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ABSTRACT

To date, most of the multi-DOF (degree-of-freedom) epicyclic gear trains
have been used as a series of one-DOF devices. Comparatively little is known
with regard to the existence and synthesis of true multi-DOF epicyclic gear
trains. This paper presents a systematic methodology for the identification
and enumeration of the kinematic structure of true multi-DOF epicyclic gear
trains. It has been shown that there exist no true two-DOF epicyclic gear
trains with five or less links and, that there exist two nonisomorphic rotation
graphs of six vertices and twenty nonisomorphic rotation graphs of seven ver-
tices. An atlas of nonisomorphic displacement graphs which can be used to
construct true two-DOF epicyclic gear trains with six and seven links has been
developed. It is hoped that this atlas will lead to more optimum and effi-
cient designs of machines with multiple actuating requirements such as robotic

wrists, grippers and walking machines.






1, Introduction

Traditionally, mechanical systems are made-up of closed 1oop con-
figurations which rely on a single input to drive the system. These, so-
called, one-DOF (degree-of-freedom) mechanisms are characterized by the fact
that the configuration of the system depends on one input parameter. For each
given input, the output is uniquely determined regardless of the complexity of
the system. One-DOF mechanisms are by far the most common type of mechanisms,
and can be found in almost every kind of machines and mechanical devices. The
topological synthesis of such devices have been studied extensively [2-5, 7-9,
11-14, 217.

Another group of importance is the multi-DOF systems. The characteristics
of multi-DOF systems is that the configuration of the system depends on more
than one input parameter. That means these mechanisms require multiple
inputs in order to derive a unique output. On the other hand, with a single
input, the outputs are indeterminate. The behavior of such multi-output
devices will depend on the nature of the resistance opposing the motion at
each of the output shafts. Multi-DOF mechanisms can be found in adders and
gear differentials for adding or subtracting motion or for torque distribu-
tion. Recently, they can also be found in robotic devices such as robotic
wrists, grippers and walking machines [1, 6, 15, 17].

Although mechanical systems with multiple inputs or multiple outputs have
existed for many years, generally, they have been used as a series of one-DOF
devices rather than as true multi-DOF mechanisms. For example, the automotive
bevel-gear differential, a two-DOF mechanism with one input and two outputs,

is made-up of a one-DOF gear train in series with its gear box. The second



degree of freedom is simply obtained by allowing the gear train as a unit to
rotate with respect to the gear box. We have found most of the two-DOF
mechanisms enumerated in [6] and [11] belong to this type of mechanisms.

With the ever increasing use of modern control theory and the demands for
industrial automation and flexible manufacturing, true multi-DOF mechanisms
are coming into wider use, and being used in fundamentally different ways.
However, the availability of such mechanisms is relatively few. Comparatively
1ittle is known with regard to the synthesis of such mechanisms.

In what follows, we shall introduce a method for the identification of
true multi-DOF epicyclic gear trains and describe a systematic methodology for

the enumeration of the topological structure of these mechanisms.

2. The Topological Structure of Epicyclic Gear Trains

(a) Structural Characteristics. We shall limit our investigation to
those mechanisms which obey the general degree-of-freedom equation. As shown
previously [2, 3, 8, 16], we shall use planar graph to represent the topologi-
cal structure of a mechanism. In the graph representation, 1inks are denoted
by vertices, joints by edges, and the edge connection of vertices corresponds
to the joint connection of links. In order to distinguish different types of
joints, the edges can be colored and/or labeled. For epicyclic gear trains,
turning pairs are represented by thin edges, gear pairs by heavy edges, and
the thin edges are labeled according to their axis locations in space. A
labeled graph of an epicyclic gear train is sometimes referred to as the
displacement graph.

We shall consider only those mechanisms which obey the basic assumptions



and the fundamental rules established in the eartlier papers [2, 3, 8, 16].
According to the fundamental rules [8], we can 1ist the relationships among
the number of thin edges, heavy edges, and vertices of two-DOF epicyclic gear

trains as shown in Table 1.

TABLE 1. Number of Vertices vs. Number of Edges.

n t g
4 3 1
5 4 2
6 5

7 6 4
8 7 5

In Table 1, n denotes the number of vertices, t the number of thin edges,
and g the number of heavy edges.

In order to automate the process of mechanism creation, vertex-vertex
adjacency matrix will be used to denote the graph of a mechanism. The adja-
cency matrix is a symmetric matrix of order n. Al1 the diagonal elements of
the matrix are set to zero and the off diagonal elements are set to 1, or g,
or 0 according to whether vertex i1 is connected to vertex j by a turning pair,
or a gear pair, or not. For a labeled graph, the thin edges can be denoted by
different symbols such as a, b, ¢, etc. to indicate their axis locations.

A rotation graph is defined as the graph obtained from the graph of an epi-
cyclic gear train by deleting all the thin edges and, then, reconnect the end
vertices of the heavy edges directly to their corresponding transfer vertices

with thin edges. See [8] for the definition of transfer vertex. Note that,



using this definition, the number of thin edges in a rotation graph can exceed
that of a conventional graph. This definition is essentially taken from
Ravisankar and Mruthyunjaya [13] and is different from that defined by
Freudenstein [8].

(b) Pseudoisomorphic Graphs. According to the fundamental rules [3], the
subgraph G formed by deleting all the heavy edges from the graph of an epi-
cyclic gear train is a tree. Furthermore, if the subgraph G contains k ver-
tices connected by thin edges of a common label, these vertices and their
incident edges of the same label form a subtree H. From the mechanism point of
view, vertices connected together by thin edges having a common label implies
that the corresponding 1inks in the mechanism are connected by revolute joints
that share a common joint axis. Thus, it is possible to rearrange the turning
pairs among these coaxial links without changing functional characteristics
of the mechanism [17]. Hence, any edge in the subtree H can be replaced with
a new edge of the same label. The only restriction is that the resulting
subgraph remains as a tree. In theory, because of the coaxial condition,
additional edges of the same label can be added to the subtree H without
affecting the function of the mechanism. However, we shall exclude graphs
having those kind of redundant edges since they don't satisfy the general
degree-of-freedom equation. The operation of replacing an edge in the subtree

H with another edge of the same label is called vertex selection.

Two graphs satisfying the fundamental rules of epicyclic gear trains [3]

are said to be pseudoisomorphic if they become isomorphic under single or

repeated application of vertex selection. From the above discussion, it is
clear that if the graphs of two epicyclic gear trains are pseudoisomorphic,

then their functional characteristics are identical.



3. True Multi-DOF Epicyclic Gear Trains

(a) Articulated Kinematic Chains. According to Table 1, we observe that
the most elementary graph of two-DOF epicyclic gear train is a four-link-chain
having three thin edges and one heavy edge. Fig. 1(a) shows the functional
schematic of such a kinematic chain and Fig. 1(b) shows its corresponding
graph. As shown in Fig. 1(b), thin edges 1-4 and 3-4 share a common label, b,
which implies that links 1, 3 and 4 are coaxial. Hence, the joints among
these coaxial 1inks can be rearranged according to the definition of vertex
selection. Fig. 1(c) shows such a rearrangement and Fig. 1(d) shows the
corresponding graph. It is obvious that Fig. 1(d) is obtained by adding edge
1-3 to and removing edge 1-4 from the graph of Fig. 1(b).

The graph shown in Fig. 1(b) is a block but the one shown in Fig. 1(d) is

not, since it contains an articulation point [10]. The mechanism shown in

Fig. (1c) consists of two kinematic chains which have one common 1ink but no
common joints. More specifically, it is made up of a three-link chain (links 1,
2, and 3) in series with a two-link chain (1inks 3 and 4) with 1ink 3 as the
common Tink. A multi-DOF kinematic chain which is made-up of two or more
kinematic chains with one common Tink but no common joints is called an

articulated kinematic chain as opposed to a fully closed-loop kinematic chain.

The common 1ink corresponding to the articulation point in graph is called the
cut-1ink since an articulated kinematic chain can be broken into two subchains
by cutting the chain at the common 1link.

As another example, Fig. 2(a) shows the schematic of a contra-rotation
gear train depicted in [2] and Fig. 2(b) shows the corresponding graph.

Applying the vertex selection procedure, it can be shown that the functional



schematic shown in Fig. (2c) and its corresponding graph shown in Fig. 2(d)
are pseudoisomorphic with that of Figs. 2(a) and 2(b), respectively. We note
that the articulation point in Fig. 2(d) is vertex 4. In this regard, the
contra-rotation gear train is composed of two kinematic chains. The first is
made-up of links 1, 2, 3, and 4, and the second 1inks 4, 5, 6 and 7. Both
kinematic chains are single-DOF epicyclic gear trains. Link 4 serves as the
common link to transfer motion or torque from one kinematic chain to the
other.

In general, a kinematic chain is considered to be articulated, if under
one or repeated application of vertex selection, one of its pseudoisomorphic
graphs contains an articulation point. The 1ink corresponding to the articu-
lation point serves as the common 1ink for the two subchains. Each subchain
can be a simple two-1ink chain or a gear train having one or multiple degrees
of freedom. It can be shown that a single-DOF epicyclic gear train has no
cut-link; a two-DOF epicyclic gear train has at most one cut-link; and, in
general, an n-DOF epicyclic gear train has at most n-1 cut-1links.

The synthesis of articulated kinematic chains can usually be decoupled
into that of several kinematic chains. It is quite straight-forward. In what
follows, we shall concentrate ourselves on the synthesis of -true multi-DOF
epicyclic gear trains.

(b) Identification of True Two-DOF Epicyclic Gear Trains. A true
multi-DOF epicyclic gear train is defined as a closed-loop kinematic chain
with no cut-links. Since a labeled graph with no articulation point can some-
times be reconfigured into an articulated one, it appears that it would be

necessary to apply the vertex selection procedure to a graph in as many dif-



ferent ways as possible in order to test the validity of a true multi-DOF
kinematic chain. However, a graph with k vertices connected to each other
with thin edges of a common edge label can have as many as (k)k'2 pseudoiso-
morphic graphs. It would be difficult, if not impossible, to derive all the
pseudoisomorphic graphs as the number of edges having a common edge label
increases. In the following, we shall present a simple algorithm for the
detection of an articulation point in a labeled graph.

As discussed previously, the graph of an articulated two-DOF epicyclic
gear train can be decomposed into two components. One component must be a
single-DOF epicyclic gear train while the other can be a singie-DOF epicyclic
gear train or a two-1link chain. When these two components are transformed
into rotation graphs, the articulation point becomes the one and only vertex
that belongs to both rotation graphs. In the case when one component is a
two-1ink chain, the two-1ink chain does not result in a rotation graph.
Therefore, the 1ink on the outer end of the two-link chain will disappear from
the rotation graph. This serves as the basis for the identification algorithm
to be described below.

Step 1. Store the labeled graph in a k x 3 matrix R(i,j), where k equals
the number of gear pairs. For each row, the elements in the first two columns
denote the two end-vertices of a heavy edge and the element in the third
column denotes the associated transfer vertex of the gear pair.

Step 2. Check if every vertex appears as an element in the matrix R. 1If
any vertex does not appear in the matrix R, then the graph itself or one of
its pseudoisomorphic graphs contains an articulation point. No further

checking is necessary.



Step 3. Pick a pair of integers, m; and m2, such that m; + my = k, and
mqp < mp. Do the following tasks:

(i) Choose m; rows of elements from the matrix R to form a group, G, and
the remaining mp rows of elements to form another group, Gz.

(ii) Select only the distinct vertices of G; to form a set, Sj, and that of
G to form another set, Sj.

(i1i) If there exists one and only one element common to both sets S; and
So, then the element is an articulation point of the graph. No further
checking is necessary.

(iv) If not, repeat steps (i) to (iii) with a different combination of rows
of the matrix R. The process is repeated until all the combinations are
tested.

Step 4. Repeat step 3 with another pair of numbers, mj and mp, until all
the combinations of m; and mz have been tested. If no articulation points are
found in all the tests, then the kinematic chain is a true two-DOF epicyclic
gear train.

For example, the matrix R of the gear train shown in Fig. 1 is given by R
= (1, 2, 3). We notice that vertex number 4 doesn't appear in the matrix.
Hence, the gear train contains a cut-1link.

As another example, consider the contra-rotating gear train shown in

Fig. 2. The matrix R, is given by,

2 1 3

4 2 3
R =

5 4 6

7 5 6

For mpy = 1 and mp = 3, we pick one row of elements from the matrix R to
form the first group, Gi, and the remaining three rows to form the second
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group, G2. There are four combinations. One such combination is given by:

Gy = (2, 1, 3),
and

Gp = (4, 2, 3; 5, 4, 6; 7, 5, 6).
Hence,

Sy = (2, 1, 3),
and

S, = (2, 3, 4, 5, 6, 7).

Since vertices 2 and 3 appear in both sets, no articulation point has been
found for this combination. The search has been repeated for the other com-
binations with no success. Hence, we proceed to the next pair of numbers.

For mj = 2 and mp = 2, we pick two rows of elements from the matrix R for
the first group, G, and the remaining rows of elements for the second group,
Gp. There are six combinations. Because of the symmetry between Gj and G2,

only three are distinct. We may choose, for example,

Gy = (2, 1, 3; 4, 2, 3),

and

Gp = (5, 4, 6; 7, 5, 6).
Then,

sy = (1, 2, 3, 4),
and

Sp = (4, 5, 6, 7).

Since, vertex number 4 is the one and only element common to both sets, S;

and Sp, we conclude that the mechanism contains a cut-link. Further, the



vertices shown in S; form one kinematic chain and that shown in Sy form
another kinematic chain, and 1ink 4 is the common 1ink of the two kinematic
chains. The gear train can, therefore, be rearranged as shown in Fig. 2(c).
Note that if we are to apply the vertex selection procedure, it would require
up to (5)5-2 = 125 vertex selections in order to identify the articulation

point.
4, Methods of Enumeration

Buchsbaum and Freudenstein [3] developed an atlas of unlabeled graphs for
mechanisms with up to six 1inks. The atlas was subsequently modified by
Mayourian and Freudenstein [12] based on the restrictions governing the
admissible graphs of kinematic chains. Such an atlas can be used as a basis
for the creation of mechanisms. First, the graphs which satisfy the rela-
tionship listed in Table 1 are selected. Then, for each of the admissible
unlabeled graph, we can label it in as many structurally distinct ways as
possible in accordance with the fundamental rules of epicyclic gear trains.
Mayourian [11] carried out this process and obtained a number of two-DOF epi-
cyclic gear trains with up to six links. However, a careful examination of
those mechanisms revealed that most of them belong to the articulated kinema-
tic chains. The method works well for simple mechanisms. But, as the number
of 1links increases, the process of labeling the edges becomes quite compli-
cated.

Another possible method of enumeration is by combining two single-DOF
kinematic chains. One link from each of the two single-DOF kinematic chains

can be rigidly coupled together to form a two-DOF kinematic chain. Thus, an
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m-1ink chain combined with an n-link chain results in an m+n-1 1ink chain. 1In
fact, most of the existing two-DOF epicyclic gear trains are designed this
way. However, this type of mechanisms always contains the coupling link as a
cut-1ink.

To form a true two-DOF epicyclic gear train, one additional link is
needed. The additional link is to be connected to the above kinematic chain
with a turning pair on one side and a gear pair on the opposite side of the
cut-link. Further, the Tink to be connected to the additional Tlink with a
turning pair must also serve as the gear carrier. For example, Fig. 3(a)
shows the graph of a two-DOF epicyclic gear train with a cut-link. It is
obvious that the graph of Fig. 3(a) is derived from the combination of two
single-DOF epicyclic gears trains. Fig. 3(b) shows the graph of a true
two-DOF epicyclic gear train which is obtained by adding the seventh 1ink to
the graph of Fig. 3(a). This method of enumeration seems to work well.
However, it does not ensure the identification of all the true two-DOF epi-
cyclic gear trains. It sounds logical, but it lacks the proof of complete-
ness.

Recently, Tsai [16] developed a generic approach based on the fundamental
rules of epicyclic gear trains. 1In his approach, the process starts with the
most elementary graphs of interest, known as the generic graphs, and increase
the complexity of the kinematic chain by adding one vertex at one time. The
process is similar to the conventional method of gear-train design, where the
designer begins with a rather simple gear train and increases the complexity
by adding one gear at a time. Each time he adds a new gear, he adds not only

a gear mesh to the mechanism but also a revolute joint to support the gear.
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Hence, a family of mechanisms can be generated systematically. The procedure
has been successfully automated by Tsai [16] for the enumeration of one-DOF
epicyclic gear trains with up to six links. In what follows, we describe how
to modify this methodology for the enumeration of true two-DOF epicyclic gear
trains.

From Table 1, the most elementary graph of true two-DOF epicyclic gear
train seems to be a four-link-chain having three thin edges and one heavy edge
as shown in Fig. 1(b). However, it has been shown earlier that its pseudoiso-
morphic graph, Fig. 1(d), contains an articulation point. The questions
remain to be answered are: Shall we use this four-link chain as the generic
graph? Or, shall we find the most elementary graphs of true two-DOF epicyclic
gear trains first and, then, use them as the generic graphs for the enumera-
tion of graphs of higher complexity?

Since a kinematic chain with a cut-1ink can be synthesized into one
without, some true two-DOF kinematic chains will be missed if we start with
the most elementary graphs of true two-DOF epicyclic gear trains. Hence, we
should start with the graph of four-link chain shown in Fig. 1(b) and increase
the complexity by adding one vertex at a time. Using this approach, graphs
with and without articulation point will be created simultaneously and all of
them will include the basic four-link chain as a subgraph. We may summarize
the systematic procedure as follows:

Step 1. We start with the generic graphs of n-link chains to enumerate
the graphs of (n+l)-1ink chains. The generic graphs of n-1ink chains are
defined as a set of conventional unlabeled graphs which are rotationally non-

jsomorphic to one another. A generic graph may have many different ways of
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labeling its edges. All of them will be stored in vertex-vertex adjacency
matrices for later manipulation.

Step 2. For each generic graph, enumerate all the untlabeled graphs of n+l
vertices. This is accomplished by connecting an additional vertex to one of
the existing vertex with a thin edge and to any one of the remaining vertices
with a heavy edge. There are n(n-1) potential combinations.

Step 3. Restore the edge labels of the generic portion of each new graph
enumerated in step 2 in as many different ways as the generic graph has.

Step 4. Determine the transfer vertex for each new graph. Since the edge
labels of the generic portion are already known, it is only necessary to check
for the change of label for the newly created fundamental circuit [8]. We

have three possibilities:

(a) If there is only one transfer vertex in the new fundamental circuit
and the transfer vertex is adjacent to the newly added vertex, the
graph is retained as an admissible graph.

(b) If there is only one transfer vertex, but the transfer vertex is not
adjacent to the new vertex, the graph is rejected. Under this
condition, the added thin edge must have an edge-lable common with its
adjacent edge in the new fundamental circuit. The graph can always
be reconfigured into one of the graphs enumerated in category (a)
above. Since the graphs in category (a) have more ways of labeling
their new edges, we choose to keep the graphs of (a) as the
admissible graphs.

(c) If there are multiple transfer vertices in the new fundamental cir-
cuit, the graph is rejected due to violation of the fundamental

rules.
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Step 5. Check for rotational isomorphism. Once the transfer vertex of
each admissible graph is identified, the corresponding rotation graph is
constructed and compared with previously enumerated graphs for rotational iso-
morphism. This can be accomplished by comparing their linkage characteristic
polynomials [16]. If the graph is isomorphic with a previous one, it is
discarded. If not, it is kept as a new rotation graph of n+l vertices.

Step 6. Check for the existence of an articulation point. We use the
algorithm described in the previous section to detect for an articulation
point. If no articulation point is found, the graph is identified as a true
two-DOF epicyclic gear train, otherwise it is identified as an articulated
one.

Step 7. Check for displacement isomorphism. Label the newly added thin
edge in as many different ways as possible and check for displacement iso-
morphism. Here, we only have to compare with those graphs which have the same
rotation graph. We also choose to retain all the labeled graphs regardliess of
whether they are isomorphic or not. This allows us to discard rotational
isomorphic graphs once they are identified as stated in step 5 and simplifies
the bookkeeping of the edge labels.

Step 8. Repeat steps 2 to 7 until all the generic graphs of n vertices

have been used.

5. The Creation of True Two-DOF Epicyclic Gear Trains
Using the above systematic procedure, all the graphs of true two-DOF
epicyclic gear trains have been enumerated. The following illustrates the

sequence of enumeration.
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(a) Four-Link Chain., As stated earlier the most elementary graph for
two-DOF epicyclic gears trains is the four-link chain shown in Fig. 1(b). The
corresponding epicyclic gear train is shown in Fig. 1(a). It has been shown

that this kinematic chain contains a cut-link.

(b) Five-Link Chains. Although the graph shown in Fig. 1(b) can be recon-
figured into two pseudoisomorphic graphs, we shall not alter the basic struc-
ture of Fig. 1(b) and use it as the only generic graph for the purpose of
enumeration. Hence, all the graphs enumerated will contain the graph of Fig.

1(b) as a subgraph.

There are 4 x 3 = 12 possible ways of adding a vertex to the graph of
four-1ink chain. Figs. 4(a) and 4(b) show two such possibilities. In Figs.
4(a) and 4(b), 1 to 4 represent the vertices of the generic graph and 5 repre-
sents the added vertex.

The next step is to restore the edge labels of the generic portion for
each of the graphs shown in Figs. 4(a) and 4(b), namely, let the Tabel of edge
2-3 = a, 3-4 = b, and 4-1 = b. Thén, it becomes clear that the newly added
fundamental circuits for the graphs of Figs. 4(a) and 4(b) are circuits
1-5-2-3-4-1 and 1-5-3-4-1, respectively, and the corresponding transfer ver-
tices are both vertex 3. Since the transfer vertex in Fig. 4(a) is not adja-
cent to the new vertex, 5, it is rejected. However, the transfer vertex in
Fig. 4(b) is adjacent to the new vertex. Hence, Fig. 4(b) is accepted as an
admissible graph. We note that the 5-2 edge in Fig. 4(a) must be labeled as
"a" while the 5-3 edge in Fig. 4(b) can be labeled as "a" or "c". Further,

the graph shown in Fig. 4(a) can be reconfigured into the one shown in Fig.
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4(b). This is the reason why the graph shown in Fig. 4(b) has been accepted
as an admissible graph while the one shown in Fig. 4(a) is rejected.

At this point there is no need to check for graph isomorphism, since this
is the first admissible graph enumerated. Applying the algorithm for checking
articulation point, we found the graph shown in Fig. 4(b) contains an
articulation point.

A1l the twelve combinations of graphs have been constructed and tested.
The results are shown in Table 2, where the first and second columns of the g
matrix represent the vertex numbers of a gear pair and the third represents the
corresponding transfer vertex; the second and third columns of the t matrix
represent the vertex numbers of a turning pair and the first represents the
corresponding edge label. The articulation point in each graph is also shown
in Table 2. We note that there are five nonisomorphic rotation graphs and
seven nonisomorphic displacement graphs. Al1 of them contain an articutation
point. However, all the five nonisomorphic rotation graphs have been kept as
the generic graphs for the enumeration of six-1ink chains.

(c) Six-Link Chains. Using the five nonisomorphic rotation graphs of
five vertices as the generic graphs, we enumerated eighteen (18) nonisomorphic
rotation graphs of six-1ink chains. However, only two were identified as true
blocks which resulted in three nonisomorphic displacement graphs as shown in
Fig. 5.

(d) Seven-Link Chains. Using the eighteen nonisomorphic rotation graphs
of six vertices as the generic graphs, we enumerated twenty nonisomorphic
rotation graphs which resulted in forty-five nonisomorphic displacement graphs

as shown in Fig. 6. These graphs can be used to construct all the true
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two-DOF epicyclic gear trains of seven 1links.

For the purpose of illustration, a typical epicyclic-gear-train is

sketched for each of the graphs shown in Figs. 5 and 6.

Table 2. Two-DOF Five-Link Chains.
g t Articulation
Rotation Graphs Edge Labels Point
'1 3 2 1 3 2
1 (2 1 3 2 4 1 2 4 1 l1or3
5 1 3 2 4 3 2 4 3
1 5 3 3 5 3
rl 3 2\
2 (2 1 3) 2 4 1 1
5 1 4 2 4 3
13 5 4
1 3 2
3 (2 1 3) 2 4 1 1lor3
5 3 2 4 3
3 5 1
1 3 2
4 (2 1 3) 2 4 1 3
5 3 4 2 4 3
3 5 4
rl 3 2] 1 3 2
5 (2 1 3) 2 4 1 2 4 1 3
5 4 3 2 4 3 2 4 3
1 5 3 3 5 3

6. Summary

A systematic methodology has been developed for the identification and
enumeration of true multi-DOF epicyclic gear trains.

there are no true two-DOF epicyclic gear trains with five or less links.

It has been shown that

For

six-Tink chains, there are two nonisomorphic rotation graphs which have been
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labeled into three nonisomorphic displacement graphs. For seven-1ink chains,
there are twenty nonisomorphic rotation graphs which have been labeled into
forty-five nonisomorphic displacement graphs. A typical functional represen-
tation is sketched for each of these graphs. The creation of actual mecha-
nisms has been left to practicing engineers. It is hoped that this atlas will
eventually lead to more optimal designs of mechanical devices such as robotic

wrists and walking machines.
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Captions for Figures

A Four-1ink Chain and its Pseudoisomorphic Mechanism With a Cut-1ink.

The Contra-rotation Gear Train.

The Creation of a True Two DOF Epicyclic Gear Train.

Two Different Graphs Derived From Fig. 1(b), But Only One is
Admissible.

Six-1ink Epicyclic Gear Trains.

Seven-1ink Epicyclic Gear Trains.
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Fig. 1. A Four-Link Chain and Its Pseudoisomorphic
Mechanism with a Cut-Link.



1L
]
w
l
E

L
h—o:jc:l
—

11
|
o
E
w

I

Fig. 2. The Contra-Rotation Gear Train.



(a) (b)

Fig. 3. The Creation of a True Two DOF Epicyclic Gear
Train.
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Fig. 4. Two Different Graphs Derived from Fig. 1(b),
but Only One is Admissible.



Fig. 5. Six-Link Epicyclic Gear Trains.
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Fig. 6. Seven-Link Epicyclic Gear Trains.
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Fig. 6. (continued)
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Fig. 6. (continued)
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Fig. 6. (continued)
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Fig. 6. (continued)
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Fig. 6. (continued)



e ©
. ﬁ¢¢:uw
e~
7l__|..r.|.4ll. o

7-11-2

7-12-2

o]
5
T
n.n.uu___....olonl..
—|l
) [

7-13-1
Fig. 6. (continued)
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Fig. 6. (continued)
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Fig. 6. (continued)
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