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Abstract

This paper presents an integer programming formulation for the manufacturing shop
design problem, which integrates decisions concerning the layout of the resource groups
on the shop floor with the design of the material handling system. The model reflects
critical practical design concerns including the capacity of the flow network and of the
transporters, and the tradeoff between fixed (construction and acquisition) and variable
(operational) costs. For realistic industrial cases, the size of the problem prevents
the solution through explicit or implicit enumeration schemes. The paper addresses
this limitation by decomposing the global model into its natural components. The
resulting submodels are shown to be standard problems of operations research. The
decomposition approach provides ways to solve the integrated shop design problem in

an effective manner.

Keywords: Facility Layout, Material Handling Systems, Manufacturing Systems, Ve-

hicle Routing, Decomposition



1 Introduction

An important aspect of any production system is the design of its manufacturing shop,
including the material handling system which integrates the production operations. A well
designed shop results in efficient material handling and short transportation times between
resources, leading to decreased production cycles and manufacturing costs (Francis, McGin-
nis and White 1992). Additional advantages of efficient shops include effective production
management, improved on-time delivery performance, enhanced product quality, and de-
creased inventory holding costs (Ioannou 1995).

The goal of this work is to provide design methods for production systems that are
inexpensive to construct and efficient to operate. Shop design comprises two highly inter-
connected problems, i.e., layout and material handling system (MHS) design. The former
addresses the physical placement of the resource groups (e.g., functional departments or
manufacturing cells) on the available area of the shop floor. The latter includes two highly
inter-related subproblems: i) Design of the material flow network that provides the resource
inter-connections (Herrmann et al. 1995a); ii) sizing of the transporter fleet, and allocation
of the inter-group moves to these transporters (Herrmann et al. 1995b). Subproblem (ii) is
referred to as transporter routing to be analogous to the vehicle routing problem (Golden
and Assad 1988), with which it shares significant similarities.

Many subproblems of shop design have been addressed in the literature with various
degrees of success, as discussed in some recent survey papers (Kusiak and Heragu 1987,
Meller and Gau 1995, Ioannou and Minis 1995). However, limited research effort has been
devoted to integrating them into a unified method, despite the potential benefits of such
an integrated (Apple and McGinnis 1987). The most noteworthy attempts towards shop
design integration are reviewed below.

Montreuil (1991) developed a modeling framework for integrating the layout and ma-
terial flow network design problems, to generate net layouts, i.e., complete designs which
include the location of the resource input/output (I/O) stations and the MHS flow corri-
dors. The author formulated a set of very complex mathematical programming problems,
but did not propose any solution methods. The model complexity arose from the constraints

employed to account for the shape and size of departments/cells, and the large number of



zero-one decision variables.

In a more recent work, Montreuil, Venkatardi and Ratliff (1993) identified two steps
in the facility layout and flow path design process. First, a design skeleton establishes
adjacency relations between the manufacturing departments/cells; flow graphs, planar ad-
jacency graphs, matching-based adjacency graphs, cut trees, or sets of locations of cell
centroids may serve as design skeletons. Subsequently, a linear program is solved to extract
the net layout. Banerjee et al. (1992) and Banerjee and Zhou (1993) further developed the
two-step method of Montreuil, Venkatardi and Ratliff (1993). Their approach automatically
identifies qualitative layout anomalies, i.e., segments of the flow network which are the best
candidates for solution improvements, and repeatedly adjusts the design skeleton. A hill
climbing solution strategy is used to implement the configuration adjustments and, as a re-
sult, the solution obtained may be far from the optimum. Furthermore, global convergence
cannot be guaranteed due to the inconsistency of the objectives employed in each of the
two design stages.

McGinnis (1991) proposed a modular design methodology for an Automated Guided
Vehicle (AGV) system. An engineering workstation was developed to allow the designer to
graphically generate an initial layout and a material flow network, estimate the required
number of vehicles, refine the layout, and evaluate unloaded vehicle dispatching rules as well
as vehicle routing, in an interactive fashion. Various system performance characteristics,
such as traffic intensity in each flow path segment and total loaded and unloaded vehicle
travel, are automatically calculated. Furthermore, a discrete event simulation tool and some
optimization modules are incorporated in the software. The AGV engineering workstation
is a very helpful tool for evaluating candidate designs and identifying attributes that require
refinement and possibly, re-design. If a good initial layout is provided to this system and
an experienced designer guides the procedure, the final shop design is expected to be of
high quality. A system similar to the engineering workstation of McGinnis (1991) has been
proposed by Rembold and Tanchoco (1994) to help the designer compose complex material
flow systems. As with the AGV engineering workstation, the final design attributes are

affected by the expertise of the designer and the sequence in which design modules are

applied.



This paper formulates an optimization model that considers most major decisions in-
volved in the design of a manufacturing shop; i.e., the placement of the resource groups
(functional departments or manufacturing cells) on the shop floor, the topology of the ma-
terial flow network, the transporter fleet size and routing, and the tradeoff between fixed and
variable costs. We consider only horizontal, unit-load material handling transporters, which
are commonly employed in practice. We also assume that the grouping/layout of individual
machines into/within functional groups or cells has been performed in a preceding design
stage (Ioannou and Minis 1995). The model accounts for practical system attributes such
as the geometry of the shop floor, of the resource groups, and of the restricted areas, the
capacity of the material handling system, the unloaded movement of transporters, and the
operational efficiency of the final system. The complexity of the mathematical model, which
is due to the large number of variables and constraints and to the non-linearity of some
constraints, prohibits direct solution approaches. Instead, we decompose the global model
to the natural components of the design model. The constituent mathematical subprograms
are generic optimization models, which can be effectively solved.

The remainder of the paper is organized as follows: Section 2 establishes the need for
integrating the shop design activities. Section 3 presents the geometrical model framework,
the underlying assumptions, and the binary variables, and formulates a comprehensive
integer program that incorporates most design decisions and critical practical concerns.
Section 4 provides systematic procedures for the decomposition of the global problem into
sub-models that are related to generic problems of operations research. Section 5 proposes

a possible solution strategy, and Section 6 presents the conclusions of this work.

2 The need for integrated shop design

Shop design is a complex process influenced by both managerial and technical decisions
which involve considerable tradeoffs. The merit of the final design depends on the ease of
operation of the system; thus, the layout and MHS design should facilitate efficient dis-
patching and routing of transporters. To achieve such a result the following considerations

are important:



e An effective shop design approach should minimize both the loaded and unloaded
transporter travel between departments/cells. Unloaded moves, although unavoidable
when transporters are dispatched from input to output stations, increase the workload
of the MHS and, thus, decrease its responsiveness and flexibility. In minimizing the
cumulative travel the MHS workload is decreased, and the flow of material can be

more effectively controlled in real-time.

o The tradeoff between investment and operational costs should be examined at the de-
sign stage. The former include the cost of constructing the material handling network
and acquiring the transportation equipment. Operational costs reflect the material
handling effort during the lifetime of the production system. Considering this trade-
off will result in shop configurations that are economic to implement and efficient to

operate.

e To evaluate a precise measure of the material handling effort, the actual inter-station
distances (which are provided by the material flow network) are required. Thus, the
layout and flow network design problems are interconnected and should be addressed
concurrently to provide a shop design that will operate with minimal inter-station

transportation times along the optimal set of fixed material flow paths.

e The transporter routing problem is inherently linked to both the design of the material
flow network and the layout of the resource groups. The routing of transporters de-
termines the unloaded moves necessary for continuous operation. However, unloaded
transporter travel alters the intensity of inter-station interactions and introduce ad-
ditional workload. This has a direct impact on both the relative placement of the

resource groups, and the topology of the flow network.

3 The shop design model

The shop design objective proposed in this work seeks to balance the fixed investment versus
the variable operational costs, targeting shop designs that are economic to construct and

efficient to operate. This goal is expressed by a functional that comprises the total material



handling effort during the design horizon, the fixed cost of building the material handling
network, and the cost of purchasing the required transporters.

In addition to the fixed and variable costs, two major practical concerns are addressed:
Traffic congestion in the flow network, and availability of transporters. To prevent traffic
congestion, we place an upper bound on the material flow allowed through each segment of
the network, beyond which the arc is considered to be congested. In order to accommodate
flow beyond an arc’s capacity, addition of more network segments may be necessary to pro-
vide alternative origin-destination paths for each transfer request. Transporter availability
is critical in determining the transporter fleet size, and is expressed by a distance upper
bound (assuming constant speed of transporters). The mathematical model that captures

these issues is developed in the following subsections.

3.1 Representation of geometrical attributes

Consider an orthogonal grid imposed on the shop area as shown in Figure 1. The unit
length of the grid is defined such that it is larger than the width of a typical aisle of the
material handling system, and it is fine enough to adequately capture the geometry of the
shop, the restricted areas, and the manufacturing resource groups.

The manufacturing resource groups to be placed on the shop floor form the set R.
Each resource group is decomposed into unit square building blocks, as shown in Figure
1. Although each building block is treated as a distinct entity, strong relationships are
established between adjacent blocks of the same resource group in order to retain its size
and shape in the final solution. For each block u we designate as adj(u) the set of blocks
that belong to the same resource group and are adjacent to (have a common edge with)
u. The input and output stations for each resource group are represented by special blocks
denoted by I and O in Figure 1. The set of all building blocks is denoted by B, and the
subsets of B that comprise input and output stations are denoted by Z and O, respectively.
Note that I, O, refer to the blocks modeling the input and output stations of resource
group a.

Each intersection of the grid represents a node of the underlying graph G. Graph nodes

are candidate positions for building blocks of resource groups and graph arcs are candidate
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Figure 1: Representation of the shop and the resource groups

arcs of the material flow paths. The set of nodes that constitute graph G is denoted by
N. The centroids of the building blocks of set B will be located on grid points, as shown
in Figure 2. Note that the intersections of the shop grid which are inside restricted areas
or areas occupied by manufacturing resource groups in a certain layout configuration (e.g.,
nodes p and q in Figure 2), are not considered as nodes available for material flow. The
only exceptions are the nodes representing input and output stations of resource groups,
through which material enters and leaves. Furthermore, the set of the graph’s undirected
arcs which connect nodes available for material flow is denoted by A, and the set of directed
arcs obtained by replacing each undirected edge with two arcs of opposite orientation, is

denoted by A.

3.2 Assumptions and notation

The design model is based on the following assumptions:
i. The material flow paths are parallel to the building’s walls and include only arcs of

the grid imposed on the shop fioor.



ii.
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iv.
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Figure 2: A feasible layout

The inter-resource material flow rates, in terms of loads per time period, are con-
stant and known. They are calculated from the production routings (sequences of
operations) of the products to be manufactured and the forecasted product demand
over the design horizon. In periodic production systems, i.e., systems with periodic
demand and periodic flow patterns, the design horizon is equal to one period. In
non-periodic systems, the design horizon is divided into equal time periods and the
total demand is equally distributed over these periods. This uniform distribution of
the demand, and thus of the requests for transporter service, is required to prevent

unrealistic sequences of loaded moves for being assigned to transporters.

Whenever a transporter visits the output station of a resource group, there always
exists material to be transferred. This assumption is necessary since no real-time

information is available at the system design stage.

Only horizontal material handling transporters are considered (e.g. AGVs, manual or
automated rail carts, industrial trucks, and forklifts) with unit load capacity. Thus,
sharing of moves between different material flow types is not allowed, i.e., transporters
cannot simultaneously serve more than one batch type. This results in one trip per

flow request, which simplifies transporter scheduling.

There exist three types of transporter operations between a pair of manufacturing re-



source groups, as shown in Figure 3:

i. A loaded move i is the transporter operation from the output station of a manufac-

turing resource group to the input station of the destination group. The nodes of

origin and destination of loaded move ¢ are defined as o(¢) and d(z), respectively. The

set of loaded moves is denoted by L, and its cardinality (|L|) will be referred to as n

throughout the text.

ii. An unloaded move is the transporter operation from the input station of a manufac-

turing resource group to the output station of another group, during which no load is

carried. The set of all possible unloaded moves is denoted by U.

iii. A complete move is the concatenation of a loaded move and a subsequent unloaded

move. The set of complete moves is denoted by C. Each element of C' will be noted

as (1, ), where i is the loaded move included in the complete move, and j the loaded

move that follows ¢ in the sequence of a transporter.

loded move i unloaded move

loaded move j

o(i) d@)

o(j)

complete move (i,j)

@

Figure 3: Definition of move types

Assuming that there exists a path between each input-output pair, it is easy to see

that after the completion of a loaded move, a transporter can perform an unloaded move

to the origin of any other loaded move in L. If the input/output stations of a resource

coincide, this unloaded move may be of zero distance. As a result, either three or only two

manufacturing resource groups may be included in a complete move. In the latter case,

either d(7) = o(j) or o(¢) = o(j) and d(i) = d(j), where 4,5 € L are consecutive moves

performed by the same transporter.

The material flow between each pair of resource groups (a,b) € R? is denoted by fup.

The value of fg, represents the volume of interactions between o and b, and is calculated



from the part routings, the demands over the design time horizon, and the batch sizes. The
levels of material flow form a square |R| % |R| matrix, known as the material flow matriz.
In our formulation, we decompose each fq into unit load moves.

A cost (;; is associated with each complete move (4,5) € C. It reflects the time to
perform the relevant loaded and unloaded transfer operations; 8 is defined to be equal to
oo since each loaded move has to be performed exactly once, and the sequence 7,4 is not
feasible.

T is the fraction of the design time horizon T”, during which transporters are available
for travel. For each transporter k the capital investment is denoted by Wjy; this cost is
appropriately scaled to reflect the relative weights of the variable and fixed components of
the objective function, and the length of period T. It is important to stress the need for
appropriate scaling of the transporter capacity and acquisition costs, as well as the capacity

and fixed cost of each arc of the network to allow for a coherent shop design model.

3.3 Definition of decision variables

Several sets of decision variables are introduced to model discrete choices concerning key
attributes of the shop design activity. The first of them models the assignment of blocks
of resource groups to nodes of G. A feasible assignment of the building blocks u € B to
grid nodes p € N provides a feasible shop layout, in which the resource groups retain their
size and shape, and their input and output stations are not blocked. This assignment is
modeled by:

1 if building block u € B is located at node p € N

Cup = . 1)
0 otherwise

The values of these variables in the final solution provide the locations of the resource groups
on the available area of the shop and, thus, the final shop layout. The above definition
is closely related to the binary variables employed in quadratic assignment formulations

(Wilhelm and Ward 1987).

The second set of decision variables determines whether an arc {p,q} € A is active or



not in the flow network:

1 ifarc {p,q} € A is active in the flow network
Ypg = . 2)
0 otherwise

The values of arc-related decision variables in the final solution define the topology of the
final material handling network, which depends on the arc fixed costs as well as on the
arc capacities. The cost, Fp,, related to each arc {p,q} € A depends on the construction,
control, and maintenance costs of this segment of the network. In addition, an upper bound
on the number of moves that an edge can accommodate within T is denoted by Bpg; this is
the arc capacity.

The third set of decision variables models the choice of activating or not a transporter:

1 if transporter k¥ € V is employed for some move in L 3)
Wy =
0 otherwise

The number of non-zero wy, variables in the final solution provides the final transporter fleet
size. Note that a given set V of available transporters is assumed for modeling purposes.
The fourth set of decision variables relate the origin-destination path for each loaded

and unloaded move to each transporter. The set comprises two subsets: For loaded moves,

4
1 if loaded move ¢ € L is performed by transporter k € V and

ko=

Xipg = the transporter path o(7) — d(%) includes arc (p,q) € A (4)

| 0 otherwise

For unloaded moves,

(

1 if unloaded move between 1, j € L is performed by k € V

ijpq = 9 and the transporter path d(¢) — o(j) includes arc (p,q) € A (5)

{ 0 otherwise

k

The sum of all x£ and Zijpg

ipq variables is the total material handling effort in the shop

during the design horizon.
The last set of decision variables models the sequence of moves performed by each

transporter:

& 1 if transporter & € V performs complete move (3, j) € C

hi; = . (6)
0 otherwise

10



The values of these decision variables in the final solution translate into the sequence of
loaded moves that each transporter should perform for minimal material handling. These
sequences can serve as the basis for transporter real-time scheduling.

Finally, d,4 is the Manhattan distance between grid points p and g, i.e., the sum of the
absolute values of the differences between the horizontal and vertical coordinates of the two

points p and g. This metric is known from the grid imposed on the shop floor.

3.4 Mathematical formulation

Based on the variable definitions and notation described above, the formulation of the global

design problem is as follows:

Problem GSD
minimize

Z Z Z xqu + Z Z Z zi'cqu + Z Wiwy, + Z Foqipq (7)

keVieL (pg)eA keV (i,)eC (p,g)eA kev {p.q}eA
subject to :
> [ > xqu - > qur] =€d(i)g ~ (i) VIEN, Viel (8)
keV L(p.g)€A (g:r)eA

Z [ Z zfqu - Z zqur} = Z hfj “(eo(j)g — €aiyg) VY9 EN, Y(i,5) €C (9)

keV L(p,g)eA (g,r)eA kev

Z [Z(xqu + qup) + Z (zfqu + zi—‘jqp)} < By V{p,q} € A (10)

keV |ieL (5,5)eC
Y rh=1 VieL (11)

(i.4)€C keV
> > hk=1 VieL (12)

(1,5)€C keVv
oork— 3 mh=o0 VieL, keV (13)

(i.4)€C ()eC

> RhE>RE, +REL —1 (i, 51), (i2,d2) € C: jy # 42, and 41 # ja
(3,5)€C1,2

VCis VEEV (14)

11



Y < w V(,j) €C, VkeV

> [szpq*‘ > zm,q} < VkeV

(p,g)€A [i€Ll (i,)eC

xt,< Y B VieL, VkeV
(i)eC

280y < hE; V(i,j)eC, VkeV
zpq < Ypq vieL, VkeV, VYi{pqled
'f_;ypq ypq V(%J) € Ca Vk € V: V{pa q} € A

eug+ Ypg < 1 vue B\{ZUO}, V{p,q}eA

€uq + €vp T Ypq <2 V{p, q} €4

Va€R, Yu,v€B:u=1I,v=0,

Y ewg <1 Vge N

u€B
geN
Z Z eupCuglpg = 1 Yu,v € B:u € adj(v)

pEN geN

xg,q,zfm,euq,hg,wk,ypq €{0,1} V(i,j)€C, VkeV,
V{p,q} € A, Yu€B

the corresponding purchase cost is added to the cost function.

12

(15)
(16)
(17)

(18)
(19)
(20)

(21)

(26)

The objective of (7) includes both the fixed and variable costs. The first two terms
provide the overall material handling effort during the design horizon. Specifically, the first
term provides the total distance traveled by all transporters when performing loaded moves,
and the second term provides the same metric for unloaded moves. The third term of the
objective function reflects the cost of building the flow network; for each activated arc,
the corresponding fixed cost is added to the objective function. The last term reflects the

transporter acquisition cost; for each transporter that performs at least one loaded move,

Constraints (8) guarantee, for each loaded move, the continuity of the corresponding

path on the physical network. These constraints can be thought of as flow conservation



equations, with the origins of loaded moves (output station blocks) representing flow sources
and the destinations (input station blocks) representing flow sinks. The first and second
terms of the left-hand side of equation (8) represent the total flow of loaded move 7 into
and out of node q of the grid, respectively. For the right hand side of (8), there exist three
alternatives: i) If the output station from which loaded move 7 originates, o(z), is assigned
to node g, then e,;), is equal to 1; consequently, node g is a source of flow, and the right
hand side is equal to -1. ii) If the input station to which loaded move 4 terminates, d(z), is
assigned to node g, then ey;), is equal to 1; consequently, node g is a sink of flow, and the
right hand side is equal to 1. iii) If the input or output stations related to loaded move %
have not been assigned to node g, then e,;), = eq(;)q = 0 and the right hand side of (8) is
equal to 0; thus the flow through ¢ is conserved.

Constraint (9) models, in a similar manner, the continuity of unloaded moves. In this
case input and output stations are sources and sinks of flow, respectively. In addition, since
the unloaded moves depend on the sequence of loaded moves performed by each transporter,
the right hand side of (9) incorporates the relevant decision variables hfj.

Constraint (10) limits the flow through an arc to the upper bound Bp, in order to
prevent traffic congestion. The left-hand side of (10) represents the total number of times
that transporters travel along arc {p, ¢}, during both loaded and unloaded moves. Imposing
the capacity bound of (10) on each arc may introduce additional path segments (arcs) to
the network in order to accommodate the flow beyond an arc’s capacity.

Constraints (11)-(12) ensure that each loaded move in L is performed once, by exactly
one transporter. Since transporters perform closed sequences of moves, both constraints
are required in order to guarantee a feasible assignment of complete moves to transporters.

Constraints (13) force transporters to follow continuous paths in terms of loaded moves;
i.e., if transporter k performs complete move (7, ) € C, then it should perform exactly one
move of the type (j,;') € C, where j/ is any move in L. These constraints can also be
thought of as flow conservation equations: Consider each transporter as a distinct flow of
unit intensity. The moves assigned to this transporter represent the nodes of an auxiliary
graph. Flow conservation is imposed on each node of this graph to guarantee continuous

movement of the transporter. Since transporters perform closed sequences of moves, no

13



flow sources or sinks are present, and the right hand side of (13) is equal to 0 for each node
of the graph, i.e., for each move in L.

The exponential set of constraints (14) enforces the, so called, subtour elimination; i.e.,
these constraints guarantee the existence of a single tour for each transporter k € V. Note
that a tour is a sequence of moves in the form (41,42,...,41). In (14), Cy2 refers to any
directed cut (Nemhouser and Wolsey 1988) of the graph of complete moves that separates
(1,71) and (42, 42). This type of constraints is encountered in the formulation of the well
known traveling salesman problem (Golden and Assad 1988), in which the salesman has to
visit a set of cities in sequence, before returning to his base.

Constraints (15) guarantee that no move is performed by inactive transporters. If trans-
porter k is not acquired, wy, = 0; in this case, (15) forces all h‘fj to be zero, and consequently,
no move is assigned to this transporter. These constraints are inactive if wy = 1.

Constraints (16) limit the overall distance traveled by each transporter. The left hand
side is equal to the total number of times each arc is visited by transporter k while per-
forming a loaded or unloaded move. The right-hand side of (16) is the time period T,
appropriately scaled to reflect distances. Note that the time costs 3;; are not necessary
in the formulation because of the unit length of each arc that results in constant traveling
times of the transporter on each arc.

The set of inequalities (17)-(22) are forcing constraints. Constraints (17) state that if a
loaded move is not performed by a transporter, no arc of the network should accommodate
this move-transporter combination. On the other hand, if loaded move ¢ is performed by
transporter k, the right-hand side of (17) is equal to 1. In this case, there exists a loaded
move j that follows ¢ in the sequence of moves of transporter k. Constraints (18) enforce
similar conditions for the unloaded move between any ¢ and j.

Constraints (19) and (20) prohibit loaded and unloaded transporter moves to pass
through arcs that do not belong to the flow network (y,q = 0). These constraints are
inactive for arcs forming material flow paths (ypq = 1).

Constraints (21) ensure that when a block -which does not model an input or output
station- is assigned to a grid node, the arcs that originate from or terminate to this node

do not belong to the material flow network. Constraints (22) enforce this condition for the

14



arcs between those resource groups in which input and output stations are adjacent.

The usual assignment constraints are expressed by (23)-(24): at most one resource block
should be assigned to every grid node, and each block should be assigned to exactly one
grid node. Constraints (25) force adjacent blocks of each resource to occupy adjacent grid
points of the network; this is accomplished by forcing the Manhattan distance between the
locations occupied by adjacent blocks to be equal to the grid unit length. Note that in order
to preserve the shape of the resource groups, at least two adjacency relationships should
be established for each block. Consequently, for modeling purposes, resource groups should
comprise at least two rows of blocks. Finally expression (26) ensures that the decision

variables assume binary values.

3.5 Enumeration of variables and constraints

To quantify the complexity of model GSD, it is useful to evaluate the numbers of decision
variables and constraints as functions of problem parameters. Such parameters include the
number of nodes and arcs of graph G, the cardinality |V| of the set of possible transporters,
the number of loaded moves per time period, |L|, and the number of building blocks that
model the resource groups, |B|. The number of variables of GSD is derived by considering
the variable definitions, their indices, and the sets they refer to. Furthermore, the number
of problem constraints is evaluated by examining the sets over which each constraint is ex-
pressed. Analytical expressions for each set of decision variables and each set of constraints
of GSD are provided by Toannou (1995). Based on these expressions, the total number of

binary variables and constraints is given by Equations (27) and (28), respectively:

A
Niotar = V|- [A] - |LI” + B[ - [N] + |7| +V|- L+ L] - |L - 1]) (27)
Migtar =2 |N|- (L + L) + V] - L] - 2+ L] = 1) + [V]- @+ |[L) + 2 L] + V]|
+5L- L+ [B\{TUOY + 1| +|V|-|L?) +|B| - (1 +BI) + eap(|L]) (28)

In (28) exp(|L|) is an exponential function of |L|. Furthermore, (28) does not hold at
equality for every instance of GSD because of the number of block interrelations. Toannou

(1995) calculated the values of Njoiq; and My, for a small example in which two resource
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groups with four blocks (|B| = 4) are to be placed on a shop represented by six grid points
(IN| = 6); the resources share three loaded moves per time period (|L| = 3). For this
minimal problem, the number of binary decision variables was found to be Ny = 387,
and the total number of constraints was My = 341. Thus, although general, the GSD
model is very complex for even the smallest possible design problem which can be easily
solved by hand. It is emphasized that the number of variables and constraints increases
geometrically with the increase of the relevant parameters. Since manufacturing shops usu-
ally comprise several resource groups and transporters, direct solution of the corresponding

~ GSD formulations by explicit or implicit enumeration methods is not possible.

4 Model decomposition

A well known approach for large-scale optimization problems is the decomposition of the
global model to subproblems that are consistent and easier to address (Nemhouser and
Wolsey 1988). Since GSD incorporates all key subproblems of shop design, a favorable
decomposition should lead to these natural components, i.e., shop layout, material flow
network design, and transporter routing. Recall from the formulation of Section 3 that
constraints (23)-(25) reflect the usual quadratic assignment problem (QAP) related to shop
layout. The standard objective of QAP expresses the material handling effort and is given
by the first two terms of (7). The flow interactions between the resource groups are in-
cluded in the objective function of GSD through the flow variables x¥, and 2 Also,
constraints (11)-(16) are integral to the formulation of the transporter routing subproblem,
the objective of which is to balance material handling effort and transporter acquisition
costs by routing transporters over the fixed flow network of a certain shop layout (Her-
rmann et al. 1995b). Thus, the first three terms of (7) constitute the objective function of
the transporter routing problem. Finally, constraints (8)-(10) and (19)-(20) are part of the
flow network design subproblem (Herrmann et al. 1995). The objective of this subproblem
comprises the material flow given by the first two terms of the objective function of GSD,

as well as the construction cost of the network given by the last term of (7).
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4.1 The material flow network design problem

The following systematic procedure derives the design model for the material flow network

from the global formulation of GSD.

Step 1: Fixing variables

The material flow network design subproblem assumes a fixed shop layout. Thus, the
assignment of resource blocks to grid nodes is given, and the associated global variables e¢;
of GSD, V¢ € B and Vi € N, are fixed to either zero or one. Furthermore, in order to
consider the shop traffic caused by unloaded transporter moves, the number of transporters
and the sequences of loaded moves assigned to each transporter are assumed known. Thus,
the GSD variables, w,, V& € V, related to the activation of the transporters, and hgu,
Ve € V, and V(\, ) € C, related to the assignment of complete moves to transporters, are

fixed to either zero or one.

Step 2: Eliminating constraints

A direct result of fixing the above variables to feasible binary values is that constraints
(23)-(25), which ensure the feasibility of the layout, and constraints (11)-(15), which de-
termine the sequence of loaded moves performed by each transporter, are redundant. In
addition, constraint (16) which guarantees that the transporter availability is not exceeded,
is no longer applicable since moves are already assigned to transporters, V& € V, and
V(A u) e C.

The reduced problem still includes a very large number of flow-related variables, and
some grouping of moves to commodities is required. Inspired by classical formulations
of the network design model, we transform the binary flow variables (x§;; and zf,,;) to
continuous ones, by aggregating the moves associated with each output-input station pair
to one commodity ¥ € K (K being the set of all commodities), with origin O(k) and
destination D(k). For the first k1 commodities of loaded moves (0 < k < k1 < |K]|), where
ky is the number of non-zero entries of the material flow matrix, let mf] denote the fraction
of the flow of commodity k that travels along the directed arc (1, j):

1
x{?j:f—-z Sox5; 0<k<k (29)
k IiEVAELk
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where Ly = {A € L: o(A) = O(k),d(\) = D(k)}, and f = |L| is the flow for commodity
k € K within the design horizon T'. Similarly, for unloaded moves:
zh; = fk g‘; ,:L)jeck 25, ki <k<|K| (30)
where C, = {(A\,pu) € C : d(A) = O(k),o(p) = D(k)}, and fi = |Cy|. Note that C}, is
known based on the sequences of loaded moves performed by the transporters.
It is important to mention that the mapping from x - to x¥ Nij is not one-to-one. Given

the fractional flows m”, the exact move numbers A of x§;; cannot be determined directly.

Step 4: Aggregating constraints

The above aggregation of flow-related variables transforms constraints (8)-(9) of the

global model to the following:

~1 ifi=O0)
ook - Y sb={ 1 ifi=Dk) VieNkek (31)

(4)eA (3,heAa .
0 otherwise

Note that since variables e¢; are fixed, the right hand side of (31) can be directly set equal
to 1, 0, or -1. In addition, constraint (10) of GSD is transformed to:
Z Sl .'L' -|-£I7 < Bj; V{i,j} € A (32)
keK

Finally, constraints (19)-(20) are also aggregated to the single constraint:

o35, 25 < Yig V{i,j}e A ke K (33)

The reduced model contains only two types of variables. The first type comprises vari-
ables y;;, which model discrete design choices, while the second type comprises variables

zF., which represent the fraction of the flow of commodity k that travels on the directed arc

Z]’

(4, 4)-

Step 5: Mixed-integer programming model

If (z,vy) is the vector of design and flow variables, with x = (wi-“j) and y = (y;5), the

network design problem can be formulated as follows.
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Problem CFP (Fixed Charge Capacitated Network Design Problem)

minimize ZoFp = Z z fkmfj + Z Fijyij (34)
kEK (i,5)€A {i.j}eA
subject to :
-1 ifi=0(k)
Yook~ Y sh={ 1 ifi=Dk) VieNkeK (35)
(Jt)eA (Z,eA

0 otherwise

> fk(“’fj + 3’?1') < Bj; v{i,j} € A (36)
keK

méﬂ.’i’mg}i < Yij V{":J.} € A,k e K (37)

>0 Vij)eAkek (38)

vi; € {0,1} V{i,j} € A (39)

4.2 The transporter routing problem

A systematic procedure similar to the one for the flow network design, derives the trans-

porter routing problem from the global formulation of GSD.

Step 1: Fixing variables

The transporter routing problem assumes a fixed shop layout; thus, the assignment of
blocks to grid nodes is known, and the global variables e;, of GSD are fixed to either zero
or one, V¢ € B and Vp € N. In addition, since this subproblem assumes a fixed topology
of the material flow network, the set of active arcs is known, and consequently, the global
variables y,, of GSD are also fixed to either zero or one, V{\ u} € A.

Simplification of some variables is also in order based on the assumption that the paths
between the origin and destination of any loaded move 7 € L and the unloaded component
of any complete move (4,5) € C are fixed. Expression (40) provides the variable cost of

loaded move i € L:

> D xh (40)

kev (\,u)eA
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This cost is known, since 3 ;v xf)\u is fixed, V(A, ) € A. Furthermore, the variable cost of
the unloaded move between loaded moves 4,5 € L is given by:

> (2 hE) (41)

KEV (Apm)€EA

where the variable hfj of GSD determines if loaded moves 4,5 € L are matched. From
expressions (40)-(41) we can determine the cost coefficients f3;; which provide the distance
of a complete move when the transporter speed is constant and the times related to loading

and unloading are not considered:

161'3' = Z Z (xf)\u + zfj)\u) (42)

(Au)EA kEV

Equation (42) holds for those loaded moves that are matched, i.e., for 4,5 € L such that
Y kev hfj = 1. The definition of the (-coeflicients is extended to all possible loaded move
pairs (z,5) € C as follows. For each pair of a loaded move and a possible unloaded move,

the arcs (A, p) of the corresponding paths are known; thus, §;; is defined by:
Bi; = cost of the path o(i) — d(¢) + cost of the path d(¢) — o(j) Vi,j€L (43)

For loaded move %, the only decision to be made is the selection of the transporter that
performs this move (superscript k). The decisions involved with the possible unloaded move
between 1, j are: i) whether this unloaded move is performed, and ii) the selection of the
transporter (superscript k). All these decisions are modeled by the variables hfj; i.e., the
values of hfj provide all pairs of loaded moves that are performed in sequence (and the

unloaded move that connects them), as well as the transporters that perform these moves.

Since the paths used to perform these moves are also known, the values of the global

k k

variables Xiu and Zijau

are fixed. Consequently, the latter variables can be eliminated in

the transporter routing problem.

Step 2: Eliminating/transforming constraints

A direct result of fixing the e;, and y,, global variables to feasible binary values is that
constraints (23)-(25) and (21)-(22) of GSD, respectively, are no longer required. Further-

more, based on equation (42), constraint (16) of GSD can be appropriately transformed as
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follows.

Z |:fo)\#+ Z zfj)\pil <T & Z Z xf)\p,'*' Z Z zfj/\thfST

(Am)eA |ieL (i.5)eC €L (A,p)eA (1.5)€C (Ap)eA
& > Bkl <T Vk €V (44)
(1.7)eC
where 323 e zfj,\ﬂhfj = Yap)ead zi?j/\”, because of constraint (17) of GSD. The third

inequality in (44) holds since 2Owea x¥, is the variable cost of loaded move i € L and

AL
>\ u)ea Zrin,hE; is the variable cost of complete move (3,5) € C. The sum of these two
costs also expresses the cost coefficient 3;; in (43).

and z*

The elimination of the x* i

D variables renders constraints (8)-(9) and (17)-(20)
of GSD redundant. Finally, the arc capacity constraints (10) of GSD are not considered

in the transporter routing subproblem.

Step 3: Reducing the objective function

The transporter routing problem targets the minimization of the fixed acquisition and
the variable operational costs of the material handling system. The former is given by the

third term of (7), 3,cy Wiwy, while the latter is expressed as:

PIDDEDINE " VEDDED DEND DR W

keVieL (Au)eA keV (4,5)eC (A u)€A
2.0 > ot XX b= > Y ayhh (45)
kEViEL (\u)eA keV (i,5)eC (A p)eAd (4,5)eC keV

The last equality holds since the f;; cost coefficients for each complete move (4, j) € C are
the sum of the variable costs of a loaded and unloaded move, as in (44).

After completing Steps 1-3 above, only two types of variables are necessary to formulate
the problem the transporter routing problem: wjy, which denotes which transporter k € V
performs at least one loaded move in L and, hf] which is associated with each complete
move (4,j) € C and denotes the sequence of moves performed by each transporter. The

routing cost, §;;, attributed to each complete move (7, j) € C is derived from equation (43).

Step 4: Integer programming model
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Following the previous assumptions and simplifications, the global shop design problem

GSD is reduced to the following:
Problem TRP (Transporter Routing Problem)

minimize Zrrp = Y Wiwg + Y. Y Byhk
keV (.5)€C keV

subject to :

> > rE=1 VieL

(i,j)eC keV
Yo Y hh=1  VjeL
(if)EC eV
>oorbk— S wrh=0  VieL kevV
(i.5)eC (i)eC

Yo hE>RE +REL 1 Vi, 51), (2, 52) € C gt #do, and i1 # jo
(4,9)€C1,2
VC1,2, VkeV

Y. Bk <T  VkeV
(i1)€C

h: < wy V(i,j)€C, keV

h¥,wi € {0,1} Y(i,5)€C, keV

5 Overview of an integrated design approach

(46)

(48)

(49)

The two MHS design subproblems (CFP and TRP) of Section 4 and the shop layout sub-

problem are generic optimization models. In particular, CFP is a multi-commodity, fixed

charge, capacitated network design problem (Herrmann et al. 1994), which is NP-complete,

and arises in many applications of communication and transportation networks. We have

developed effective solution approaches for CFP that are suitable for manufacturing sys-

tems (Herrmann et al. 1995a). These heuristics have exhibited consistent performance for

a variety of problem parameters, when tested against tight lower bounds (Herrmann et al.

1994).
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The transporter routing problem (TRP) bears significant similarities with the non-
depot, distance constrained vehicle routing problem with a twofold objective: minimization
of the number of vehicles and of the total distance traveled (Golden and Assad 1988). We
have proposed effective solution methods for this type of vehicle routing which are based
on the assignment relaxation of the problem (Herrmann et al. 1995b). The methods utilize
the special structure of the underlying graph, in which multiple arcs correspond to the same
origin and destination. The performance of these algorithms has been established through
theoretical evaluation of computational complexity, worst-case analysis, and extensive com-
putational tests (Herrmann et al. 1995b, Toannou 1995).

Finally, as mentioned before, the layout problem is an implicit quadratic assignment

problem, for which the quadratic objective is linearized through the flow variables xqu and
k

Zijpg

We have developed (Ioannou 1995) an integrated shop design method that solves GSD.
The method uses a global search scheme based on the simulated annealing algorithm to
evaluate different shop designs and select the most appropriate one. It also incorporates a
systematic generator of feasible layouts, which evolve to favorable configurations following
a typical annealing process. The simulated annealing procedure solves the layout QAP. The
overall cost of the layout generated in each iteration of the procedure is evaluated through a
composite algorithm that solves GSD when the quadratic assignment variables e, are fixed
(i.e., the layout is known). This composite algorithm integrates the solution approaches for
CFP and TRP presented in Herrmann et al. (1995a,b). The algorithm guarantees the
feasibility of the resulting shop configuration and leads to near-optimal material handling
system designs for the given layout. The simulated annealing-based search scheme converges
to a complete, near-optimal shop design, that includes the actual location of the resource
groups on the shop floor, the input/output station interconnection network, and the number
of transporters required to serve the material flow. The quality of the final solution, as
with any simulated annealing application, depends on the parameters of the search. Qur
implementation however, has produced exceptionally good results for numerous small to

medium-size examples as well as for a large industrial application (Ioannou 1995).
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6 Conclusions

This paper presented an integer programming formulation of the integrated shop design
problem. The model incorporates major design decisions, such as the location of the re-
source groups on the shop floor, the activation of network arcs and transporters, the routing
of each loaded and unloaded move over the flow network, and the sequence of moves per-
formed by each transporter. The model also captures most critical practical concerns in the
form of constraints (traffic congestion and transporter availability), or as integral parts of
the objective function (tradeoff between fixed and variable costs). By evaluating the num-
bers of variables and constraints of the design model, it was found that explicit or implicit
enumeration schemes are impractical for realistic applications. To address this issue, the
global model GSD was decomposed to its natural components which were shown to be
generic problems in operations research. They include the multi-commodity fixed charge
capacitated network design, the non-depot distance constrained vehicle routing, and the
quadratic assignment problems. We have developed solution approaches for these subprob-
lems and used them in a synthetic global design method that solves GSD in a satisfactory

manner.
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