩL is not favorable and leads to small signals.

A more favorable scaling is found with the next higher order effect: that due

to alignment-to-orientation conversion. As will be derived in more detail next, this
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signal takes the form of

`0
dφ

d`
=

Ω4
RΓ2∆2

p(9 cos(4α) + 20 cos(2α) + 3) sin(α)

4608γΩL(Γ2 + 4∆2
p)

3
∝ Γ2

γΩL

Ω4
R

∆4
p

. (2.61)

This resonance has the same large detuning scaling (1/∆4
p) as the last two effects.

It ends up dominating over both because it has width γ relative to the second order

orientation effect and is amplified by a factor of Γ/γ relative to the second order

alignment effect.

The validity of the perturbative approach depends on being below saturation

for the coherent atomic effects studied here. Usually this saturation parameter

would be Ω2
R/Γγ, which is essentially a statement of how quickly coherences can be

generated relative to the dephasing of the excited and ground states. However, when

far detuned from resonance and using relatively strong magnetic fields, Γ→ ∆p and

γ → ΩL. This gives an alternate saturation parameter more relevant to this work

of Ω2
R/∆pΩL.

I will now outline the steps of the perturbative model, restricted to the terms

that result in the AOC mechanism.

Step 1 I begin in step one by taking an unpolarized atomic sample and allowing

the probe field to optically pump it, thereby polarizing the sample. This step is done

only with the light interaction portion of the Hamiltonian; the magnetic fields and

Stark shifts are ignored. As a result, this step can actually be performed by solving

the OBEs without approximation for even more complicated transitions. However,
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for the sake of simplicity I will apply some a priori knowledge about the system.

Namely, only the alignment of the atomic polarization is relevant since the light is

detuned sufficiently from resonance in the experiment. Further, I know that the

alignment axis will be either parallel or perpendicular to the light polarization axis,

depending on whether the transition exhibits EIT or EIA, respectively. Since I am

considering the simpler F = 1 → F ′ = 0 transition at the moment, I will take an

EIT polarization.

This is most simply done by defining pure axial alignment in a frame aligned

with the polarization axis. This reduces the alignment tensor to a single non-zero

component: ρ(2) ∝ (0, 0, 1, 0, 0). I then rotate from this frame to the primed frame,

which is done by rotating about the y-axis with an angle α − π/2. The initial

optically-pumped alignment in the primed frame is then:

ρ′(2) ∝
√

3

2



sin2(α)/2

− cos(α) sin(α)

(3 cos(2α) + 1)/2
√

6

cos(α) sin(α)

sin2(α)/2


(2.62)

Note that the a priori assumption (that only alignment is relevant) restricts us

to the case off-resonant probing as well as ground states that can support alignment,

which is F ≥ 1. The model is readily expanded beyond these limitations by applying

the same steps to the other relevant tensors, usually the orientation tensor.
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Step 2 This step begins the generalized treatment of the alignment-to-orientation

conversion process. Here I account for Larmor precession of the alignment from step

1 as well as dephasing of that alignment. In the primed frame, the Larmor precession

acts as a time-dependent phase shift on each alignment component: eiqΩLt, where q

is the component number (ranging from -2 to 2) and ΩL is the Larmor frequency

corresponding to the total magnetic field. The dephasing for each component takes

the form of e−γt, where γ is the ground state dephasing rate. In this experiment, this

rate is predominantly due to finite light-atom interaction time. I assume that the

alignment from step 1 is continuously pumped, leading to an average accumulated

phase term for each alignment component of

γ

∫ t

−∞
e−γ(t−t′)eiqΩL(t−t′)dt′ =

γ

γ − iqΩL

=
iξ

q + iξ
(2.63)

In this result I have defined a new parameter ξ = γ/ΩL that represents the atten-

uation factor for the atomic coherences under Larmor precession. Note that when

q = 0, corresponding to alignment parallel with the z′-axis, there is no phase shift.

Applying these shifts to the alignment of step 1 gives the Larmor precessed result.

ρ′′(2) ∝
√

3

2



iξ sin2(α)/4

−iξ cos(α) sin(α)

(3 cos(2α) + 1)/2
√

6

−iξ cos(α) sin(α)

−iξ sin2(α)/4


(2.64)
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Step 3 This step performs the actual alignment-to-orientation conversion, as dis-

cussed above in Section 2.3.1.2. As a reminder, AOC is due to Stark shifts from the

probe field interacting with the precessed atomic polarization. The general effect

can be thought of as the electric field inducing a dipole moment from the atomic

alignment that then experiences a torque from the electric field to produce orien-

tation. Here I use the same approximation from Eq. 2.57, but written in terms of

spherical tensor products: [31]

ρ(1) ∝ i
{{
ρ(2) ⊗ E(1)

}(1) ⊗ E(1)
}(1)

, (2.65)

where ⊗ is the spherical tensor product and the superscripts say which tensor com-

ponent each term is. To use this equation I need to define the electric field from the

probe light in the spherical basis of the primed frame:

E(1) ∝


− sin(α)/

√
2

cos(α)

sin(α)/
√

2

 (2.66)

I substitute this field into Eq .2.65 along with the precessed alignment from step 2

to obtain the following (expressed in cartesian coordinates of the primed frame for

simplicity):

ρ
′′′(1)
cart ∝

3

16
√

5


ξ cos(α)(7 sin(α) + 3 sin(3α))/2

sin(2α)(3 cos(2α) + 1)

ξ sin2(α)(3 cos(2α) + 5)

 (2.67)
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Again, because the probe is detuned I know that the AOC mechanism is the

dominant factor for polarization rotation. As a result, I will only track this generated

orientation from this point forward.

Step 4 I now need to allow the generated orientation from the AOC process to

precess in the magnetic field. This is done in exactly the same was as step 2.

The resulting precessed orientation, again expressed in cartesian coordinates of the

primed frame, is then:

ρ
′′′′(1)
cart ∝

3

16
√

5


−ξ sin(2α)(3 cos(2α) + 1)

0

ξ sin2(α)(3 cos(2α) + 5)

 (2.68)

Here I have ignored any terms that are second order in ξ. This is justified under the

assumption that the dephasing rate is small compared with the Larmor frequency of

the total magnetic field for all values of the total magnetic field field. Put more sim-

ply, the Larmor frequency of the static transverse field is larger than the dephasing

rate.

Step 5 Finally, the generated and precessed orientation is probed. To first order

in the optical Rabi frequency the polarization rotation due to atomic polarization

is proportional to

φ ∼
√

2∆pRe
(
ρ1

0

)
+ ΓIm

(
ρ2

2

)
(2.69)
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where ρ1
0 and ρ2

2 are the tensor components of the atomic polarization in the lab

frame. In the experimental system ∆p ∼ 5Γ, which means the orientation is the

dominant source of polarization rotation. In particular, it is the orientation along

the lab z-axis that determines the polarization rotation.

I rotate the orientation from step 4 from the primed frame to the lab frame

and find that the polarization rotation becomes

φ ∼
√

2∆pRe(ρ
′′′′(1)
lab-z ) ∝ 3

√
2∆pξ sin(α)(9 cos(4α) + 20 cos(2α) + 3

64
√

5
(2.70)

Figure 2.11 shows this result versus axial magnetic field where a “twist” qualitatively

similar to that of the experiment is observed. Most importantly, this equation

can be solved for the polarization rotation zero crossings to find the width of the

“twist” feature. Solving Eq. 2.70 I find that the “twist” zero crossings occur when

α = ± arctan
(√√

13− 3
)
≈ ±0.661. In the experimental data it is easier to

reliably identify the peaks of the “twist.” I can find the peak splitting of this model

by converting to the cartesian lab magnetic fields, taking the derivative with respect

to Bz, and solving for the zeros. Doing so gives the peak splitting ∆Bz = 0.661Bx.

The identical value is a coincidence.

I can also break up the total orientation into two distinct contributions: (1)

that due to the precessed alignment from step 2 that is parallel to the z′-axis; (2)
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Figure 2.11: Total orientation along the z-axis from Fig. 2.12, plotted versus axial
magnetic field instead of total magnetic field angle α. I have taken Btrans = 10γ.

that due to precessed alignment perpendicular to the z′-axis.

φ ∼
√

2∆pRe
(
ρ
′′′′(1)
lab-z

)
=
√

2∆pRe
(
ρ
′′′′(1)
B‖ + ρ

′′′′(1)
B⊥

)
∝ 3
√

2∆pξ

16
√

5

(
2 sin(α) cos2(α)(3 cos(2α) + 1)− sin3(α)(3 cos(2α) + 5)

)
(2.71)

Figure 2.12 shows these two components as well as their total versus the angle α.

It can be seen that the red trace showing orientation due to alignment parallel to z′

exibits a “twist” where the sign of polarization rotation is reversed near zero field.

The orientation due to non-parallel alignment only serves to reduce the size of the

“twist.” Note that it is the orientation from this non-parallel alignment that gives

the NMOR signal for AOC without a transverse field present.
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Figure 2.12: Plots of Orientation due to initial atomic alignment along and perpen-
dicular to the total magnetic field direction as a function of magnetic field direction.

I can solve for the zero crossings of the red curve in Fig. 2.12 and find that

they occur when α = ± arccos
(
1/
√

3
)
≈ 0.955. The lab frame peak splittings of

the “twist” for this angle gives ∆Bz = 0.80Bx. This value is identical to that found

in [11] where they observed a “twist” signal due to averaging effects from a coupled

RF field. I can therefore claim that our “twist” is due to a similar mechanism

where the Larmor precession of the aligned polarization in step 2 will average to

net-zero alignment at a particular angle between the total magnetic field and the

polarization axis. The only difference between their result and ours is that our

“twist” mechanism must also compete with the typical NMOR-AOC mechanism,

which reduces the angle at which to zero locations occur.

Ultimately, I expect the experimentally measured slope of the “twist” peak

splitting to be between the two slopes derived here of 0.661 and 0.80.
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(a) α = 0 (b) α = 0.16π

(c) α = 0.30π (d) α = 0.44π

Figure 2.13: Progression of polarization moments showing the the precessed align-
ment parallel to the z′-axis. In order, the points shown show the central zero cross-
ing, the peak polarization, the “twist” zero crossing, and the second peak location
from the red trace of Fig. 2.12.
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This averaging process is best visualized using polarization moments. In

Fig. 2.13 I show the alignment after step 2 that is parallel to the z′-axis (the ρ
′(2)
0

component in the primed frame). Parts (a-d) correspond to specific places of in-

terest in the red trace of Fig. 2.12. Figure 2.13(a) shows the alignment at α = 0.

No polarization rotation results from this since the alignment axis is parallel to the

electric field precluding the AOC mechanism. Figure 2.13(b) shows the alignment

at α = 0.16π. Here we see that the small total magnetic field has precessed some of

the alignment to be parallel to the z′-axis, resulting in the peak positive polarization

rotation. Figure 2.13(c) shows the alignment at α = 0.30π. Here there is no po-

larization rotation because the alignment along ẑ′ has been averaged to zero by the

procession, leaving only an isotropic polarization. Figure 2.13(d) shows the align-

ment at α = 0.44π. Here the peanut shaped alignment precesses about the magnetic

field so quickly that an averaged donut shape is formed. The donut shape repre-

sents alignment with negative sign which can be thought of as taking a spherical,

isotropic polarization moment and subtracting a peanut shaped alignment moment.

This negative moment gives the peak negative polarization rotation.

2.3.2.2 3-Axis Solution

Generalizing the above treatment for arbitrary transverse field direction is

relatively straight-forward. It only requires a more complex frame rotation to get

into the ~Btot primed frame. This is most easily done by specifying a rotation about

the z-axis by an angle tan(β) = By/Bx, then a rotation about the new y axis by
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Figure 2.14: Total orientation along the z-axis. The black-dash trace has Bx = 10γ.
The green trace includes a perpendicular transverse field By = 5γ.

the angle tan(α) = Baxial/Btrans, where Btrans = ±
√
B2
x +B2

y . Reversing these

rotations will return to the lab frame. In this section I will often refer to the

transverse magnetic field components by their relation to the light polarization axis:

Bx → B‖ and By → B⊥.

The result of the 5-step model, including By, is quite complex so I do not

include it here and instead direct the interested reader to Appendix B where the

Mathematica code for the 5-Step model calculations can be found. Instead I show

the result in the green trace of Fig. 2.14 in comparison with the result from the

last section. The green trace includes a B⊥ = 5γ perpendicular transverse field.

Note that the primary, discernible effect is a reduction in the “twist” contrast and

corresponding small changes to the “twist” zero locations. I will refrain from going
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Figure 2.15: Simulations of NMOR for different linear polarization angles relative
to a static Bx magnetic field. The linear polarization angles range from 4°, 0°, −4°,
−7°; from light red to light blue. The Rabi frequency is 9.26 MHz, the detuning
4.43 Γ, and Bx = 48 mG. As the ligh polarization angle deviates from zero, some of
the transverse field becomes perpendicular to the light E-field leading to a shift of
the “twist” away from zero rotation.

into more detail on this model because it does not capture one very important

feature of the “twist” dependence on B⊥ that is seen experimentally and in the full

numerical model: the “twist” shifts relative to the polarization rotation zero.

In Fig. 2.15 I show numerical simulations of the NMOR signal from later in

this chapter where the direction of linear polarization is rotated relative to a static

transverse field. When the light polarization is not parallel to the transverse field the

field is decomposed into parallel and perpendicular components. The perpendicular

component then results in an offset of the “twist” away from zero rotation. This

effect was observed in warm vapor NMOR [8, 32] and like the “twist” itself was

attributed to interaction between the many optical pumping pathways between the
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Figure 2.16: ”Twist” shift vs transverse fields. The black trace is the typical NMOR
with no transverse fields. The gray dash-dot trace is with ±δB⊥ fields. The red and
dark red traces are with ±δB‖ fields. The green and dark green traces represent
both transverse fields present with odd sign parity. The blue and dark blue traces
have even sign parity. A fixed probe Rabi frequency of 9.26 MHzand a detuning of
4.43 Γ is used. The transit rate is 2 kHz. The magnitudes of the transverse fields
were δB‖ = 55 mG & δB⊥ = 5 mG, when present.

Doppler-broadened hyperfine levels. This explanation is not applicable here as the

simulation is ignorant of Doppler broadening and experimental data using cold atoms

supports the Doppler-free simulation as will be shown below. Like the “twist” itself,

a deeper explanation is required. Unfortunately the 5-Step model described above is

not sufficient to describe this shifting behavior. Instead I will rely on full numerical

simulations to gain insight into the parameters that govern this observed offset.

Figure 2.16 shows the “twist” offset for varying combinations ofB‖ = 0,±55 mG

and B⊥ = 0,±5 mG. The opposite sign of a field represents the opposite orienta-

tion of the field along the same axis. In this figure there are four pairs of traces.
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δB‖ δB⊥ Twist
0 0 None
0 ± None
+ 0 Centered
− 0 Centered
+ + Down
+ − Up
− + Up
− − Down

Table 2.1: Summary of Fig. 2.16. The parallel B-field magnitude is 55 mG. The
perpendicular B-field magnitude is 5 mG.

The black trace is typical NMOR with no transverse fields present and is provided

as a reference. The gray dash-dot trace (which nearly perfectly overlaps the black

trace) is the resulting NMOR if the perpendicular transverse field B⊥ = 5 mG is

present with either orientation along ±ŷ. The overlapping red and dark red dashed

traces show the typical “twist” when only the parallel transverse field B‖ = 55 mG is

present, again in either orientation along ±x̂. The overlapping green and dark green

dashed traces show an offset “twist” away from zero rotation when both the parallel

and perpendicular transverse fields are present. In this case the fields are oriented

such that they have opposite sign parity (i.e. +/− and −/+). The overlapping

blue and dark blue dashed traces are the same as the green traces, but with even

sign parity (i.e. both signs positive or negative). These relations are summarized

in Table 2.1. It is interesting that while the “twist” itself is agnostic to the sign of

the transverse field, when an offset is present the direction of said offset away from

zero rotation depends on the sign of both transverse field components. From this

I infer that the offset is the result of some broken symmetry in the presence of a

perpendicular transverse field.
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The dependence of this shift is not isolated to the magnetic fields, as evidenced

by the breakdown of the 5-Step model. Figure 2.17 shows the “twist” offset for

varying Stark shifts with different probe Rabi frequencies and detunings. For the

purposes of this discussion the Stark shift is defined as

ΩAC ∝
∆pΩ

2
R

Γ2 + 4∆2
p

. (2.72)

The black trace shows the green trace from Fig. 2.16 while the blue and red traces

have a detuning one natural linewidth smaller and larger, respectively, with B‖ =

55 mG and B⊥ = 5 mG. From this we see that the offset and qualitative shape of the

“twist” itself depends on the detuning. The reduction in contrast of the “twist” as

the detuning is reduced is due to the suppression of the AOC mechanism as described

above. The offset shows proportional dependence on the detuning. The green trace

has a detuning equal to that of the black trace, but with a higher Rabi frequency

such that the AC Stark shift, as defined in Eq. 2.72, is equal to that of the blue

trace. While the “twist” shape and offset are not identical, they are qualitatively

similar hinting that the Stark shift plays a dominant role in the magnitude of the

offset.

This dependence on the Stark shift is likely the reason the 5-Step model breaks

down. That model relies on perturbative solutions to the OBEs in the probe Rabi

frequency, implying that ΩR is small relative to other rates in the problem. As dis-

cussed above, the saturation parameter that dictates validity for the perturbative

model is Ω2
R/ΩL∆p. For typical experimental parameters present here, this param-
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Figure 2.17: ”Twist” shift vs Stark shift. The black trace has a detuning of 4.43 Γ.
The red trace a detuning of 5.43 Γ. The blue trace a detuning of 3.43 Γ. The green
trace has a detuning of 4.43 Γ and an increased Rabi frequency of 10.47 MHz. The
blue and green traces have the same Stark shift as calculated from Eq. 2.72.
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eter is on the order of 10. This constraint limits the validity of the model for large

Stark shifts. Perhaps what is more interesting is that the perturbative model is

successful at all when comparing to the experimental system, even at a qualitative

level.

Moving away from the model, I can make a guess as to the functional depen-

dence of the offset by trying to account for the observed dependencies. One such

functional form that encapsulates the above behaviors is

shift ∝ ΩACω⊥ω‖
Ω2

tot

, (2.73)

where ω‖, ω⊥, and Ωtot are the Larmor frequencies of the parallel transverse, per-

pendicular transverse, and the total magnetic fields. Unfortunately the vacuum

chamber of the experiment broke before significant data could be taken to confirm

this guesstimate.

78



2.4 Experimental Characterization of the

“Twist”

In this section I present experimental measurements of the “twist” versus

transverse magnetic field strength and orientation as well as probe power and po-

larization. I will compare this data with the full numerical model and show good

quantitative agreement. I will also show how the “twist” can be used to measure

transverse field gradients.

2.4.1 Experimental Configuration

The experimental setup is diagrammed in Fig. 2.18. The atomic sample comes

from a cold cloud of roughly 107 87Rb atoms in a Magneto-Optical Trap (MOT),

collected from background vapor in a 1 x 1 x 3 inch glass vacuum chamber, and

further cooled in an optical molasses to approximately 50 µK. The magnetic field

is applied using three perpendicular sets of Helmholtz coils (only 1 pair is shown

in Fig. 2.18 for simplicity). The MOT light was produced by a pair of Distributed

Bragg Reflector (DBR) laser diodes. One is locked to the F = 1 → F ′ = 2, 3

crossover line in a spectroscopy cell via Saturated Absorption Spectroscopy (SAS).

The pumping light in the spectroscopy setup was double-passed through an 80 MHz

Acousto-Optic Modulator (AOM) to give a frequency shift of 160 MHz. [33] This

shift results in a difference of 80 MHz between the SAS lock point and the master

laser. This shift allows us to lock to the strongest transition of the repumping
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Figure 2.18: Experimental configuration. λ/2: half-wave plate, PBS: polarizing
beam splitter, PD: photodetectors.

transition while still being able to use the main laser output as the repump laser

for the MOT, which is resonant with the F = 1 → F ′ = 2 repump transition. The

second DBR is beat note locked to the repump light. This allows for fast, real-

time control of the cooling light frequency during experimental shots. This laser is

amplified using a tapered amplifier to produce the optical power necessary for the

MOT cooling. All repump and cooling light has an AOM and physical shutter for

fast, yet complete, shuttering of the MOT beams during the NMOR experiment.

The probe light comes from the cooling laser through an AOM and physical

shutter. This light also has a fiber amplitude modulator that allows for power

stabilization of the probe beam. Unless otherwise stated, the probe light is detuned

27 MHz to the red of the F = 2 → F ′ = 3 transition of the D2 line with typical

intensity of 11µW/mm2. The beam size is chosen such that the size (the 1/e2 width)

of the beam approximately matches that of the atomic cloud. The polarization is
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Figure 2.19: Example FID trace measurements. The total magnetic field at the
atoms is reduced from black to red to blue traces. The frequency of the oscillation
is proportional to the Larmor frequency while the decay time gives the approximate
dephasing time for the optically pumped atomic polarization.

controlled with a Wollaston prism followed by a quarter-wave plate to compensate

for induced ellipticity from the glass vacuum cell’s birefringence. There is also a

half-wave plate which allows arbitrary rotations of the probe polarization relative

to the magnetic fields from the coils.

2.4.1.1 Magnetic Coil Calibration

In this experiment I took care to direct the beam coaxially with the relevant

coil pair to better than one degree, as this keeps the magnetic field degrees of

freedom relative to the light independent in the Helmholtz coils. These coils were

calibrated using a Free-Induction Decay (FID) method. [34–36] This technique is

a highly accurate method of measuring the total magnetic field experienced by the
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atoms. It works by optically pumping the atoms into a maximally-oriented stretch

state (mF = ±F ) with a circularly-polarized light pulse resonant with the F =

2→ F ′ = 2 transition and a non-zero magnetic field perpendicular to the pumping

axis. One then measures the decay of oscillations in the polarization rotation of

a subsequent probe pulse that is not co-linear with the pump. The frequency of

oscillations is proportional to the total Larmor frequency of the magnetic field while

the decay indicates the dephasing time. These oscillations take the form of

φ(t) ∝ G

B2

(
BzBy

(
1− cos(g|B|t)e−t/T2

)
+Bx|B| sin(g|B|t)e−t/T2

)
Fy(0) (2.74)

where G is an empirical coupling constant, Fy(0) represents the initial atomic ori-

entation along ŷ and perpendicular to the probing direction, g = µBgF/~ is the

gyromagnetic ratio, and T2 is the coherence time. Example FID measurements for

multiple magnetic fields are shown in Fig. 2.19.

Since this method is sensitive to the total Larmor frequency, complete calibra-

tion of the fields requires multiple steps:

1. Null Bz, By by minimizing the total Larmor frequency with some Bx 6= 0 field.

This minimizes the cosine term in Eq. 2.74 simplifying the fits to experimental

data. These fits are then performed for a range of Bx that traverses Bz = 0;

the FID gives the total Larmor frequency for the total magnetic field from all

three components.

2. Apply a fixed Bx 6= 0 with Bz minimized such that the sine term is dominant
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(a) Btot extracted from FID measurements as the X-Coil control voltage is swept through
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(b) Btot as the Y-Coil control voltage is swept through By = 0 with Bz 6= 0.
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(c) Btot as the Z-Coil control voltage is swept through Bz = 0 with Bx, By near zero.

Figure 2.20: The resulting data sets from following the calibration procedure in the
text. I fit all data points simultaneously to Eq. 2.74 to obtain the coil calibration
factors and field zeros. Statistical error bars from the fits are significantly smaller
than the plotted data markers.
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relative to the cosine in Eq. 2.74 and step By over a range of values traversing

By = 0. Use FID to extract the total Larmor frequency.

3. Repeat the second step, varying Bz with By minimized.

The result of this process is three sets of measured Larmor frequencies versus the

three perpendicular field directions, an example is shown in Fig. 2.20. I fit the entire

data set to the equation

Btot =
√
G2
x(Vx − Vx0)2 +G2

y(Vy − Vy0)2 +G2
z(Vz − Vz0)2 (2.75)

shown as red lines in Figs. 2.20. The fit parameters Vi0 give the control voltage for

zero field along the ith axis and Gi give the calibration factors that convert between

control voltage and magnetic field. In general, the better Bz, By are nulled the

better the FID fits will be, though exact cancellation is not required at any step for

the overall calibration fit to converge.

Calibration of the coils using FID has a couple significant requirements that

need to be considered. First is that two axes of optical access is required. Second is

that the pumping light pulse needs to be relatively short (order 100 µs). Second, the

magnetic fields need to be constant for the entire T2 decay time in order to obtain an

accurate fit of the Larmor oscillations. Our coil drivers were Kepco Bipolar current

supplies that produce significant 60 Hz line noise magnetic fields. Using tuned 60 Hz

magnetometers I estimated that the line noise field is on the order of 3 mG, which is

more than enough to smear the FID signals. Ultimately it was necessary to trigger
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Figure 2.21: Ambient 60 Hz magnetic noise measured using FID by running the
measurement many times and recording the offset of the FID pump pulse relative to
the 60 Hz period. Significant structure is observed in the magnetic field experienced
by the atoms. When the experiment is triggered on the line frequency, the time
sensitive portions of the experiment are set to be during the relatively steady portion
near 0 delay.
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Figure 2.22: Multiple runs of the FID measurement with the same applied magnetic
field and 60 Hz line triggering. Note that at longer times the small differences in
frequency from shot to shot become more visible. This variation is due to residual
ambient field fluctuations and the presence of magnetic gradients.

the experiment off the line frequency and map out the magnetic line noise to find a

portion of the 60 Hz period with the smallest dynamic changes. Finally, magnetic

gradients within the atomic sample also wash out the Larmor frequency measured

and limit the T2 time which ultimately limits the sensitivity.

2.4.1.2 NMOR Measurement

An NMOR experiment is performed by loading the atomic sample into the

MOT for five seconds followed by brief cooling in the optical molasses with the

MOT fields off. The optical molasses is released and probe light is shined through

the atomic sample. The polarization rotation of the probe light, induced by in-

teraction with the atoms, is measured with a balanced polarimeter as the coaxial
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(i.e. ẑ) magnetic field is swept through zero. The x̂ and ŷ magnetic fields in the

perpendicular plane, which I call “transverse”, are held fixed.

The polarization rotation of the transmitted light is measured using a balanced

polarimeter. This is made up of a half-wave plate, a polarizing beam splitter, and

two photodiodes. The half-wave plate is rotated such that half of the probe light

goes into each detector when no atoms are present. The polarization rotation angle

is then related to the photodiode signals by

φ =
1

2
arcsin

(
S1 − S2

S1 + S2

)
. (2.76)

Note that this measurement is normalized to the total transmitted power, meaning

that common-mode intensity noise is significantly reduced.

While the data can be collected with a continuous sweep of the axial magnetic

field, our data are recorded using discrete steps. A continuous sweep complicates

the analysis in three small but measurable ways. One is the atom loss during the

course of the sweep, resulting in fewer atoms at the end of the sweep than at the

beginning. The second is the induction of the coils causing a delay in achieving the

magnetic field for a given current. Finally, the light-atom interaction time during

the sweep is not constant. Stepping incrementally through the axial magnetic field

values and reloading the MOT prior to each step eliminates these effects.

This experimental setup did not have the ability to actively stabilize the probe

power during each shot. Instead the total transmitted power of the probe measured

by the polarimeter was stabilized before each shot. This appears to have limited
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probe power drifts during shots to less than 1%. In each discrete step, the polariza-

tion rotation signal is sampled after 1.5 ms of light-atom interaction time implying

a ground state dephasing rate of at least γ = 2π × 100 Hz.

2.4.1.3 Experiment –Numerical Simulation Correspondence

In order to relate experimental data to the full numerical simulations outlined

in Section 2.2 I must estimate the probe Rabi frequency and the optical depth of

the atomic sample.

The probe Rabi frequency can be estimated from the total measured power

by

ΩR =
d · |E|

~
=
d

~

√
2P

cε0πw2
(2.77)

where d is the effective reduced dipole moment for the resonant transition, c is the

speed of light, ε0 is the vacuum permittivity, P is the probe power, and w is the

1/e2 waist. This formula is only approximate since it assumes the probe intensity

is constant. Properly estimating the reduced dipole moment can also be tricky.

Ultimately I tuned the Rabi frequency of the model to better match the data. The

estimated Rabi frequency for the standard power used is 2π × 9 MHz.

The optical depth of the sample factors into the data as an overall multi-

plicative factor for the simulation. I estimated our optical depth using absorption

imaging of the atomic cloud. I measured a typical depth of 1.25, though the depth

of the atomic sample does vary from shot-to-shot, even more so over entire data

sets. Again, the final optical depth for each data set was allowed some variation to
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account for this.

2.4.2 “Twist” Dependence on Magnetic Fields

I begin by characterizing the “twist” versus static transverse magnetic fields.

This characterization includes the dependence on transverse magnetic field magni-

tude as well as the angle of the transverse field relative to the probe polarization.

2.4.2.1 Magnitude

The raw data from typical Baxial scans where a transverse field parallel to

the light polarization is applied is shown in Fig. 2.23(a). As expected, the width

of the “twist” changes with the magnitude of BTr. The error bars represent the

standard deviation statistical uncertainty. The results of my numerical simulation,

using no free parameters, is plotted on top of the experimental data. We see that

the numerical model accurately matches the data.

In Fig. 2.23(b) the black points show the measured “twist” width (i.e. the

valley-to-peak width) as a function of BTr, and we see that it scales linearly as

predicted by the perturbation model. This is a satisfying result as it shows the twist

feature can be a useful measure of non-zero transverse field strength. The measured

slope is 0.73, which falls between the predicted slopes from the perturbation model.

We did observe that the measured slope depends on other experimental parameters,

especially the probe power as discussed below. This means that the measured slope

is not universal, but the relationship does appear to be consistently linear in the
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Figure 2.23: (a) Twist’s dependence on the transverse magnetic field strength, lines
are numerical simulation and points are experimental data. (b) Summary of twist
widths & amplitudes versus the transverse field magnitude. In both cases the light
is polarized along the direction of the transverse magnetic field with a fixed optical
intensity of 1.03 mW/cm2.

transverse field magnitude.

The linear relationship seen in Fig. 2.23(b) holds for transverse magnetic field

strengths whose Larmor frequencies (ΩL−Tr) are on the order of the spin coherence

lifetime (1/γ). If the transverse magnetic field is negligible (ΩL−Tr � γ) then the

“twist” contrast is significantly reduced, as seen in the red points of Fig. 2.23(b). If

the transverse magnetic field is too strong (ΩL−Tr � γ), such that the atoms precess

many times within the decoherence time then the feature is essentially washed out.

Note that the lines of Fig. 2.23(b) also come from the numerical model, further

showing the validity of the numerical model in predicting the experimental traces.

The error bars on the data account for discrepancies between the numerical model

and the experimental system.
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Figure 2.24: Impact of the angle between polarization and BTr (a) Points are
Experimental data, while lines are guides for clarity; (b) Numerical simulation.
Both have a fixed transverse field of BTr = 48 mG, and a Rabi frequency of 9 MHz.

2.4.2.2 Orientation

I next vary the orientation of the transverse field relative to the probe polariza-

tion axis. This is accomplished by rotating the plane of the linear polarization with

a half-wave plate relative to a fixed transverse magnetic field. When the polariza-

tion is aligned with the transverse magnetic field, the “twist” is centered within the

NMOR (both vertically and horizontally) and its contrast is maximized. Although

not shown in these figures, I note that when the polarization is perpendicular to

the transverse magnetic field the twist is not observed, rather the NMOR is simply

broadened. In between the two extreme cases, i.e. when there is some interme-

diate angle between the optical polarization and transverse B-field, the “twist” is

pulled vertically off-center relative to the NMOR feature. The “twist” feature itself

remains centered horizontally as the polarization angle is changed; this is distinct

from the effect of elliptical polarization described in the next section.

Figure 2.24 shows experimental (a) and simulated (b) data demonstrating the
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dependence of the “twist” and NMOR features on the direction of the linear po-

larization vector relative to the transverse magnetic field direction. As described

above, transverse magnetic field perpendicular to the light polarization angle causes

the observed offset from zero polarization rotation. The direction of the perpendic-

ular field dictates the sign of the offset relative to the overall NMOR. The numerical

model gives good qualitative agreement. The quantitative overlap is not as good as

in Fig. 2.23 because it was taken before I had configured the line frequency trigger-

ing of the experiment. As a result, the 3 mG 60 Hz magnetic field washes out the

applied magnetic fields making the exact modeling difficult.

As described above, the magnitude of the offset depends on the magnitude

of B⊥ as well as the Stark shift from the optical field. This effect could allow

for some direct calibration of the B⊥ field magnitude. However, I note that the

offset saturates when B⊥ ∼ B‖, which limits the dynamic range of any potential

measurement.

2.4.3 “Twist” Dependence on Probe Field

I also measured the dependence of the “twist” on the ellipticity of the probe

polarization and the probe power. These experimental parameters are not captured

by the perturbative model but the numerical model appears to work well.
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Figure 2.25: Impact of elliptical polarization. (a) Points are Experimental data,
while lines are guides for clarity; (b) Numerical simulation. Both have BTr = 55 mG,
and a Rabi frequency of 9 MHz.

2.4.3.1 Ellipticity

For elliptical polarization, the twist becomes asymmetric, as shown in Fig. 2.25.

I parameterize elliptical polarization using the angle of “ellipticity,” defined as the

arctangent of the ratio of the minor to major axes of the polarization ellipse. As

the degree of ellipticity is adjusted away from zero, we see that although the twist

remains positioned about zero rotation (i.e. horizontal 0 mrad axis), it is not centered

relative to the NMOR feature, and the central zero-crossing no longer occurs at

BZ = 0. These effects are due to the vector component of the AC stark shift,

associated with the circular polarization component of the light, which behaves as

a fictitious magnetic field along the axial direction. [37] This breaks the symmetry

of the real magnetic fields.

As I discussed above, to get pure linear polarization it was necessary to cor-

rect for the ellipticity induced by the birefringence of the glass vacuum cell by using

a quarter-wave plate. The asymmetrically-shaped nature of the signal provided a
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clear, qualitative indication of linear polarization, which made for simple optimiza-

tion of this parameter.

2.4.3.2 Optical Intensity

Figure 2.26(a) shows the “twist” feature’s dependence on optical intensity. At

intensities much lower than those used where the saturation parameter is small,

Ω2
R/Γγ < 1, the “twist” vanishes. Despite being detuned, intensities this small

do not allow for significant AOC and therefore the rank-two polarization moment

(alignment) dominates and does not result in the sign reversal behavior associated

with the “twist.” As the intensity is increased, AOC becomes more prominent and

orientation begins to dominate in the observed rotation signals, which allows the

“twist” to become visible. As the intensity is increased further, the twist contrast

saturates and ultimately diminishes until it is no longer visible. This occurs when

ΩR � Γ.

The range of field strengths over which the “twist” is visible can be parame-

terized by a ratio of the |E| to |B| fields. I will use the ratio of the DC equivalent

Stark shift, ΩS, which is second order in the electric field, to the Larmor frequency,

ΩL. When the light is significantly detuned from resonance (∆p � Γ), this Stark

shift becomes ΩS ' Ω2
R/∆p. In terms of the field ratio, ΩS/ΩL, the “twist” is visible

over roughly two orders of magnitude from 0.01 to 1.0, revealing a wide range of

applicability for these methods.

Note that at increased optical intensity the offset of the “twist” relative to
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Figure 2.26: Experimental data (dots) of the twist’s dependence on optical power
with numerical simulation (lines) overlaid. A fixed transverse field of 70 mG is
applied parallel to the light polarization. (a) Raw data of axial field sweep at three
different optical intensities. (b) The dependence of twist widths and amplitudes on
the Rabi frequency.

0 mrad rotation increases despite the transverse field amplitude being fixed. This

offset was not intentional, but is the result of the limited resolution in current settings

for the B⊥ coils which limits our ability to null that field. This again supports the

hypothesis that the offset is dependent on the optical power.

Figure 2.26(b) shows a summary of “twist” width (black) and contrast (red)

versus the probe Rabi frequency. We see that there exists a peak contrast as can

be expected. We also see that the width is reduced at higher Rabi frequency. Since

the “twist” width is linearly related to the transverse field, the slope versus Rabi

frequency can be found by dividing the measured “twist” width by the transverse

field magnitude of 70 mG. Note that since there is some residual B⊥, some of

this reduction in slope is likely due to the shifting effect as well. However, the

qualitative effect appears to be universal in numerical simulations. Once again, the

lines come from the numerical model, showing good agreement with the experimental
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measurements.

2.4.4 Measuring Magnetic Gradients with the “Twist”

Measuring magnetic gradients can be very important in characterizing the

magnetic fields of working atomic systems. MOTs require significant gradients to

trap, but many applications of cold atoms need gradient free environments. Accurate

measurements of field gradients allows for accurate application and cancellation of

these fields.

There is a natural extension of the NMOR “twist” measurement for static

magnetic fields to measure the static field gradient transverse to the light propaga-

tion direction. This can be done simply by replacing the photodetectors in the above

polarimeter with CCD cameras and imaging the probe light transmitted through the

cloud. Calculation of the polarization rotation at each pixel then follows the same

method as for photodetectors. Note that proper imaging of the atoms is necessary

since the gradient measurement relies on accurate determination of the spacial di-

mensions. This configuration employed 4f imaging with no magnification, meaning

the pixel dimensions can be directly used for the image dimensions.

In Fig. 2.27 I show an example polarization rotation image from the CCD

polarimeter. A probe intensity of 700µW/mm2 was used with an applied static

transverse field of B‖ = 40 mG and an unknown gradient in the same direction. The

axial field is Bz = 50 mG. Quick inspection of the image shows significant structure

in the polarization rotation image.
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Figure 2.27: Image of the Polarization Rotation experienced by the light as it passes
through the atomic cloud. The x,y axes mark the size of the CCD area sensor. This
configuration employed 4f imaging to map the cloud dimensions to these dimensions
one to one.

Before attempting to extract gradient information I need to note that the

atomic density profile is approximately gaussian, as is the probe intensity profile.

Both effect the observed polarization rotation. The reduced density at the edges will

lower the overall contrast of the NMOR signals. The lower probe intensity at the

edges is more complicated, as noted above, in that the “twist” width, contrast, and

offset can depend on the exact probe power. If both gaussian profiles are centered

with respect to each other, one can accurately find the gradient along any line

through the center of the cloud by comparing symmetric points from the center.

At any two equally-spaced points the probe power and atomic density should be

the same. Note that this assumes the atomic motion during camera exposure is

negligible. Using cold atoms ensures this assumption does not impose a significant

limitation to the measurement.

97



-100 0 100

-50

0

50

 P
ol

. R
ot

. (
m

ra
d)

Baxial (mG)

~190 µm  Left
Cloud Center
~190 µm  Right

(a) Measurement of NMOR at cloud cen-
ter (black), 190 µm to the left, and 190 µm
to the right. Note that the “twist” width
changes significantly from zero to approxi-
mately 24 mG which is indicative of a gra-
dient.

-100 0 100

-50

0

50

~285µm Left
Cloud Center
~285µm Right

 P
ol

. R
ot

. (
m

ra
d)

Baxial (mG)

(b) Measurement of NMOR at cloud cen-
ter (black), 285 µm to the left, and 285 µm
to the right.

Figure 2.28: Data from the CCD Polarimeter

Figure 2.28 shows two examples of such comparisons where I have choosen

points along a horizontal line through the cloud center separated by 2× 190µm

and 2× 285 µm in parts (a) and (b), respectively. By looking at the progression

of the “twist” from left to right of the cloud we see that the transverse field goes

through zero at approximately 190µm left of cloud center by noting maximal NMOR

contrast. As we move to the right we see an a “twist” of increasing width.

I can estimate the gradient by using the slope measured above to convert

the “twist” width into a transverse magnetic field amplitude. The 190µm right of

center NMOR trace has a “twist” width of approximately 24 mG. This implies a

transverse field of 33 mG. I approximate the zero field location to be near 190µm left

of the cloud center. Since they experience the same probe intensity, I can reasonably

compare the NMOR directly. Taken together this implies a gradient along this axis
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of 86 mG/cm.

The sensitivity of this method relies on how accurately the “twist” can be used

to measure the transverse field and the spacial accuracy and extent of the atomic

cloud. For this experiment I have an atomic cloud approximately 1 mm in diameter.

Given the above results using the standard polarimeter, I can expect to be able to

measure a minimum transverse field of 1 mG. Therefore the minimum gradient I

can measure is approximately 10 mG/cm.
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2.5 Conclusion

In this chapter I have investigated a sub-feature of NMOR signals known as

a “twist” using laser-cooled atoms. I have shown that this “twist” has a width

that depends on the strength of the transverse field parallel to the polarization

of the probing light field and that this width scales linearly with the transverse

field magnitude. I have also shown that the “twist” depends on the magnetic field

perpendicular to the light polarization, the light ellipticity, and the probe intensity.

I characterize these effects and describe how the “twist” can be used as an in-situ

calibration of magnetic fields and probe polarization. I also describe a proof-of-

principle measurement for imaging magnetic gradients using the “twist.”

I support these measurements with a full numerical model based on the optical

Bloch equations that fits the data with a high degree of accuracy. I also develop

a simplified perturbative model that reproduces many of the qualitative features of

the “twist.” Most importantly, this model predicts the linear relationship of the

“twist” width with the transverse magnetic field magnitude parallel to the light

polarization.

For the presented measurements, the sensitivity to the transverse field is on the

order of 1 mG (with corresponding 1 mG/cm gradient sensitivity). For the purpose

of calibrating and nulling magnetic fields in cold-atom systems this sensitivity is

often sufficient. However, should greater sensitivity be required, the fundamental

limitations are atom number and coherence time. Improved trapping of the atoms
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to either increase the optical depth and/or the light-atom interaction time could

greatly improve the sensitivity of this technique.

Even at the current sensitivity, we have found these signals and associated

techniques to be useful diagnostics for fields affecting our atomic experiments, and

believe they could find use in a variety of other contexts, for example spinor BECs

[38], spin-orbit coupled systems [39], and, more broadly, qubit systems that require

stringent quantum control [40–42].
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Chapter 3: Rydberg Electrometry for

Digital Communication

Rydberg electrometry is the field of using atomic states with large principle

quantum number n as sensors for electric fields. Rydberg states strongly resemble

the classical Bohr model, resulting in relatively large atoms with characteristic radii

many times the Bohr radius. As such, a Rydberg atom has many exaggerated prop-

erties compared with typical neutral atoms, including high sensitivity to external

electric fields. This high sensitivity covers both static and oscillating electric fields

ranging up to ∼ 1 THz.

Modern digital communications rely heavily on RF electric fields to carry in-

formation between remote locations. In general, the RF field acts as a carrier which

is modulated in some way with the desired information then broadcast, often over

free-space. This broadcast is then received, mixed down to remove the carrier fre-

quency, and demodulated to retrieve the information. Due to the wide variety of

applications for remote communications many different carrier frequencies, modu-

lation schemes, and broadcast/receiver systems are necessary. [43,44]

In this chapter I will explore the application of Rydberg atoms as highly sensi-
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tive electric field sensors to the problem of digital communication. I will characterize

the channel capacity of such a device, assess bandwidth and sensitivity limitations,

and determine the fundamental limit on the channel capacity due to quantum noise.

I also provide some theoretical basis for comparing Rydberg atom sensors to their

classical receiver counterparts.
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3.1 Introduction

Large portions of this chapter follow from two of our published works, [2, 3],

organized as follows. I first review Electromagnetically Induced Transparency (EIT)

and extend it to probing Rydberg states of neutral alkali atoms. I then review the

details of Rydberg electrometry for resonant and far off-resonant RF electric fields.

I next review some basics of classical antenna theory to facilitate comparison of

Rydberg atom sensors to classical receivers.

I will then introduce the concept of the Rydberg receiver, based on Rydberg

electrometry, for the purpose of receiving classical, digital communication. I will

present experimental measurements of the channel capacity and limitations thereof

using a resonant RF transition. I next present measurements of channel capacity

for a far off-resonant RF field, where the receiver is in the electrically small regime.

I also show that the receiver performance scales with atom number, indicative of

the standard quantum limit, and I will establish the fundamental limit to channel

capacity for these systems. Finally, I discuss the current limitations to the sensitivity

of Rydberg electrometry, and thereby the Rydberg receiver, as well as potential

improvements that can be made.

Note that [2] only covers the initial demonstration and characterization of

the Rydberg receiver using resonant RF transitions. As we moved to off-resonant

detection in [3] our understanding of the quantum noise in the system improved.

In this chapter I have striven to apply this improved understanding to the original
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work.

3.1.1 Rydberg Electromagnetically Induced Transparency

The production of Rydberg states requires some special consideration. Ideally,

one could use a direct optical transition between the ground state and the Rydberg

state of choice. In practice this is difficult as it requires ultra-violet lasers which

are difficult to produce and use. Instead, multiple excitation fields using multiple

atomic levels are more convenient to achieve the excitation (see Fig. 3.1). In this

work I focus on two-photon excitation: the first 780 nm photon excites through the

standard 85Rb D2 transition to the first excited state, the second 480 nm photon

then excites to the Rydberg state of choice.

Which Rydberg states are accessible is then a question of how broadly tunable

the 480 nm source is and within the last few years reasonable commercial prod-

ucts capable of the power output (> 10 mW) and tunablility (∼ 5 nm) have become

available. Another advantage of two-photon excitation is the possibility of coherent

optical detection of Rydberg states via Electromagnetically Induced Transparency

(EIT), largely due to the long natural lifetimes of Rydberg states.

These long lifetimes can be understood to be the result of two factors: weak

overlap of the Rydberg state with the atomic ground state that limits direct decay,

and reciprocal scaling with the transition frequency that limits cascading decays

through nearby Rydberg states. Both factors can be easily seen by following the

treatment in [45], where the natural lifetime, τn, can be modeled using the Einstein A

106



S P D F

− 4

− 3

− 2

− 1

0
En

e
rg

y
(e

V
)

Figure 3.1: 85Rb States Manifold. Includes states ranging from the ground state to
n = 100 and angular momentum up to F . While any optically-allowed transition is
possible, multi-photon excitation is usually necessary to excite to a Rydberg state
(n > 10) in order to have sufficient energy. Also note that optically-allowed RF
transitions between Rydberg states are also allowed. Due to the presence of so many
levels, many resonant transitions covering the frequency spectrum are available.
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coefficient between the Rydberg state and the various potential decay target states:

A = 1/τn =
ω3

0|d|2
3πε0~c3

. (3.1)

The A coefficient represents the natural decay rate between the two states, where ω0

is the angular frequency and d is the dipole moment of the transition. The transition

frequency to the ground state is approximated as

ω0 =
Ryd

~

(
1

n2
− 1

)
≈ Ryd

~
. (3.2)

The dipole moment between these states, specified in terms of the electron charge,

e, and the Bohr radius, aB, is found by taking the ground state dipole moment and

normalizing it by the excited state.

|d| = 〈n, l| er |n′ � n, l + 1〉 ≈ eaB
√

2/πn3 (3.3)

Putting these together and simplifying gives

A = 1/τn ≈
α4c

3πaB
n−3, (3.4)

which gives the well-known τn ∝ n3 scaling. This scaling has been measured

experimentally and a more accurate empirical formula for rubidium D states is

τnD = (2.09 ns)n2.85.1 [45] For n = 50 this gives τ50D = 145 ns. Exact numerical

1Lifetimes will often be specified by their inverse, rate, throughout this work in units of Hz. A
rate γ specified with frequency f and a lifetime τ are related by γ = 2π × f = 1/τ .
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Figure 3.2: 85Rb |nD5/2〉 natural lifetimes. These times approximately follow a n−3

scaling law.

values for the lifetime are shown in Fig. 3.2. The deviation from the theoretical scal-

ing is due to contributions from the case of cascading decay paths through nearby

Rydberg states. These transitions have significantly stronger dipole moments, as

will be discussed later, but the decay rate is strongly suppressed relative to optical

transitions to the ground state since the transition frequencies are three orders of

magnitude smaller.

As briefly discussed in Section 2.1.2, EIT is a nonlinear effect due to the in-

teraction of at least a three atomic levels, often via optical fields, to produce dark

coherent superposition states. Optically pumping atoms into this dark state pro-

duces an optical transparency that has subnatural linewidth and is readily detected

through various optical methods. In that description the coherence is between two

ground states with infinite lifetime. For two-photon excitation to Rydberg states,
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this description must be generalized to include what are known as ladder, or cascade,

systems.

It is relatively simple to generalize the Λ EIT system to a ladder EIT sys-

tem. In the rotating frame the interaction Hamiltonian describing both systems is

functionally identical. Ultimately, the primary difference is that the highest excited

state has a finite lifetime, yet must be long compared with the intermediate state

in order to maintain sufficient optical pumping into the dark state. Since Rydberg

states generally have a small overlap integral with the ground state (see Eq. 3.4),

the radiative lifetime is generally quite long, scaling with n3 and on the order of 10’s

of µs (Rydberg state lifetimes for the |nD5/2〉 states relevant to this work are shown

in Fig. 3.2). In comparison, the intermediate state natural lifetime for the rubidium

D2 transition is 27 ns, meaning the potential to observe EIT is still present.

To be more concrete, the conditions to observe EIT are outlined in [46]. As al-

ready discussed, the ground/Rydberg dephasing rate γ must be significantly smaller

than the intermediate dephasing rate Γ to support dark coherent states. To low-

est order the ratio Γ/γ of these dephasing rates governs the EIT contrast (size of

transparency window relative to total probe absorption). The necessary coupling

power needed can be reasoned using the dressed-atom picture, where the EIT dark

state is due to the presence of a coupling field with Rabi frequency Ωc that causes

a common-mode splitting of the intermediate state. [47] When these split levels are

within the probing linewidth a coherent, destructive interference between the two

levels produces the transparency. The explicit condition encapsulating this picture

is Ω2
c/Γγ � 1 which enforces that the coupling Rabi frequency in EIT needs to be
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larger than the geometric average of the dephasing rates. Finally, Autler-Townes

(AT) splitting supplants EIT if Ωc & Γ/2. When AT is present, an effective trans-

parency window is still present, though it is no longer due to destructive interference

but instead by producing an avoided crossing between the Stark shifted levels. The

line between EIT and AT splitting is not firm and there exists a region of overlap

between the two effects. Methods of differentiating the two signals exist and I invite

interested readers to peruse the relevant literature. [48–50] From the practical ex-

perimentalist point of view, the difference is immaterial since both effects can result

in a useful transparency window.

In this chapter I will describe excitation of Rydberg states in a thermal vapor

cell. This greatly simplifies the experimental apparatus compared with the MOT

system of the last chapter at the expense of more complicated modeling due to

thermal averaging. While these complications are certainly significant and difficult

to account for when attempting to observe Rydberg EIT, the advantage in simplicity

and the crucial benefit of a metal-free sensing region that will not interfere with RF

electric fields are worth the theoretical headaches. That said, the EIT mechanism

is fairly robust and simple to observe in a vapor cell, as demonstrated first for

high-lying Rydberg states by Mohapatra et. al. in [51].

The complications of using real atoms manifest as various dephasing mech-

anisms when observing EIT. These include: Doppler-averaging, transit dephasing,

and Black-Body radiation induced dephasing. In thermal vapor cell experiments,

Doppler-averaging and transit dephasing dominate the observed EIT signals. I will

briefly discuss their origins and how to account for them.
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Figure 3.3: Typical Rydberg EIT transmission spectrum versus probe detuning,
normalized to the off-resonant probe transmission, for the experimental system.
The broad background is the D2 Doppler background which has a linewidth of
∼ 500 MHz. The larger, narrow transmission peak corresponds to EIT using the
|50D5/2〉 Rydberg state. The smaller transmission peak is the |50D3/2〉 Rydberg
state.
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3.1.1.1 Doppler-Averaging

Doppler averaging can be the source of much frustration when attempting

to model Rydberg EIT signals in warm vapors. Assuming the beam sizes are not

too small (see Section 3.1.1.2), residual Doppler broadening is the dominant effect,

resulting in typical Rydberg EIT linewidths for two-photon excitation ranging from

2 to 20 MHz. These linewidths are obtained by counter-propagating the two beams.

One might reasonably expect the partially canceled Doppler shifts experienced by

the atoms produce the narrow Rydberg EIT linewidths observed. However, this is

not the case. Instead the linewidth is due to velocity selection set by a combination

of the natural linewidth of the intermediate state and the EIT two-photon resonance

condition.

To demonstrate this, I will start by considering the well characterized Doppler

linewidth of the D2 transition in rubidium. A simple expression to approximate

this is: [19]

∆FWHM = 2
√

2 ln(2)
v1Drms

λ
, (3.5)

where v1Drms =
√
kBT/m is the single axis rms velocity of the atoms and λ is

the resonant wavelength. For the D2 transition of rubidium 85 this comes out to

be the expected 515 MHz. When considering partially canceled Doppler shifts like

in Rydberg EIT, one replaces the wavelength with the residual wavelength of the

two-photon transition ((1/780 nm − 1/480 nm)−1 ≈ 1900 nm). This results in a

∆FWHM = 320 MHz, which is significantly larger than the observed EIT linewidth.
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So what gives? Well, two-photon excitation is not a stringent enough condi-

tion in order to observe Rydberg EIT in a Doppler-broadened system. One must

also stipulate single photon resonance for the probing leg of the excitation ladder.

The reasoning is described in [46]. EIT measurements are by nature relative; one

measures the extra transmitted photons due to the presence of the coupling field

relative to the normal probe absorption. Therefore observing EIT requires not only

being two-photon resonant with the dark state, but also that the probe photon is

resonant and strongly absorbing. For a thermal ensemble, velocity classes that ex-

hibit EIT are only those that are both single photon resonant with the probe and

two-photon resonant with the EIT dark state. The probe photon resonance condi-

tion limits the potential velocity classes to those within the natural linewidth of the

intermediate state where the probe is strongly absorbing (2π × 6 MHz for the 85Rb

D2 probing transition). This can be seen in the contour plots of Fig. 3.4. When the

probe detuning is greater than approximately the natural linewidth (corresponding

to the absorption width shown in the plot), the velocity class of atoms that pro-

duces significant absorption is not the same velocity class of atoms that satisfies the

two-photon EIT resonance condition. The result is that the effective rms velocity

of the atoms that you can average over is significantly reduced.

This is not the only effect of Doppler-averaging on the Rydberg EIT linewidth.

Due to the averaging of velocity classes, the coupling Rabi frequency Ωc strongly

influences the observed linewidth. This is because large Ωc leads to AT splitting

as described above, which has a similar transparency window to EIT that is both

wider and with better contrast. When averaging over multiple velocity classes, this
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larger window is not averaged out as easily as the sensitive EIT window. This

dependence can be seen in the reported Rydberg EIT linewidths in thermal vapors

in the literature that vary widely despite using similar atomic systems and excitation

schemes.

To illustrate this point I show numerical solutions of the Optical Bloch Equa-

tions (OBEs) for a simple three-level system in Fig. 3.4 under EIT and AT con-

ditions. For each set of parameters I show three plots of the probe absorption

normalized to the peak, resonant absorption without the coupling light present: a

contour plot of absorption versus atomic velocity class and probe detuning, a plot

of the Doppler-averaged absorption (blue line), and the zero velocity class contri-

bution, ×5 (orange line). The Doppler-averaged trace is simply the sum of velocity

classes at each detuning in the contour plot. The zero velocity class contribution is

analogous to the corresponding Doppler-free signal.

Considering the contour plots, we can see the hallmarks of an avoided crossing,

with the large, negative-sloped absorption line corresponding to the single photon

resonance and the positive-sloped transmission line corresponding to the two-photon

EIT resonance. In Figures 3.4(a & b) we are firmly in the EIT regime (see Table

3.1) and we can see that the EIT window is small relative to the single photon

absorption line. Due to this, summing the velocity classes is likely to wash out the

EIT resonance, as observed in the corresponding blue traces. Note that the Doppler-

averaged EIT window is of similar depths and width despite having very different

Rydberg dephasing rates (200 kHz or 1.2 MHz). While in the Doppler-free traces it

is clear that this rate has the expected effect on EIT linewidth and contrast, those
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(a) Ωp = 2π × 100 kHz, Ωc = 2π × 2 MHz, γ = 2π × 200 kHz
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(b) Ωp = 2π × 100 kHz, Ωc = 2π × 2 MHz, γ = 2π × 1.2 MHz
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(c) Ωp = 2π × 3 MHz, Ωc = 2π × 7.5 MHz, γ = 2π × 200 kHz
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(d) Ωp = 2π × 3 MHz, Ωc = 2π × 7.5 MHz, γ = 2π × 1.2 MHz

Figure 3.4: Numerical solutions of the OBEs for a three-level system with different
probe/coupling Rabi frequencies and Rydberg dephasing rates. The left plots show
normalized absorption versus atomic velocity class and probe detuning. The right
plots show the averaged probe absorption (blue) and the contribution due to the
zero velocity class (orange) times 5 for clarity. Natural linewidth is fixed at Γ =
2π × 6 MHz.
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Panel Ωp Ωc γ EIT: Ω2
c/Γγ � 1 AT: 2Ωc/Γ & 1 Contrast ∝ Γ/γ

(a) 0.1 2.0 0.2 3.3 0.7 30
(b) 0.1 2.0 1.2 0.5 0.7 5
(c) 3.0 7.5 0.2 46 2.5 30
(d) 3.0 7.5 1.2 7.7 2.5 5

Table 3.1: Table of the simulation parameters in Fig. 3.4 and the corresponding
EIT/AT condition indicators.

dependencies are greatly suppressed when Doppler-averaging is added.

In Figures 3.4(c & d) we are firmly in the AT regime (again see Table 3.1) and

we see that the transparency window resulting from AT splitting is large, approach-

ing the width of the single photon absorption linewidth. However, non-zero velocity

classes result in AT peaks with asymmetric absorption and asymmetric splitting

about atomic resonance. When averaging these velocity classes, only the central

transparency remains approximately consistent while the distinct absorption peaks

become washed out. This effect allows for significantly higher contrast windows

with large linewidth, while also being relatively insensitive to the Rydberg dephas-

ing rate. The linewidth itself is on the order of Ωc, tending towards Ωc − Γ in the

limit of large AT splittings.

Many Rydberg Electrometry experiments operate in this AT dominated regime,

including the experiments reported on in this chapter. I still choose to refer to the

resulting Doppler-averaged signals as “Rydberg EIT” or “EIT” despite different

underlying mechanism of the optical detection. I do this because accurately deter-

mining the underlying mechanism can be difficult as there is a smooth transition

between them. More practically, the transparency windows in a Doppler background

that I will show are induced by the presence of a second electromagnetic field, a defi-
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nition that comfortably fits in with a concept known as Electromagnetically Induced

Transparency.

3.1.1.2 Transit Dephasing

As discussed in the last chapter, transit dephasing is related to the amount of

time an atom is in the light field. For thermal atoms, this corresponds to the transit

time, or time it takes a thermal atom to cross the light field. While there are ways

to circumvent typical transit dephasing for atomic magnetometers, those methods

do not work with Rydberg EIT since they are not compatible with Rydberg atoms

as they interfere with the Rydberg atoms directly.

For Rydberg EIT, transit broadening is often the dominant dephasing source.

This is due to the small optical dipole moment for the final excitation to the Rydberg

state being so small that significant focusing of that light is necessary to obtain

optical intensities sufficient to see EIT. The common result is that the light field

region is quite small, resulting in a correspondingly large Fourier broadening.

When estimating transit broadening, I use the method outlined in [52]. In

that work the transit broadened linewidth was estimated to be

γt = (1.13± 0.20)
v2Drms

DFWHM

, (3.6)

where v2Drms =
√

2kBT/m is the 2D rms velocity of the atoms and DFWHM is the

FWHM of a gaussian light intensity profile. Note that the result is in units of rad/s.

Our beam profiler reports beam sizes in 1/e2 diameters so I can modify this equation
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Figure 3.5: Plot showing transit rate versus beam waist at 24 ◦C.

to read

γt =
(1.13± 0.20)√

2 ln 2

v2Drms

w
≈ (0.959± 0.17)

v2Drms

w
(3.7)

where w is the 1/e2 waist of the gaussian intensity profile. A couple example transit

rates from this equation include: 2π × 3.7 MHz for a 10 µm waist and 2π × 37 kHz

for a 1 mm waist. Figure 3.5 shows the transit rate in units of hertz (γt/2π) versus

beam waist at room temperature for rubidium 85.

3.1.1.3 Black-Body Radiation Induced Dephasing

Black-Body radiation due to the thermal temperature of the surrounding envi-

ronment is the source of the next order dephasing. This is due to the spectral profile

of the black-body radiation including frequencies that are resonant with transitions

to nearby Rydberg states. These black-body induced transitions effectively de-
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Figure 3.6: Photon Density versus photon frequency at 24 ◦C. Note that these
frequencies cover the range of resonant Rydberg transitions shown in Fig. 3.8a.

populate the targeted Rydberg state initially excited, resulting in dephasing of the

EIT coherence.

The photon number spectral density is defined using Planck’s Law as

Bph (f, T ) =
8π

c3

f 2

ehf/kBT − 1
. (3.8)

Figure 3.6 plots this equation over the resonant frequency range for the various

Rydberg transitions possible from each Rydberg state.

The influence on the Rydberg state lifetime can be calculated by convolving

this spectrum with the manifold of resonant microwave transitions to nearby Ryd-

berg states. Figure 3.7 compares the Rydberg state lifetimes including black-body

radiation with the natural lifetime of the Rydberg states shown in Fig. 3.2. The
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Figure 3.7: 85Rb |nD5/2〉 Rydberg state relaxation rate without (blue) and including
Black-Body Induced Dephasing (red). The thermal temperature for the red trace is
24 ◦C.

influence of black-body radiation on the lifetimes depends on the n level used, and

is limited to less than one order of magnitude increase for room temperature.

3.1.2 Rydberg Electrometry

The idea of using Rydberg atoms to measure arbitrary, static electric fields was

introduced by Osterwalder and Merkt in [53]. This method relies on the large atomic

polarizability of Rydberg states that scales as n7 which results in relatively large

Stark shifts of the Rydberg state for small electric fields. [45] A related method to

measure RF electric fields was introduced by Sedlacek et. al. in [54]. In this work

they describe how RF transitions between nearby Rydberg levels could be used

to precisely measure the amplitude of those RF fields with unprecedented accuracy.

This is due to the Rydberg transition’s dipole moment, d, which scales quadratically
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with the large, principal quantum number n, d ∼ eabn
2, where ab is the Bohr radius

and e is the charge of the electron. [45] By probing many atoms at the standard

quantum limit, [55] Rydberg sensors have the potential to reach many orders of

magnitude higher sensitivity than traditional electrometers, [56] and have many

other promising capabilities including high dynamic range, [54, 57] SI traceability

and self-calibration, [58–60] and operation frequency spanning from MHz [61] to

THz [62]. Furthermore, Rydberg atom ensembles are well suited to perform sub-

wavelength imaging [62–64] and vector detection [65].

The basic premise for the resonant Rydberg electrometer is Autler-Townes

splitting of RF transitions between nearby Rydberg transitions. When the Rabi

frequency of the RF field, resonant with a Rydberg transition, is large compared

with the linewidth the transition will split with a spacing proportional to the Rabi

frequency. The Rabi frequency is then related to the electric field amplitude by the

resonant dipole moment of the transition,

2π∆fmeas = DΩµ = D
d |Eµ|
~

. (3.9)

The dipole moment, d, is readily calculable using quantum defect theory with high

precision. [45]

I perform these calculations with the excellent Alkali Rydberg Calculator

(ARC) written by S̆ibalić et. al. and I provide some example code using this pack-

age in Appendix B. [66] The factor D is a scaling factor due to Doppler-averaging

and is described in greater detail in the next section. All other values are SI-defined
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Figure 3.8: 85Rb |nD5/2〉 → |(n+ 1)P3/2〉 Transition resonant frequencies and radial
dipole moments.

constants meaning that not only is this measurement highly accurate, but it pro-

vides an SI-traceable measure of RF electric field amplitudes which has not been

possible before.

Because this method relies on resonant transitions, the nominal frequency cov-

erage for the electrometer is discrete. However, there are many, allowed transitions.

Figure 3.8a summarize a subset of these possible transitions versus principle quan-

tum number n that considered in this work between states |nD5/2〉 and |(n+ 1)P3/2〉.

I focus on these transitions since they tend to have larger radial dipole moments,

as shown in Fig. 3.8b. Note that the total dipole moment is the matrix element

〈nD5/2| e~r |(n+ 1)P3/2〉 which can be broken down into two integrals: one with ra-

dial dependence and one with angular dependence. Figure 3.8b shows only the radial

portion which depends on primarily on n. The angular portion is unit-less and de-

pends on the l, j, mj quantum numbers of the states as well as the polarization of
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the RF electric field and typically takes a value of approximately 0.5.

Detection of the level shifts is done using the Rydberg EIT discussed above. As

long as Ωµ � 2ΓEIT, where ΓEIT is the Rydberg EIT linewidth, an accurate measure

of the electric field using the AT technique is possible. [60] When Ωµ < 2ΓEIT, other

methods must be used such as calibrating the EIT transmission window depth as

done in [54, 67] or using the MW modulation technique I will describe in Section

3.2.2.1.

3.1.2.1 Derivation of scaling factor D

While always stated in Rydberg electrometry manuscripts, [54, 58, 60] the

derivation of the scaling factor D in the electrometry context is not readily available

in the literature. Here I provide the derivation, which is a specific application of

the derivations used in the context of fine and hyperfine splitting measurements us-

ing ladder-EIT. [68,69] This derivation was presented in the supplemental material

of [2]. After finishing this dissertation I discovered the derivation could have be

found in the un-titled appendix of Dr. Stephanie Miller. [70]

I begin by supposing a ladder-EIT measurement of an AT-split excited state

like that shown in Fig. 3.12(a) in Section 3.2. In order to see the EIT transmission

peaks the probe and coupling light must be two-photon resonant for some velocity

class of the thermal atoms: ∆p(v) + ∆c(v) = ±Ωµ
2

, where ∆i(v) = δi + v/c (ω0i + δi)

is the detuning of the probe or coupling light seen by atoms with velocity v along the

light propagation direction, ω0i is the atomic resonance, and δi is the light detuning
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from atomic resonance.

If Ωµ is less than the Doppler linewidth of the probing state (∼ 500 MHz for

room temperature rubidium) the strongest observed resonance will always occur

with atoms having a velocity such that the probe is resonant and the two-photon

resonance condition is satisfied (see Section 3.1.1.1). This enforces that ∆p(v) = 0

and ∆c(v) = ±Ωµ/2. Using these relations to solve for the velocity class and light

detuning that satisfies both equations gives the scaling factor D for when either the

probe or coupling light is scanned over the AT splitting.

When the probe is scanned, the coupling light is kept resonant with the atomic

transition, δc = 0. Solving for the probe detuning that achieves resonance with the

AT peaks gives δ±p =
(
∓Ωµ

2

ω0p

ω0c

)
/
(

1∓ Ωµ
2ω0c

)
. Since Ωµ � ω0c for all conceivable

MW powers the denominator can be reduced, leading to a measured probe splitting

due to the excited state AT splitting of 2π∆f = Ωµ
ω0p/ω0c. This gives a scaling

factor D = λc/λp.
2

When the coupling light is scanned, the probe is kept resonant with the atomic

transition, δp = 0. The single-photon resonance condition stipulates that only the

zero-velocity class atoms can interact. Solving for the coupling detunings that

achieve resonance with the AT peaks gives δ±c = ±Ωµ/2. This leads to a mea-

sured AT splitting of 2π∆f = Ωµ and a scaling factor D = 1. Note that using cold

atoms with a small rms velocity will give the same scaling factor.

2Note that this factor is often quoted in its reciprocal form in the literature.
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3.1.3 Electrometry of Far Off-Resonant RF Fields

While resonant RF electrometry is what is typically considered in the litera-

ture, it is also possible to do off-resonant electrometry. If the RF field frequency de-

tuning is on order with or less than the AT splitting, generalized resonant electrom-

etry methods are possible. [71] In the case of far-off resonant RF fields, electrometry

relies on single-sided Stark shifts in contrast with the Autler-Townes common mode

splittings discussed above. In this case the relevant atomic property is known as the

polarizability and strongly resembles measurement of static electric fields. The po-

larizability depends on the RF field frequency and the Rydberg state being probed

and must be calculated using perturbation theory [72] or Floquet analysis [61].

When the RF frequency is both far from resonance and close to DC (i.e.

less than ∼ 100 MHz), the RF polarizability can sometimes be approximated with

the DC polarizability which is readily calculated by diagonalizing the Hamiltonian

describing the Rydberg state manifold for a range of DC electric fields and fitting

the observed level shift. In fact, this type of calculation has been automated by the

ARC package, which is what I use to estimate the polarizability in the low frequency

communication receiver described in Section 3.3.

3.1.4 Classical Antennas & Communication Basics

As has already been demonstrated, Rydberg atoms are highly accurate and

precise sensors of RF electric field amplitudes. This has important scientific im-

plications which I will further explore by quantifying the sensing bandwidth. But
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there is a large, existing field already dedicated to the accurate detection of RF

electric fields: wireless communication. It is only natural to ask what this sensor

can do in the realm of classical communication and that question is the primary

focus of the rest of this chapter. In the course of conducting this research, I have

discovered that direct comparisons to classical antennas/receiver systems can be

difficult. Ensembles of Rydberg atoms are not the same as a dipole antenna. While

their outputs in the presence of RF fields can be made very similar, their underlying

principles of operation are very different, leading to subtleties when attempting to

compare performance. In order to facilitate fair comparisons I include this section as

a brief primer in classical communication basics for the atomic physicist. It largely

draws from the standard textbooks by Hanzo et. al. [43], Stutzman et. al. [73], and

Hansen [74].

3.1.4.1 Carrier Modulation & Channel Capacity

Modern classical communication of information relies on encoding information

into modulations of a carrier RF field with frequency ωµ. These modulations can be

in amplitude, frequency, phase, or combinations thereof. The rate of this modulation

is taken to be the bandwidth (BW) of the communication. A specific example of

a modulated field RF field is: E(t) = E0 cos(ωmt+ φm(t)) sin(ωµt) shown in purple

in Fig. 3.9. The base RF carrier field, E0 sin(ωµt), shown in green in the figure.

It is amplitude modulated by another sinusoidal field (shown in red) at a constant

frequency ωm with variable phase φm(t) (blue). Information is encoded into this
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phase. If the information is encoded as digital symbols sent with a period τsym,3 this

scheme is known as Phase-Shift-Keying (PSK) which will be explicitly demonstrated

in Section 3.2.

E(t) = E0 cos(ωmt+ φm(t)) sin(ωµt) (3.10)

A complete communications system includes a transmitter and a receiver. The

transmitter produces a carrier frequency that is modulated to encode information

and some sort of antenna for coupling the carrier+modulation into a free-space

mode. The receiver performs the reverse of this operation. In many cases the trans-

mitter and receiver are largely the same and can be formed into a single transceiver.

However, in this work I focus on the receiver operation only and generally take

transmission as a priori. Communication at a particular carrier frequency is called

a communication channel.

One of the most important figures of merit for any receiver is the maximum

channel capacity C for a single channel. This is given by the Shannon-Hartley

Theorem in terms of the signal-to-noise ratio in standard deviation (SNR) and the

channel bandwidth (BW), and can be used to determine the achievable communi-

cation rate for a channel given a symbol frequency fsym, the measured signal S in

volts, and the voltage noise spectral density N in volts per root hertz (assumed here

3In this case the bandwidth of communication is equivalent to fsym = 1/τsym.
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Figure 3.9: Components of an example PSK RF communication signal. The green
trace shows the RF carrier signal at frequency ωµ. The top trace shows the output
modulated carrier in purple, overlaid with the amplitude modulation in red at fre-
quency ωm and varying phase φm. The blue trace shows the phase of the modulation
signal φm that encodes the data. A new symbol is communicated every τsym.

to be random white noise): [43,75]

C (bit/s) = BW log2

(
1 + SNR2

)
= fsym log2

(
1 +

S2

N2fsym

)
. (3.11)

The channel capacity is optimized when SNR = 1 and will, in principle, saturate

with increasing fsym beyond the optimal point. I will use the channel capacity as a

figure of merit for comparing the Rydberg receiver to classical receiver systems.

The Shannon-Hartley theorem is a statement about the rate at which informa-

tion can be transmitted over a noisy communications channel within a certain band-

width, assuming an optimal encoding scheme. One can understand the Shannon-

Hartley theorem as follows. The argument of the logarithm gives the number of

accurately resolvable symbols in the transmitted signal given the noise. Typically

the noise depends on the detection bandwidth, linearly in the case of white noise
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shown here. The logarithm base-2 gives the number of digital bits that can be en-

coded per symbol. For example, SNR2 = 1 implies only two resolvable states are

possible, such as the presence and absence of signal, which can only encode 0 or

1. If SNR2 = 7, there are eight resolvable states, where each symbol transmitted

represents 3 bits of information (i.e. perturbations of 000 to 111). The bandwidth

is then the rate at which symbols can be sent.

When optimizing channel capacity, it is always preferable to use a higher

bandwidth until SNR = 1, as channel capacity scales linearly with symbol rate but

only logarithmically with symbol number. Increasing the bandwidth beyond this

point does not necessarily improve capacity since multiple symbol periods have to be

averaged in order to accurately resolve the sent symbol from channel noise. However,

in practical systems there is another consideration that limits operating bandwidth:

spectral efficiency. The electro-magnetic spectrum is not infinite, particularly in

frequency bands where atmospheric absorption is low. In order to leave room in the

spectrum for multiple independent communication channels, the allowed bandwidth

is artificially limited and more complicated encoding schemes are used to improve

the data rate to match the lower channel capacity. Modulation schemes allowing

for upwards of 1024 different symbols are commonly used. [43] I describe such an

encoding scheme in Section 3.2.
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3.1.4.2 Antennas & the Chu Limit

An important piece of the classical receiver system is the antenna. I take a

classical antenna as a passive device that couples generated RF power into some

free-space mode. Since it is passive by design, antennas are completely reversible,

meaning they also couple free-space RF power from a particular mode into a trans-

mission line coupled to the processing electronics. One important figure of merit

for an antenna is its gain or directionality. These terms can often be used inter-

changeably since, as passive devices, antennas can only increase the RF power at

a particular point by focusing the output radiation pattern. A common, though

certainly not universal, measure of gain (and thereby directionality) is dBi, which

is defined as the relative forward gain of the antenna to the same power radiating

isotropically. While such a radiation pattern is difficult to achieve in practice, it is

a useful benchmark. A second common benchmark that I will occasionally refer to

is that of an ideal dipole. Note that the passive antenna typically does not effect

the other operational parameters such as the bandwidth of the receiver system. I

will describe such an instance where this is not the case later in this section.

A complementary way to characterize the gain or directionality of an antenna

is to consider its cross-section or effective aperture. This cross-section corresponds

to the effective area seen by an incident electro-magnetic wave that can capture

power from the field. For antennas this effective aperture is found to be

Area =
λ2

Ω
, (3.12)
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where Ω is the acceptance solid angle of the antenna (maximum of 4π steradians)

and λ the RF wavelength. [76] The total captured power for an incident RF field is

then found by multiplying this cross-section by the field intensity. More directional

antennas have smaller acceptance angles which increases the effective aperture and

therefore the total captured power from an incident field.

Efficient antenna operation requires proper impedance matching of the an-

tenna to both the transmission line and the free-space mode. Impedance matching

is often straight-forward, involving simple elements like resistors, capacitors and

inductors as well as clever antenna design. There is one case where impedance

matching is a significant challenge: the electrically small regime. An antenna in the

electrically small regime is an antenna with a physical size less than λ/10, where

λ is the wavelength of the RF field being transmitted or received. In this regime

the antenna’s impedance can become vanishingly small, making proper impedance

matching difficult. A simple method is to add losses, though this reduces the effi-

ciency. In order to maintain a lossless, impedance-matched antenna, it can instead

be made resonant which will reduce the functional bandwidth. This condition is

encapsulated in what is known as the Chu limit.

What I call the Chu limit was pioneered by Wheeler, Chu, Harrington, McLean,

as well as others and represents a fundamental limitation when using electrically

small antennas. [74,77–80] This limit assumes a lossless, passive device with a char-

acteristic size much less than the wavelength λ of the electromagnetic field being

received or transmitted. If one defines a sphere with radius a such that the device

is completely enclosed, the quality factor Q must be greater than Qchu = λ3/(2πa)3.
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In the limit of large Q the antenna bandwidth is simply related such that BWchu .

f0/Qchu. In the never-ending quest for smaller communication devices, the Chu limit

presents a fundamental challenge. I will address using the Rydberg receiver in the

context of the Chu limit in Section 3.3.

3.1.4.3 Noise Background

Another fundamental challenge to classical communications is atmospheric

noise. In receiver systems, the noise sources are often specified as a noise temper-

ature which is defined as the temperature T that would produce the same noise

power spectral density in a resistor due to Johnson noise, PN = kBT . [73] Specified

this way, noise from different components can be easily summed by adding together

their noise temperatures. This allows one to easily break up the receiver noise into

internal and external sources of noise, Ttot = Tint + Text. The noise temperature of

individual components is often specified as a noise figure, which is defined as the

noise power relative to room temperature, T = 290 K. The noise figure of off-the-

shelf amplifiers, which are typically the dominant internal noise source for a receiver

system, have a noise figure of < 3 dB.

Atmospheric noise represents the limit to the external noise floor for terrestrial

communications. It is a function of pointing angle of the antenna (i.e. pointing the

antenna at the night sky will have a lower noise temperature than looking at the

ground due to differences in black-body radiation) and the operating frequency of the

system (i.e. non-black-body noise sources are typically not white and have frequency
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Figure 3.10: Atmospheric Noise Temperature versus frequency. These temperatures
represent the minimum possible external noise temperature for any Earth-based
communications receiver. Figure reproduced from [81].

dependence). A plot of typical atmospheric noise temperature as a function of

frequency and pointing angle is shown in Fig. 3.10. Low frequencies are dominated

by atmospheric events like lightning strikes and cosmic radiation. Higher frequencies

contend with molecular absorption due to atmosphere composition. Between 1 and

10 GHz there is a window where the fundamental limitation is the cosmic microwave

background. When considering receiver systems, if the external noise temperature

is the dominant noise source, reducing the internal noise temperature of the receiver

is of limited benefit. I will address Rydberg sensor’s noise in Section 3.4.

Note that the fundamental noise limit for any receiver is ultimately quantum

noise due to the discrete nature of the RF field. In principle, the absolute minimum

detectable RF field is made of a single photon. The corresponding noise temperature,
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~ωµ/kB
√
N , where N = 1 is the minimum RF photon number, is also shown in

Fig. 3.10. This noise is significantly lower than atmospheric noise and I will show in

Section 3.4 that the quantum noise due to atom number is significantly larger than

this quantum noise.

Ultimately, the goal of any quantum sensor is to reach the Standard Quantum

Limit (SQL) for the system. Were this to be achieved with the Rydberg electrom-

eter, quantum communication applications using RF photons would be possible in

addition to the classical communication applications discussed here.
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3.2 Digital Communication with a Rydberg

Receiver

Rydberg atoms offer several exciting possibilities to exceed what is possible

with classical dipole antennas for classical digital communication. First, multi-

plexing communication using many transitions from 0.1 to 1000 GHz may lead to

parallel, fast communication in multiple, widely disparate bands. Second, optically-

interrogated Rydberg atoms avoid internal thermal noise that can limit classical

antennas since the internal states of atoms can be optically pumped to effectively

zero-temperature; [82] the readout noise is instead limited by the quantum projec-

tion noise. Rydberg atoms have already been shown to have record sensitivity in

non-perturbative RF electrometry down to 0.3 mV/(m
√

Hz). [67] Finally, Rydberg

atomic receivers could also, in principle, be used for sub-wavelength imaging [62–64]

and vector detection [65]. Recent work has also shown cold Rydberg atoms can

mediate direct, coherent electro-optical conversion of MW photons into the opti-

cal regime via six-wave mixing. [83, 84] Given these potential strengths I introduce

Rydberg atoms as a new potential platform for digital communication worthy of

in-depth study.

In this section, I show that room-temperature Rydberg atoms can be used to

implement a microwave-frequency (MW) receiver “antenna” 4 for classical, digital

communication. I demonstrate phase-sensitive conversion of amplitude-modulated

4This driven atomic sensor may not satisfy the definition of an antenna used in classical antenna
theory since it breaks several common assumptions. See Section 3.2.6 for details.
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MW signals into optical signals and perform a demonstration of 8-state phase-

shift-keying (PSK), the canonical digital communication protocol. I also measure

the bandwidth limit of the electromagnetically-induced-transparency (EIT) probing

scheme and show near photon-shot-noise limited channel capacity of up to 8.2 Mbit/s

for 395 mV/m microwaves at a 17 GHz carrier frequency.

3.2.1 Experimental Configuration

A schematic of the experimental apparatus is shown in Fig. 3.11(a), and

the core elements are similar to those of other EIT-based Rydberg electrometry

work [54, 58]. A MW horn to addresses a 17.0415 GHz transition between the

|50D5/2〉 and |51P3/2〉 states. The resonant MW field establishes an Autler-Townes

splitting, proportional to the MW Rabi frequency Ωµ, which is probed using EIT

(level diagram in Fig. 3.11(b)). The 480 nm coupling beam counter-propagates with

respect to the 780 nm probe to largely cancel Doppler-broadening of the room-

temperature atoms. EIT is observed by either directly measuring the transmitted

probe power (Fig. 3.11(c)) or performing heterodyne detection by interfering the

probe with a 78.5 MHz-shifted local oscillator (LO).

The 780 nm probe light is generated by an external cavity diode laser, linewidth

∼ 150 kHz, that is beat-note locked to a distributed Bragg reflector diode laser stabi-

lized via saturated absorption spectroscopy to a separate reference vapor cell. The

probe light power is actively stabilized using an acousto-optic modulator (AOM)

and is focused to a 1/e2 radius of 100µm at the center of a 75 mm long vapor cell. At
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Figure 3.11: (a) Probe (red) and coupling (blue) light counter-propagate in a vapor
cell of rubidium atoms, forming a ladder-EIT system (shown in (b)) that excites
ground-state atoms to a Rydberg state. Microwaves (green) from a horn antenna
couple the |50D5/2〉 and |51P3/2〉 states, and split the EIT peak. A switch modulates
the microwaves, and thereby the EIT splitting, and this is detected as amplitude
modulation of the probe laser intensity. (c) Probe intensity modulation can be
measured directly with a fast photodetector (d) or measured using an optical het-
erodyne method, where a frequency-shifted local oscillator (LO) beam is mixed with
the transmitted probe.

room-temperature, the measured the optical depth is ∼ 0.4. The strong 480 nm cou-

pling beam is also focused, to a 1/e2 radius of 50 µm, so as to have sufficient coupling

to the Rydberg state and is generated by a commercial doubling system (Toptica

SHG-Pro) that is stabilized to an ultra-low expansion (ULE) reference cavity. This

stabilization reduces the linewidth to approximately 2 kHz. The probe and coupling

light are overlapped using a dichroic mirror. These beams counter-propagate in a

room temperature, natural abundance rubidium vapor cell with vertical linear polar-

izations. The (MW) field to be measured is also vertically polarized and propagates

perpendicular to the light beams.

The MW field at the resonant 17.0415 GHz frequency is synthesized by a

Rhode-Schwarz SMF100A signal generator and is applied to the vapor cell using
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a WR51 waveguide horn antenna. The absolute generator power was calibrated us-

ing standard Autler-Townes measurements with MW field Rabi frequencies greater

than the electromagnetically-induced-transparency full-width half-max linewidth

(ΓFWHM ≈ 4 MHz). The MW field modulation is done using an external MW switch

(Hittite HMC-C019) on the output of the MW signal generator. The phase of the

modulation is controlled via the phase of the TTL-control signal.

The probe intensity modulation due to the amplitude modulated MWs is mea-

sured by a fast photodetector (Thorlabs PDA10A) behind a 780 nm laser line filter

in two configurations. The first configuration is direct detection (see Fig. 3.11(c))

with the signal analyzed using: a lock-in amplifier (Stanford Research SRS865) to

demodulate the signal into I and Q quadratures, as done for the data of Figs. 3.12 &

3.14 (the modulation for 3.12(a) is on the coupling light, the modulation for 3.12(b)

and 3.14 on the MWs); or a digital storage oscilloscope (Keysight DSOX1102G)

to obtain the time-domain response, as done for the data of Figs. 3.15, 3.16, and

3.18. The second configuration is optical heterodyne detection, in which a strong

(∼ 4 mW) local oscillator derived from the probe laser, shifted 78.5 MHz, is inter-

fered with the transmitted probe using a 50/50 fiber splitter. The resulting beat

signal is measured using an identical fast photodetector with the output sent to a

spectrum analyzer (Agilent N9020A), as done for the results shown in Fig. 3.18.

Overall experimental control and timing is implemented using the open-source

labscript suite. [85] Further details about our lab specific implementation can be

found in Appendix A.
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3.2.2 Demodulated Signal

Figure 3.12(a) shows an example measurement of probe transmission, Vtrans,

normalized to the amplitude of the EIT peak V0, observing EIT with the microwaves

on (green trace) and off (blue trace). To send digital information the MW field is

amplitude modulated. The modulation phase ϕµ encodes 8 states, corresponding to

all permutations of 3 bits ranging from 000 to 111. The possible states are shown

in the I-Q plane in the inset of 3.12(b). The amplitude modulation is imposed,

through EIT, onto the probe laser transmission, and the resulting oscillating probe

transmission is then demodulated into an In-Phase voltage VI and a Quadrature-

Phase voltage VQ using a lock-in amplifier.

Five distinct examples of the demodulated signal VI are plotted versus probe

detuning in Fig. 3.12(b). These VI signals are proportional to the subtraction of two

EIT signals Vtrans, with microwaves on and off, such as those shown in Fig 3.12(a),

which leads to features dependent on the MW Rabi frequency Ωµ as described next.

3.2.2.1 Demodulated Signal Dependence on Ωµ

In typical Rydberg electrometry measurements the MW field resonantly cou-

ples two nearby Rydberg states that are then probed using a ladder EIT scheme.

The MW coupling results in Autler-Townes (AT) splitting of the EIT peak that is

proportional to the MW Rabi frequency, by Ωµ = 2πD∆f . This in turn provides

a very sensitive, SI-traceable measure of MW electric field amplitudes, as described

above. [58] However, if the AT splitting is less than the linewidth of the EIT sig-

140



0

50

100

(a)V
tra

ns
/V

0 (
%

)   MW Off
  MW On

-10 0 10

-50

0

50

100

(b)

V
I/V

0 (
%

)

Probe Detuning, δp (MHz)

I

Q ϕμ

Figure 3.12: (a) The observed Rydberg EIT (blue) and Autler-Townes split Rydberg
EIT (green) probe transmissions Vtrans vs probe detuning δp. (b) Example demod-
ulated transmission signals VI with color corresponding to amplitude modulation
phases φµ = 0, 45, 90, 135 and 180 degrees, matching the amplitude modulation
phase states shown in the inset.

nal the splitting is unresolved and other, less exact, methods must be used. [54]

Furthermore, even when AT splitting is resolvable, if the splitting is not greater

than twice the EIT full-width-half-max linewidth, the linear dependence described

above is not valid as the atomic system transitions from an AT dominated signal to

an EIT dominated signal. [60] As a result, techniques for obtaining linear, precise

measures of AT splitting near or less than the EIT linewidth are of particular value

to the accurate measure of MW electric field amplitudes. The demodulated signal

shown in Fig. 3.12(b) has two primary features with widths that depend on the

MW Rabi frequency that are also clearly resolvable well within the EIT linewidth:

the outer peaks splitting and the zero crossings splitting. Furthermore, thinking

of the demodulated signal as the simple subtraction of the AT signal by the EIT
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Figure 3.13: (a) Summary of splittings extracted from demodulated signal. The
black line is the expected linear AT splitting extrapolated from higher MW field
measurements. The red circles are the extracted AT splittings from the Gaussian
based model fits. The green triangles show the splitting between the peaks and the
blue diamonds show the splitting between zero crossings of the signal. The blue and
green lines are linear fits to guide the eye. (b) Amplitude of demodulated signal
with the probe resonant, normalized to the maximum measured signal, versus MW
Rabi frequency.

background hints at the possibility of a way to model the signal to extract the MW

Rabi frequency directly.

Due to residual Doppler-broadening the typical lorentzian peak of EIT be-

comes approximately gaussian. If I assume the AT peaks to also be gaussian I can

write a simple model of three gaussian peaks, one with negative amplitude, to fit

the demodulated signals and extract the AT splitting. Figure 3.13(a) shows the

result of these fits compared with the linear AT splitting expected for higher MW

powers. In agreement with the results of Ref. [60] I obtain non-linear deviations

from the linear AT splitting when the splitting is less than twice the EIT linewidth
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(2ΓFWHM ∼ 8 MHz). This suggests the model is effective at extracting the AT

splitting.

Figure 3.13(a) shows the width of the outer peaks splitting and the zero cross-

ings splitting for the same demodulated signals, the green and blue points respec-

tively. While analytic models of this transitional region are difficult to obtain it is

interesting to note that the dependence on the MW Rabi frequency is linear, even

when the AT splitting is well within the EIT linewidth. As might be expected,

the slope and zero crossings of the linear fits to these data depend on experimental

parameters other than the MW field. However, their linear regions continue into the

well-resolved, AT split regime and therefore could be calibrated precisely using the

AT splitting of higher MW fields, effectively extending the regime of linear response

to MW fields nearly an order of magnitude lower.

Figure 3.13(b) shows the amplitude scaling of the resonant demodulated sig-

nal (shown in Fig. 3.12(b)) versus MW Rabi frequency. As can be expected, the

scaling of the signal magnitude changes as the signal transitions through the EIT

linewidth. This measured scaling allows me to extrapolate the photon-shot-noise

limited sensitivity from the measured SNR of the heterodyne measurement at the

relatively high MW field of 395 mV/m. From this I estimate the photon-shot-noise

limited sensitivity of the Rydberg receiver to be 0.13 mV/(m
√

Hz). Accounting

for the differences in experimental parameters, this value roughly agrees with the

measured photon-shot-noise limited sensitivity reported by Kumar et. al.. [67]
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Figure 3.14: (a) PSK sent and received phase (black and red, respectively) with
Ωµ = 2π × 11.4 MHz at a 40 kHz symbol frequency and an amplitude modulation
rate of 1.98 MHz. The vertical dashed lines delineate the individual symbol periods.
(b) Phase constellation of the received phase in (a) (red line). The axes VI and VQ

are in volts measured at the lock-in amplifier. The dashed lines delineate the eight
phase states. Marker colors ranging from black to green denote the passage of one
25 µs symbol period.

3.2.3 Phase Shift Keying Demonstration

I can demonstrate a PSK protocol by rapidly changing the phase ϕµ of the

amplitude modulation while measuring the lock-in signals at zero detuning. ϕµ is

reconstructed from ϕµ = arctan(VQ/VI). Figure 3.14(a) shows example sent and

received amplitude-modulation phases (black and red traces respectively) where

each symbol representing three bits of data is transmitted for 25µs. Figure 3.14(b)

shows the same recovered signal in the corresponding phase space shown in the inset

of Fig. 3.12(b). Effective signal recovery is done when the demodulation phase is

optimized (i.e. rotation of the phase space) and the clock is properly recovered

(i.e. sampling the correct set of data points spaced by the symbol send period).

The data transmission rate in this experimental configuration is ultimately limited
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Figure 3.15: An example time-domain trace of the transmitted probe signal as MWs
are modulated at 1 MHz. The blue and green regions show when the MWs are off
and on, respectively.

to ∼ 1 Mbit/s by the speed of the lock-in amplifier. This is due to the lock-in

amplifier’s minimum output time constant of 1 µs which limits the symbol rate. In

order to show the potential utility of the Rydberg receiver I next characterize the

more fundamental limits.

3.2.4 EIT Detection Bandwidth Limitations

I first theoretically model and experimentally measure the bandwidth of the

Rydberg receiver. Figure 3.15 shows a typical time-domain trace of the signal where

the MW field is modulated on and off (green and blue regions respectively) at

1 MHz. Exponential time constants are extracted from the signal time traces and

plotted against the relevant pumping rates in Fig. 3.15(b) and (c). This type of

measure for the system bandwidth is similar to switching time measures in photon-

switching [86–88] and cross-phase modulation [46, 89] experiments based on EIT,

which allows me to apply theory developed in those contexts to understand the

limitations of the system bandwidth.

The 1/e fall times τf , corresponding to the MWs being turned on, are shown in
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Fig. 3.15(b) for five different MW powers and a fixed coupling power Pc = 48 mW.

The MW and coupling Rabi frequencies combine to form the characteristic Autler-

Townes pumping rate, ΩAT ≡
√

Ω2
c + Ω2

µ, shown on the horizontal axis. The blue

lines in Fig. 3.15(b) and (c) show results obtained from numerically integrating the

optical Bloch equations for the 4-level system under the same experimental parame-

ters. I apply a constant multiplicative scale factor to these theory lines, correspond-

ing to systematic under-estimation, due to unaccounted-for Doppler-broadening and

magnetic sublevels. The value of this parameter, 1.2, is consistent with similar offset

effects described in [90]. The measured data show good agreement with the numeri-

cal model over the entire experimental range. In the weak probe/strong EIT regime

(Ωp � Γ, Ω2
c/γΓ � 1, where Γ, γ are the dephasing rates for the intermediate

and ground states) a simple analytical model for laser-cooled atoms, which assumes

no dephasing in the ground state, predicts that the fastest possible switching time

is 2/Γ. [91] This model is readily generalized to include ground-state dephasing

(dominated by transit effects, as described in the next section) to give a limit of

2/ (Γ + 2γ) = 1.45/Γ, with γ = 2π × 1.14 MHz as the estimated ground-state de-

phasing rate. The black-dashed line of Fig. 3.15(b) shows this limit. This analytical

prediction is also confirmed by the data.

I note that the above models are best suited to experimental conditions that

result in distinct EIT. Figure 3.16(a) shows the same data and model, but with a

coupling power of 11 mW. We see that while the numerical model reproduces the

qualitative features of the data, the quantitative fit is poor. In the next section

I will discuss some of the limitations of these models. In general I note that the
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Figure 3.16: (a) Measured fall times τf of the time traces versus characteristic
pumping rate ΩAT set by the MW and coupling laser powers. A numerical model
is shown as a solid line, and the dashed black line shows the asymptotic fall time
(1.45/Γ) for pumping into the dark state. Blue is for Ωc = 2π × 8 MHz and orange is
for Ωc = 2π × 3.8 MHz, or approximately 1/4 the optical power. (b) Measured rise
times τr versus the characteristic EIT pumping rate ΩEIT set by the coupling laser
power. The green and maroon points show the measured rise times for the lowest
and highest MW powers measured (Ωµ = 2π×5 MHz & 2π×38 MHz, respectively).
The blue line shows the rise times from the numerical model.

dynamics of this system are complicated and can vary wildly depending on experi-

mental parameters. A general model will require more sophisticated methods than

those employed here.

Figure 3.15(c) shows the 1/e rise times corresponding to the MWs being turned

off, τr. This situation represents the well-studied EIT pumping rate, ΩEIT ≡ Ω2
c/2Γ,

for a ladder EIT system and translates to the time needed to establish the EIT dark

state (i.e. resulting in greater probe transmission). [92] I show fitted rise times for

the lowest and highest MW powers (green and maroon points, respectively) versus

ΩEIT in units of the ground-state dephasing rate γ. In these units, ΩEIT � 1 is

considered to be in the strong EIT regime. As expected, τr scales inversely with

ΩEIT. This also shows reasonable quantitative agreement with the numerical model.
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In Fig. 3.15 parts (b) and (c), for the current parameters, the best achievable rise

time τr is slower than the best fall time τf , showing the system is limited by the

coupling power. However, I note that for a sufficiently strong coupling laser, the

fall-time limit would be the bandwidth limit for the EIT probing scheme.

3.2.4.1 Derivation of τf Limit for a Transit-Broadened Medium

The analytical model for τf described above is generalized from the expression

for τf presented in the footnotes of [91]. It is derived in the context of laser-cooled

atoms, to be

τf =
2
(
γµΓ + Ω2

c + Ω2
µ

)
γµΩ2

c + ΓΩ2
µ

. (3.13)

This assumes a typical N -level configuration with two excited states with natural

linewidths Γ, γµ (for the probing and MW transitions, respectively) and the two

ground states having infinite lifetime. The four levels are coupled together with

optical fields with Rabi frequencies Ωp, Ωc, and Ωµ that correspond to the probe,

coupling, and MW fields used in the experimental configuration. This result is

derived from the optical Bloch equations in the weak probe limit (i.e. equations are

taken to first order in Ωp and all population is assumed to be in the lowest ground

state.). In the limit of large MW Rabi frequency Ωµ the fall time τf approaches a

minimum value of 2/Γ. Assuming sufficiently large Ωc such that the EIT condition is

met, this time sets the basic bandwidth limit for EIT probing of the MW modulation.

For warm atoms, as used in this work, ground-state dephasing due to transit

and other effects must also be considered. Transit dephasing is the result of thermal
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atoms traversing the probe beam profile. While within the profile, an atom interacts

with the light as expected and becomes polarized according to the Hamiltonian of

the system. Once the atom leaves the profile, it is replaced by a fresh, unpolarized

atom, which dephases any coherent effects established. The transit dephasing is

related the the probe beam size and the temperature of the atoms. I estimate the

total ground-state dephasing, including non-transit sources, to be γ ≈ 2π×1.14 MHz

for this experimental setup. [52]

Under the weak probe approximation, using the method of [91] explained

above, and including transit dephasing with all excited-state natural lifetimes for

the experimental system, the optical Bloch equations for the coherences induced by

the probe, coupling, and MW fields are

d

dt
ρ21 = −1

2
(Γ + 2γ) ρ21 +

i

2
(Ωp + Ωcρ31) (3.14)

d

dt
ρ31 = −1

2
(ΓD + 2γ) ρ31 +

i

2
(Ωcρ21 + Ωµρ41) (3.15)

d

dt
ρ41 = −1

2
(ΓP + 2γ) ρ41 +

i

2
Ωµρ31 (3.16)

where ρi1 is the density matrix element representing the coherence between the

i = (2, 3, 4) =
(
|5P3/2〉 , |50D5/2〉 , |51P3/2〉

)
states and the ground state |5S1/2〉. ΓD,P

are the natural lifetimes of the D and P Rydberg states. The probe absorption is

proportional to Im(ρ21) so solving the above equations to obtain an approximate,

first-order differential equation for ρ21 allows me to model the expected exponential

decay of the absorption as the MW field is turned on.
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Taking ΓD,P � γ, the resulting differential equation becomes

d

dt
ρ21 = − 1

τf

(
ρ21 − ρ(SS)

21

)
(3.17)

where the steady state value (proportional to the observed transmission) with MWs

on is

ρ
(SS)
21 =

iΩp

(
4γ2 + Ω2

µ

)
8γ3 + 4γ2Γ + 2γΩ2

AT + ΓΩ2
µ

(3.18)

and the 1/e fall time is

τf =
2 (12γ2 + 4γΓ + Ω2

AT )

8γ3 + 4γ2Γ + 2γΩ2
AT + ΓΩ2

µ

. (3.19)

When Ωµ � Ωc,Γ, γ this reduces to a minimum fall time of 2/ (2γ + Γ), which is

approximately 1.45Γ using the experimental parameters of Fig. 3.16(b). This shows

that transit dephasing allows for fall times to exceed the cold-atom EIT result (2/Γ)

by providing a second loss mechanism for the atomic coherence established in EIT.

In much the same way a parallel resistance can improve the bandwidth of a classical

antenna at the expense of signal efficiency, transit decoherence can improve the

bandwidth of the EIT probing scheme at a cost of reduced signal by acting as an

effective re-pumping mechanism.

Figure 3.17 compares this model to experimental fall time data and the full

numerical model versus coupling Rabi frequency Ωc for a few fixed MW powers. For

the higher coupling powers good agreement with the measured data is observed.

However, the analytical model predicts that the fall time should decrease with de-
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Figure 3.17: Comparison of experimental data to numerical and analytical model
predictions for the fall time τf . The red squares, blue circles, and black diamonds
show the measured τf versus coupling Rabi frequency Ωc for Ωµ/2π = 8.0, 13.4, and
22.7 MHz. The solid lines show the numerical model fits (scaled by 1.2 as described
in the main text) and the dashed lines the analytical model predictions for the same
experimental parameters. The data points at Ωc/2π = 8 MHz correspond to the
middle data points of Fig. 3.16(b).
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creased Ωc. This expected behavior has been seen in similar EIT-based cross-phase

modulation systems where the EIT linewidth, which is inversely proportional to

Ωc, sets the bandwidth of the modulation. [90, 92] However, both the data and the

numerical model show the opposite trend. This is due to a breakdown of the ana-

lytical model as the weak probe/strong EIT regime assumption becomes less valid.

As already mentioned, the EIT regime is when Ω2
c/Γγ � 1 which is only approxi-

mately true for the data presented. In this weak EIT regime greater Ωc leads to a

stronger EIT signal that effectively has a larger linewidth and therefore bandwidth.

Furthermore, due to Doppler-averaging, larger Ωc relative to the intermediate state

lifetime results in AT splitting of velocity classes that average to an even greater

Rydberg EIT linewidth and therefore bandwidth.

In short, increased coupling power to fully obtain the EIT regime, or even ex-

ceed it, is necessary for greater signal bandwidth. However, increasing the coupling

power well beyond the EIT regime will eventually lead to reduced signal bandwidth

as other deleterious effects on the signal make themselves known.

3.2.5 Measuring Channel Capacity

To measure the photon-shot-noise-limited channel capacity the measurement

scheme is changed to the heterodyne configuration (see Fig. 3.11(d)). In hetero-

dyne, gain from the LO amplifies the signal and increases the photon-shot-noise.

For sufficiently high LO powers, the photon-shot-noise becomes the dominant noise

source, allowing one to disregard other technical noise sources. The transmission
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Figure 3.18: Empirical channel capacity versus symbol frequency with an Ωµ =
2π × 8 MHz MW Rabi frequency for two coupling powers: Pc = 48 mW (black)
and Pc = 11 mW (blue). The dashed lines represent the channel capacity including
all noise sources. The lines with symbols represent the channel capacity with only
photon-shot-noise considered. The dotted red line shows the theoretically-predicted
atom-shot-noise limited capacity for the same MW power.
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signal amplitude S = Vtrans and output voltage noise spectrum N is recorded using

a spectrum analyzer. Measuring these quantities versus the symbol frequency (as-

suming one symbol per modulation period) allows for calculation of the maximum

attainable channel capacity via Eq. 3.11. Figure 3.18(d) shows the empirical channel

capacities for the highest (black) and lowest (blue) coupling powers. The dashed

lines show the channel capacity including all measured noise sources (i.e. detec-

tor and laser frequency noise) while the lines with data points show the channel

capacity with only photon-shot noise. There are three primary regions of interest.

For low symbol frequency the channel capacity is limited by the modulation rate,

and shows a linear rise in capacity. The channel capacity then peaks when SNR

is reduced to 1 by the increasing photon-shot noise and decrease in signal, due to

the limiting bandwidths τr and τf described above. For higher symbol rates the

bandwidth-limited signal reduction dominates and the channel capacity decreases

rapidly.

The maximum empirical channel capacity for the Ωµ = 2π× 8 MHz MW field

(395 mV/m) shown is 8.2 Mbit/s at a 4 MHz symbol rate. As already described,

this capacity is significantly limited by the EIT probing scheme and the associated

photon shot-noise. Even so, the sensitivity of the photon-shot-noise limited Rydberg

receiver detecting a ∼ 13 mV/m MW field would still allow for a channel capacity

of 10 kbit/s which is sufficient for some applications such as audio transmission.

Fundamentally, wave-function collapse limits the SNR when using Rydberg

atoms, or any other sensor made of 2-level quantum systems, to the Standard Quan-

tum Limit for measurement of a quantum phase φ. I will discuss this limit in more
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detail in the next section. For now I show an estimated, quantum-limited, channel

capacity as the red dashed line of Fig. 3.18. It assumes the same magnitude RF

field and an atom number of N = 1000.

3.2.6 Contrast with Classical Receivers

Determining the utility of a Rydberg receiver for classical communication re-

quires a direct comparison to current classical antennas. Unfortunately, such com-

parisons are often simplistic and potentially even misleading because the Rydberg

receiver and a classical antenna fundamentally differ in operation. A classical an-

tenna is a passive device that couples power from a free-space mode of the MW

field into a transmission line. It is a sensor that measures RF power. The Rydberg

receiver is sensitive to the perturbations caused by the presence of electric fields.

On average it does not absorb MW photons but rather performs a non-perturbative

measurement. It is a sensor that measures the local RF electric field. Moreover, it

does so in a way that is not directly dependent on size of the device, which is very

different from the classical analog of measuring the voltage on a wire to determine

the electric field applied.

The implications of this fundamental difference for communications reception

are widely varied and understanding them can inform where potential applications of

the Rydberg receiver may lie. For instance, non-perturbative measurement of wire-

less signals may be desirable for covert signals interception. This non-perturbative

measurement of electric field is also what allows the Rydberg receiver to have good
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Figure 3.19: Comparison between (a) Rydberg receiver system and (b) classical
receiver system. Each system uses the same transmitter where a MW carrier ωµ
modulated at a rate fm with a switch. The phase of this modulation φd is varied to
encode the information to transmit. The blue outlined regions denote the receiver
portions that detect the transmitted field and mixes it down to baseband. The final
portion demodulates the baseband signal at frequency fm. Phase sensitive detection
reproduces the sent φd as φrec which is then interpreted as the transmitted data. The
Rydberg receiver in part (a) includes the optional, but typically necessary, optical
frequency modulation (FM) to produce of local oscillator (LO) for optical mixing
to improve the SNR of optical detection of weak fields.

sensitivity and bandwidth performance in the electrically small regime.

Another important difference between the Rydberg receiver and a classical

antenna is their function in a classical communications architecture. Figure 3.19

provides a simplified block diagram of an entire communications system with trans-

mitter and receiver for the case of the Rydberg receiver (a) and a classical antenna

receiver system (b). In both systems, there are four operational components: encod-

ing, transmitter, receiver, and decoding. The encoding stage takes input information

and and encodes it into the phase of some modulation on a MW carrier. This mod-

ulated signal is then broadcast into a free-space mode by a classical antenna. The

MW field propagates through free-space where the receiver detects the signal and

reproduces the modulation from the transmitted field at baseband. The decoding
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stage then performs phase sensitive detection of the modulation to recover the trans-

mitted signal. The blue highlighted components show the receiver portion of each

system, which points to the hurdle in making fair comparisons between a Rydberg

receiver and a classical antenna. The classical antenna alone cannot produce an out-

put at baseband (modulation at DC instead of the carrier frequency), whereas the

Rydberg receiver can because demodulation from the carrier is performed internally

via the atoms.

Note that the reception mixing stages in both systems require frequency sources

that are stable relative to the input frequencies that transmitted the signal. How-

ever, only the classical receiver requires a MW frequency source, which can be diffi-

cult for high frequencies or when the local interference cannot be tolerated (such as

in RADAR where the reception MW source can leak out of the reception antenna

and cause interference for other receivers of the same field). The Rydberg receiver

instead uses the atoms as the MW reference. While not strictly necessary, detec-

tor noise often necessitates some kind of comparable optical mixing to improve the

SNR. However this mixing can be done internally to the receiver at a significantly

lower frequency than ωµ, though greater than fm.

By nature of its design, the Rydberg receiver is a natural interface for trans-

duction of modulation on a MW carrier to modulation on an optical carrier. This

makes the system a natural fit for Radio-over-Fiber applications, as suggested in [93].

In effect, the sensitivity of Rydberg atoms allows the Rydberg receiver to be an un-

usually effective electro-optic modulator with a free-space drive; an unusual, yet

interesting device. While the optical carrier is currently in the near-infrared band
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which does not have good propagation characteristics, there are more amenable

infrared transitions in the spectra of the alkali atoms (rubidium has transitions at

1324 nm and 1367 nm for instance) that can be linked into the EIT detection process

through three-photon excitation. [94]

The broad-band nature of the Rydberg sensitivity to MW electric fields is also

an important fundamental difference to a classical antenna. The vast number of MW

resonant transitions in the Rydberg state manifolds allows for high SNR reception

at a broad range of carrier frequencies ranging from approximately 100 MHz to

1 THz. The only change required to detect each field is tuning of optical wavelength

within a range of 10 nm, a feat that is possible with speed and accuracy for modern

laser light sources. Furthermore, as I demonstrate in the next section, off-resonant

detection of MW fields can also be done with high SNR, meaning that effectively

the entire frequency spectrum from quasi-DC to 1 THz can be detected. This opens

up the possibility of simultaneous reception at wildly disparate carrier frequencies,

fast carrier frequency hopping reception, and broad-spectrum characterization of

unknown frequency fields all with the same device.

Another curious aspect of the Rydberg receiver is the potential for vector de-

tection, as demonstrated by [65]. It relies on the relative orientation of the MW

polarization relative to the laser polarizations. By including configurable polariza-

tions of the light field, one could conceivably distinguish between MW fields with

different polarizations or even directions without physical adjustment of the sensor,

a feat only possible in more complicated and difficult to manufacture phased-arrays

antennas.
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Related to vector detection is the potential for sub-wavelength imaging, al-

ready demonstrated many times in the context of Rydberg electrometry. [63, 64]

In the context of digital communications, sub-wavelength imaging techniques could

also be used to implement highly accurate directionality measurements of incoming

communications.

In conclusion, Rydberg receivers open up many potential avenues of exciting

possibility. I emphasize that these opportunities do not exclusively rely on absolute

performance characteristics such as bandwidth or sensitivity, but more on the funda-

mentally different method of reception that allows for completely new capabilities,

some likely yet to be proposed.
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3.3 Digital Communication in the Electrically

Small Regime

Antennas do not obey Moore’s law. As cutting-edge devices become smaller

and smaller, the communication transmitter and receiver antennas present signifi-

cant size constraints [44, 73]. This is because fundamental principles limit the per-

formance of a traditional antenna that is significantly smaller than the wavelength

of the electromagnetic field being detected, λ. Specifically, a lossless, resonant,

electrically-small antenna of characteristic radius a is guaranteed to have a quality

factor Q greater than the Chu limit, QChu = λ3/(2πa)3, that limits the operation

bandwidth to BWChu . f0/QChu for carrier frequency f0. Discovery of modest opti-

mizations within the Chu limit constraint is still an active area of research [95, 96],

as well as exploration into alternative communications technologies, (e.g. based on

acoustics or active circuits) that are not subject to the Chu limit [97,98]. Here I in-

troduce another alternative path: using a quantum sensor operating at the standard

quantum limit (SQL) to receive classical communications.

In this section I describe a modification of the Rydberg receiver system de-

scribed in the last section such that it can detect RF electric fields ranging from

10 kHz to 30 MHz. The 7 cm vapor cell used has a corresponding electrical size a

ranging from λ/800k to λ/270 which places this system well inside the electrically

small regime. I will show measurements of the channel capacity of this electrically

small system and compare it with the expected channel capacity of a Chu-limited
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antenna of the same size as the vapor cell. The Rydberg receiver system outperforms

the Chu-limited antenna by over four orders of magnitude over the tested frequency

range.

3.3.1 Far Off-Resonant Configuration

The modified system employs far off-resonant electrometry methods using Ry-

dberg atoms. As described above in Section 3.1.3, off-resonant electrometry employs

frequency shifts of the EIT resonance due to the presence of electric fields. In much

the same way resonant electrometry uses field dependent shifts to measure modu-

lated RF signals, the off-resonant electrometry also measures modulations of low

frequency RF fields.

A simplified version of the modified experimental setup and level diagram is

shown in Fig. 3.20(a) and (b). Using two parallel plates separated by 60 mm, a

transverse low-frequency electric field is driven by a square wave function generator

(Rigol DG4162). The 480 nm (blue) beam (tuned to the 85Rb |5P3/2, F = 4〉 to

|50D5/2〉 transition) and the 780 nm (red) beam (tuned to the |5S1/2, F = 3〉 to

|5P3/2, F = 4〉 transition), counter-propagate to establish nearly Doppler-free EIT.

The vapor cell is heated to approximately 60 ◦C using metallic heating elements at

either end of the cell. While these elements have a perturbative effect on the E-field,

it is small due to the long characteristic wavelengths and small plate gap used.

In the regime of low-frequency E-fields, the Stark shift of the Rydberg state,

δω = 1
2
αE2, where α is the scalar polarizability of the atomic transition, is approxi-
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Figure 3.20: (a) Experimental Setup: Configuration is a modification of the resonant
configuration in Fig. 3.11. The RF field is applied to the cell by two large plates.
Detection is done using the heterodyne technique. (b) Level diagram for the Off-
Resonant Configuration. The RF field causes Stark shifts of the Rydberg state that
can be detected using Rydberg EIT.

mately constant over the frequency range tested. In the presence of an approximately

static electric field, the |50D5/2, |mj| = 1/2, 3/2, 5/2〉 Rydberg states split into three

distinct levels due to the tensor component of the polarizability. I have calculated

the polarizabilities of these states to be α = 2π × (−36, 42, 212) MHz/(V/cm)2 re-

spectively using the ARC package (described in detail in Appendix B) [66]. This

calculation assumes approximately static fields, which is a fair approximation when

the frequency is far from any atomic resonances. The nearest Rydberg-Rydberg

transition for |50D5/2〉 is the 17 GHz transition used above. However, potential res-

onances were observed at much lower frequencies near 50 MHz likely due to intra-

level transitions. The following description avoids these resonances for the sake of

theoretical simplicity in the ultimate analysis.

Figure 3.21 shows a plot of the EIT transmission profile with no electric field

(red), and with an electric field of 0.4 V/cm applied (blue). Due to the shielding

effect of vapor cells (described below) this measurement was performed by square-

modulating the electric field at a rate of 1 MHz from 0 to 5 V. The DC component
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Figure 3.21: When no E-field is applied, a single EIT transmission window is
observed (red). Low frequency electric fields cause scalar and tensor Stark shifts,
that split the resonance into three peaks (blue).

is shielded resulting in the atoms experiencing, on average, ±2.5 V. The Stark shift

is insensitive to the sign of the field resulting in an effectively constant electric field,

producing a “constant” DC Stark shift of the Rydberg state’s three mj sublevels. To

detect electric fields, the change in transmission of the 780 nm probe laser through

the cell is measured as the EIT resonance is shifted due to the applied electric

field. As before, the 780 nm probe beam is overlapped with a strong heterodyne

local oscillator (LO) detuned by 78.5 MHz to obtain high SNR optical readout.

In contrast to RF systems, optical heterodyne detection allows readout with zero

thermal noise; here the observed quantum shot noise is 6 dB greater than detector

noise.

This experimental configuration is highly sensitive to low frequency electric

fields. While I do not explicitly demonstrate a modulation protocol like in the last

section, the principle remains the same. The RF field modulated the probe transmis-

sion through the cell and changes in the phase of that modulation can be detected
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as corresponding changes in the phase of the probe transmission modulation.

3.3.2 Measuring Channel Capacity

As before, I use channel capacity as defined in Eq. 3.11 as the figure of merit.

This quantity is obtained by measuring the SNR for detecting the RF field as a

function of modulation bandwidth. Instead of explicitly operating at many different

frequencies, I can apply a step function in the electric field, as is done in Fig. 3.22,

and measure the SNR of detecting the step as a function of measurement band-

width. Specifically, for each applied step in the field, the probe transmission signal

is averaged in a time window of length td (pink window in Fig. 3.22(b)) placed adja-

cent to the step. The outcome of this average can be used to determine a sent data

symbol.5 To change the effective bandwidth, the length of the averaging window

td = 1/fd is changed.

As seen in Fig. 3.22(a) the square wave modulation of the electric field going

from zero (on EIT resonance)to 0.8 V/cm (Stark shifted out of EIT resonance) is not

directly mapped to the probe transmission for long timescales as one might expect.

This is due to shielding of DC electric fields in the vapor cell, an effect observed in

vapor-cell based systems and is attributed to free charges in the glass cell shielding

the electric field. [61, 72] This manifests as the probe transmission relaxing back to

the 0 field value over 0.5 ms in the particular cell used (procured from Precision

Glass Blowing). Given the slow relaxation time, signals with bandwidths greater

5For communication purposes, absolute determination of the electric field strength is not nec-
essary. When necessary, signal recovery techniques can be used as real-time calibrations.
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Figure 3.22: (a) At t = 0 s, a square pulse is applied to the electric field, changing
the electric field from zero (on EIT resonance) to 0.8 V/cm. The probe transmission
rapidly follows the applied field, but then slowly relaxes over 0.5 ms due to free
charges in the glass cell that shield the electric field. (b) SNR vs fd measurement.
The probe transmission is averaged in the pink window over 100 independent mea-
surements. The average and standard deviation for these 100 measurements gives
the SNR.

than ∼ 100 kHz are largely unaffected. I note that we tested a number of vapor cells

from Triad and found that all had different relaxation times for the same applied

field, with most being significantly faster than the cell ultimately used. The only

obvious difference was noticeable rubidium build-up on the walls of the Precision

Glass cell, which is likely the cause of the slower relaxation.

The SNR is determined from the outcome of 100 independent measurements

of the electric field, where the average of the window averages is proportional to the

signal and the standard deviation gives the noise. The resulting SNR for detecting

an electric field as a function of data rate is shown as black solid data points in

Fig. 3.23a. By independently calibrating the PSN level, I can measure and subtract

out additional 1/f laser noise that contributes at low frequencies (plotted as open

circles in Fig. 3.23a). For simplicity I have chosen the electric field strength to create

Stark shifts on the order of the EIT linewidth. However, using active stabilization of
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Figure 3.23: Measured Channel Capacity of the Electrically-Small Rydberg Re-
ceiver. The statistical error bars for both plots are smaller than the data point
markers.

the probe laser to the EIT feature, the dynamic range can be made much larger than

the linewidth. For strong fields, Rydberg state mixing must be accounted for. [61]

Figure 3.23b shows the data capacity C (black points), with no noise sub-

tractions, inferred from the measured SNR and data rate of Fig. 3.23a using the

Shannon-Hartley theorem. At the optimum data rate the achieved Copt = 4× 107 bit/s.

The pink line is the fitted standard quantum limited capacity described in Section

3.4.

3.3.3 Comparison with the Chu Limit

Figure 3.24 presents a basic comparison between the measured channel capac-

ity and the classical data capacity bound arising from the Chu limit. To determine

the Chu-limited data capacity, one needs to know both the bandwidth and the SNR

of the classical antenna. Here I consider an efficient classical antenna with maxi-
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mum Chu-limited data rate fd ∼ BWchu, whose enclosing sphere [77] has the same

radius, a, as that required for the Rb vapor cell (a = 3.75 cm). I assume the classical

antenna to be subjected to 50 Ω Johnson noise at room temperature, and plot for

the experimental electric field, 0.8 V/cm.

The black data points of Fig. 3.24 show the experimentally measured maximum

channel capacity from Fig. 3.23b. To obtain the maximum channel capacity, I choose

the optimum data rate fd to maximize the capacity at each carrier frequency f0 while

enforcing fd <= f0. At f0 = 107 Hz, the optimum data rate fd = f0 = f ∗d is reached.

Subsequent increases in fd only reduce the capacity, resulting is a saturated capacity

when f0 > f ∗d . The pink line, again, represents the fitted model described in the next

section corresponding to the standard quantum limit. I note that the measurements

are quantum-limited.

The Rydberg receiver outperforms the efficient electrically-small antenna by

a factor of more than 104 at 10 MHz, and the advantage is even more extreme at

lower frequencies. For the a = 3.75 cm antenna considered here, the Chu-limited

and projected quantum-limited performance cross at f0 ≈ 1.5 × 108 Hz, as the

traditional antenna leaves the extreme electrically small regime. To be clear, there

are other methods that surpass the nominal Chu-limited data capacity, such as using

inefficient designs,6 active Non-Foster circuit elements [98, 99], or non-impedance-

matched antennas (viable when the field wavelength is long and reflections can be

tolerated). Despite these details, I expect that a Rydberg atom based receiver can

6Traditional AM radio receiver antennas in cars (meter scale) are a good example, which operate
with approximately 5% efficiency to reach audio bandwidths [73].
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Figure 3.24: The Chu limit to data capacity for an efficient 7 cm classical antenna
is shown in green (see text for details). The corresponding maximum measured data
capacity of the Rydberg sensor is shown as black points. The maximum standard
quantum limit CMax for the experimental parameters is shown in pink (described in
the next section).

provide significant benefits in both sensitivity and bandwidth for certain applications

requiring electrically small antennas.
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3.4 The Standard Quantum Limit for Digital

Communication

In the previous two sections I have shown the measured the channel capacity

of the Rydberg receiver and made some comparisons to classical analogs. In this

section I will delve in to one of the unique aspects of the Rydberg receiver relative

to a classical system: the fundamental quantum noise due to finite atom number. I

will demonstrate that the current systems have sufficiently low atom number such

that the hallmarks of quantum noise are observable. I will also define the standard

quantum limit for channel capacity and show that the data represents this limit

once quantum efficiency of the EIT detection is accounted for.

3.4.1 The Standard Quantum Limit

Any quantum sensor based on 2-level systems observes an applied electro-

magnetic field as an evolution of a quantum phase φ in the superposition state

|ψ〉 = 1√
2
(|g〉 + eiφ |e〉) with ground and excited quantum states |g〉 and |e〉. In

the case of low frequency sensing, studied in Section 3.3, an applied electric field

E changes the atomic transition frequency by an amount δω = 1
2
αE2/~, where α

is the atomic polarizability. In the case of resonant electrometry studied in Section

3.2, the shift δω = 1
2
℘|E|/~, where ℘ is the resonant dipole moment of the |g〉 → |e〉

transition. In a sensing time td, δω accumulates into the evolved quantum phase

φ = δω× td. When operating with N independent atoms, the individual collapse of
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Figure 3.25: The quantum limit for data capacity. Data can be sent, for example,
by encoding information in the strength of the electric field. The quantum sen-
sor detects symbols by measuring the evolved phase φ at the end of each period,
therefore inferring the transmitted symbol (right axis).

atomic wave-functions into either |e〉 or |g〉 limits the resolution of a measurement

of φ to the SQL, ∆φSQL = 1/
√
N , where ∆ denotes the standard deviation.

Figure 3.25 shows how noise like that due to the SQL limits digital communi-

cation. As described earlier this chapter, the continuous observable φ can be broken

into a number of discrete binary symbols (for example, 2 bit permutations ranging

from 00 to 11 as shown in the figure). The symbols may be transmitted by changing

the amplitude of a static or oscillatory electric field with nominal amplitude E0.

Symbols are received at bandwidth fd by allowing φ to linearly evolve into a spe-

cific binary state in time td. In the optimum case, readout is much faster than td

and is considered an instantaneous sample where quantum noise is observed as an

instantaneous uncertainty to each readout of φ (shown as red distributions at each
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sampling point).

3.4.2 The Standard Quantum Limit for Channel Capacity

Combining the Shannon-Hartley theorem and the SQL, I derive the quantum-

limited data capacity, for N independent atoms, to be

CSQL = fd × log2

(
1 +

δω2 ·N
f 2
d

)
. (3.20)

CSQL increases with fd until the argument inside the logarithm becomes approxi-

mately 4.92. This occurs at an optimal (denoted by a star) data transmission rate

f ∗d = 0.505× δω
√
N . The corresponding optimal quantum-limited data capacity is

C∗SQL = 1.16× δω
√
N . An important aspect of this quantum limitation is that the

only way to increase the SNR, and thereby the data capacity, of a Rydberg receiver

is to probe a higher Rydberg state (the polarizability increases as n7 and the dipole

moments as n2) [45], to probe more atoms, or entangle the atoms.

One important caveat to Eq. 3.20 is that, in practice, 100% efficient probing of

quantum systems is very difficult to achieve. In the specific case of optical probing

as done with the Rydberg receiver, any losses of signal photons or spurious noise

photons in the signal reduce what is known as the quantum efficiency, QE, which

reduces N to Neff = QE · N . Optimizing the quantum efficiency for probing the

quantum systems is another avenue for increasing the practical performance of the

Rydberg receiver.

Finally, for the sake of completeness, I allow δω to reduce to δωeff. This
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accounts for unknown systematic effects, such as field shielding, that alter the ex-

perimental result from the theoretical prediction. In the context of determining

the quantum noise limit, the absolute value of δωeff is largely irrelevant since these

changes can be experimentally calibrated out. This is not true for sensitivity com-

parisons to classical receiver systems where effective reductions in the received field

directly influence the sensitivity.

3.4.3 EIT, Photon Shot Noise, and the Standard Quantum Limit

In the Rydberg receiver, optical detection of atomic systems is performed using

Rydberg EIT. I can model this detection at the quantum level, assuming a few

approximations, as outlined in Fig. 3.26. Under conditions of EIT, the intermediate

state of EIT can be eliminated leaving an effective two-level system analogous to

that used to derive the quantum-limited channel capacity, see parts (a-b). This two-

level system can be further generalized by changing to the EIT bright/dark state

basis (part (c)). In part (d) I show the steps of EIT detection using Bloch spheres in

the basis of part (c). Each atom is first optically pumped into the EIT dark state.

The atom then accumulates phase from the applied electric field, rotating the Bloch

vector towards the equator, or equal super-position between dark and bright states.

The atom is then probed and the superposition collapses into the bright or dark

state and one of two things occurs: the bright state scatters the probing photon,

which is now correlated to an atom in the bright state, into free-space; or the dark

state allows the photon to transmit. By measuring how many probe photons are
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transmitted relative to EIT without any applied field, one can determine the value

of φ, the accumulated phase and thereby the electric field amplitude. This type of

measurement is considered state selective in that transmitted photons are indicative

of an atom being in the dark state.

In many quantum sensors, state selective readout means photon shot noise

(PSN) is uncorrelated with atomic shot noise. [100] This is because both collapsed

states are typically in some long-lived state that can be probed many times, in-

creasing the signal to noise. In EIT, on the other hand, scattering of a photon

has a one-to-one correspondence with atom wave-function collapse. Explicitly, the

SNR observed is determined by the number of atoms that collapse into the EIT

bright state, absorbing and scattering photons out of the probe beam during the

communication time td. This leads to a quantum-limited SNR,

SNRSQL = δωeff · td
√
Neff. (3.21)

Here Neff = QE·N is the effective atom number for which quantum-limited operation

is observed and accounts for imperfect quantum efficiency in the detection due to

signal photon losses, detector noise, spurious photons from finite optical depth,

etc. I also define the effective Stark shift δωeff that accounts for reductions in the

signal due to additional decoherence, non-optimal probing, and shielding effects

(with associated signal efficiency Qsig), δωeff = δω ×Qsig.

If the symbol period td is longer than the coherence time of the dark state in

the presence of the electric field, an atom is likely to scatter many times during a
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Figure 3.26: (a) The Rydberg EIT system used in Section 3.3. (b) When EIT
conditions are satisfied, the system from (a) can be reduced to a two-level system
with a ground and excited state. The applied electric field shifts the excited state
by δωeff. (c) Changing basis from (b) to the EIT bright and dark states. An atom
is in a super-position of both states and the applied electric field gives a phase shift
φ = δωeff · τd. (d) Bloch spheres showing the EIT detection process using the model
from part (c).
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(a) Directly measured SNR (black points) and SNR with technical noise subtracted (open
circles) is plotted versus fd, as shown in Fig. 3.23a above. At high frequencies, there is
a standard-quantum-limited SNR 1/fd scaling (red dash). At lower frequencies, there is
a steady-state, 1/

√
fd scaling (blue dots). The data is fit to the complete quantum noise

model (pink line). The SNR data (open circles) lie within two standard deviations of the
fit over the fitted range of fd = 5× 104 Hz to fd = 107 Hz. The larger deviations at low
frequencies are due to the cell shielding effect.
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(b) The SNR for receiving symbols in a bandwidth fd = 0.5 MHz as a function of the
effective atom number. The data is fit to a square-root scaling.

Figure 3.27: Demonstration of Quantum Limited Performance with the off-resonant
Rydberg Receiver. Figure (a) shows the different scaling regimes for quantum noise
in digital communication. Figure (b) shows the scaling of the SNR with effective
atom number.
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single symbol. In this steady-state (SS) regime, the SNR is

SNRSS =
√
Neff · td/τ , (3.22)

where τ is the characteristic time for an atom to transition from the dark state to the

bright state and scatter a photon. In Fig. 3.27, SNRSS is displayed as a blue dotted

line. If td < τ , atoms collapse, on average, less than once in the symbol period. In

this regime, the SNR can approach the quantum limit. SNRSQL is plotted as a red

dashed line in Fig. 3.27.

I fitted the observed SNR in Fig. 3.27 to a model combining the two SNR

limits, SNRSQL and SNRSS:

SNRtot (fd) =

√√√√( 1

SNR2
SQL

+
1

SNR2
SS

)−1

=

√√√√√
(
δω2

effNeff

f2
d

)
·
(
Neff

τfd

)
(
δω2

effNeff

f2
d

)
+
(
Neff

τfd

) (3.23)

Since the applied Stark shift is larger than the rubidium D2 excited state lifetime

(Γ = 2π × 6 MHz), I can set the scattering rate 1/τ in the model to be the upper

bound, Γ/2, described in Section 3.2. I allow δωeff and Neff to be fit parameters. The

fit is plotted as a pink line in Fig. 3.27(a). The fit returns δωeff = 680(60) kHz and

Neff = 63(7). From this I deduce Qsig ≈ 3%. Further, the measured optical depth

and EIT contrast allows me to approximate the total number of atoms participating

in EIT to be of order 104, which gives the total quantum efficiency QE of approx-

imately 0.5%. These returned values are in rough agreement with what I expect

from known inefficiencies. There is also a distinct transition from the steady state
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PSN regime to the SQL regime at 800 kHz, a frequency governed by τ . Previous

Rydberg electrometry experiments have focused on lower bandwidth sensing, and

have not explicitly reached the regime of SQL scaling. [67] However, I emphasize

that atomic wavefunction collapse, resulting in quantum noise in the transmitted

light, limits the SNR at all bandwidths, even in the steady-state regime.

Figure 3.27(b) shows the SNR for detecting a symbol in a bandwidth fd =

0.5 MHz as a function of the effective atom number Neff. Neff is adjusted by taking

the SNR at different effective static electric fields which moves the EIT two-photon

transition off of resonance by different amounts. Figure 3.27(b) shows that the SNR,

limited by atomic wavefunction collapse manifesting as PSN, indeed scales as
√
Neff

(fit displayed as solid orange line). This scaling is observed in both the steady state

and SQL-scaling regimes and can be equivalently viewed as either a consequence of

atomic wavefunction collapse or photon shot noise.

More broadly, Figs. 3.23b & 3.27 associates the performance of the atomic

sensor used for classical data reception to the foundational quantum principles

governing the system. This is important, for one, because it sets a fundamental

bound–much like the Chu limit for traditional antennas–on the system’s capabili-

ties based on the basic resources used. Second, the ability to relate the receiver’s

performance to the underlying quantum dynamics also alludes to the potential for

Rydberg atomic sensors to extend communication into the quantum regime. Cur-

rent work in this area is ongoing [84, 101–105]; I hope that these results further

inspire quantum communication tools based on Rydberg vapor cell platforms.
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3.4.4 Quantum Limits for Resonant Electrometry

I can also apply a similar analysis to the SNR measurements from the resonant

Rydberg receiver of Section 3.2. Figure 3.28 shows these measurements, with (filled

circles) and without (open circles) technical noise, along with the SNRSS scaling,

again as a blue line. However, unlike the off-resonant data shown above, the high

bandwidth region has 1/f 2
d scaling. It is not immediately obvious why this scaling

does not follow the expected 1/fd scaling from the SQL. To get an accurate fit of

these two regions, I generalize the model from Eq. 3.23 to include this unknown

scaling:

SNRres =

√
1

fdτ
Neff

+
f4
d

b4

, (3.24)

where b and Neff are fit parameters and τ = 2/Γ is fixed. The fit gives Neff = 1.5

and the free parameter b = 2π × 0.94 MHz.

Please note that this data was taken before we arrived at the more complete

understanding of how quantum noise limits the Rydberg receiver described above.

As a result, the differences shown here were not immediately apparent and as such

were not explored in more detail. Ultimately, the two systems are different at a

basic level and the quantum model used to derive the above quantum limits in the

off-resonant configuration does not accurately capture the dynamics of the resonant

case. Further investigation is needed to determine how the SQL effects the resonant

Rydberg electrometer.
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Figure 3.28: Directly measured SNR from the resonant receiver of Section 3.2. The
filled circles show the measured SNR with Ωµ = 2π × 8 MHz, with the open circles
showing the SNR with technical noise (predominantly detector noise) subtracted
off. Similar limiting behaviors are observed as in the off-resonant case: the same
steady-state region (blue short dashed line) as shown in Fig. 3.27 as well as a region
with 1/f 2

d scaling (green dash-dot line). The purple line shows a fit combining
both regions to the data. The red open squares show the SNR with technical noise
subtracted for Ωµ = 2π × 4.5 MHz. The solid red line shows the combined SNR
regions fit for this lower power data.
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3.5 Sensitivity of the Rydberg Receiver

In much of the above discussions as well as other recent works studying Ryd-

berg atoms as receivers, [93,106–108] the absolute sensitivity to the free-space carrier

field has taken a back seat to the detection bandwidth. While we specify the electric

field applied, the absolute value is often an arbitrarily chosen value and is naturally

calibrated out when measuring the bandwidth. When considering digital communi-

cation applications, both the bandwidth and the sensitivity matter, which is why I

have used the channel capacity as a figure of merit. As described above, this figure

of merit emphasizes bandwidth at the expense of sensitivity, which can conceal the

fact that the sensitivity of the Rydberg receiver is not very competitive with classical

antennas unless the carrier frequency is above ∼ 40 GHz. As discussed in Section

3.2.6, sensitivity comparisons between antennas and the Rydberg receiver can be

tricky since antennas detect RF power in a free-space mode and Rydberg atoms

detect the local electric field amplitude. In this section I will show how to convert

between local field strength and mode power in order to have a direct, quantitative

comparison of field sensitivity. I will then discuss how to significantly improve the

sensitivity of the Rydberg electrometer.

3.5.1 Resonant Rydberg Electrometer/Receiver Sensitivity & SNR

The current record for sensitivity with a resonant Rydberg electrometer is

found in Ref. [67] and is 3 µV/(cm
√

Hz). This measurement was taken well into
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the low-bandwidth, steady-state regime with an integration time of approximately

1 s, so it represents an optimistic bound on the sensitivity for a Rydberg receiver

operating at higher bandwidths. This sensitivity can also be calculated from system

parameters using:

|Emin|√
Hz

=
h

℘µ
√
NeffT2

, (3.25)

where ℘µ is the resonant dipole moment, Neff is the effective number of atoms probed

at the SQL, and T2 = 1/ΓEIT is the Rydberg state decoherence time (inverse of the

Rydberg EIT linewidth). Using the measured sensitivity, linewidth, and calculated

dipole moment from [67], their Neff ≈ 0.8.

The sensitivity defined in Eq. 3.25 is analogous to the quantum noise used

in SNRSS defined above in Eq. 3.22. Comparing that result with Eq. 3.25 shows

how one can relate experimentally quantifiable SNRs in the low bandwidth limit to

electric field sensitivity.

SNRLow-BW =
|E|℘µ

√
NeffT2 · T
~

= Ω
√
NeffT2T =

√
NeffT/τ , (3.26)

where T represents the averaging or evolution time for an RF field with amplitude

|E| and is assumed to be much longer than the coherence time T2. I have also

defined a new parameter τ = 1/(T2Ω2). The physical interpretation of τ is the

average time for an atom initially in the dark state to evolve towards the bright

state until it scatters a probe photon. For the resonant Rydberg electrometer, the

Rabi frequency is defined as Ω = ℘µ|E|/~. Here I have implicitly assumed that the
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Rabi frequency is equivalent with the phase accumulation rate ωeff defined in the

quantum model of Section 3.4.2. Given the data in Section 3.4.4 this is likely not a

great assumption for resonant electrometry, but I will use it as a best case scenario

in order to have quantitative numbers to compare.

In the high bandwidth limit, I assume that T � T2, and can therefore replace

the coherence time with the averaging time T leading to the high-bandwidth SNR:

SNRHigh-BW = ΩT
√
Neff. (3.27)

Note that the SNR and therefore the realizable electric field sensitivity can, in

principle, be predicted for the entire BW range as long as two of the three experimen-

tal parameters (Ω, T2 or τ , Neff) are known. In the experimental systems described

above the realized quantum efficiencies for detection make accurate, absolute deter-

mination of these parameters difficult. In the following I will describe experimental

techniques that should improve them, making the Rydberg electrometer more sen-

sitive, and will use my best judgment when making quantitative estimates for the

expected sensitivity of the proposed, optimized system.

3.5.2 Converting to Power Sensitivity

Converting the sensitivity in Eq. 3.25 to a power unit more typical of a receiver

specification requires an assumption about the area over which the electric field is

measured. Since the Rydberg receiver measures the local electric field amplitude, its

size is only important in dictating how many atoms are involved in the measurement,
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not the magnitude of the electric field measured. In contrast, the power of an electric

field that can be coupled into a classical antenna depends strongly on the size of the

device. Therefore, a fair comparison between electric field sensitivity and RF power

sensitivity requires an assumption about the effective size of the antenna to which

one compares. Since this size can vary wildly depending on application, carrier

frequency, and desired bandwidth, general comparisons are difficult. In the interest

of being fair, but also competitive, I will compare with an ideal dipole antenna and

an antenna the size of the sensing volume of the Rydberg Receiver.

The specific area required to convert electric field to power is the effective

aperture, A. This is determined empirically for most real antenna systems, but

theoretically-idealized systems can be used to determine the effective aperture. For

an ideal dipole with length � λ that is impedance matched to the radiation resis-

tance the maximum effective aperture is [73]

Adip =
3

8π
λ2. (3.28)

Again note that for electrically small antennas (size < λ/10), this maximum is

difficult to achieve due to the impedance matching assumption. By the Chu limit,

a properly impedance matched electrically small antenna must be resonant and

therefore have reduced bandwidth in order to reach this maximum effective aperture.

One can use the effective aperture of the comparison antenna to convert the

Rydberg electrometer sensitivity to an equivalent power sensitivity. The noise in-
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tensity in bandwidth, BW, of the low-bandwidth Rydberg electrometer is

Inoise =
|Emin|2 BW

2η
=

h2BW

2η℘2
µNeffT2

, (3.29)

where η ≈ 377 Ω is the impedance of free space. The associated noise power over

the effective aperture is

Pnoise = Inoise · Aeff. (3.30)

Conversion to the high bandwidth limit only requires letting T2 → 1/BW.

Conversion in the opposite direction is also readily available. One only needs

to determine the external and internal noise temperature of the receiver in ques-

tion, combine with the effective aperture, and the noise floor in electric field units

compatible with the Rydberg receiver is easily found. As an example, if I assume a

noise temperature of 298 K and an effective aperture of an ideal dipole for a 17 GHz

carrier, the noise floor is

Edip =
√

2kBTη/Adip ≈ 3 nV/(cm
√

Hz). (3.31)

This value is three orders of magnitude lower than the current record for reso-

nant Rydberg electrometer sensitivity. Given that the Rydberg receiver sensitivity

is at best the low bandwidth electrometer sensitivity, significant improvements are

necessary for the Rydberg receiver to have comparable sensitivity to classical dipole

antenna.
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3.5.3 Improving the Sensitivity of the Rydberg Receiver

In this section I will outline methods for approximating both Neff and T2, which

dictate the sensitivity, and suggest an experimental configuration that can increase

both parameters. The python code used to calculate the following estimates can be

found in Appendix B.

Since the sensitivity is limited by quantum noise at all bandwidths, the only

improvements to be had are to either probe more atoms, probe with higher quantum

efficiency, increase the coherence time, or take advantage of entangled or squeezed

states. Entanglement and squeezing is beyond the scope of this current work since

there are a number of immediate, easier improvements to be made. But first I must

describe how to estimate Neff and T2.

I will start with T2, the Rydberg state coherence time, since fewer elements

factor in to its determination. More importantly, it is also easy to experimentally

measure. In the Rydberg electrometer, the Rydberg coherence time is simply the in-

verse of the Rydberg EIT FWHM linewidth, ΓEIT. There are four primary influences

to this linewidth in the configurations described above in Section 3.1.1: the natural

lifetime of the Rydberg state, black-body induced dephasing, transit broadening,

and finally Doppler-broadening. If higher density vapors or higher n Rydberg levels

are used, Rydberg-Rydberg and Rydberg-Ground collisional broadening must also

be considered. [2, 56] Typical linewidths for Rydberg EIT range from 2 to 20 MHz.

This gives a typical range for T2 of between 80 and 8 ns. Note that the Rydberg

natural lifetime, which is the fundamental limit to T2 can be orders of magnitude
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higher, leaving significant room for improvement.

I next address Neff, which necessitates estimating the number of atoms ex-

cited to the Rydberg state inside the sensing volume (probe and coupling beam

intersection volume) as well as the quantum efficiency of probing those Rydberg

atoms.

The density of rubidium atoms in a thermal vapor can be easily found by

the use of the empirical formulas from [109]. When using a thermal vapor, the

light fields do not interact with all of the present ground state atoms within the

volume. If the vapor cell has natural abundance rubidium, only 72.172% are 85Rb.

Further, the fine structure splitting of the ground state is large enough that only

atoms in one ground state can be interacted with at a time. The sublevels of

these ground states are populated equally and the above experiments use the higher

F = 3 state, so the density is further reduced by a factor of 7/(7 + 5). Finally,

the vapor is in thermal equilibrium, meaning the atoms are distributed in velocity

according to the Maxwell-Boltzmann distribution. Under conditions of EIT, only a

small portion of those velocity classes can participate in the resonance. An effective

way to empirically estimate how many atoms are excluded due to this is to take the

ration of the EIT linewidth and the probing transition Doppler-broadened linewidth,

which is approximately 500 MHz in rubidium. Finally, when EIT is un-ideal and has

contrast sub-100%, the EIT contrast gives the number of potential atoms interacted

with that are actually excited to the Rydberg state. Care needs to be taken when

applying the contrast in this calculation since other effects beyond the efficiency of

Rydberg excitation influence it. The resulting density can then be used with the
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sensing volume to estimate the number of Rydberg atoms excited.

The number of Rydberg atoms excited is only half of the equation. Assuming

technical noise has been sufficiently reduced such that noise is predominantly quan-

tum, I must also determine the quantum efficiency with which I can probe these

atoms. The quantum efficiency of detection can be limited via two mechanisms: loss

of signal photons and the presence of non-signal photons. This can be seen by con-

sidering the SNR for photon shot noise, which is proportional to Nsig/
√
Ndet, where

Nsig is the number of detected signal photons andNdet is the number of total detected

photons. I can define a quantum efficiency q = Nsig/Ndet representing the addition

of extra noise photons. Defining a second quantum efficiency Q = Ntrans/Ntot that

accounts for photon losses leaves SNR =
√
QqN where N is the total number of

signal photons that interacted with a Rydberg atom.

The efficiencyQ includes losses due to absorption in windows and mirrors, fiber

coupling losses, 50/50 beamsplitter losses from heterodyne and homodyne detection,

and detector efficiency.

The efficiency q accounts for the extra photons from finite optical depth and

improper beam overlap. Efficiency loss due to finite optical depth is due to photons

that would not be absorbed even in the absence of EIT are also detected and cannot

be distinguished from signal photons. This is estimated by comparing the EIT

contrast to the overall absorption contrast. Imperfect overlap of the probe and

coupling beams also effects q in the same way since transmitted probe photons from

spatial regions of the probe beam profile that do not overlap the coupling beam

cannot participate in EIT. Assuming gaussian profiles for both beams, the ratio of
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probe power inside the 1/e2 waist of the coupling is erf
(√

2R
)
, where R is the ratio

of the waist of the smaller coupling beam to that of the larger probe.

Accounting for known elements in the configuration from Section 3.3 I expect

a Q ∼ 3% and q ∼ 20%. Methods from improving these efficiencies are included in

the next few sections.

3.5.3.1 Increasing Sensing Volume

The most important thing anyone can do to increase Neff is to simply increase

the number of Rydberg atoms in the sensing volume. There are two ways to do this:

increase the density of atoms or increase the volume being probed. Increasing the

density relies on heating the vapor cell, which comes with a number of complications:

increased dephasing due to black-body radiation, transit effects, and eventually

collisional effects between Rydberg states. The collisional effects are of particular

importance since Rydberg-Rydberg interactions in the form of Rydberg blockade

will limit the possible density of Rydberg atoms. Heating the cell with elements

that are transparent to RF fields is also non-trivial. As a result, it seems better to

increase the sensing volume.

In the two-photon configurations described above, I can roughly estimate the

sensing volume by taking the cross section of the smaller of the two overlapped

beams and multiplying by the length, L, of the cell:

V2-photon = πw2
0L. (3.32)
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Assuming the Raleigh range of the focused beams is larger than the cell, this is a

reasonable approximation.

Since meter-long vapor cells would be impractical, the way to significantly in-

crease the sensing volume is to use larger beams. The current hurdle for large beam

sizes is the EIT requirement of strong coupling Rabi frequency with simultaneous

small dipole moments on the coupling transition, making significant focusing neces-

sary. One potential workaround is to use a build-up cavity on the coupling light. A

simple Fabry-Pérot cavity around a vapor cell can somewhat easily have a Finesse

in excess of 100, meaning light in the cavity, on average, will pass though the sys-

tem 100 times. [110] This would give an effective enhancement of the intra-cavity

intensity by the same factor. Significant increases in coupling intensity would allow

for a much larger beam. Sufficient probe power to match that beam size is easily

obtained to maintain the same Rabi frequency ratios for EIT. Using a 1 mm waist

beam in the above experiments would increase the sensing volume by a factor of

400.

Large beams also give the advantage of reducing the observed transit broad-

ening. Again comparing with the above experiments, using a beam with a 1/e2

waist of 1 mm would reduce the transit broadening to 2π × 40 kHz; which is signif-

icantly closer to Rydberg natural lifetime and represents a reduction of two orders

of magnitude.
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3.5.3.2 High QE Probing

Above I describe using optical heterodyne detection in order to overcome tech-

nical noise sources. Heterodyne, and the related homodyne, detection is very effec-

tive at making photon shot noise limited optical measurements with small probing

powers. This detection scheme requires overlapping the probe field with a local

oscillator field, resulting in a 50% loss in probe photons. To improve the overlap a

fiber beam splitter was used which necessitated fiber coupling the probe light, which

leads to even lower quantum efficiency.

Frequency Modulation spectroscopy implemented in [67] presents a promising

alternative. It requires neither fiber coupling the signal beam nor beamsplitter mix-

ing while still allowing one to improve on technical noise. Effectively this is because

the modulation sidebands on the probing light act as the reference which is already

mode-matched to the signal beam. Direct detection with a fast photo-detector gives

high SNR readout. In [67], this probing method allowed them to achieve the cur-

rent sensitivity record for Rydberg electrometry and they were ultimately limited

by poor probe beam overlap reducing their quantum efficiency.

Another aspect of improving the probing quantum efficiency is to reduce the

number of noise photons. This means proper overlap of the coupling and probe

beams and attaining high EIT contrast. One can also increase the optical depth,

either by heating or using a longer sample. Assuming size is a constraining factor,

some heating to increase optical depth at the expense of increased dephasing mech-

anisms described above may be recommended. In the context of a Rydberg receiver,
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heating will always help since the dephasing mechanisms primarily hurt T2, which is

irrelevant for high bandwidth detection, assuming the method of heating does not

shield the incoming RF field.

3.5.3.3 Doppler-Broadening

Finally, elimination of Doppler-broadening would be beneficial for low band-

width sensing as it allows one to increase the T2 coherence time. In warm vapor

this is possible by using excitation schemes with more than two transitions and us-

ing non-orthogonal geometries to cancel Doppler shifts. This type of cancellation

was attempted in [111]. They were able to observe coherent signals, but they were

transit broadened significantly due to low available power in the coupling beam ne-

cessitating tight focusing. As a result, they were unable to observe the expected

narrowed EIT linewidth. If one were to combine a three photon configuration with

the build-up cavity discussed above to maintain large beams, I would expect sig-

nificantly longer T2 times, though they would likely still be transit limited to some

extent.

A three-photon system would affect other aspects as well. The Doppler-free

configuration will limit signals to approximately the zero velocity class only, reducing

the atom number. Beams also do not counter-propagate resulting in comparatively

smaller sensing volumes. Assuming sufficient power in the intermediate transition

beam such that it can be large enough to illuminate the entire intersection of the
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probe and coupling beams, the sensing volume is defined as

V3-photon =
16

3 sin θ/2w3
, (3.33)

where w is the waist of the probe and coupling beam and θ the the angle between

their center axes.

3.5.3.4 Estimated Improvement to Rydberg Electrometer Sensitivity

In Appendix B I include a python notebook that accounts for these various

consideration and calculates estimated sensitivities for a low bandwidth Rydberg

electrometer. Using experimental parameters from Section 3.2 I estimate a sensitiv-

ity of 300 nV/(cm
√

Hz), in rough agreement with the measured sensitivity estimate

described in Section 3.2.2.1 of 1.3 µV/(cm
√

Hz).

I also include a calculation for a hypothetical three-photon system that takes

advantage of a build-up cavity on the coupling beam to increase the beam sizes.

It uses a |5S1/2〉 → |5P1/2〉 → |6S1/2〉 → |48P3/2〉 excitation scheme. The required

wavelengths are 795 nm, 1324 nm, and 740 nm, which are readily available with

significant power. Overall I expect a smaller overall atom number with higher de-

tection efficiency and a much longer T2 time to give a sensitivity of approximately

70 nV/(cm
√

Hz). This sensitivity would represent nearly two orders of magnitude

improvement over the current record in [67].

I note that this sensitivity is still an order of magnitude higher than the classi-

cal antenna external, room temperature noise floor calculated above. While further
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technical improvements to the Rydberg electrometer setup are possible, I stress that

this system will likely only be on par with classical receiver systems in most cases.

In order to determine potential application spaces relative to classical systems, it

will likely be more fruitful to rely on the Rydberg sensor’s fundamentally different

properties.
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3.6 Conclusions

In this chapter I have outlined two experimental configurations of the Rydberg

electrometer and applied them to digital communication. I have characterized their

operation bandwidth and found them to be limited by the EIT probing system to

the order of 10 MHz. I have also explored using this sensor in the extreme electri-

cally small regime and shown that it outperforms Chu-limited classical systems. I

have shown that Rydberg EIT systems exhibit scalings consistent with the standard

quantum limit due to the underlying quantum noise from detecting wavefunction

collapse. This implies that improving sensor performance will rely on increasing

atom numbers and quantum efficiencies. Finally, I have included a discussion of the

sensitivity of the Rydberg electrometer and a future path for dramatically increasing

its sensitivity.

The Rydberg receiver is a fundamentally different system for performing digital

communication reception. In this work I have explored some of the potential avenues

where this type of system could have real-world benefit. Applications that require

a sensor with broad operating range, electrically small footprint, perturbation-free

detection, direct RF-to-optical conversion, and/or RF oscillator-free reception seem

particularly appealing. Further basic research into the capabilities and limitations

of this sensor are necessary to determine what may be possible. I expect that

communications with Rydberg atoms will be a field of particular interest in the

future and may even provide another practical device platform that relies on the
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principles of atomic physics.
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Appendix A: labscript Experimental

Control

When transitioning from the NMOR experiment of Chapter 2 to the exper-

iment of Chapter 3 I desired to also transition away from the legacy LabVIEW

control system that was written in-house. Like many one-off experimental control

systems written by physicists, it suffered from severe spaghetti code syndrome mak-

ing the system very difficult to maintain and augment. I was also determined to

move away from LabVIEW itself to avoid the cost and the various idiosyncrasies of

programming large, complicated projects.

I performed a broad search of Open-Source experimental control systems re-

leased by other experimental groups. The desire was to select something written

in a friendlier language, undergoing active development, and with reasonable adop-

tion to provide an active user base that can furnish bug reports and development

support. I ultimately settled on labscript developed at Monash University for a

couple of BEC experiments there. [85] labscript is a python-based experimental

control system with a modular design. This system was chosen over others largely

to take advantage of the simplicity of a scripted language like python, because one
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of the primary developers had recently taken a post-doctoral position nearby at the

JQI, and the base hardware support included most of the devices we already owned

(Spincore Pulseblaster Digital Output Boards, Novatech DDS, National Instruments

DAQs).

labscript is primarily made up of three separate programs with their corre-

sponding graphical user interfaces: runmanager, BLACS, and lyse. These programs

interface by passing around paths to experiment files that contain instructions, run

variables, return data, and analysis results. A typical run of the experiment begins

by first using runmanager to take a master script written in python that employs

device class drivers to compile the various instructions, timings, and variables into

instrument level instructions. The file is then passed to BLACS which interprets the

instructions, programs the various devices, executes the experiment, then takes any

measured values and saves them to the experiment file. Finally, BLACS sends the

completed experiment file to lyse which runs user-defined analysis scripts, saving

the results back to the experimental file. At the end of each shot a complete record

of the run, its results, and the analysis is created. Complete, arbitrary sequences of

experimental parameters can be configured using runmanager to provide complete

data sets for lyse analysis. We have found this system to be powerful enough for

our needs while remaining relatively user friendly to the average atomic physicist

who is familiar with python programming.
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A.1 Adoption

I have since configured three separate experiments to use the labscript ex-

perimental control system. Each experiment uses varying, yet similar, hardware.

Overall, adoption has gone fairly smoothly. We use the Anaconda Python distri-

bution in order to have simple installation and package control on our Windows

systems. While highly configurable, it is important to choose the correct bit-ness

for the Python distribution in order to properly interface with the many driver pack-

ages necessary to control the experiment. Fortunately, 64-bit appears to be a safe,

common choice that generally works.

Most issues with installation and use are due to a lack of complete documen-

tation. In particular, the minutia of hardware triggering all of the devices correctly

proved difficult. The developers proved to be extremely helpful in answering my

questions and helping me get things up and running. Ultimately the solutions re-

volved around putting together appropriate hardware solutions to properly interface

the various hardware triggers. I will discuss these hardware solutions next.

A.2 Hardware Augmentation

I put together two simple hardware solutions for properly interfacing hardware

triggers. The first is a box for properly triggering the controlling master clock off

the 60 Hz main line frequency. The second is for doing synchronous triggering of the

Novatech 409B-AC DDS.
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A.2.1 AC-Line Trigger Box

For many experiments, triggering sensitive portions of the experiment off the

60 Hz main line frequency is crucial to eliminate noise sources due to the line cur-

rents of the room. This is particularly important for experiments involving small

magnetic fields that are easily swamped by the magnetic fields induced from the

surrounding line currents. The Spincore Pulseblaster boards we use allow the use of

a hardware trigger to restart pre-programmed execution after a wait command. By

synchronizing the resumption of the program execution with the AC line frequency,

AC frequency-dependent systematics can be effectively controlled.

In practice, this can be quite difficult. The Pulseblaster hardware trigger line

is held high internally through a 10 kΩ resistor and triggers when shorted to ground.

In order to ensure a trigger on a falling edge, one must ensure that one trigger pulse

is sent to the Pulseblaster after the Pulseblaster is already waiting for the trigger.

The circuit shown in Fig. A.1 performs this function. It uses an MID400 integrated

circuit to optically isolate the AC-line voltage from the triggering circuit, providing

a 5VTTL compatible trigger signal. I use that signal as the clock line of a standard

flip-flop that is connected to an arm line from the Pulseblaster that is set to go high

just before the wait command and low immediately after it. This high arm line

is passed through to the flip-flop output synchronous with the AC line frequency.

The rising edge is detected with a simple differentiator and a diode to reject falling

edges. The output of the differentiator then feeds the base of a transistor connected

to the hardware trigger line and ground.
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Figure A.1: AC-Trigger Wiring Diagram. This system uses the MID400 integrated
circuit to give optically isolated trigger edges from the AC-Main Line frequency. It
then converts the TTL output into a compatible CMOS level short to ground that
Pulseblaster hardware trigger expects.

This circuit can be further modified to allow for a second TTL input that

can also cause a hardware trigger. This is accomplished by using an OR gate with

the flip-flop output. Having a secondary trigger that can override the AC-Trigger

allows for more arbitrary feedback mechanisms in the experiment. For example.

re-triggering the experiment with a heralding photon detected with a single photon

counter would be easily accomplished.

A.2.2 Novatech Synchronous Trigger Conversion

Hardware triggering the table mode updates of a Novatech 409B-AC (based

on the Novatech DDS 9m board) has two modes: asynchronous and synchronous.

The 409B-AC table mode is pre-programmed with output frequencies, amplitudes,

and phases that are transferred from an internal memory to a loading register and

finally to the outputs. The update can be hardware triggered precisely.

Asynchronous mode only requires a single falling edge on pin 10 (the TS input

of the 409B-AC). This mode triggers a hardware update of the output registers from

the table and then an automatic update to the output with a timing jitter of 100 µs
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due to the Novatech’s internal clock.

Synchronous mode uses a rising edge on pin 14 (IOUD of the 409B-AC) in

conjunction with the falling edge of pin 10. The rising edge triggers an update of the

registers from the table and the falling edge updates the outputs from the registers.

Updating the outputs in this way has a timing jitter of only 10 ns. labscript is

already configured to provide the correct triggers for either mode using a single

Pulseblaster digital output.

Unfortunately, the IOUD input is also an output for synchronizing updates

of the outputs when not in table mode. If the Pulseblaster trigger line is directly

connected to both pins, the output function is interfered with and static updates

cannot be performed. This limitation is simple to workaround by connecting both

lines internally through a standard SN7407N open-collector type buffer. This chip

can be run off the 5 V supply of the Novatech itself, meaning the entire thing can

be worked seamlessly into to device case.

A.3 Software Augmentation

While most of the hardware we use is supported by the main labscript distri-

bution, there are a number other unsupported devices that we need: oscilloscopes,

signal generators, cameras, etc. In the hope that my code might be useful to others

looking to use labscript, easing their adoption, I have made my code available

online through a few repositories. The primary repository is the naqslab devices

repository found at https://bitbucket.org/dihm/naqslab_devices.
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In order to use these devices, the above repository should be put in a folder in-

side the labscript directory and a modification of the labscript devices’ init .py

file to look for devices in the directory must be made. An example of how to do this

is provided at the above link.

In the next sections I describe the basics of how to use these device files in an

experiment.

A.3.1 VISA Devices–VISA.py

Many lab instruments use one of a small collection of standardized communica-

tion protocols and interfaces. These protocols and interfaces have been generalized

into a single programming interface known as VISA; a freely available component of

LabVIEW that has an open-source python wrapper, PyVISA. The power of VISA

is that it generalizes the communication interface for sending instrument specific

commands in the form of strings to many interfaces; including GPIB, USB, and

ethernet.

In order to facilitate communication with these devices I created a parent

VISA instrument class that the various device classes inherit from. This class spec-

ifies the standardized components of VISA communication: open and closing the

communication handle, reading instrument status bytes, and prototyping labscript

integration.
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A.3.1.1 Tektronix Oscilloscopes–TekScope.py

While the National Instrument DAQs we use for analog voltage outputs also

have analog inputs for data acquisition, the devices tend to be severely limited in

their acquisition rate, particularly when multiple input channels are needed. As

a result, I found it necessary to incorporate digital storage oscilloscopes into the

labscript environment. Compared with traditional DAQs, oscilloscopes have sig-

nificantly higher acquisition rates at the expense of limited total number of data

points, which is often an acceptable trade-off.

The first child VISA class is for Tektronix digital storage oscilloscopes from the

TDS 200, 1000, and 2000 series. These scopes share a common code base, making

a generalized driver possible. The scope is instantiated with an external trigger line

to facilitate hardware timed acquisitions within the experiment:

TekScope(labscript_name, VISA_name, trigger_device, trigger_connection)

The VISA name can be either the default VISA connection string, unique to every

device connection or it can be a user specified name configured in NI-MAX.

Which scope channels to acquire on is configured using the ScopeChannel class

from the same file:

ScopeChannel(labscript_name, parent_device, connection)

labscript_name.acquire()

Here the parent device is the labscript name of the scope and connection is the

internal connection name for the desired channel. For Tektronix oscilloscopes this
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takes the form of ’Channel X’, where X is the desired channel number. The second

line tells labscript to acquire the specified channel and should be placed after

the labscript start command. The allows one to disable channels for acquisition

without needing to recompile the connection table.

As an oscilloscope, all channels must be triggered at the same time by default,

so calling an acquisition within the experiment is done at the scope level with

labscript_name.acuire(start\_time)

For simplicity of programming most configuration parameters for the scope acqui-

sition (i.e. horizontal & vertical scales, trigger configuration, AC/DC coupling . . . )

are assumed to be manually set at the scope before the experiment. This is often

preferable since oscilloscope data can often be previewed live to ascertain the correct

settings before running a triggered shot to acquire data for later analysis.

A.3.1.2 Keysight Oscilloscopes–KeysightXXXXScope.py

Over time we found the memory limitations of our basic Tektronix oscilloscopes

to be a problem and obtained some newer oscilloscopes from Keysight to enable more

powerful acquisitions. We ended up with two Infinivision series oscilloscopes: an

MSO-X3000 series and a DSO-X1000 series. These scopes, much like the Tektronix

scopes described above, share a common code base, allowing for significant code

re-use. However, when using the 1000 series scope, I found a few minor differences

in the implementation that necessitated a full sub-class of the 3000 series instead of

a common class for both.
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Instantiation is similar to the above TekScope class, though there are a few

more options to account for different numbers of analog input channels and the

presence of digital inputs.

KeysightMSOX3000Scope(labscript_name, VISA_name, trigger_device,

trigger_connection, num_AI=4, DI=True, trigger_duration=1e-3)

Here some default arguments are specified. The digital inputs are of particular

interest. This scope was purchased with the idea of using it as a mid-range pulse

counter for use with single photon counters. These digital lines allow for significant

data accumulation without required large file storage sizes. Furthermore, direct

counting operations on each of the digital lines can be configured if only the total

count is necessary. These count operations are specified using a specific version of

the ScopeChannel class above.

CounterScopeChannel(labscript_name, parent_device, connection)

labscript_name.count(type, polarity)

The first line instantiates a counter-enabled scope channel. The second command

tells labscript to use a counter with type pulse or edge and polarity positive or

negative. These scope channels can also use the same acquire command detailed

above with the base ScopeChannel class.

A.3.1.3 Signal Generators

One need we have found in the lab is configuration and use of high frequency

signal generators. This type of frequency source typically does not have the abil-
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ity do hardware triggered changes mid-experiment. However, incorporating these

sources into labscript allows for their settings to be part of the experiment record,

automated configuration on a shot-to-shot basis, and allows for static instrument

control using BLACS.

These signal generators have extremely similar operation and typically only

differ in the exact command strings. I wrote a parent Signal Generator class that

inherits from the VISA class. This parent class can then be sub-classed for specific

devices to configure instrument-specific parameters.

These classes use a StaticFreqAmp class for the frequency output configura-

tion.

StaticFreqAmp(labscript_name, parent_device, connection,

freq_limits, amp_limits)

It allows for static frequency and amplitude control, similar to the StaticDDS classes

used by the Novatechs. It is important to set the frequency and amplitude limits

tuples to ensure invalid parameters are not accidentally set. The limits can be

determined by the signal generator itself or by whatever the generator is connected

to.

Sub-classing to specific devices involves configuring default limits, scale factors

to convert between absolute units and instrument programming units, return value

parsing functions, and status byte labels. Examples for how to do this are in the

repository in the form of device classes written for signal generators we have used at

various times. Models include: HP 8642A, Rhode & Schwarz SMF100A, and Rhode
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& Schwarz SMHU.

A.3.1.4 Stanford Research SR865 Lock-In Amplifier–SR865.py

The final VISA-based device is a Lock-In amplifier. This is a relatively simple

control that does not allow for return data (though the Lock-In is capable). This

class allows one to set the phase, sensitivity, and time constant of the amplifier.

Again, this allows for a record of set parameters for each experiment and remote

control through BLACS.

Getting data from the Lock-In amplifier is much trickier. While it can return

data, it is not hardware timed. In order to get hardware timed data, we connect

the outputs of the amplifier to an oscilloscope or a DAQ analog input.

A.3.2 Novatech 409B Series Boards

During adoption we found that the Novatech devices used by the upstream

developers did not quite match the Novatech devices we had. They use the 9m

development board that the 409B devices we use are based on. The differences are

ultimately minor, but they were significant enough to necessitate making our own

classes. Ultimately I made a master class for the 409B-AC that is sub-classed for the

409B that only has static channels. The master class has a number of improvements

over the 9m class it is based on. It only programs channels being used in the shot

and it can handle arbitrary baud rates at instantiation.

The usage is identical to the DDS 9m class available in the main release.
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A.3.3 Camera Servers

One major limitation of labscript at the moment is a lack of integrated cam-

era support. The initial release used a LabVIEW based implementation called BIAS.

This program acted as an independent camera server that interacted with BLACS to

handle communication and image acquisition with the cameras. This implementa-

tion had limitations, the most significant being a core dependency on LabVIEW.

Eventually a python-based solution will be implemented. In the meantime simple

text-based servers for use with particular models of cameras have been made. The

following three servers I have written are based on an implementation by Chris

Billington and Dan Barker for PointGrey cameras.

The camera servers themselves are very similar in their operation, the largest

difference being the underlying SDK that they use to interact with the physical cam-

eras. Since these servers run entirely separate from labscript, I use separate conda

environments for each server. This is particularly helpful since the various camera

SDKs often require very specific versions of various packages for compatibility.

Below I describe the individual quirks of the servers and their associated SDKs.

Environment configuration can be particularly tricky due to compilation needs when

using cython wrappers of the manufacturer provided driver libraries.

A.3.3.1 Basler Pylon SDK

Basler makes a large line of affordable area scan cameras that all use the same

SDK and share very similar configuration code. The Pylon SDK is freely available
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from Basler and an open-source python wrapper is available on github. This wrapper

is not officially supported and has not had continuous development. My fork has

some improvements and is the specific fork used by the server. Others continue

to develop the wrapper however. After my initial work, Basler restarted work on

their own python wrapper. It appears the functionality is similar, though the exact

implementation is different enough to necessitate re-working the server.

For my cython-based wrapper, you must install the same C/C++ compiler as

that used to compile the version of python you intend to use. You can then use pip

to install the git repository directly via

pip install -U https://github.com/dihm/PyPylon.git#egg=PyPylon

The specifics of interacting with a Basler camera depends on the exact com-

munication interface used. For example USB3 cameras set the exposure time using

the ’ExposureTime’ parameter. In contrast, GigE cameras instead use the pa-

rameter name ’ExposureTimeRaw’. Both interfaces require specific hardware with

compatible firmware to enable the fastest acquisition rates, described in the camera

documentation. Also, GigE cameras require configuring the ethernet adapter for

Jumbo frames to operate properly and matching the SDK packet size parameter, as

outlined in the Pylon installation manual. At present, my server is tested for use

with USB3 and GigE cameras only.
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A.3.3.2 Princeton Instruments PIcam SDK

We have an older Princeton Instruments PIXIS 1024BR camera that I desired

to use. The SDK is freely available from Princeton Instruments in the form of the PI-

cam library. The python wrapper I use is part of a larger hardware interface package

available on github (https://github.com/ddietze/Py-Hardware-Support). This

wrapper is based on the ctypes python module and therefore does not require the

compilation resources needed for cython-based wrappers. This wrapper is not con-

figured to be pip installable. In order for the server to find the wrapper code, the full

path to the wrapper directory (cloned from github) must be provided and appended

to the system path before import within the server script.

This server works reasonably well, but has some remaining issues. The camera

itself is very slow on readout due to being a CCD read out over a USB 2.0 interface.

There were further issues with random timeouts during successive shots that I did

not chase down, likely residing in the wrapper class itself, since I moved on to a

faster Andor camera with similar noise specifications.

A.3.3.3 Andor 3 SDK

Andor makes a number of high performance scientific cameras. Unfortunately,

Andor is currently transitioning from SDK2 to SDK3 which are very different. We

have a newer Andor Zyla 5.5 which uses SDK3. I did not find much in the way

of python wrappers so I took the best I could find, forked it, and made major

modifications to improve functionality, speed, and reliability. This wrapper can be
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found at https://bitbucket.org/dihm/pyandorsdk3. Installation requires cython

and the same C/C++ compiler as that used to compile the version of python you

intend to use. Again, you can install the wrapper using git and pip with the following

command

pip install -U https://bitbucket.org/dihm/pyandorsdk3.git#egg=PyAndorSDK3

The SDK is available from Andor if you own a camera. To ensure proper operation,

the SDK library path must be added to the system path, which is not done by

default.
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Appendix B: Computational Packages

& Example Source Code

In this appendix I provide some example source code for select computations

presented in the main work. This code is provided in the hope that explicit examples

will aid others who want to implement similar analyses.

B.1 Atomic Density Matrix Package

Code samples in this section rely on functionality provided by the Atomic

Density Matrix package written by Simon Rochester, [23] available at http://

rochesterscientific.com/ADM/. This package is written for Mathematica and

allows for a high degree of configuration when modeling different experimental sys-

tems. It relies on specification of atomic levels based on quantum numbers and is

specifically optimized for hyperfine transitions in alkali atoms.

The code base is not especially well documented, but the worked-through

examples in the package documentation are very detailed and informative.
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B.1.1 NMOR Numerical Simulations

The following code overlays the numerical model, derived from a density ma-

trix representation of the atomic system and the Optical Bloch equations, with

experiment data for different probe powers, shown in Figure 2.26(a).
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B.1.2 Perturbation Model Calculation

This code implements the 5-Step Perturbative model from Section 2.3.2. It

relies on some ADM package functionality to perform frame rotations, conversions

between tensor and cartesian forms, and the spherical tensor product.
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B.2 Alkali Rydberg Calculator

The code in this section relies on functionality provided by the Alkali-Rydberg-

Calculator python package written by Nikola Šibalić, [66] and is available though

pip as ARC-Alkali-Rydberg-Calculator. It is well documented and encapsulates

many common computational tasks when modeling Rydberg atoms. In particular

it can perform fast numerical integrations of wavefunction overlaps, which is the

slowest part of many Rydberg atom calculations. It also has intelligent caching of

results for later lookup which further improves subsequent computation times.

The following code was used to inform the discussions of Section 3.5 and to

generate some of the general Rydberg properties plots for Section 3.1.1. It relies on

ARC for calculation of various Rydberg properties as well as the standard numpy,

scipy and matplotlib python packages.
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3 Photon Sensitivity Estimate

September 14, 2018

In [116]: # import other libraries
import numpy as np
import matplotlib.pyplot as plt
from scipy.constants import c
from scipy.constants import Boltzmann as kB
from scipy.constants import e
from scipy.constants import h
from scipy.constants import epsilon_0 as e0
from scipy.constants import physical_constants
from scipy.special import erf
a0 = physical_constants['Bohr radius'][0]
relec = physical_constants['classical electron radius'][0]
eta = 1/e0/c

from arc import *

In [16]: %matplotlib inline
plt.style.reload_library()
plt.style.use(['base'])

In [42]: atom = Rubidium85(cpp_numerov=True)
mRb85 = 1.4099931997e-25

In [43]: angMomentum = {0:'S',1:'P',2:'D',3:'F'}

0.0.1 Transit Dephasing

In [5]: w = 1000e-6 #1/e^2 waist
T = 273.15 + 24
vRMS = np.sqrt(2*kB*T/mRb85)
transitRate = 1.13*vRMS/(np.sqrt(2*np.log(2))*w)
print('Transit Rate is 2pi {:.2f} kHz'.format(transitRate/2/np.pi*1e-3))
print('Transit Lifetime is {:.2f} us'.format(1/transitRate*1e6))

Transit Rate is 2pi 36.85 kHz
Transit Lifetime is 4.32 us

In [37]: def TransRate(w,T=273.15+24):
vRMS = np.sqrt(2*kB*T/mRb85)
return 1.13*vRMS/(np.sqrt(2*np.log(2))*w)

waists = np.geomspace(10e-3,4,10)
transits = TransRate(waists*1e-3)*1e-3/2/np.pi

fig, ax = plt.subplots(1)
ax.loglog(waists,transits,'b-')
ax.set_xlabel(r'$1/e^2$ Waist (mm)')
ax.set_ylabel(r'Transit Rate, $\gamma_t/2\pi$ (kHz)')
ax.grid(color='k',linestyle='-',linewidth=0.5)
plt.savefig('TransitRateVsWaist.pdf',format='pdf',dpi=600)

1

In [30]: print(TransRate(10e-6)*1e-3/2/np.pi)
print(TransRate(100e-6)*1e-3/2/np.pi)
print(TransRate(1e-3)*1e-3/2/np.pi)

3684.7393195722416
368.4739319572241
36.84739319572241

0.0.2 Rydberg state Lifetimes

In [47]: T = 273.15 + 24
nr = 48
lr = 1
jr = 1.5

In [48]: natLifetime = atom.getStateLifetime(nr,lr,jr,temperature=0.0)
withBBRLifetime = atom.getStateLifetime(nr,lr,jr,temperature=T,includeLevelsUpTo=nr+10)
print('Natural lifetime of {}{}_{} is {:.2f}
us'.format(nr,angMomentum[lr],jr,natLifetime*1e6))
print('Lifetime with BBR is {:.2f}
us'.format(nr,angMomentum[lr],jr,withBBRLifetime*1e6))

Natural lifetime of 48P_1.5 is 253.95 us
Lifetime with BBR is 48.00 us

2
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In [49]: natRate = 1/natLifetime
withBBRRate = 1/withBBRLifetime
BBRinducedRate = withBBRRate-natRate
print('Depopulation rates: Natural {:.3f} kHz, BBR induced {:.3f} kHz, Natural + BBR
{:.3f}
kHz'.format(natRate/2/np.pi*1e-3,BBRinducedRate/2/np.pi*1e-3,withBBRRate/2/np.pi*1e-3))

Depopulation rates: Natural 0.627 kHz, BBR induced 1.285 kHz, Natural + BBR 1.912 kHz

In [41]: # make a BBR plot
def BBRphotons(f,T=273.15+24):

return 8*np.pi*f**2/c**3/(np.exp(h*f/kB/T)-1)

freqs = np.geomspace(1e-3,1e3,10)
specRad = BBRphotons(freqs*1e9)*1e9

fig, ax = plt.subplots(1)
ax.plot(freqs,specRad,'r-')
ax.grid(color='k',linestyle='-',linewidth=0.5)
ax.set_xlabel(r'Frequency (GHz)')
ax.set_ylabel(r'Photon Density (phtns/$m^3$ GHz)')
ax.set_xscale('log')
ax.set_yscale('log')
plt.savefig('BBPhotonDensity.pdf',format='pdf',dpi=600)

3

0.0.3 Atom Number

In [50]: # get the ground state atom number density
T = 273.15 + 24
dens=atom.getNumberDensity(T)
print('Number density at {:.1f} C is {:.2e} cm^(-3)'.format(T-273.15,dens*1e-6))

Number density at 24.0 C is 1.16e+10 cmˆ(-3)

In [51]: # now scale down based on Doppler velocity class, ground state populations, and natural
abundance
abundance = 0.72172
gstate = 7.0/(7+5)
velocityClass2 = 3.0/515
velocityClass3 = 0.04/515
partDens2 = dens*abundance*gstate*velocityClass2
partDens3 = dens*abundance*gstate*velocityClass3
print('Scaling factor is {}'.format(abundance*gstate*velocityClass2))
print('Participating Ground state 2 Photon Number density at {:.1f} C is {:.2e}
cm^(-3)'.format(T-273.15,partDens2*1e-6))
print('Participating Ground state 3 Photon Number density at {:.1f} C is {:.2e}
cm^(-3)'.format(T-273.15,partDens3*1e-6))

Scaling factor is 0.002452446601941748
Participating Ground state 2 Photon Number density at 24.0 C is 2.85e+07 cmˆ(-3)
Participating Ground state 3 Photon Number density at 24.0 C is 3.80e+05 cmˆ(-3)

In [52]: # now scale by the EIT transparency window depth to get participating ground state atoms
in EIT
eit2 = 0.2
partDensEIT2 = partDens2*eit2
print('Participating EIT 2 Photon Number density at {:.1f} C is {:.2e}
cm^(-3)'.format(T-273.15,partDensEIT2*1e-6))
eit3 = 0.5
partDensEIT3 = partDens3*eit3
print('Participating EIT 3 Photon Number density at {:.1f} C is {:.2e}
cm^(-3)'.format(T-273.15,partDensEIT3*1e-6))

Participating EIT 2 Photon Number density at 24.0 C is 5.70e+06 cmˆ(-3)
Participating EIT 3 Photon Number density at 24.0 C is 1.90e+05 cmˆ(-3)

In [53]: # now estimate the sensing volume
w = 50e-6
L = 75e-3
Vol2Photon = np.pi*w**2*L
# for 3 photon geometry
theta = 33.4226*np.pi/180
r = 1e-3
Vol3Photon = 16/3/np.sin(theta)*r**3
print('Vol 2 Photon {} mm^3 \nVol 3 Photon {}
mm^3'.format(Vol2Photon*1e9,Vol3Photon*1e9))

Vol 2 Photon 0.5890486225480861 mmˆ3
Vol 3 Photon 9.682709735730551 mmˆ3

In [54]: # for later use, the cross sectional area to the MWs on the perpendicular axis is
Area2Photon = L*w*2
Area3Photon = 2/np.sin(theta/2)*r*2
print('Cross Section 2 Photon {} mm^2 \nCross Section 3 Photon {}
mm^2'.format(Area2Photon*1e6,Area3Photon*1e6))

4
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Cross Section 2 Photon 7.5 mmˆ2
Cross Section 3 Photon 13910.65238833251 mmˆ2

In [55]: # the resulting atom number participating in EIT is then
N2 = partDensEIT2*Vol2Photon
N3 = partDensEIT3*Vol3Photon
print('N2: {}, N3: {}, N3/N2: {}'.format(N2,N3,N3/N2))

N2: 3356.3688270396224, N3: 1839.0527750605224, N3/N2: 0.5479292860321909

Doppler Scaling of atom number

In [8]: T = 273.15+24
vRMS = np.sqrt(kB*T/mRb85)
print('1D rms velocity at {1} C: {0} m/s'.format(vRMS,T-273.15))
lprobe = 780.241e-9
lcouple = 480.125e-9
doppLinewidth = 2 * np.sqrt(2*np.log(2)) * vRMS / lprobe
print('Full Doppler linewidth for probe is: {} MHz'.format(doppLinewidth*1e-6))
print('Fraction of ground state atoms excitable to Rydberg is:
{}'.format(6.0666/doppLinewidth*1e6))

1D rms velocity at 24.0 C: 170.577177552 m/s
Full Doppler linewidth for probe is: 514.813444723 MHz
Fraction of ground state atoms excitable to Rydberg is: 0.0117840745268

In [9]: # Now the doppler linewidth for the mismatched 2 Photon system
l2photon = -(1/lprobe-1/lcouple)**(-1)
print('Uncancelled wavelength: {} nm'.format(l2photon*1e9))
resDoppLinewidth = 2 * np.sqrt(2*np.log(2)) * vRMS / l2photon
print('Residual Doppler Linewidth for 2 photons scheme is: {}
MHz'.format(resDoppLinewidth*1e-6))
print('Fraction of ground state atoms excitable to Rydberg is:
{}'.format(6.0666/resDoppLinewidth*1e6))

Uncancelled wavelength: 1248.22805224 nm
Residual Doppler Linewidth for 2 photons scheme is: 321.799014374 MHz
Fraction of ground state atoms excitable to Rydberg is: 0.0188521397798

In [25]: # given limited Rabi frequency, only can detune coupling so far before EIT condition is
not satisfied
# this probably is not accurate
coupleRabi = 7e6
Gamma = 6.0666e6
vLimit = coupleRabi*lcouple*np.sqrt((coupleRabi*2/Gamma)**2-1)
print('Limiting velocity class for EIT condition: +/-{} m/s'.format(vLimit))
eitDoppLinewidth = 2 * vLimit / l2photon
print('Resulting Doppler Width is: {} MHz'.format(eitDoppLinewidth*1e-6))

Limiting velocity class for EIT condition: +/-6.98994200078 m/s
Resulting Doppler Width is: 11.1997835464 MHz

In [ ]: # try using some numerical guesses
# FWHM of doppler broadened EIT is basically the AT splitting of the probing state due
to the coupling
# less the FWHM of the probing state

5

0.0.4 Transition Properties and Rabi Frequency Estimates

In [44]: # define the levels we want to work with

ng = 5
lg = 0
jg = 0.5
mjg = 0.5
ne = 5
le = 1
je = 0.5
mje = -0.5

nc = 6
lc = 0
jc = 0.5
mjc = 0.5

nr = 48
lr = 1
jr = 1.5
mjr = 0.5

nr2 = nr-1
lr2 = 2
jr2 = 2.5
mjr2 = 0.5

q = 0 # specify linearly polarized light

In [5]: proberadialME = atom.getRadialMatrixElement(ng,lg,jg,ne,le,je)
probedipoleME = atom.getDipoleMatrixElement(ng,lg,jg,mjg,ne,le,je,mje,q)
probeangularME = probedipoleME/proberadialME
probewavelength = atom.getTransitionWavelength(ng,lg,jg,ne,le,je)
probefrequency = atom.getTransitionFrequency(ng,lg,jg,ne,le,je)

print("Angular ME {0}, Radial ME: {1} ea_0, Total Dipole ME: {2}
ea_0".format(probeangularME,proberadialME,probedipoleME))
print("Transition Wavelength: {0} nm, Transition Frequency: {1}
THz".format(probewavelength*1e9,probefrequency/1e12))

Angular ME -0.0, Radial ME: -5.169648102143898 ea_0, Total Dipole ME: 0.0 ea_0
Transition Wavelength: 794.9789232972437 nm, Transition Frequency: 377.1074291587316
THz

In [6]: coupleradialME = atom.getRadialMatrixElement(ne,le,je,nc,lc,jc)
coupledipoleME = atom.getDipoleMatrixElement(ne,le,je,mje,nc,lc,jc,mjc,q)
coupleangularME = coupledipoleME/coupleradialME
couplewavelength = atom.getTransitionWavelength(ne,le,je,nc,lc,jc)
couplefrequency = atom.getTransitionFrequency(ne,le,je,nc,lc,jc)

hfs = 717.541e6
AOM = 80e6
upperShiftRatio = 1.264888516325/3.035732439060
lowerShiftRatio = 1.770843922835/3.035732439060
shift = 210.92399e6+hfs*upperShiftRatio+AOM

print("Angular ME {0}, Radial ME: {1} ea_0, Total Dipole ME: {2}
ea_0".format(coupleangularME,coupleradialME,coupledipoleME))
print("Transition Wavelength: {0} nm, Transition Frequency: {1}
THz".format(couplewavelength*1e9,couplefrequency/1e12))
print("HFS adjusted Frequency: {0} THz".format((couplefrequency+shift)/1e12))

Angular ME -0.0, Radial ME: -5.044724125261956 ea_0, Total Dipole ME: 0.0 ea_0
Transition Wavelength: 1323.8791763184124 nm, Transition Frequency: 226.45001399122808
THz

6
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HFS adjusted Frequency: 226.45060389063474 THz

In [7]: rydradialME = atom.getRadialMatrixElement(nc,lc,jc,nr,lr,jr)
ryddipoleME = atom.getDipoleMatrixElement(nc,lc,jc,mjc,nr,lr,jr,mjr,q)
rydangularME = ryddipoleME/rydradialME
rydwavelength = atom.getTransitionWavelength(nc,lc,jc,nr,lr,jr)
rydfrequency = atom.getTransitionFrequency(nc,lc,jc,nr,lr,jr)

hfs = 717.541e6
AOM = 80e6
upperShiftRatio = 1.264888516325/3.035732439060
lowerShiftRatio = 1.770843922835/3.035732439060
shift = -hfs*upperShiftRatio

print("Angular ME {0}, Radial ME: {1} ea_0, Total Dipole ME: {2}
ea_0".format(rydangularME,rydradialME,ryddipoleME))
print("Transition Wavelength: {0} nm, Transition Frequency: {1}
THz".format(rydwavelength*1e9,rydfrequency/1e12))
print("HFS adjusted Frequency: wavelength {1} nm, {0}
THz".format((rydfrequency+shift)/1e12,c/(rydfrequency+shift)*1e9))

Angular ME 0.4714045207910316, Radial ME: 0.009618513370174676 ea_0, Total Dipole ME:
0.004534210685989324 ea_0
Transition Wavelength: 740.4692439165431 nm, Transition Frequency: 404.86821088518974
THz
HFS adjusted Frequency: wavelength 740.4697907173496 nm, 404.86791190977306 THz

In [45]: MWradialME = atom.getRadialMatrixElement(nr,lr,jr,nr2,lr2,jr2)
MWdipoleME = atom.getDipoleMatrixElement(nr,lr,jr,mjr,nr2,lr2,jr2,mjr2,q)
MWangularME = MWdipoleME/MWradialME
MWwavelength = atom.getTransitionWavelength(nr,lr,jr,nr2,lr2,jr2)
MWfrequency = atom.getTransitionFrequency(nr,lr,jr,nr2,lr2,jr2)

print("Angular ME {0}, Radial ME: {1} ea_0, Total Dipole ME: {2}
ea_0".format(MWangularME,MWradialME,MWdipoleME))
print("Transition Wavelength: {0} cm, Transition Frequency: {1}
GHz".format(MWwavelength*1e2,MWfrequency/1e9))

Angular ME 0.48989794855663543, Radial ME: 2830.840802591352 ea_0, Total Dipole ME:
1386.8231018799227 ea_0
Transition Wavelength: 1.4522991610435063 cm, Transition Frequency: 20.642610423639784
GHz

In [44]: # Define the beam parameters
Pp = 30e-6 # in Watts
wp = 1000e-6 # 1/e**2 beam radius

Pc = 10e-3
wc = 3500e-6

Pr = 2000e-3
wr = 1000e-6

eField = 1e-6/1e-2 #V/m

In [46]: # get the Rabi frequency for probe and coupling transitions, in rad/s
probeRabiFreq = atom.getRabiFrequency(ng,lg,jg,mjg,ne,le,je,mje,Pp,wp)
print("Probe Rabi Frequency: {0:.3f} MHz".format(probeRabiFreq/2/np.pi/1e6))

coupleRabiFreq = atom.getRabiFrequency(ne,le,je,mje,nc,lc,jc,mjc,Pc,wc)
print("Coupling Rabi Frequency: {0:.3f} MHz".format(coupleRabiFreq/2/np.pi/1e6))

7

rydRabiFreq = atom.getRabiFrequency(nc,lc,jc,mjc,nr,lr,jr,mjr,Pr,wr)
print("Rydberg Laser Rabi Frequency: {0:.3f} MHz".format(rydRabiFreq/2/np.pi/1e6))

rfRabiFreq = atom.getRabiFrequency2(nr,lr,jr,mjr,nr2,lr2,jr2,q,eField)
print("RF Rabi Frequency for {:.2f} uV/cm Efield: {:.3f}
kHz".format(eField*1e4,rfRabiFreq/2/np.pi*1e-3))

Probe Rabi Frequency: 3.741 MHz
Coupling Rabi Frequency: 13.464 MHz
Rydberg Laser Rabi Frequency: 1.797 MHz
RF Rabi Frequency for 1.00 uV/cm Efield: 1.775 kHz

0.1 2 Photon Sensitivity

Use estimates from above to get the low and high bandwidth sensitivity estimates for the Rydberg
electrometer.

Compare with a classical ideal dipole antenna and something the size of the Rydberg system

In [ ]: # define parameters for two photon system
n2 = 50
l2 = 2
j2 = 2.5
mj2 = 0.5
q = 0
T=273.15+24

In [88]: # get Rydberg state parameters
mu = atom.getDipoleMatrixElement(n2,l2,j2,mj2,n2+1,l2-1,j2-1,mj2,0)
BBRRate = 1/atom.getStateLifetime(n2,l2,j2,temperature=T,includeLevelsUpTo=n2+10)
wavelength = -atom.getTransitionWavelength(n2,l2,j2,n2+1,l2-1,j2-1)
print('Dipole matrix element between {}{}{} and {}{}{} is {}
ea_0'.format(n2,angMomentum[l2],j2,n2+1,angMomentum[l2-1],j2-1,mu))
print('Resonant RF wavelength {:.2f} cm'.format(wavelength*1e2))
print('Rydberg Lifetime {:.2f} kHz'.format(BBRRate*1e-3))

Dipole matrix element between 50D2.5 and 51P1.5 is 1574.8539565193548 ea_0
Resonant RF wavelength 1.76 cm
Rydberg Lifetime 14.40 kHz

We can check our rough estimate by accounting for our known losses and inefficiencies.

In [123]: window = 0.96**2
dichroic = 0.99
responsivity = 0.425
BS = 0.5**2
fiberCouple = 0.6
buttCouple = 0.5
# likely more losses in fiber system as well
Q = window*dichroic*responsivity*BS*fiberCouple*buttCouple
print(Q)
OD = 1
EITcontrast = 0.2
contrast = (1-np.exp(-OD))*EITcontrast/np.exp(-OD)
overlap = erf(np.sqrt(2)*(50.0/100))
q = contrast*overlap
print(q)
print('Total quantum efficiency is: {:.2} %'.format(q*Q*100))

0.029082239999999995
0.23461058976381774
Total quantum efficiency is: 0.68 %
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In [80]: QE = 0.005
N = QE*N2
print('Estimated total Rydberg atoms number in sensing volume is: {:.1f}'.format(N2))
print('Estimated effective atom number is: {:.1f}'.format(N))

Estimated total Rydberg atoms number in sensing volume is: 3356.4
Estimated effective atom number is: 16.8

In [91]: w0 = 50e-6
T2 = 1/(TransRate(w0) + 1/BBRRate)
print('Estimated Rydberg state lifetime: {:.2f} us, 2pi {:.2f}
kHz'.format(T2*1e6,(TransRate(w0)+withBBRRate)/2/np.pi*1e-3))

Estimated Rydberg state lifetime: 0.22 us, 2pi 738.86 kHz

In [92]: sens = h/(mu*e*a0*np.sqrt(N*T2))
print('Estimated sensivity is {:.2f} nV/cm*Hz^1/2'.format(sens*1e7))
sensHighBW = h/(mu*e*a0*np.sqrt(N))
print('Estimated sensivity is {:.2f} nV/cm*Hz'.format(sensHighBW*1e7))

Estimated sensivity is 260.67 nV/cm*Hzˆ1/2
Estimated sensivity is 0.12 nV/cm*Hz

Low BW Power sensitivity (1 Hz BW)

In [93]: BW = 1 #hertz
Elim = sens*np.sqrt(BW)
Inten = 1.0/2*(1.0/377)*Elim**2
Pow = Inten*Area2Photon
dBm = 10*np.log10(Pow/0.001)
print('Efield in {0:.0f} Hz BW: {1:.2e} V/m,\nMW intensity: {2:.2e} W/m^2,\nMW Power
over sensing volume: {3:.2e} W,\nMW power sensivity in {0:.0f} Hz BW: {4:.1f}
dBm'.format(

BW,Elim,Inten,Pow,dBm))

Efield in 1 Hz BW: 2.61e-05 V/m,
MW intensity: 9.01e-13 W/mˆ2,
MW Power over sensing volume: 6.76e-18 W,
MW power sensivity in 1 Hz BW: -141.7 dBm

High BW Power sensitivity (10 MHz BW)

In [94]: BW = 10e6
Elim = sensHighBW*BW
Inten = 1.0/2*(1.0/377)*Elim**2
Pow = Inten*Area2Photon
dBm = 10*np.log10(Pow/0.001)
print('Efield in {0:.0f} Hz BW: {1:.2e} V/m,\nMW intensity: {2:.2e} W/m^2,\nMW Power
over sensing volume: {3:.2e} W,\nMW power sensivity in {0:.0f} Hz BW: {4:.1f}
dBm'.format(

BW,Elim,Inten,Pow,dBm))

Efield in 10000000 Hz BW: 1.21e-01 V/m,
MW intensity: 1.95e-05 W/mˆ2,
MW Power over sensing volume: 1.46e-10 W,
MW power sensivity in 10000000 Hz BW: -68.4 dBm

9

Compare with classical antennas: 1) an ideal dipole 2) antenna with effective area size of Ryd-
berg sensing cross section

In [98]: noisePow = kB*298
idealDipole = 3.0/8/np.pi*wavelength**2
noiseEfield = np.sqrt(noisePow*2*eta/idealDipole)
print('Noise floor for 298 K noise temperature {:.2f} nV/cm
Hz^1/2'.format(noiseEfield*1e7))
print('Estimated Reciever internal noise floor/external noise floor:
{:.2f}'.format(sens/noiseEfield))

Noise floor for 298 K noise temperature 2.90 nV/cm Hzˆ1/2
Estimated Reciever internal noise floor/external noise floor: 89.98

In [97]: noisePow = kB*298
idealDipole = 3.0/8/np.pi*wavelength**2
noiseEfield = np.sqrt(noisePow*2*eta/Area2Photon)
print('Noise floor for 298 K noise temperature {:.2f} nV/cm
Hz^1/2'.format(noiseEfield*1e7))
print('Estimated Reciever internal noise floor/external noise floor:
{:.2f}'.format(sens/noiseEfield))

Noise floor for 298 K noise temperature 6.43 nV/cm Hzˆ1/2
Estimated Reciever internal noise floor/external noise floor: 40.55

0.2 Our expected 3 Photon Sensivitity

From some of the above, we can expect a few things from this.
First: is that we are almost certainly going to be transit limited still, so big beams are going to

be critical.
Second: the atom number we use will only be comparable (potentially slightly less) without

doppler averaging. Big beams are critical here to keep the sensing volume up. Also critical is QE
of detection, which FM spectroscopy and not being stupid should help considerably.

In [101]: mu = MWdipoleME
print('Dipole matrix element between {}{}{} and {}{}{} is {}
ea_0'.format(nr,angMomentum[lr],jr,nr2,angMomentum[lr2],jr2,mu))

Dipole matrix element between 48P1.5 and 47D2.5 is 1386.8231018799227 ea_0

Previous works we observe a Quantum Efficiency of 0.5% using heterodyne and with known
inefficiencies (extra beam splitters etc). A 1% efficiency is a very conservative estimate.

In [102]: QE = 0.01
N = QE*N3
print('Estimated total Rydberg atoms number in sensing volume is: {:.1f}'.format(N3))
print('Estimated effective atom number is: {:.1f}'.format(N))

Estimated total Rydberg atoms number in sensing volume is: 1839.1
Estimated effective atom number is: 18.4

Rydberg lifetime will still be transit limited

In [103]: T2 = 1/(transitRate + 1/withBBRRate)
print('Estimated Rydberg state lifetime: {:.2f} us, 2pi {:.2f}
kHz'.format(T2*1e6,(transitRate+withBBRRate)/2/np.pi*1e-3))

10
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Estimated Rydberg state lifetime: 4.32 us, 2pi 38.76 kHz

In [104]: sens = h/(mu*e*a0*np.sqrt(N*T2))
print('Estimated sensivity is {:.2f} nV/cm*Hz^1/2'.format(sens*1e7))
sensHighBW = h/(mu*e*a0*np.sqrt(N))
print('Estimated sensivity is {:.2f} nV/cm*Hz'.format(sensHighBW*1e7))

Estimated sensivity is 63.23 nV/cm*Hzˆ1/2
Estimated sensivity is 0.13 nV/cm*Hz

Convert this expected sensivity to dBm
Assume MW field is a plane wave (i.e. we are in far field)

In [114]: BW = 1 #hertz
Elim = sens*np.sqrt(BW)
Inten = 1.0/2*(1.0/377)*Elim**2
Pow = Inten*Area3Photon
dBm = 10*np.log10(Pow/0.001)
print('Efield in {0:.0f} Hz BW: {1:.2e} V/m,\nMW intensity: {2:.2e} W/m^2,\nMW Power
over sensing volume: {3:.2e} W,\nMW power sensivity in {0:.0f} Hz BW: {4:.1f}
dBm'.format(

BW,Elim,Inten,Pow,dBm))

Efield in 1 Hz BW: 6.32e-06 V/m,
MW intensity: 5.30e-14 W/mˆ2,
MW Power over sensing volume: 7.38e-16 W,
MW power sensivity in 1 Hz BW: -121.3 dBm

Sensitivity assuming a semi-reasonable BW of 10 MHz

In [106]: BW = 10e6
Elim = sensHighBW*BW
Inten = 1.0/2*(1.0/377)*Elim**2
Pow = Inten*Area3Photon
dBm = 10*np.log10(Pow/0.001)
print('Efield in {0:.0f} Hz BW: {1:.2e} V/m,\nMW intensity: {2:.2e} W/m^2,\nMW Power
over sensing volume: {3:.2e} W,\nMW power sensivity in {0:.0f} Hz BW: {4:.1f}
dBm'.format(

BW,Elim,Inten,Pow,dBm))

Efield in 10000000 Hz BW: 1.31e-01 V/m,
MW intensity: 2.29e-05 W/mˆ2,
MW Power over sensing volume: 3.19e-07 W,
MW power sensivity in 10000000 Hz BW: -35.0 dBm

Compare our sensitivity with the noise temperature of 298 K (ie the room temp. ground)
To convert from antenna powers to Rydberg E-fields, need an area. Let’s use the maximum

effective aperture of an ideal dipole.

In [109]: noisePow = kB*298
idealDipole = 3.0/8/np.pi*MWwavelength**2
noiseEfield = np.sqrt(noisePow*2*eta/idealDipole)
print('Noise floor for 298 K noise temperature {:.2f} nV/cm
Hz^1/2'.format(noiseEfield*1e7))
print('Estimated Reciever internal noise floor/external antenna noise floor:
{:.2f}'.format(sens/noiseEfield))

11

Noise floor for 298 K noise temperature 3.51 nV/cm Hzˆ1/2
Estimated Reciever internal noise floor/external antenna noise floor: 18.02

Now the using the sensing volume of the Rydberg Electrometer

In [108]: noisePow = kB*298
noiseEfield = np.sqrt(noisePow*2*eta/Area3Photon)
print('Noise floor for 298 K noise temperature {:.2f} nV/cm
Hz^1/2'.format(noiseEfield*1e7))
print('Estimated Reciever internal noise floor/external antenna noise floor:
{:.2f}'.format(sens/noiseEfield))

Noise floor for 298 K noise temperature 0.15 nV/cm Hzˆ1/2
Estimated Reciever internal noise floor/external antenna noise floor: 423.56

0.3 Compare Expected Sensivity with Single Photon Field
In [94]: # this assumes a photon focused to the diffraction limit, which is a bit unreasonable

Ephoton = np.sqrt((h*MWfrequency)/(4/3*np.pi*MWwavelength**3*e0))
print('Electric field of a single photon: {} mV/m'.format(Ephoton*1e3))

Electric field of a single photon: 0.4006608317 mV/m

12
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B.3 Rydberg EIT with Mathematica

The following code snippet was used to generate the plots in Figure 3.4. Its

implementation is based on code from [112] and follows the Lindblad/Density Matrix

approach for a simplified three-level system. Mathematica 11.2 was used to perform

the calculations. Using the built-in parallel functionality with a dual core laptop,

data for each set of parameters required a couple minutes of run time.
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