
University of Maryland Technical Report UMIACS-TR-2012-01

Understanding Multicore Cache Behavior of Loop-based Parallel

Programs via Reuse Distance Analysis

Meng-Ju Wu and Donald Yeung

Department of Electrical and Computer Engineering

University of Maryland at College Park

{mjwu,yeung}@umd.edu

Abstract

Understanding multicore memory behavior is crucial, but can be challenging due to the cache

hierarchies employed in modern CPUs. In today’s hierarchies, performance is determined by com-

plex thread interactions, such as interference in shared caches and replication and communication

in private caches. Researchers normally perform simulation to sort out these interactions, but this

can be costly and not very insightful. An alternative is reuse distance (RD) analysis. RD analysis

for multicore processors is becoming feasible because recent research has developed new notions of

reuse distance that can analyze thread interactions. In particular, concurrent reuse distance (CRD)

models shared cache interference, while private-stack reuse distance (PRD) models private cache

replication and communication.

Previous multicore RD research has centered around developing techniques and verifying accu-

racy. In this paper, we apply multicore RD analysis to better understand memory behavior. We

focus on loop-based parallel programs, an important class of programs for which RD analysis pro-

vides high accuracy. First, we develop techniques to isolate thread interactions, permitting analysis

of their relative contributions. Then, we use our techniques to extract several new insights that

can help architects optimize multicore cache hierarchies. One of our findings is that data sharing

1



in parallel loops varies with reuse distance, becoming significant only at larger RD values. This

implies capacity sharing in shared caches and replication/communication in private caches occur

only beyond some capacity. We define Cshare to be the “turn-on capacity” for data sharing, and

study its impact on private vs. shared cache performance. In addition, we find machine scaling

degrades locality at smaller RD values and increases sharing frequency (i.e., reduces Cshare). We

characterize how these effects vary with core count, and study their impact on the preference for

private vs. shared caches.

1 Introduction

Memory performance is a major determiner of overall system performance and power consump-

tion in multicore processors. For this reason, understanding how applications utilize the on-chip

cache hierarchies of multicore processors is extremely important for architects, programmers, and

compiler designers alike. But gaining deep insights into multicore memory behavior can be very

difficult due to the complex cache organizations employed in modern multicore CPUs.

Today, a typical multicore processor integrates multiple levels of cache on-chip with varying

capacity, block size, and/or set associativity across levels. In addition, cores may physically share

cache. Each core normally comes with its own dedicated L1 cache, but the caches further down the

hierarchy can be either private or shared. Moreover, data replication is usually permitted across

the private caches, with hardware cache coherence used to track and manage replicas.

In such cache hierarchies, memory performance depends not only on how well per-thread work-

ing sets fit in the caches, but also on how threads’ memory references interact. Many complex

thread interactions can occur. For instance, inter-thread memory reference interleaving leads to

interference in shared caches. Also, data sharing may reduce aggregate working set sizes in shared

caches, partially offsetting the performance-degrading interference effects. But in private caches,

data sharing causes replication, increasing capacity pressure, as well as communication.

2



To study these complex effects, researchers normally rely on architectural simulation [1, 2, 3, 4, 5,

6, 7, 8], but this can be very costly given the large number of simulations required to explore on-chip

cache design spaces. A more efficient approach that can potentially yield deeper insights is reuse

distance (RD) analysis. RD analysis measures a program’s memory reuse distance histogram–i.e.,

its locality profile–directly quantifying the application-level locality responsible for cache perfor-

mance. Locality profiles report reference frequency across the continuum of RD values, which can

enable powerful analyses. For example, a single locality profile can predict the cache-miss count at

every possible cache capacity without having to simulate all of the configurations.

Multicore RD analysis is relatively new, but is becoming a viable tool due to recent work.

In particular, researchers have developed new notions of reuse distance that account for thread

interactions. Concurrent reuse distance (CRD) [9, 10, 11, 12, 13, 14] measures RD across thread-

interleaved memory reference streams, and accounts for interference and data sharing between

threads accessing shared caches. Private-stack reuse distance (PRD) [11, 12] measures RD sepa-

rately for individual threads using per-thread coherent stacks. PRD accounts for replication and

communication between threads accessing private caches. Together, CRD and PRD profiles (i.e.,

locality histograms based on CRD/PRD) can analyze shared and private cache performance.

One problem with multicore RD is that it is sensitive to memory interleaving, and hence, archi-

tecture dependent. A CRD/PRD profile measured on one architecture may not be valid for other

architectures if memory interleaving changes. But such profile instability is minimal when threads

exhibit similar access patterns [10, 11, 14]. For example, programs exploiting loop-level parallelism

contain symmetric threads that tend to execute at the same rate regardless of architectural assump-

tions. For such programs, CRD/PRD profiles are essentially architecture independent and provide

accurate analyses. For the general case, however, CRD/PRD profiles can exhibit error.

Despite its shortcomings, RD analysis can provide extremely rich information about multicore

3



memory behavior. But surprisingly, there has been very little work on extracting insights from this

information, as current research has focused primarily on developing techniques and verifying their

accuracy. In this paper, we use RD analysis to better understand multicore memory behavior. In

particular, we extract new insights that can potentially help architects optimize multicore cache

hierarchies. Our work also demonstrates the kind of analyses that are possible.

For accuracy, we focus on loop-based parallel programs with architecture independent CRD and

PRD profiles. Though somewhat restrictive, our study is still fairly general given the pervasiveness

of parallel loops. They dominate all data parallel codes. They also account for most programs

written in OpenMP, one of the main parallel programming environments. And while our results

come from parallel loops, we believe many of our insights apply to parallel programs in general.

Our work makes several contributions. First, we review different thread interactions in both

shared and private caches, and show how basic CRD and PRD profiles capture them. Then, we

isolate the different effects to analyze their relative contributions. We leverage existing techniques

for shared caches [14], but develop new techniques for private caches. We apply this analysis

to loop-based parallel programs, and show how different thread interactions contribute to overall

CRD/PRD behavior. One of our findings is that data sharing varies with reuse distance. For

parallel loops, we find sharing typically does not occur at small RD, but can increase at larger RD.

Second, we explore the architectural implications of our data sharing insights. In particular, we

define “Cshare” to be the RD value (i.e., cache capacity) at which data sharing becomes noticeable.

We then study the impact of Cshare on the relative performance of private vs. shared caches. We

find shared caches potentially make sense beyond Cshare where increased sharing leads to lower

miss counts compared to private caches. But this benefit must be weighed against the higher

access latency of shared caches, whose impact depends on the miss-rate of the upstream cache. We

evaluate this tradeoff using our CRD/PRD profiles for a simple tiled processor architecture.

4



Third, we use RD analysis to study the impact of machine scaling on memory behavior, showing

how CRD and PRD profiles evolve at different core counts. We corroborate Wu’s findings [14]

that scaling core count for loop-based parallel programs degrades shared cache locality, but only at

smaller capacities. Using Wu’s Ccore metric [14], we quantify such “scaling containment” across sev-

eral benchmarks. In addition, we show scaling-induced locality degradation is more comprehensive

for private caches, and we also demonstrate Cshare shifts to smaller capacities with scaling. Finally,

we study the impact of these machine scaling insights on private vs. shared cache performance.

The rest of this paper is organized as follows. Section 2 reviews thread interactions, and presents

techniques to isolate their effects. Then, Section 3 uses our techniques to analyze loop-based parallel

programs, and applies insights to analyze private vs. shared cache performance. Next, Section 4

develops machine scaling insights. Finally, Sections 5 and 6 discuss related work and conclusions.

2 Multicore RD Analysis

Reuse distance is the number of unique memory references performed between two references

to the same data block. An RD profile–i.e., the histogram of RD values–can analyze uniprocessor

cache performance. Because a cache of capacity C can satisfy references with RD < C (assuming

LRU), the number of cache misses is the sum of all reference counts in an RD profile above the

RD value for capacity C. In multicore CPUs, RD analysis must consider memory references from

simultaneously executing threads. Per-thread RD profiles can be measured using independent LRU

stacks, but other techniques are needed to account for thread interactions. Below, we review

different thread interactions (Section 2.1), and then develop techniques to isolate their effects

(Section 2.2).

5



Figure 1. Multicore cache hierarchy.

C

A B

G

Core C1:

Core C2:

A

F

Time: 51 2 3 4 6 7

(A)

E

8

C

9

H

D

10

Figure 2. Two interleaved memory reference streams, illus-

trating different thread interactions.

2.1 CRD and PRD Profiles

Multicore processors often contain both shared and private caches. For example, Figure 1 il-

lustrates a typical CPU consisting of 2 levels of private cache backed by a shared last-level cache.

Threads interact very differently in each type of cache, requiring separate locality profiles.

Concurrent reuse distance (CRD) profiles report locality across thread-interleaved memory ref-

erence streams, thus capturing interference in shared caches. CRD profiles can be measured by

assuming an interleaving between threads’ memory references, and applying the interleaved stream

on a single (global) LRU stack [10, 11, 12, 14]. For example, Figure 2 illustrates a 2-thread in-

terleaving in which core C1 touches blocks A–E, and then re-references A, while core C2 touches

blocks C and F–H. Figure 3a shows the state of the global LRU stack when C2 re-references A.

Notice, C2 interferes with C1’s reuse of A: per-thread RD = 4 becomes CRD = 7. CRD > RD

because some of C2’s references (F–H) are distinct from C1’s references, causing dilation in CRD.

Private-stack reuse distance (PRD) profiles report locality across per-thread memory reference

streams that access coherent private caches. PRD profiles can be measured by applying threads’

references on private LRU stacks that are kept coherent. Without writes, the private stacks do not

interact, so PRD = per-thread RD. For example, Figure 3b shows the PRD stacks corresponding to

Figure 3a assuming all references are reads. For C1’s reuse of A, PRD = RD = 4. Note, however,

the multiple private stacks still contribute to increased cache capacity. (Here, the capacity needed

to satisfy PRD = 4 is 10, assuming 2 caches with 5 cache blocks each). To capture this effect, we

compute the scaled PRD (sPRD) which equals T × PRD, where T is the number of threads.

6



C2C1 C2C1a. b.

F

A

B
C

A

D
C
E
G

B
= hole

D
E

C
G
H

C2C1c.

B
C
D

Wr C

A
F

F

H

A
A

Figure 3. LRU stacks showing (a) dilation and

overlap in CRD profiles, (b) scaling, replication,

and (c) holes in PRD profiles.

CRDP

CRDSC = sPRDSR

CRDS

CRDPC = sPRDPR

sPRDP sPRDS

demotion invalidationsinterceptsoverlap absorption

Figure 4. Quantifying individual thread interac-

tion effects.

In addition to dilation and scaling, multicore RD analysis also takes data sharing into account.

In CRD profiles, data sharing offsets dilation by introducing overlap. For example, in Figure 2,

while C2’s reference to C interleaves with C1’s reuse of A, this does not increase A’s CRD because

C1 already references C in the reuse interval. On top of overlap, data sharing also affects CRD via

intercepts. For example, if C2 references A instead of C at time 6 in Figure 2, then C1’s reuse of A

has CRD = 3, so CRD actually becomes less than RD.

In PRD profiles, read sharing causes replication, increasing overall capacity pressure. Figure 3b

illustrates this, showing duplication of C in the private stacks. Because scaling aggregates private

LRU stack contents, replication is automatically captured in sPRD profiles. In contrast, write

sharing causes invalidation. For example, if C2’s reference to C is a write instead of a read, then

invalidation would occur in C1’s stack,1 as shown in Figure 3c. To prevent invalidations from

promoting blocks further down the LRU stack, invalidated blocks become holes rather than being

removed from the stack [11]. Holes are unaffected by references to blocks above the hole (e.g., if

C1 were to reference D in Figure 3c), but a reference to a block below the hole moves the hole to

where the referenced block was found (e.g., if C1 were to reference B, D would be pushed down

and the hole would move to depth 3, preserving A’s stack depth).

Of course, invalidations reduce locality for victimized data blocks since reuse of these blocks

will always cache miss (i.e., coherence misses). But invalidations can also improve locality because

1Existing PRD techniques perform invalidation to maintain inter-stack coherence [11, 12].

7



the holes they leave behind eventually absorb stack demotions. For example, in Figure 3c, C1’s

subsequent reference to E does not increase A’s stack depth because D will move into the hole.

(Since this is E’s first reference, in effect, the hole moves to RD = ∞). Hence, C1’s reuse of A has

PRD (sPRD) = 3 (6) instead of 4 (8). We call this effect demotion absorption.

2.2 Quantifying Thread Interactions

To provide insights into multicore memory behavior, we separately quantify dilation, overlap, and

intercepts in shared caches and scaling, demotion absorption, and invalidations in private caches

by creating several new locality profiles that isolate these thread interactions. In particular, we

borrow CRD profile techniques from [14], and extend them for PRD profiles. Later, in Section 3,

we acquire all of the isolation profiles, and use them to study multicore cache behavior.

Figure 4 illustrates our approach. First, we acquire profiles for references to private versus

shared data separately. (Note, we still keep all data in the same LRU stacks from Figure 3;

we only register computed CRD/PRD values in separate profiles). We call the private profiles

CRDP and sPRDP , and the shared profiles CRDS and sPRDS . CRDP and sPRDP do not include

interactions directly associated with shared data–i.e., intercepts and invalidations, respectively.

So, CRDP shows dilation and overlap effects while sPRDP shows scaling and demotion absorption

effects. CRDS and sPRDS primarily show intercept and invalidation effects, respectively. They

also contain the other effects to some degree, but as we will see, this is not a problem in most cases.

Next, we isolate the sharing-based interactions. For CRD profiles, we remove sharing by prepend-

ing every memory reference’s address with the ID of the core performing the reference. That way,

references to the same data block by different cores appear as distinct blocks in the global LRU

stack. We call the profiles acquired on such CID-extended stacks CRDPC and CRDSC . CID ex-

tension removes overlap in private profiles, so comparing CRDP and CRDPC separately quantifies

8



overlap. Similarly, CID extension removes intercepts in shared profiles, so comparing CRDS and

CRDSC separately quantifies intercepts. This is shown in Figure 4.

For sPRD profiles, we remove write sharing to isolate the hole-related interactions. This is

done by converting all writes into reads. We call the profiles for such read-only stacks sPRDPR

and sPRDSR. Read conversion removes demotion absorption in private profiles, so comparing

sPRDP and sPRDPR separately quantifies demotion absorption. Similarly, read conversion removes

invalidations in shared profiles, so comparing sPRDS and sPRDSR separately quantifies invalidation

(see Figure 4). Finally, after CID extension and read conversion, CRD and sPRD profiles only

exhibit dilation and scaling, respectively. By comparing these profiles to per-thread RD profiles,

we can separately quantify dilation and scaling (not shown in Figure 4).

3 Thread Interactions Analysis

This section applies the isolation techniques introduced in Section 2.2 to study thread interac-

tions in loop-based parallel programs. We first discuss how we acquire profiles, then present our

interaction insights, and finally, apply our insights to analyze private vs. shared cache performance.

3.1 Profile Acquisition

We use Intel PIN [15] to acquire locality profiles. Our PIN tool maintains independent LRU

stacks to compute per-thread RD profiles, a global LRU stack to compute a CRD profile, and

coherent private LRU stacks to compute an sPRD profile. All stacks employ 64-byte memory

blocks, the cache block size we assume. Our PIN tool follows McCurdy and Fischer’s method [16],

performing functional execution with context switching between threads every memory reference,

which interleaves threads’ references uniformly in time. While this does not account for timing, it is

accurate for loop-based parallel programs. In particular, Wu [14] shows CRD profiles acquired this

way can predict shared cache MPKI for loop-based parallel programs to within 10% of simulation.

9



FFT LU Radix Barnes FMM Ocean Water KMeans BlackS.

Problem Sizes
S1 218 5122 219 215 215 2582 163 218 218

S2 222 20482 223 219 219 10262 403 222 222

Insts (M)
S1 129 344 93 1,015 1,006 107 143 742 242
S2 2,420 22,007 1,687 19,145 16,570 1,636 2,099 11,874 3,867

Table 1. Parallel benchmarks used in our study.

Others have shown similar accuracy for both CRD and PRD profiles on parallel loops [10, 11].

Because the thread interactions we study occur within individual parallel loops, we acquire

profiles on a per-loop basis. In our benchmarks, parallel loops often begin and end at barriers, so

we record profiles between every pair of barrier calls–i.e., per parallel region. Multiple loops can

occur in each parallel region so this doesn’t separate all loops, but it is sufficient for our study.2

Within parallel regions, we acquire the isolation profiles from Section 2.2. To create private

vs. shared profiles, we record each memory block’s CRD (PRD) values separately as well as the

number of times the block is referenced by each core. After a parallel region completes, we assess

sharing: if a single core performs 90% or more of a block’s references, the block is private; otherwise,

it is shared. We then accumulate all memory blocks’ CRD (PRD) counts into either CRDP (sPRDP )

or CRDS (sPRDS) based on their observed sharing. (We also similarly create private and shared

versions of per-thread RD profiles, RDP and RDS). To create no-sharing profiles, we maintain a

second global LRU stack for which we apply CID extension and a second set of coherent private

LRU stacks for which we apply read conversion. Using the same method to separate private and

shared references, we compute CRDPC , CRDSC , sPRDPR, and sPRDSR from these stacks.

Our study employs 9 benchmarks, each running 2 problem sizes. Table 1 lists the bench-

marks: FFT, LU, RADIX, Barnes, FMM, Ocean, and Water from SPLASH2 [17], KMeans from

MineBench [18], and BlackScholes from PARSEC [19]. Table 1 specifies the problem sizes, S1 and

S2, in terms of data elements. We acquire profiles in each benchmark’s parallel region. Table 1 also

reports parallel region instruction count when profiling a sequential execution of the benchmark.

2To facilitate parallel region profiling, we instrument PIN to recognize each program’s barrier function.

10



3.2 Analysis

We analyze a specific example, the Barnes benchmark. While different interactions occur to

varying degrees across benchmarks, we find all parallel regions exhibit the same behaviors, so our

insights for Barnes are generally applicable. (We will consider all benchmarks in Section 3.3).

Figure 5 shows different CRD and PRD profiles for the most important parallel region in Barnes

running on 16 cores. Each profile plots reference count (Y-axis) versus RD (X-axis). RD values

are multiplied by the block size, 64 bytes, so each X-axis reports RD as capacity. For each profile,

reference counts from multiple adjacent RD values are summed into a single RD bin, and plotted

as a single Y value. For capacities 0–128KB, bin size grows logarithmically; beyond 128KB, all bins

are 128KB each.

Private Profiles Analysis. Figure 5a compares CRDPC and sPRDPR against RDP . As described

in Section 2.2, CRDPC and sPRDPR do not contain sharing-induced interactions, so this comparison

shows dilation and scaling in isolation. In Figure 5a, we see sPRDPR is roughly a 16x scaling of

RDP . This is somewhat expected since sPRD is simply a scaled version of private-stack profiles.

More surprisingly, CRDPC is essentially identical to sPRDPR, and is also a 16x scaling of RDP .

This is due to the regular memory interleaving exhibited by parallel loops. In a shared cache,

intra-thread reuses at a particular distance RD tend to experience dilation by a factor RD from

each of the other simultaneous threads because all of the threads are symmetric. Consequently,

dilation degrades locality at the same rate as scaling: linear with the number of threads.

While dilation and scaling are equivalent, the sharing-related interactions in shared vs. private

caches are not. To illustrate, Figure 5b plots CRDP and sPRDP . As described in Section 2.2, these

profiles quantify overlap and demotion absorption, respectively, when compared against CRDPC

(and equivalently, sPRDPR). From Figures 5a-b, we see several important behaviors.

First, CRDP and sPRDP both terminate well before CRDPC : 6.4MB for CRDP and 15MB for

11



(a) Private profiles showing dilation and scaling.

(b) Profiles showing overlap and demotion absorption.

(c) Shared profiles showing dilation and scaling.

(d) Profiles showing intercepts and invalidations.

Figure 5. Barnes’ locality profiles for the most important parallel re gion on 16 cores.

sPRDP compared to 24.9MB for CRDPC . As discussed in Section 2.1, data sharing introduces

overlap that offsets dilation in CRD profiles; sharing also causes demotion absorption that reduces

scaling in PRD profiles. These effects contract CRDP and sPRDP relative to CRDPC . Second,

the fact that CRDP and sPRDP terminate at different capacities is significant. It shows dilation

is more dominant than demotion absorption since the former causes greater contraction. (We find

write sharing is relatively infrequent, so demotion absorption tends to be a minor effect). But

more importantly, the discrepancy also quantifies replication. As mentioned in Section 2.1, sPRD

profiles aggregate replicated data whereas CRD profiles do not. Hence, the difference in termination

between CRDP and sPRDP –about 9.9MB in Figure 5b–measures the volume of replicated data.

Lastly, CRDP and PRDP ’s contraction varies with reuse distance. Because contraction is caused

by sharing, its presence or absence along CRDP and sPRDP permits assessing the degree of data

sharing as a function of reuse distance. For example, in Figures 5a-b, we see CRDP , sPRDP , and

CRDPC are coincident at small RD values. Then, at around 2KB, contraction begins and the

profiles diverge. Contraction grows with increasing RD, and finally causes the different termination

mentioned above. In other words, data sharing is absent at capacities below 2KB, but increases

from 2KB onwards. This makes sense since programmers tend to partition parallel loops to reduce

12



sharing frequency. Later, we will see the significance of such distance-based sharing variation.

Shared Profiles Analysis. Figures 5c-d plot the shared profiles, which exhibit similar behavior

to the corresponding private profiles in Figures 5a-b. In particular, Figure 5c shows CRDSC and

sPRDSR are essentially identical, and are both a 16x scaling of RDS–i.e., dilation and scaling are

equivalent for parallel loops in the absence of sharing. Moreover, Figure 5d shows CRDS and sPRDS

contract compared to CRDSC/sPRDSR, with CRDS contracting the most. Similar to Figure 5b,

this illustrates overlap, demotion absorption, and the volume of replicated data.

Figures 5c-d also show intercept and invalidation effects. As discussed in Section 2.1, intercepts

disrupt intra-thread reuse by splitting reuse windows. For example, Figure 2 shows an intercept

bisecting C1’s reuse, making CRD = 3. But if the intercept occurs at time 9, CRD = 0, and if the

intercept occurs at time 2, CRD = 6. Because the interception point is random, intercepts tend

to “spread” CRD profiles, causing distortion. This effect is visible in Figure 5d, particularly at

small RD values. In contrast, invalidations move references to RD = ∞. The rightmost point on

the X-axis in Figure 5d, labeled “InfPRD,” reports the number of invalidations in sPRDS . Unlike

intercepts, invalidations do not cause distortion. This is partly due to the fact that invalidations

leave holes which preserve stack depth for non-invalidated blocks.

Notice, the reference counts in Figures 5c-d are much smaller than Figures 5a-b, about 6x less.

In our benchmarks, we find private profiles dominate shared profiles. Hence, dilation and overlap

in CRD profiles along with scaling and demotion absorption in PRD profiles determine overall

shared/private cache performance.

3.3 Private vs. Shared Caches

The memory behaviors from Section 3.2 suggest opportunities to optimize multicore caches. We

now study one example, selecting between private vs. shared caches, a classic multicore design deci-

13



Figure 6. CRD CMC and sPRD CMC profiles for

FFT running the S1 problem on 16 cores.
Figure 7. Tiled multicore processor.

sion [20, 21]. (We present basic insights in this section, and then extend them later in Section 4.2).

For parallel programs with data sharing, shared caches more efficiently utilize cache capacity by

keeping only a single copy of threads’ overlapping working sets in cache. However, private caches

more effectively mitigate access latency by caching each thread’s working set physically close to the

accessing core. Multicore RD analysis can evaluate this tradeoff precisely.

The extent to which shared caches more efficiently utilize capacity depends on the degree of

data sharing in an application. As shown in Section 3.2, this varies with reuse distance. Hence,

a shared cache’s capacity utilization advantage over a private cache depends on its capacity. Fig-

ure 6 illustrates this point by plotting cache-miss count (CMC) versus RD for both the CRD and

sPRD profiles from FFT (running the S1 problem on 16 cores). These profiles, which we call

CRD CMC and sPRD CMC, respectively, are computed as CRD CMC[i] =
∑N−1

j=i CRD[j] and

sPRD CMC[i] =
∑N−1

j=i sPRD[j], where N is the total number of bins in each profile.

Figure 6 shows private and shared caches incur the same number of cache misses at small capac-

ities. As discussed in Section 3.2, there is no data sharing in this region, so dilation and scaling are

equivalent and CRD and sPRD are coincident. Beyond a certain capacity, the shared organization

reduces cache misses compared to the private organization. As discussed in Section 3.2, this is the

data sharing region where overlap contracts CRD more than demotion absorption contracts PRD.

This region is also where replication accumulated via scaling of sPRD profiles (and to a lesser extent

invalidations) causes private caches to have increased cache misses compared to shared caches.

We define “Cshare” to be the capacity where an application begins to exhibit data sharing such

14



FFT LU Radix Barnes FMM Ocean Water KMeans BlackScholes

S1 4.4M 32K 3.6M 2K 4K 768K 2K 8K 1K
S2 76.8M 64K 72M 2K 27.8M 91.7M 2M 16K 1K

Table 2. Cshare for the S1 and S2 problem sizes running on 16 cores.

that CRD shows an advantage over sPRD (we require CRD to be 10% lower than sPRD). Figure 6

illustrates Cshare. In Table 2, we report Cshare across all of our benchmarks for the S1 and S2

problems running on 16 cores. As Table 2 shows, Cshare is highly application dependent, varying

between 1KB and 4.4MB for the S1 problem. For the S2 problem, Cshare can exceed 70MB.

To study the impact of capacity utilization on private vs. shared cache performance, we consider

an architecture that can be easily configured with private or shared caches: the tiled processor in

Figure 7. In a typical tiled processor, each tile contains a core, a private L1 cache, and an L2

module. The L2 module can either be a second private cache, or a slice of a shared cache formed

by all L2 modules across the tiled processor. A point-to-point 2D mesh network connects the tiles,

carrying either private L2 cache requests or shared L2 slice requests. Due to the 2D topology, we

assume network messages incur
√
T + 1 hops on average, where T is the number of tiles. The

average memory access time (AMAT) for the tiled CPUs with private and shared L2 caches are:

AMATp = L1lat + L2lat p ×
sPRD CMC[T × L1size]

sPRD CMC[0]
+DRAMlat ×

sPRD CMC[L2size]

sPRD CMC[0]
(1)

AMATs = L1lat + L2lat s ×
sPRD CMC[T × L1size]

sPRD CMC[0]
+DRAMlat ×

CRD CMC[L2size]

sPRD CMC[0]
(2)

A shared cache is best when AMATp > AMATs. Given the above equations, this occurs when:

(sPRD CMC[L2size]−CRD CMC[L2size])×DRAMlat > sPRD CMC[T×L1size]×(L2lat s−L2lat p)

(3)

Equation 3 shows shared caches are better when the memory stall savings they provide via the

sPRD CMC/CRD CMC gap in Figure 6 (LHS of Equation 3) exceeds private caches’ savings in L2

access latency (RHS of Equation 3). Notice, the access latency savings is weighted by the L2 access

15



Figure 8. FFT’s L2 AMAT p and L2 AMAT s for dif-

ferent L1 and L2 capacities.

Figure 9. FMM’s L2 AMAT p and L2 AMAT s for

different L1 and L2 capacities.

frequency–i.e., the L1 caches’ miss count. So, preference for private or shared not only depends on

the capacity of the cache being optimized, but also on the capacity of the upstream cache.

To illustrate, Figures 8 and 9 plot L2 AMATp and AMATs as a function of total L2 size for the

FFT and FMM benchmarks (both run the S1 problem on 16 cores). Different pairs of curves show

results for different L1 sizes. When computing L2 AMAT, we assume a 3-cycle per-hop network

latency, a 10-cycle L2 module latency, and a 200-cycle DRAM latency. These graphs show several

insights. First, at small L1 capacities, the RHS of Equation 3 dominates, so private caches are

always better. This occurs in Figures 8 and 9 when the L1 is 8KB. Second, for larger L1 caches,

the RHS of Equation 3 reduces, allowing the LHS to dominate if the sPRD CMC/CRD CMC gap

is sufficiently large. As discussed earlier, a gap opens up only beyond Cshare. Hence, under larger

L1 caches, private is still best below Cshare, but above Cshare, shared can outperform private. This

occurs in Figure 8 for the 32KB L1 with a private-to-shared L2 cross-over at 5.8MB, and in Figure 9

for the 32KB and 64KB L1s with L2 cross-overs at 6.4MB and 2.2MB, respectively.

Finally, at large L2 capacities, private and shared cache performance tends to converge because

there are much fewer total L2 misses. This diminishes shared cache advantage. In fact, private

caches may regain a performance advantage if the off-chip stalls become insignificant compared to

the L2 access volume. For example, Figure 9 shows a shared-to-private L2 cross-over at 9.7MB.

16



(a) CRDP on 16 and 64 cores. (b) sPRDP on 16 and 64 cores.

Figure 10. FFT’s locality profiles for the most important parallel reg ion on 16 and 64 cores.

4 Machine Scaling Analysis

This section applies our isolation techniques introduced in Section 2.2 to study machine scaling’s

impact on loop-based parallel programs. We first present insights, and then discuss their architec-

tural implications. Similar to Section 3, we present the detailed analysis on a single benchmark,

this time FFT, and then generalize to other benchmarks.

4.1 Scaling CRD and sPRD Profiles

Figure 10a compares the 16- and 64-core CRDP for the FFT benchmark running the S1 problem.

RDP is also shown. As shown in Section 3.2, CRDP exhibits two effects: dilation at small RD due

to memory interleaving of private data references, and overlap that offsets dilation at larger RD

due to data sharing. The dilation effect increases with core count. At small RD, dilation scales

CRD linearly compared to RD. So, increasing the number of cores causes a proportional increase

in dilation. This effect is visible in Figure 10a: the 16- and 64-core CRDP at small RD are 16x and

64x scalings of RDP . Hence, the 4x machine scaling shifts CRDP in the small-RD region by 4x.

Although dilation increases with machine scaling, overlap still offsets its effects at larger RD. As

shown in Section 3.2, this contracts CRDP relative to CRDPC (not shown in Figure 10a), causing

sub-linear shift in the large-RD region. Interestingly, in Figure 10a we see that not only does overlap

occur, but its contraction of the 16- and 64-core CRDP makes both profiles eventually track each

other and terminate at the same RD value. Co-termination is a reflection of the fact that machine

17



scaling usually does not increase the total data in the application much, so maximum RD is roughly

constant with core count. This analysis shows machine scaling degrades locality for shared caches,

but its impact is limited to smaller capacities. It has almost no impact at large capacities.

Figure 10b compares the 16- and 64-core sPRDP for the same FFT benchmark. Because sPRDP

is just a scaled version of private stack profiles, sPRDP shifts to larger RD as core count increases.

But as Figure 10b shows, while the 64-core sPRDP is a 4x shift of the 16-core sPRDP at small

RD, it is only a 1.1x shift at large RD. This is due to the fact that individual threads from parallel

loops execute fewer loop iterations as core count increases, which tends to reduce long-distance

intra-thread reuse. This in turn truncates per-thread PRD, and reduces sPRDP scaling.3 So, like

CRDP , sPRDP also shifts non-uniformly. But our analysis shows machine scaling degrades locality

in private caches more than in shared caches since sPRDP is affected across all cache capacities.

In addition to CRDP and sPRDP , machine scaling also impacts shared profiles. In particular,

more cores lead to higher intercept rates, causing greater spreading of CRDS . More cores also lead

to higher invalidation rates, moving more references to RD = ∞. But as shown in Section 3.2,

private profiles dominate shared profiles in the parallel regions we’ve studied. Hence, the effects

shown in Figure 10 largely determine overall CRD and sPRD behavior under machine scaling.

4.2 Architectural Implications

Machine scaling’s impact on locality profiles has several implications for multicore cache hierarchy

design. In this section, we discuss locality degradation mitigation in shared caches and data sharing

under scaling. Then, we revisit private vs. shared cache selection to include machine scaling effects.

As described in Section 4.1, the locality degradation for shared caches is limited to smaller

cache sizes. This implies shared caches beyond a certain capacity will see no impact as core count

increases, in essence “containing” the negative effects of machine scaling. In previous work, Wu [14]

3Demotion absorption also contracts sPRDP , but as discussed in Section 3.2, this effect is comparatively minor.

18



(a) CRD CMC and sPRD CMC profiles for 16 cores. (b) CRD CMC and sPRD CMC profiles for 64 cores.

Figure 11. Ccore and Cshare relationship at 16 and 64 cores for FFT running the S1 problem.

has also observed this phenomenon, and proposed the parameter, “Ccore,” to quantify the point

of scaling containment. Figure 11a illustrates Ccore for FFT. Wu computes Ccore by comparing

CRD CMC at some core count (e.g., 16 cores in Figure 11a) against the CMC profile for RD (the

1-core locality profile). At small RD values, CRD CMC incurs noticeably more cache misses than

RD, but eventually, the two CMC profiles merge due to the overlap effects discussed in Section 4.1.

Ccore is defined to be this merge point.4 Figure 11a shows Ccore = 210KB for scaling up to 16 cores.

To illustrate detailed behavior, Figure 12 shows Ccore across all of our benchmarks. Each graph

in Figure 12 reports Ccore when scaling between 2–256 cores for a particular benchmark. The two

solid curves in each graph show Ccore variation on the S1 and S2 problems separately. One result

from Figure 12 is that Ccore increases with machine scaling. This is due to the continued shifting of

CRDP (and hence, CRD) at larger core counts, as discussed in Section 4.1. Nevertheless, Figure 12

shows Ccore is relatively small. For the S1 problem, Ccore never exceeds 2.2MB while for the S2

problem, Ccore is within 19.6MB. Although continued problem scaling will undoubtedly increase

Ccore, we find that in many cases, machine scaling can be contained by modest shared caches.

In contrast to shared caches, Section 4.1 shows machine scaling’s locality impact in private

caches occurs across all cache sizes. This implies the cache miss gap between private and shared

caches increases with machine scaling. To illustrate, Figures 11a and b plot sPRD CMC on top

of CRD CMC for 16 and 64 cores, respectively. Figure 11 shows scaling from 16 to 64 cores

4Wu uses a minimum threshold gap to pinpoint Ccore similar to what we use for Cshare.

19



Figure 12. Ccore and Cshare relationship at 2-256 cores running the S1 and S2 problems.

indeed increases sPRD CMC relative to CRD CMC, especially beyond Ccore where CRD CMC is

insensitive to machine scaling.

Not only does machine scaling increase the cache miss gap, it also moves the sharing point,

Cshare, to smaller RD. Comparing Figures 11a and b, we see that as sPRD CMC increases relative

to CRD CMC, their divergence point shifts to the left. This makes sense: distributing the same

amount of work across more cores is likely to increase sharing frequency. Figure 12 confirms this

for our benchmarks. Alongside Ccore, Figure 12 reports Cshare for 2–256 cores on the S1 and S2

problems. For 7 of 9 programs, Figure 12 shows machine scaling always reduces Cshare. (For the

other 2 programs, Kmeans and Blackscholes, Cshare remains about the same with machine scaling).

4.2.1 Scaling Private-vs-Shared Caches

We now revisit the private vs. shared cache selection problem to extend the architectural insights

from Section 3.3 by incorporating the machine scaling effects discussed above. We again consider

L2 AMATp and L2 AMATs for our example tiled CPU. To account for machine scaling, we use

the sPRD CMC and CRD CMC profiles at different core counts discussed in Section 4.1.

Figure 13 presents the results. In Figure 13, we plot two graphs per benchmark: the top graph

shows tiled CPUs with 16KB L1s while the bottom graph shows tiled CPUs with 64KB L1s. Within

each graph, L2 capacity is varied from 0–128MB along the X-axis, and machine scaling is studied

20



Figure 13. Private vs. shared performance across L1 capacity, L 2 capacity, and machine scaling.

along the Y-axis for 2–256 cores. For each CPU configuration, the ratio
L2 AMATp

L2 AMATs
is plotted as a

gray scale. The legend reports the gray scale assignments. In particular, the 3 lightest gray scales

(ratio > 1.0) indicate shared caches are best. We do not consider CPUs with less total L2 cache

than total L1 cache; these cases are shaded black in Figure 13. All benchmarks run the S2 problem.

All basic insights from Figures 8 and 9 are also visible in Figure 13. In particular, L2 shared

caches are best only when conditions make the LHS of Equation 3 dominant. First, the L1 cache

capacity must be sufficiently large to reduce L2 access frequency. For example, Figure 13 shows a

16KB L1 is not large enough for FFT, RADIX, and FMM, so private caches are always best in these

cases. Second, the L2 capacity must be larger than Cshare so that the sPRD CMC/CRD CMC gap

is non-zero. Indeed, we see all configurations for which shared caches are best in Figure 13 do

occur beyond their corresponding Cshare value in Figure 12. Notice for FFT, RADIX, FMM, and

OCEAN, private caches usually prevail. For these benchmarks, Cshare is large (see Figure 12),

so shared cache benefit does not occur at reasonable capacities. And third, not only should the

21



sPRD CMC/CRD CMC gap be non-zero, it must also be large enough to provide significant mem-

ory stall savings. For example, in Barnes, Cshare is small and the sPRD CMC/CRD CMC gap is

uniformly large, so shared caches dominate across most L2 capacities (as long as L1 capacity is

64KB). But in Water, while Cshare is also small, the sPRD CMC/CRD CMC gap varies across L2

capacity, so preference changes from private to shared and back to private again. LU also shows

interesting sPRD CMC/CRD CMC gap variation, though shared caches are usually best.

Figure 13 also shows machine scaling’s impact on private vs. shared cache selection. As shown in

Figure 11, machine scaling shifts both CRD CMC and sPRD CMC linearly with core count at small

RD, which can place greater capacity pressure on L1 caches. As we add cores to our tiled CPU,

we also increase total L1 capacity linearly, canceling this effect. But machine scaling also increases

the physical extent of the CPU, making shared L2 accesses more costly than private L2 accesses.

Hence, under linear L1 capacity scaling, the shared L2 access penalty (RHS of Equation 3) actually

increases with core count. These scaling trends tend to make private caches more desirable at larger

core counts. Figure 13 shows this effect in FFT with 16KB L1s, in RADIX, and in OCEAN.

Counterbalancing this effect, Figure 11 also shows machine scaling shifts Cshare to smaller ca-

pacities and increases the sPRD CMC/CRD CMC gap. These scaling trends tend to make shared

L2s more desirable at larger core counts. In Figure 13, we see this effect in LU and Barnes.

5 Related Work

Our research is closely related to Wu’s work on predicting CRD profiles across machine scal-

ing [14]. In particular, Wu was the first to isolate dilation, overlap, and intercept effects in CRD

profiles. Our CRDP , CRDPC , and CRDS profiles are borrowed directly from Wu. Also, Wu was the

first to observe the limited impact of machine scaling on shared caches, proposing the Ccore metric

to quantify the affected capacities. In our research, we extend Wu’s thread interactions analysis

for private caches. Specifically, we identify scaling, replication, and communication effects, and

22



propose the sPRDP , sPRDPR, sPRDS and sPRDSR profiles to isolate them. We are also the first

to compare different interactions across CRD and PRD profiles to develop data sharing insights.

In addition, all of the architecture implications we develop (other than Ccore) are completely novel.

There has also been significant research on acquiring locality profiles. Ding and Chilimbi [9],

Jiang et al [10], and Xiang et al [13] present techniques to construct CRD profiles from per-thread

RD profiles. By composing per-thread statistics, these techniques avoid acquiring interleaved mem-

ory reference streams, simplifying the profiling process. However, analysis cost can be significant

as the numerous ways in which threads’ memory references can interleave must be considered.

Schuff et al [11] acquire locality profiles by simulating uniform memory interleaving of simul-

taneous threads (much like our approach), and evaluate cache-miss prediction accuracy using the

acquired profiles. In addition to predicting shared cache performance using CRD profiles, Schuff also

acquires PRD profiles, and predicts private cache performance. (Our PRD profiling methodology

is modeled after Schuff’s approach). In subsequent work, Schuff also speeds up profile acquisition

via sampling and parallelization techniques [12].

We leverage these previous techniques to acquire our CRD and PRD profiles. However, the focus

of our work is on the insights that can be drawn from analyzing the profiles, and on the insights’

implications for multicore cache hierarchy design. In particular, to our knowledge, we are the first

to define a reuse distance-based measure of data sharing, and to show its implications for on-chip

cache organization.

6 Conclusions

This paper investigates memory behavior for loop-based parallel programs using multicore RD

analysis. Our study isolates different thread interactions in shared and private caches, analyzing

their relative contributions. For loop-based parallel programs, we find data sharing varies with

reuse distance–in particular, it does not occur below a certain RD value. We define Cshare to be the

23



“turn-on capacity” for sharing, and measure it across several benchmarks. Then, we show private

vs. shared cache performance depends on both Cshare and the miss frequency of the upstream cache.

We evaluate this relationship using our CRD/PRD profiles for a simple tiled processor. Finally, we

study the impact of machine scaling on CRD and PRD profiles as well as Cshare. We find machine

scaling both degrades locality at smaller RD values and increases sharing frequency. We then show

how these scaling trends impact private vs. shared cache design. Our study not only reveals several

new insights about multicore memory behavior, but we believe it also demonstrates multicore RD

analysis is a powerful tool that can help computer architects improve future multicore designs.

References

[1] J. Davis, J. Laudon, and K. Olukotun, “Maximizing CMP Throughput with Mediocre Cores,”
in Proceedings of the 14th International Conference on Parallel Architectures and Compilation
Techniques, 2005.

[2] L. Hsu, R. Iyer, S. Makineni, S. Reinhardt, and D. Newell, “Exploring the Cache Design Space
for Large Scale CMPs,” ACM SIGARCH Computer Architecture News, vol. 33, 2005.

[3] J. Huh, S. W. Keckler, and D. Burger, “Exploring the Design Space of Future CMPs,” in
Proceedings of the 2001 International Conference on Parallel Architectures and Compilation
Techniques, 2001.

[4] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi, “McPAT:
An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore
Architectures,” in Proceedings of the International Symposium on Microarchitecture, 2009.

[5] Y. Li, B. Lee, D. Brooks, Z. Hu, and K. Skadron, “CMP Design Space Exploration Sub-
ject to Physical Constraints,” in Proceedings of the 12th International Symposium on High
Performance Computer Architecture, 2006.

[6] J. Li and J. F. Martinez, “Power-Performance Implications of Thread-level Parallelism on Chip
Multiprocessors,” in Proceedings of the International Symposium on Performance Analysis of
Systems and Software, 2005.

[7] B. Rogers, A. Krishna, G. Bell, K. Vu, X. Jiang, and Y. Solihin, “Scaling the Bandwidth
Wall: Challenges in and Avenues for CMP Scaling,” in Proceedings of the 36th International
Symposium on Computer Architecture, 2009.

[8] L. Zhao, R. Iyer, S. Makineni, J. Moses, R. Illikkal, and D. Newell, “Performance, Area and
Bandwidth Implications on Large-Scale CMP Cache Design,” in Proceedings of the Workshop
on Chip Multiprocessor Memory Systems and Interconnect, 2007.

[9] C. Ding and T. Chilimbi, “A Composable Model for Analyzing Locality of Multi-threaded
Programs,” Technical Report MSR-TR-2009-107, Microsoft Research, 2009.

24



[10] Y. Jiang, E. Z. Zhang, K. Tian, and X. Shen, “Is Reuse Distance Applicable to Data Locality
Analysis on Chip Multiprocessors?,” in Proceeding of Compiler Construction, 2010.

[11] D. L. Schuff, B. S. Parsons, and J. S. Pai, “Multicore-Aware Reuse Distance Analysis,” Tech.
Rep. TR-ECE-09-08, Purdue University, 2009.

[12] D. L. Schuff, M. Kulkarni, and V. S. Pai, “Accelerating Multicore Reuse Distance Analysis
with Sampling and Parallelization,” in Proceedings of the 19th International Conference on
Parallel Architectures and Compilation Techniques, 2010.

[13] X. Xiang, B. Bao, C. Ding, and Y. Gao, “Linear-time Modeling of Program Working Set in
Shared Cache,” in Proceedings of the 20th International Symposium on Parallel Architectures
and Compilation Techniques, (Galveston Island, TX), October 2011.

[14] M.-J. Wu and D. Yeung, “Coherent Profiles: Enabling Efficient Reuse Distance Analysis of
Multicore Scaling for Loop-based Parallel Programs,” in Proc. of the 20th International Symp.
on Parallel Architectures and Compilation Techniques, (Galveston Island, TX), October 2011.

[15] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood, “Pin: building customized program analysis tools with dynamic instrumen-
tation,” in Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2005.

[16] C. McCurdy and C. Fischer, “Using pin as a memory reference generator for multiprocessor
simulation,” ACM SIGARCH Computer Architecture News, vol. 33, 2005.

[17] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-2 Programs:
Characterization and Methodological Considerations,” in Proceedings of the 22nd International
Symposium on Computer Architecture, 1995.

[18] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, and A. Choudhary, “MineBench: A
Benchmark Suite for Data Mining Workloads,” in Proceedings of the International Symposium
on Workload Characterization, 2006.

[19] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark Suite: Characterization
and Architectural Implications,” in Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques, 2008.

[20] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler, “A NUCA Substrate for
Flexible CMP Cache Sharing,” in Proceedings of the International Conference on Supercom-
puting, (Boston, MA), June 2005.

[21] B. A. Nayfeh and K. Olukotun, “Exploring the Design Space for a Shared-Cache Multiproces-
sor,” in Proceedings of 21st International Symposium on Computer Architecture (ISCA-21),
(Chicago, IL), pp. 166–175, ACM, February 1994.

25


