
IMAGE RESTORATION THROUGH SUBIMAGES ANDCONFIDENCE IMAGESJAMES G. NAGY� AND DIANNE P. O'LEARYyAbstract. Some very e�ective but expensive image reconstruction algorithms cannot be appliedto large images because of their cost. In this work, we �rst show how to apply such algorithms tosubimages, giving improved reconstruction of regions of interest. Our second contribution is toconstruct con�dence intervals for pixel values, by generalizing a theorem of O'Leary and Rust toallow both upper and lower bounds on variables. All current algorithms for image deblurring ordeconvolution output an image. This provides an estimated value for each pixel in the image. Whatis lacking is an estimate of the statistical con�dence that we can have in those pixel values or inthe features they form in the image. There are two obstacles in determining con�dence intervalsfor pixel values: �rst, the process is computationally quite intensive, and second, there has been noproposal for providing the results in a visually useful way. In this work we overcome the �rst ofthose limitations and use a recently developed algorithm called Twinkle to overcome the second. Wedemonstrate the usefulness of these techniques on astronomical and motion-blurred images.Key Words: image restoration, regularization, con�dence intervals, con�dence im-ages, motion blur, conjugate gradient method,AMS(MOS) subject classi�cations:1. Introduction. Image deconvolution or deblurring can be accomplished by avariety of methods, some simple and some quite expensive. Linear methods such as(linear) least squares or back-projection methods often provide adequate results, andtheir cost is quite low. In contrast, constrained least squares algorithms, which imposethe side conditions that pixel values lie within a given range, are more expensive butsometimes yield better results.In many cases, after a reconstruction of the image, there may be a need to furtherimprove a small part of the image. In astronomical imaging, for example, this may bea star cluster; in medical imaging, it may be an area in which a tumor is suspected. Wedevelop the techniques required to extract subimages and apply more sophisticatedprocessing techniques to them.Our basic idea can be outlined as follows.1. Given an image restoration problem involving a measured image y and apoint-spread function (PSF) K, we use a basic technique to compute an initialreconstruction x̂ of the true n� n image x.2. Using the initial reconstruction x̂, we identify a region of interest for furtherimprovement. We denote this true subimage by xs and apply a more sophis-ticated technique in order to obtain improved estimates ~xs on this subimage.There are numerous variants on this basic scheme. As an example, a few steps of�Department of Mathematics, Emory University, Atlanta, Georgia 30322.nagy@mathcs.emory.eduyDepartment of Computer Science and Institute for Advanced Computer Studies, University ofMaryland, College Park, Maryland. oleary@cs.umd.edu This work was partially supported by theNational Science Foundation under Grant CCR 97-32022. Some of the work was done by the secondauthor at the National Institute of Standards and Technology, Gaithersburg, Maryland.1



preconditioned conjugate gradients (PCG) can be applied to the problemminx kKx� yk2where K is the matrix corresponding to the PSF K and the vectors x and y containthe pixel values of the true image and the measured image, respectively. The resultof this computation is an estimate x̂, and then we can compute con�dence intervalsfor each pixel value in some subimage.As a second example, �ltered backprojection can be used in Step 1, and we canuse a nonnegatively constrained least squares algorithm in Step 2.Basically, our approach combines the power of an inexpensive method (such asPCG or �ltered back projection) to obtain an initial (global) reconstruction of theimage, and then further improve small subimages of interest using a nonlinear methodthat gives better reconstructions. Because the improvements are done on small subim-ages, the nonlinear methods become economical to implement.In section 2 we describe how we construct the subproblem data. We illustrate theuse of nonlinear methods on such subproblems in order to improve the reconstructionover the subimage. In section 3 we describe how con�dence images can be used tocompute approximations to discrete ill-posed problems. We illustrate the e�ective-ness of our approach by computing and displaying con�dence images for some imagerestoration examples. Section 4 presents some summary comments.2. Construction of Subimage and Submatrix. In this section we describehow to construct the small subproblemKsxs � ys :We'll assume that the original image has dimension n � n, while the subimage hasdimension r � c. We note that for large image restoration problems, the matrix Kis not formed explicitly, so extracting a submatrix from it is not necessarily a trivialoperation. In fact, the e�cient formation of Ks requires some background materialinvolving PSFs and Kronecker products, but before we present that, let's consider theidea itself. We begin with the problemKx � y ;where K is the M � N matrix corresponding to the PSF, y is a vector containingthe measured values of the pixels (including noise), and x is the unknown true image.Note that N = n2, where n is the dimension of the true image. Let E be the matrixwith N rows and S = rc columns, each column a unit vector corresponding to a pixelin the subimage. Let �E have columns equal to the other N � S unit vectors. ThenKx = (K � E �E �)(� ET�ET � x)� � K̂s K̂t � � xsxt �= K̂sxs + K̂txtwhere xs contains the pixels in the subimage. The idea is to improve the entries ofxs while leaving those of xt at their current values, so our resulting problem isK̂sxs � y � K̂txt :2



Since most of the rows of K̂s are zero (because the PSF typically has small support),we can drop down to a smaller dimensional problem, dropping the unwanted rowsKsxs � ys :Our discussion is therefore divided into several subsections, beginning with adiscussion of how we form ys.2.1. Constructing the Subimage. We begin by considering a simple example.Suppose we partition the problem Kx = y as24 K11 K12 K13K21 K22 K23K31 K32 K33 3524 x1x2x3 35 = 24 y1y2y3 35 ;and suppose the subimage that we would like to improve is xs = x2. We'll assumethat the row partitioning of K has been done so that K12 = 0, K32 = 0, and thereare no zero rows in K22.Then 24 K12K22K32 35xs = 24 y1y2y3 35� 24 K11 K13K21 K23K31 K33 35� x1x3 � :A subproblem involving xs can then be formed asKsxs � ys ;where Ks = K22 and ys = y2 �K21x1 �K23x3.Of course since x is not known, we cannot compute ys. However, if we assumethat a good initial approximation, x̂, can be computed using PCG or some othermethod, then we can replace x1 and x3 with x̂1 and x̂3, and this gives us an estimateof ys.With this simple example in mind, we can generalize the approach to constructys. Recall that we have de�ned E be the matrix with N rows and S columns, eachcolumn a unit vector corresponding to a pixel in the subimage. and �E has columnsequal to the other N � S unit vectors. Note thatxs = ETxand x = � E �E � � ET�ET �x :since the product of those matrices is the identity. Let Ê be the matrix with N rowsand S + s columns, each column a unit vector corresponding to a row of K22. Then,assuming x̂ has been previously computed, the vector ys can be obtained this way:1. Form a vector z that is equal to zero in the subimage and equal to x̂ outsidethat subimage: z = � E �E � � 0�ET � x̂ :2. Compute ŷ = y �Kz.3. Then ys = ÊT ŷ.The e�ciency of this approach depends on the cost of forming a matrix-vector productwith K.Our next goal is to construct the submatrix Ks = ÊTKE.3



2.2. Construction of the Submatrix. The matrixK is de�ned through PSFsthat represent the blur of a point source. These functions can be determined by anidealized model of the blur, or experimentally by physically recording one or moreimages of a point source. If the blur is spatially invariant, then the blur is independentof position, and one PSF completely describes the blurring operation. In this case,fast Fourier transforms can be used to e�ciently form matrix-vector multiplicationsinvolving K. The matrix K is never formed explicitly; only the single PSF is needed.The situation is more di�cult if the blur is spatially variant. In this case, theblur depends on the position of the point source, and therefore a single PSF doesnot completely describe the blurring operation. If the blur is assumed to be locallyspatially invariant, then e�cient matrix-vector multiplies can be implemented, ande�ective preconditioners for PCG can be constructed; see [3, 4] for further details.In the rest of our discussion, we assume that the blur is possibly spatially variant,but that locally the blur is spatially invariant. Therefore, when we apply PCG to thelarge image, we use a spatially variant model of the blur, but when we consider thesubproblem, we use a spatially invariant model.In the spatially invariant case, the matrix K has an interesting decomposition.Let P be a p�p array containing the coe�cients of the PSF. Then the n2�n2 matrixK can be decomposed into K = kXi=1 Ai 
 Bi ;where k =rank(P ), and Ai and Bi are banded n � n Toeplitz matrices [2]. Thenotation 
 denotes Kronecker product:A
 B = 264 a11B � � � a1nB... ...an1B � � � annB 375 :We remark that in our experience, most blurs have PSFs with rank very small com-pared to (and independent of) the dimension of the image (e.g., rank(P ) � 5). Thecost of computing Ai and Bi is O(p3).Analogous to the Kronecker product decomposition of K, the matrix E has aKronecker product decomposition: E = Ep 
 Eqwhere Ep is an n� r matrix with each column a unit vector corresponding to a row inthe two-dimensional image that is in the subimage. Similarly, Eq is an n � c matrixof unit vectors corresponding to columns of the image that are in the subimage. Wealso decompose Ê as Ê = Êp 
 Êq :Thus the submatrix Ks can be computed asKs = (Êp 
 Êq)TK(Ep 
Eq)= (Êp 
 Êq)T  kXi=1 Ai 
 Bi! (Ep 
Eq)= kXi=1(ÊTp AiEp) 
 (ÊTq BiEq) :4



This is quite e�cient to compute if the dimension S = rc of the subimage, and therank k are both small. If k is too large, we can truncate the summation to obtain thebest such approximation in the Frobineus norm; see [2] for more details.It may be possible to exploit further structure of Ks when using it in computa-tions, but since this matrix is relatively small, we feel that such (possibly unstable)techniques are not necessary.2.3. An Example: Hubble Space Telescope image, with a spatially variantPSF. We obtained data, from the Space Telescope Science Institute FTP server1intended to simulate a star cluster as it would appear to the Hubble Space TelescopeWide-Field Planetary Camera before its repair. First, we begin with only one PSF,assuming that the blur is spatially invariant. Figure 2.1 shows the true star clus-ter image, the blurred image, the PCG restored image (using 3 iterations), and thesubimage we attempt to improve. The preconditioner used here is an optimal circu-lant approximation to the PSF matrix, K, and can be e�ciently implemented usingfast Fourier transforms; see [1, 3] for further details. In the larger images in this plot,the subimage of interest is outlined by a white box. This 16�16 subimage correspondsto row pixels 45 to 60, and column pixels 175 to 190. We use non-negatively con-strained least squares (as implemented in the algorithm NNLS of Matlab) to improveour estimates over this subimage.
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Fig. 2.3. Mesh plot of subimages, using one PSF for PCG.6



Since the blur is actually spatially variant, we hope that we can improve the pic-ture using more PSFs. Fromour earlier work [4], we found that good PCG restorationscould be obtained using four PSFs.Figure 2.4 shows the true, blurred, PCG restored image after three iterations,and NNLS improved subimages in this case. Figure 2.5 shows the same images, butas mesh plots. We see that using the spatially variant blur, we are able to do muchbetter. Note that we used multiple PSFs in the PCG restoration, but needed onlythe one local PSF to construct the submatrix used by NNLS.Thus, we can quite e�ectively use expensive algorithms to reconstruct a subimage,once an inexpensive algorithm has been applied to �nd a region of interest.
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Fig. 2.5. Mesh plot of subimages, using four PSFs for PCG.causes them to be quite wide, since they are not constrained by side information suchas bounds on the pixel values.When there are upper and lower bounds xup and xlo on the values, the problemis somewhat more di�cult computationally but often produces much better results.We make use of the following result:Theorem 3.1. Assume that the noise � is normally distributed with mean zero,standard deviation S. Then the probability that xi, a component of x, is contained inthe interval [`i; ui] is greater than or equal to �, where� = Z 20 �2(�)d� ;� = minx kKx� yk2S ;�2 = � + 2 ;`i = minfxi : kKx� ykS � �; xlo � x � xupg ;ui = maxfxi : kKx� ykS � �; xlo � x � xupg ;where kzk2S = zTS�2z and �2 is the probability density function for the chi-squareddistribution with the number of degrees of freedom equal to the rank of K.Proof. This result is a minor extension of a theorem of O'Leary and Rust [6, 7]for problems with nonnegativity constraints, and its proof requires changing x � 0 intheir proof to xlo � x � xup everywhere it appears.These con�dence intervals also have joint probability �. Therefore, con�denceintervals for p pixel values can be computed, but at the cost of solving 2p constrained8



least squares problems. Each con�dence interval is computed by root �nding, wherefunction evaluation is the solution of a quadratic programming problem. This isexpensive, but possible for modestly-sized subimages.There is a similar result for non-normal noise, but the resulting con�dence inter-vals are typically wider. Again the result is a minor extension of a theorem of O'Learyand Rust [7].3.2. Using Twinkle to Display Con�dence Images. For each pixel in thesubimage, we compute an estimate xi of its true value as well as a con�dence interval[`i; ui] which is guaranteed with �% certainty to contain the true value. The collectionof con�dence intervals forms the con�dence image. We are left with the task ofdisplaying a con�dence image in some useful way.To do this, we developed an algorithm called Twinkle [5]. We form a sequence ofimages, each with pixel values contained in the ranges de�ned by the con�dence image.Thus, in each of these images, pixel value i is taken to be a random value chosen fromthe interval [`i; ui]. We display this sequence of images as a movie, running the framesat a rate so that the change in frame is perceptible to the viewer. By comparing themovie with the image x, the viewer can conclude with �% con�dence that featuresthat persist in the frames of the movie are real. Those that appear to icker (ortwinkle) could be either real or artifact.3.3. An Example. We took the subimage used in Section 2.3 and computedcon�dence intervals for it, assuming that the error was normally distributed withmean zero and standard deviation one, and that pixel values are constrained to benonnegative. Because the pixels surrounding the subimage were computed to be black,the errors in these border values have negligible contributions to the error distribution.We chose a value of  corresponding to a 99.99% con�dence interval. This examplewas also considered in [5].The result of such a reconstruction is shown in Figure 3.1. The upper left imageis the true subimage, the upper right is the reconstructed one, while the other twoare con�dence images. The con�dence images are virtually indistinguishable fromthe reconstructed image, giving high con�dence in the reconstruction of the star andenabling estimates of derived quantities such as star intensity, as well as error estimatesfor these quantities.The full movie produced by the Twinkle algorithm can be viewed at a website2.3.4. An Example: Motion Blur. Cameras are used as a means of law enforce-ment by capturing the license plates of cars that fail to obey speed limits or tra�csignals. The images acquired may be contaminated by motion blur, so we investigatethe uncertainties involved in processing such images.We used a digital camera to image a stationary white van. If the van weremoving directly away from the camera, then the motion blur would be in the verticaldirection in the image. We applied such a blur, spreading each pixel to the adjacent19 pixels, and then added a noise image with each component chosen from a normaldistribution and with the norm of the noise equal to 6:0 � 10�5 times the norm ofthe image. We then cropped the image to size 36 � 66, to isolate the license plate.Each column of pixels gives an independent reconstruction problem of rank 36. Theresults are in Figure 3.2. The original and blurred images are in the top row. Thesecond row contains the reconstructed images, using the assumptions of nonnegativity2http://www.mathcs.emory.edu/�nagy/Twinkle/9
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of pixel values and bounds of [0; 1] respectively. The tighter bounds give much betterreconstructions. The third row contains two con�dence images for the upper and lowerbound reconstruction. Although the reconstructed image is quite clear, the con�denceimages are not as de�nitive. In this case, the pixels surrounding the subimage are notknown exactly, so the errors in these border values contribute to the error distribution,although this additional error has been neglected in the computation of con�denceintervals. Our boundary conditions were quite crude: we implicitly assume that thepixel values in the 18 rows below this subimage are black. If we allow these values tovary, by increasing the size of the subimage, then the Chi-squared parameter must beincreased because the rank of the matrix increases, and the bounds worsen.The full movie produced by the Twinkle algorithm on the license plate can beviewed at http://www.mathcs.emory.edu/�nagy/Twinkle/.4. Conclusions. We have presented techniques useful in obtaining more ac-curate reconstruction of subimages, and in providing more information about thereconstruction, such as con�dence images.The major obstacle in constructing valid con�dence intervals for images is han-dling the boundary conditions in a statistically valid way. We emphasize that thiscan be easily done for some images (e.g., the astronomical images) but not for all.REFERENCES[1] Martin Hanke, James G. Nagy, and Robert J. Plemmons. Preconditioned iterative regularizationfor ill-posed problems. In Numerical Linear Algebra and Scienti�c Computing, pages 141{163. de Gruyter, Berlin, 1993.[2] J. Kamm and J. G. Nagy. Optimal Kronecker product approximation of block Toeplitz matrices.SIAM J. Matrix Anal. Appl., to appear, 1999.[3] J. G. Nagy and D. P. O'Leary. Fast iterative image restoration with a spatially varying PSF. InF. T. Luk, editor, Advanced Signal Processing Algorithms, Architectures, and Implementa-tions VII, volume 3162, pages 388{399. SPIE, 1997.[4] J. G. Nagy and D. P. O'Leary. Restoring images degraded by spatially-variant blur. SIAM J.Sci. Comput., 19:1063{1082, 1998.[5] J. G. Nagy and D. P. O'Leary. Displaying con�dence images. Technical Report CS-TR-4161,Department of Computer Science, University of Maryland, College Park, MD, 2000.[6] D. P. O'Leary and B. W. Rust. Con�dence intervals for inequality-constrained least squares prob-lems, with applications to ill-posed problems. SIAM Journal on Scienti�c and StatisticalComputing, 7:473{489, 1986.[7] B. W. Rust and D. P. O'Leary. Con�dence intervals for discrete approximations to ill-posedproblems. The Journal of Computational and Graphical Statistics, 3:67{96, 1994.
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