IMAGE RESTORATION THROUGH SUBIMAGES AND
CONFIDENCE IMAGES

JAMES G. NAGY* AND DIANNE P. O’LEARY!

Abstract. Some very effective but expensive image reconstruction algorithms cannot be applied
to large images because of their cost. In this work, we first show how to apply such algorithms to
subimages, giving improved reconstruction of regions of interest. Our second contribution is to
construct confidence intervals for pixel values, by generalizing a theorem of O’Leary and Rust to
allow both upper and lower bounds on variables. All current algorithms for image deblurring or
deconvolution output an image. This provides an estimated value for each pixel in the image. What
is lacking is an estimate of the statistical confidence that we can have in those pixel values or in
the features they form in the image. There are two obstacles in determining confidence intervals
for pixel values: first, the process is computationally quite intensive, and second, there has been no
proposal for providing the results in a visually useful way. In this work we overcome the first of
those limitations and use a recently developed algorithm called Twinkle to overcome the second. We
demonstrate the usefulness of these techniques on astronomical and motion-blurred images.
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1. Introduction. Image deconvolution or deblurring can be accomplished by a
variety of methods, some simple and some quite expensive. Linear methods such as
(linear) least squares or back-projection methods often provide adequate results, and
their cost i1s quite low. In contrast, constrained least squares algorithms, which impose
the side conditions that pixel values lie within a given range, are more expensive but
sometimes yield better results.

In many cases, after a reconstruction of the image, there may be a need to further
improve a small part of the image. In astronomical imaging, for example, this may be
a star cluster; in medical imaging, it may be an area in which a tumor is suspected. We
develop the techniques required to extract subimages and apply more sophisticated
processing techniques to them.

Our basic idea can be outlined as follows.

1. Given an image restoration problem involving a measured image y and a
point-spread function (PSF) K, we use a basic technique to compute an initial
reconstruction @ of the true n x n image .

2. Using the initial reconstruction &, we identify a region of interest for further
improvement. We denote this true subimage by z; and apply a more sophis-
ticated technique in order to obtain improved estimates &; on this subimage.

There are numerous variants on this basic scheme. As an example, a few steps of
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preconditioned conjugate gradients (PCG) can be applied to the problem
min || Kz — yl|2
xr

where K is the matrix corresponding to the PSF K and the vectors « and y contain
the pixel values of the true image and the measured image, respectively. The result
of this computation is an estimate #, and then we can compute confidence intervals
for each pixel value in some subimage.

As a second example, filtered backprojection can be used in Step 1, and we can
use a nonnegatively constrained least squares algorithm in Step 2.

Basically, our approach combines the power of an inexpensive method (such as
PCG or filtered back projection) to obtain an initial (global) reconstruction of the
image, and then further improve small subimages of interest using a nonlinear method
that gives better reconstructions. Because the improvements are done on small subim-
ages, the nonlinear methods become economical to implement.

In section 2 we describe how we construct the subproblem data. We illustrate the
use of nonlinear methods on such subproblems in order to improve the reconstruction
over the subimage. In section 3 we describe how confidence images can be used to
compute approximations to discrete ill-posed problems. We illustrate the effective-
ness of our approach by computing and displaying confidence images for some image
restoration examples. Section 4 presents some summary comments.

2. Construction of Subimage and Submatrix. In this section we describe
how to construct the small subproblem

Kses &~ ys .

We’ll assume that the original image has dimension n x n, while the subimage has
dimension 7 x ¢. We note that for large image restoration problems, the matrix K
is not formed explicitly, so extracting a submatrix from it is not necessarily a trivial
operation. In fact, the efficient formation of K requires some background material
involving PSFs and Kronecker products, but before we present that, let’s consider the
idea itself. We begin with the problem

Kemy,

where K is the M x N matrix corresponding to the PSF, y is a vector containing
the measured values of the pixels (including noise), and # is the unknown true image.
Note that N = n?, where n is the dimension of the true image. Let E be the matrix
with N rows and S = rc¢ columns, each column a unit vector corresponding to a pixel
in the subimage. Let E have columns equal to the other N — S unit vectors. Then

Ke=(K[E E ])([ gi ] x)

= K, f(t][is]

t

= f(sl‘s + f(tl‘t

where x, contains the pixels in the subimage. The idea is to improve the entries of
z; while leaving those of z; at their current values, so our resulting problem is

Ksxs my— Koy .
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Since most of the rows of K, are zero (because the PSF typically has small support),
we can drop down to a smaller dimensional problem, dropping the unwanted rows

Kseg ~ ys .

Our discussion is therefore divided into several subsections, beginning with a
discussion of how we form ;.

2.1. Constructing the Subimage. We begin by considering a simple example.
Suppose we partition the problem Kz = y as

K1 Ko Kz zy Y1
Koy Kao Kaz zo | = | y2 |,
K31 Kz» Ks3 T3 Y3

and suppose the subimage that we would like to improve is ; = z2. We’ll assume
that the row partitioning of K has been done so that K1, = 0, K33 = 0, and there
are no zero rows in Kss.

Then
K9 Y1 K1 Kz
- - - L1
Koo [2s=| 92 | — | Ka Kos [ s ]
K2 Y3 K31 Ks3

A subproblem involving z; can then be formed as
Kzs =y,

where Ky = Koo and ys = y2 — Ko121 — Koges.

Of course since z is not known, we cannot compute y,. However, if we assume
that a good initial approximation, &, can be computed using PCG or some other
method, then we can replace 1 and z3 with #; and &3, and this gives us an estimate
of y;.

With this simple example in mind, we can generalize the approach to construct
ys. Recall that we have defined £ be the matrix with N rows and S columns, each
column a unit vector corresponding to a pixel in the subimage. and E has columns
equal to the other N — S unit vectors. Note that

Ty = FTe
and

- E][ET]QE.

since the product of those matrices is the identity. Let E be the matrix with N rows
and S + s columns, each column a unit vector corresponding to a row of Ks». Then,
assuming Z has been previously computed, the vector y, can be obtained this way:
1. Form a vector z that is equal to zero in the subimage and equal to & outside
that subimage:

2. Compute y = y — Kz.
3. Then y, = ETy.
The efficiency of this approach depends on the cost of forming a matrix-vector product
with K.
Our next goal is to construct the submatrix K; = ETKE.
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2.2. Construction of the Submatrix. The matrix K is defined through PSFs
that represent the blur of a point source. These functions can be determined by an
idealized model of the blur, or experimentally by physically recording one or more
images of a point source. If the blur is spatially invariant, then the blur is independent
of position, and one PSF completely describes the blurring operation. In this case,
fast Fourier transforms can be used to efficiently form matrix-vector multiplications
involving K. The matrix K is never formed explicitly; only the single PSF is needed.

The situation is more difficult if the blur is spatially variant. In this case, the
blur depends on the position of the point source, and therefore a single PSF does
not completely describe the blurring operation. If the blur is assumed to be locally
spatially invariant, then efficient matrix-vector multiplies can be implemented, and
effective preconditioners for PCG can be constructed; see [3, 4] for further details.

In the rest of our discussion, we assume that the blur is possibly spatially variant,
but that locally the blur is spatially invariant. Therefore, when we apply PCG to the
large image, we use a spatially variant model of the blur, but when we consider the
subproblem, we use a spatially invariant model.

In the spatially invariant case, the matrix K has an interesting decomposition.
Let P be a p x p array containing the coefficients of the PSF. Then the n? x n? matrix
K can be decomposed into

k
K = Z A ® By,
i=1
where k =rank(P), and A; and B; are banded n x n Toeplitz matrices [2]. The
notation ® denotes Kronecker product:

ClllB s CllnB

A® B = : :
apn1B - apn,B
We remark that in our experience, most blurs have PSFs with rank very small com-
pared to (and independent of) the dimension of the image (e.g., rank(P) < 5). The
cost of computing A; and B; is O(p?).

Analogous to the Kronecker product decomposition of K, the matrix £ has a
Kronecker product decomposition:

E=FE,®E,

where F)p is an n x r matrix with each column a unit vector corresponding to a row in
the two-dimensional image that is in the subimage. Similarly, F, is an n X ¢ matrix
of unit vectors corresponding to columns of the image that are in the subimage. We
also decompose E as

FeB ok,
Thus the submatrix K can be computed as

Ks = (Ep ® Eq)T[((Ep ® Ey)

= (Ep ® Eq)T (Z Ai® Bi) (Ep ® Eq)



This is quite efficient to compute if the dimension S = rc¢ of the subimage, and the
rank & are both small. If £ is too large, we can truncate the summation to obtain the
best such approximation in the Frobineus norm; see [2] for more details.

It may be possible to exploit further structure of K; when using it in computa-
tions, but since this matrix is relatively small, we feel that such (possibly unstable)
techniques are not necessary.

2.3. An Example: Hubble Space Telescope image, with a spatially variant
PSF. We obtained data, from the Space Telescope Science Institute FTP server!
intended to simulate a star cluster as it would appear to the Hubble Space Telescope
Wide-Field Planetary Camera before its repair. First, we begin with only one PSF,
assuming that the blur is spatially invariant. Figure 2.1 shows the true star clus-
ter image, the blurred image, the PCG restored image (using 3 iterations), and the
subimage we attempt to improve. The preconditioner used here is an optimal circu-
lant approximation to the PSF matrix, K, and can be efficiently implemented using
fast Fourier transforms; see [1, 3] for further details. In the larger images in this plot,
the subimage of interest is outlined by a white box. This 16 x 16 subimage corresponds
to row pixels 45 to 60, and column pixels 175 to 190. We use non-negatively con-
strained least squares (as implemented in the algorithm NNLS of Matlab) to improve
our estimates over this subimage.
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Fic. 2.1. Satellite data, and restoration using one PSF in PCG.
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In Figure 2.2 we compare the true, blurred, PCG restored, and NNLS improved
subimages. Figure 2.3 shows the same images, but as mesh plots. The NNLS im-
provement is better than the PCG restoration in this subimage, but still we are not
able to determine that only one star is in this subimage.

1ftp://ftp.stsci.edu/software/stsdas/testdata/restore/sims/star_cluster,
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Fic. 2.2. Subimages, using one PSF for PCG.

10
12
14
16

5 10 15

10
12
14
16

5 10 15

mesh of true subimage mesh of blurred subimage

300 300

200 200

100

> \
A=

== ‘\t‘
S

oo™
SO
=

20 20

o

mesh plot of nnls restored subimage

Fi1Gc. 2.3. Mesh plot of subimages, using one PSF for PCG.



Since the blur is actually spatially variant, we hope that we can improve the pic-
ture using more PSFs. From our earlier work [4], we found that good PCG restorations
could be obtained using four PSFs.

Figure 2.4 shows the true, blurred, PCG restored image after three iterations,
and NNLS improved subimages in this case. Figure 2.5 shows the same images, but
as mesh plots. We see that using the spatially variant blur, we are able to do much
better. Note that we used multiple PSFs in the PCG restoration, but needed only
the one local PSF to construct the submatrix used by NNLS.

Thus, we can quite effectively use expensive algorithms to reconstruct a subimage,
once an inexpensive algorithm has been applied to find a region of interest.
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Fic. 2.4. Subimages, using four PSFs for PCG.
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3. Confidence Intervals for Il1l-Posed Problems. We return to the subprob-
lem of interest

Koz =y, ,

where the right-hand side contains error, and where we know that the values z satisfy
zs > 0. In this section we describe how confidence intervals can be used to compute
approximations to nonnegatively constrained ill-posed problems.

3.1. Computing Confidence Images. Computing confidence intervals for un-
constrained least squares problems Kz &~ y, is a standard problem in statistics. It
can be done either without a distribution assumption on the unknown errors, or by
assuming a normal distribution.

Unfortunately, confidence intervals computed in the usual way are often so pes-
simistic that they have no value. The trouble is that ill-conditioning in the matrix K
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Fic. 2.5. Mesh plot of subimages, using four PSFs for PCG.

causes them to be quite wide, since they are not constrained by side information such
as bounds on the pixel values.

When there are upper and lower bounds z,, and z;, on the values, the problem
is somewhat more difficult computationally but often produces much better results.
We make use of the following result:

THEOREM 3.1. Assume that the noise n is normally distributed with mean zero,
standard deviation S. Then the probability that z;, a component of x, 1s contained in
the interval [¢;,w;] is greater than or equal to o, where

2

.
a= [ i,
0]

8= min|| Kz —y%.

pr=p+y
; =min{z; || Ke —ylls <p, 210 <@ < ypt,

K

U

o

=max{z; : [|[Kx —ylls <p, v1o < < @op

where ||z||%2 = 275722 and x? is the probability density function for the chi-squared
distribution with the number of degrees of freedom equal to the rank of K.

Proof. This result is a minor extension of a theorem of O’Leary and Rust [6, 7]
for problems with nonnegativity constraints, and its proof requires changing z > 0 in
their proof to 7, < & < x4, everywhere it appears. O

These confidence intervals also have joint probability «. Therefore, confidence
intervals for p pixel values can be computed, but at the cost of solving 2p constrained
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least squares problems. FEach confidence interval is computed by root finding, where
function evaluation is the solution of a quadratic programming problem. This is
expensive, but possible for modestly-sized subimages.

There is a similar result for non-normal noise, but the resulting confidence inter-
vals are typically wider. Again the result 1s a minor extension of a theorem of O’Leary

and Rust [7].

3.2. Using Twinkle to Display Confidence Images. For each pixel in the
subimage, we compute an estimate z; of its true value as well as a confidence interval
[4;, u;] which is guaranteed with a% certainty to contain the true value. The collection
of confidence intervals forms the confidence image. We are left with the task of
displaying a confidence image in some useful way.

To do this, we developed an algorithm called Twinkle [5]. We form a sequence of
images, each with pixel values contained in the ranges defined by the confidence image.
Thus, in each of these images, pixel value ¢ is taken to be a random value chosen from
the interval [¢;, u;]. We display this sequence of images as a movie, running the frames
at a rate so that the change in frame is perceptible to the viewer. By comparing the
movie with the image z, the viewer can conclude with % confidence that features
that persist in the frames of the movie are real. Those that appear to flicker (or
twinkle) could be either real or artifact.

3.3. An Example. We took the subimage used in Section 2.3 and computed
confidence intervals for i1t, assuming that the error was normally distributed with
mean zero and standard deviation one, and that pixel values are constrained to be
nonnegative. Because the pixels surrounding the subimage were computed to be black,
the errors in these border values have negligible contributions to the error distribution.
We chose a value of ¥ corresponding to a 99.99% confidence interval. This example
was also considered in [5].

The result of such a reconstruction is shown in Figure 3.1. The upper left image
is the true subimage, the upper right is the reconstructed one, while the other two
are confidence images. The confidence images are virtually indistinguishable from
the reconstructed image, giving high confidence in the reconstruction of the star and
enabling estimates of derived quantities such as star intensity, as well as error estimates
for these quantities.

The full movie produced by the Twinkle algorithm can be viewed at a website?.

3.4. An Example: Motion Blur. Cameras are used as a means of law enforce-
ment by capturing the license plates of cars that fail to obey speed limits or traffic
signals. The images acquired may be contaminated by motion blur, so we investigate
the uncertainties involved in processing such images.

We used a digital camera to image a stationary white van. If the van were
moving directly away from the camera, then the motion blur would be in the vertical
direction in the image. We applied such a blur, spreading each pixel to the adjacent
19 pixels, and then added a noise image with each component chosen from a normal
distribution and with the norm of the noise equal to 6.0 x 107° times the norm of
the image. We then cropped the image to size 36 x 66, to isolate the license plate.
Each column of pixels gives an independent reconstruction problem of rank 36. The
results are in Figure 3.2. The original and blurred images are in the top row. The
second row contains the reconstructed images, using the assumptions of nonnegativity

’http://wuw.mathcs.emory.edu/~nagy/Twinkle/
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Fic. 3.1. The true and reconstructed star subimages, with two confidence 1mages.
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Reconstructed subimage, using nonnegativity Reconstructed subimage, using [0,1] bounds

Confidence image, using [0,1] bounds

Fi1Gc. 3.2. The images from the license plate example.
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of pixel values and bounds of [0, 1] respectively. The tighter bounds give much better
reconstructions. The third row contains two confidence images for the upper and lower
bound reconstruction. Although the reconstructed image is quite clear, the confidence
images are not as definitive. In this case, the pixels surrounding the subimage are not
known exactly, so the errors in these border values contribute to the error distribution,
although this additional error has been neglected in the computation of confidence
intervals. Qur boundary conditions were quite crude: we implicitly assume that the
pixel values in the 18 rows below this subimage are black. If we allow these values to
vary, by increasing the size of the subimage, then the Chi-squared parameter must be
increased because the rank of the matrix increases, and the bounds worsen.

The full movie produced by the Twinkle algorithm on the license plate can be
viewed at http://www.mathcs.emory.edu/~nagy/Twinkle/.

4. Conclusions. We have presented techniques useful in obtaining more ac-
curate reconstruction of subimages, and in providing more information about the
reconstruction, such as confidence images.

The major obstacle in constructing valid confidence intervals for images is han-
dling the boundary conditions in a statistically valid way. We emphasize that this
can be easily done for some images (e.g., the astronomical images) but not for all.
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