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Abstract

Let R be a family of iso-oriented rectangles in the plane. A graph G = (V, E) is called
a rectangle intersection (resp., overlap) graph for R if there is a one-to-one correspondence
between V and R such that two vertices in V' are adjacent to each other if and only if the
corresponding rectangles in R intersect (resp., overlap) each other. It is known that the
maximum clique and minimum vertex coloring problems are solvable in polynomial time
and NP-hard, respectively, for rectangle intersection graphs. In this paper, we first prove
that the maximum independent set problem is NP-hard even for both cubic planar rectangle
intersection and cubic planar rectangle overlap graphs. We then show the NP-completeness
of the vertex coloring problem with three colors for both planar rectangle intersection and
planar rectangle overlap graphs even when the degree of every vertex is limited to four.
Finally we describe how to find, in polynomial time, a maximum clique of a rectangle overlap

graph.



1. Introduction

Problems dealing with rectangles in the plane are very important in many areas such as
VLSI layout [15] and has recently attracted considerable attention in an emerging field of
computational geometry [16]. In this paper, we consider two classes of graphs defined for a
family of iso-oriented rectangles in the plane. We present complete computational complexity
results for the maximum clique, maximum independent set, and minimum vertex coloring
problems for these classes of graphs.

Let F be a finite family of sets. Two elements S and S’ in F are said to intersect each
other if SN S' # ¢. A graph G = (V, E) is called an intersection graph for F if there
is a one-to-one correspondence between V and F' such that two vertices in V are adjacent
to each other if and only if the corresponding sets in F intersect each other. Examples of
intersection graphs include an interval graph defined for a family of intervals on the real line;
a circular-arc graph defined for a family of arcs on a circle; a circle graph defined for a family
of chords of a circle; and a rectangle intersection graph defined for a family of iso-oriented
rectangles in the plane.

Two elements S and S’ in F are said to overlap each other if they intersect each other
but neither one of them contains the other, namely, SNS’ # ¢, S € §’,and S 2 S'. A graph
G = (V, E) is called an overlap graph for F if there is a one-to-one correspondence between V
and F such that two vertices in V are adjacent to each other if and only if the corresponding
sets in F' overlap each other. In parallel with the classes of intersection graphs mentioned

above except for the class of circle graphs, we can define those of overlap graphs; an interval



overlap graph defined for a family of intervals on the real line; a circular-arc overlap graph
defined for a family of arcs on a circle; and a rectangle overlap graph defined for a family
of iso-oriented rectangles in the plane. Note that a circle graph is an interval overlap graph
and vice versa [7].

Let G = (V, E) be a graph. For each vertex v € V, §(v) denotes its degree, namely, the
number of edges incident upon v. Let A(G) = maz,ev{6(v)}. A subset X of V is called
a clique (resp., independent set) of G if every pair of vertices in X are adjacent (resp., not
adjacent) to each other. A mazimum clique (resp., mazimum independent set) of G is a clique
(resp., independent set) whose cardinality is the largest among all cliques (resp., independent
sets) of G. An assignment of colors to the vertices of V is called a (vertez) coloring if no
two adjacent vertices are assigned the same color. A minimum (vertez) coloring of G is a
coloring which uses the fewest colors among all colorings of G.

The problems of finding a maximum clique, a maximum independent set, and a minimum
coloring are all NP-hard for general graphs {4]. However, all three problems are solvable in
polynomial time for interval graphs [9]. The maximum clique and maximum independent
set problems are solvable in polynomial time but the minimum coloring problem is NP-
hard for circular-arc graphs {1,13,5], and for circle graphs and hence for interval overlap
graphs [14,2,5]. Very recently, the first two problems were shown to be solvable in polynomial
time for circular-arc overlap graphs [10]. Since every interval overlap graph is a circular-arc
overlap graph, the minimum coloring problem is NP-hard for circular-arc overlap graphs.

As for the complexity results for rectangle intersection graphs, Lee [11] developed an



O(nlogn) time algorithm for finding a maximum clique where n is the number of vertices
in the graph, and Lee and Leung [12] proved the NP-hardness of the minimum coloring
problem; however, the computational complexity of the maximum independent set problem
has remained open [12].

In this paper, we first resolve this open problem by proving its NP-hardness. In fact,
we show that the maximum independent set problem is NP-hard even for a cubic planar
rectangle intersection graph as well as a cubic planar rectangle overlap graph, that is, §(v) = 3
for every vertex v in the graph. The proof is based on a polynomial transformation from the
CUBIC PLANAR INDEPENDENT SET problem [6]. Note that the maximum independent
set problem is trivially solved in polynomial time for any graph G if A(G) <2 [4].

We then present a new NP-hardness proof of the minimum coloring problem for a rect-
angle intersection graph. In fact, we prove that the problem of coloring a graph G with
three colors, called the 3-coloring problem, is NP-complete even if G is a planar rectan-
gle intersection graph or a planar rectangle overlap graph and A(G) = 4. The proof is
based on a polynomial transformation from the PLANAR 3-COLORING problem [6]. It is
known that the minimum coloring problem is solvable in polynomial time for any graph G
if A(G) < 3 [4]. Note that the proof given by Lee and Leung [12] immediately leads to the
NP-completeness of the problem for a rectangle intersection graph G with A(G) = 8. Note
also that since an interval overlap graph is a very special type of a rectangle overlap graph,
the NP-hardness proof of the minimum coloring problem for an interval overlap graph also

holds for a rectangle overlap graph. However, no vertex degree constraint is imposed in the



Problem

G Max. Clique | Max. Independent Set Min. Coloring

Rectangle Intersection || O(nlogn) {11} | NP-hard (A(G) =3) | NP-hard (A(G) = 4)

Rectangle Overlap O(n*/3) NP-hard (A(G) =3) | NP-hard (A(G) = 4)

Table 1: Complexity Results for Rectangle Intersection and Overlap Graphs
proof [5].

Finally, we describe an O(n!%/3) time algorithm for finding a maximum clique of a rect-
angle overlap graph. Our approach is to decompose the problem into O(n?) subproblems,
each of which is solved by finding a maximum independent set of its corresponding transitive
graph with the use of a 0-1 maximum flow algorithm [3]. The complexity results mentioned
above are summarized in Table 1. Note that all the NP-hardness results are obtained for
the tightest degree constraint cases; for if the degree bound is reduced by one, each problem
becomes polynomially solvable as mentioned above.

In the next section, we first prove that the problem of finding a maximum independent
set of a rectangle intersection graph G is NP-hard even if G is planar and A(G) = 3. We
show how to construct, in polynomial time, a desired family of iso-oriented rectangles in the
plane from an instance of the CUBIC PLANAR INDEPENDENT SET problem. We then
describe how to modify the family of rectangles so that the resultant rectangle intersection
graph becomes a cubic graph, thus proving the NP-hardness of the problem for a cubic planar

rectangle intersection graph. We finally note that both families of rectangles constructed are



also instances of the problem for rectangle overlap graphs. In Section 3, we prove the NP-
completeness of the 3-coloring problem for a planar rectangle intersection or overlap graph
G even when A(G) = 4. We show how to construct, in polynomial time, a desired family
of rectangles from an instance of the PLANAR 3-COLORING problem. In Section 4, we
describe an O(n'*/%) time algorithm for finding a maximum clique of a rectangle overlap

graph. Section 5 concludes the paper.

2. The Maximum Independent Set Problem

In this section, we first prove that the problem of finding a maximum independent set
of a planar rectangle intersection graph or a planar rectangle overlap graph G is NP-hard
even if A(G) = 3. We then show that the problem remains NP-hard even when §(v) = 3 for
every vertex v of G. Note that if A(G) < 2, the problem is trivially solved in polynomial
time for any graph G [4].

We assume in the remainder of this paper that a rectangle intersection or overlap graph
is given in the form of a family R of iso-oriented rectangles in the plane. We denote the
rectangle intersection or overlap graph for R by Ggr. Therefore, the problem of finding a
maximum independent set of G is equivalent to that of finding a largest number of rectangles
in R no two of which intersect or overlap each other. We now formally define the maximum
independent set problems for a rectangle intersection graph and a rectangle overlap graph

as the following decision problems:

RECTANGLE INTERSECTION INDEPENDENT SET



Instance: A rectangle intersection graph Gr = (V, F) given in the form of a family R of

iso-oriented rectangles in the plane and an integer k < |R)|.

Question: Is there a subfamily R’ of R such that no two rectangles in R’ intersect each

other and |R/| < k?

RECTANGLE OVERLAP INDEPENDENT SET

Instance: A rectangle overlap graph Gr = (V, E) given in the form of a family R of

iso-oriented rectangles in the plane and an integer k£ < |R|.

Question: Is there a subfamily R’ of R such that no two rectangles in R’ overlap each other

and |R'| < k7

Let G = (V, E) be a graph. A rectilinear planar embedding of G is an embedding of G
in the plane such that (i) every vertex in V is drawn as a point, (ii) every edge (u,v) € E
is drawn by a rectilinear line segment whose endpoints coincide with the points representing
u and v, and (iii) no two such line segments intersect, except at their endpoints. It is easy
to see that the graph G admits a rectilinear planar embedding if and only if it is planar
and A(G) < 4. Recently, Tamassia and Tollis [17] developed a linear time algorithm for
constructing a rectilinear planar embedding of G such that each rectilinear line segment has
at most four bends. Using this result as a basis, we obtain our NP-hardness results in this
and next section.
Theorem 1. The RECTANGLE INTERSECTION INDEPENDENT SET problem is NP-
complete even when A(GRr) = 3 for a given graph Grg.

Proof. Tt is clear that the RECTANGLE INTERSECTION INDEPENDENT SET problem



belongs to the class NP. Therefore, it is sufficient to show that a known NP-complete problem

1s polynomially transformable to this problem. We use the following NP-complete CUBIC

PLANAR INDEPENDENT SET problem [4].

CUBIC PLANAR INDEPENDENT SET

Instance: A planar graph G = (V, E) with é§(v) = 3 for each v € V, and an integer
m < |V

Question: Is there an independent set X of G such that |[X| < m?

Let a cubic planar graph G = (V, F) and an integer m be an instance of the CUBIC
PLANAR INDEPENDENT SET problem, where V = {v; |1 <i < n}. Let ¢;; denote the
edge (vi,v;) € E. We first construct, in polynomial time, a rectilinear planar embedding of
G such that each vertex v; € V is drawn as a point p; and each edge e;; € E is drawn by a
rectilinear line segment I;; which connects the points p; and p; and which has at most four
bends and thus consists of at most five straight line segments. Let P = {p; | p; is the point
representing v; € V} and L = {l;;| e;; € E, and [;; is the rectilinear line segment connecting
pi and p; in P}.

We then construct a family of rectangles R in the following way. In an area surrounding

each point p; in P a rectangle r; is placed. In an area surrounding each rectilinear line segment

. . 2 6 . . 1 e .
lij in L, we place six rectangles r};,r%;, ..., rf; such that (i) r; intersects ry;, (ii) r{; intersects
it for s = 1,2,...,5, (iii) rf; intersects r;, and (iv) the six rectangles Ty Ths - -+ s T5; do not

intersect any other rectangles. Since each rectilinear line segment I;; consists of at most five

straight line segments, say, starting from the side of the point p; € P, I}, ..., 4,1 <t <5,



we can always make the above placement in the following manner: place the rectangle r;
in the vicinity of If; for s = 1,2,...,¢ — 1, and the remaining rectangles in the vicinity of
Ii; such that they satisfy the above intersection requirements. A simple example is given in
Fig. 1 to illustrate this transformation.

We complete the construction of our instance of the RECTANGLE INTERSECTION
INDEPENDENT SET problem by setting & = m + 3|E|. Since R contains |V| + 6|F]|
rectangles, the above transformation can be done in polynomial time. Note that the rectangle
intersection graph Gp for R is planar and é(v) = 2 or 3 for each vertex v of Gp.

Suppose that G has an independent set X of size < m. We show that there is a family
R’ of rectangles whose corresponding vertices in Gr form an independent set of size <
k = m + 3|E|. Let Rx be the set of rectangles corresponding to the vertices in X. For
each edge e;; = (vi,v;) € E at most one of the vertices v; and v; is in X. If v; € X, let
Rij = {r},r4,15); otherwise, let R;; = {r};,r%,r};}. Finally, let R’ = Rx U (Ue,;egRi;). It
is easy to see that R’ has |X|+ 3|E| < k rectangles and no two of them intersect each other.

Conversely, suppose that there is a family R’ of rectangles such that |R'| < m + 3|E|
and no two rectangles in R’ intersect each other. We show that G has an independent set
X of size < m. Let R = {r; |1 <i < n,r; € R'} and R, = {ri; | e;j € E,r;; € R'}.
We convert the family of rectangles R', if necessary, to another family R” of the same size
such that R" consists of | E| subfamilies of rectangles of the form {r,J, Syri}or {r,J, fj, H

and a subfamily of rectangles of type r;. For each rectilinear line segment l;; € L, let

Ry = {r} |1 < s <6, € R'}. For each l;; € L, we perform the following operation, if



necessary.
1. If |R;;] = 3, no operation is needed.
2. Otherwise, let |R;;| = q.

(a) If ry,r; € R, find a subfamily R, C R! — {r;} of size 2 — ¢, and replace R, by
R, — R, — {r;} and R, by (R, — R;;) U {7‘?j,r§j,r?j}.

(b) If r; € R, and r; ¢ R., find a subfamily R, C R, of size 3 — ¢, and replace R, by
R, — R, and R, by (R, — Ri;) U {r¥, v}, 75}

(c) Otherwise, find a subfamily R, C R, of size 3 — ¢, and replace R, by R/, — R, and

R/ by (R R‘t])u{r;]) t]’ t]}

After the above operations are performed for all rectilinear line segments in L, we set R" =
R, UR.. It is easy to see that (i) no two rectangles in R” intersect each other, (ii) |R"| = |R/|,
and (iii) for each e;; € E, R, contains exactly three rectangles {rhr¥, i} or {rk, v, v

and hence |R.| = 3|E| and |R]| < m. Therefore, the vertices of G whose corresponding

rectangles are in R, form a desired independent set of size < m. This completes the proof.
O

We now consider the cubic rectangle intersection graph case. In the proof of Theorem 1,
6(v) = 3 in the rectangle intersection graph Gr if v corresponds to a rectangle of the form r;
and §(v) = 2 if it corresponds to a rectangle of the form r;,1 < s < 6. Therefore, additional
rectangles need to be placed in the vicinity of each rectilinear line segment l;; € L so that the
resultant rectangle intersection graph becomes a cubic graph. Let I};, I?J, L1 Lt L5,

10



be the straight line segments of l;; € L, starting from the side of the point p; € P. We
place two additional rectangles rj; and r{; in an area surrounding l;; such that r; (resp., r;
intersects r,J,r,J and r}; (resp., ri,ri; and r). More precisely, if ¢ = 1, we locate both T4
and r{; in the vicinity of I}; ;; otherwise, we locate r; in the vicinity of l and rf; in the vicinity
of lfj. In Fig. 2, we illustrate such a placement for each t = 1,2,...,5. Note that we can
always apply the above method to any rectilinear line segments with different geometries.
Suppose that X is a solution to the CUBIC PLANAR INDEPENDENT SET problem.
In the same way as shown in the proof of Theorem 1, we can select, for each I;; € L,

three rectangles {r} ri}or {rZ,rl, 5} It is easy to see that the vertices corresponding

iy tJ’ Tij

to those rectangles and the ones corresponding to the vertices in X form an independent
set of size < m + 3|E|. Conversely, suppose that R’ is a solution to the RECTANGLE
INTERSECTION INDEPENDENT SET problem. For each l;; € L, if rl; (resp., rj;) is in

R, then rf;,r% and 7; (resp., ri;,r¥; and rf;) are not in R'. Therefore, if we first replace r;
(vesp., ri;) by r%; (resp., ;) if r; (resp., ri;)€ R’ and then apply the operations described in
the proof of Theorem 1, we can obtain a desired independent set for the CUBIC PLANAR

INDEPENDENT SET problem. Thus, we obtain the following theorem.

Theorem 2. The RECTANGLE INTERSECTION INDEPENDENT SET problem is NP-

complete even for cubic planar rectangle intersection graphs. [

In the proof of Theorem 1 and the above discussion, no rectangle in R contains any
other rectangle. Therefore, the rectangle overlap graph for R is the same as the rectangle

intersection graph for R and hence we obtain the following results.

11



Theorem 3. The RECTANGLE OVERLAP INDEPENDENT SET problem is NP-complete
even when A(Gpr) = 3 for a given graph Gg. O
Theorem 4. The RECTANGLE OVERLAP INDEPENDENT SET problem is NP-complete

even for cubic planar rectangle overlap graphs. [J

3. The 3-Coloring Problem

The 3-coloring problem for planar rectangle intersection graphs was shown to be NP-
complete by Lee and Leung [12]. Although they did not consider any degree constraint,
their proof directly implies that the problem is in fact NP-complete even when A(G) = 8.
Furthermore, their proof can easily be modified for the planar rectangle overlap graph case
with the same degree constraint.

In this section, we show that the 3-coloring problem remains NP-complete for both classes
of graphs even when A(G) = 4. This is the tightest degree constraint for its NP-completeness,
since the minimum coloring problem is solvable in polynomial time for any graph G when
A(G) <3 [4).

Theorem 5. The 3-coloring problem is NP-complete for a planar rectangle intersection
graph Gg even when A(GRgr) = 4.
Proof. 1t is clear that the problem is in the class NP. What remains to be proven is to show

that the following NP-complete problem is polynomially transformable to our problem.

PLANAR 3-COLORING

Instance: A planar graph G = (V, E).

12



Question: Is G 3-colorable?

Garey, et al. [6] showed that the PLANAR 3-COLORING problem is NP-complete even
when A(G) = 4.

Let a planar graph G = (V, E) be an instance of the PLANAR 3-COLORING problem
such that A(G) = 4. As in the proof of Theorem 1, we first construct, in polynomial time,
a rectilinear planar embedding of G such that each vertex v; € V is drawn as a point p;
and each edge e;; = (vi,v;) in E is drawn by a rectilinear line segment /;; which consists of

112

b It.,1 <t <5 Let P={p;|p; is the point

at most five straight line segments Ij;, 15, ..., I;,

representing v; € V} and L = {l;; | e;; € E, and [;; is the rectilinear line segment connecting
p: and p; in P}.

We then create an instance of the 3-coloring problem for a planar rectangle intersection
graph Gg by constructing a family R of rectangles in the plane. In an area surrounding
each point p; € P we place a vertex component denoted by R;, and in an area surrounding
each rectilinear line segment l;; € L we locate an edge component denoted by R;;. Each
vertex component R; contains fifteen rectangles arranged in the way shown in Fig. 3 (a).
Note that the four shaded rectangles r¢, v, r* and ! in R; are positioned at the right, left,
top and bottom end, respectively. The corresponding rectangle intersection graph is shown
in Fig. 3 (b). Note that the graph is identical to the special graph called Hy that was
introduced by Garey, et al. [6]. They used a so-called k-outlet vertex substitute graph Hj to
replace each vertex of degree k > 5 in order to prove the NP-completeness of the PLANAR

3-COLORING problem even when no vertex has degree exceeding four in the graph. We

13



use the graph H, to convert each vertex in V of G to a corresponding rectangle intersection

subgraph. Note that (i) the rectangles r{,ri’,r{,r} ,r}, 7 and /" must have the same color to

satisfy the 3-colorability, (i) the four rectangles rf, 7’ ,r? and r? each intersect exactly two
other rectangles in the vertex component, and (iii) the remaining rectangles each intersect

exactly four other rectangles.

g ins ni 1 2 9
Each edge component R;; contains nine rectangles r;;,7i;, ..., 7y

arranged as shown in
Fig. 4 (a). More precisely, (i) the rectangle rl; intersect two rectangles r¥ and r, (i)

the rectangle rf; intersects three rectangles r;; 1 r,’JJr Lt 2

for s = 2,3,5,6, and (iii) the
rectangle rf. intersects four rectangles p972 p271 p 2 and r 2 for ¢ = 4,7. Fig. 4 (b)

1) i i3 Yy

depicts the corresponding rectangle intersection graph. It is easy to see that the rectangles

ri;,ri; and ri; must be assigned the same color and each pair of rectangles, {r¥, 7%}, {rd;,re;
and {r,J, w} must be assigned the remaining two colors in order to satisfy the 3-colorability.

Given a rectilinear line segment [;; in the embedding, we place an edge component R;; in its
vicinity in such a way that the rectangle ri; in R;; intersects one of the rectangles r{,ry,r}’
and r¢ in R;, depending on whether li; is incident upon the point p; from the right, left, top
and bottom side, respectively, and the rectangles r?j and 'r?j in R;; intersect one of r{;,7i, 77

and rf; in R;, depending on whether If; is incident upon the point p; from the right, left, top

s+[s/2] -1 s+|'s/2'| -1

and bottom side, respectively. Furthermore, we place rectangle(s) r; (resp., Ti;

and 7"” /21) in the vicinity of 3 if s is odd (resp., even) for s = 1,2,...,k — 1, and the
remaining rectangles rt+w 21, :;Ht/ a,... ,7%; in the vicinity of IY;, where [z] is an integer

d such that £ < d < = + 1. Fig. b illustrates such a placement for the case of four straight

14



line segments. A simple example is given in Fig. 6 to illustrate the entire transformation.

Since the sizes of a vertex component and an edge component are fifteen and nine,
respectively, the size of the family R of rectangles constructed by the above procedure is
15|V |+ 9|E| and hence the transformation can be done in polynomial time. It is easy to see
that the rectangle intersection graph Gr for R is planar and A(Ggr) = 4.

Consider an edge component R;; which is placed in the vicinity of the rectilinear line
segment I;;. Without loss of generality, assume that the rectangle r}; in R;; intersects the
rectangle r{ of the vertex component R; and the rectangles rf; and r{; in Ri; intersect the

rectangle 7’ of the vertex component R;. As noted above, in any 3-coloring r}j € R, is

8.

assigned one color and rj;

and r?j in R;; are assigned the remaining two colors. Therefore,
the color of r}; € R;; must be the same as that of r¥ € R; and hence r{ € R; and r¥ € R;
must have different colors in order to satisfy the 3-colorability. Since the rectangles rf, v, r?
and r{ in any vertex component R; must have the same color, it is clear that G is 3-colorable

if and only if the rectangle intersection graph Gg for the family R of rectangles constructed

above is 3-colorable. O

The rectangle overlap graph for the family R of rectangles constructed in the above proof
is the same as the rectangle intersection graph for R since no rectangle in R contains any

other rectangle. Therefore, we immediately obtain the following theorem.

Theorem 6. The 3-coloring problem is NP-complete for a planar rectangle overlap graph

Gp even when A(Gr) =4. D
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4. The Maximum Clique Problem

Unlike the maximum independent set and minimum coloring problems, the maximum
clique problem is solvable in polynomial time for a rectangle intersection graph and a rect-
angle overlap graph. Lee [11] developed an O(nlogn) time algorithm for finding a maximum
clique of a rectangle intersection graph, where n is the number of rectangles. We show,
in this section, that a maximum clique of a rectangle overlap graph can also be found in
polynomial time. We describe an O(n**/?) time algorithm which uses a 0-1 maximum flow
algorithm [3].

Let R be a family of iso-oriented rectangles in the plane. A horizontal (resp., vertical) ez-
tension line is a horizontal (resp., vertical) line of infinite length such that its y(z)-coordinate
is the same as that of a horizontal (resp., vertical) line segment which forms the boundary
of any rectangle in R. A cell is a rectangular region in the plane which is bounded by two
adjacent horizontal and two adjacent vertical extension lines. It is easy to see that there are
at most (2n — 1)? such cells.

For any clique of the rectangle overlap graph Gp for R, the rectangles corresponding to
the vertices of the clique share a common intersection region which contains at least one

such cell. Therefore, a maximum clique can be found by the following procedure:
1. For each cell ¢, find a subfamily R(c) of R of rectangles that contain ¢. Then, find a
maximum clique of the rectangle overlap graph Gp(c) for R(c).
2. Select a maximum cardinality one among the cliques found in Step 1.

In the remaining part of this section, we describe how to find a maximum clique of Gp(c)-

16 .



Let G = vV, E") be a directed graph. We call G a transitive graph if the existence of the
directed edges (u,v) and (v,w) in E implies the existence of the directed edge (u,w) in E. It
is known that a maximum independent set (of the undirected version) of a transitive graph
G = (V, E) can be found in O(|V|/?) time by using a 0-1 maximum flow algorithm [8].

Give a family R of iso-oriented rectangles in the plane, we construct a directed graph
G = v, E) as follows. For each rectangle r; in R, we create a vertex v; € V, and for any
two rectangles r; and r; in R such that r; contains r;, we create a directed edge (vi,v;) € E.
It is easy to see that, for any triple of rectangles r;,r; and r in R, if r; contains r; and r;
contains 7, then r; contains rg. Therefore, the graph G = Vv, E) is a transitive graph.

Let R(c) be a family of rectangles that contain a cell ¢. Since either any two rectangles
in R(c) overlap each other or one rectangle contains the other, there is an edge between two
vertices in the rectangle overlap graph Gg() for R(c) if and only if there is no edge between
the corresponding vertices in the transitive graph derived from R(c) in the way mentioned
above. Therefore, a maximum clique of Gpr(c) corresponds to a maximum independent set of
the corresponding transitive graph, and hence we can find a maximum clique of the rectangle
overlap graph Gp() for R(c) in O(|R(c)[*/®) time.

Since the number of cells in the plane is O(n?) and |R(c)| < n, we obtain the following
theorem.

Theorem 7. A maximum clique of a rectangle overlap graph can be found in O(n'%/?) time,
assuming that the graph is given in the form of a family of n iso-oriented rectangles in the

plane. OO

17



5. Conclusion

We have shown that the maximum independent set problem is NP-hard for a cubic planar
rectangle intersection or overlap graph. We have also shown that the 3-coloring problem is
NP-complete for a planar rectangle intersection or overlap graph Gg even when A(GR) = 4.
These results are obtained for the tightest degree constraint cases. Finally, we have described
how to find, in O(n'*/?) time, a maximum clique of a rectangle overlap graph with n vertices.

It is interesting to develop a faster maximum clique algorithm for a rectangle overlap graph.
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(a) A graph G. (b) A rectilinear embedding of G.
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(c) The resultant family of rectangles R.

Fig. 1. An illustration of the transformation for the proof of Theorem 1.
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Fig. 2. Placements of additional rectangles r{; and r;
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segments with t straight line segments.
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(b) The rectangle intersection graph Gpg; for R;.

Fig. 3. A vertex component and its corresponding rectangle intersection graph.
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(a) An edge component R;;.

(b) The rectangle intersection graph Gr,; for Ri;.

Fig. 4. An edge component and its corresponding rectangle intersection graph.
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Fig. 5. A rectilinear line segment and the placement of rectangles of its edge component.
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(a) A graph G. (b) A rectilinear embedding of G.
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(c) The resultant family of rectangles R.

Fig. 6. An illustration of the transformation for the proof of Theorem 5.
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