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In this dissertation, we investigate via numerical computations the dynamics

of elastic capsules (made from a thin strain-hardening elastic membrane) in two

microfluidic channels of cross-junction and T-junction geometries. For the cross-

junction microfluidic channel, we consider an initially spherical capsule with a size

smaller than the cross-section of the square channels comprising the cross-junction,

and investigate the effects of the capsule size, flow rate, and lateral flow rates on the

transient dynamics and deformation of low-viscosity and equiviscous capsules. In

addition, we also study the effects of viscosity ratio on the transient capsule dynamics

and deformation. Our investigation shows that the intersecting lateral flows at

the cross-junction act like a constriction. Larger capsules, higher flow rates and

higher intersecting lateral flows result in stronger hydrodynamic forces that cause a

significant capsule deformation, i.e., the capsule’s length increases while its height

decreases significantly. The capsule obtains different dynamic shape transitions due

to the asymmetric shape of the cross-junction. Larger capsules take more time to

pass through the cross-junction owning to the higher flow blocking. As the viscosity

ratio decreases, the capsule’s transient deformation increases and a tail formation

develops transiently, especially for low-viscosity capsules owing to the normal-stress

effects of the surrounding fluid on the capsule’s interface. However, the viscosity

ratio does not affect much the capsule velocity due to a weak inner circulation.

Our findings suggest that the tail formation of low-viscosity capsule may promote



membrane breaking and thus drug release of pharmaceutical capsules in the micro-

circulation.

Furthermore, we investigate via numerical computations the motion of an elas-

tic capsule (made from an elastic membrane obeying the strain-hardening Skalak

law) flowing inside a microfluidic T-junction device. In particular, we consider the

effects of the capsule size, flow rate, lateral flow rate, and fluid viscosity ratio on

the motion of the capsule in the T-junction micro-channel. As the capsule’s initial

lateral position increases, the capsule moves faster and reaches different final lateral

positions. As the capsule size increases, the gap between the capsule’s surface and

the channel wall decreases. This results in the development of stronger hydrody-

namic forces and a decrease in the capsule velocity due to flow blocking. As the

capsule size increases, there is a small lateral migration towards the micro-channel

centerline, which is the low-shear region of the T-junction micro-channel. This mi-

gration is in agreement with experimental and numerical studies on non-inertial

lateral migration of vesicles in bounded Poiseuille flow by Coupier et al. [13] who

showed that the combined effects of the walls and of the curvature of the velocity

profile induce a lateral migration toward the centerline of the channel. As the cap-

illary number Ca increases, the stronger hydrodynamic forces cause the capsule to

extend along the flow direction (i.e., the capsule’s length Lx increases as the capsule

enters the T-junctions and decreases as the capsule exits the T-junction). There is

a small lateral migration away from the micro-channel centerline as the flow rate Ca

increases. The capsule lateral position zc, main-flow velocity Ux and migration ve-

locity Uz are practically not affected by the fluids viscosity ratio λ. As the channel’s

lateral flow rate increases, the capsule migrates downwards towards the bottom of

the device. Our findings on the lateral migration in the T-junction micro-channel

suggest that there is a great potential for designing a T-junction microfluidic device

that can be used to manipulate artificial and biological capsules.
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Chapter 1: Introduction

A capsule consists of an internal liquid droplet enclosed by a thin elastic mem-

brane [48]. Under external fluid flow, capsules can be deformed and obtain many

features observed for biological cells (i.e., bio-concave disc shape of red blood cells).

As a result, they are usually used as a simplified model to study and understand the

nature of the hemodynamic forces exerted on vascular endothelial cells or leukocytes

adhering to the surface of blood vessels and the dynamics of erythrocytes in shear

flows [23, 24, 56], to model and simulate red blood cell motion in micro-vessels and

bifurcations, and to study the motion of platelets in the bloodstream [47]. Biological

capsules such as red blood cells (RBC) are usually enclosed by a thin solid membrane

with complicated structure. For instance, the red blood cell membrane consists of

a phospholipid bilayer containing internal membrane proteins and an underlying

membrane skeleton [42]. It is of interest to note that one of the RBC membrane

properties, the high deformability of the membrane, is known to play a key role

in the oxygen and carbon dioxide exchange between the micro-circulation and the

body tissues. It allows the RBC to undergo extensive deformation without rupture

in the constricted vascular capillary vessels, enabling it to effectively perform its

function of oxygen and other respiratory gases delivery to and from the tissues.
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In recent years considerable studies have been dedicated to understand the

interfacial dynamics of capsules suspended in confined geometries [3, 48]. This is

attributed to the need in utilizing capsules in the pharmaceutical, cosmetic, and

food industries for encapsulation and controlled release of active ingredients, flavors

or aromas [1, 14, 15, 37, 41, 57]. Encapsulation consists of enclosing some internal

contents with a semipermeable membrane. The internal contents are thus protected

from the external environment and can be released at a specific and desirable time.

The controlled release can occur by breaking up suddenly the capsule membrane by

the fluid flow or by diffusing continuously internal contents through the membrane

[3].

Understanding the interfacial dynamics of capsules also presents numerous

biomedical interests. Although these biomedical interests are motivated by in vivo

biomedical experiments such as understanding the dynamics of erythrocytes in shear

flows [23, 24, 56], simulating red blood cell motion in microvessels and bifurcations

[47], in vitro understanding has received increasing attention in the lab-on-chip

technologies [45]. Microfluidic approaches have led to many developments toward

lab-on-chip technologies. The basic objective of these approaches is to miniaturize

laboratory experiments and reduce the cost, processing times, and volume of fluid

used in those experiments [19]. These approaches such as fabrication of micro-

capsules with desirable properties [40,50], encapsulation of cell culture for artificial

organs growth [51], separation and sorting of cells [38], are seen as promising tools

in diagnostics, high-throughput screening, drug delivery systems and drug discovery

[44, 45, 48].
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Since capsules are widely used as a mimicking model to study biological cells

and are of great importance for pharmaceutical, cosmetic and food industries, many

studies have been conducted on different fabrication techniques of artificial cap-

sule [44]. Capsules of different physical properties (e.g. shape, size and stability)

can be artificially produced in the laboratory depending on fabrication parameters,

membrane materials and encapsulation techniques.

Artificial capsules can be fabricated through interfacial polymerization of a

liquid droplet. First, a liquid droplet of required size or shape is fabricated. Then

the liquid droplet is cross-linked with another liquid at either T-junction or cross-

junction microchannels. Capsules obtained through this process are often enclosed

by a thin polymerized membrane with physical properties that depends on the em-

ployed synthesis strategies [3]. Few properties can be determined experimentally.

The size of artificial capsules varies from a few micrometers to a few millimeters,

and the rheological properties of the internal content can be measured independently

(e.g. , by breaking the capsules). However, elastic membrane properties are quite

difficult to measure owing to capsule size and fragility [48]. Some powerful models

are thus needed to assess elastic membrane properties of artificial capsules. Based on

computational investigation, Dimitrakopoulos et al.proposed a new methodology to

determine a membrane’s shear modulus, independent of its area-dilatation modulus,

by flowing strain-hardening capsules in a converging micro-capillary of comparable

size under Stokes flow conditions [20]. Other powerful models are also needed to

design and optimize artificial capsules for transporting and releasing internal con-

tents of capsules as demanded in pharmaceutical, cosmetic and food industries. As
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a result, the computational study of the interfacial dynamics of elastic capsules rep-

resents a fundamental problem. This requires a comprehension of the dynamics and

deformation of elastic capsules in confined solid ducts such as microfluidic channels.

The dynamics and deformation of capsule in solid ducts are determined by

the nonlinear coupling of the deforming hydrodynamic forces with the restoring

interfacial forces of the particle membrane [28]. Note that this coupling is mutual.

On one hand, the hydrodynamic forces deform the capsule and on the other hand,

the deformed capsule changes the boundary conditions at the interface. As a result

of this interplay of opposing forces, the capsule deforms and takes different dynamic

transition shapes.

Experiments have been conducted on initially spherical artificial capsules flow-

ing in cylindrical and square-section microfluidic channels. Risso et al.experimentally

investigated the motion and deformation of an initially slightly over-inflated bioar-

tificial capsule made of covalently linked human serum albumin (HSA) and algi-

nate in a cylindrical microfluidic pore. They found that by increasing the capillary

number Ca at a fixed capsule size, the capsule deforms and takes different dy-

namic transition shapes from bullet-like shape to parachute-like shape [49]. Lefebvre

et al.experimentally investigated the effects of flow rate on deformation of micro-

capsules made of crossed-linked ovalbumin flowing inside cylindrical and square-

section microchannels in order to determine the membrane mechanical properties

of microcapsules. In all these studies, the capsule’s velocity and deformed profile

were obtained, and the membrane shear elastic modulus for a neo-Hookean consti-

tutive law was determined independent from capsule size or deformation [7]. Hu
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et al.considered an initially spherical capsule with diameter smaller than that used

by Lefebvre et al.and made of crossed-linked ovalbumin. They studied the effect

of capillary number Ca on the motion and deformation of a capsule flowing in a

square-section microchannel. Capsule profiles and the corresponding velocities were

obtained, and the shear elastic modulus of the membrane was determined by com-

parison of experimental and numerical results [4].

Numerous bioengineering and industrial interests have also motivated efforts to

computationally study the dynamics and motion of capsules and biological capsules

in a confined fluid flow. The theoretical studies were initiated by Barthès-Biesel in

1980 [12]. Using a regular perturbation technique, she studied the effects of shear

rate, viscosity ratio, and the membrane elastic coefficient on the deformation and

orientation of microcapsule in a simple linear shear flow. An analytical asymptotic

solution to the problem was obtained and results predicted the tank-treading motion

of capsule. Her work revealed that the capsule orientation and deformation depend

on capsule physical properties such as the viscosity ratio and elastic properties. The

more viscous capsule was shown to be more titled toward the streamlines. Using the

lubrication approximation, Secomb et al.studied the steady axisymmetric deforma-

tion of red blood cells flowing in a narrow cylindrical channel [55]. The lubrication

theory was used to describe the flow of the suspending fluid in the gap between the

cells and the channel wall. They studied the effect of flow rate on the cell shape and

apparent viscosity. Their results showed that the cell shape and apparent viscosity

were independent of flow rate at moderate and high cell velocities. However, at

lower flow velocities, membrane shear and bending resistances become increasingly
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important, and apparent viscosity was shown to increase with decreasing flow rate.

Furthermore, several two dimensional (2D) models were developed to study

the biological capsule motion and deformation under various confined flows. Using

a finite element numerical method in 2D, Sugihara-Seki et al. [54] studied the effect

of tank-treading motion on an idealized zipper-type flow. They found a critical vis-

cosity ratio that impacted the membrane tank-treading motion of red blood cells. If

the viscosity ratio was lower than than the critical value, the zipper-type arrange-

ments of red blood cells in capillaries were stabilized by the membrane tank-treading

motion. When the tank-treading motion was inhibited by increasing the viscosity

ratio above the critical value, a cyclic oscillatory motion of red cells was observed.

The critical viscosity ratio was shown to increase if the channel was narrowed or

if the spacing between cells was reduced. Using the immersed boundary method,

Bagchi [2] studied the motion of an individual red blood cell in suspension and

the collective motion of many cells in small vessels. His numerical results correctly

was in agreement with the Fahraeus-Lindqvist effect. The tank-treading and tum-

bling motion, and the lateral migration of red blood cells were observed. However,

Bagchi’s 2D model had several limitations. For instance, it was questionable on how

the simplified 2D model could provide accurate results of motion and deformation

of red blood cells which are inherently three-dimensional(3D). A full 3D model is

necessary to describe the dynamics and deformation of capsule in confined flows.

Over the years, great progress has been made to study the dynamics and de-

formation of capsule in 3D. Spherical capsules made of elastic membranes obeying

either an Neo-Hookean (NH) or Skalak (SK) law, and flowing in a cylindrical pore
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have been studied. Barthès-Biesel et al.studied the effects of capsule shape and size,

membrane rheology, membrane elasticity, and viscosity ratio of bioartificial capsule

flowing into a cylindrical pore, and neglected the internal osmotic pressure and bend-

ing resistance of the membrane [11]. They found that the entrance of the capsule

in the pore is very sensitive to the capsule shape and volume. The viscosity ratio is

important where blocking of the pore is apparently reached. The effect of capsule

rheology is significant when the deformations are very large. Lefevre et al.further

considered the effect of osmotic pressure on the motion of bioartificial capsule flow-

ing into a cylindrical pore. They found that the presence of an osmotic pressure

and membrane pre-stress significantly alters the dynamics of capsules through small

pores [9]. In addition, the motion and deformation of capsules in a square-section

microchannel have been studied for NH and SK membrane laws. Hu et al. [5] studied

the motion and deformation of a spherical elastic capsule flowing in a microfluidic

square-section pore and compared the results to the circular cross-section. The cap-

sule membrane was described by the NH constitutive law with negligible membrane

bending resistance and their results were shown to qualitatively agree with those

observed for the flow of capsules in cylindrical tubes [11]. However, for the same

size ratio and flow rate, a capsule was more deformed in a circular than in a square

cross-section pore. Using a boundary integral method, the elastic capsule flow in

a square-section channel was investigated by Kuriakose and Dimitrakopoulos [28].

An initial spherical capsule obeying the Skalak strain-hardening membrane law with

negligible membrane bending resistance was slightly inflated and pre-stressed by a

positive osmotic pressure difference between the internal and external fluids. They
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examined the effects of capsule size and capillary number on the capsule steady

states in a square-section channel and compared results with those observed in a

cylindrical channel. They also found that the capsule motion in a square channel

is similar to and thus governed by the same scaling laws of the capsule motion in

a cylindrical channel. Overall, it is important to note that in all of those studies

(i.e., the flow of a capsule in an either cylindrical or square channel), the main result

is that an initially spherical capsule takes a parachute-like or bullet-like shape in

a square or cylindrical channel and adapts to the boundary confinement and the

hydrodynamic forces. It is easier to deform a capsule with an neo-Hooken than

with an Skalak membrane law and the osmotic prestress significantly decreases the

deformability of a capsule.

In addition, the motion and deformation of capsules in a microfluidic rectangular-

section and constriction channels have been studied in our group. Kuriakose and

Dimitrakopoulos investigated computationally the deformation of an elastic cap-

sule in a rectangular microfluidic channel. They found that the deformation of

capsule in a rectangular channel is different from that in a square or cylindrical

channel. For example, in a rectangular channel, the capsule extended mainly along

the less-confined lateral direction of the channel cross-section. This is in contrast to

the bullet or parachute shape developed in a square or cylindrical channel where the

capsule extends along the flow direction while in a rectangular channel, a pebble-like

shape was observed [26]. Furthermore, Park and Dimitrakopoulos also investigated

the transient dynamics of an elastic capsule flowing in a square microchannel with a

rectangular constriction. They showed that the confinement and expansion dynam-
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ics of the fluid flow in the constriction region results in a rich deformation behavior

for the capsule, from an elongated shape at the constriction entrance, to a flattened

parachute shape at its exit.

In this dissertation, we investigate computationally the transient dynamics of

an elastic capsule flowing along the centerline of a cross-junction microchannel and

also investigate the motion of an elastic capsule in a T-junction microchannel. Our

motivation is to develop powerful model that is needed for design and optimization

of the fabrication of artificial capsules that are used for transporting and releasing

the internal contents as demanded in pharmaceutical, cosmetic and food industries.

The control release of internal capsule content is of course essential for the design

of artificial capsules through interfacial polymerization. Our investigation of the

transient dynamics of an elastic capsule in a cross-junction channel shows that the

intersecting lateral flows at the cross-junction act like a constriction. Thus, the

stronger hydrodynamic forces owning to the intersecting lateral flows cause a sig-

nificant capsule deformation. The capsule obtains different transitional shapes due

to the asymmetric shape of the cross-junction. As the viscosity ratio decreases, the

capsule’s transient deformation increases and a tail formation develops transiently,

especially for the low-viscosity capsule. This tail formation increases as the cap-

sule size increases or lateral flow rates increases. Our findings suggest that the tail

formation of low-viscosity capsule may promote membrane breaking and thus drug

release of pharmaceutical capsules in the microcirculation. Second, the T-junction

can be used during the cross-linking process to fabricate artificial capsules of de-

sirable properties and capsules are then separated based on the capsule size. Our
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investigation shows that the capsule moves faster and reaches different final lateral

position as the capsule initial lateral position increases. As the capsule size increases,

the gap between the capsule surface and channel walls decreases. This results in

development of stronger hydrodynamic forces and a decrease in the capsule veloc-

ity. As the channel lateral flow rate increases, the capsule migrates more towards

the bottom of the exit channel. A small lateral migration towards the centerline is

observed as the capsule size increases. Our investigation suggests that this lateral

migration can be used to sort out artificial and biological capsules based on the size

in the T-junction microchannel.

In summary, the present work is outlined as follows: In chapter 2, we discuss

the mathematical framework of the problem. Topics include the governing equa-

tions, boundary-integral formulation, and membrane dynamics which we employ

in our numerical method. We also discuss the three-dimensional Membrane Spec-

tral Boundary Element (MSBE) method. Chapter 3 employs the MSBE method to

study computationally the transient dynamics of an elastic capsule flowing along the

centerline of a cross-junction microchannel. In particular, we consider an initially

spherical capsule with a size smaller than the cross-section of the square channels

comprising the cross-junction, and investigate the effects of the capsule size, flow

rate, lateral flow rate, and fluid viscosity ratio on the transient capsule dynamics

and deformation. We analyze our results by looking at capsule shape transitions,

capsule geometrical properties (i.e., capsule’s dimensions and profile curvatures) and

capsule velocity Ux as the capsule enters and exits the cross-junction channel. Chap-

ter 4 investigates the effects of the capsule initial lateral position, the capsule size,
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the flow rate, the lateral flow rate, and the fluid viscosity ratio on the motion of

elastic capsule in the T-junction microchannel. We present our results by consider-

ing capsule geometrical properties (i.e., capsule’s dimensions), the lateral position,

the capsule velocity Ux, and the capsule lateral migration velocity Uz.
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Chapter 2: Mathematical formulation

2.1 Stokes Flow and Boundary Intergral Formulation

We consider a three-dimensional capsule suspended in a simple shear flow, thus

subjected to hydrodynamic stresses as shown in Figure 2.1. The capsule’s interior

and exterior fluids are incompressible Newtonian fluids, with viscosites λµ and µ,

and have equal density ρ (i.e., no buoyancy and sedimentation effects). We define

the capsule size by a = (3V/4π)1/3 where V is the capsule volume. It is important

to assume that the capsule has a negligible membrane permeability (i.e., no flow

through the capsule membrane) and its volume is constant.

At low-Reynolds number, the inertial terms in the Navier-Stokes equations are

neglected and the governing equations are the Stokes equations and continuity given

Figure 2.1: Illustration of an elastic capsule with internal viscosity λµ suspended in
an infinite fluid with viscosity µ in simple shear flow and subjected to hydrodynamic
stresses. u∞ is the undisturbed fluid velocity field.
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by,

∇ · σ = −∇p + µ∇2u = 0 (2.1)

∇ · u = 0 (2.2)

where u is the external fluid velocity, p is the pressure and µ is the external fluid

viscosity. σ represents the stress tensor. Inside the capsule, the same equations

apply except that the viscosity is multiplied by the viscosity ratio λ.

The partial differential equations, Eqs.(2.1) and (2.2), which are valid in the

system volume, are transformed into boundary integral equations valid on the sur-

face of the volume. Based on the standard boundary integral formulation for a cap-

sule freely suspended into the external fluid, the velocity at a point x0 on the capsule

interface Sc is determined by the following boundary integral equation(BIE) [32].

u(x0) − 2u∞(x0) =

−
1

4πµ

∫

Sc

[S · ∆f − (1 − λ)µT · u · n](x) dS (2.3)

where u∞ is the flow velocity far from the capsule interface Sc, the tensors S and T

are the fundamental solutions for the velocity and stress for the three-dimensional

Stokes equations, respectively [33] and are determined using the following equations:

Sij =
δij

r
+

x̂ix̂j

r3
(2.4)

Tijk = −6
x̂ix̂j x̂k

r5
(2.5)
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where x̂ = x − x0 and r = |x̂|. A detailed derivation of BIE may be found in [48].

The dynamics of capsule in the ambient fluid requires specifying boundary

conditions on the capsule membrane. At the capsule interface between the external

and internal fluid, the velocity u is continuous across the membrane because of the

assumption of non-slip and non permeability of the membrane. The hydrodynamic

stresses, f = σ · n, due to the external and the internal fluid flows undergo a

discontinuity and are balanced by developing membrane tensions as shown in the

following equation:

u1 = u2 = u (2.6)

∆f ≡ n · (σ2 − σ1) (2.7)

The subscripts 1 and 2 are the internal and external fluid, respectively, while n is

the unit normal which we choose to point into the external fluid and σ is the surface

stress tensor. It is of interest to note that the surface stress ∆f is determined by

the membrane dynamics as described in Section 2.2.

Because of the no-slip condition at the capsule interface, the time evolution

of any material point on the capsule membrane is determined via the following

kinematic condition at the interface:

∂x

∂t
= u (2.8)

Although the governing equations and boundary conditions are linear in u and
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Figure 2.2: Illustration of an elastic capsule flowing at the centerline of a square
microchannel [28].

f , the problem of determining the capsule shape constitutes a nonlinear problem,

i.e., the velocity u, and stress f are nonlinear functions of the geometrical variables

describing the interface shape [32].

In addition to the three-dimensional elastic capsule suspended in an infinite

fluid, the Stokes equations (Eq.2.1) and continuity (Eq.2.2) also represent the typical

fluid governing equations in a microfluidic device, where the small length (i.e., micro

scale) makes the Reynolds number Re ≤ 1 and the viscous forces dominant over the

inertial ones.

In particular, we consider an elastic capsule with viscosity λµ flowing in a

square microchannel device as shown in Figure 2.2. The fluid external to the capsule

has viscosity µ and we assume equal density between the internal and external fluid.

The system surface SB consists of the capsule interface Sc, the microchannel’s solid

surface Ss, and the fluid surface Sf of the channel’s inlet and outlet far from the

capsule. The governing equations describing the motion of capsule in a microfluidic

device are still Stokes Equation (Eq.2.1) and continuity (Eq.2.2), to which one must

add a zero velocity boundary condition. The general boundary integral equation,

Eq. 2.3 is then modified to account for the confining boundaries [47] and is found
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as follows:

Ωu(x0) = −
∫

Ss∪Sf

[S · f2 − µT · u2 · n](x) dS

−
∫

Sc

[S · ∆f − (1 − λ)µT · u · n](x) dS (2.9)

where the subscripts 1 and 2 refer to fluids inside and outside of the capsule, respec-

tively. In the second term on the right-hand side, the velocity is u = u1 = u2. For

points x0 on Ss ∪ Sf , Ω = 4(1 + λ)µ and Ω = 4µ for points x0 on the surface Sc.

The dynamics of capsule in the square microchannel device also requires spec-

ifying boundary conditions on the capsule membrane. Boundary conditions (Eq.2.6

and (Eq.2.7) described above still apply at the capsule’s interface. Additional bound-

ary conditions are specified on microchannel’s solid surface Ss and the fluid surface

Sf , and are given by

u = 0 on the solid boundary Ss, (2.10)

u = u∞ or f = f∞ on the fluid surface Sf (2.11)

2.2 Membrane Dynamics

A capsule membrane can undergo three different basic modes of deformation:

(i) shape-changing deformation(shear), (ii) volume-changing deformation (dilation)

and (iii) bending. The capsule membrane dynamics is described using a continuum

mechanics approach. Because the membrane thickness is much smaller than the size
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of capsule, the membrane is treated as a two-dimensional object using the theory

of thin shells [48]. In this section, we briefly discuss the membrane dynamics and

more details may be found in relevant books [47, 48].

In the absence of fluid inertia, the capsule deformation at any time is governed

by a balance between the membrane elastic tensions and the viscous stresses exerted

by the flowing fluid. For a membrane with shearing and area-dilation resistance and

a negligible bending resistance considered in this work, a force balance over an

arbitrary differential area of membrane shows that ∆f = −∇s · τ [30], which in

contravariant form gives,

∆f = −(ταβ |α tβ + bαβ ταβ n) (2.12)

In this expression, τ is the in-plane stress resultant tensor, bαβ is the surface curva-

ture tensor, and the ταβ |α notation denotes covariant differentiation. The in-plane

stress tensor τ is derived from the left Cauchy-Green strain tensor and is given by

the dyadic product [39].

τ =
∑

α

τP
α b̂αb̂α (2.13)

The principal elastic tensions τP
α are calculated from the stretch ratios via a consti-

tutive law which depends on the material composition of the membrane [48]. We

use the Skalak etal. membrane’s constitutive law [52] which relates τ
′

s eigenvalues
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(or principal elastic tensions τP
β , β = 1, 2) with the principal stretch ratios λβ by

τP
1 =

Gsλ1

λ2

(λ2

1 − 1 + Cλ2

2[(λ1λ2)
2 − 1]) (2.14)

To determine τP
2 , reverse the λα subscripts. In the equation 2.14, Gs is the membrane

shearing modulus while the dimensionless parameter C ≡ Ga/Gs is associated with

the area-dilatation modulus Ga of the membrane (scaled with its shearing) [48,53].

2.3 Membrane Spectral Boundary Element Method

The MSBE is the numerical method used to model and simulate the dynamics

of capsule in a microfluidic device. Physical quantities of interest (i.e., u and f

are directly computed on the interface. Therefore, there is no need to solve for

the fluid flow throughout the whole computational domain in order to capture the

dynamics of the membrane. For example, the MSBE algorithm scheme is shown in

the Figure 2.3. Given an initial capsule shape, the stretch ratios, λα and curvature

tensor (local curvature), bαβ are evaluated. The elastic tensions (local tensions) for

Skalak constitutive law are calculated from the stretch ratios using Eq.2.14. The

force vector ∆f is then computed along the capsule surface using Eq.2.12. Eq.(2.9)

can be evaluated to solve for the velocity field u on the membrane. The capsule

shape equation (the kinematic condition (Eq.2.8) is then used to update the position

vector of the membrane material point and calculate the new capsule shape. As a

result, this method captures the dynamic evolution of the capsule as the capsule

flows inside the microfluidic device.
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Computing                          

Membrane force 

Computing                            

The Velocity Field on the membrane 

Updating the position of every 

membrane discretization point          

      

New capsule shape         

Computing                          

Local curvature + Local tension 

Initial capsule shape       

Figure 2.3: Scheme of the Membrane Spectral Boundary Element (MSBE) algo-
rithm used to capture the dynamic evolution of the capsule as it flows inside the
microfluidic device.
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Figure 2.4: The Membrane Spectral Boundary Element (MSBE) discretization of a
spherical capsule into NE = 6 elements based on cube projection.

The interested reader is referred to our earlier papers for more details on our

MSBE algorithm [30, 32] and our recent investigations on the capsule dynamics in

rectangular and constriction microchannels [25, 26].

The discretization used in the MSBE method is a block-structured mesh. In

the case of spherical capsule considered in this problem, the initial capsule surface

is divided into NE ≤ 6 curvilinear quadrilateral elements as illustrated in the Figure

2.4. The MSBE discretization of the spherical capsule is then done via prism pro-

jection; e.g. the capsule surface is projected on to a cube whose faces correspond to

the interfacial elements as shown in figure 2.4. The surface is discretized in this way

so that the distribution of spectral points is controlled on the surface to maximize

efficiency and accuracy [32]. The microchannel’s solid surface is also discretized

using the spectral boundary element. Each quadrilateral surface element is then

mapped on to a square parametric domain [−1, 1]2. The geometric variables such
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as the position of a membrane material point on each element are discretized using

Lagrangian interpolation in terms of the parametric variables (ξ, η) on the square

domain as follows :

x(ξ, η) =
NB
∑

i=1

NB
∑

j=1

x(ξi, ηj)hi(ξ)hj(η) (2.15)

where hi is the (NB-1)-order Lagrangian interpolant polynomial. The physical vari-

ables u and f are also represented in the same manner as the geometric variables.

Since the Lagrangian interpolation guarantees second-order continuity of derivatives,

computation of surface properties is easily obtained. For example, first and second

derivatives of the position vector are necessary for the evaluation of the stretch ra-

tios, λα and curvature tensor, bαβ . The elastic tensions for Skalak constitutive law

are calculated from the stretch ratios and the hydrodynamic traction (or the surface

stress vector), f is then computed using Eq.2.12.

The base points (ξi, ηj) for the interpolation are chosen as the zeros of NB-order

orthogonal polynomials. The boundary integral equation (2.9) admit two different

types of points, the collocation points x0 of the left-hand side where the equation

is required to hold and the basis points x of the right-hand side where the physical

variables u and f are defined. The spectral element method use collocation points of

Gauss quadrature, i.e., in the interior of the element only. As a result, the boundary

integral equation holds even for singular elements where the normal vector is not

uniquely defined, i.e., the elements which contain the corners of the microfluidic

channel. In addition, we use basis points x of Gauss-Lobatto quadrature (i.e., in

the interior and the edges of the elements). Therefore, the physical variables are
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determined in the interior and on the edges of the spectral elements. The numerical

integration associated with Eq.2.9 is performed by Gauss-Legendre quadrature with

the aid of variable transformations [30, 32].

Using the kinematic condition (2.8), we determine the capsule’s shape as a

function of time. This is based on a high-order explicit scheme , i.e., the fourth-order

Runge-Kutta method. We note that the interfacial velocity u has both normal and

tangential velocity components and the grid points represent membrane material

points of the capsule’s interface. The explicit time integration is applied at the

(Gauss-Lobatto) basis points x where the interfacial velocity u is determined. We

emphasize that the time step ∆t should be sufficiently small to ensure numerical

stability [30, 32], i.e.,

∆t < O(Ca∆xmin) (2.16)

where ∆xmin is the minimum length scale appearing in the computational problem,

e.g. the minimum grid spacing.
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Chapter 3: Dynamics of an elastic capsule in a

microfluidic cross-junction

3.1 Problem description

Here, we consider a three-dimensional capsule suspended into another liquid

(thus subjected to hydrodynamic forces) and flowing along the centerline of a mi-

crofluidic cross-junction as illustrated in Figure 3.1. Its deformation is measured

as a displacement from the reference shape that is assumed to be spherical. The

cross-junction is constructed from two intersecting square microfluidic channels with

cross-section half lengths ℓy = ℓz. The origin of the co-ordinate system is placed at

the center of the junction. We think of one channel as horizontal and the other as

vertical as illustrated in Figure 3.1. At time t = 0, the capsule is located upstream

of the cross-junction in the horizontal channel and has a spherical shape with radius

a and centroid xc = −4ℓz. That instant, the flow is turned on inside of the microflu-

idic device and we investigate the transient dynamics of the capsule as it enters and

exits the microfluidic cross-junction which occupies the x-region [-ℓz, ℓz].

The capsule’s interior and exterior fluids are Newtonian fluids, with viscosities

λµ and µ, and have equal density (i.e., no buoyancy and sedimentation effects). We
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Figure 3.1: Illustration of an elastic capsule flowing at the centerline of a microfluidic
cross junction.

define the capsule size by a = (3V/4π)1/3 where V is the capsule volume. It is

important to assume that the capsule has a negligible membrane permeability(i.e.,

no flow through the membrane) and its volume is constant. At the inlet upstream

of the cross-junction in the horizontal channel, a velocity flow profile is imposed

as well as no-slip and no penetration boundary conditions are imposed on solid

walls. Far from the capsule, the flow approaches the undisturbed flow u∞ in a

channel characterized by a constant flow rate Q = 4Uℓ2
z. The exact form of the

channel’s velocity field u∞ which is described below and its average velocity U is

given in Section 2 of our recent paper on capsule motion in a square microfluidic

channel [27].

u∞

x

Υ
= (ℓ2

z − z2) +
∞
∑

m=1

Bm cosh

(

bmy

ℓz

)

cos

(

bmz

ℓz

)

(3.1)

where

Υ = −
1

2µ

dp

dx
, bm =

(2m − 1)π

2
, Bm =

(−1)m4ℓ2
z

b3
m cosh

(

bmℓy

ℓz

) , (3.2)

where p is the dynamic pressure.
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To compute the volumetric flow rate Q over the cross-section area, we integrate

Eq. (3.1)

Q

Υ
=

8ℓyℓ
3
z

3
+

∞
∑

m=1

Bm

(

2ℓz

bm

)2

sinh

(

bmℓy

ℓz

)

sin(bm) (3.3)

The average velocity of the exterior fluid far from the capsule is U = Q/(ℓ2
z)

The capsule velocity in the flow direction Ux may be different than the average

velocity U in the horizontal channel. The incoming flow rate at each of the two

inlets of the vertical microchannel is defined as Qv. After the cross-junction, the

horizontal channel has a total constant flow rate of (Q + 2Qv). We assume that the

Reynolds-number is small for both the surrounding and the inner flows, thus the

capsule deformation and motion occur in the Stokes regime.

Furthermore, we consider a slightly over-inflated capsule made from a thin

strain-hardening elastic membrane obeying the Skalak etal. constitutive law [52]

with comparable shearing and area-dilatation resistance. This capsule is called

Skalak capsule in this thesis. Due to osmotic effects and a positive osmotic pressure

difference p0 between the capsule’s interior and exterior fluids often encountered

during the fabrication of artificial capsules [17], the capsule membrane in our work

is prestressed (over-inflated) by an isotropic elastic tension to account for the osmotic

effects [6] and prevent buckling instabilities [28]. To add the capsule over-inflation,

we define the prestress parameter αp such that all lengths in the undeformed capsule

would be scaled by (1+αp), relative to the reference shape [25]. Since the capsule is

initially spherical, its membrane is initially prestressed by an isotropic elastic tension
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τ0 = τP
β (t = 0) which depends on the employed constitutive law and its parameters

but not on the capsule size. For example, given a Skalak capsule with membrane

hardness C = 1 and prestress αp = 0.05 considered in this problem, the undisturbed

capsule size is 5 % higher than that of the reference shape and the initial membrane

tension due to prestress is τ/Gs ≈ 0.3401. The capsule motion and deformation

depend on four additional dimensionless parameters: the capsule size (relative to

the channel height) a/ℓz, the relative lateral flow rate Qv/Q, the viscosity ratio λ,

and the capillary number Ca defined as

Ca =
µU

Gs
(3.4)

where U is the average flow velocity in the upstream horizontal channel before the

cross-junction.

First, we investigate the transient dynamics of low viscosity capsules (i.e., for

viscosity ratio λ = 0.01) with different sizes, flow rate and lateral flow rates. We

then investigate the transient dynamics of equiviscous capsules (i.e., for viscosity

ratio λ = 1) and compare results of capsules with different viscosity ratio. Note

that the capillary number, as defined by Eq. 3.4, does not contain any length scale

and thus it may be considered as a dimensionless flow rate. In this study, the

channel’s half-height ℓz is used as the length scale,the velocity is scaled with the

average undisturbed velocity U of the upstream horizontal channel, and thus the

time scale is τf = ℓz/U . For a fixed capsule size a/ℓz, varying the capillary number

Ca can be achieved in an experiment by keeping the exterior-fluid viscosity and
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lateral flows fixed and varying the flow rate Q, or average velocity U . Similarly, for

a fixed capillary number Ca,and viscosity ratio, varying the capsule size a/ℓz can

be achieved by keeping lateral flows fixed and using different volumes of capsules

from the same membrane (and with the same prestress level). For a fixed capsule

size a/ℓz and capillary number Ca, varying the the viscosity ratio λ can easily be

achieved in an experiment by varying the external-fluid viscosity.

The capsule deformation is defined through the capsule’s dimensions (i.e., cap-

sule projection lengths along the three axes, Lx, Ly, and Lz) and profile curvatures.

The profile curvatures are determined along the capsule’s y = 0 profile (i.e., the

cross section of the capsule surface with the y = 0 plane). In addition, we calculate

curvatures at the downstream and upstream edges of the capsule (i.e., its intersec-

tions with the x axis). As the capsule moves in the channel, its volume-average

velocity is determined by,

U =
1

V

∫

V
u dV =

1

V

∫

Sc

u · n dS (3.5)

3.2 Dynamics of low-viscosity capsule in a cross-junction

microchannel

In this section, we present our results by considering the transient deformation

of a low-viscosity capsule with size a/ℓz = 0.9, viscosity ratio λ = 0.01, capillary

number Ca = 0.05, and relative lateral flow Qv/Q = 1.5 as it deforms inside the

cross-junction microfluidic device. Our focus is on the transient behavior of the
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low-viscosity capsule as it enters and exits the cross-junction. Different capsule

shape transitions are shown in Figure 3.2 as the capsule flows inside the microflu-

idic cross-junction device. Some of these shapes are in agreement with previous

studies of capsule dynamics in axisymmetric-like solid ducts such as cylindrical and

square microchannels where capsules obtain steady-state bullet-like and parachute-

like shapes, elongated along the flow direction [4, 5, 26, 28]. However, the asymmet-

ric shape of our cross-junction gives rise to capsule shapes not observed in neither

cylindrical nor square microchannels. Just before the cross-junction entrance (i.e.,

xc/ℓz = −1.50), the capsule obtains a bullet-like shape. This is a typical capsule

shape observed in axisymmetric-like solid ducts. When the capsule is inside the

cross-junction (i.e., xc/ℓz = −0.07), its initially bullet-like shape becomes pointed

and elongated in the flow direction due to deforming hydrodynamic forces caused

by intersecting vertical flows. In this case, it is important to note that in order to

balance the strong deforming hydrodynamics forces, the capsule tries to increase

its downstream curvature while its upstream curvature decreases so that its total

restoring tension force on the membrane is increased. This deformation, identified

in our earlier studies of capsule dynamics in planar extensional flows or square chan-

nels, results from the curvature term in the membrane traction, eqn 2.12 [21,22,28].

While the capsule is still inside the cross-junction (i.e., its centroid is nearly at

a/ℓz = 0.85), the increased hydrodynamic forces from the incoming vertical flows

cause the capsule to obtain a cylindrical-like shape. The capsule is now elongated

along the flow direction as shown in Figure 3.2 (a) and (b). This shape reveals

that the intersecting flows from the vertical channels at the cross-junction act like a
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Figure 3.2: The shape of a capsule (plotted row-wise) with a/ℓz = 0.9, λ = 0.01,
Ca = 0.05, and Qv/Q = 1.5 inside the microfluidic device as seen from (a) the neg-
ative y-axis (i.e., front view) at centroid xc/ℓz = −1.50,−0.07, 0.85, 1.42, 2.58, 4.18.
(b) As in (a) but for capsule profile (i.e., capsule intersection with the plane y=0).
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constriction, and thus the capsule needs to be compressed inside of the constriction.

At xc/ℓz = 1.42, as the capsule exits the cross-junction while its rear is still inside

the cross-junction, the capsule has an inverse bullet-like shape (i.e., its front edge

curvature becomes rounded while its rear edge curvature is pointed). The explana-

tion is straightforward if we consider the fast incoming vertical flows, the capsule at

this point moves slower than the surrounding fluid which flows in the positive hori-

zontal direction (i.e., toward downstream of the cross-junction), and at this location

the capsule needs to obtain an inverse bullet-like shape for hydrodynamic stability

reasons. At xc/ℓz = 2.58, the capsule obtains a more pointed tail rear in response

to the increased hydrodynamic forces from intersecting vertical flows. To explain

the pointed tail developed at the capsule rear, we need to consider the interaction

of the hydrodynamic forces with the membrane tensions. It is important to note

that the restoring membrane tensions (which are required to balance the deforming

hydrodynamic forces) result from both the local tension and the local curvature,

e.g. the curvature term in eq.2.12. After the cross-junction, the restoring membrane

tensions become weaker in response to the stronger hydrodynamic forces. There-

fore, the capsule needs to increase the rear tail curvature significantly to produce

a strong enough local interfacial force. We plot the evolution of downstream and

upstream edge curvatures as function of the centroid xc in Figure 3.3. Note that

both Cxz and Cxy are line curvatures, determined along the interfacial cross-section

with the planes y = 0 and z = 0 respectively. Observe that inside the cross-junction

(i.e., xc/ℓz = −0.07), the upstream edge curvature, Cu
xz shows a monotonic increase

owning to the stronger hydrodynamic forces from the intersecting vertical flows and
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that the maximum value of the edge curvature, Cu
xz, is around xc/ℓz = 1.42 just

when the capsule rear exits the cross-junction; thus it is during this location that

the capsule develops a pointed rear tail. The capsule becomes much more pointed

at xc/ℓz = 2.58 when the capsule rear is out of the cross-junction.

At xc/ℓz = 4.18 far downstream of the cross-junction, the two rear curvatures,

Cu
xz and Cu

xy are equal and the tail gradually disappears as the capsule obtains the

parachute-like shape. On the other hand, the downstream edge curvatures, Cd
xz

and Cd
xy show a fast initial increase before the cross-junction followed by a similarly

fast decrease inside the cross-junction (even though Cu
xz > Cu

xy). These two front

curvatures remain nearly equal as the capsule passes through the cross-junction and

develops a rear tail. Far downstream of the cross-junction at xc/ℓz = 4.18, the

increased flow rate (i.e., the increased local capillary number Caeff = 2µU

Gs
= 2Ca)

causes the capsule to obtain a parachute-like shape. The overall capsule deformation

inside the microfluidic cross-junction can also be observed from the evolution of

capsule profiles with the plane y = 0, shown in Figure 3.2(b). It is of interest to

note that the pointed rear tail around xc/ℓz = 1.42 and xc/ℓz = 2.58 is similar to

the pointed spindled shape of capsule obtained in extensional flows so that they are

able to withstand increased flow rates [21].

3.2.1 Effects of capsule size

To investigate more the tail formation of low-viscosity capsule, we study the

effects of the capsule size inside the microfluidic cross-junction device. In particular,
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Figure 3.3: Evolution of capsule properties as a function of the centroid xc, for a
capsule with Ca = 0.05, λ = 0.01, Qv/Q = 1.5 and a/ℓz = 0.9. (a) Curvatures
Cu

xz and Cu
xy at the capsule’s upstream edge. (b) Curvatures Cd

xz and Cd
xy at the

capsule’s downstream edge. The Curvatures are scaled with the curvature of the
undisturbed spherical shape.

we consider capsules with Ca = 0.1, λ = 0.01, Qv/Q = 0.5 and investigate its

transient dynamics for various capsule size i.e., a/ℓz = 0.7, 0.8, 0.9. We analyze

our results by looking at capsule geometrical properties (i.e., capsule’s dimensions

and profile curvatures) and capsule velocity Ux as shown in Figure 3.4. As the

capsule size increases (thus higher flow blocking), the stronger hydrodynamic forces

cause a significant capsule deformation, i.e., the capsule length Lx increases while

its height Lz decreases significantly as illustrated in the Figure 3.4 (a) and (b).

The hydrodynamic flow forces are stronger owning to the smaller gap between the

capsule interface and the solid walls, and cause the capsule to deform into a bullet-

like shape before the cross-junction. When the capsule enters the cross-junction,

the stronger hydrodynamic forces owing now to the intersecting vertical channels

cause a remarkable capsule elongation. The capsule continues to elongate as it exits
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the cross-junction, achieving its highest elongation approximately near xc/ℓz = 1.5

for the larger capsule studied (i.e., a/ℓz = 0.9). In a similar manner, the capsule’s

height Lz decreases significantly when the capsule is inside the cross-junction to

accommodate for the stronger hydrodynamic forces as shown in Figure 3.4 (b).

Figure 3.4 (d) shows the capsule profile (i.e., capsule intersection with the plane y

= 0) just after the cross-junction at xc/ℓz = 2.13. It is important to observe that

as the capsule size increases, the capsule develops a pointed rear tail owning to the

increased hydrodynamic forces from both the fast incoming vertical flows and the

narrower gap between the capsule interface and the channel walls.

As the capsule size increases, the narrower gap between the capsule interface

and the channel walls results in a reduction of the capsule velocity. Thus, larger

capsules take more time to pass the cross-junction. Figure 3.4 (c) shows the evolution

of capsule velocity Ux inside the cross- junction. To understand how the capsule

velocity Ux varies with capsule size, we use the scaling analysis developed for capsule

motion in a square channel [27]. It is important to emphasize that our earlier

analysis was valid for steady-state capsule motion in straight solid ducts such as

cylindrical, square or rectangular channels. However, if we consider our current

problem over the entire horizontal channel, the capsule dynamics inside the cross-

junction is similar to the dynamics in a straight solid ducts (i.e., the capsule obtains

similar steady-state bullet-like and parachute-like shapes, elongated along the flow

direction). Furthermore, our problem occurs in the Stokes regime; thus we further

apply the quasi-steady nature of the Stokes flow in the analysis. Using Eqn (19) from

our previous investigation of capsule dynamics in square channel [27], the capsule
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Figure 3.4: Evolution of capsule properties as a function of the centroid xc, for
a capsule with Ca = 0.1, λ = 0.01, Qv/Q = 0.5 and size a/ℓz = 0.7, 0.8, 0.9.
(a) Length Lx, and (b) height Lz of the capsule (scaled with the length 2a of
the undisturbed spherical shape). These lengths are determined as the maximum
distance of the interface in the x, y and z directions.(c) Capsule velocity Ux (scaled
with the average undisturbed velocity U of the upstream horizontal channel). (d)
Capsule profile (i.e., capsule intersection with the plane y=0) just after the cross-
junction at xc/ℓz = 2.13 for a/ℓz = 0.7, 0.8, 0.9.
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velocity inside the cross-junction should scale proportionally with the gap h between

the capsule surface and the solid walls,

Ux − U

U
∼

h

ℓz

(3.6)

where U is the average undisturbed velocity in the horizontal channel), note that

Eqn 3.6 represents only qualitatively the present problem by considering the gap h

between the capsule surface and the solid walls in the xz-plane where the strongest

hydrodynamic forces occur owing to the intersecting vertical flows. As the cap-

sule size a/ℓz increases, the gap h between the capsule surface and the solid walls

decreases, and thus the capsule velocity decreases, in agreement with our computa-

tional results shown in Figure 3.4 (c)

3.2.2 Effects of flow rate

We now investigate the effects of flow rate on the capsule deformation and

tail formation. In particular, we consider capsules with a/ℓz = 0.9, λ = 0.01,

Qv/Q = 0.5 and investigate its transient dynamics for Ca = 0.05, 0.1. Figure 3.5

shows the evolution of the capsule properties as a function of the centroid xc. We

note that the effects of decreasing the flow rate Ca for a given fixed capsule size are

similar to those of increasing the capsule size a for a given fixed flow rate discussed

earlier in section 3.2.1, since both effects result in a higher flow blocking with the

flow rate effects due to the reduced interfacial deformation. As Ca increases, the

thickness h of the lubrication film between the capsule interface and the channel
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walls increases, thus reducing the strong local lubrication forces in the flow direction.

The capsule appears like a bullet. Inside the cross-junction, the capsule’s length Lx

increases while its height Lz decreases owning to the stronger hydrodynamic forces.

This causes the capsule to extend along the flow direction for interfacial stability.

After the cross-junction, the increased flow rate causes the capsule to obtain a more

pointed rear tail as shown in the Figure 3.5 (d). Note that the capsule velocity Ux

increases as Ca increases because the flow blocking is reduced as a result of the

increase in the thickness h of the lubrication film.

3.2.3 Effects of lateral flows

The effects of the lateral flow rates on the capsule dimensions and profiles are

presented in Figure 3.6. For a given fixed flow rate Ca = 0.05, λ = 0.01, a/ℓz = 0.9,

increasing lateral flow rates (thus stronger hydrodynamic forces) causes a significant

change in the capsule’s overall shape, i.e., capsule’s length Lx increases significantly

while its height Lz decreases as shown in Figure 3.6 (a) and (b). The capsule pro-

files presented in Figure 3.6 (d) show that higher lateral flow rates result in the

development of a pointed rear tail just after the capsule exits the cross-junction

(i.e., at xc/ℓz = 2). To explain the evolution of the pointed rear tail, we consider

again the interaction between the hydrodynamic forces with the membrane tensions.

As the lateral flow rates increase, the stronger hydrodynamic forces owning to in-

creasing lateral flows overcome the weak membrane tensions and thus the capsule

needs to increase the tail curvature significantly to produce strong enough local
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Figure 3.5: Evolution of capsule properties as a function of the centroid xc, for a
capsule with a/ℓz = 0.9, λ = 0.01, Qv/Q = 0.5 and capillary number Ca = 0.05, 0.1.
(a) Length Lx, and (b) height Lz of the capsule (scaled with the length 2a of
the undisturbed spherical shape).These lengths are determined as the maximum
distance of the interface in the x, y and z directions (c) Capsule velocity Ux (scaled
with the average undisturbed velocity U of the upstream horizontal channel). (d)
Capsule profile (i.e., capsule intersection with the plane y=0) just after the cross-
junction at xc/ℓz = 2.13 for Ca = 0.05, 0.1.
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interfacial forces. After some time, far downstream of the cross-junction, the mem-

brane tensions increases, the tail gradually disappears, and the capsule obtains its

steady-state parachute-like shape. As the lateral flow rates increase, the capsule

velocity increases as depicted in Figure 3.6(c) since the average fluid velocity in the

horizontal square channel after the cross-junction is increased.

3.3 Dynamics of equiviscous capsule in a cross-junction mi-

crochannel

In this section, we present our results by considering the transient deforma-

tion of an equiviscous capsule with size a/ℓz = 0.9, viscosity ratio λ = 1, capillary

number Ca = 0.05, and relative lateral flow Qv/Q = 1.5 as it deforms inside the

cross-junction microfluidic device. Note that the overall capsule transient dynamics

for viscosity ratio λ = 1 is similar to that described for capsules with λ = 0.01 in

Section 3.2. The equiviscous capsule dynamics and deformation result in the differ-

ent dynamic shape transitions from elongated bullet-like to highly non-axisymmetric

three-dimensional shapes as shown in the Figure 3.7. Just before entering the cross-

junction, the capsule obtains a bullet-like shape. When the capsule is inside the

cross-junction (i.e., xc/ℓz = −0.07), its initially bullet-like shape becomes pointed

and elongated in the flow direction due to deforming hydrodynamic forces caused

by intersecting vertical flows.

As the capsule exits the cross-junction (i.e., its centroid is nearly at a/ℓz =

0.85), the increased hydrodynamic forces from the fast incoming vertical flows cause
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Figure 3.6: Evolution of capsule properties as a function of the centroid xc, for a
capsule with a/ℓz = 0.9, λ = 0.01, Ca = 0.05 and lateral flows Qv/Q = 0.5, 1.0, 1.5.
(a) Length Lx, and (b) height Lz of the capsule (scaled with the length 2a of
the undisturbed spherical shape). (c) Capsule velocity Ux (scaled with the average
undisturbed velocity U of the upstream horizontal channel). (d) Capsule profile (i.e.,
capsule intersection with the plane y=0) just after the cross-junction at xv/ℓz = 2
for Qv/Q = 0.5, 1.0, 1.5.
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the capsule to elongate along the flow direction as seen in Figure 3.7 (a) and (b). The

intersecting flows from the vertical channels act like a constriction, thus the capsule

is compressed inside the cross-junction. At the capsule centroid xc/ℓz = 1.42, as

the capsule exits the cross-junction while its rear is inside the cross-junction, the

capsule has an inverse bullet-like shape. When the capsule moves further down-

stream while its rear exits the cross-junction, the capsule downstream edge becomes

more rounded and it is its rear which is now pointed in response to the increased

hydrodynamic forces from intersecting lateral flows, as seen in Figure 3.7 (a) and

(b) for xc/ℓz = 2.58. We explain the rear tail formation via the evolution of down-

stream and upstream edge curvatures shown in Figure 3.8. Note that the restoring

membrane tensions result from both the local tension and the local curvature, as

seen in Eq.2.12. Since the restoring membrane tensions become weaker than the

stronger hydrodynamic forces, the capsule increases the rear tail curvature signifi-

cantly to produce a strong enough local interfacial force. Inside the cross-junction

(i.e., xc/ℓz = −0.07), Cu
xz shows a monotonic increase owning to the stronger hydro-

dynamic forces from the intersecting vertical flows and reaches a maximum value

around xc/ℓz ≈ 2 just when the capsule rear is out of the cross-junction. It is

during this location that the capsule produces a strong local interfacial force, thus

develops a pointed rear tail for interfacial stability reasons. Observe that the two

rear curvatures, Cu
xz and Cu

xy are equal far downstream of the cross-junction (i.e.,

xc/ℓz = 4.18) and the tail gradually disappears as the capsule obtains the steady-

state bullet-like shape. The downstream edge curvatures, Cd
xz and Cd

xy show a fast

initial increase before the cross-junction followed by a similarly fast decrease inside
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Figure 3.7: The shape of a capsule (plotted row-wise) with a/ℓz = 0.9, λ = 1, Ca =
0.05, and Qv/Q = 1.5 inside the microfluidic device as seen from (a) the negative
y-axis (i.e., front view) at centroid xc/ℓz = −1.50,−0.07, 0.85, 1.42, 2.58, 4.18. (b)
As in (a) but for capsule profile (i.e., capsule intersection with the plane y=0).
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Figure 3.8: Evolution of capsule properties as a function of the centroid xc, for a
capsule with Ca = 0.05, λ = 1, Qv/Q = 1.5 and a/ℓz = 0.9. (a) Curvatures Cd

xz and
Cd

xy at the capsule’s downstream edge. (b) Curvatures Cu
xz and Cu

xy at the capsule’s
upstream edge. The Curvatures are scaled with the curvature of the undisturbed
spherical shape.

the junction as seen in Figure 3.8 (a). These two front curvatures remain nearly

equal as the capsule passes through the cross-junction and develops a rear tail. Far

downstream of the cross-junction at xc/ℓz = 4.18, the increased flow rate (i.e., the

increased local capillary number Caeff = 2µU

Gs
= 2Ca) causes the capsule to obtain

a bullet-like shape.

3.3.1 Effects of size

In the present section, we study the effects of the capsule size inside the mi-

crofluidic cross-junction device. In particular, we consider capsules with Ca = 0.1,

λ = 1, Qv/Q = 0.5 and investigate its transient dynamics for various capsule sizes

i.e., a/ℓz = 0.7, 0.8, 0.9. As the capsule size increases (thus higher flow blocking), the

stronger hydrodynamic forces cause a significant capsule deformation, i.e., the cap-
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sule length Lx increases while its height Lz decreases significantly as seen in Figure

3.9 (a) and (b). Capsule profiles are shown in the Figure 3.9 (d) for xc/ℓz = 2.13.

Note that as the capsule size increases, the capsule develops a rounded rear owning

to the increased hydrodynamic forces from both the fast incoming lateral flows and

the narrower gap between the capsule interface and the channel walls. In addition,

the capsule velocity decreases owning to higher flow blocking caused by the narrower

gap between the capsule interface and the channel walls. Thus, larger capsules take

more time to pass through the cross-junction in agreement with Eq.3.6 and our

computational finding shown in Figure 3.9 (c).

3.3.2 Effects of flow rate

In this section, we present the effects of flow rates on the capsule defor-

mation and tail formation. In particular, we consider capsules with a/ℓz = 0.9,

λ = 1,Qv/Q = 0.5 and investigate its transient dynamics for Ca = 0.05, 0.1. We

also note that the effects of decreasing the flow rate Ca for a given fixed capsule

size are similar to those of increasing the capsule size a for a given fixed flow rate

discussed earlier in section 3.3.1, since both effects result in a higher flow blocking

with the former due to the reduced interfacial deformation. Figure 3.10 (a) and (b)

shows the evolution of the capsule properties. As Ca increases, the capsule’s length

Lx increases while its height Lz decreases owning to the stronger hydrodynamic

forces. This results in a rich deformation of capsule and development of a pointed

rear tail as seen in Figure 3.10 (d). In addition, the capsule velocity Ux increases
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Figure 3.9: Evolution of capsule properties as a function of the centroid xc, for a
capsule with Ca = 0.1, λ = 1, Qv/Q = 0.5 and size a/ℓz = 0.7, 0.8, 0.9. (a) Length
Lx, and (b) height Lz of the capsule (scaled with the length 2a of the undisturbed
spherical shape). (c) Capsule velocity Ux (scaled with the average undisturbed
velocity U of the upstream horizontal channel). (d) Capsule profile (i.e., capsule
intersection with the plane y=0) just after the cross-junction at xc/ℓz = 2.13 for
a/ℓz = 0.7, 0.8, 0.9.
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as Ca increases because the flow blocking is reduced as a result of the increase in

the thickness h of the lubrication film between the capsule interface and the channel

walls. As the capsule deformation increases owning to higher effective Ca, it moves

faster inside the cross-junction as seen in Figure 3.10 (c).

3.3.3 Effects of lateral flows

The effects of the lateral flow rates on the capsule dimensions and profiles

are shown in Fig. 3.11. For a given fixed flow rate Ca = 0.05, λ = 1, a/ℓz = 0.9,

increasing lateral flow rates (thus stronger hydrodynamic forces) causes a significant

change in the capsule’s overall shape,i.e., capsule’s length Lx increases significantly

while its height Lz decreases. As seen in capsule profiles presented in Fig. 3.11 (d),

capsules develop a pointed rear tail as lateral flow rates increase just after the capsule

exits the cross-junction (i.e., at xc/ℓz = 2). In this case, the stronger hydrodynamic

forces owning to increasing vertical flows also overcome the weak membrane tensions

and thus the capsule needs to increase the tail curvature significantly to produce

strong enough local interfacial forces. Furthermore, the capsule velocity is increased

as depicted in Fig.3.11(c) since the average fluid velocity in the horizontal square

channel after the cross-junction is increased.

3.4 Effects of viscosity ratio

In this section, we present our findings regarding the effects of viscosity ratio λ

on the transient dynamics of a capsule in Figure 3.13. We investigate capsules with
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Figure 3.10: Evolution of capsule properties as a function of the centroid xc, for a
capsule with a/ℓz = 0.9, λ = 1, Qv/Q = 0.5 and capillary number Ca = 0.05, 0.1.
(a) Length Lx, and (b) height Lz of the capsule (scaled with the length 2a of
the undisturbed spherical shape). (c) Capsule velocity Ux (scaled with the average
undisturbed velocity U of the upstream horizontal channel). (d) Capsule profile (i.e.,
capsule intersection with the plane y=0) just after the cross-junction at xc/ℓz = 2.13
for Ca = 0.05, 0.1.
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Figure 3.11: Evolution of capsule properties as a function of the centroid xc, for a
capsule with a/ℓz = 0.9, λ = 1, Ca = 0.05 and lateral flows Qv/Q = 0.5, 1.0, 1.5.
(a) Length Lx, and (b) height Lz of the capsule (scaled with the length 2a of
the undisturbed spherical shape). (c) Capsule velocity Ux (scaled with the average
undisturbed velocity U of the upstream horizontal channel). (d) Capsule profile (i.e.,
capsule intersection with the plane y=0) just after the cross-junction at xv/ℓz = 2
for Qv/Q = 0.5, 1.0, 1.5.
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Figure 3.12: The shape of a capsule (plotted row-wise) with a/ℓz = 0.9, Ca = 0.05,
λ = 5, Qv/Q = 1.5 inside the microfluidic device as seen from (a) the negative
y-axis (i.e., front view) at centroid xc/ℓz = −1.50,−0.07, 0.85, 1.42, 2.58, 4.18. (b)
As in (a) but for capsule profile (i.e., capsule intersection with the plane y=0).

a/ℓz = 0.9, Qv/Q = 0.5, and capillary number Ca = 0.1, while we vary the viscosity

ratio in the range λ = 0.01 − 5, i.e., we investigate from inviscid to very viscous

capsules. By comparing the capsule shapes shown in Figure 3.7 and Figure 3.2, we

note that the overall capsule transient deformation is similar for viscosity ratios λ =

0.01 and λ = 1. The increase of its length Lx along with the corresponding decrease

of its height Lz as shown in Figure 3.13 (a) and (b) result in the different shape

transitions from elongated bullet-like to highly non-axisymmetric three-dimensional

shapes. At xc/ℓz = 1.42, both low-viscosity and equiviscous capsules obtain an

inverse bullet-like shapes owning to stronger hydrodynamic stresses. However, at

xc/ℓz = 2 as seen in the capsule profile (i.e., capsule intersection with the plane y =

0) shown in Figure 3.13 (d), the rear development is different for low-viscosity and
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equiviscous capsules. The low-viscosity develops a pointed rear tail for interfacial

stability reasons, while equiviscous capsules develop elongated and rounded edges.

The transient deformation of high-viscosity (i.e., λ = 5) capsule is very different

as shown in Figure 3.12 and is reduced inside the cross-junction due to the much

slower deformation rate. These viscous capsules have an axisymmetric shape as

they move through the cross-junction. It is of interest to note that the increased

inner fluid viscosity prevents the development of a point rear edge. However, as

the capsule exits the cross-junction and adopts the bullet-like shape in the square

channel far downstream from the cross-junction (i.e., xc/ℓz = 4.18, the steady-state

capsule deformation increases with the viscosity ratio λ as seen 3.13 (a) and (b).

Note at xc/ℓz = 2, it is the very viscous capsules which are still affected by the

cross-junction and have a fully three-dimensional shape since capsules with smaller

viscosity ratio relax faster. It is of interest to observe that the capsule velocity Ux is

practically not affected by λ as shown in Figure 3.13 (c) because of the weak inner

fluid circulation, and thus all capsules show the same increase in Ux as they pass

through the cross-junction.

To explain the effects of viscosity ratio on the transient deformation of capsule,

note that the transient deformation results from a complex interaction between the

hydrodynamic forces that deform the membrane and the elastic membrane tensions

that resist the deformation. The capsule responds to the imposed flow change with

an intrinsic response time that depends on the physical properties of the capsule (i.e.,

membrane hardness C) [25]. The capsule transient deformation is then characterized

by the membrane time scale necessary to reach steady-state shape, which for a given
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Figure 3.13: Capsule properties as a function of the centroid xc, for a capsule with
a/ℓz = 0.9, Qv/Q = 1.5, Ca = 0.05 and viscosity ratio λ = 0.01, 1, 5. (a) Length
Lx, and (b) height Lz of the capsule (scaled with the length 2a of the undisturbed
spherical shape). (c) Capsule velocity Ux (scaled with the average undisturbed
velocity U of the upstream horizontal channel). (d) Capsule profile (i.e., capsule
intersection with the plane y=0) just after the cross-junction at xc/ℓz = 2 for λ =
0.01, 1, 5.
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membrane hardness C is given by

τm ∼ (1 + λ)Ca
a

ℓz
τf (3.7)

where τf = ℓz/U is the flow time scale. Note that this membrane response time

has been studied for capsules in transient elongational flows [18] and for transient

dynamics of an elastic capsule in a microfluidic constriction [25]. Using Eqn. 3.7

for the low-viscosity capsules,e.g. for λ = 0.01, the membrane time scale τm does

not vary with λ but is influenced by the flow rate Ca. Therefore, the inner fluid

of the capsule does not have a significant effect on the capsule transient deforma-

tion. Therefore, as illustrated in Figure 3.13 (d) for various viscosity ratios, it is the

low-viscosity capsule that has developed a pointed rear tail at xc/ℓz = 2 for interfa-

cial stability reasons. The membrane time scale τm necessary for the low-viscosity

capsule to react to the flow changes imposed by the cross-junction is decreased;

therefore, making the deformation rate faster. However, during the final relaxation

stage towards the steady-state shape at xc/ℓz = 4.18, the capsule membrane time

response (i.e., τm) is fast enough for the low-viscosity capsule to adapt and be in dy-

namic equilibrium with the external flow. As the viscosity ratio increases to λ = 1,

both the inner and the surrounding fluids affect the capsule transient deformation.

The membrane time scale τm necessary for the capsule to adapt to the flow changes

imposed by the cross-junction is increased only moderately with λ. Therefore, the

deformation rate is moderately slower as the equiviscous capsule passes the cross-

junction at xc/ℓz = 2. Far from the cross-junction at xc/ℓz = 4.18, the equiviscous
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capsule obtains a dynamic equilibrium bullet-like shape. For the very viscous cap-

sules (e.g. λ = 5), it is the inner fluid which mostly affects the capsule deformation.

For such capsule, the membrane time scale τm necessary for the capsule to react

to the flow change imposed by the cross-junction is increased considerably, being

proportional to λ as seen in Eqn. 3.7. This makes the deformation rate much slower

as these capsules pass through the cross-junction. The capsule transient deforma-

tion is decreased due to the increased membrane time scale τm. However, during

the final relaxation stage far downstream from the cross-junction at xc/ℓz = 4.18,

the very viscous capsules are still affected by the increased hydrodynamic forces

from the incoming flows of the cross-junction and have a deformed axisymmetric

shape. These capsules need a significant time (or channel length) to obtain the

steady-state parachute-like shape in agreement with Eqn.3.7 and our computational

findings shown in Figure 3.12.

3.5 Conclusion

In this chapter, we investigate computationally the transient dynamics of an

elastic capsule flowing along the centerline of a cross-junction microchannel. In

particular, we consider an initially spherical capsule with a size smaller than the

cross-section of the square channels comprising the cross-junction, and investigate

the effects of the capsule size, flow rate, lateral flow rates, and fluid viscosity ratio

on the transient capsule dynamics and deformation. Our investigation shows that

the intersecting flows at the cross-junction act like a constriction, created by the
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streamlines of the intersecting flows, and thus the capsule needs to be compressed

inside and outside of this constriction. Therefore, the capsule shows a rich deforma-

tion behavior as it passes through the micro-junction. After obtaining a bullet-like

shape in the square channel before the cross-junction, the capsule becomes slen-

der inside the junction (to accommodate the intersecting flows), then it obtains an

inverse-bullet shape as it exits the cross-junction which reverts to a more deformed

bullet-like shape far downstream of the cross-junction (owing to the combined flow

rates of the intersecting channels). As the capsule size increases, its deformation

increases and larger capsules owning to higher flow blocking take more time to pass

through the cross-junction. As the viscosity ratio decreases, the capsule’s transient

deformation increases and a tail formation develops transiently, especially for the

low-viscosity capsule. However, the viscosity ratio does not affect much the capsule

velocity due to a weak inner fluid circulation. Our findings suggest that the tail

formation of low-viscosity capsule may promote membrane breaking and thus drug

release of pharmaceutical capsules in the microcirculation. For example, if one needs

to fabricate artificial capsules for drug delivery, the use of low-viscosity capsules is

relevant and knowing the weak points of the membrane as shown in figure 3.2 where

a pointed tail(thus mechanical instability) is developed, capsules with higher vis-

cosity ratio can be fabricate to prevent rupture in the cross-junction during capsule

fabrication.
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Chapter 4: Motion of an elastic capsule in a mi-

crofluidic T-junction

4.1 Problem description

In this section, we consider a three-dimensional capsule enclosed by an elastic

membrane flowing inside a microfluidic T-junction as illustrated in Figure 4.1. The

T-junction is constructed from one square horizontal microfluidic channel intersect-

ing with a vertical square microfluidic channel without crossing it but forming a

T-shape with cross-section half lengths ℓy = ℓz. The origin of the co-ordinate sys-

tem is placed at the center of the junction. We think of one channel as horizontal

and the other as vertical as illustrated in Figure 4.1. At time t = 0, the capsule

is located upstream of the T-junction in the horizontal channel having a spherical

shape with radius a and centroid xc = -4ℓz. That instant, the flow is turned on

inside of the microfluidic device and we investigate the motion of the capsule as it

enters and exits the microfluidic T-junction which occupies the x-region [-ℓz,ℓz].

The capsule’s interior and exterior fluids are Newtonian fluids, with viscosities

λµ and µ, and have equal density (i.e., no buoyancy and sedimentation effects). We

define the capsule size by a = (3V/4π)1/3 where V is the capsule volume. It is
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Figure 4.1: Illustration of an elastic capsule flowing at the centerline of a microfluidic
T-junction.

important to assume that the capsule has a negligible membrane permeability(i.e.,

no flow through the membrane) and its volume is constant. At the inlet upstream

of the T-junction in the horizontal channel, a velocity flow profile is imposed as

well as no-slip and no penetration boundary conditions are imposed on solid walls.

Far from the capsule, the flow approaches the undisturbed flow u∞ in a channel

characterized by a constant flow rate Q = 4Uℓ2
z.

u∞

x

Υ
= (ℓ2

z − z2) +
∞
∑

m=1

Bm cosh

(

bmy

ℓz

)

cos

(

bmz

ℓz

)

(4.1)

where

Υ = −
1

2µ

dp

dx
, bm =

(2m − 1)π

2
, Bm =

(−1)m4ℓ2
z

b3
m cosh

(

bmℓy

ℓz

) , (4.2)

where p is the dynamic pressure. To compute the volumetric flow rate Q over the

cross-section area, we integrate Eq. (3.1)

Q

Υ
=

8ℓyℓ
3
z

3
+

∞
∑

m=1

Bm

(

2ℓz

bm

)2

sinh

(

bmℓy

ℓz

)

sin(bm) (4.3)

The average velocity of the exterior fluid far from the capsule is U = Q/(ℓ2
z) The
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capsule velocity in the flow direction Ux may be different than the average velocity

U in the horizontal channel. The incoming flow rate at each of the two inlets of the

vertical microchannel is defined as Qv. After the T-junction, the horizontal channel

has a total constant flow rate of (Q+Qv). We assume that the Reynolds-number is

small for both the surrounding and inner flows, thus the capsule motion occurs in

the Stokes regime.

Furthermore, we consider a slightly over-inflated capsule made from a thin

strain-hardening elastic membrane obeying the Skalak etal. constitutive law [52]

with comparable shearing and area-dilatation resistance. Due to osmotic effects

and a positive osmotic pressure difference p0 between the capsule’s interior and

exterior fluids [17], the capsule membrane in this work is prestressed (over-inflated)

by an isotropic elastic tension to account for the osmotic effects [6] and prevent

buckling instabilities [28]. To add the capsule over-inflation, we define the prestress

parameter αp such that all lengths in the undeformed capsule would be scaled by

(1 + αp), relative to the reference shape [25]. Since the capsule is initially spherical,

its membrane is initially prestressed by an isotropic elastic tension τ0 = τP
β (t = 0)

which depends on the employed constitutive law and its parameters but not on the

capsule size. For example, given a Skalak capsule with membrane hardness C = 1

and prestress αp = 0.05 considered in this problem, the undisturbed capsule size

is 5 % higher than that of the reference shape and the initial membrane tension

due to prestress is τ/Gs ≈ 0.3401. The capsule motion depends on four additional

dimensionless parameters: the capsule size (relative to the channel height) a/ℓz, the

relative lateral flow rate Qv/Q, the viscosity ratio λ, and the capillary number Ca
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defined as

Ca =
µU

Gs
(4.4)

where U is the average flow velocity in the upstream horizontal channel before the

T-junction.

We investigate the motion of elastic capsule with varying initial lateral position

(z0
c/ℓz), size (a/ℓz), flow rate (Ca) and lateral flow rates (Qv/Q). Note that the

capillary number, as defined by Eq. 4.4, does not contain any length scale and

thus it may be considered as a dimensionless flow rate. In this study, the channel’s

half-height ℓz is used as the length scale, the velocity is scaled with the average

undisturbed velocity U of the upstream horizontal channel, and thus the time scale

is τf = ℓz/U .

4.2 Results and Discussion

Figure 4.2 shows results of simulations of capsule with a/ℓz = 0.5, λ = 1, Ca =

0.1, and Qv/Q = 0.5 inside the T-junction microchannel. Capsule shapes are shown

from the negative y-axis ( i.e., front view) at centroid xc/ℓz = −1.0, 0.0, 0.5, 1.4.

At initial instant, the capsule is placed at the initial lateral position, z0
c/ℓz = 0.3

near the top channel’s wall and moves laterally away from the wall and much more

downward at the intersecting flows. Inside the T-junction, the capsule aligns itself

along the flow direction and attains an ellipsoidal shape. After the T-junction,

the capsule still has the ellipsoidal shape and moves along the centerline of the

T-junction microchannel.
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(a) (b)

(c) (d)

Figure 4.2: The shape of a capsule (plotted row-wise) with a/ℓz = 0.5, λ = 1,
Ca = 0.1, Qv/Q = 0.5, initial lateral position,z0

c /ℓz = 0.3 inside the microfluidic
device as seen from the negative y-axis (i.e., front view) at centroid xc/ℓz (a)−1.0,
(b) 0.0, (c) 0.5, (d)1.4.
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4.2.1 Effects of initial lateral position

We now study the effects of capsule initial lateral position on the motion of

capsule inside the microfluidic T-junction device. In particular, we consider the

capsule with a/ℓz = 0.5, Ca = 0.1, λ = 1, Qv/Q = 0.5 and investigate the transient

motion for various initial lateral position i.e., z0
i /ℓz = 0.3, 0.5, 0.6. Figure 4.3 (a) re-

veals that the capsule initial lateral position does not affect the capsule deformation

as the capsule enters the T-junction. However, as the caspule exits the T-junction,

the capsule deformation decreases as the initial lateral position increases. The cap-

sule below the centerline (i.e., z0
c/ℓz = −0) is still affected by the T-junction. The

capsule at the centerline of the microchannel shows a sudden increase and decrease

in Lx at xc/ℓz = 3. Figure 4.3 (b) and (c) shows that as the initial lateral position

increases, the capsule moves faster and reaches different final lateral positions as it

moves toward the centerline. Note that Figure 4.3 (d) shows that as the capsule

enters the T-junction, the capsule migration velocity Uz decreases until it reaches a

minimum at xc/ℓz = 0. The minimum value of the capsule migration velocity Uz in-

creases as the initial lateral position increases. As the capsule exits the T-junction,

it migrates away from the microchannel’s wall towards the centerline at different

lateral migration velocities Uz.

4.2.2 Effects of capsule size

In the present section, we study the effects of the capsule size on the capsule

motion inside the microfluidic T-junction device. In particular, we consider cap-
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Figure 4.3: Evolution of capsule properties as a function of the centroid xc, for a
capsule with Ca = 0.05, λ = 1, Qv/Q = 0.5, and varying initial lateral position,
z0

c/ℓz = −0.1, 0.0, 0.2, 0.3. (a) Length Lx, and (b) lateral position zc of the capsule
(scaled with the cross-section half-length ℓz). (c) Capsule velocity Ux (scaled with
the average undisturbed velocity U of the upstream horizontal channel). (d) Capsule
lateral velocity Uz (scaled with the average undisturbed velocity U of the upstream
horizontal channel.
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sules with Ca = 0.05, z0
c/ℓz = 0.2, λ = 1, Qv/Q = 0.5 and investigate the transient

motion for various capsule sizes i.e., a/ℓz = 0.1, 0.2, 0.3, 0.5, 0.6. Figure 4.4 reveals

that as the capsule size increases (thus higher flow blocking), the stronger hydrody-

namic forces cause the capsule to extend along the flow direction, i.e., the capsule’s

length Lx increases as the capsule enters the T-junction, reaches a peak inside the

T-junction and decreases as the capsule exits the T-junction. There is a small lat-

eral migration towards the microchannel centerline as shown in Figure 4.4 (b) as the

capsule size increases. After the T-junction, larger capsules tend to migrate away

from the lower wall toward the centerline of the T-junction of microchannel. This

migration away from the wall due the stronger lateral lift repulsion forces exerted

on the capsule is in agreement with Goldsmith glass tube observations [36]. Experi-

mental and numerical studies on non inertial lateral migration of vesicles in bounded

Poiseuille flow by Coupier et al. [13] showed that the combined effects of the walls

and of the curvature of the velocity profile induce a lateral migration toward the

centerline of the channel. Vesicles close to the wall wall experience stronger lateral

repulsion forces which push them away from the wall because of the lubrication

pressure from the gap between vesicles and the wall of the channel. These lateral

repulsion forces decrease as the distance between the vesicles and the wall of the

channel increases (or as the vesicle size decreases) and become zero when the cap-

sule reaches to the centerline. These observations are in agreement with our results.

As the capsule enters the T-junction, its velocity Ux increases until it reaches a

maximum and remains constant at maximum as the capsule exits the T-junction.

However, this velocity decreases as the capsule size increases due to the higher flow
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blocking. On the other hand, the capsule migration velocity Uz decreases as the

capsule enters the T-junction and reaches a peak inside the T-junction. It starts

to increase as the capsule migrates away from the microchannel’s wall toward the

centerline. As the capsule approaches the low-shear region near the centerline, its

migration velocity declines to zero. Note that the capsule migration velocity Uz

is less affected by the capsule size for the capsule size considered in this problem.

However, larger capsules are shown to migrate slightly faster away from the wall to-

ward the microchannel centerline because they experience stronger lateral repulsion

forces as the distance between the capsules and wall of the channel decreases.

4.2.3 Effects of flow rate

In the present section, we study the effects of the flow rate on the capsule

motion inside the microfluidic T-junction device. In particular, we consider capsules

with a/ℓz = 0.5, z0
c/ℓz = 0.2, λ = 1, Qv/Q = 0.5 and investigate the transient

motion for various capillary numbers i.e., Ca = 0.02, 0.05, 0.1. Figure 4.5 shows

the evolution of the capsule properties as a function of the centroid xc. As Ca

increases, the stronger hydrodynamic forces cause the capsule to extend along the

flow direction (i.e., the capsule’s length Lx increases as the capsule enters the T-

junction). As the capsule exits the T-junction, its Lx decreases as shown in Figure

4.5 (a). Figure 4.5 (b) reveals that there is a small lateral migration away from

the microchannel centerline as Ca increases. Both the capsule velocity Ux and

migration velocity Uz are not affected by the flow rate Ca as shown in Figure 4.5
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Figure 4.4: Evolution of capsule properties as a function of the centroid xc, for
a capsule with Ca = 0.05, λ = 1, Qv/Q = 0.5, z0

c/ℓz = 0.2 and varying size
a/ℓz = 0.1, 0.2, 0.3, 0.5, 0.6. (a) Length Lx, and (b) lateral position zc/ℓz of the
capsule (scaled with the cross-section half-length ℓz). (c) Capsule velocity Ux (scaled
with the average undisturbed velocity U of the upstream horizontal channel). (d)
Capsule lateral velocity Uz (scaled with the average undisturbed velocity U of the
upstream horizontal channel.
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(c). However, far away from the T-junction, the capsule migration velocity decreases

as Ca increases.

4.2.4 Effects of viscosity ratio

The effects of viscosity ratio on the evolution of capsule properties are shown

in Figure 4.6. For a given fixed Ca = 0.05, a/ℓz = 0.5, z0
c/ℓz = 0.3, and Qv/Q = 0.5,

increasing the viscosity ratio (i.e., λ = 0.01, 0.1, 1, 5, 10) causes a significant change

in the capsule’s overall shape (i.e., capsule’s length Lx decreases significantly as

the capsule enters and exits the T-junction). After the T-junction (i.e., xc/ℓz =

2), it is the very viscous capsule that is still affected by the T-junction and is

still deformed since capsules with smaller viscosity ratio relax faster. The present

prediction is in agreement with the effects of viscosity ratio on the capsule dynamics

in a cross-junction microchannel discussed in details in Section 3.4. The capsule

lateral position zc/ℓz, velocity Ux and migration velocity Uz are practically not

affected by the viscosity ratio λ as shown in Figure 4.6 (c). Because of the weak

inner fluid circulation, and thus all capsules show the same increase in Ux and Uz

as they pass through the T-junction.

4.2.5 Effects of lateral flow rate

The effects of lateral flow rate on the motion of capsule flowing inside the

T-junction microchannel are illustrated in Figure 4.7. In particular, we consider

capsules with Ca = 0.05, z0
c /ℓz = 0.3, λ = 1, and investigate the transient motion for

64



0.99

1.01

1.03

1.05

1.07

1.09

-4 -2 0 2 4 6

L
x
/(

2a
)

xc/ℓz

Ca increasing

(a)

-0.17

-0.12

-0.07

-0.02

0.03

0.08

0.13

0.18

0.23

-4 -2 0 2 4 6

z c
/ℓ

z

xc/ℓz

Ca increasing

(b)

1.4

1.8

2.2

2.6

3

-4 -2 0 2 4 6

U
x
/U

xc/ℓz

Ca increasing

(c)

-0.6

-0.4

-0.2

0

-4 -2 0 2 4 6

U
z
/U

xc/ℓz

Ca increasing

(d)

Figure 4.5: Evolution of capsule properties as a function of the centroid xc, for a
capsule with a/ℓz = 0.5, λ = 1, Qv/Q = 0.5, z0

c/ℓz = 0.2 and varying capillary
number Ca = 0.02, 0.05, 0.1. (a) Length Lx, and (b) lateral position zc/ℓz of the
capsule (scaled with the cross-section half-length ℓz). (c) Capsule velocity Ux (scaled
with the average undisturbed velocity U of the upstream horizontal channel). (d)
Capsule lateral velocity Uz (scaled with the average undisturbed velocity U of the
upstream horizontal channel.
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Figure 4.6: Evolution of capsule properties as a function of the centroid xc, for a
capsule with Ca = 0.05, a/ℓz = 0.5, Qv/Q = 0.5, z0

c/ℓz = 0.3, and viscosity ratio
λ = 0.01, 0.1, 1, 5, 10. (a) Length Lx, and (b) lateral position zc/ℓz of the capsule
(scaled with the cross-section half-length ℓz). (c) Capsule velocity Ux (scaled with
the average undisturbed velocity U of the upstream horizontal channel). (d) Capsule
lateral velocity Uz (scaled with the average undisturbed velocity U of the upstream
horizontal channel.
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varying lateral flow rate i.e., Qv/Q = 0.5, 0.75, 1. Results reveal that as the lateral

flow rate increases, the stronger hydrodynamic forces cause the capsule to extend

along the flow direction, i.e., the capsule’s length Lx increases inside the T-junction.

As the channel’s lateral flow rate increases, the capsule lateral displacement zc moves

laterally much more downward at the intersecting flows and remains almost constant.

As the capsule enters the T-junction, its velocity Ux increases due to the increasing

lateral flows until it reaches a peak inside the T-junction and remains constant at the

peak far downstream of the T-junction. On the other hand, as the lateral flow rate

increases the capsule migration velocity Uz decreases until it reaches a minimum at

xc/ℓz = 0. However, as the capsule exits the T-junction, it migrates away from the

microchannel’s wall toward the centerline at the same migration velocity Uz until

Uz declines to zero near the centerline.

4.3 Conclusion

We investigate via numerical computations the motion of an elastic capsule

(made from elastic membranes obeying the strain-hardening Skalak law) flowing in-

side the microfluidic T-junction device. We consider capsules with size smaller than

the cross-section of the square channels comprising the T-junction, and investigate

the effects of the capsule initial lateral position, capsule size, flow rate, lateral flow

rate, and fluid viscosity ratio on the motion of these capsules in the T-junction

michrochannel. As the capsule initial lateral position increases, the capsule moves

faster and reaches different final lateral positions. As the capsule size increases,
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Figure 4.7: Evolution of capsule properties as a function of the centroid xc, for
a capsule with Ca = 0.05, a/ℓz = 0.5, λ = 1, z0

c/ℓz = 0.3 and lateral flow rate
Qv/Q = 0.5, 0.75, 1. (a) Length Lx, and (b) lateral position zc/ℓz of the capsule
(scaled with the cross-section half-length ℓz). (c) Capsule velocity Ux (scaled with
the average undisturbed velocity U of the upstream horizontal channel). (d) Capsule
lateral velocity Uz (scaled with the average undisturbed velocity U of the upstream
horizontal channel.
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the gap between the capsule surface and the channel wall decreases and this re-

sults in development of stronger hydrodynamic forces and a decrease in the capsule

velocity due to the flow blocking. There is a small lateral migration towards the

microchannel centerline as the capsule size increases. The capsule migrates towards

the centerline, the low-shear region of the T-junction microchannel. This migration

is in agreement with experimental and numerical studies on noninertial lateral mi-

gration of vesicles in bounded Poiseuille flow by Coupier et al. [13] which showed

that the combined effects of the walls and of the curvature of the velocity profile in-

duce a capsule migration toward the centerline of the channel. As Ca increases, the

stronger hydrodynamic forces cause the capsule to extend along the flow direction

(i.e., the capsule’s length Lx increases as the capsule enters the T-junctions and Lx

decreases as the capsule exits the T-junction). There is a small lateral migration

away from the microchannel centerline as Ca increases. Both the capsule velocity Ux

and migration velocity Uz are not affected by the flow rate Ca. The capsule lateral

position zc, velocity Ux and migration velocity Uz are practically not affected by

the fluid viscosity ratio λ. As the channel’s lateral flow rate increases, the capsule

lateral displacement zc/ℓz moves laterally much more downward at the intersecting

flows. Our findings on the lateral migration in the T-junction microchannel suggest

that there is a great potential for designing a T-junction microfluidic device that

can be used to manipulate artificial and biological capsules. Geislinger et al. [35]

designed a T-junction microchannel device to sort out red blood cells from blood

plasma using non-inertial hydrodynamic lift at low Reynolds number. Furthermore,

Geislinger et al. [34] developed a similar microfluidic device to sort out red blood
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cells from cancer cells.
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