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Development of drug delivery systems (ie. nanocarriers) with controllable 

composition, architecture, and functionalities is heavily investigated in the field of 

drug delivery in order to improve clinical interventions. Designing drug nanocarriers 

which possess targeting properties is critical to enable them to reach the intended site 

of intervention in the body. To achieve this goal, the surface of drug nanocarriers can 

be modified with targeting moieties (antibodies, peptides, etc.) addressed to cell 

surface molecules expressed on the diseased tissues and cells. If these molecules are 

receptors capable of internalizing bound ligands via endocytosis, targeting can then 

enable drug transport into cells or across cellular barriers in the body. Yet, addressing 



  

nanocarriers to single targets presents limited control over cellular interactions and 

biodistribution. Since most cell-surface markers are not exclusively expressed in a 

precise site in vivo, high affinity of targeted nanocarriers may lead to non-desired 

accumulation in regions of the body associated with low expression. Modification of 

nanocarriers to achieve combined-targeting (binding to more than one cell-surface 

receptor) may help modulate binding to cells and also endocytosis, since cell 

receptors possess distinct functions and features affecting these parameters, such as 

their expression, location on the plasmalemma, activation in disease, mechanism of 

endocytosis, etc. Further, targeting nanocarriers to multiple epitopes of the same 

receptor, a strategy which has never been tested, may also modulate these parameters 

since they are highly epitope specific. In this dissertation, we investigate the effect of 

targeting model polymer nanocarriers to: (1) multiple receptors of similar function 

(intercellular-, platelet-endothelial-, and/or vascular- cell adhesion molecules), (2) 

multiple receptors of different function (intercellular adhesion molecule 1 and 

transferrin receptor), or (3) multiple epitopes of the same receptor (transferrin 

receptor epitopes 8D3 and R17). Binding to cells, endocytosis within cells, and 

biodistribution in mice were tested. Results indicate that combination targeting 

enhanced performance of nanocarriers with regard to these three parameters as 

compared to non-targeted nanocarriers and modulated their outcome relative to 

single-targeted nanocarriers. This modulation was observed as enhanced, 

intermediate, or diminished interaction with cells, accumulation in particular organs, 

and specificity for diseased sites relative to single-targeted nanocarriers. These results 

were general to strategies 1-3 and were difficult to foresee a priori due to the 



  

complex nature of said interactions. Importantly, outcomes depended on the 

multiplicity (dual- vs. triple-targeting) and/or combination of affinity moieties 

displayed on the nanocarrier surface, as well as the physiological/pathological state of 

cells and tissues. Modulation of the delivery of a model therapeutic cargo in mice 

relative to single-targeted nanocarriers demonstrated the potential of these strategies 

to control the biodistribution of therapeutic agents. Therefore, these findings illustrate 

that combination-targeting enables modulation over cellular interactions and 

biodistribution of nanocarriers, which may aid the development of nanocarriers 

tailored for particular therapeutic needs.  
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Section 1: Introduction and Overview                                                                                                                                                                  

1.1. Problem Description and Motivation 

Drug delivery systems designed to target pharmaceutical agents to the intended site 

in the body can improve many current limitations of medical treatments by 

enhancing or optimizing accumulation at the intended site of activity and limiting 

accumulation in off-target areas.1-3 A promising strategy to achieve targeting of drug 

delivery systems (i.e. nanocarriers) is to couple affinity moieties (e.g. antibodies or 

their fragments, peptides, aptamers, etc.) which recognize particular molecules 

present on the surface of cells.1-3 This approach can enhance drug accumulation in 

specific organs, tissues, cells, subcellular compartments, or across cellular barriers, 

and is being heavily investigated for numerous diseases including cardiovascular, 

metabolic, pulmonary, neurological, and inherited disorders, as well as cancers, 

infectious diseases and many other applications.1-3   

   

 Despite these advantages, targeting nanocarriers to single cell-surface 

markers oftentimes results in suboptimal accumulation and lack of precise control of 

nanocarriers in the body. For example, although targeting can improve nanocarrier 

delivery at the target site, most targeted nanocarriers also accumulate in clearance 

organs, such as the spleen and liver, resulting in an improved (over non-targeted) but 

still suboptimal outcome.4 Due to this, strategies which improve accumulation in 

other organs are highly beneficial,5,6 and certain therapeutic approaches may require 

delivery to multiple cell types (e.g. angiogenic blood vessels and tumor cells for 

cancer therapy)7 which may not all adequately express the target molecule. Further, 
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control of the biodistribution is limited in part because molecules used as targets are 

rarely expressed solely in a single cell type or tissue, making it difficult to maximize 

selectivity for precise niches in vivo.3,4 Expression of a target within a population of 

cells is heterogeneous (i.e. spatially and temporally), which can limit the fraction of 

cells susceptible to targeting.3,4 Accessibility of the selected target molecule may be 

restricted by its location on the plasmalemma, predominance of isoforms lacking the 

target epitope, or altered molecular conformation, and all of these characteristics 

may be affected by the physiology or pathophysiology of the local environment and 

severity of the disease state.3,8 In addition, the factors affecting targeting are complex 

and intertwined, such that altering one parameter (e.g. increasing affinity for the 

target molecule) can produce several effects which may or may not be intended, e.g. 

increasing binding at the target site while simultaneously increasing binding at off-

target sites, inducing endocytosis, etc.3,9 Thus, although targeting to single cell-

surface molecules can be beneficial, in many circumstances the result is not ideal 

and often cannot be corrected by optimizing nanocarrier design parameters (e.g. 

ligand valency, size, shape, etc.) due to the dynamic nature of the interaction. 

Strategies which improve control over targeting can help to optimize nanocarrier 

delivery for particular applications. From these points of view, targeting nanocarriers 

to multiple, rather than single, cell-surface molecules (namely combination 

targeting) may provide advantages for drug delivery applications. 
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1.2. Our approach  

Combination targeting is an emerging approach which holds promise to enhance 

and/or more precisely control delivery of nanocarriers. It exists in nature with regard 

to infectious pathogens10 and cells of the immune system11 which interact with 

multiple receptors to adhere and/or induce transport into cells or across cellular 

barriers. Combination targeting strategies have recently arisen in targeted drug 

delivery,7,12-14 providing new approaches to enhance and optimize specificity and 

selectivity of nanocarriers for the target site. For example, the overexpression of 

multiple molecules on the surface of cancer cells has been exploited to enhance 

tumor selectivity of liposomes by triggering internalization only in cells expressing 

both molecules.14 In another study, multi-targeting enhanced accumulation of 

mesoporous silica nanoparticles in both angiogenic blood vessels and tumor cells by 

addressing multiple receptors in those cells.7 Yet, such studies are limited to a 

particular scope or drug delivery system and in many cases the effects of targeting 

molecules of different or similar function have not been examined systematically in 

both cell cultures and in vivo models. In the case of polymer nanocarriers, 

combination targeting studies are mainly limited to cellular binding studies of 

receptors with similar function, leaving unknown the effects on endocytosis and 

biodistribution or the effects of targeting molecules with different functions. 

Targeting nanocarriers to multiple epitopes of the same molecule or receptor may 

also provide advantages with regard to enhancing and/or controlling accumulation. 

For example, binding at a certain epitope may alter the molecular conformation of 

the target to enhance accessibility of a second epitope15 or it may enable targeting of 
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a greater or lesser number of molecular isoforms of the target present on a single cell 

type or in different tissues. However, such a strategy has never been explored in the 

context of nanocarriers.  

 

 The global hypothesis of this dissertation is that combination targeting can be 

utilized to modulate and control the binding, internalization, and/or the 

biodistribution of polymer nanocarriers addressed to three different categories of 

cell-surface targets: 1 multiple receptors with similar functions, 2 multiple receptors 

with different functions, and 3 multiple epitopes of the same receptor. 

 

 Investigation of these strategies in cell cultures and in vivo is necessary to 

develop general knowledge of combination targeting with respect to critical 

parameters of drug delivery, including binding to cells, accumulation on the cell 

surface versus intracellular compartments, performance in physiological versus 

diseased conditions, distribution of nanocarriers in the body, and the resultant impact 

on the delivery of the associated pharmaceutical “cargo.” The reductionist 

environment of cell cultures provides a useful system for analyzing the effect of 

targeting on drug delivery parameters (e.g. binding, internalization, etc.). Yet, in vivo 

testing in laboratory animals is essential to affirm results in the context of the true 

physiology of the body, where structural features or regulation of the target receptors 

may vary in different tissues, and additional physiological factors (e.g. physiological 

shear stress from fluid flow,16,17 clearance from the circulation by immune cells,18 

presence of cellular barriers,19 etc.) add layers of complexity.3,8,20 
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 In the next section (Section 2), background is provided on the many 

challenges which nanocarrier-based drug delivery systems aim to address, as well as 

targeting and transport of nanocarriers targeted to single cell-surface molecules and 

the nascent field of combination targeting. The methods used to conduct the studies 

are described (Section 3), followed by the results and discussion (Section 4), and the 

overall conclusions and potential future directions of the research in light of the 

presented findings (Section 5). 

 

1.3. Significance and Novelty  

The significance of the studies presented in this dissertation is that they expand 

current knowledge or provide the first data on combination targeting of polymer 

nanocarriers to multiple receptors or epitopes at the levels of binding and 

internalization in cells, distribution in the body, and delivery of associated 

therapeutic cargo. The receptors investigated are intercellular adhesion molecule-1  

(ICAM-1),21 platelet-endothelial cell adhesion molecule-1 (PECAM-1),21 vascular 

cell adhesion molecule-1 (VCAM-1),21 and the transferrin receptor (TfR).6 These 

receptors are highly relevant for drug delivery due to their use in targeting numerous 

therapeutic and diagnostic agents in applications including cancer, atherosclerosis 

and other cardiovascular disorders, multiple sclerosis, inflammation, arthritis, stroke, 

graft rejection, thrombosis, genetic lysosomal storage disorders, or neurodegenative 

disorders.22-47 In addition, most previous studies on combination targeting focused 

on binding of micro- rather than nano- carriers to cells with relatively few studies 
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examining internalization within cells, or biodistribution in vivo. This dissertation 

builds on this gap by evaluating nanocarrier internalization and biodistribution in 

addition to cell binding using nanoscale carriers which are relevant for most in vivo 

applications and for endocytic transport via most known mechanisms. 

 

 Existing knowledge of combination targeting of molecular receptors with 

functions which are related or similar (i.e. cell proliferation, adhesion, 

transmigration, pathogen detection, nutrient metabolism, etc.) is expanded to explore 

novel or scarcely examined aspects of multi-targeting cell adhesion molecules 

(CAMs), involved in cell adhesion and transmigration of leukocytes to sites of 

inflammation. In terms of targeting, combination targeting of nanocarriers to 

multiple Ig-like CAMs is examined for the first time using different combinations 

and multiplicity of affinity moieties (i.e. dual or triple-targeting) directed to 

intercellular-, platelet-endothelial-, and/or vascular- cell adhesion molecules (Section 

4.1). Effects of this form of multi-CAM-targeting on the biodistribution and on 

delivery of biological therapeutics are also examined. In addition, we examine 

effects of multi-CAM-targeting on nanocarrier internalization using receptors 

associated with the same endocytic pathway (ICAM-1 and PECAM-1 associated 

with CAM-mediated endocytosis) versus receptors associated with different 

endocytic pathways (ICAM-1 and VCAM-1 associated with CAM- and clathrin-

mediated endocytosis, respectively). In the next section (Section 4.2), knowledge of 

combination targeting of molecular receptors with different function is expanded to 

include ICAM-1 and transferrin receptor, which are involved in leukocyte adhesion 
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and transmigration versus iron transport, are upregulated or remain stable in 

response to disease, and are involved in CAM- versus clathrin-mediated endocytosis, 

respectively. These differences are unique from most prior combination targeting 

strategies which examined receptors involved in similar functions (cell adhesion) 

and endocytic pathways (clathrin-mediated endocytosis), and these factors can 

significantly affect nanocarrier targeting and internalization. In the final section, we 

examine the novel approach of targeting nanocarriers to multiple epitopes of the 

same receptor. Such a strategy can provide a new means to alter the avidity for the 

target receptor, and as a result modulate nanocarrier targeting performance. This 

approach may be particularly useful in circumstances where varying other targeting 

parameters (i.e. nanocarrier size, ligand valency, etc) leads to unwanted effects. 

 

 Overall the findings in this dissertation illustrate the promise of combination 

targeting as a strategy for drug delivery which enables control over cellular 

interactions and biodistribution of nanocarriers. Combination targeting, whether 

directed to multiple receptors of similar or different functions, or to multiple 

epitopes of the same receptor, allows modulation of drug delivery parameters 

including binding to cells, endocytosis, and biodistribution. Importantly, the 

resultant behavior can not be predicted a priori and requires experimental evaluation 

both in cell cultures and in vivo. Yet, combination targeting provides a useful 

approach for the development of nanomedicines because, rather than having to 

discover new targets, it allows the drug delivery system to be adapted to the needs of 

the therapy by combining properties of existing targets which can be optimized. 
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Section 2: Background 

2.1. Drug Delivery: Purpose and Challenges 

The overall purpose of drug delivery is to optimize the pharmacokinetics of agents 

administered into the body for an intended application. These agents can be used for 

prophylactic, therapeutic, or diagnostic applications, and are designed to prevent the 

occurrence of disease, determine whether disease is present, or treat disease, 

respectively. Therapeutic or prophylactic agents are biologically active substances. 

These can be small molecules, typically low molecular weight organic or inorganic 

molecules produced by chemical synthesis. In addition, the use of biologicals for 

prophylaxis or therapy has rapidly expanded. These are macromolecules derived 

from living systems, such as cell cultures, bioreactors, ascites animals, etc., and 

include proteins (antibodies,48 enzymes,49 etc.), nucleic acids (aptamers,50 siRNA,51 

plasmids,52 etc.), and carbohydrates (vaccines,53 immunotherapies,54 etc.). Additional 

types of agents are represented by metals,55 radioisotopes,56 fluorescent markers,57,58 

microbubbles,59 etc., which are utilized to provide contrast for imaging modalities, 

such as computed X-ray tomography (CT), magnetic resonance imaging (MRI), 

optical coherence tomography, positron emission tomography (PET), ultrasound,  

etc. Yet, oftentimes the efficacy of all of these agents and their safety is impaired or 

suboptimal due to pharmacokinetic limitations. As a consequence, treatment of many 

diseases would be greatly improved by more effective drug delivery strategies.6,60,61  

 

 Drug delivery science is applied to most, if not all, aspects of 

pharmacokinetics. In general terms, pharmacokinetics is the study of the 
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accumulation and evolution of pharmaceutical agents the blood, tissues, and organs 

over time.62 This typically involves the absorption of the agent into the bloodstream, 

circulation in the blood, distribution from the blood to tissues, metabolism of the 

agent in tissues, and excretion from the body.62,63 Regarding absorption, a main goal 

of drug delivery is to improve the solubility of agents which are not soluble or 

poorly soluble in physiological fluids and, therefore, cannot be absorbed.64 Agents 

which are absorbable should be stable in the presence of blood components, and also 

must remain in the circulation long enough to achieve an adequate concentration at 

the target site. This can be affected by interaction with blood components (e.g. 

opsonization)65 and can result in premature clearance from the circulation, even in 

cases where delivery systems are endowed with “stealth” properties.66 To improve 

the distribution of agents, which is another goal of paramount importance, drug 

delivery strategies aim to increase the agent concentration at the intended site of 

activity (enhancing its bioavailability) and to minimize distribution in areas of the 

body where the agent is not needed (reducing potential toxicity and waste of the 

agent).1,2 Improving bioavailability can help create new treatments either by 

allowing agents to reach sites in the body which were previously inaccessible67 or by 

increasing the bioavailability of an agent to the point where it is effective for a 

particular application.1 For example, the vascular endothelial lining of blood vessels 

can allow a certain amount of transport into tumor areas,68 but can also limit 

transport from the bloodstream to other tissues. This is most evident in the brain, 

where the blood-brain barrier restricts transport of most substances to the brain 

parenchyma.67 Another major cellular barrier is the epithelial lining of the 
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gastrointestinal (GI) tract where free transport of substances is also restricted, 

limiting delivery of agents orally.69 Biological barriers of drug delivery are also 

present in other organs including the skin,70 lungs,71 and mucosal linings throughout 

the body.72 At the cellular level, the plasma membrane or the membranes of 

intracellular compartments represent additional barriers to drug penetration.73 

Consequently, targeting and internalization into cells can improve the distribution of 

agents to the site of activity. Reducing toxicity is also very important74 as less or, 

ideally, no harm should result from administration of the agent, and/or allow the 

agent to be administered in greater amounts or for longer periods of time.  

 

 A good understanding of elimination (metabolism and excretion) of the agent 

is also necessary. Conversion of the agent to metabolites, known as 

biotransformation, occurs primarily via enzymatic reactions in the liver, although 

other tissues may also be involved, e.g., lungs, kidneys, or GI mucosa, etc.75 

Biotransformation can have several effects, including inactivation of the agent (the 

resulting metabolite(s) does not exert the intended effect), its activation (e.g. a pro-

drug, where the metabolite exerts the intended effect), modification of activity (the 

resulting metabolite(s) exerts a secondary effect), or toxicity (the resulting 

metabolite(s) interrupts a normal cellular metabolic pathway which results in cell 

death).76 Excretion from the body is also an important consideration. Excretion 

occurs primarily via the kidneys or also the liver, GI tract, and lungs, and this 

process lowers the concentration of agents in the body, which in turn can reduce 

both efficacy and toxicity.75 Other efforts in drug delivery also hold promise to 
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improve multiple pharmacokinetic parameters, for example, controlling the rate of 

release of agents at the target site to maximize the therapeutic outcome.77  

 

 As mentioned, addressing these problems in drug delivery is critical to 

improving many medical treatments. Neurological, cancer, cardiovascular, 

infectious, immune, and genetic disorders are only a few examples of the many 

applications where drug delivery science can have a major impact by addressing 

challenges imposed by the physiology of the body, e.g., solubility of agents in 

physiological fluids, adequate and selective accumulation at the target tissue versus 

non-target tissues, passage from the bloodstream to the tissue compartment, 

accumulation  in the appropriate cell type and subcellular compartment,  reducing 

premature degradation, etc. 

 

2.2. Drug Delivery Systems   

The use of drug delivery systems to enhance the pharmacokinetics and effects of 

pharmaceutical agents has increased through advancements in nanotechnology 

known as nanocarriers. Nanocarriers of a diverse range of sizes (a few nanometers 

up to one micrometer), geometry, materials, and surface chemistries are now being 

developed to meet particular medical needs (Figure A).78 For example, poorly 

soluble agents are being encapsulated in drug carriers to improve solubility in 

blood.78 Therapeutics that are susceptible to pH or enzymatic degradation,79 or 

which may be effluxed from cells by drug transport pumps,80 can be loaded into 

nanocarriers as a means to address these issues. In addition to these advantages, 
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nanocarriers are being developed to have high loading capacity, increased 

biocompatibility and  accumulation at the site of activity, enhanced functionality (i.e. 

adding surface coatings, targeting moieties, or therapeutic and imaging agents), and 

to enable controlled release of cargo.2,78,81-83  

 

 

Figure A. Some structures of nanocarrier drug delivery systems  

 

 Liposomes were first reported in 1965, making them the oldest type of 

nanocarrier delivery system.84 They are made by self-assembly of amphiphilic lipids 

in aqueous solution to form bilayered spherical vesicles with an aqueous lumen, and 

range in size from 50 nm to several microns.85 The material composition of 

liposomes includes phospholipids found naturally in cell membranes as well as other 

membrane constituents such as cholesterol.86 Due to  this liposomes are generally 

biologically inert, which results in low toxicity.87 In addition, they can be 

functionalized with targeting moieties and with polymer coatings (e.g. polyethylene 

glycol (PEG)) to provide selective targeting and/or imaging, and to limit clearance 

due to opsonization in the bloodstream.85 Because they are amphiphilic, hydrophilic 

agents can be loaded in the interior lumen or surface while hydrophobic agents may 
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be loaded in the bilayer.85 Liposomes also have some disadvantages, including a 

relatively low drug loading capacity, and the fact that the liposomal bilayer can 

become destabilized in the circulation by high density lipoproteins, resulting in 

premature release of cargo.88 However, incorporation of certain lipids (e.g. 

phosphatidylcholine, sphingomyelin) or cholesterol in the liposomal membrane can 

increase stability.87 Liposomes are also sensitive to destabilization by modification, 

e.g., can tolerate a relatively low number of targeting moieties before becoming 

destabilized.89  

 

 Polymeric nanocarriers are fabricated from synthetic, natural, or hybrid 

polymers which are defined as macromolecular entities created by covalent and 

repeated linkage of smaller structural units.82 The main criteria for selection of 

polymeric materials are biocompatibility and degradability (properties which are 

important for limiting toxicity), controlled release, and excretion from the body. 

Poly(ethylene glycol) (PEG), poly(methyl methacrylate) (PMMA), and  poly(lactide-

co-glycolide) (PLGA) are commonly used synthetic polymers, with PEG also being 

widely utilized as a surface coating to reduce clearance from the circulation87 and 

PLGA being FDA approved for use in drug delivery systems due to its 

biocompatibility.90,91 Natural polymers made from gums, polysaccharides, and 

polypeptides (e.g. chitosan, sodium alginate, gelatin, albumin, etc.) are also utilized, 

offer lower batch-to-batch variability, and are potentially less toxic since they do not 

require use of chemicals during fabrication.92-94 In addition to biocompatibility and 

degradability, polymeric materials are widely utilized because of their controllable 
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geometry. For example, polymeric nanocarriers can be fabricated in a wide variety 

of sizes (10 nm -1µm) and shapes (spheres, rods, disks, toroids, plugs, etc.)95 with a 

hollow lumen or solid cores, and controllable porosity.96 Functional agents 

(therapeutic, imaging, or targeting) can be added to the particle surface, core, or 

embedded throughout the polymer matrix.97 Importantly, polymeric carriers are 

more tolerant of functionalization than liposomes without compromising carrier 

stability.98 Controlled release can be achieved by diffusion, surface erosion, or bulk 

degradation of the nanoparticle over time.77 Linear and branched polymers as well as 

polymerosomes, dendrimers, polymeric micelles, and niosomes can also be 

fabricated from polymeric materials.  

 

 Polymerosomes are considered the polymer analog of liposomes, with the 

difference that they are made from amphiphilic block copolymers instead of 

phospholipids.99 Like liposomes, polymerosomes range in size from tens of 

nanometers to several microns, can be loaded with both hydrophilic and hydrophobic 

agents and are not very toxic, but in contrast are also more rigid and less permeable. 

This allows a greater number of functional moieties to be added and increases 

stability.  

 

 Dendrimers are named for their tree-like structure and are generated by 

adding layers of polymers sequentially around a central core either via convergent or 

divergent synthesis.100,101 The result is a highly branched polymer network where 

functional agents may be entrapped within the layers or coupled to the dendrimer 
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surface.102 The small size of dendrimers (only a few nanometers in diameter) is 

advantageous for oral delivery, allowing dendrimers to permeate through the 

epithelial cellular barrier of the GI tract.103 As with other types of polymeric 

materials, dendrimer physical properties such as size, shape, and surface chemistry 

are controllable, which  in this case is achieved by modifying the generation 

number.101 A high surface-to-volume ratio allows for addition of a high number of 

functional groups, e.g., therapeutic, diagnostic, and targeting moieties.101 

Disadvantages of dendrimers include costly manufacturing, difficulties with quality 

control due to multi-step synthesis, and potential for toxicity in vivo.74 

 

 Polymeric micelles are also made from amphiphilic block copolymers which 

self-assemble to form a hydrophilic shell and a hydrophobic core.104,105 Similar to 

dendrimers, polymer micelles are small in size (a few nanometers in diameter), yet 

in contrast have an inner hydrophobic core and an outer hydrophilic layer.104 As with 

other polymeric carriers, micelles can be functionalized for targeting, formulated 

with low toxicity materials, designed to have a relatively high loading capacity for 

water-insoluble drugs, controlled release, prolonged blood circulation, and also self-

assemble in aqueous solution resulting in simple formulation.104 

 

 Niosomes are vesicles formed using non-ionic surfactants, such as glycerol, 

glycerol esters, polysorbates, etc. Like liposomes, niosomes have both hydrophilic 

and hydrophobic domains, allowing for incorporation of agents with a range of 

solubilities. The niosome composition, fluidity, size, and lamellarity can be 
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controlled,106  allowing for versatile nanocarrier design. In addition, surfactants are 

generally biodegradable, biocompatible, non-immunogenic, and relatively non-toxic 

due to their lack of charge.106  

 

 Inorganic nanoparticles are also being explored for drug delivery, including 

carbon nanostructures, quantum dots, metal particles, and mesoporous silica 

nanoparticles, and are used mainly for diagnostic applications. Carbon 

nanostructures are fabricated into various forms such as nanotubes.107They are stable 

and the structural conformation, charge, strength, flexibility can be varied, and can 

be functionalized with drugs and/or biomolecules for diagnostic and therapeutic 

purposes.107Quantum dots (QDs) are semiconductors fabricated from a combination 

of metals and non-metals.108 These nanoparticles (~2-10 nm diameter) have greater 

fluorescence than traditional fluorophores, excitation and emission wavelengths can 

be tuned by the particle size, and are detected with a high level of sensitivity.109 

Metal nanoparticles such as iron oxide and gold are used as imaging agents due to 

their sensitive detection and stability.110 Iron oxide and superparamagnetic iron 

oxide (SPIO) metal nanoparticles show potential for magnetic resonance 

imaging111,112 and are also being exploited for targeting.113 Gold is a biocompatible 

material which can be modified with numerous biomolecular agents for diagnostic 

and therapeutic applications.114 Mesoporous silica nanoparticles are have been 

heavily investigated recently due to their controllable mesoporous structure (e.g. 

porosity diameter ~2-50 nm), high specific surface area, and large pore volume.115 

This has been advantageous for loading of therapeutic cargoes, including small 
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molecules, therapeutic proteins, and genes.115 Ceramic materials in general are 

highly stable and, like PLGA, silica is considered a “Generally Recognized As Safe 

(GRAS)” material, making it promising for clinical studies.115 These and many other 

nanocarrier-based drug delivery systems offer a means to optimize the 

pharmacokinetics of agents for particular medical needs. As mentioned above, most 

of these drug delivery systems can be functionalized to target sites of intervention in 

the body. In order to enhance delivery to the intended site, various targeting 

strategies may be utilized. 

 
2.3. Targeting Strategies in Drug Delivery 

In the broadest sense, to target a physiological system means to enable its interaction 

with a specific component of that system. Targeting occurs naturally as part of the 

normal physiological function of the body and also in pathophysiologal contexts. For 

example, at the subcellular level, components of the cell machinery such as 

microRNAs target specific genes in order to modulate their expression and, as a 

result, alter cell function, signaling, or sorting peptides of proteins for distribution to 

different compartments.116 At the cellular and tissue/organ levels, infectious 

pathogens such as viruses or bacteria and cells of the immune system can gain access 

to specific cells, tissues, and/or organs by targeting molecules present on the cell 

surface.117 Targeting also occurs at the level of organ systems, where ligands (e.g. 

metabolites, hormones, neurotransmitters, growth factors, etc.) travel from and to 

specific organs or tissues via the circulation.118 Therefore, targeting occurs naturally 

and at several levels of organization/complexity as part of normal physiological 

function and also of pathophysiological processes.  
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 Targeting for drug delivery was first theorized by Paul Ehrlich in the 1900’s, 

who envisioned coupling a therapeutic cargo to an element which enabled specific 

binding to the target site.1  Since then, targeting has been explored and expanded 

upon as a strategy to enhance delivery of agents to specific organs, tissues, cells, and 

more recently specific subcellular compartments.3 Yet, targeting is a challenge 

which is intrinsically complex.3 A targeted agent must first reach the target site at the 

organ level, whether via the systemic circulation or administration via other routes 

(e.g. inhalation/intratracheal installation for pulmonary delivery, 

intrathecal/intranasal/intracarotid for brain delivery, GI for oral delivery, etc.). 

Depending on the tissue of interest, the agent may have to traverse additional 

barriers to reach the tissue of interest (e.g.  the blood-brain barrier, the intestinal 

epithelial barrier, mucus barriers of the lung airways, GI tract, eyes, etc.).67,72 The 

agent must then reach the intended tissue and cell type via mass transport (e.g. 

diffusion, convection, etc.). If the site of activity is intracellular, the agent must 

further bind and enter the cell, traffic to the intended subcellular compartment, and 

interact with the molecular target.3 

 

 In current practice targeting strategies for drug delivery generally fall into 

four categories (Figure B). Passive targeting occurs when agents accumulate in 

certain locations of the body due to the physiological features and function of these 

sites.3 Examples of passive targeting include accumulation in spleen and liver due to 

opsonization and subsequent clearance from the circulation by the 
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reticuloendothelial system at the organ level (or the monocyte-macrophage system at 

the cellular level),18 or in sites afflicted by tumors where “leakiness” of the 

vasculature caused by the tumor microenvironment gives rise to the enhanced 

permeability and retention effect.68 The converse of passive targeting is inverse 

targeting, where the goal is to block passive accumulation of the administered agent 

in order to enhance targeting to other sites.3  For example, administration of empty 

liposomes prior to administration of adenoviral vectors enhanced gene transfer to 

hepatocytes by transiently saturating uptake via hepatic kupferr cells.119 In contrast 

to passive or inverse targeting, active targeting involves adding targeting properties 

on the agent either intrinsically or extrinsically. Intrinsic active targeting refers to 

selecting or modifying the therapeutic agent itself to improve targeting specificity.120  

On the other hand, extrinsic active targeting involves coupling the agent to a 

component which possesses targeting features. This can be accomplished by 

physical means (e.g. pH,121 temperature,122,123 etc.) where the agent is coupled to a 

component which enables activation or release at the target site due to features of the 

target environment or via an external stimulus.122 In addition, the modifying 

component can be a ligand which displays affinity for particular determinants (e.g. 

cell-surface molecules) present at the site of disease.3 The targeting ligand can be 

coupled directly to the agent or to the surface of a nanocarrier delivery system.3 

Finally combined targeting refers to using a combination of the other targeting 

approaches.3 For example, carriers can been designed using a pH-sensitive 

polymeric material and also a targeting ligand to enable targeting via both intrinsic 

and extrinsic active-targeting for cancer therapy.124 
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Figure B. Drug targeting strategies.  

 

2.4. Targeting to Cells and Subcellular Compartments 

Active targeting with ligands is a heavily investigated form of targeting which has 

been utilized to improve specificity of nanomedicines under development.3 This 

targeting allows agents to associate to, for instance, cells of interest, resulting in 

increased specificity for the target site. This association can be either “promiscuous” 

or selective depending on the strategy which is utilized. In the case of non-selective 

targeting, an agent is functionalized with a polycationic or amphipathic targeting 

peptide (e.g. Tat, octa-arginine, Penetratin, etc.) that enables adhesion to cells in a 

broad manner.125-128 These peptides are termed cell-penetrating peptides because 

they also enable transport into cells.128 A promiscuous targeting strategy is 

advantageous for treatment of diseases affecting multiple organs (e.g. the lysosomal 

storage disorders and other monogenic diseases, oxidative stress, etc.),96 in cases 
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where accumulation of the agent in off-target sites will not produce significant side 

effects, or for prophylactic applications.3 However, for many applications non-

selective targeting is considered a disadvantage, such as delivery of cytotoxic agents 

in cancer therapy.  

 

 In contrast to non-selective targeting, specific targeting enables association to 

cells by binding specific molecules (e.g. receptors, enzymes, mucins, etc.) present on 

the surface of cells.3 Binding is an equilibrium between the ligand and the target, and 

therefore is affected by both the target and ligand concentrations as well as the 

accessibility of both of these components. Expression of the target is, therefore, an 

important factor which can be modulated by cell activation (e.g. increased 

expression of certain adhesion molecules28 is observed in response to inflammatory 

stimuli, while expression of other molecules is decreased due to cleavage by 

proteases).3 On the other hand, the concentration of available ligands can be adjusted 

according to the administered dose, by adjusting the number of ligands coupled 

directly to the agent or indirectly to a nanocarrier delivery system.129,130 

 

 In terms of accessibility, the target must be displayed on the cell surface 

rather than intracellularly. Yet, access to the target molecule may be hindered if the 

molecule is part of a complex or interacts with other molecules on the cell surface.3 

The precise location of the target epitope is also critical. For example, targeted 

agents may compete with endogenous ligands for binding at certain receptor 

epitopes. Also, binding certain domains of a receptor can modulate its own 
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expression. For example, binding of angiotensin converting enzyme (ACE) at certain 

epitopes induces shedding from the plasma membrane.131 Masking of the binding 

epitope may occur in certain cell types or tissues due to post-translational 

modifications, or it may be less accessible or eliminated in certain receptor 

isoforms.3 Epitope dependent targeting is also observed with regard to in vivo 

biodistribution, where targeting different epitopes of the transferrin receptor (TfR) 

affects selectivity for the brain versus other organs.132 Finally, if the target site is 

intra- or transcellular, an epitope that triggers transport into the cell via membrane-

bound vesicles (endocytosis) into or across the cell must be selected.3  

 

 Importantly, therapeutic targets are present on the plasma membrane or in 

intracellular compartments and, therefore, targeting strategies enabling delivery at 

the subcellular level is necessary.2 Anchoring therapeutics to the plasma membrane 

can be utilized, as an example, for prophylaxis of thrombosis or inflammation, and 

can be accomplished by targeting cell-surface molecules which are poorly 

internalized (e.g. antibodies targeting intercellular adhesion molecule 1 (ICAM-1)).28 

Lysosomal targeting is essential for many enzyme replacement therapies of 

lysosomal diseases, and can be achieved by targeting many different cell-surface 

molecules including ICAM-1,133,134 mannose-6-phosphate receptor,135 insulin growth 

factor II,136 the low density lipoprotein receptor family,137 insulin receptor, 

transferrin receptor,138,139 and many others.3 Mitochondrial dysfunction is associated 

with many diseases including cancer, diabetes, as well as cardiovascular and 

neurological conditions.140 Delivery to the mitochondria can be achieved by using 
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targeting peptides containing mitochondrial localization sequences,141,142 cytochrome 

oxidase subunits,143 or retinoic-inteferon-induced mortality proteins.143  Nuclear 

delivery is needed for gene therapy and for therapeutics with nuclear targets (e.g. 

cytotoxic agents), and may be accomplished using nuclear localization sequences 

which target import proteins present on the nuclear envelope.144 Targeting is 

necessary for most agents intended for the nucleus as  the size cutoff for passive 

diffusion across nuclear envelope pores is 30-40kDa. Targeting the Golgi apparatus 

and endoplasmic reticulum is less well defined, yet has been utilized for certain 

cytotoxic cancer agents via conjugation to shiga or cholera toxins which target these 

organelles by binding to molecules on the cell surface and subsequent endocytic 

transport.145 

 

2.5. Transport Into or Across Cells  

Transport from the surface to the interior of cells can occur either directly from the 

extracellular space to the cytosol or by vesicular uptake resulting from endocytosis.3 

Direct transport can occur via passive diffusion, although this is restricted to small, 

hydrophobic molecules such as small alkanes, benzene, diethyl urea, etc.146 Active 

direct transport can occur for ions and various small molecules to move against their 

concentration gradients as substrates of transporter pumps.147,148 Approaches 

involving disruption of the plasma membrane with a transiently applied physical 

stimulus (e.g. electroporation, ultrasound, hydroporation, magnetofection, ballistic) 

have also been utilized to enable transport into the cytosol.149-154 However these 

approaches are damaging and are only used locally. Positively-charged cell 
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penetrating peptides or toxins can also provide direct transport to the cytosol by 

transiently forming pores in the plasma membrane.155-157 In contrast, agents targeted 

to surface molecules can be transported intracellularly by endocytosis.3 Endocytosis 

is preferable for nanocarriers because their size restricts passive diffusion across the 

plasma membrane or transport via transporter pumps.  

Figure C. Mechanisms of endocytosis.  

  

 Several different mechanisms of endocytosis have been elucidated, and 

multiple are involved in uptake and intracellular transport of nanocarriers (Figure C). 

Phagocytosis involves the uptake of relatively large (up to several micrometers in 

size) amounts of extracellular particulate matter into the cell.20 Phagocytosis can be 

induced by cross-linking of certain cell receptors and results in uptake into a 

vesicular compartment termed the phagosome, with subsequent transport to 

lysosomes which function as a degradative compartment in the cell.158 Targeting of 

the mannose receptor or of integrins CD11b/CD18, binding of the Fc class of 

receptors via the constant region of antibodies, or targeting of other receptors can 
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enable uptake into cells by phagocytosis.158 The ability to take in large material 

represents an advantage from the standpoint of drug delivery, because nanocarrier 

size may be used to control the rate of clearance from the circulation, amount of drug 

loading, etc. In addition, phagocytosis can be controlled by nanocarrier shape, where 

a high degree of surface curvature at the ends of rod-like structures increase 

induction of phagocytosis relative to more spherical structures.159 On the other hand, 

although lysosomal delivery is needed in certain contexts (e.g. therapy of lysosomal 

storage disease), it represents a relative disadvantage in most contexts.3 In addition, 

phagocytosis occurs primarily on cells which are professional phagocytes (e.g. 

macrophages), limiting targeting to cells of the reticuloendothelial system (RES).20 

Although this may be advantageous in certain cases, RES-mediated clearance is 

largely undesired in most contexts, as it hinders delivery to other areas of the body.  

 

 In contrast to phagocytosis, macropinocytosis involves uptake of 

extracellular fluid (e.g. pinocytosis) into cells (Figure C). Macropinocytosis is 

induced by binding of growth factors which stimulate receptor tyrosine kinases and 

subsequent intracellular signaling produces ruffling of the plasma membrane and 

reorganization of the actin cytoskeleton to accommodate engulfment of fluid and 

nutrients from the extracellular milieu.160 Since vesicles of 0.5µm to 5µm form as a 

result, this pathway can also potentially take up carriers of large sizes and it’s 

involvement in uptake of various nanocarriers has been demonstrated.161 On the 

other hand, the uptake of nanocarriers via macropinocytosis is more difficult to 

control for drug delivery purposes, as it is often non-specific, and the intracellular 
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fate is variable but often involves acidification and shrinkage of the compartment, 

eventual delivery to lysosomes, or recycling to the cell surface.162 

 

 Clathrin-mediated endocytosis is perhaps the best characterized mechanism 

of endocytic transport and is also pinocytic (Figure C). It can be accessed with or 

without ligands targeted to molecules such as transferrin receptor (TfR), vascular 

cell adhesion molecule 1 (VCAM-1), αvβ3 integrin, LDL receptor, selectins, and 

many others.3 Binding of the target receptors on the cell surface induces uptake by 

forming invaginations on the plasma membrane with the aid of a clathrin coat, and 

endocytosed material is delivered initially to endosomes with subsequent recycling 

to the cell surface, delivery to lysosomes, or transcytosis.20,163 Clathrin-mediated 

endocytosis is ubiquitous to most cells which can be useful in applications where 

endocytic transport in multiple cell types may be necessary (e.g. sequential transport 

across the blood-brain barrier, followed by endocytosis in parenchymal cells).164 

However, a disadvantage is that the size of internalizable ligands via clathrin-

mediated endocytosis is limited to ~100-150 nm, restricting internalization to 

monovalent drug conjugates and carriers below this size.162  

 

 Caveolae-mediated endocytosis is pinocytic and can be accessed with or 

without the use of targeting ligands. Endocytosis via caveolae can be triggered as 

result of binding to molecules such as aminopeptidase N and P, gp60, and others.3 

Caveolae are distinctive, flask-shaped invaginations on the plasma membrane and 

are prevalent in endothelial cells.165,166 Endocytosis via caveolae presents an 
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advantage primarily because it results in transport to a sorting compartment known 

as the caveosome with subsequent transcytosis to the basolateral surface.167 This 

along with the observation that transcytosis is more common to caveolae- than 

clathrin-mediated endocytosis,3 make this pathway advantageous for crossing 

cellular barriers. Similar to clathrin-mediated endocytosis, however,  the size of 

internalizable ligands is restricted by lack of accessibility of target receptors due to 

their location deep within caveolar invaginations, or because the size of caveolar 

vesicles is limited to ~70 nanometers.3  

 

 Non-classical pathways such as flotillin-, cdc42-, RhoA, and Arf6-dependent 

pathways can also be utilized.161 These pathways are involved in transport of cargoes 

such as simian virus 40, cholera toxin, glycosylphosphatidylinositol (GPI)-linked 

proteins, interleukin-2, and growth hormones.161 Nanomaterials utilizing these 

mechanisms have been documented in rare cases, such as macromolecules modified 

to target folate.161 

 

  In certain cases, endocytic pathways which have not been described to be 

constitutive can be induced by binding of receptors even when these are not 

commonly associated with endocytic transport. This is the case for intercellular 

adhesion molecule-1 (ICAM-1) or platelet-endothelial cell adhesion molecule-1 

(PECAM-1), where binding of targeted nanocarriers or conjugates to multiple copies 

of the receptor induces endocytosis via an uncommon pathway termed cell adhesion 

molecule-mediated endocytosis (CAM)-mediated endocytosis.168 Polymer 
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nanocarriers targeted ICAM-1 or PECAM-1 have been observed to use this 

mechanism of endocytic transport.168-173 The advantages of CAM-mediated 

endocytosis include presence in several cell types, including endothelial, epithelial, 

macrophages, fibroblasts, neurons, etc.3 Endocytosis via the CAM pathway can 

accommodate uptake of carriers up to 5 microns in size and, enables slow transport 

to lysosomes, which can be exploited to prolong activity of therapeutics before 

degradation,169 or enables transcytosis.19 The disadvantages of CAM-mediated 

endocytosis include relatively little knowledge of the precise mechanics of endocytic 

transport and fate in subcellular compartments, and also that targeting ICAM-1 or 

PECAM-1 may result in broad distribution in tissues which is unwanted for certain 

applications (e.g. delivery of cytotoxic agents). 

 

 As mentioned above, several endocytic pathways allow transcytosis which 

enables vesicular transport across cell barriers (e.g. the blood-brain barrier) to reach 

target sites in the tissue parenchyma.174 Transcytosis can occur as a result of uptake 

via the fluid phase, or can be receptor-mediated where the target molecule is bound 

at the apical cell surface, endocytosed, and transported across the cell to the 

basolateral cell surface via vesicular trafficking.174 An advantage of transcytosis is 

that it can allow transport without disrupting cell junctions. Opening of cell junctions 

can induce toxicity due to concomitant transport of substances in the extracellular 

milieu. Certain molecules associated with clathrin-mediated endocytosis, such as 

TfR, LDLR, and insulin receptor are known to enable transcytosis,3,174 but 

transcytosis via caveolae also occurs via ligand binding and is more common.3 As 
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with intracellular delivery, a significant drawback of these routes is that uptake is 

restricted by size which limits the potential transport of nanocarriers. Transcytosis 

via CAM-mediated endocytosis may provide a preferable alternative as intracellular 

uptake of relatively larger carriers is accomodated.175  

 

 Transport via paracellular routes (i.e. between cells)  is also possible, but 

requires disruption of tight junctions linking adjacent cells (Figure D). This can be 

done transiently with certain nanocarriers (e.g. dendrimers) or by using 

hyperosmotic solutions, vasoactive agents, ultrasound, solvents, or stabilizers.5 

However, these strategies are transient and local, and can be invasive or damaging 

due to toxic effects associated with induction of barrier permeability. Finally, 

carrier-mediated transport and passive diffusion are other potential routes of 

transport across cells, but are limited to small molecules.  

 

 

Figure D. Transport across cellular barriers.  
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2.6. Targeting and Endocytosis of Nanocarriers: Role of Size and Valency 

With regard to targeting and transport of agents, the targeting valency (number of 

ligands utilized) and size of nanocarriers have an impact on most aspects of 

pharmacokinetics. One clear advantage of targeted nanocarriers over simple 

conjugation of an agent to an affinity moiety is that the design is amenable to 

modifications which add functionality or improve the pharmacokinetic profile (e.g. 

nanocarriers shape, structure, surface coatings, etc). Multivalent display of targeting 

ligands on the nanocarrier surface can also affect drug delivery on several levels. For 

example, multivalency can accelerate clearance from the circulation by increasing 

recognition by cells of the reticuloendothelial system.176 This is very apparent in the 

case where antibodies, recognizable by their Fc region, are used as targeting 

ligands.176 Avidity for the target receptor is enhanced by ligand multivalency which 

can, in turn, enhance binding.3 This is particularly important in vivo, where 

physiological factors such as shear stress from the flow of blood, or competition for 

the target epitope with endogenous ligands can work against effective targeting.3  

Yet, multivalency may also enhance binding to off-target sites, which, despite lower 

expression of the target, may be amplified by higher avidity for the target receptor 

than monovalent drug conjugates.3 Regarding internalization, binding multiple target 

molecules on the cell surface may enhance nanocarrier internalization. For example, 

in the case of ICAM-1 targeting, only multivalent binding with ICAM-1-targeted-

nanocarriers, but not free anti-ICAM, enables endocytosis.168 Multivalency can also 

affect subcellular transport as has been observed for the slow trafficking to 

lysosomes of multivalent transferrin oligomers versus monomeric transferrin.177 



 

31  

Multivalency may also enhance adhesion to components of the extracellular matrix 

within tissues, but this has not been examined. Therefore, the behavior of a targeting 

moiety when coupled to a nanocarrier may be completely different from  that 

observed from the naked targeting moiety. 

 

 The size of the nanocarrier also affects delivery on many levels. Size is 

inversely correlated with the rate of clearance from the circulation, due to increased 

adsorption of opsonins and subsequent recognition by macrophages in the spleen and 

liver.18 Steric hindrance can lower the ability of nanocarriers to bind the target 

receptor which may also depend on the expression level and location of the the target 

receptor on the plasma membrane.3,129,178 This is particularly apparent when the 

target epitope is proximal to the plasma membrane, affecting binding of nanocarriers 

to the target receptor.179 Intracellular transport of targeted nanocarriers also seems to 

be affected by size, e.g. in the case of targeting to ICAM-1, micron-sized spheres 

reach the lysosomes at a slower rate than submicron-sized counterparts.175 In 

addition, size may restrict internalization via certain pathways altogether.180 Larger 

size also lowers the ability of nanocarriers to diffuse to the target site, yet lymphatic 

drainage may also be lower.3 Therefore, nanocarrier size effects may be offset by 

comparatively greater retention in tissues than smaller drug conjugates.  

 

 Overall, size and valency have advantages and disadvantages which cannot 

be predicted a priori, and therefore must be evaluated empirically according to the 

particular target, cell type, carrier, pathological status, and therapeutic intervention.3  
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2.7. Combination Targeting 

Apart from valency and size described above, targeting can also be modulated by 

combination targeting of nanocarriers. Combination targeting is an emerging 

approach for drug delivery to enhance or improve control over the distribution of 

nanomaterials in the body. It is seen in nature with infectious pathogens and cells of 

the immune system which interact with multiple cell-surface receptors to adhere to 

and induce transport into cells or across cellular barriers.10,21 Combination targeting 

strategies have also arisen in targeted drug delivery, providing new approaches to 

enhance and optimize delivery of therapeutics and imaging agents for a number of 

applications.  

 

 One of the most studied examples of combination-targeting is that of 

targeting multiple CAMs expressed on the vascular endothelium.12,23,30,181-187 

Endothelial CAMs consist of selectins (E- or P- selectin) and immunoglobulin-like 

CAMs (ICAM-1, PECAM-1, and vascular cell adhesion molecule-1, VCAM-1) 

which are involved in the adhesion and transmigration of leukocytes to sites of 

inflammation.21 Selectins mediate the initial tethering and rolling interactions of 

leukocytes on the endothelial surface by forming relatively weak, catch-slip bond 

interactions, while Ig-like CAMs mediate firm adhesion and transmigration of 

leukocytes across the endothelial border by engaging in stronger binding 

interactions.21 An important application of targeting CAMs is delivery of 

pharmaceutical agents to the vascular endothelium which is involved in the 

pathogenesis of many diseases.188 Nanocarriers have been targeted to particular 
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CAMs in order to enhance delivery of imaging and therapeutic agents in many 

contexts, including treatment of inflammation, cancer, atherosclerosis, arthritis, 

thrombosis, and lysosomal storage disorders.21 CAMs provide endocytosis into 

endothelial cells via clathrin-mediated (E- or P- selectin, VCAM-1)189-192 or CAM-

mediated (ICAM-1 and PECAM-1)168 endocytosis, respectively. The endothelium is 

also a critical barrier restricting transport from the circulation to the organ 

parenchyma. ICAM-1 and VCAM-1 have been shown to enable transport of 

nanocarriers across endothelial or epithelial cells via transcytosis which may provide 

a useful means to deliver nanocarrier cargo from the bloodstream to extravascular 

tissues.19,193 

 

 Although a relatively nascent strategy, combination targeting of CAMs has 

been explored in several contexts. For example, microparticles carrying iron oxide12 

or fluorescent probes,182 perfluorocarbon-filled microbubbles,23,30 or gold 

nanorods187 have been used in imaging, and polymerosomes,186 

immunoliposomes,184,185 or PLGA microspheres181 have been developed for  drug 

delivery applications. These examples emulate adhesive properties of leukocytes by 

combining targeting to an endothelial selectin and an Ig-like CAM.12,23,30,181-187 

Simultaneous targeting to these molecules is beneficial, as demonstrated for 

microspheres functionalized with sialyl Lewis(X) and anti-ICAM, for which certain 

ligand-receptor ratios and flow shear rates allowed binding only through interaction 

with both receptors, enhancing selectivity.181 Targeting polymerosomes to P-selectin 

and ICAM-1 also enhanced binding over single-targeted counterparts and improved 



 

34  

selectivity toward inflammation,186 and combined P-selectin/VCAM-1 targeting 

seemed to improve binding of microbubbles in receptor-coated flow chambers.23 

These “leukomimetic” approaches are being explored for treatment and/or diagnosis 

of inflammation, atherosclerosis, and cancer. Combination-targeting to molecules 

with different function has also been examined in particular contexts, and has been 

shown to enhance transport to tumor areas,13,194,195 improve site selectivity,14 and 

enhance delivery to multiple cell types within the tumor environment.7   

 

 On the other hand, targeting nanocarriers to multiple epitopes of the same 

receptor is completely unexplored.  Epitope dependent targeting has been observed 

for nanocarriers targeted to single receptors. Binding, endocytosis, and lysosomal 

transport of PECAM-1-targeted nanocarriers were shown to depend on the epitope 

targeted.179 Epitope selection is important for lung accumulation and induced 

cleavage of anti-ACE,131,196 and brain selectivity of anti-TfR.132 In addition, 

stimulation in vivo of PECAM-1 with an antibody subsequently enhanced lung 

accumulation of a second antibody or fusion conjugate.15  

 

 Interestingly, newer generations of nanocarriers are being developed to have 

spatially-segregated display of ligands on the nanocarrier surface.197,198 These 

“patchy” or janus nanoparticles may enable more precise control of ligand-receptor 

interactions  which could be utilized to optimize combination targeting strategies in a 

more rational manner. For example, ligands could be diplayed at varying distances 



 

35  

from one another, or in different patterns on the nanocarrier surface to develop 

control over targeting. 

  

 Translation of these strategies requires a good understanding of their impact 

on cellular binding, internalization and biodistribution in vivo. Yet, much remains to 

be done with regard to these areas. Targeting nanocarriers to multiple epitopes of the 

same receptor has never been examined in these contexts, and only a few examples 

have been published in the case of targeting receptors with similar or different 

function. Consequently, the behavior of nanocarriers with regard to these parameters 

and targeting strategies remains largely an open question.   

 

 The results presented in this dissertation provide insight into the performance 

of model polymer nanocarriers designed for combination targeting. Nanocarriers 

targeted to multiple receptors with similar function is investigated in the context of 

multi-CAM-targeting (Section 4.1). Nanocarriers are targeted to multiple Ig-like 

CAMs in single, dual- or triple-targeted combinations, and binding, internalization 

within cells, and biodistribution in vivo are evaluated. Combination targeting of 

polymer nanocarriers to different receptors is investigated next (Section 4.2) using 

ICAM-1 and TfR which are involved in leukocyte adhesion vs. iron transport. 

Finally, a novel approach for combination targeting is presented (Section 4.3) where 

polymer nanocarriers are targeted to multiple epitopes of the same receptor (e.g. TfR 

epitopes).  
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Section 3: Methods 

3.1. Materials  

Monoclonal antibodies used in the study were: mouse anti-human TfR clone T56/14 

from  EMD Millipore (Billerica, MA), rat anti-mouse TfR clone R17217 (hereafter 

referred to as R17) from Biolegend (San Diego, CA),132 rat anti-mouse TfR clone 

8D3 from Novus Biologicals (Littleton, CO),199 mouse anti-human ICAM-1 clone 

R6.5200 and rat anti-mouse ICAM-1 clone YN1 from ATCC (Manassas, VA),201 rat 

anti-mouse PECAM-1 clone MEC13 (BD Biosciences; San Jose, CA), and rat anti-

mouse VCAM-1 clone MK2 (Santa Cruz Biotechnology; Dallas, TX). ICAM-1-

targeting peptide, γ3 (NNQKIVNIKEKVAQIEA 37,202), was synthesized by United 

Biochemical Research (Seattle, WA). Transferrin (Tf) and secondary antibodies 

were from Molecular Probes (Eugene, OR). Recombinant human acid 

sphingomyelinase (ASM) was produced by our collaborator Dr. Schuchman (Mt. 

Sinai Hospital, NY) in chinese hamster ovary cells and purified as described.203 

Control rat and mouse IgG were from Jackson Immunoresearch (Pike West Grove, 

PA). Polystyrene particles were from Polysciences (Warrington, PA). Unless 

otherwise stated, all other reagents were from Sigma aldrich (St. Louis, MO). 

 

3.2. Iodination of Proteins 

Antibodies used to determine coating efficiency of antibodies on carriers or for in 

vivo studies in mice were labeled with 125I by adding ~20 µCi of 125I to 1 µg/µl of 

antibody and 2-3 iodination beads from Fisher Scientific (Waltham, MA) in a total 

volume of 100 µl of PBS for 3-5 min at room temperature. Iodogen pre-coated tubes 
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from Fischer Scientific (Waltham, MA) were also used in lieu of iodination beads 

for this procedure. Unincorporated 125I was removed by centrifugation at 1000g for 4 

min in a gel size exclusion column with 6,000 MW cutoff from Biorad (Hercules, 

CA). This column was prepared by inverting 2-3 times to homogenize the gel 

suspension, adding 2 ml of PBS to pack the column, and centrifuging at 1000g for 1 

min to remove PBS prior to adding the iodinated antibody. The concentration and 

activity of iodinated protein were determined by Bradford assay and measurement in 

a gamma counter, respectively. The percentage of free iodine remaining in solution 

was estimated by adding the 125I-antibody to 3% BSA and trichloroacetic acid (1 part 

in 6 v/v) which drives precipitation of the 125I-antibody but leaves free 125I in the 

supernatant fraction. Measurement of the activity of the supernatant relative to the 

total activity of the sample was used to determine the percentage of free iodine in 

solution. 

  

3.3. Preparation and Characterization of Antibody-coated Nanocarriers 

Model targeted polymer nanocarriers were prepared by coating ligands (Tf or γ3 

peptide) or antibodies onto the nanoparticle surface by adsorption. This results in a 

surface coating of antibodies which are randomly oriented on the nanocarrier 

surface, yet for all formulations tested this method resulted in specific binding 

relative to a control formulaton coated with non-specific IgG. As in our previous 

studies,134,175,204 and in order to avoid potential confounding results of concomitant 

nanoparticle degradation, we used model polystyrene nanoparticles which, after 

targeting with antibodies, have shown similar biodistribution than biodegradable 
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poly(lactic-co-glycolic acid) counterparts.205  This was done by incubating 0.7 mg 

antibody/mL with 9 x 1012 nanoparticles/mL for 1 h at room temperature, as 

described.206 Single-targeted nanocarriers contained only targeting moiety on the 

coat, i.e. control IgG (mouse or rat), Tf or anti-TfR (R17, 8D3, or T56/14), γ3 or 

anti-ICAM (YN1 or R6.5), anti-PECAM-MEC13, anti-VCAM-MK2, or a 1:1 mass 

ratio of control IgG and one of the targeting antibodies with valency of ~185-300 

antibodies per nanocarrier. Dual-targeted nanocarriers were coated by adding a 1:1 

mass ratio of anti-ICAM-YN1/TfR-R17, anti-TfR-R17/anti-TfR-8D3, anti-PECAM-

MEC13/anti-VCAM-MK2, or anti-ICAM-YN1/anti-PECAM-MEC13 which 

resulted in each antibody having a valency of ~99-154 antibodies per nanocarrier for 

a total of ~221-290 antibodies per nanocarrier. Triple-targeted nanocarriers were 

coated by adding a 1:1:1 mass ratio of anti-ICAM-YN1/PECAM-MEC13/VCAM-

MK2 with each antibody having a valency of ~67-92 antibodies per nanocarrier for a 

total of ~236 antibodies per nanocarrier. Nanocarriers carrying a therapeutic enzyme 

contained a 1:1 mass ratio of ASM and total antibody component (single, dual, or 

triple) mix. For experiments in mice, nanocarriers contained 125I-IgG or 125I-ASM as 

tracers the enzymatic cargo. Uncoated counterparts were removed by centrifugation 

at 13,800 g for 3 min. Nanocarriers were then resuspended to a final concentration of 

~6.8 x 1011 nanocarriers/mL (cell cultures) or ~5.8x1012 nanocarriers/mL (mouse 

studies) in phosphate-buffered saline (PBS) containing 1% bovine serum albumin 

(BSA) (cell cultures) or 0.3% BSA (mouse studies). These solutions were sonicated 

with 15-30 short pulses (i.e < 1 second/pulse) using a probe sonicator to avoid 

aggregation. The final size, polydispersity, and zeta potential of nanocarrier 



 

39  

formulations were estimated by dynamic light scattering or laser doppler velocimetry 

of electrophoretic mobility, respectively (Malvern Zetasizer, Worcestershire, UK). 

The coating density was assessed by preparing nanocarriers with 125I-labeled 

antibody and measuring the 125I content of the coated nanocarrier suspension in a 

gamma counter (PerkinElmer Wizard2, Waltham, MA). For dual or triple targeted 

formulations, only one of the antibodies was labeled per preparation to detect the 

valency of each antibody individually. The number of antibodies per nanocarrier 

were calculated as follows:  

 

Where NC = nanocarriers and CPM = counts per minute. 

 

3.4. Cell Culture 

Pooled human umbilical vein endothelial cells (HUVECs) from Lonza 

(Walkersville, MD) were seeded onto gelatin-coated coverslips and cultured at 37°C, 

5% CO2, and 95% relative humidity. Cells (3-4 passages) were grown in M-199 

medium supplemented with 15% fetal bovine serum (FBS), 2 mM glutamine, 

15 µg/ml endothelial cell growth supplement, 100 µg/ml heparin, 100 µ/ml 

penicillin, and 100 µg/ml streptomycin. Murine heart ECs (H5V)207 were seeded 

onto gelatin-coated coverslips at 37°C, 5% CO2, and 95% relative humidity in 

DMEM medium supplemented with 10% FBS, 2 mM glutamine, 100 µg/ml 

penicillin, and 100 µg/ml streptomycin. When indicated, pathological activation of 
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ECs was mimicked by 16-20 h incubation at 37oC with 10 ng/ml tumor necrosis 

factor alpha (TNFα). 

 

3.5. Binding Studies  

Cells were washed with basal cell medium (pre-warmed to 37oC, all washing steps 

involved 3 washes and 1 mL volume) before the nanocarrier incubation period to 

remove cellular debris. Control or TNFα-activated ECs were incubated with naked 

antibodies (~16.7 µg/ml) or antibody-coated carriers (~5 µg antibody/ml and 6.8 x 

1010 particles/ml) in cell medium at 37oC. The particular incubation times are 

specified in each figure legend. Following this incubation, cells were washed three 

times with 1 mL basal cell medium to remove unbound nanocarriers and fixed with 

cold 2% paraformaldehyde (PFA) for 15 min at room temperature. Where indicated, 

cells were fixed prior to incubation at room temperature with naked antibodies or 

antibody-coated nanocarriers, in order to examine binding in the absence of cellular 

activity (and consequently endocytosis).   

 

 Binding of naked antibodies on cells was detected by immunostaining with 

FITC-labeled secondary antibodies (goat anti-mouse or goat anti-rat IgGs). To detect 

antibodies both bound to the cell surface and internalized, cells were first washed to 

remove excess PFA, permeabilized with 0.2% Triton X-100 for 15 min at room 

temperature, washed, and subsequently stained with FITC-labeled goat anti-rat IgG. 

No additional staining was required to detect antibody-coated carriers since FITC is 

contained within the polymer matrix. Cell nuclei were stained with 4',6-diamidino-2-
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phenylindole (DAPI) for 5 min at room temperature prior to mounting onto slides 

with MOWIOL. 

 

 Fluorescence microscopy images were taken using an Olympus IX81 

microscope (Olympus, Inc., Center Valley, PA), ORCA-ER camera (Hamamatsu, 

Bridgewater, New Jersey), 60x objective (Olympus Uplan Apo F LN; Olympus) and 

FITC-optimized filter from Semrock (Rochester, NY, excitation BP460-490 nm, 

dichroic DM505 nm, emission BA515-550 nm). Images were acquired with 

SlideBook 4.2 (Intelligent Imaging Innovations, Denver, Colorado) and analyzed 

using Image-Pro 6.3 (Media Cybernetics, Inc., Bethesda, MD) to estimate antibody 

binding (mean fluorescence intensity),208 carriers bound per cell168 (number of 100–

200 nm fluorescent objects), or specificity index (e.g. targeting of antibody over 

control IgG or targeting of antibody-coated carriers over control IgG-coated 

carriers). Phase-contrast images were used to delimit the cell borders. 

 

3.6. Imaging of Endothelial Engulfment Structures  

To examine initial stages of carrier engulfment, HUVECs were incubated for 15 min 

at 37oC with anti-ICAM carriers or anti-TfR carriers, where carrier particles were 4.5 

µm to allow detailed visualization of engulfment structures.173 After washing 

unbound carriers, cells were fixed, permeabilized with 0.2% Triton X-100, and 

immunolabeled to detect enrichment of sodium proton exchanger 1 (NHE1) or 

clathrin heavy chain (which are partners associated to CAM vs. clathrin pathways)173 

at sites of carrier binding.  
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3.7. Endocytosis Studies  

Control or TNFα-activated ECs were incubated with antibodies (~16.7 µg/ml) or 

antibody-coated carriers (~5 µg antibody/ml and 6.8 x 1010 particles/ml) ub cell 

medium as specified above. Iincubation times and temperatures are specified in 

figure legends. Cellular internalization was tested at 37oC, which is physiological 

temperature for eukaryotic cells. Following the incubation period, cells were fixed 

with PFA for 15 min at room temperature.  

 

 To detect targeting antibodies on the cell surface, cells were stained for 30 

min at room temperature with 6 µg/ml Texas-Red-labeled goat anti-mouse or goat 

anti-rat IgGs (which can bind to the Fc region of the targeting antibody), in PBS 

containing 1% BSA to block non-specific binding. Cells were then permeabilized 

with 0.2% Triton X-100 for 15 min at room temperature and subsequently incubated 

with 15 µg/ml FITC-labeled goat anti-mouse or goat anti-rat IgGs in 1% BSA PBS 

for 30 min at room temperature to stain both surface + internalized targeting 

antibody. In the case of antibody-coated nanocarriers, cells were stained with Texas-

Red-labeled goat anti-rat or goat anti-mouse IgGs to label nanocarriers present on 

the cell surface,168 while all cell associated nanocarriers (surface + internalized) had 

intrinsic green signal due to FITC-fluorophore embedded within the polymer matrix. 

Cell nuclei were stained with DAPI for 5 min at room temperature prior to mounting 

onto slides with MOWIOL.  
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 Fluorescent microscopy was used to distinguish internalized materials as 

FITC single-labeled antibodies or carriers from surface-bound materials appearing 

yellow due to Texas-Red + FITC double-labeling. Images from each fluorescence 

channel were acquired (Texas-Red filter from Semrock (Rochester, NY), excitation 

BP360-370 nm, dichroic DM570 nm, emission BA590-800+ nm), merged, and 

analyzed using Image-Pro 6.3 to estimate the percentage of nanocarriers internalized 

per cell (% internalization) and the total number of nanocarriers internalized per 

cell.168 Percent internalization was calculated as the number of internalized materials 

divided by the signal for total cell-associated counterparts. Phase-contrast images 

were used to delimit cell borders.  

 

3.8. Biodistribution Studies in Mice 

Anesthetized C57BL/6J male mice (aged ~2-5 months and weighing ~20 – 30 g) 

were injected intravenously (28 G) via the jugular vein with 125I-labeled 

antibodies or antibody-coated nanocarrier counterparts (~1.3 mg total antibody/kg 

body weight, ~1.8 x 1013 particles/kg). Antibodies were directly labeled with 125I, 

while trace amounts of 125I-IgG (i.e. 0.03-0.24 µCI, ≤ 5% of total antibody) were 

used on the particle coat to enable detection in a gamma counter. This is particular 

useful for monitoring particle targeting upon administration because the distribution 

of non-specific IgG is clearly distinguishable from nanocarriers coated with targeting 

antibodies. For experiments involving a therapeutic cargo, mice were injected with 

125I-labeled ASM as a naked counterpart or coated on ∼250 nm antibody-coated 

particles (~0.7 mg ASM/kg body weight, ~1.8 x 1013 particles/kg). Blood samples 
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were collected by penetrating the retro-orbital sinus with a capillary tube (~50-100 

µl collected per sample) at 1, 15, and 30 min after injection, and organs (kidneys, 

spleen, heart, lungs, liver, and brain) were harvested at 30 min following euthanasia 

by cervical dislocation under anesthetic. 125I content and weight of samples were 

determined to estimate the localization ratio (LR) and specificity index (SI). LR 

represents the percent of injected dose accumulated per gram of tissue (%ID/g) 

divided by the %ID/g in blood, to account for differences in organ size and 

circulating nanocarriers.134 The SI is calculated as the LR of targeted formulations 

divided by the LR of non-targeted counterparts (IgG NCs or naked ASM) and 

represents specific targeting.134 These studies complied with IACUC (protocols R-

13-15, R-10-22, R-09-54), University of Maryland regulations, and the Guide for 

Care and Use of Laboratory Animals of the U.S National Institutes of Health. 

 

3.9. Statistics  

Data were calculated as mean ± S.E.M, where statistical significance was determined 

as p≤0.05 by Student’s t-test (2-tailed distribution designed for two samples of equal 

variance (i.e. homoscedastic)). Animal experiments were performed using replicates 

of ≥3 mice per experiment (except for injection of anti-PECAM in control mice or 

anti-ICAM/ASM NCs, anti- TfR/ASM NCs, or free ASM in mice pre-treated with 

LPS where n = 2). Cell culture experiments were performed by using ≥ 105 

cells/well, duplicate wells per condition, and at least 2 repeats. Images were 

randomly taken through the entire coverslip, from which ≥ 15 cells per sample were 

selected randomly and analyzed.  
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Section 4: Results and Discussion   

4.1. Combination Targeting to Multiple Receptors with Similar Functions 

Similar to the interactions of infectious pathogens or leukocytes with multiple cell-

surface markers in nature, combination targeting may enhance accumulation and/or 

precise control of nanocarriers. Targeting nanocarriers to multiple receptors with 

similar function (e.g. involved in a common process or event) was examined in a few 

previous studies mainly in the context of cellular binding of carriers addressed to 

multiple CAMs (see Background: combination targeting).12,23,30,181-187 These 

examples aimed at emulating the adhesive properties of leukocytes by targeting a 

selectin and an Ig-like CAM, which mediate leukocyte rolling and firm adhesion, 

respectively.12,23,30,181-187 Future translation of these strategies, however, requires a 

good understanding of their impact in vivo, where the data are scarce, yet promising. 

For example, targeting iron oxide microparticles to P-selectin/VCAM-1 enhances 

adhesion to aortic root endothelium in a mouse model of atherosclerosis.12 Targeting 

fluorescent microspheres to P-selectin/ICAM-1 enhances adhesion and detection of 

ocular inflammatory disease in the choroidal or retinal microvasculature.182 However, 

to our knowledge the in vivo performance of nanocarriers targeted to multiple CAMs 

has not been examined for submicrometer carriers, a size more amenable for 

intracellular drug delivery applications.3 In addition, combination targeting to CAMs 

involved solely in leukocyte firm adhesion (vs. those encompassing rolling and firm 

adhesion) has never been tested. In addition, the impact of this combination targeting 

strategy in terms of its potential for intracellular transport is unknown and critical, as 

4.1.1. Introduction 
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many therapeutics require delivery to intracellular compartments. For example, the 

effects of targeting multiple CAMs associated to the same versus different endocytic 

pathways or located in different regions of the plasma membrane have not been 

examined. Finally, the comparative impact of dual vs. triple combination-targeting to 

CAMs is an open question which holds relevance since it better reflects the 

multiplicity of interactions between leukocytes and the endothelium.   

 

 We selected ICAM-1, PECAM-1, and VCAM-1 to test the hypothesis that 

targeting polymer nanocarriers to multiple Ig-like CAMs with similar function 

(namely, firm adhesion and extravasation of leukocytes) modifies nanocarrier 

delivery in terms of binding to cells, endocytosis, and biodistribution. These three 

receptors differ in expression level, cell-surface location, pathological stimulation, 

and/or cell uptake pathway, all of which can affect greatly these parameters. For 

instance, ICAM-1 and VCAM-1 are predominantly located on the luminal surface of 

endothelial cells, while PECAM-1 is enriched at the cell borders.21 In control 

conditions VCAM-1 expression is very low, followed by ICAM-1, and much higher 

expression of PECAM-1.21 VCAM-1 and ICAM-1 expression are enhanced by 

cytokines and other pathological stimuli, while PECAM-1 remains relatively 

stable.21 ICAM-1 and PECAM-1 mediate endocytosis of both nano- and micron-

sized carriers via non-classical CAM-mediated endocytosis,168 whereas VCAM-1 

enables uptake by clathrin-mediated endocytosis,189 which is more size-restrictive 

(≤200-nm).162,208 The effects of these differences are described in the next section.  
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We first tested binding and endocytosis of nanocarriers single-targeted to ICAM-1, 

PECAM-1, or VCAM-1. Polysytyrene nanospheres were utilized as model polymer 

nanocarriers due to their stability which avoids confounding results of concomitant 

nanocarrier degradation (see Methods). Nanocarriers coated with non-specific IgG or 

with antibodies targeted to PECAM-1 (anti-PECAM NCs), VCAM-1 (anti-VCAM 

NCs), or ICAM-1 (anti-ICAM NCs) displayed  similar valency (∼240-270 

antibodies/NC), size ∼220-330-nm diameter, polydispersity ∼0.2-0.3, and zeta 

potential of ∼-27 - -33 mV, with anti-PECAM NCs somewhat larger in size (Table 

1). The literature values reported for the affinity of antibodies directed to ICAM-1 or 

PECAM-1 ranged from 0.5-8.5 nm,15,205 while the affinity of the antibody directed to 

VCAM-1 is to our knowledge unpublished.  

4.1.2. Binding and endocytosis of antibody-coated nanocarriers single-targeted to 

ICAM-1, PECAM-1, or VCAM-1 

Table 1. Characterization of CAM-targeted nanocarriers 
Nanocarrier 

coating 
Size 
(nm) 

PDI ZP 
(mv) 

Coating valency 
(Ab/NC) 

Uncoated NCs 143±18 0.05±0.05 -37.6±1.8  
 Single:    

IgG NCs 238±8.3 0.17±0.02 -27.2±17 240±25 
Anti-ICAM NCs 217±3.5 0.14±0.01 -33.0±3.3 273±37 
Anti-PECAM NCs 333±26 0.26±0.04 -31.0±2.3 250±4.5 
Anti-VCAM NCs 226±10 0.17±0.02 -30.3±0.1 239±22 

Dual:     
Anti-ICAM/ 
PECAM NCs 

268±22 0.17±0.04 -33.0±1.6  ICAM:            
132±6.7 

PECAM: 
123±6.4 

Anti-PECAM/                                                    
VCAM NCs 

251±10 0.19±0.01 -32.2±1.4  PECAM:         
101±26 

VCAM: 
120±0.3 

 Triple:     
Anti-ICAM/PECAM/ 
VCAM NCs 

257±16 0.19±0.03 -32.6±4.9    ICAM:     PECAM:     VCAM: 
    92±0.2      67±20.9       77±18.2 

Data are Mean±S.E.M. Ab = antibody; NC = nanocarrier; PDI = polydispersity; ZP = zeta 
potential. Antibody clones were YN1 (ICAM-1),  MEC13 (PECAM-1), MK2 (VCAM-1).  
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 Binding of anti-ICAM NCs was efficient in control ECs (38-fold over control 

IgG NCs), and increased significantly (85-fold over control IgG NCs) in activated 

ECs (Figure 1). This parallels activation of ICAM-1 expression in disease conditions 

where, for example, endothelial expression is on the order ~105-106 receptors per 

cell in comparison to 104 receptors per cell in physiological conditions.21 Anti-

PECAM NCs displayed higher binding than anti-ICAM NCs in control cells (93-fold 

over IgG NCs) and similar binding to anti-ICAM NCs in activated ECs (110-fold 

over IgG NCs) which paralleled relative expression levels of ICAM-1 and PECAM-

1 in disease conditions.155 In control conditions PECAM-1 expression on 

endothelium is on the order of 106 molecules per cell, which remains fairly stable 

under pathological activation of the endothelium.21 On the other hand, anti-VCAM 

NCs displayed the lowest binding in both control and activated ECs, in agreement 

with comparatively lower expression of VCAM-1 in control vs. inflammatory 

conditions (103 vs. 104-5 receptors per cell, respectively).21,209 

 

 Nanocarriers targeted to ICAM-1, PECAM-1, or VCAM-1 were efficiently 

endocytosed by ECs (Figure 1c-d). The fraction of nanocarriers endocytosed by cells 

relative to the total number of cell-associated nanocarriers (which reflects 

endocytosis efficiency or rate) was ~75-85% at 1 h in control cells (Figure 1c).
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Figure 1. Binding and internalization of nanocarriers targeted to ICAM-1, PECAM-1, or VCAM-1. (a) Fluorescent images of 

nanocarrier binding and internalization tested after incubation for 1 h at 37 °C in TNFα-activated H5V cells, and analyzed by 

fluorescence microscopy to assess the: (b) number of nanocarriers per cell (NCs/cell) and specificity index (SI), (c) percent of 

internalized nanocarriers per cell, and  (d) total nanocarriers internalized per cell for each formulation. Internalized carriers appeared 

green due to single-labeling with FITC, while surface-bound carriers appeared yellow due to FITC + Texas-Red double-labeling. 

Phase-contrast images were used to delimit cell borders (dashed lines).Scale bar is ~ 10 µm. Control IgG NCs are shown as a line in 

(b). Data are mean ± S.E.M. * Compares control vs. TNFα for each formulation, ! compares anti-PECAM NCs to anti-VCAM NCs, # 

compares to anti-ICAM NCs. * ,# represents p < 0.05 by Student’s t-test. 
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The rate of endocytosis in control condition was similar for anti-ICAM NCs and anti-

PECAM NCs with both displaying modestly lower rate than anti-VCAM NCs. Yet, in 

terms of total nanocarrier internalization (Figure 1d), targeting PECAM-1 or ICAM-1 

was similarly more efficient than targeting VCAM-1 in control or activated cells. In 

activated ECs, the internalization rate was similar for anti-ICAM NCs and anti-

VCAM NCs which was higher than for anti-PECAM NCs. This may reflect 

differences in receptor location where receptor-mediated endocytosis is somewhat 

slower via receptors present at cell borders versus receptors present on the cell 

surface. As with modulation of ICAM-1, VCAM-1,  and PECAM-1 expression levels 

in disease, the bulk number of internalized nanocarriers increased significantly in 

activated ECs for anti-ICAM NCs and anti-VCAM NCs, but not anti-PECAM NCs. 

 

We next examined combination-targeting to PECAM-1 and VCAM-1, which differ 

the most with regard to expression level, location, and response to pathology.21 Anti-

PECAM/VCAM NCs had equal amount of anti-PECAM and anti-VCAM on the 

carrier surface (Table 1), with a total added valency similar to that of parent single-

targeted NCs. The size, polydispersity, and zeta potential of anti-PECAM/VCAM 

NCs was also within the range of that observed for parent counterparts and control 

IgG NCs (Table 1).  

4.1.3. Binding and endocytosis of antibody-coated nanocarriers dual-targeted to 

PECAM-1 and VCAM-1 
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Figure 2. Binding and internalization of nanocarriers targeted to PECAM-1 and/or VCAM-1 in ECs. FITC-labeled nanocarriers were 

incubated for 1 h at 37oC with control or TNFα-activated H5V cells. Cells were then washed, fixed, and surface-bound nanocarriers 

where immunostained with a Texas-Red secondary antibody. Internalized carriers appeared green due to single-labeling with FITC, 

while surface-bound carriers appeared yellow due to FITC + Texas-Red double-labeling.  Images were quantified by fluorescence 

microscopy to determine: (a) the number of nanocarriers per cell and specificity index, (b) the percentage of internalized nanocarriers, 

and (c) total internalized nanocarriers per cell. Data are mean ± S.E.M.  * Compares control vs. TNFα for each formulation, ! 

compares anti-PECAM NCs to anti-VCAM NCs, # compares single-targeted formulation to dual-targeted counterparts. *, #, ! 

represents p < 0.05; by Student’s t-test. 
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 Binding of anti-PECAM/VCAM NCs to control ECs was intermediate 

compared to single-targeted anti-PECAM NCs or anti-VCAM NCs, and this was also 

the case for activated ECs (Figure 2a).  Intermediate binding of anti-PECAM/VCAM 

NCs differs from the behavior previously reported relative to carriers dual-targeted to 

selectins and Ig-like CAMs, which synergistically enhanced binding relative to the 

single-targeted counterparts.23,181,186 It is difficult to compare these strategies because 

most particles used in those studies were in the micrometer-size range versus the 

submicrometer counterparts used here. Yet, in another study E-selectin/ICAM-1 

targeting was also shown to synergistically enhance binding of submicrometer 

liposomes.184 The intermediate level of binding of anti-PECAM/VCAM NCs could 

imply attachment only through PECAM-1, since dual-targeted nanocarriers have 50% 

valency towards the receptor compared to single-targeted nanocarriers. However, 

binding of anti-PECAM/VCAM NCs increased by ∼34% in challenged cells vs. 

control conditions (Figure 2a). This suggests that dual-targeted nanocarriers attach to 

both PECAM-1 and VCAM-1 on the cell surface, since only VCAM-1-targeting had 

shown increased binding of single-targeted nanocarriers to activated cells (Figure 2a). 

Hence, combination-targeting to PECAM-1/VCAM-1 may offer advantages over 

single-targeted formulations: it improves binding compared to VCAM-1-targeting 

and provides reduced attachment to control cells with enhanced binding toward 

diseased ones, compared to PECAM-1-targeting. 

 

 Regarding internalization, anti-PECAM/anti-VCAM NCS were internalized 

efficiently and the internalization rate was not significantly changed under 
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pathological stimulation (Figure 2b). Since PECAM-1 and VCAM-1 are associated 

with CAM-mediated and clathrin-mediated endocytosis, respectively, anti-

PECAM/VCAM NCs may be internalized via both pathways and result in 

intermediate rate of endocytosis compared to single-targeted counterparts. Yet, this 

remains to be determined. In addition, dual targeting modulated total nanocarrier 

uptake as the total number of internalized anti-PECAM/VCAM NCs was intermediate 

with respect to anti-PECAM NCs and anti-VCAM NCs in both control and activated 

conditions. The high endocytosis rates observed for these formulations implies that, 

binding (not rate of endocytosis) affects the capacity of anti-PECAM/VCAM NCs to 

modulate intracellular delivery, and, therefore, tuning targeting plays a key role in 

optimizing these drug delivery systems.   

 

We next tested combination-targeting to ICAM-1 and PECAM-1. These molecules 

have less different levels of expression compared to the previous combination (still 

higher for PECAM-1 but less different in control condition and on the same order of 

magnitude under pathology),21 and they both utilize the same endocytic pathway 

(CAM-mediated endocytosis) for nanocarrier uptake.168 Yet, as in the case of VCAM-

1 vs. PECAM-1, these molecules are also located on the cell lumen vs. border, 

respectively, and are overexpressed vs. unchanged in disease.21 Anti-ICAM/PECAM 

NCs had size, polydispersity, zeta-potential, and total valency within the range of all 

other formulations (Table 1).   

4.1.4. Binding and endocytosis of antibody-coated nanocarriers dual-targeted to 

ICAM-1 and PECAM-1 
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 Binding of anti-ICAM/PECAM NCs was first compared to anti-ICAM NCs 

and anti-PECAM NCs and as with the PECAM-1/VCAM-1 combination was found 

to be intermediate of single-targeted, parental formulations (Figure 3a). However, 

pathological stimulation with TNFα did not enhance binding of anti-ICAM/PECAM 

NCs to cells and, as a result, binding was lower than parental formulations which was 

a different behavior than observed with the PECAM-1/VCAM-1 combination.  This 

is in agreement with previous studies which have described that, although the level of 

expression and binding of naked anti-ICAM to ECs is markedly increased (∼50-100-

fold) by pathological activation, the level of binding of anti-ICAM NCs changes only 

minimally (∼2-4-fold). This is believed to be due to the fact that, although naked 

antibody can potentially interact with every ICAM-1 molecule on the cell surface, 

steric hindrances posed by bulkier nanocarriers may not allow binding to all available 

receptors.205 An analogous result was observed in the case of polymerosomes 

targeting ICAM-1, which showed similar binding in control versus TNFα 

conditions.186 If this is the case, then binding of anti-ICAM/PECAM NCs is expected 

to respond to activation even less than anti-ICAM NCs, since PECAM-1-targeting 

contributes to binding of anti-ICAM/PECAM NCs and this counterpart is not 

responsive to such stimulation. 
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Figure 3. Binding and internalization of nanocarriers targeted to ICAM-1 and/or PECAM-1 in ECs. FITC-labeled nanocarriers were 

incubated for 1 h at 37oC with control or TNFα-activated H5V cells. Cells were then washed, fixed, and surface-bound nanocarriers 

where immunostained with a Texas-Red secondary antibody. Internalized carriers appeared green due to single-labeling with FITC, 

while surface-bound carriers appeared yellow due to FITC + Texas-Red double-labeling. Images were quantified by fluorescence 

microscopy to determine: (a) the number of nanocarriers per cell and specificity index, (b) the percentage of internalized nanocarriers, 

and (c) total internalized nanocarriers per cell. Data are mean ± S.E.M.  * Compares control vs. TNFα for each formulation, ! 

compares anti-PECAM NCs to anti-VCAM NCs, # compares single-targeted formulations to dual-targeted counterparts. *,!,# 

represents p < 0.05 by Student’s t-test. 
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Contrary to anti-PECAM/VCAM NCs, anti-ICAM/PECAM NCs target two receptors 

associated to the same endocytic pathway, CAM-endocytosis. In control and TNFα-

activated cells anti-ICAM/PECAM NCs maintained high internalization of 

nanocarriers, as observed for nanocarriers single-targeted to ICAM-1 or PECAM-1 

(Figure 3b). Dual binding to ICAM-1 and PECAM-1 did not appear to alter the rate 

of endocytosis in control condition. However, unlike anti-ICAM NCs the 

internalization rate of anti-ICAM/PECAM NCs did not change in TNFα-activated 

ECs (Figure 3b). The total uptake of anti-ICAM/PECAM NCs was intermediate of 

anti-ICAM NCs and anti-PECAM NCs in control conditions and lower than both 

parents in TNFα-activated conditions (Figure 3c). This was expected because of the 

similarly high internalization rate of anti-ICAM/PECAM NCs compared with 

parental formulations. As a result and in common with anti-PECAM/VCAM NCs, the 

binding level primarily affected intracellular accumulation rather than differences in 

induction of endocytosis. 

 

We next compared dual targeted formulations with respect to one another and to 

nanocarriers triple-targeted to ICAM-1, PECAM-1, and VCAM-1 (anti-

ICAM/PECAM/VCAM NCs). Binding of anti-ICAM/PECAM NCs was significantly 

higher than anti-PECAM/VCAM NCs in control ECs (1.6-fold, Figure 4a) and 

similar in TNFα-activated ECs (0.93-fold, Figure 4a). This result pairs well with 

greater basal expression of ICAM-1 over VCAM-121 and also with greater binding of 

4.1.5. Binding and endocytosis of antibody-coated nanocarriers dual or triple-targeted 

to ICAM-1, PECAM-1, and/or VCAM-1 
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anti-ICAM NCs over anti-VCAM NCs as shown in Figure 1a. Therefore, the ICAM-

1/PECAM-1 combination displays better targeting to cells, while the PECAM-

1/VCAM-1 combination displays somewhat greater selectivity for diseased cells. 

 

 For both anti-PECAM/VCAM NCs and anti-ICAM/PECAM NCs, 

internalization was highly efficient and unaffected by activation of cells with 

TNFα (Figure 4b). Yet, the rate of endocytosis of anti-ICAM/PECAM NCs was 

somewhat lower than anti-PECAM/VCAM NCs (statistically significant). This is 

counterintuitive since both ICAM-1 and PECAM-1 mediate uptake of carriers by the 

same mechanism, while VCAM-1 and PECAM-1 associate to distinct routes.168,189 

However, it is plausible that simultaneous engagement of two receptors that use the 

same cell machinery for intracellular transport may result in a competition 

phenomenon, leading to decreased endocytosis. Germane to this speculation is that 

sequential stimulation with antibodies to ICAM-1 followed by PECAM-1 has been 

shown to inhibit ICAM-1-induced signaling in ECs, including RhoA activation and 

actin cytoskeletal rearrangement.168,210 The total number of internalized anti-

ICAM/PECAM NCs was greater than anti-PECAM/VCAM NCs in control and 

similar in TNFα-activated ECs (Figure 4c). Therefore, the ICAM-1/PECAM-1 

combination performs better in control conditions where expression of ICAM-1 

exceeds VCAM-1, but in pathophysiologically activated conditions the difference is 

diminished due to activation of VCAM-1 expression. Despite these interesting 

differences the endocytosis rates were high, hence, potential for intracellular delivery 

rather depended on the level of carrier binding. 
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Figure 4. Binding and internalization of nanocarriers dual- or triple-targeted to ICAM-1, PECAM-1, and/or VCAM-1 in ECs. FITC-

labeled nanocarriers were incubated for 1 h at 37oC with control or TNFα-activated H5V cells. Cells were then washed, fixed, and 

surface-bound nanocarriers where immunostained with a Texas-Red secondary antibody. Internalized carriers appeared green due to 

single-labeling with FITC, while surface-bound carriers appeared yellow due to FITC + Texas-Red double-labeling. Images were 

quantified by fluorescence microscopy to determine: (a) the number of nanocarriers per cell and specificity index, (b) the percentage 

of internalized nanocarriers, and (c) total internalized nanocarriers per cell. Data are mean ± S.E.M.  * Compares control vs. TNFα for 

each formulation, ! compares anti-PECAM NCs to anti-VCAM NCs, # compares single-targeted formulation to dual-targeted 

counterparts. *,#,! represents p < 0.05 by Student’s t-test.  
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We next tested nanocarriers triple-targeted to ICAM-1, PECAM-1, and 

VCAM-1 (anti-ICAM/PECAM/VCAM NCs). This is, to the best of our knowledge, 

the first time that triple-CAM targeting is examined.  The size, polydispersity, zeta 

potential, and total valency of these carriers were similar to that of all other 

formulations, with equal split of valency between anti-ICAM, anti-PECAM, and anti-

VCAM (Table 1).  

 

 Under control conditions, binding of triple-CAM targeted nanocarriers to ECs 

was significantly lower compared to either dual-targeted counterpart, including anti-

ICAM/PECAM NCs and anti-PECAM/VCAM NCs (2.3-fold and 1.5-fold lower, 

respectively; Figure 4a).  This is desirable for delivery of therapeutics where it is 

beneficial to selectively target sites of inflammation. It is possible that lowering the 

valency of targeting to ICAM-1 and/or PECAM-1 past a certain threshold (as 

occurred for the valency of triple- vs. dual-targeted counterparts) reduced the binding 

ability of this formulation, just as the binding capacity provided by anti-VCAM NCs 

was reduced in control conditions (in accord with expression). Binding of anti-

ICAM/PECAM/VCAM NCs markedly increased under pathological stimulation, 

reaching a comparable level to anti-ICAM/PECAM NCs and beyond anti-

PECAM/VCAM NCs (Figure 4a).  This suggests that increased expression of ICAM-

1 and/or VCAM-1 in TNFα-activated ECs can compensate for the reduced valency of 

the triple-targeted formulations. Importantly, triple-targeted nanocarriers showed the 

greatest difference in binding between control and TNFα-activated conditions (2.3-

fold, vs. 1.3-fold for anti-PECAM/VCAM NCs or 0.9-fold for anti-ICAM/PECAM 
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NCs), hence, providing the best selectivity toward disease sites without affecting the 

total number of bound nanocarriers per cell (Figure 4a). This finding pairs well with 

selectivity of natural combination-targeting of leukocyte integrins to multiple 

endothelial CAMs during inflammation.211  

 

 Furthermore, endocytosis of anti-ICAM/PECAM/VCAM NCs was 

comparable to anti-PECAM/VCAM NCs and slightly greater than anti-

ICAM/PECAM NCs in both control and TNFα-activated ECs (Figure 4b). As in the 

case of dual-targeted formulations, no change in the endocytic rate of anti-

ICAM/PECAM/VCAM NCs was observed when comparing control to disease 

conditions. This emphasizes the fact that endocytic potential of these formulations 

does not change regardless of absolute binding, at least for the valency ranges used 

here. This also suggests that concomitant attachment to VCAM-1 provided by the 

triple-targeted formulation modestly enhances endocytosis. This is in accord with our 

previous observation comparing dual-targeted carriers indicating that binding to 

CAMs associated to different vs. same endocytic route may be beneficial by relaxing 

the competition for the same cell signaling/machinery involved.  

 

 Overall, these results demonstrate that cell binding of nanocarriers 

functionalized to target multiple CAMs is dependent on the combination of targeted 

receptors utilized, physiological state of the cells, and dual- vs triple- targeted surface 

coating of nanocarriers.  As per intracellular transport, this is highly efficient 

regardless of multiplicity of targeting or patho-physiological conditions, and 
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somewhat endocytic pathway, with only slightly better results when targeting 

different endocytic mechanisms. Hence, the potential for intracellular delivery of 

these formulations is mostly controlled by the level of binding of the functionalized 

carriers.  

 
 

Differential accumulation of multi-CAM-targeted nanocarriers to cells in culture 

suggests that this surface functionalization strategy may also modify accumulation in 

organs in vivo. Yet, no previous in vivo studies have focused on combination-

targeting to multiple Ig-like CAMs (vs. selectins with Ig-like CAMs) involving 

nanocarriers (vs. micro-scale counterparts). Multi-CAM-targeted materials previously 

examined in vivo include microbubbles targeted to αvβ3-integrin/P-selectin/vascular 

endothelial growth factor receptor 2, which enhanced imaging intensity of MDA-MB-

231 tumors in mice.212 Also, P-selectin/ICAM-1 targeting enhanced adhesion of iron-

oxide microparticles to aortic endothelium in atherosclerosis model mice,12 or 

fluorescent microparticles to retinal and choroidal vessels in rats exposed to 

lipopolysaccharide.182 In addition, one cannot extrapolate the in vivo outcome based 

on results obtained in cell culture.206  

4.1.6. Biodistribution of antibodies vs. antibody-coated nanocarriers single-targeted to 

ICAM-1, PECAM-1, or VCAM-1 

 

 To confirm and comparatively assess targeting of anti-ICAM, anti-PECAM, 

and anti-VCAM in vivo, we first injected these antibodies as naked targeting moieties. 

We focused on brain, lungs, and liver (Figure 5) as examples of central nervous 



 

62  

system, peripheral, and clearance organs, respectively, and comprehensive data on the 

biodistribution of these formulations in all organs examined are presented in Table 2. 

Of the three targeting antibodies, anti-PECAM displayed highest accumulation and 

specificity (over IgG) in brain, lungs, liver, and other organs (Figure 5 a,b and Table 

2), which was expected because of much higher levels of PECAM-1 (highest) vs. 

ICAM-1 (intermediate) or VCAM-1 (lowest) expression in endothelium.21 Also in 

agreement with relative levels of expression, anti-ICAM and anti-PECAM displayed 

higher accumulation and specificity than anti-VCAM in the lungs and liver (Figure 5 

a,b), as well as other organs (Table 2). Only PECAM-1-targeting showed specificity 

in the brain (Figure 5 a,b), as anti-ICAM and anti-VCAM both had SI values near to 

1. Higher brain specificity of anti-PECAM vs anti-ICAM appears affected by factors 

beyond expression, as expression levels of PECAM-1 vs. ICAM-1 in brain has been 

reported to be fairly comparable  (~0.05 vs 0.06 mg antibody/g tissue in 213). 
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Figure 5. Biodistribution of antibodies targeted to ICAM-1, PECAM-1, or VCAM-1 in control mice. Mice were injected 

intravenously with 125I-labeled anti-ICAM, anti-PECAM, or anti-VCAM, and blood and organs were harvested at 30 min after 

injection. (a) The organ-to-blood localization ratio (LR) and (b) the targeted-to-untargeted specificity index (SI) over control IgG are 

shown for the brain, lungs, and liver (see Methods for details). Data are mean ± S.E.M.  ! Compares anti-PECAM to anti-VCAM; # 

compares each these formulation to anti-ICAM.  #,! represents p < 0.05 by Student’s t-test.  
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 We next compared the biodistribution of nanocarriers single-targeted to ICAM-1, 

PECAM-1, or VCAM-1 after intravenous injection in control mice (Figure 6, Table 2).  The 

greatest accumulation of anti-ICAM NCs was in the lungs (LR ~33), followed by the spleen (LR 

~20), and the liver (LR ~11).  Anti-PECAM NCs accumulated preferentially in the spleen (LR 

~25), followed by the lungs (LR ~16), and the liver (LR ~7).  Finally, anti-VCAM NCs were 

highest in the spleen (LR ~40), followed by the liver (LR ~24)  and the lungs (LR ~4).  Hence, 

the biodistribution of all three carriers differed (Figure 6a, Table 2).  

 

 Accumulation of anti-ICAM NCs was highly specific in lungs and brain, as evidenced by 

17.8-fold and 3.2-fold higher LR of anti-ICAM NCs relative to IgG NCs, respectively (SI, Figure 

6b), while less specificity was observed in other organs (Figure 6b, Table 2).  Anti-PECAM NCs 

had the greatest specificity in the lungs (SI ~8.8), followed by heart (~2.5), brain and kidney (SI 

~2.1), and lower specificity for other organs (Figure 6b, Table 2). In contrast, anti-VCAM NCs 

had greatest specificity in brain (~4.6), followed by kidney (3.0), and spleen (2.6) with lower 

specificity in other organs (Figure 6b, Table 2).  
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Figure 6. Biodistribution of nanocarriers single-targeted to ICAM-1, PECAM-1, or VCAM-1 in control mice versus lipolysaccharide 

(LPS)-treated mice. Mice were injected intravenously with 125I-labeled anti-ICAM NCs, anti-PECAM NCs, or anti-VCAM NCs, and 

blood and organs were harvested at 30 min after injection. LR (a)  and SI (b) are shown for the brain, lungs, and liver. (c) shows the 

fold-change in SI when utilizing a targeting antibody versus antibody-coated nanocarriers (ΔSI). (d) Shows the fold-change in LR as a 

result of LPS challenge (ΔLR). Data are mean ± S.E.M. ! Compares anti-PECAM NCs to anti-VCAM NCs; # compares each these 

formulation to anti-ICAM NCs; * compares each formulation in control versus mice treated with LPS.  *,#,! represents p < 0.05 by 

Student’s t-test. 
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 These results are partially in agreement with cell culture data. For instance, a 

good example reflective of endothelial targeting in vivo is the lungs. This is because 

the pulmonary vasculature constitutes approximately 20-30% of the total endothelial 

surface area in the body, is exposed to relatively low shear stress, and receives the full 

cardiac output.8 In agreement with binding data in cell cultures (Figure 1b), LR and 

SI of anti-VCAM NCs were lower in this organ compared to anti-ICAM NCs and 

anti-PECAM NCs. Yet, in contrast to cell culture, pulmonary accumulation and 

specificity of anti-ICAM NCs were higher compared to anti-PECAM NCs, whereas 

anti-PECAM counterparts displayed greater binding to cells (2.6-fold; Figure 1b). It 

is possible that higher ICAM-1 expression in vivo versus in cell cultures and/or 

reduced access to PECAM-1 located in the cell-cell borders21 due to a tighter 

endothelium in vivo may account for this difference. Indeed, PECAM-1 expression is 

more restricted to the cell-cell border region in ECs exposed to flow conditions 

(reflective of the in vivo situation) than in static cultures.16   

 

 Targeting each molecule with antibodies versus antibody-coated nanocarriers 

greatly and differentially affected organ specificity. Targeting ICAM-1 or VCAM-1 

in nanocarrier format enhanced specificity in all organs with the greatest 

improvement observed in brain (Figure 6c, Table 2). Relatively greater improvement 

in nanocarrier format was observed for anti-VCAM NCs over anti-ICAM NCs, 

perhaps because anti-ICAM targeted organs better than anti-VCAM (Figure 5b). On 

the other hand, specificity declined in all organs for targeted nanocarriers versus free 

antibody addressed to PECAM-1 (Figure 6c, Table 2). This was somewhat expected 
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due to high magnitude of targeting observed for anti-PECAM, likely because of much 

higher PECAM-1 expression, and perhaps also due to steric hindrance effects 

associated with targeting PECAM-1 at cell borders with relatively bulkier 

nanocarriers.  

 

 With regard to mice challenged to mimic a pathological situation (LPS-treated 

mice), we observed enhanced accumulation over control mice although at different 

extent and patterns comparing anti-ICAM NCs, anti-PECAM NCs, and anti-VCAM 

NCs (Figure 6d).  Accumulation of anti-ICAM NCs was enhanced in all organs 

except the brain, with similar improvement in the spleen, heart, and lungs (ΔLR ~2.4, 

2.2, 2.1, respectively; Figure 6c, Table 2).  For anti-PECAM NCs, all organs 

displayed enhanced accumulation except for the spleen, with greatest improvement in 

the lungs, brain, and kidneys (ΔLR ~2.3, 2.3, 2.0). The only enhancement in 

accumulation observed for anti-VCAM NCs was in the lungs (ΔLR ~3.2). This result 

was somewhat unexpected, e.g., PECAM-1 expression is rather unaffected by 

inflammatory mediators, while ICAM-1 and VCAM-1 are markedly enhanced.21 The 

biodistribution pattern of anti-ICAM NCs reflected this, but this was not the case for 

anti-VCAM NCs, except for the lungs. It is possible that the greater accumulation 

differences observed in control lungs between anti-VCAM NCs vs. ICAM-1- or 

PECAM-1-targeted counterparts allowed detection of the corresponding enhancement 

under the inflammatory condition. In the case of anti-PECAM NCs, possible 

redistribution of PECAM-1 from intercellular junctions to the luminal surface in 

diseased mice (as shown in other models)214 may have increased accessibility of 

PECAM-1 relative to control mice. 
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Table 2. Biodistribution of anti-CAM-targeted antibodies and single-targeted nanocarriers  

Ab or  NC      Blood      K idney           Hear t        Spleen                    Lungs                             L iver                                              Brain 
   %ID LR SI          LR          SI             LR               SI                 LR         SI                    LR                         SI                               LR SI 

 Antibody:             

Anti-ICAM 47±2.7 0.6±0.02 2.2±0.1 0.2±0.02 2.0±0.2 0.6±0.04 4.3±0.3 1.8±0.1 12±0.6 0.5±0.03 2.3±0.1 0.02±0.002 1.2±0.1 
Anti-PECAM 11±1.1 2.5±0.3 9.5±1.6 1.9±0.2 18±2.5 3.8±0.1 25±0.9 7.8±1.5 52±14 1.9±0.43 8.2±2.7 0.17±0.01 8.5±0.9 
Anti-VCAM 61±0.4 0.3±0.01 1.3±0.04 0.1±0.01 1.2±0.1 0.7±0.02 4.5±0.2 0.2±0.02 1.1±0.2 0.3±0.01 1.2±0.1 0.02±0.002 1.0±0.1 

 Nanocarr ier :             
Anti-ICAM NCs 6.1±1.3 1.3±0.2 2.7±0.5 0.8±0.2 2.1±0.4 20±4.5 1.3±0.3 32±8.4 18±4.6 11±1.38 1.0±0.1 0.16±0.04 3.2±0.9 
Anti-ICAM NCs 
(LPS+) 

3.3±0.6 1.9±0.5 2.3±0.6 1.7±0.4 3.5±0.8 48±11 1.4±0.3 68±17 15±3.9 16±2.80 0.7±0.1 0.20±0.03 1.4±0.2 

Anti-PECAM NCs 6.6±0.7 1.0±0.1 2.1±0.2 0.9±0.2 2.5±0.6 25±5.4 1.6±0.4 16±3.3 88±1.8 7.3±1.42 0.7±0.1 0.10±0.02 2.1±0.4 
Anti-PECAM NCs 
(LPS+) 

3.5±0.3 2.0±0.3 2.4±0.4 1.5±0.3 3.1±0.6 29±9.6 0.9±0.2 38±3.5 8.4±0.6 15±1.05  0.7±0.03 0.24±0.05 1.7±0.3 

Anti-VCAM NCs 3.5±0.6 1.4±0.3 3.0±0.5 0.7±0.1 2.0±0.4 40±2.2 2.6±0.3 3.8±0.3 2.1±0.4 24±1.61 2.2±0.4 0.23±0.02 4.6±1.1 
Anti-VCAM NCs 
(LPS+) 

2.0±0.2 1.7±0.3 2.0±0.3 1.1±0.2 2.0±0.3 71±12 2.4±0.5 11±2.6 3.1±0.6 48±7.24 2.9±0.6 0.20±0.03 1.4±0.2 

Data are Mean ± S.E.M. %ID = perentage of injected dose; Ab = antibody; NC = nanocarrier; LPS = lipopolysaccharide; LR = 
localization ratio; SI = specificity index. Anti-ICAM was clone YN1, anti-PECAM was clone MEC13, and anti-VCAM was clone 
MK2.   
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We next tested in vivo biodistribution and specificity of nanocarriers displaying 

surface coatings for dual- or triple-CAM targeting (Figure 7). In the spleen and liver, 

the level of accumulation (LR ~16-21 and 9-10, respectively; Figure 7a and Table 3) 

and lack of specificity over control IgG NCs (SI ~1; Figure 7b and Table 3) for all 

three combinations tested (anti-ICAM/PECAM NCs, anti-PECAM/VCAM NCs, and 

anti-ICAM/PECAM/VCAM NCs) was similar to that of parent anti-ICAM NCs and 

anti-PECAM NCs, and markedly reduced compared to anti-VCAM NCs. Hence, 

multi-targeting nanocarriers to ICAM-1 and/or PECAM-1 ruled accumulation and 

resulted in avoidance of these organs relative to VCAM-1, which likely occurred  

primarily via RES-mediated clearance (not targeting the endothelium in these tissues) 

as compared to control IgG NCs.  

4.1.7. Biodistribution of antibody-coated nanocarriers dual- or triple-targeted to 

ICAM-1, PECAM-1, and/or VCAM-1 
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Figure 7. Biodistribution of nanocarriers dual- or triple-targeted to ICAM-1, PECAM-1, and/or VCAM-1 in control mice versus LPS-

treated mice. Mice were injected intravenously with 125I-labeled anti-PECAM/VCAM NCs, anti-ICAM/PECAM NCs, or anti-

ICAM/PECAM/VCAM NCs, and blood and organs were harvested at 30 min after injection. (a) The organ-to-blood localization ratio 

(LR) and (b) specificity index (SI) over control IgG NCs are shown for the brain, lungs, and liver. (c) Effect of LPS challenge on the 

biodistribution expressed as the fold-change in LR (ΔLR). Data are mean ± S.E.M. ! compares anti-ICAM/PECAM NCs to anti-

PECAM/VCAM NCs;  # compares dual-targeted formulations to the triple-targeted counterpart. * Compares each formulation in 

control versus mice treated with LPS. #,! represents p < 0.05 by Student’s t-test.  
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Table 3. Biodistribution of multi-CAM-targeted nanocarriers 

Nanocarrier Blood   Kidney         Heart      Spleen  Lungs                     Liver                  Brain 
Dual: %ID         LR           SI          LR     SI   LR        SI LR          SI          LR        SI          LR          

Anti-PECAM/ 
SI 

VCAM NCs 
6.2±0.5 0.8±0.1 1.7±0.2 0.5±0.1 1.4±0.3 21±4.5 1.4±0.3 8.1±1.8 4.4±1.0 10±1.4 0.9±0.1 0.1±0.0 1.8±0.3 

Anti-PECAM/ 
VCAM (+LPS) 

3.6±0.1 1.2±0.1 1.5±0.1 0.8±0.0 1.8±0.1 26±3.1 0.8±0.1 22±1.9 4.9±0.4 16±1.3 0.7±0.1 0.2±0.0 1.4±0.1 

Anti-ICAM/ 
PECAM NCs 

5.2±1.0 1.3±0.2 2.7±0.5 1.8±0.3 4.9±0.7 16±4.9 1.1±0.3 71±32 39±17.0 9.7±2.4 0.9±0.2 0.2±0.0 4.4±0.5 

Anti-ICAM/PECAM NCs 
(+LPS) 

2.2±0.3 4.0±0.8 4.8±1.0 4.5±0.2 9.4±0.4 16±1.8 0.5±0.1 266±16 59±3.6 8.7±3.0 0.4±0.1 0.8±0.1 5.6±0.9 

 Triple:             
Anti-ICAM/PECAM/ 
VCAM NCs 

4.5±0.8 1.6±0.5 3.3±1.0 1.8±0.2 4.8±0.4 19±3.9 1.2±0.2 87±34 47±18 9.3±3.2 0.8±0.3 0.2±0.0 4.0±0.7 

Anti-ICAM/PECAM/ 
VCAM NCs (+LPS) 

2.4±0.8 3.7±1.4 4.4±1.7 4.1±1.8 8.6±3.7 73±34 2.2±1.0 102±36 23±7.9 21±7.1 0.9±0.3 0.8±0.3 5.6±2.1 

Anti-ICAM/PECAM/ 
VCAM/ASM NCs 

5.1±0.4 1.5±0.3 3.6±0.9 1.1±0.0 6.4±0.2 23±3.8 50±10 10±2.0 31±7.6 15±2.4 13±2.4 0.2±0.1 6.4±1.6 

Anti-ICAM/PECAM/ 
VCAM/ASM NCs (+LPS) 

2.0±0.2 4.2±0.3 10±0.8 2.7±0.7 15±3.9 81±31 242±93 30±3.3 115±12 36±3.0 64±5.4 0.5±0.0 9.5±0.7 

Data are Mean±S.E.M.. %ID = percentage of injected dose; LR = Localization Ratio; SI = Specificity Index; NCs= Nanocarriers. 

Anti-ICAM was clone YN1, anti-PECAM was clone MEC13, and anti-VCAM was clone MK2.  
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In the lungs of control mice, the accumulation and specificity of dual-targeted 

anti-ICAM/PECAM NCs was significantly increased with respect to single-targeted 

counterparts: LR (and SI as well) was enhanced ~2.2-fold compared to anti-ICAM 

NCs and 4.4-fold compared to anti-PECAM NCs. This was also the case for triple-

targeted nanocarriers, which had slightly higher (22.4%, not significant by t-test) 

accumulation and specificity than anti-ICAM/PECAM formulations. Anti-

PECAM/VCAM NCs showed intermediate pulmonary accumulation and specificity 

compared to single-targeted counterparts. Intermediate targeting by anti-

PECAM/VCAM NCs as compared to parent counterparts and enhanced targeting of 

anti-ICAM/PECAM NCs over anti-PECAM/VCAM NCs closely matched 

observations made in cell culture under control conditions.  Yet, enhanced lung 

targeting of the triple-targeted formulation is opposite to cell culture results. As 

discussed above, this outcome is possibly due to higher expression of pulmonary 

ICAM-1 in vivo.8,204  

 

With regard to other organs, the biodistribution and specificity patterns also 

varied.  In general, targeting to VCAM-1 lowered performance of the dual-targeted 

combination, but not that of triple-targeted nanocarriers (Figure 7a-b, Table 3).  In the 

heart, anti-ICAM/PECAM NCs displayed synergy in that accumulation in this organ 

was considerably better than its single-targeted counterparts, and with similar values 

to triple-targeted formulations (Figure 7 a-b, Table 2-3). In comparison, anti-

PECAM/VCAM NCs showed reduced heart accumulation and specificity, which was 

similar to anti-VCAM NC results and lower than anti-PECAM NCs. In the kidneys, 
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anti-ICAM/PECAM NCs acted similarly to its single-targeted counterparts, anti-

PECAM/VCAM NCs showed decreased performance, and triple-targeted 

nanocarriers improved accumulation and specificity over PECAM-1/VCAM-1, but 

only slightly (not statistically significant) over ICAM-1/PECAM-1-targeted 

formulations.  In the brain, anti-ICAM/PECAM NCs outperformed PECAM-1 and 

was similar to ICAM-1 single-targeted counterparts. Triple-targeted nanocarriers did 

not further improve this enhancement, and anti-PECAM/VCAM formulations 

behaved similarly to anti-PECAM NCs and anti-VCAM NCs. Hence, overall, anti-

ICAM/PECAM NCs performed better than anti-PECAM/VCAM NCs, as with 

binding in cell cultures. Triple-targeted formulations performed closely but somewhat 

better than anti-ICAM/PECAM NCs, which seems to reflect the advantage of 

engaging multiple CAMs used by leukocytes.211  

 

 In LPS-challenged mice, all dual- or triple-targeted combinations enabled 

specific targeting to the kidneys, heart, lung, and brain, as compared to IgG NCs, 

while showing similar accumulation to this control in liver and spleen (Figure 7c and 

Table 3). On top of the already high accumulation in control mice, anti-

ICAM/PECAM NCs displayed even greater accumulation in LPS-treated mice in the 

kidneys, heart, lungs, and brain, with the greatest improvements shown for the last 

two organs (3.7-fold and 3.6-fold enhancement, respectively; Figure 7c and Table 3). 

Anti-PECAM/VCAM NCs showed enhanced accumulation in LPS-activated vs. 

control mice for the kidneys, heart, lungs, liver, and brain, with most acute 

improvements also in the lungs and brain (2.7-fold and 2.2-fold increase, 
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respectively). In general, these results complement well the observation that single-

targeted nanocarriers seemed to respond to inflammatory stimulation in vivo, except 

for the case of anti-VCAM NCs which only showed enhancement by LPS in the 

lungs. Combining targeting to VCAM-1 with targeting to other CAMs seems to 

overcome this caveat and provides for enhanced accumulation in other organs.   

 

 Triple-targeted nanocarriers also showed enhanced accumulation in all organs 

under pathological stimulation except for the lungs, with greatest enhancement in the 

brain and spleen (4.0-fold and 3.9-fold increase), followed by the kidneys and heart 

(2.3-fold and 2.3-fold increase). This result was unexpected, since the lungs represent 

the major targeting organ for single-targeted ICAM-1 or PECAM-1 and considerable 

specific accumulation also occurs with single-targeted VCAM-1 formulations (Figure 

6a,b and Table 2). Also, enhancement under LPS-treatment was observed in this 

organ for both dual-targeted carriers (Figure 7c).  However, triple-targeted 

nanocarriers had shown the highest targeting in the lungs of control mice (Fig. 7a). 

Hence, it is possible that this is already a saturating level of targeting and no further 

enhancement can be achieved with carriers displaying this valency and concentration. 

 

Overall our data show that, with certain differences with regard of organ distribution, 

dual- and triple-targeted formulations enhanced accumulation and specificity of 

nanocarriers in the body under both physiological and pathophysiological contexts. 

Under disease-like conditions, triple-targeted formulations performed closely but 

4.1.8. Biodistribution of a therapeutic cargo by triple-CAM-targeted nanocarriers 
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somewhat better than anti-ICAM/PECAM NCs and clearly superior than anti-

PECAM/VCAM counterparts. Hence, we selected the triple-targeted formulation to 

investigate its potential to improve the biodistribution of a therapeutic cargo in the 

body.   

 

 As an example, we aimed at delivering recombinant acid sphingomyelinase 

(ASM) using the triple-targeted formulation. ASM is a lysosomal enzyme deficient in 

genetic Niemann-Pick disease type A-B (Type A OMIM # 257200, Type B OMIM # 

607616), which is being explored for enzyme replacement therapy via i.v. injection of 

the naked recombinant enzyme.203,215 ASM delivery is necessary throughout the body 

and predominantly in the lungs, brain, and reticulo-endothelial system (liver and 

spleen), which are most severely affected in this disease.5,215 This syndrome also 

associates with inflammation, making CAMs adequate targets for this intervention.215 

 

We labeled ASM with 125I to track the biodistribution of this cargo coupled to 

anti-ICAM/PECAM/VCAM NCs vs. a similar dose of naked ASM intravenously 

injected in mice (Figure 8 and Table 3). Triple-targeted nanocarriers drove 

accumulation of ASM in all organs tested, with greatest LR in the spleen and liver, 

and lowest LR in the brain (Figure 8a and Table 3). Still, this represented a very 

marked enhancement in ASM delivery by nanocarriers over the naked enzyme (SI) 

for all organs tested, including those where LR was relatively low such as the brain, 

where nanocarriers outperformed the naked enzyme by 6.4-fold (Figure 8b and Table 

3). Specific, enhanced delivery by nanocarriers in other organs included 3.6-fold for 
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kidney, 49.9-fold for spleen, 6.4-fold for heart, 30.9-fold for lungs, and 12.7 for liver 

(Figure 8b and Table 3). ASM delivery by anti-ICAM/PECAM/VCAM/ASM NCs 

improved considerably in all organs of LPS-challenged mice, although improvement 

in spleen was not statistically significant (Figure 8a and Table 3). As a result, delivery 

specificity of ASM by nanocarriers over naked enzyme improved by 10.2-fold in 

kidneys, 242-fold in spleen, 15.3-fold in heart, 115-fold in lungs, 63.8-fold in liver, 

and 9.5-fold in brain (Figure 8b and Table 3). Therefore, this strategy seems 

beneficial to improve ASM biodistribution in the body, particularly under 

pathological conditions (as intended for therapeutic intervention). 
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Figure 8. ASM delivery by nanocarriers triple-targeted to ICAM-1, PECAM-1, and VCAM-1 in control versus LPS-treated mice. 

Mice were injected intravenously with anti-ICAM/PECAM/VCAM/125I- ASM NCs, and blood and organs were harvested at 30 min 

after injection. (a) The organ-to-blood localization ratio (LR) and (b) specificity index (SI) over non-targeted naked ASM are shown 

for the brain, lungs, and liver. Data are mean ± S.E.M. * Compares naked enzyme vs. enzyme coupled to anti-ICAM/PECAM/VCAM 

NCs; # compares control vs. LPS-challenged mice. *,# represents p < 0.05 by Student’s t-test.  



 

78  

Enhanced delivery of ASM by nanocarriers triple-targeted to ICAM-1, 

PECAM-1, and VCAM-1 emphasizes the potential of combination-targeting in drug 

delivery and pairs well with other studies reported in the literature. For instance, 

triple-targeting has been explored in the context of cancer, where microbubbles 

targeted to αvβ3-integrin, P-selectin, and vascular endothelial growth factor receptor 2 

showed enhanced cellular binding in vitro and imaging intensity of tumors in vivo.212 

In addition, triple-targeting of tumor endothelial marker 7, folate receptor, and 

PECAM-1 has been investigated as a strategy to enhance uptake of mesoporous 

nanoparticles in both cancer cells and angiogenic blood vessels.7  

 

 
4.1.9. Conclusions  

Targeting nanocarriers to multiple receptors with similar function (e.g. leukocyte 

adhesion and extravasation) can provide advantages for drug delivery, such as 

synergistically enhancing cell binding of nanocarriers targeted to a selectin and an Ig-

like CAM as shown in the literature.12,23,30 In addition, our findings demonstrate that 

targeting nanocarriers to multiple Ig-like CAMs modulates delivery performance 

relative to single-targeted counterparts in a manner which depended on the 

combination and multiplicity of affinity moieties functionalized on the surface of 

nanocarriers, and the physiological state of cells and tissues. PECAM-1/VCAM-1 

targeting improved cellular binding compared to VCAM-1-targeting and slightly 

increased the selectivity toward diseased vs. control cells compared to PECAM-1-

targeting. Anti-ICAM/PECAM NCs provided greater binding than anti-

PECAM/VCAM counterparts, yet were less selective for diseased vs. control cells. 

Triple-targeted nanocarriers appeared promising as they bound activated ECs 
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similarly to anti-ICAM/PECAM NCs, yet displayed superior selectivity over either 

dual-targeted combination. Targeting receptors associated with different endocytosis 

pathways (VCAM-1/PECAM-1) appeared to enhance nanocarrier internalization over 

targeting receptors associated with the same endocytic pathway (ICAM-1//PECAM-

1). Nevertheless, intracellular transport was highly efficient for all conditions tested. 

Hence, the potential for intracellular delivery of these formulations is mostly 

controlled by the level of binding of the functionalized carriers. As in cell culture, 

enhanced targeting of anti-ICAM/PECAM NCs vs. anti-PECAM/VCAM NCs was 

also observed in vivo. Specific targeting of both dual-targeted combinations improved 

further in diseased conditions, suggesting that they can be utilized to enhance delivery 

to sites of disease. Triple-targeted nanocarriers outperformed both double-targeted 

counterparts, greatly enhanced delivery of therapeutic cargo, and showed selectivity 

in certain organs for disease vs. control conditions in vivo, which pairs well with 

natural selectivity of leukocyte integrins engaged in endothelial binding through 

multi-CAM interactions during inflammation.211 Multi-CAM-targeting is a promising 

example of the potential that combination-targeting strategies hold in the context of 

development of functionalized nanocarriers for prophylactic, diagnostic or therapeutic 

applications.  
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4.2. Combination targeting to multiple receptors with different functions 

 Targeting nanocarriers to multiple receptors with different roles in cellular processes 

(e.g. cell functions) may modulate targeting performance in a distinct manner than 

targeting multiple receptors with similar functions. As discussed in the background, 

this approach is an emerging strategy for drug delivery. However, most prior 

strategies aimed at targeting receptors involved in similar endocytic transport 

pathways, particularly regulated via clathrin-coated pits.13,194,195,216 For example, 

binding to cancer cells of liposomes loaded with the anti-cancer drug doxorubicin was 

enhanced by combination targeting of transferrin receptor and glucose transporter.194 

In addition, pegylated liposomes targeted to transferrin receptor and insulin receptor 

were shown to enable sequential targeting and transport across the blood-brain and 

blood-tumor barriers.13 Only in a couple of examples, the receptors targeted were 

associated with different endocytic mechanisms, yet these studies did not assess 

targeting in vivo and also involved dual targeting of receptors of similar function (e.g. 

cell growth: folate receptor/glucose transporter and folate receptor/epidermal growth 

factor receptor).14,217  

4.2.1. Introduction 

 

 We selected TfR and ICAM-1 to test the hypothesis that targeting multiple 

receptors of unrelated function, regulation, and endocytic mechanism can modify the 

binding, internalization, or biodistribution of polymer nanocarriers. TfR is a 

transmembrane glycoprotein expressed on the surface of many cells, including 

endothelium, and its expression remains relatively stable in disease conditions.6,218 
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TfR enables iron transport across cellular barriers via transcytosis (e.g. in the BBB) 

and into cells by clathrin-mediated endocytosis.219-221 ICAM-1 is also a 

transmembrane glycoprotein expressed on the cell surface of ECs and most other cell 

types, has inducible expression upon activation by inflammatory mediators, and is 

associated with CAM-mediated endocytic transport which enables transport into cells 

and across cell barriers.200,222 Importantly, combination targeting of ICAM-1 and TfR 

may be affected by different valency and size requirements of these receptors for 

binding and endocytosis. However, the targeting performance of these receptors has 

not been assessed comparatively.  

 

To test the impact of the different characteristics of ICAM-1 and TfR on their drug 

targeting performances, we first compared binding of antibodies targeted to ICAM-1 

versus TfR in cell cultures. This was assessed using HUVECs in control or disease 

conditions (TNFα-activation). Fluorescence microscopy analysis showed similar 

antibody binding under control conditions (Figure 9a). However, in agreement with 

ICAM-1 overexpression in disease,200,223 binding increased markedly in ECs pre-

treated with TNFα (15-fold), whereas TfR-binding increased very modestly (1.6-

fold). Consequently, bound anti-ICAM greatly exceeded (by 9.6-fold) anti-TfR under 

pathological stimulation, suggesting that addressing ICAM-1 enhances binding of  

4.2.2. Binding of antibodies vs. antibody-coated nanocarriers or micron-sized carriers 

targeted to ICAM-1 or TfR  

antibodies to sites of disease. 
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Figure 9. Fluorescence microscopy of antibody binding to ICAM-1 vs. TfR on ECs. (a-b) Control or TNFα-activated HUVECs were 

incubated with anti-ICAM or anti-TfR for 15 min at 37oC. Cells were washed to remove unbound antibody, fixed, stained with FITC-

conjugated goat anti-mouse IgG, and analyzed by fluorescent microscopy to determine the mean fluorescent intensity per cell. Phase-

contrast images were used to delimit cell borders (dashed lines). Scale bar is ~10 µm. Data are mean±S.E.M. * compares control vs. 

TNFα for each target  and # compares ICAM-1 vs. TfR for each condition. *,# represents p < 0.05 by Student’s t-test. 
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 We next compared binding of antibody-coated carriers targeting ICAM-1 

versus TfR (Table 4). Anti-ICAM NCs and anti-TfR NCs displayed similar size 

(∼250 nm), polydispersity (∼0.180), zeta potential (∼−9 mV), and valency (∼275–

300 antibodies/carrier particle). 

 
Table 4. Characterization of single-targeted nanocarriers directed to ICAM-1 and TfR 

Nanocarrier 
coating 

Size 
(nm) 

PDI Zeta potential 
(mv) 

Coating valency 
(Ab/NC) 

Anti-ICAM NCs 262±8.6 0.18±0.01 -9.7±0.7 273±37 

Anti-TfR NCs 242±7.1 0.18±0.01 -8.7±0.8 300±31 

Data are mean ± S.E.M. Ab = antibodies; NC = nanocarrier; PDI = polydispersity; Anti-
ICAM was clone R6.5 and anti-TfR was clone T56/14. 
 

 Despite similar antibody binding under control conditions, anti-ICAM carriers 

displayed two-fold enhanced binding to ECs compared with anti-TfR carriers (Figure 

10). For activated ECs, binding of anti-ICAM carriers was enhanced further 

compared to anti-TfR carriers (17.4-fold, Figure 10). Hence, ICAM-1-targeted 

carriers enhanced binding by eight-fold in TNFα-activated conditions, whereas 

binding of TfR-targeted carriers was unchanged compared to control conditions, 

suggesting that targeting nanocarriers to ICAM-1 enhances the binding over TfR in 

both control and disease conditions.  
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Figure 10. Binding of antibody-coated nanocarriers targeted to ICAM-1 or TfR. (a) Fluorescence microscopy of FITC-labeled ∼250 

nm anti-ICAM vs. anti-TfR nanocarriers to control or TNFα-activated HUVECs after 1 h incubation at 37oC. Cells were subsequently 

washed to remove unbound carriers. Phase-contrast images were used to delimit cell borders (dashed lines). Scale bar is ~10 µm. (b) 

Binding was determined as the number of nanocarriers per cell. Data are mean ± S.E.M. * compares control vs. TNFα for each 

target,  and # compares ICAM-1 vs. TfR for each condition.  *,# represents p < 0.05 by Student’s t-test.  
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Since only nanocarriers appeared to bind more efficiently when targeted to 

ICAM-1 as opposed to TfR, we reasoned that steric hindrance effects may influence 

the targeting. Hence, we examined the effect of ligand size and of nanocarrier size on 

the binding of ICAM-1- vs. TfR-targeted nanocarriers. To examine the effect of 

ligand size, ~250 nm carriers were coated antibodies or with smaller affinity moieties, 

namely the ICAM-targeting γ3 peptide or TfR-targeting transferrin (Tf). Binding was 

additionally assessed for carriers of sizes 1µm and 4.5µm to also examine the effect 

of nanocarrier size. We selected the incubation period to be shorter in this case (e.g. 

15 min in Figure 11 versus 1 h in Figure 10), to minimize endocytosis and thus avoid 

confounding effects.  

 

In control ECs, the binding difference between ICAM-1 and TfR-targeted 

carriers was more pronounced using coatings with affinity moieties smaller than in 

the case of antibodies (9.3-fold vs. 0.8-fold, Figure 11b). For larger sized carriers, 

binding of ICAM-1-targeted carriers was greater than TfR-targeted carriers when 

carrier size increased to 1 µm (Figure 11a,c), but similar for even larger, 4.5 µm 

carriers (Figure 11c). In TNFα-activated ECs, binding of ICAM-1 targeted carriers 

remained enhanced vs. TfR-targeted carriers at 1µm size (Figure 11a,c). At 4.5 µm 

carrier size, ICAM-1 targeting also improved binding, although by a smaller margin, 

perhaps due to greater steric hindrance effects (Figure 11c).  
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Figure 11. Binding of ICAM-1 or TfR-targeted nanocarriers using ligands and carriers of different size. Binding was assessed by 

fluorescence (~250 nm carriers) or phase contrast (1µm, 4.5µm carriers) microscopy to determine the number of nanocarriers bound 

per cell in control HUVECs after 15 min incubation at 37oC. (a) Phase contrast micrographs of binding of 1 µm anti-ICAM or anti-

TfR coated carriers (arrows). (b) Binding of FITC-labeled, ~250 nm carriers coated with anti-ICAM or anti-TfR (Ab coat) vs. ICAM-

1 targeting γ3 peptide or TfR-targeting Tf. (c) Binding of anti-ICAM or anti-TfR coated carriers of size ~250 nm, 1 µm, and 4.5 µm in 

control (dashed bars) or TNFα-activated (black bars). Scale bar is ~ 10 µm. Dashed white lines delimit cell borders. Data are mean ± 

S.E.M. * compares control vs. TNFα for each target,   # compares ICAM-1-targeted vs. TfR-targeted carriers, ! compares 1µm or 

4.5µm sized carriers to  ~250 nm sized carriers, $ compares 1µm vs. 4.5µm sized carriers. *,#,! represents p < 0.05 by Student’s t-test.
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 These data suggest a dependency on both proximity of the targeting ligands to 

the nanocarrier surface and a dependency on the size of the carriers due to the effects 

of steric hindrance on binding. ICAM-1 targeting generally appears to enhance EC 

binding over TfR-targeting and this effect became more pronounced in the presence 

of increased steric hindrance. Such an effect may depend on the molecular location of 

the particular epitope targeted by the antibodies used. Anti-ICAM antibodies used in 

this study bind to the two most membrane-distal domains on ICAM-1.200,201 

Unfortunately, this information is not available for anti-TfR antibodies used, yet 

inferring from homology between human and mouse TfR, the antibody used in mice 

may bind a membrane-distal domain of TfR.199 As an example of this concept, it has 

been previously shown that similar carriers directed to a membrane-proximal epitope 

of a related molecule (PECAM-1) lacked binding to cultured ECs vs. carriers targeted 

to membrane-distal epitopes, despite similar binding when presented as free 

counterparts.179 In another study the efficiency of ACE binding to endothelium in 

vivo varied greatly depending on the epitope targeted.196   

 

 Also related to potential steric hindrance for carrier binding, intrinsic features 

of the examined receptors, such as their length and location on the plasmalemma, can 

impact targeting. For example, ICAM-1 extends further from the endothelial lumen 

than TfR (<19 nm vs <9 nm, respectively)224,225 and appears to reside in luminal 

microvilli-like projections226,227 which may be more amenable for engagement by 

targeted carriers. A similar effect was reported for targeting ganglioside GM1 on 

intestinal cells using cholera toxin B as a ligand. While FITC-labeled cholera toxin B 



 

88  

(<6 nm) bound cells, conjugation to particles (<29 nm) reduced targeting, and binding 

was totally abolished by increasing particle size (<1.1 μm).228  

 

 ICAM-1 targeting with antibodies or antibody-coated carriers was superior to 

TfR in ECs activated with TNFα. This is likely because ICAM-1 is overexpressed in 

pathological conditions including inflammation, thrombosis, atherosclerosis, 

oxidative stress, and metabolic imbalance.5,229,230 Alternatively, TfR expression 

increases relatively modestly or responds neutrally to different inflammatory 

mediators.231,232 Hence, selecting between these molecules for therapeutic or 

prophylactic interventions depends somewhat on overall and local physiological–

pathological balance. 

 

Since varying the valency of combined-targeting nanocarriers may provide a means 

to optimize nanocarrier internalization, we next compared endocytosis of bivalent 

antibodies and multivalent antibody-coated nanocarriers. Confirming previously 

described (yet not comparative) observations, we found anti-ICAM was poorly 

internalized by ECs compared with anti-TfR (35.6±8.7% vs. 97.7±0.9% uptake; 

Figure 12), even under TNFα-activation where anti-ICAM binding greatly exceeded 

anti-TfR.

4.2.3. Endocytosis of antibodies vs. antibody-coated nanocarriers targeted to ICAM-1 

or TfR 
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Figure 12.  Endothelial endocytosis of antibodies targeted to ICAM-1 vs. TfR. (a) Fluorescence microscopy of endocytosis of 

antibodies targeted to endothelial ICAM-1 vs. TfR. Unbound carriers were removed and surface-bound carriers were stained with a 

Texas-Red secondary IgG. Internalized carriers appear as FITC single-labeled in green, while surface-bound carriers display FITC + 

Texas-Red double-labeled yellow color. Phase-contrast images were used to delimit cell borders (dashed lines). Scale bar is ~10 µm. 

(b) Quantification of uptake of naked anti-ICAM vs. anti-TfR antibodies, assessed after 1 h incubation at 37oC with TNFα-activated 

HUVECs. Data are mean ± S.E.M. # Compares anti-ICAM vs. anti-TfR. # represents p < 0.05 by Student’s t-test. 
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 Contrarily, internalization of ICAM-1-targeted carriers exceeded TfR-targeted 

carriers (Figure 13) in control (83.8±1.7% vs 57.7±2.0% internalization) and disease 

conditions (68.6±0.1% vs. 59.1±0.2% internalization), suggesting more efficient 

carrier uptake by CAM-mediated vs. clathrin-mediated endocytosis. Due to this 

enhanced binding and uptake, the absolute amount of internalized carriers was ~2.6-

fold greater when targeting ICAM-1 vs. TfR: 61.4±3.3 vs. 23.8±1.6 carriers/cell in 

control cells, and 147.0±1.0 vs. 56.1±0.5 carriers/cell in TNFα-activated cells. 

Consequently, although both markers have been shown to support endocytosis and 

also transcytosis,19,168,233 ICAM-1- vs. TfR-mediated vesicular uptake exhibits 

marked differences in that TfR supports better uptake of antibodies and ICAM-1 is 

more amenable for nanocarriers.  
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Figure 13. Endothelial endocytosis of nanocarriers targeted to ICAM-1 vs. TfR. (a) Fluorescence microscopy of endocytosis of 

carriers targeted to endothelial ICAM-1 vs. TfR. Uptake of ∼250 nm FITC-labeled anti-ICAM vs. anti-TfR carriers, assessed after 1 h 

incubation at 37oC in TNFα-activated HUVECs. Unbound carriers were removed and surface-bound carriers were stained with a 

Texas-Red secondary IgG. Internalized carriers appear as FITC single-labeled in green, while surface-bound carriers display FITC + 

Texas-Red, double-labeled yellow color. Phase-contrast images were used to delimit cell borders (dashed lines). Scale bar is ~10 µm. 

(b-c) Internalization was quantified by fluorescence microscopy and expressed as percentage of uptake compared to total cell-

associated carriers (b) or absolute number of carriers internalized per cell (c). Data are mean ± S.E.M. * compares control vs. TNFα 

for each target, and # compares anti-ICAM vs. anti-TfR carriers. *,# represents p < 0.05 by Student’s t-test. 
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To further validate this hypothesis, we then visualized formation of membrane 

engulfment structures around carriers bound to ECs and recruitment of molecular 

partners associated to CAM vs. clathrin pathway. Large 4.5 µm carriers were used to 

facilitate immunofluorescence imaging of NHE1 or clathrin heavy chain enrichment 

at binding sites of anti-ICAM or anti-TfR carriers, respectively. As shown in Figure 

14, ICAM-1 binding lead to rapid (within 15 min) formation of NHE1-enriched 

engulfment structures at the plasmalemma (68.8±3.3% carriers displayed full-ring 

NHE1 clusters around carriers), while engulfment structures enriched in clathrin 

heavy chain were much less apparent for anti-TfR carriers (17.8±3.7% carriers 

displayed full-ring clathrin clusters). This result pairs well with greater vesicular 

endocytosis observed for anti-ICAM carriers. 
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Figure 14. Imaging endothelial engulfment of anti-ICAM vs anti-TfR carriers. (a) Microscopy micrographs showing phase contrast 

images (top panels) of ~4.5 µm anti-ICAM vs. anti-TfR carriers after binding for 15 min at 37oC to HUVECs, and fluorescence 

immunostaining (bottom panels) of NHE1 vs. clathrin heavy chain clustering at sites of carrier binding and engulfment (ring-like 

structures indicated with an arrow). Scale bar is ~10 µm. (b) Quantification of the percent of bound carriers showing full ring-like 

engulfment structures enriched in NHE1 or clathrin heavy chain. Data are mean ± S.E.M. # compares anti-ICAM vs. anti-TfR carriers. 

# represents p < 0.05 by Student’s t-test. 
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We next tested the behavior of nanocarriers dually-targeted to ICAM-1 and TfR. As 

shown in Table 5, nanocarriers coated with both anti-ICAM (clone YN1) and anti-

TfR (clone R17) (anti-ICAM/TfR) displayed size, zeta potential, and total antibody 

surface-coating similar to their single-targeted counterparts, with a 1:1 coating-ratio 

of anti-ICAM to anti-TfR.  Literature values of the affinity of antibodies directed to 

ICAM-1 or TfR ranged from 0.5-8.5 nm.205,234 

4.2.4. Binding and endocytosis of nanocarriers dual-targeted to ICAM-1 and TfR  

 
Table 5. Characterization of single- vs. dual-targeted  nanocarriers directed to ICAM and TfR 
Nanocarr ier  
coating 

Size 
(nm) 

    PDI  Zeta potential 
(mv) 

Coating valency 
(Ab/NC) 

 Single:    
Anti-ICAM NCs 228±2.8 0.16±0.03 -9.4±0.5       273±37 

       220±6.3 Anti-TfR NCs 217±5.5 0.16±0.03 -16±1.6 
Anti-TfR/IgG NCs 240±5.0 0.19±0.01 -9.5±0.3 Anti-TfR: 

154±0.9 
IgG:   

136±0.3 
Anti-ICAM/IgG NCs 225±6.6 0.13±0.02 -9.0±0.3 Anti-ICAM:: 

124±25 
 IgG:  

139±2.4 
 Dual:     

Anti-ICAM/TfR  NCs 204±11 0.13±0.003 -12±0.1   Anti-ICAM:  
132±12 

 Anti-TfR:      
145±9.7 

Data are Mean±S.E.M. Ab = antibody; NC = nanocarrier; PDI = polydispersity. Antibody 
clones were YN1 for anti-ICAM and R17217 for anti-TfR. 
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Figure 15. Binding of nanocarriers single-targeted or dual-targeted to ICAM-1 and/or TfR. (a-b) Binding was tested after incubation 

for 1 h at 37°C in control H5V cells and analyzed by fluorescence microscopy to assess the mean nanocarriers per cell (NCs/cell) and 

specificity index (SI) for each formulation. Control IgG NCs are represented as a line.  Data are mean ± S.E.M. *Compares fully-

coated anti-TfR NCs to nanocarriers with a 1:1 coating of anti-TfR and control IgG. *,# represents p < 0.05 by Student’s t-test. 
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 Lowering valency of anti-ICAM NCs towards ICAM-1 by half reduced 

binding by 3-fold (Compare anti-ICAM NCs to anti-ICAM/IgG NCs, Figure 15a), 

while binding via TfR improved 1.8-fold as a result of lowered valency. This 

indicated that adjusting the valency of nanocarriers directed to ICAM-1 vs. TfR could 

result in different effects. Varying effects of ligand valency have been observed with 

different receptors previously. For example, multivalency increases binding to cells 

and targeting in vivo in the case of ICAM-1-targeted nanocarriers,205 yet nanocarriers 

targeted to VCAM-1 displayed greater binding to cells using intermediate ligand 

valencies.130 Hence, the valency of targeted nanocarrier formulations needs to be 

evaluated empirically. 

 

 Although binding of nanocarriers via ICAM-1 targeting was significantly 

lowered by reduced valency of anti-ICAM/IgG NCs, binding still remained 

significantly higher than anti-TfR/IgG NCs, indicating that binding at these 

intermediate valency levels was favored by targeting ICAM-1 over TfR (Figure 15a). 

As per the dual-targeted formulation, binding of anti-ICAM/TfR NCs was similar to 

nanocarriers targeting ICAM-1 and higher than nanocarriers targeting TfR, when 

compared to nanocarriers with similar valency of either antibody (anti-ICAM/IgG 

NCs and anti-TfR/IgG NCs, Figure 15b).  

 

 Binding of anti-ICAM/TfR NCs was slightly enhanced (although not 

statistically different) relative to anti-ICAM/IgG NCs and higher than anti-TfR/IgG 

NCs (Figure 15b) which would suggest that a contribution from TfR-targeting may 
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also have occurred. Binding of anti-ICAM/TfR NCs was intermediate relative to anti-

ICAM NCs and anti-TfR NCs which was similar to the pattern observed for 

nanocarriers dual-targeted to CAMs described in the previous section. 

 

 Following binding, we examined the endocytosis of anti-ICAM/TfR NCs.  

Lowering valency of anti-ICAM/NCs resulted in less efficient internalization than the 

full-coated formulation (Figure 16a), suggesting that lower anti-ICAM valency of the 

formulation reduced induction of CAM-endocytosis. On the other hand, endocytosis 

of TfR-targeted carriers remained low independent of valency change (Figure 16a). 

The internalization rate of anti-ICAM/TfR NCs was slightly higher (although not 

significant) than anti-ICAM/IgG NCs and significantly higher than anti-TfR/IgG NCs 

(Figure 16b). Indeed, the total number of nanocarriers internalized was significantly 

greater for anti-ICAM/TfR NCs than anti-ICAM/IgG NCs, suggesting that TfR-

targeting enhanced internalization (Figure 16c). This may be due to greater binding as 

a result of dual ICAM-1- and TfR-targeting, perhaps because of internalization 

 by endocytic receptors associated with different pathways. Interestingly, the behavior 

of anti-ICAM/TfR NCs was similar to the behavior of anti-PECAM/VCAM NCs 

from the previous section, suggesting that this effect may be general to receptors 

associated with CAM- and clathrin-mediated endocytosis. 
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Figure 16. Internalization of nanocarriers targeted to ICAM-1 and TfR. Internalization was assessed after 1 h incubation at 37C with 

H5V cells. (a) Effect of valency on internalization of ICAM-1 or TfR-targeted nanocarriers, (b) the percent of internalized 

nanocarriers, and (c) total number of internalized nanocarriers (b) were analyzed by fluorescence microscopy. Data are mean ± S.E.M. 

* compares to anti-ICAM/TfR NCs, # compares anti-ICAM/IgG NCs and anti-TfR/IgG NCs *,# represents p < 0.05 by Student’s t-

test. 
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Figure 17. Biodistribution of anti-ICAM versus anti-TfR antibodies and antibody-coated carriers in mice. (a) Blood levels of 125I-

labeled anti-ICAM vs. anti-TfR or their ∼250 nm carrier counterparts measured at 30 min after i.v. injection in mice, expressed as the 

percentage of the injected dose (%ID). (b-d) Specific tissue accumulation of these formulations compared to control IgG counterparts, 

calculated as the specificity index (SI, see Methods). Data are mean ± S.E.M. * Compares antibodies vs carriers for each target and # 

compares targeting to ICAM-1 vs. TfR for each formulation. * represents p < 0.05 by Student’s t-test. 
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As mentioned above, effective targeting and vesicular transport are crucial elements 

impacting biodistribution of therapeutics. Using radioisotope tracing, we tested 

antibodies and antibody-coated carriers targeted to ICAM-1 vs. TfR (Figure 17 and 

Table 6). As shown in Figure 17a, the circulating blood level of anti-ICAM was 

comparable to anti-TfR at 30 min after injection (46.9±2.7% and 42.1±1.3% of 

injected dose (% ID), and appreciably lower than control IgG (75.5±3.7% ID; data 

not shown), suggesting enhanced accumulation in tissues. Both anti-ICAM and anti-

TfR displayed increase accumulation over control IgG (SI > 1) in all organs with 

similar targeting specificity in liver (SI 2.3±0.1 and 2.4±0.2, respectively; Fig. 17b), 

higher for anti-ICAM vs. anti-TfR in lungs (SI 11.9±0.6 vs. 3.0±0.1; Fig. 17c), while 

anti-TfR showed higher accumulation than anti-ICAM in brain (SI 1.2±0.1 vs. 

1.7±0.2; Figure 17d). 

4.2.5. Biodistribution of antibodies vs. antibody-coated nanocarriers targeted to 

ICAM-1 or TfR 

 

A different behavior was observed for antibody-coated carriers (Table 6).  

Blood levels of anti-ICAM NCs or anti-TfR NCs were considerably lower than naked 

counterparts (Figure 17a). This suggested increased removal from blood and/or 

accumulation in organs, likely due to carrier multivalency. For example, anti-ICAM 

NCs displayed increased accumulation but reduced specificity in RES organs, likely 

resulting from greater non-specific uptake (liver SI decreased from 2.3±0.1 for 

antibodies to 1.0±0.1 for nanocarriers; Figure 17b) and enhanced accumulation in 

peripheral organs and brain: lung SI increased from 11.9±0.6 for antibodies to 
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17.8±4.6 for carriers (Figure 17c) and brain SI increased from 1.2±0.1 to 3.2±0.9 

(Figure 17d). Contrarily, specific tissue accumulation decreased for anti-TfR NCs 

compared to naked antibody counterpart: e.g. liver SI decreased from 2.5±0.2 for 

antibodies to 0.7±0.1 for carriers (Figure 17b), lung SI decreased from 3.0±0.1 to 

0.9±1.2 (Figure 17c), and brain SI decreased from 1.7±0.2 to 1.4±0.3 (Figure 17d). 

Anti-TfR NCs exceeded accumulation over control IgG NCs in brain but not lungs, 

while anti-ICAM NCs displayed specificity in both lungs and brain, with even  better 

performance than anti-TfR in brain (1.9-fold improvement). Hence, results in vivo 

correlate well with cell culture observations of reduced binding and endocytosis of 

anti-TfR NCs compared to naked anti-TfR, and an opposite effect for targeting 

ICAM-1.
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Table 6. Biodistribution of nanocarriers targeted to ICAM-1 or TfR 

Ab or NC Blood   Kidney     Heart    Spleen     Lungs     Liver    Brain 
  %ID LR SI      LR  SI  LR    SI  LR     SI          LR SI           LR            SI 

 Antibodies:             
Anti-ICAM 47±2.7 0.6±0.02 2.2±0.09  0.2±0.02 2.0±0.2 0.6±0.04 4.3±0.3 1.8±0.09 12±0.58 0.5±0.03 2.3±0.1  0.02±0.002 1.2±0.1 
Anti-TfR-8D3 42±1.3 0.6±0.05 2.3±0.14  0.1±0.01 1.2±0.1 0.6±0.06 4.2±0.4 0.5±0.02 3.0±0.13 0.6±0.04 2.5±0.2      0.03±0.004 1.7±0.2 

 Single:             
Anti-TfR-8D3 NCs  7.8±1.2 0.3±0.04 0.7±0.09 0.3±0.02 0.8±0.1 38±6.40 2.5±0.4 1.7±0.32 0.9±0.18 8.1±1.1 0.7±0.1  0.07±0.02 1.4±0.3 
Anti-TfR-R17 NCs 6.8±0.7 0.5±0.03 1.1±0.05 0.5±0.06 1.2±0.2 23±3.91 1.5±0.3 2.4±0.33 1.3±0.18 12±1.6 1.1±0.1  0.09±0.02 1.8±0.3 
Anti-TfR-R17/IgG NCs 5.3±0.4 0.5±0.08 1.0±0.16 0.4±0.04 1.0±0.1 18±1.09 1.2±0.1 1.6±0.36 0.9±0.19 13±2.6 1.2±0.2  0.08±0.02 1.7±0.4 

Anti-TfR/ASM NCs 9.8±0.5 0.8±0.10 1.8±0.31 0.5±0.07 2.8±0.5 12±1.85 25±4.9 0.8±0.03 2.4±0.12 5.7±0.4 4.8±0.4  0.11±0.02 2.9±0.5 
Anti-ICAM NCs 6.1±1.3 1.3±0.23 2.7±0.47 0.8±0.16 2.1±0.4 20±4.47 1.3±0.3 33±8.42 18±4.55 11±1.4 1.0±0.1  0.16±0.04 3.2±0.9 
Anti-ICAM/IgG NCs 4.5±0.7 1.0±0.21 2.0±0.44 0.4±0.15 1.2±0.4 38±2.09 2.5±0.1 14±1.99 7.5±1.08 16±2.0 1.5±0.2  0.14±0.05 2.9±1.0 
Anti-ICAM/ASM NCs 4.1±0.4 2.1±0.19 5.1±0.48 1.6±0.24  9.3±1.4 23±3.83 50±8.5 64±11.4 195±36 17±2.4 15±2.1  0.27±0.11 7.2±3.1 

 Dual:             

Anti-ICAM/TfR NCs 4.5±0.7 0.64±0.1 1.31±0.3 0.46±0.1 1.3±0.3 34.8±4.0 2.3±0.3 12.2±4.0 6.62±2.2 19±2.1 1.7±0.2  0.07±0.0 1.4±0.1 
Anti-ICAM/TfR / 
ASM NCs  

7.7±0.4 0.93±0.1 2.26±0.2 0.76±0.1 4.3±0.5 13.2±2.0 28±4.4 3.21±0.3 9.84±1.0 6.4±1.4 5.4±1.2  0.12±0.0 3.1±0.2 

AntiICAM/TfR/ 
ASM NCs (+LPS) 

5.0±0.7   1.31±0.1 3.16±0.3 0.92±0.2   5.3±0.9 15.2±2.8 46±8.3 11.5±1.8 43.7±7.0 13±4.1 23±7.3  0.17±0.0 3.2±0.4 

Data are Mean±S.E.M. %ID = percentage of injected dose; LR = localization ratio; SI = specificity Index; Ab = antibody; NC = 

nanocarrier. Antibody clones were YN1 for anti-ICAM and R1727 (R17, used for Dual) or 8D3 for anti-TfR. 



 

103  

Next we tested the biodistribution of anti-ICAM/TfR NCs. In accord with greater 

targeting of nanocarriers to ICAM-1 in cell cultures,208 anti-ICAM NCs had greater 

accumulation and targeting specificity than anti-TfR NCs in the brain and lungs, with 

similar liver uptake (Figure 18 and Table 6). Anti-ICAM/TfR NCs displayed lung 

accumulation and specificity which was intermediate of parental formulations, similar 

to the outcome observed in cell culture.  This may be due to reduced valency of 

dually-targeted nanocarriers toward anti-ICAM, since control anti-ICAM/IgG 

nanocarriers had a similarly reduced pulmonary uptake and reduced targeting in cell 

culture (Figures 15 and 18). However, although lower, pulmonary accumulation of 

anti-TfR NCs was not affected by decreasing valency of this component (compare 

anti-TfR NCs and anti-TfR/IgG NCs in Figure 18). This suggests a stronger 

dependency on antibody surface-density for ICAM-1 vs. TfR targeting, in agreement 

with our finding showing that multivalency associated with nanocarriers vs. naked 

antibodies enhances specific targeting and endocytosis toward ICAM-1, while an 

opposite effect is observed for TfR (Figure 18).208 

4.2.6. Biodistribution of antibody-coated nanocarriers targeted to ICAM-1 and TfR 
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Figure 18. Biodistribution of nanocarriers coated with anti-ICAM-1 and anti-TfR in mice. Localization ratio (LR) and specificity 

index (SI) of brain, lungs, and liver are shown in (a) and (b), respectively.  Data are mean ± S.E.M. * Compares anti-TfR NCs to anti-

ICAM NCs; # compares dual-coated nanocarriers (either Ab/IgG or Ab1/Ab2) to their respective single-targeted nanocarriers; % 

compares anti-ICAM/TfR NCs to control Ab/IgG NCs.  *,#,% represents p < 0.05 by Student’s t-test.  
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Interestingly, brain accumulation and specificity of dually-targeted anti-

ICAM/TfR NCs were comparable to anti-TfR NCs and lower than anti-ICAM NCs 

(Figure 18).  This was independent of valency changes toward anti-ICAM or anti-

TfR, since brain uptake of anti-ICAM/IgG NCs or anti-TfR/IgG NCs was similar to 

their single-targeted counterparts.  For anti-ICAM/TfR NCs, anti-TfR (not anti-

ICAM) ruled brain targeting despite the fact that anti-ICAM NCs accumulate in brain 

better. This also agrees with the observed reduction in  endocytosis of nanocarriers 

via TfR compared to naked antibodies, while the opposite scenario arises for ICAM-1 

targeting (Figure 18).208 Therefore, it is possible that binding of anti-ICAM/TfR NCs 

to TfR reduces or delays uptake by cells despite the presence of anti-ICAM, lowering 

brain accumulation.  This was not observed in lungs, likely due to relatively high 

ICAM-1 expression in this organ vs. the brain.134,204 Liver uptake of anti-ICAM/TfR 

NCs behaved differently, which was slightly greater compared to single-targeted 

formulations.  This may be due to reduced accumulation of these particles in the 

lungs and may also possibly represent increased targeting since liver displays both 

specific accumulation (due to ICAM-1 and TfR expression) as well as non-specific 

clearance. 

 

These data support that exploiting different expression, valency requirements, and 

mechanistic patterns associated with distinct cell-surface receptors, as well as their 

combination targeting, holds potential to modify the biodistribution of drug delivery 

systems. We examined the impact of this approach on the delivery of ASM as a 

model cargo, which as mentioned in the previous section is deficient in Niemann Pick 

4.2.7 Biodistribution of a therapeutic cargo single- or dual-targeted nanocarriers 
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disease types A-B. Then, combination targeting to ICAM-1 and TfR was tested. ASM 

was injected i.v. and targeted via anti-ICAM NCs, anti-TfR NCs, or anti-ICAM/TfR 

NCs compared to naked ASM (as in clinical applications).  

 

 Using similar doses of 125I-ASM, coupling to anti-ICAM NCs or anti-TfR 

NCs significantly lowered blood levels of the circulating enzyme by 30 min post-

injection, i.e. from 29.8±3.8% ID for naked enzyme to 4.1±0.4% ID and 9.8±0.5% ID 

for anti-ICAM/ASM NCs or anti-TfR/ASM NCs, respectively (Figure 19a and Table 

6), suggesting greater removal from circulation and delivery to organs. ASM 

accumulation was enhanced in RES organs, non-RES peripheral organs, and also 

brain for ICAM-1- and TfR-targeted nanocarriers vs. naked counterparts, with greater 

benefit from ICAM-1 targeting. For instance, anti-ICAM/ASM NCs vs. anti-

TfR/ASM NCs displayed liver SI 14.5±2.1 vs 4.8±0.4, lung SI 195.2±36.0 vs. 

2.4±0.1, and brain SI 7.24±3.1 vs. 2.9±0.5, respectively. 
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Figure 19. Lysosomal enzyme delivery in control mice by ICAM-1- vs. TfR-targeted nanocarriers. (a) Blood levels of 125I-acid 

sphingomyelinase (125I-ASM) injected i.v. in mice as a naked counterpart or coupled to ∼250 nm anti-ICAM NCsvs. anti-TfR NCs, 

measured at 30 min after injection and expressed as the percentage of the injected dose (%ID). (b-d) Specific tissue accumulation of 

anti-ICAM/ASM NCs vs. anti-TfR/ASM NCs compared to naked ASM, calculated as the specificity index (SI). Data are mean ± 

S.E.M. * Compares naked enzyme vs carrier-coupled enzyme for each target and # compares targeting to ICAM-1 vs. TfR. *,# 

represents p ≤ 0.05 by Student’s t-test. 



 

108  

 

 A similar result was observed when LPS was administered via intraperitoneal 

injection prior to the start of the experiment (Figure 20 and Table 6).  In this model, 

ASM delivery using ICAM-1 or TfR-targeted nanocarriers again resulted in enhanced 

clearance from the circulation relative to naked ASM, and also greatly increased 

accumulation in brain lungs and liver (Figure 20). In liver, ASM delivery with TfR-

targeted nanocarriers appeared more similar to ICAM-1-targeted nanocarriers, yet 

appeared less effective in lungs and brain (Figure 20). Therefore, targeting ICAM-1 

or TfR may be valuable for lysosomal enzyme delivery, as previously shown, yet 

ICAM-1 targeting may offer advantages in the case of multivalent carriers. 
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Figure 20. Lysosomal enzyme delivery in disease model mice by ICAM-1- vs. TfR-targeted nanocarriers. (a) Blood levels of 125I-acid 

sphingomyelinase (125I-ASM) injected i.v. in LPS-treated mice as a naked counterpart or coupled to ∼250 nm anti-ICAM NCs vs. anti-

TfR NCs measured at 30 min after injection and expressed as the percentage of the injected dose (%ID). (b-d) Specific tissue 

accumulation of anti-ICAM/ASM NCs vs. anti-TfR/ASM NCs compared to naked ASM, calculated as the specificity index (SI). Data 

are mean ± S.E.M. * Compares naked enzyme vs carrier-coupled enzyme for each target and # compares targeting to ICAM-1 vs. TfR. 

*,# represents p < 0.05 by Student’s t-test. 
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 Dually-targeted anti-ICAM/TfR NCs resulted in enhanced ASM accumulation 

and specificity in all three organs compared to naked enzyme (Figure 21).  In 

comparison to single-targeted counterparts, this formulation displayed intermediate 

values of ASM accumulation and specificity in the lungs, and values more similar to 

those corresponding to ASM delivery by anti-TfR NCs in the brain and liver. This is 

similar to the result observed when tracing anti-ICAM/TfR NCs (Figure 18), showing 

paired co-distribution of the carrier targeting counterpart and cargo. As a 

consequence, combined-targeting resulted in a more homogenous, yet still specific 

and enhanced, delivery of ASM through different tissues (Figure 21b), which is 

preferred in diseases affecting multiple organs, such as Niemann-Pick disease A-B.
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Figure 21. Delivery of ASM by nanocarriers dual-targeted to ICAM-1 and TfR in control mice.  Localization ratio (LR) and 

specificity index (SI) of brain, liver, and lungs are shown in (a) and (b), respectively.  Data are mean ± S.E.M. * Compares enzyme vs 

nanocarrier-coupled enzyme for each target; # compares targeting between single-targeted nanocarriers; % compares targeting of 

dually-targeted nanocarriers vs. single-targeted counterparts. *,#,% represents p < 0.05 by Student’s t-test. 
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 Furthermore, in mice challenged with LPS, in order to induce inflammation 

typically associated with Niemann-Pick A-B disease and other maladies, dually-

targeted anti-ICAM/TfR NCs improved further ASM accumulation compared to a 

control situation (Figure 22). This pairs well with the fact that ICAM-1 is 

overexpressed under inflammatory conditions and, hence, dual-targeted nanocarriers 

retained the ability to respond to ICAM-1 overexpression.154 Interestingly, this 

phenomenon was observed to a much lesser extent in the case of the brain (e.g. 

comparing the localization ratio and specificity index in Figure 22). This result is in 

accord with our previous observation indicating that TfR targeting seems to rule brain 

addressing (as opposed to the case of lungs) of dually-targeted anti-ICAM/TfR NCs 

(Figure 20). Interestingly, this is despite the expected increase in expression of 

ICAM-1, not TfR, in the brain under inflammatory conditions.213 Hence, the resulting 

biodistribution of dual-targeted nanocarriers cannot be simply explained by their 

reduced valency to each individual receptor (as reported in the previous section), nor 

it corresponds to the combined biodistribution of their respective targeting moieties.
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Figure 22. Delivery of ASM by nanocarriers dual-targeted to ICAM-1 and TfR in control versus inflammatory model mice. 

Localization ratio (LR) and specificity index (SI) of brain, lungs, and liver are shown in (a) and (b), respectively. Data are mean ± 

S.E.M. * Compares naked enzyme vs enzyme coupled to nanocarriers coated with both anti-ICAM and anti-TfR; # compares control 

mice vs mice pre-treated with LPS. *,# represents p < 0.05 by Student’s t-test. 



 

114  

While we used a 1:1 ratio of two targeting antibodies on the nanocarrier 

surface, it is likely that further tuning of this parameter may improve organ 

selectivity. For example, selectivity for cancerous versus non-cancerous cells was 

enhanced by optimizing the ratio of folic acid and anti-EGFR antibody coupled to 

liposomes.14  However, as in the case of nanocarriers targeted to multiple receptors 

with similar function, such optimization cannot be predicted, as numerous factors 

relative to both design parameter and physiological features may influence combined 

targeting strategies.  

 

ICAM-1 and TfR have different attributes including function, response to pathology, 

and endocytic activity which has an apparent affect on their use for drug delivery. 

Targeting TfR versus ICAM-1 produced similar results with regard to binding of 

antibodies, yet antibody internalization was clearly favored in the case of TfR-

targeting. On the other hand, ICAM-1 targeting demonstrated certain advantages, 

including binding to cells in inflammatory-like conditions and with relatively larger, 

multivalent NCs, and also in terms of nanocarrier internalization, perhaps due to 

restrictive size of clathrin-coated pits. Differences were also apparent in vivo, as 

naked anti-TfR targeted brain efficiently, yet worsened in the case of NCs, whereas 

ICAM-1 targeting improved when targeted with NCs and appeared best overall for 

targeting brain and lungs. This type of targeting is useful for therapy of lysosomal 

storage disorders, such as Niemann Pick disease types A-B, where brain delivery 

along with multi-organ delivery is needed, and we demonstrated the relative efficacy 

of ICAM-1 and TfR targeted NCs over naked enzyme, the current gold standard 

4.2.8. Conclusions 
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therapy. Therefore, while both TfR and ICAM-1 are beneficial for drug delivery, TfR 

may be more suitable for delivery applications involving small, monovalent drug 

conjugates, whereas ICAM-1 appears preferable for delivery with larger, multivalent 

nanocarriers.   

 Regarding dual targeting of ICAM-1 and TfR, specific binding to cells was 

modified with respect to single-targeting of either receptor, yet was lower than dual-

targeted CAMs from the previous chapter. Thus, targeting multiple receptors with 

similar function may help enhance binding, while either strategy can be used for 

modification. Endocytosis of anti-ICAM/TfR NCs  was enhanced with respect to 

single-targeted formulations and this was also observed with PECAM-1/VCAM-1 

targeted nanocarriers. Both ICAM-1/TfR and PECAM-1/VCAM-1 combinations 

exploit CAM- and clathrin-mediated endocytosis, yet different behaviors may be 

observed when other pathways are combined. ICAM-1 and TfR dual-targeting 

improved accumulation in brain, lungs, and liver in vivo. Accumulation in lungs 

paralleled ICAM-1 targeting, while in brain appeared more similar to TfR-targeted 

nanocarriers, suggesting that dual targeting of ICAM-1 and TfR modified the 

biodistribution relative to single-targeting of either receptor. Delivery of therapeutic 

ASM via ICAM/TfR targeted nanocarriers produced similar results with apparent 

improvement in inflammatory context, suggesting selectivity of this formulation for 

sites of disease as was observed in the case of particular multi-CAM-targeted 

combinations. Therefore, these findings provide new insights which support that 

targeting multiple receptors of different functions with nanocarriers appears a viable 

strategy to modify the binding, endocytosis, and biodistribution of nanocarriers.  
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4.3. Combination Targeting to Multiple Epitopes of the Same Receptor  

Directing nanocarriers to multiple epitopes of the same receptor is an intriguing 

strategy which has never been tested previously. In theory this approach may 

modulate parameters of drug targeting, such as binding to cells, internalization, and 

biodistribution tested in the previous section. For example, binding to one or multiple 

receptor epitopes may alter the conformation of the receptor and consequently affect 

nanocarrier avidity. Alternatively, targeting multiple epitopes may enable binding to 

multiple regions of a single receptor which may also enhance avidity and/or result in 

higher saturation levels by binding fewer receptors per nanocarrier. Empirical 

observations from the literature provide some support for this approach. For example, 

it is known that stimulation of a receptor at one epitope is known to alter activity at 

another epitope. Such is the case for stimulation in vivo of PECAM-1 with an 

antibody, which subsequently enhanced lung accumulation of a second antibody or 

fusion conjugate. In addition, binding, endocytosis, and lysosomal transport of 

PECAM-1-targeted nanocarriers were shown to depend on the epitope targeted.179 

Epitope selection is important for lung accumulation and induced cleavage of anti-

angiotensin converting enzyme,131,196 and brain selectivity of anti- TfR.132  

4.3.1. Introduction 

 

 Therefore, we hypothesized that targeting nanocarriers to multiple epitopes of 

the same receptor can be used as a strategy to modify binding to cells in culture and 

distribution in organs in vivo. To investigate this strategy, we selected the TfR as a 

target receptor due in part to availability of antibodies which are known to have 
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differential targeting in vivo.132 Additionally, as described in the previous section, the 

TfR is widely studied as a receptor for drug delivery applications in the context of 

brain delivery and in cancer.6,132,235   

 

Two monoclonal antibodies were selected to investigate combination targeting to 

multiple epitopes of the same receptor. These antibodies were rat anti-mouse TfR 

clones 8D3 (anti-TfR-8D3) and R17217 (anti-TfR-R17) which have been investigated 

previously in the literature and display distinct biodistribution patterns  when 

administered in vivo.132 

4.3.2. Binding of antibodies vs. antibody-coated nanocarriers targeted to different TfR 

epitopes 

 

We first tested binding of these antibodies in cell culture to verify specific 

targeting over control IgG and to compare the binding toward different TfR epitopes. 

Both anti-TfR-8D3 and anti-TfR-R17 bound ECs specifically as compared to control 

IgG (3.4-fold versus 2.3-fold enhancement, Figure 23a,b), with anti-TfR-8D3 

displaying comparatively greater binding than anti-TfR-R17 (1.5-fold, Figure 23b). 

This verifies that targeting TfR at these respective epitopes results in specific and 

differential binding to ECs. 
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Figure 23. Binding of anti-TfR-8D3 versus anti-TfR-R17 to ECs. (a,b) Binding was tested by immunofluorescence after incubation 

for 1 h at 37°C in control H5V cells, and analyzed by fluorescence microscopy to assess the mean fluorescent intensity (MFI) and 

specificity index (SI, see methods) for each antibody. Phase contrast images were used to delimit cell borders (dashed white lines). 

Scale bar is ~10µm. Line in graph is shown as binding of control IgG.  Data are mean ± S.E.M. *Compares with control IgG, # 

compares ant-TfR-R17 vs anti-TfR-8D3. *,# represents p < 0.05 by Student’s t-test.  
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 Since multivalency and size of targeted nanocarriers differ from that of naked 

antibodies, we next assessed the binding of antibody-coated nanocarriers targeted via 

anti-TfR-8D3 or anti-TfR-R17. Nanocarriers coated with anti-TfR-R17 or anti-TfR-

8D3 had similar characteristics, with size ranging between ∼235-265 nm, zeta 

potential from -14.5 to -16 mV, and coating density of 185-220 antibody molecules 

per particle (Table 7). Literature values of the affinity of antibodies directed to TfR 

epitopes 8D3 or R17 ranged from 0.5-2.3 nm.234,236 

Table 7. Characterization of nanocarriers single- or dual-targeted to TfR epitopes  

Nanocarrier 
coating 

Size 
(nm) 

PDI Zeta potential 
(mv) 

Coating Valency 
Ab/NC 

 Single:     
Anti-TfR-8D3 NCs 265±28 0.29±0.04 -14.5±3.4 185±2.4 

Anti-TfR-8D3/IgG NCs 255±40 0.25±0.09 -12.9±3.9 8D3: 
98.5±4.0 

IgG: 
152±9.7 

 

Anti-TfR-R17 NCs 235±15 0.18±0.04 -15.9±1.6 220±6.27 
Anti-TfR-R17/IgG NCs 251±13 0.19±0.01 -9.50±0.3 R17: 

154±0.9 
IgG: 

136±0.3 
 

 Dual:    
Anti-TfR-R17/8D3 NCs 258±12 0.25±0.02 -14.5±3.7 8D3: 

115±0.9 
R17: 

140±7.2 
Data are Mean ± S.E.M. Ab = antibody; NC  = Nanocarrier; PDI = polydispersity. Anti-TfR-

8D3 was clone 8d3 and anti-TfR-R17 was clone R17217. 

When each antibody was coated onto nanocarriers and tested under the same 

conditions as for naked antibodies, binding of nanocarriers targeted to the 8D3 

epitope of TfR was again higher than nanocarriers targeted to the R17 epitope (Figure 

24 a-c). Indeed, targeting the 8D3 epitope of the TfR enhanced binding over the R17 

epitope considerably more for nanocarriers than for naked antibodies (8.5-fold versus 

1.5-fold, Figure 24b versus 23b), indicating that epitope 8D3 is more amenable to 

binding with relatively larger and multivalently targeted NCs. 
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Figure 24. Binding of antibody-coated nanocarriers targeted to TfR epitope 8D3 versus R17. (a-c) Binding was tested after incubation 

for 1 h at 37 °C in control H5V cells, and analyzed by fluorescence microscopy to assess the mean nanocarriers per cell (NCs/cell) and 

specificity index (SI, see methods) for each formulation. Phase contrast images were used to delimit cell borders (dashed white lines). 

Scale bar is ~10µm. Binding of control IgG is shown as a line in b.  Data are mean ± S.E.M. *Compares with control IgG, # compares 

ant-TfR-R17 NCs vs anti-TfR-8D3 NCs, ! compares nanocarriers versus corresponding naked antibody. *,#,! represents p < 0.05 by 

Student’s t-test. 
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Binding at the R17 epitope was similarly efficient whether used as a naked targeting 

moiety or reformatted into a multivalent NCs, while anti-TfR-8D3 was more efficient 

in the NC format (Figure 24c). 

 

We next tested binding of nanocarriers dually targeted to TfR epitopes R17 and 8D3. 

This is, to the best of our understanding, the first time that dual-targeting to different 

epitopes on the same receptor is examined. Nanocarriers were coated with a 1:1 ratio 

of anti-TfR-R17 and anti-TfR-8D3. To control for the difference in valency relative 

to parental carriers, binding of anti-TfR R17/8D3 NCs was compared to nanocarriers 

coated with a 1:1 ratio of R17 or 8D3 and control IgG. These nanocarriers (anti-TfR-

R17/IgG NCs and anti-TfR-8D3/IgG NCs, respectively) displayed similar size, zeta 

potential, and total antibody surface-coating to anti-TfR-R17/8D3 NCs (Table 7). 

4.3.3. Binding of antibody-coated nanocarriers targeted to multiple TfR epitopes 

 

 Lowering targeting valency to ~ 50% that of parental nanocarriers had 

opposite effects on binding for nanocarriers targeted to epitopes R17 versus 8D3. 

Binding of anti-TfR-R17/IgG NCs was enhanced with respect to fully-coated anti-

TfR-R17 NCs, whereas binding of anti-TfR-8D3 NCs worsened with lower valency 

(Figure 25). As a result, lowering valency nearly doubled binding of nanocarriers 

targeted to the R17 epitope, whereas binding of nanocarriers targeting the 8D3 

epitope was lowered by half. The behavior observed for the 8D3 epitope is intuitive, 

since lowering valency reduces the avidity of NCs for the target epitope. This was 

similar to the behavior of anti-ICAM valency in the previous chapter, where binding 
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was reduced 3-fold as a result of halving the anti-ICAM valency.  Yet, the behavior 

of anti-TfR-R17 NCs with valency is also plausible, as increasing valency past a 

certain threshold has been shown to lead to suboptimal binding for certain 

receptors.130 In terms of binding, lowering valency may cause NCs to occupy fewer 

receptors per cell, allowing for a larger total number of NCs to bind the given 

receptor pool.130 
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Figure 25. Effect of antibody valency on binding of antibody-coated nanocarriers targeted to TfR epitope 8D3 versus R17. (a-b) 

Binding was tested after incubation for 1 h at 37 °C in control H5V cells and analyzed by fluorescence microscopy to assess the mean 

number of nanocarriers per cell (NCs/cell) and specificity index (SI) for each formulation. Line in (a,b) indicates binding of control 

IgG.  Data are mean ± S.E.M. *Compares nanocarriers coated with anti-TfR to nanocarriers coated with a 1:1 ratio of  anti-TfR/IgG 

(1:1 coating of anti-TfR and control IgG). * represents p < 0.05 by Student’s t-test. 
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Figure 26. Binding of antibody-coated nanocarriers dually targeted TfR epitopes 8D3 and R17. (a-b) Binding was tested after 

incubation for 1 h at 37 °C in control H5V cells and analyzed by fluorescence microscopy to assess the number of nanocarriers per 

cell (NCs/cell) and specificity index (SI) for each formulation. Phase contrast images were used to delimit cell borders (dashed white 

lines). Scale bar is ~10µm. Line in (b) indicates binding of control IgG. Data are mean ± S.E.M. *Compares with anti-TfR R17/8D3 

NCs. * represents p < 0.05 by Student’s t-test.  
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Figure 27. Biodistribution of anti-TfR-8D3 versus anti-TfR-R17 in mice. The localization ratio or LR (a) and specificity index orI (b) 

in brain, lungs, and liver were calculated as described (see Methods). Data are mean ± S.E.M. * Compares anti-TfR-8D3 vs. anti-TfR-

R17. * represents p < 0.05 by Student’s t-test. 
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 Binding of anti-TfR-8D3/R17 NCs was intermediate of anti-TfR-R17/IgG 

NCs and anti-TfR-8D3/IgG NCs, respectively (Figure 26).  Dual targeting of TfR 

epitopes R17 and 8D3 with nanocarriers, therefore, modulated cellular binding 

independently of nanocarrier valency. This suggests, for the first time, that targeting 

nanocarriers to multiple epitopes of the same receptor can be utilized as a strategy to 

modify nanocarrier binding, highlighting the rather overlooked relevance of precise 

epitope targeting and its implications in designing effective targeted drug delivery 

systems.   

 

We next tested the biodistribution of anti-TfR-8D3 versus anti-TfR-R17 in vivo. 

These antibodies were injected i.v. as naked 125I-labeled counterparts in mice 

followed by organ analysis after euthanasia. As in previous cases, we focused on the 

brain, lungs, and liver as examples of central nervous system, peripheral, and 

clearance organs, respectively, yet additional data on kidneys, heart, and spleen are 

also provided in accompanying Table 8. As shown in Figure 27, both anti-TfR-8D3 

and anti-TfR-R17 resulted in comparable (Figure 27a) and specific (SI value above 1) 

accumulation in brain (Figure 27b). Yet, they also accumulated considerably and 

specifically in other organs.   

4.3.4. Biodistribution of antibodies vs. antibody-coated nanocarriers targeted to 

different TfR epitopes 

 

 Anti-TfR-8D3 targeted TfR throughout the body more efficiently than anti-

TfR-R17, yet the specificity of this antibody in peripheral organs exceeded its brain 

specificity, which was not observed in the case of anti-TfR-R17.  This is despite the 
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fact that both antibodies have been reported to display similar affinity234,236 and in 

agreement with greater targeting of anti-TfR-8D3 in cell culture (Figure 23). This 

result is also consistent with previous work showing the different biodistribution 

patterns of these antibodies in vivo,132 which may be due to differential accessibility 

of their respective epitope targets, or different presence throughout the body of 

receptor isoforms predominantly exposing these particular epitopes. Indeed, previous 

works have shown differences in reactivity of anti-TfR antibodies to different cell 

lines or tissues in vivo,237,238 and two TfR isoforms displaying distinct post-

translational glycosylations have been reported in mice.239  

 

 Next, we assessed targeting of nanocarriers coated with anti-TfR-8D3 or anti-

TfR-R17. Nanocarriers coated with anti-TfR-R17 or anti-TfR-8D3 both displayed 

increased accumulation in brain, lungs, and liver in comparison to their naked 

antibody counterparts (Figures 28a and 29a).  This result pairs well with enhanced 

avidity of nanocarriers vs naked antibodies due to high valency and also indicates a 

different biodistribution pattern, as in the case of naked antibodies.  Although brain 

still showed specific uptake for both types of nanocarriers (SI > 1), surprisingly, the 

targeting specificity of anti-TfR-8D3 NCs over control IgG NCs was decreased in 

lungs, liver, and slightly in brain in comparison to that of naked anti-TfR-8D3 (Figure 

28b). This was in contrast to anti TfR-R17 NCs, which displayed only decreased 

specificity toward the liver, but not the brain or lungs (Figure 29b).  
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Figure 28. Biodistribution of anti-TfR-8D3 vs. nanocarriers coated with anti-TfR-8D3.  Localization ratio (LR) and specificity index 

(SI) of brain, lungs, and liver are shown in (a) and (b), respectively. * Compares anti-TfR-8D3 vs. anti-TfR-8D3 NCs. Data are mean 

± S.E.M. * represents p < 0.05 by Student’s t-test.  

 

 

 

 

 

 

 

Figure 29. Biodistribution of anti-TfR-R17 vs. nanocarriers coated with anti-TfR-R17.  (a) Localization ratio (LR) and (b) specificity 

index (SI) of brain, lungs, and liver.  Data are mean ± S.E.M. * Compares anti-TfR-R17 vs. anti-TfR-R17 NCs. * represents p < 0.05 

by Student’s t-test. 
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Table 8. Biodistribution of antibodies and antibody-coated NCs targeted to different TfR epitopes. 

 

Data are Mean±S.E.M.; %ID = percentage of injected dose; LR = Localization Ratio; SI = Specificity Index; Ab = antibody; NC = 

Nanocarrier. Anti-TfR-8D3 was clone 8D3 and anti-TfR-R17 was clone R17217. 

 
 
 
 

Ab or NC Blood Kidney Spleen      Heart              Lungs  Liver                   Brain 
Antibody: %ID LR SI LR SI LR  SI LR SI   LR   SI LR 

Anti-TfR-R17 
SI 

57±9.7 0.1±0.00 0.5±0.1 0.1±0.00 0.7±0.1 1.1±0.4 7.2±2.8 0.2±0.0 1.3±0.1 0.4±0.0 1.6±0.1 0.03±0.00 1.3±0.2 
Anti-TfR-8D3 42±1.3 0.6±0.00 2.3±0.1 0.1±0.00 1.2±0.1 0.6±0.1 4.2±0.4 0.5±0.0 3.0±0.1 0.6±0.0 2.5±0.2 0.03±0.00 1.7±0.2 

 Single:             
Anti-TfR-R17 NCs 6.8±0.7 0.6±0.00 1.1±0.1 0.5±0.06 1.2±0.2 23±3.9 1.5±0.3 2.4±0.3 1.3±0.2 12±1.6 1.1±0.1 0.09±0.02 1.8±0.3 
Anti-TfR-8D3 NCs 7.8±1.2 0.3±0.00 0.7±0.1 0.3±0.00 0.8±0.1 38±6.4 2.5±0.4 1.7±0.3 0.9±0.2 8.1±1.1 0.7±0.1 0.07±0.02 1.4±0.3 
Anti-TfR-R17/IgG NCs 5.3±0.4 0.5±0.08 1.0±0.1 0.4±0.04 1.0±0.1 18±1.1 1.2±0.1 1.6±0.4 0.9±0.2 13±2.6 1.2±0.2 0.08±0.02 1.7±0.4 
Anti-TfR-8D3/IgG NCs 15±1.3 0.3±0.03 0.7±0.1 0.3±0.05 0.8±0.2 25±5.0 1.6±0.3 0.6±0.0 0.3±0.0 4.0±0.6 0.4±0.1 0.05±0.01 1.0±0.2 

 Dual:             
Anti-TfR-R17/8D3 NCs 11±1.3 0.3±0.03 0.7±0.1 0.3±0.04 0.8±0.1 28±4.4 1.8±0.3 1.3±0.4 0.7±0.2 7.6±1.2 0.7±0.1 0.03±0.00 0.7±0.1 
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 Therefore, it appears that enhanced organ uptake of nanocarriers may be in 

part due to non-specific accumulation. This is in accord with results presented in the 

previous section showing that, despite enhanced valency, anti-TfR NCs pose steric 

hindrances leading to poor binding and suboptimal induction of endocytosis as 

compared to naked antibodies, according to TfR length and natural size restrictions of 

clathrin-coated pits.208 In this situation, it is possible that anti-TfR NCs may bind non-

specifically to Fc receptors in tissues, resulting in low specificity. Also, this effect 

seems to depend on the precise epitope targeted and, consequently, its different 

location and accessibility.  

 

In general, anti-TfR-R17 NCs displayed more robust targeting versus anti-

TfR-8D3 counterparts, as opposed to antibodies. A similar outcome has been 

observed for nanocarriers addressed to different epitopes of PECAM-1, where 

targeting to membrane proximal epitopes resulted in lack of nanocarrier targeting.179 

Greater targeting by anti-TfR-R17 NCs in vivo is opposite to greater targeting by anti-

TfR-8D3 NCs in cell culture, also emphasizing differences in the 

presence/accessibility of their epitopes in different cell types and tissues.132,237-239 

 

We next examined the biodistribution of anti-TfR-R17/8D3 NCs.  Interestingly, 

specific accumulation in organs depended more on the epitope targeted by anti-TfR-

8D3 vs anti-TfR-R17 (Figure 30a). For instance, 50% reduction in valency did not 

impact targeting or specificity by anti-TfR-R17, while a similar reduction negatively 

impacted both parameters in the case of anti-TfR-8D3 (Figure 30a).  

4.3.5. Biodistribution of antibody-coated carriers targeted to multiple TfR epitopes 
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Figure 30. Biodistribution of antibody-coated nanocarriers dual targeted to TfR epitopes 8D3 and R17. (a) LR and (b) SI of brain, 

lungs, and liver are shown in (a) and (b), respectively. Data are mean ± S.E.M. * compares anti-TfR-R17 NCs to anti-TfR-8D3 NCs; # 

compares dual-coated NCs (either Ab/IgG or Ab1/Ab2) to their respective parental, single-targeted NCs; % compares anti-TfR-

R17/8D3 NCs to control Ab/IgG NCs. * ,#,% represents p < 0.05 by Student’s t-test. 
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A 50% reduction in valency also decreased targeting to the anti-TfR 8D3 epitope in 

cell culture, while targeting to the anti-TfR-R17 epitope showed a modest, yet 

statistically significant, improvement. As compared to either parent nanocarrier, 

dually-targeted anti-TfR-R17/8D3 counterparts displayed reduced accumulation in 

brain and comparable pulmonary levels, while liver accumulation was similar to that 

of anti-TfR-8D3 NCs and lower than for anti-TfR-R17 counterparts (Figure 30b). In 

addition, anti-TfR-R17/8D3 NCs lost targeting specificity for all three organs, as their 

SI value fell below 1 (Figure 30c). These effects could in theory be explained by 

reduced overall avidity of dually-targeted nanocarriers toward each independent 

epitope on TfR. Indeed, the specificity of anti-TfR-R17/8D3 in liver and lung had an 

intermediate value compared to that of single-targeted nanocarriers coated at similar 

valencies (anti-TfR-R17/IgG and anti-TfR-8D3/IgG; Figure 30c). However, this was 

not the case for brain, where dually-targeted nanocarriers accumulated below the 

level of both anti-TfR/IgG counterparts. It is possible that binding to two TfR 

epitopes may modify the conformation of the receptor so that exposure and, hence, 

binding to these epitopes may become impaired, displacing the antigen–antibody 

equilibrium toward the unbound form. Conceivable, this phenomenon could impact 

firm binding of dually-targeted nanocarriers at different extents in tissues expressing 

different receptor isoforms,237,238 such as those displaying different post-translational 

glycosylations.239 However, at present, the distribution of these TfR glycoforms in 

brain vs. other organs remains uncharacterized. 
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4.3.6. Conclusion 

Combination targeting to multiple epitopes of the same receptor may aid in enhancing 

or controlling the delivery of nanocarriers, but this hypothesis remained unexplored to 

this point. Selection of anti-TfR 8D3 versus R17 antibodies resulted in differential 

binding to cells and biodistribution in vivo when examined as free antibodies, 

differential response to formatting as targeted nanocarriers versus free antibodies, and 

differential binding when formatted as targeted nanocarries, thus demonstrating the 

importance of epitope selection for optimizing targeting to TfR. Targeting multiple 

TfR epitopes with a single nanocarrier modified binding in cell cultures and 

biodistribution  in vivo, and this constitutes the first evidence that this approach can 

be utilized to control the distribution of nanomedicines. Importantly, modification 

was independent of ligand valency, affirming that the strategy itself accounted for the 

observed binding and biodistribution modifications. Collectively, these results 

highlight the role of precise epitope targeting in drug delivery, the dependency on cell 

and tissue type (apart from other factors), and the unpredictability of these outcomes, 

yet indicating for the first time that combined targeting to multiple epitopes of a 

single cell-surface receptor may help modify the biodistribution of nanomedicines. 
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Section 5. Overall conclusions 

5.1 Summary. 

Despite concerted efforts over the past few decades, precise delivery of 

pharmaceutical agents remains a complex, yet important challenge. Indeed, many 

diseases (common or rare, morbid or mortal, chronic or acute, local or systemic) 

could be treated more effectively by addressing this problem. A promising approach 

in this regard is the development of targeted drug delivery systems which enhance 

accumulation at the intended site and reduce delivery to off-target areas. Yet, 

targeting single cell-surface molecules presents certain limitations such as improved 

but still suboptimal accumulation in many organs/tissues (e.g accumulation in tumors, 

brain, kidneys, heart), due to lack of selective and heterogeneous (spatially and 

temporally) expression of the target molecule at the intended site. Intracellular 

delivery can also be challenging using nanocarriers targeted to single receptors, as 

valency and size requirements of nanocarriers can limit their efficiency. 

Combination-targeting has recently arisen as a strategy to address these issues, yet it 

remains a nascent field with few systematic studies examining effects of this 

approach in general terms, both in cell cultures and in vivo.   

 

 This dissertation provides significant evidence validating the overall 

hypothesis that combination targeting can enhance and/or modify the binding, 

endocytosis, and biodistribution of polymer nanocarriers in different contexts and to 

different extents. With regard to targeting polymer nanocarriers to multiple Ig-like 

CAMs, the binding level and selectivity of multi-CAM targeted nanocarriers for 
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diseased vs. control cells can be modified using different combinations of CAMs or 

by the multiplicity of affinity moieties utilized. Internalization of multi-CAM-targeted 

nanocarriers appears enhanced by targeting receptors associated with different 

endocytic pathways (CAM- and clathrin-mediated endocytosis), rather than targeting 

multiple receptors associated with the same endocytic pathway (CAM-endocytosis). 

Yet, the rate of internalization is efficent regardless of the combination or multiplicity 

of affinity moieties utilized. Multi-CAM-targeted can also modify in vivo 

performance. Dual targeted combinations enhance specificity for organs, but triple-

targeting provides the best performance in vivo of the combinations tested, enabling 

relatively higher specifity in control and particularly diseased tissues of nanocarriers 

and associated therapeutic cargo.  

 

 In the case of multiple receptors with different functions, exemplified by 

ICAM-1 and TFR in this work, combination targeting also appears useful for 

modifying binding, internalization, or biodistribution of polymer nanocarriers. The 

different biological attributes (e.g. function, response to pathology, and endocytic 

activity) of ICAM-1 and TfR affected their drug delivery performance. Whereas 

binding to ICAM or TfR with antibodies is fairly similar, internalization is favored in 

the case of TfR-targeting. However ICAM-1 targeting was favored in terms of 

binding to cells in inflammatory-like conditions, with relatively larger and 

multivalent NCs, and in terms of nanocarrier internalization. Performance in vivo 

indicated that both TfR- and ICAM-1 targeting enhanced accumulation in organs 

where TfR-targeting appeared more effective with free antibodies than targeted 
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nanocarriers, and ICAM-1 targeting improved when targeted with NCs and appeared 

best overall. Dual-targeting of TfR and ICAM-1 modified binding of nanocarriers to 

cells, yet was lower than nanocarriers dual-targeted to CAMs. This affirms that 

targeting receptors of the same or different functions are both viable approaches to 

control nanocarrier binding. Dual-targeting of ICAM-1 and TfR enhanced nanocarrier 

internalization compared with single-targeting of TfR and slightly (although not 

significantly) compared with single-targeting of ICAM-1, which, as observed with 

PECAM-1/VCAM-1 targeting, supports that targeting receptors associated with 

different endocytic pathways may improve nanocarrier internalization. In vivo, 

accumulation of dual-targeted nanocarriers in different organs was ruled by ICAM-1 

(lungs) or TfR (brain), suggesting that targeting multiple receptors with different 

functions and endocytic activity modified the biodistribution and delivery of 

associated therapeutic cargo. 

 

 Finally, we demonstrated for the first time that targeting polymer nanocarriers 

to multiple epitopes of the same receptor may also aid in modulating the delivery of 

nanocarriers. Differential binding of nanocarriers observed when addressed to distinct 

TfR epitopes also occurs with dual targeting of nanocarriers targeted toward TfR 

epitopes with a single nanocarrier and independently of ligand valency. A similar 

result can also be attained in vivo, where differential accumulation and specificity for 

tissues of nanocarriers addressed to distinct TfR epitopes was also demonstrated 

when targeting multiple TfR epitopes, suggesting that combined targeting to multiple 
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epitopes of a single cell-surface receptor may help modify the binding and 

biodistribution of nanomedicines. 

 

 Overall, whether nanocarriers are directed to multiple receptors of similar or 

different functions, or to multiple epitopes of the same receptor, combination 

targeting enhances, decreases, or results in a similar level of targeting to cells and in 

vivo accumulation in organs depending on the combination of receptors or epitopes 

targeted, physiological versus pathological status, and also on the particular target 

organ. Consequently, combination targeting can be utilized to modulate targeting 

performance. Combination targeting also allows modulation of nanocarrier 

internalization whether targeting receptors of similar or different functions, and 

targeting receptors associated with different pathways (CAM- and clathrin-mediated 

endocytosis) seems more favorable than targeting receptors associated with the same 

pathway. In all contexts examined, the modulatory behavior could not be predicted, 

which indicates the necessity of exploring strategies for combination targeting 

experimentally.  

 

5.2. Future Directions 

Although these studies provided relevant insight and affirm that combination 

targeting using the three strategies described may be utilized to modify the binding, 

internalization, and/or biodistribution of nanocarriers, several questions are relevant 

to supplementing and expanding this work. Future studies should examine in more 

depth the effects of combination targeting to receptors with the same versus different 
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physiological  functions. For example, competition studies could verify whether 

multi-targeted formulations bind to more than one of their targets, and to what extent. 

This will provide insight into the relative contribution of each of the targets to 

binding, and also on the binding behavior (synergistic vs. additive). Such a study can 

be performed in cell culture by evaluating nanocarrier binding in the presence of free 

ligands to provide competition for the target receptor. This type of study is also 

possible in vivo, but would likely be more costly due to need for larger amounts of 

ligand (e.g. antibody, which is expensive).  

 

 Another useful experiment would be to evaluate which pathways are induced 

during endocytosis of multi-targeted nanocarriers. Presumably, targeting multiple 

receptors induces the pathways associated with each receptor, yet this is unknown. 

Also, the extent of endocytic activation, uptake kinetics, intracellular route and fate 

may differ when multiple pathways  (or a single pathway via multiple receptors) are 

stimulated. In addition, this type of stimulation may induce novel uncharacterized 

mechanisms of uptake. This study can be done by performing internalization 

experiments in the presence of pharmacological agents or siRNA to inhibit particular 

mechanisms of endocytosis. In vivo, it may be possible to perform such a study by 

employing knockout mouse models which lack proteins critical to particular 

mechanisms of endocytosis, although some of these may not be available due to pre-

mature lethality as a result of the phenotype.  
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 The effect of nanocarrier (size, shape, composition) and ligand (size, valency, 

stiffness) characteristics should also be evaluated to gain more detailed insight in the 

performance of these systems and how they may be optimized for particular 

applications. This type of characterization would be valuable for designing 

combination targeting strategies for particular applications, and it is difficult to 

predict a priori how these parameters will affect the overall delivery performance 

because varying a single parameter can have multiple and opposing effects. For 

example, increasing  the valency of ligands on the nanocarrier surface does not 

necessarily increase avidity for the target receptor (see Background on the role of size 

and valency on nanocarrier performance). This can be examined by titrating these 

parameters in cell cultures or in vivo. In addition, studies examining the cellular 

localization of combined-targeted nanocarriers in vivo would be particulary helpful to 

determine presence in particular tissues and define the application accordingly. This 

could be examined using immunohistochemistry or by energy-dispersive X-ray 

spectroscopy of nanocarriers loaded with an iron core. 

 

 Transport of multi-targeted nanocarriers across cellular barriers remains a 

virtually untouched area in the literature, and could be explored by varying the 

coating ratios of ligands systematically to examine whether the fraction of 

internalized carriers which are transported across cells can be modulated. This may be 

examined using cells cultured on transwell filters, or in vivo using fractionation 

techniques (e.g. capillary depletion) to differentiate accumulation in the vasculature 

vs. the tissue parenchyma. Combination targeting along with more precise control of 
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ligand display on the particular surface by adding ligands to particular “patches” or 

domains may allow for greater control over modulation of targeting performance, and 

as a result more precise adaptation of nanocarriers for particular applications.197,198 

Although much remains to be learned with respect to combination targeting, the 

promise of this approach is considerable as it allows the drug delivery system to be 

endowed with targeting capability by combining properties of existing targets which 

can be optimized, rather than having to discover new targets. 
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5.3. Publications 

As a result of this dissertation, the following publications have been produced. A 

review paper summarizing the field with insights for future research is planned: 

 

-Papademetriou I, Muro S. Combination-targeting to multiple endothelial cell 

adhesion molecules modulates binding, endocytosis, and in vivo biodistribution of 

drug nanocarriers and their therapeutic cargoes (Submitted). 

 

-Ansar M, Bhowmick T, Papademetriou I, Serrano D, Muro S. Biological 

functionalization of drug delivery carriers to bypass size restrictions of receptor-

mediated endocytosis independently from receptor-targeting (Under revision, ACS 

Nano). 

 

-Papademetriou I, Garnacho C, Muro S. (2013) In vivo performance of nanocarriers 

dually-targeted to epitopes of the same versus different receptors. Biomaterials. 

34(13):3459-66.  

 

-Papademetriou J, Garnacho C, Serrano D, Bhowmick T, Schuchman EH, Muro S. 

(2013) Comparative binding, endocytosis, and biodistribution of antibodies and 

antibody-coated carriers for targeted delivery of lysosomal enzymes to ICAM-1 

versus transferrin receptor. J Inherit Metab Dis. 36(3):467-77. 

http://www.ncbi.nlm.nih.gov/pubmed/22968581�
http://www.ncbi.nlm.nih.gov/pubmed/22968581�
http://www.ncbi.nlm.nih.gov/pubmed/22968581�


 

142  

References 

1.Torchilin VP. Drug targeting. Eur J Pharm Sci 2000;11 Suppl 2:S81-91. 

2.Langer R. Drug delivery and targeting. Nature 1998;392:5-10. 

3.Muro S. Challenges in design and characterization of ligand-targeted drug delivery systems. 
J Control Release 2012;164:125-37. 

4.Bae YH, Park K. Targeted drug delivery to tumors: myths, reality and possibility. J Control 
Release 2011;153:198-205. 

5.Muro S. New biotechnological and nanomedicine strategies for treatment of lysosomal 
storage disorders. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010;2:189-204. 

6.Pardridge WM. Biopharmaceutical drug targeting to the brain. J Drug Target 2010;18:157-
67. 

7.Veeranarayanan S, Poulose AC, Mohamed MS, Varghese SH, Nagaoka Y, Yoshida Y, et 
al. Synergistic Targeting of Cancer and Associated Angiogenesis Using Triple-Targeted 
Dual-Drug Silica Nanoformulations for Theragnostics. Small 2012;8:3476-89. 

8.Muzykantov VR, Radhakrishnan R, Eckmann DM. Dynamic factors controlling targeting 
nanocarriers to vascular endothelium. Curr Drug Metab 2012;13:70-81. 

9.Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC. Targeted polymeric 
therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 
2012;41:2971-3010. 

10.Grove J, Marsh M. The cell biology of receptor-mediated virus entry. J Cell Biol 
2011;195:1071-82. 

11.Smith CW. 3. Adhesion molecules and receptors. J Allergy Clin Immunol 2008;121:S375-
9; quiz S414. 

12.McAteer MA, Schneider JE, Ali ZA, Warrick N, Bursill CA, von zur Muhlen C, et al. 
Magnetic resonance imaging of endothelial adhesion molecules in mouse atherosclerosis 
using dual-targeted microparticles of iron oxide. Arterioscler Thromb Vasc Biol 2008;28:77-
83. 



 

143  

13.Zhang Y, Zhu C, Pardridge WM. Antisense gene therapy of brain cancer with an artificial 
virus gene delivery system. Mol Ther 2002;6:67-72. 

14.Saul JM, Annapragada AV, Bellamkonda RV. A dual-ligand approach for enhancing 
targeting selectivity of therapeutic nanocarriers. J Control Release 2006;114:277-87. 

15.Chacko A-M, Nayak M, Greineder CF, Delisser HM, Muzykantov VR. Collaborative 
Enhancement of Antibody Binding to Distinct PECAM-1 Epitopes Modulates Endothelial 
Targeting. PloS one 2012;7:e34958. 

16.Han J, Zern BJ, Shuvaev VV, Davies PF, Muro S, Muzykantov V. Acute and chronic 
shear stress differently regulate endothelial internalization of nanocarriers targeted to platelet-
endothelial cell adhesion molecule-1. ACS Nano 2012;6:8824-36. 

17.Bhowmick T, Berk E, Cui X, Muzykantov VR, Muro S. Effect of flow on endothelial 
endocytosis of nanocarriers targeted to ICAM-1. J Control Release 2012;157:485-92. 

18.Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: 
theory to practice. Pharmacol Rev 2001;53:283-318. 

19.Ghaffarian R, Bhowmick T, Muro S. Transport of nanocarriers across gastrointestinal 
epithelial cells by a new transcellular route induced by targeting ICAM-1. J Control Release 
2012;163:25-33. 

20.Duncan R, Richardson SC. Endocytosis and intracellular trafficking as gateways for 
nanomedicine delivery: opportunities and challenges. Mol Pharm 2012;9:2380-402. 

21.Serrano D, Muro S. Endothelial Cell Adhesion Molecules and Drug Delivery 
Applications. In: Aranda-Espinoza H, editor. Mechanobiology of the Endothelium. Maryland: 
Science Publishers; 2014. 

22.Dienst A, Grunow A, Unruh M, Rabausch B, Nor JE, Fries JW, et al. Specific occlusion of 
murine and human tumor vasculature by VCAM-1-targeted recombinant fusion proteins. J 
Natl Cancer Inst 2005;97:733-47. 

23.Ferrante EA, Pickard JE, Rychak J, Klibanov A, Ley K. Dual targeting improves 
microbubble contrast agent adhesion to VCAM-1 and P-selectin under flow. J Control 
Release 2009;140:100-7. 



 

144  

24.Serres S, Mardiguian S, Campbell SJ, McAteer MA, Akhtar A, Krapitchev A, et al. 
VCAM-1-targeted magnetic resonance imaging reveals subclinical disease in a mouse model 
of multiple sclerosis. FASEB J 2011;25:4415-22. 

25.Kozower BD, Christofidou-Solomidou M, Sweitzer TD, Muro S, Buerk DG, Solomides 
CC, et al. Immunotargeting of catalase to the pulmonary endothelium alleviates oxidative 
stress and reduces acute lung transplantation injury. Nat Biotechnol 2003;21:392-8. 

26.Dziubla TD, Shuvaev VV, Hong NK, Hawkins BJ, Madesh M, Takano H, et al. 
Endothelial targeting of semi-permeable polymer nanocarriers for enzyme therapies. 
Biomaterials 2008;29:215-27. 

27.Ding BS, Hong N, Christofidou-Solomidou M, Gottstein C, Albelda SM, Cines DB, et al. 
Anchoring Fusion Thrombomodulin to the Endothelial Lumen Protects against Injury-
induced Lung Thrombosis and Inflammation. Am J Respir Crit Care Med 2009;180:247-56. 

28.Murciano J-C, Muro S, Koniaris L, Christofidou-Solomidou M, Harshaw DW, Albelda 
SM, et al. ICAM-directed vascular immunotargeting of antithrombotic agents to the 
endothelial luminal surface. Blood 2003;101:3977-84. 

29.Hamilton AJ, Huang SL, Warnick D, Rabbat M, Kane B, Nagaraj A, et al. Intravascular 
ultrasound molecular imaging of atheroma components in vivo. J Am Coll Cardiol 
2004;43:453-60. 

30.Weller GE, Villanueva FS, Tom EM, Wagner WR. Targeted ultrasound contrast agents: in 
vitro assessment of endothelial dysfunction and multi-targeting to ICAM-1 and sialyl Lewisx. 
Biotechnol Bioeng 2005;92:780-8. 

31.Choi KS, Kim SH, Cai QY, Kim SY, Kim HO, Lee HJ, et al. Inflammation-specific T1 
imaging using anti-intercellular adhesion molecule 1 antibody-conjugated gadolinium 
diethylenetriaminepentaacetic acid. Mol Imaging 2007;6:75-84. 

32.Kim K, Huang SW, Ashkenazi S, O'Donnell M, Agarwal A, Kotov NA, et al. 
Photoacoustic imaging of early inflammatory response using gold nanorods. Applied Physics 
Letters 2007;90:223901. 

33.Zhang N, Chittasupho C, Duangrat C, Siahaan TJ, Berkland C. PLGA nanoparticle--
peptide conjugate effectively targets intercellular cell-adhesion molecule-1. Bioconjug Chem 
2008;19:145-52. 

34.Gunawan RC, Auguste DT. Immunoliposomes That Target Endothelium In Vitro Are 
Dependent on Lipid Raft Formation. Mol Pharm 2010;7:1569-75. 



 

145  

35.Park S, Kang S, Veach AJ, Vedvyas Y, Zarnegar R, Kim JY, et al. Self-assembled 
nanoplatform for targeted delivery of chemotherapy agents via affinity-regulated molecular 
interactions. Biomaterials 2010;31:7766-75. 

36.Shao X, Zhang H, Rajian JR, Chamberland DL, Sherman PS, Quesada CA, et al. 125I-
labeled gold nanorods for targeted imaging of inflammation. ACS Nano 2011;5:8967-73. 

37.Garnacho C, Serrano D, Muro S. A fibrinogen-derived peptide provides intercellular 
adhesion molecule-1-specific targeting and intraendothelial transport of polymer nanocarriers 
in human cell cultures and mice. J Pharmacol Exp Ther 2012;340:638-47. 

38.Hsu J, Northrup L, Bhowmick T, Muro S. Enhanced delivery of alpha-glucosidase for 
Pompe disease by ICAM-1-targeted nanocarriers: comparative performance of a strategy for 
three distinct lysosomal storage disorders. Nanomedicine 2012;8:731-9. 

39.Ding B-S, Hong N, Murciano J-C, Ganguly K, Gottstein C, Christofidou-Solomidou M, et 
al. Prophylactic thrombolysis by thrombin-activated latent prourokinase targeted to PECAM-
1 in the pulmonary vasculature. Blood 2008;111:1999-2006. 

40.Wu D, Pardridge WM. Neuroprotection with noninvasive neurotrophin delivery to the 
brain. Proc Natl Acad Sci U S A 1999;96:254-9. 

41.Zhang Y, Pardridge WM. Neuroprotection in transient focal brain ischemia after delayed 
intravenous administration of brain-derived neurotrophic factor conjugated to a blood-brain 
barrier drug targeting system. Stroke 2001;32:1378-84. 

42.Zhang Y, Pardridge WM. Conjugation of brain-derived neurotrophic factor to a blood-
brain barrier drug targeting system enables neuroprotection in regional brain ischemia 
following intravenous injection of the neurotrophin. Brain Res 2001;889:49-56. 

43.Song BW, Vinters HV, Wu D, Pardridge WM. Enhanced neuroprotective effects of basic 
fibroblast growth factor in regional brain ischemia after conjugation to a blood-brain barrier 
delivery vector. J Pharmacol Exp Ther 2002;301:605-10. 

44.Lee HJ, Zhang Y, Zhu C, Duff K, Pardridge WM. Imaging brain amyloid of Alzheimer 
disease in vivo in transgenic mice with an Abeta peptide radiopharmaceutical. J Cereb Blood 
Flow Metab 2002;22:223-31. 

45.Kurihara A, Pardridge WM. Imaging brain tumors by targeting peptide 
radiopharmaceuticals through the blood-brain barrier. Cancer Res 1999;59:6159-63. 



 

146  

46.Suzuki T, Wu D, Schlachetzki F, Li JY, Boado RJ, Pardridge WM. Imaging endogenous 
gene expression in brain cancer in vivo with 111In-peptide nucleic acid antisense 
radiopharmaceuticals and brain drug-targeting technology. J Nucl Med 2004;45:1766-75. 

47.Wu D, Pardridge WM. Central nervous system pharmacologic effect in conscious rats 
after intravenous injection of a biotinylated vasoactive intestinal peptide analog coupled to a 
blood-brain barrier drug delivery system. J Pharmacol Exp Ther 1996;279:77-83. 

48.Leavy O. Therapeutic antibodies: past, present and future. Nat Rev Immunol 2010;10:297. 

49.Vellard M. The enzyme as drug: application of enzymes as pharmaceuticals. Curr Opin 
Biotechnol 2003;14:444-50. 

50.Bouchard PR, Hutabarat RM, Thompson KM. Discovery and development of therapeutic 
aptamers. Annu Rev Pharmacol Toxicol 2010;50:237-57. 

51.de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J. Interfering with disease: a 
progress report on siRNA-based therapeutics. Nat Rev Drug Discov 2007;6:443-53. 

52.Taniyama Y, Azuma J, Kunugiza Y, Iekushi K, Rakugi H, Morishita R. Therapeutic 
option of plasmid-DNA based gene transfer. Curr Top Med Chem 2012;12:1630-7. 

53.Guy B. Adjuvants for Protein- and Carbohydrate-Based Vaccines In: Guo Z, Boons G-J, 
editors. Carbohydrate-Based Vaccines and Immunotherapies. Hoboken: John Wiley & Sons; 
2008. p. 89-115. 

54.Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current 
vaccines. Nat Med 2004;10:909-15. 

55.Pan D, Caruthers SD, Senpan A, Schmieder AH, Wickline SA, Lanza GM. Revisiting an 
old friend: manganese-based MRI contrast agents. Wiley Interdiscip Rev Nanomed 
Nanobiotechnol 2010;3:162-73. 

56.Sheets NC, Wang A. Radioisotopes and Nanomedicine. In: Singh PN, editor. 
Radioisotopes - Applications in Bio-Medical Science. Rijeka: InTech; 2011. p. 47-66. 

57.Luo S, Zhang E, Su Y, Cheng T, Shi C. A review of NIR dyes in cancer targeting and 
imaging. Biomaterials 2011;32:7127-38. 



 

147  

58.Weissleder R, Pittet MJ. Imaging in the era of molecular oncology. Nature 2008;452:580-
9. 

59.Stride E, Saffari N. Microbubble ultrasound contrast agents: a review. Proc Inst Mech Eng 
H 2003;217:429-47. 

60.Musacchio T, Torchilin VP. siRNA delivery: from basics to therapeutic applications. 
Front Biosci 2013;18:58-79. 

61.Craparo EF, Bondi ML. Application of polymeric nanoparticles in immunotherapy. Curr 
Opin Allergy Clin Immunol 2012;12:658-64. 

62.Ruiz-Garcia A, Bermejo M, Moss A, Casabo VG. Pharmacokinetics in drug discovery. J 
Pharm Sci 2008;97:654-90. 

63.Dingemanse J, Appel-Dingemanse S. Integrated pharmacokinetics and pharmacodynamics 
in drug development. Clin Pharmacokinet 2007;46:713-37. 

64.Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, et al. 
Strategies to address low drug solubility in discovery and development. Pharmacol Rev 
2013;65:315-499. 

65.Owens DE, 3rd, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of 
polymeric nanoparticles. Int J Pharm 2006;307:93-102. 

66.Ishida T, Atobe K, Wang X, Kiwada H. Accelerated blood clearance of PEGylated 
liposomes upon repeated injections: effect of doxorubicin-encapsulation and high-dose first 
injection. J Control Release 2006;115:251-8. 

67.Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 
2012;32:1959-72. 

68.Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer 
chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent 
smancs. Cancer Res 1986;46:6387-92. 

69.Gabor F, Fillafer C, Neutsch L, Ratzinger G, Wirth M. Improving oral delivery. Handb 
Exp Pharmacol 2010;345-98. 



 

148  

70.Prow TW, Grice JE, Lin LL, Faye R, Butler M, Becker W, et al. Nanoparticles and 
microparticles for skin drug delivery. Adv Drug Deliv Rev 2011;63:470-91. 

71.Cryan SA, Sivadas N, Garcia-Contreras L. In vivo animal models for drug delivery across 
the lung mucosal barrier. Adv Drug Deliv Rev 2007;59:1133-51. 

72.Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery 
to mucosal tissues. Adv Drug Deliv Rev 2009;61:158-71. 

73.Bareford LM, Swaan PW. Endocytic mechanisms for targeted drug delivery. Adv Drug 
Deliv Rev 2007;59:748-58. 

74.Vicent MJ, Duncan R. Polymer conjugates: nanosized medicines for treating cancer. 
Trends Biotechnol 2006;24:39-47. 

75.Caldwell J, Gardner I, Swales N. An introduction to drug disposition: the basic principles 
of absorption, distribution, metabolism, and excretion. Toxicol Pathol 1995;23:102-14. 

76.Lin JH, Lu AY. Role of pharmacokinetics and metabolism in drug discovery and 
development. Pharmacol Rev 1997;49:403-49. 

77.Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM. Polymeric systems for 
controlled drug release. Chem Rev 1999;99:3181-98. 

78.Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science 
2004;303:1818-22. 

79.Baumann A. Early development of therapeutic biologics--pharmacokinetics. Curr Drug 
Metab 2006;7:15-21. 

80.Bendayan R, Lee G, Bendayan M. Functional expression and localization of P-
glycoprotein at the blood brain barrier. Microsc Res Tech 2002;57:365-80. 

81.LaVan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nat 
Biotechnol 2003;21:1184-91. 

82.Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov 2003;2:347-
60. 



 

149  

83.Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev 2006;58:1532-55. 

84.Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae 
of swollen phospholipids. J Mol Biol 1965;13:238-52. 

85.Torchilin VP. Liposomes as targetable drug carriers. Crit Rev Ther Drug Carrier Syst 
1985;2:65-115. 

86.Gregoriadis G. Overview of liposomes. J Antimicrob Chemother 1991;28 Suppl B:39-48. 

87.Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, 
rationale, and clinical applications, existing and potential. Int J Nanomedicine 2006;1:297-
315. 

88.Gregoriadis G, Senior J. The phospholipid component of small unilamellar liposomes 
controls the rate of clearance of entrapped solutes from the circulation. FEBS Lett 
1980;119:43-6. 

89.Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug 
Discov 2005;4:145-60. 

90.Pai SS, Tilton RD, Przybycien TM. Poly(ethylene glycol)-modified proteins: implications 
for poly(lactide-co-glycolide)-based microsphere delivery. AAPS J 2009;11:88-98. 

91.Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V. PLGA-based 
nanoparticles: an overview of biomedical applications. J Control Release 2012;161:505-22. 

92.Bernkop-Schnurch A, Dunnhaupt S. Chitosan-based drug delivery systems. Eur J Pharm 
Biopharm 2012;81:463-9. 

93.Matricardi P, Meo CD, Coviello T, Alhaique F. Recent advances and perspectives on 
coated alginate microspheres for modified drug delivery. Expert Opin Drug Deliv 
2008;5:417-25. 

94.Park K. Albumin: a versatile carrier for drug delivery. J Control Release 2012;157:3. 

95.Champion JA, Katare YK, Mitragotri S. Particle shape: a new design parameter for micro- 
and nanoscale drug delivery carriers. J Control Release 2007;121:3-9. 



 

150  

96.Hsu J, Muro, S. Nanomedicine and drug delivery strategies for treatment of genetic 
diseases. In: Plaseska-Karanfilska D, editor. Human genetic diseases. Rijeka, Croatia: 
InTech.; 2011. p. 241-66. 

97.Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, 
diagnostics and imaging. Nanomedicine 2012;8:147-66. 

98.Beija M, Salvayre R, Lauth-de Viguerie N, Marty JD. Colloidal systems for drug delivery: 
from design to therapy. Trends Biotechnol 2012;30:485-96. 

99.Discher BM, Won YY, Ege DS, Lee JC, Bates FS, Discher DE, et al. Polymersomes: 
tough vesicles made from diblock copolymers. Science 1999;284:1143-6. 

100.Medina SH, El-Sayed ME. Dendrimers as carriers for delivery of chemotherapeutic 
agents. Chem Rev 2009;109:3141-57. 

101.Lee CC, MacKay JA, Frechet JM, Szoka FC. Designing dendrimers for biological 
applications. Nat Biotechnol 2005;23:1517-26. 

102.Jansen JF, de Brabander-van den Berg EM, Meijer EW. Encapsulation of guest 
molecules into a dendritic box. Science 1994;266:1226-9. 

103.Sadekar S, Ghandehari H. Transepithelial transport and toxicity of PAMAM dendrimers: 
implications for oral drug delivery. Adv Drug Deliv Rev 2012;64:571-88. 

104.Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 2007;24:1-
16. 

105.Brodin A, Nyqvist-Mayer A. In vitro release studies on lidocaine aqueous solutions, 
micellar solutions, and o/w emulsions. Acta Pharm Suec 1982;19:267-84. 

106.Azeem A, Anwer MK, Talegaonkar S. Niosomes in sustained and targeted drug delivery: 
some recent advances. J Drug Target 2009;17:671-89. 

107.Heister E, Brunner EW, Dieckmann GR, Jurewicz I, Dalton AB. Are carbon nanotubes a 
natural solution? Applications in biology and medicine. ACS Appl Mater Interfaces 
2013;5:1870-91. 

108.Choi HS, Frangioni JV. Nanoparticles for biomedical imaging: fundamentals of clinical 
translation. Mol Imaging 2010;9:291-310. 



 

151  

109.Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. Luminescent quantum dots 
for multiplexed biological detection and imaging. Curr Opin Biotechnol 2002;13:40-6. 

110.Reddy LH, Arias JL, Nicolas J, Couvreur P. Magnetic nanoparticles: design and 
characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. 
Chem Rev 2012;112:5818-78. 

111.Kamaly N, Miller AD. Paramagnetic liposome nanoparticles for cellular and tumour 
imaging. Int J Mol Sci 2010;11:1759-76. 

112.McAteer MA, Mankia K, Ruparelia N, Jefferson A, Nugent HB, Stork LA, et al. A 
leukocyte-mimetic magnetic resonance imaging contrast agent homes rapidly to activated 
endothelium and tracks with atherosclerotic lesion macrophage content. Arterioscler Thromb 
Vasc Biol 2012;32:1427-35. 

113.Nacev A, Beni C, Bruno O, Shapiro B. Magnetic nanoparticle transport within flowing 
blood and into surrounding tissue. Nanomedicine (Lond) 2010;5:1459-66. 

114.Higashi N, Kawahara J, Niwa M. Preparation of helical peptide monolayer-coated gold 
nanoparticles. J Colloid Interface Sci 2005;288:83-7. 

115.Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and 
drug delivery. Adv Mater 2012;24:1504-34. 

116.Xu L, Yang BF, Ai J. MicroRNA transport: a new way in cell communication. J Cell 
Physiol 2013;228:1713-9. 

117.Manz B, Matrosovich M, Bovin N, Schwemmle M. A polymorphism in the 
hemagglutinin of the human isolate of a highly pathogenic H5N1 influenza virus determines 
organ tropism in mice. J Virol 2010;84:8316-21. 

118.MacLaren R, Cui W, Cianflone K. Adipokines and the immune system: an adipocentric 
view. Adv Exp Med Biol 2008;632:1-21. 

119.Snoeys J, Mertens G, Lievens J, van Berkel T, Collen D, Biessen EA, et al. Lipid 
emulsions potently increase transgene expression in hepatocytes after adenoviral transfer. 
Mol Ther 2006;13:98-107. 

120.Vitetta ES, Krolick KA, Miyama-Inaba M, Cushley W, Uhr JW. Immunotoxins: a new 
approach to cancer therapy. Science 1983;219:644-50. 



 

152  

121.Budker V, Gurevich V, Hagstrom JE, Bortzov F, Wolff JA. pH-sensitive, cationic 
liposomes: a new synthetic virus-like vector. Nat Biotechnol 1996;14:760-4. 

122.Meyer DE, Shin BC, Kong GA, Dewhirst MW, Chilkoti A. Drug targeting using 
thermally responsive polymers and local hyperthermia. J Control Release 2001;74:213-24. 

123.Weinstein JN, Magin RL, Yatvin MB, Zaharko DS. Liposomes and local hyperthermia: 
selective delivery of methotrexate to heated tumors. Science 1979;204:188-91. 

124.Torchilin VP. Passive and active drug targeting: drug delivery to tumors as an example. 
Handb Exp Pharmacol 2010;197:3-53. 

125.Suk JS, Suh J, Choy K, Lai SK, Fu J, Hanes J. Gene delivery to differentiated neurotypic 
cells with RGD and HIV Tat peptide functionalized polymeric nanoparticles. Biomaterials 
2006;27:5143-50. 

126.Sawant R, Torchilin V. Intracellular transduction using cell-penetrating peptides. Mol 
Biosyst 2010;6:628-40. 

127.Gooding M, Browne LP, Quinteiro FM, Selwood DL. siRNA delivery: from lipids to 
cell-penetrating peptides and their mimics. Chem Biol Drug Des 2012;80:787-809. 

128.MacEwan SR, Chilkoti A. Harnessing the power of cell-penetrating peptides: activatable 
carriers for targeting systemic delivery of cancer therapeutics and imaging agents. Wiley 
Interdiscip Rev Nanomed Nanobiotechnol 2013;5:31-48. 

129.Calderon AJ, Bhowmick T, Leferovich J, Burman B, Pichette B, Muzykantov V, et al. 
Optimizing endothelial targeting by modulating the antibody density and particle 
concentration of anti-ICAM coated carriers. J Control Release 2011;150:37-44. 

130.Schaffer DV, Lauffenburger DA. Optimization of cell surface binding enhances 
efficiency and specificity of molecular conjugate gene delivery. J Biol Chem 
1998;273:28004-9. 

131.Balyasnikova IV, Karran EH, Albrecht RF, 2nd, Danilov SM. Epitope-specific antibody-
induced cleavage of angiotensin-converting enzyme from the cell surface. Biochem J 
2002;362:585-95. 

132.Lee HJ, Engelhardt B, Lesley J, Bickel U, Pardridge WM. Targeting rat anti-mouse 
transferrin receptor monoclonal antibodies through blood-brain barrier in mouse. J 
Pharmacol Exp Ther 2000;292:1048-52. 



 

153  

133.Muro S, Schuchman EH, Muzykantov VR. Lysosomal enzyme delivery by ICAM-1-
targeted nanocarriers bypassing glycosylation- and clathrin-dependent endocytosis. Mol Ther 
2006;13:135-41. 

134.Hsu J, Serrano D, Bhowmick T, Kumar K, Shen Y, Kuo YC, et al. Enhanced endothelial 
delivery and biochemical effects of alpha-galactosidase by ICAM-1-targeted nanocarriers for 
Fabry disease. J Control Release 2011;149:323-31. 

135.Mistry PK, Wraight EP, Cox TM. Therapeutic delivery of proteins to macrophages: 
implications for treatment of Gaucher's disease. Lancet 1996;348:1555-9. 

136.LeBowitz JH, Grubb JH, Maga JA, Schmiel DH, Vogler C, Sly WS. Glycosylation-
independent targeting enhances enzyme delivery to lysosomes and decreases storage in 
mucopolysaccharidosis type VII mice. Proc Natl Acad Sci U S A 2004;101:3083-8. 

137.Prince WS, McCormick LM, Wendt DJ, Fitzpatrick PA, Schwartz KL, Aguilera AI, et al. 
Lipoprotein receptor binding, cellular uptake, and lysosomal delivery of fusions between the 
receptor-associated protein (RAP) and alpha-L-iduronidase or acid alpha-glucosidase. J Biol 
Chem 2004;279:35037-46. 

138.Chen CH, Dellamaggiore KR, Ouellette CP, Sedano CD, Lizadjohry M, Chernis GA, et 
al. Aptamer-based endocytosis of a lysosomal enzyme. Proc Natl Acad Sci U S A 
2008;105:15908-13. 

139.Osborn MJ, McElmurry RT, Peacock B, Tolar J, Blazar BR. Targeting of the CNS in 
MPS-IH using a nonviral transferrin-alpha-L-iduronidase fusion gene product. Mol Ther 
2008;16:1459-66. 

140.Armstrong JS. Mitochondrial medicine: pharmacological targeting of mitochondria in 
disease. Br J Pharmacol 2007;151:1154-65. 

141.Boddapati SV, Tongcharoensirikul P, Hanson RN, D'Souza GG, Torchilin VP, Weissig 
V. Mitochondriotropic liposomes. J Liposome Res 2005;15:49-58. 

142.Flierl A, Jackson C, Cottrell B, Murdock D, Seibel P, Wallace DC. Targeted delivery of 
DNA to the mitochondrial compartment via import sequence-conjugated peptide nucleic acid. 
Mol Ther 2003;7:550-7. 

143.Muratovska A, Lightowlers RN, Taylor RW, Wilce JA, Murphy MP. Targeting large 
molecules to mitochondria. Adv Drug Deliv Rev 2001;49:189-98. 



 

154  

144.Chan CK, Jans DA. Using nuclear targeting signals to enhance non-viral gene transfer. 
Immunol Cell Biol 2002;80:119-30. 

145.Rajendran L, Knolker HJ, Simons K. Subcellular targeting strategies for drug design and 
delivery. Nat Rev Drug Discov 2010;9:29-42. 

146.Pardridge WM. Blood-brain barrier drug targeting: the future of brain drug development. 
Mol Interv 2003;3:90-105, 51. 

147.Gadsby DC. Ion channels versus ion pumps: the principal difference, in principle. Nat 
Rev Mol Cell Biol 2009;10:344-52. 

148.Ambudkar SV, Kim IW, Sauna ZE. The power of the pump: mechanisms of action of P-
glycoprotein (ABCB1). Eur J Pharm Sci 2006;27:392-400. 

149.Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Kruger A, et al. 
Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in 
vivo. Gene Ther 2002;9:102-9. 

150.Zhang G, Gao X, Song YK, Vollmer R, Stolz DB, Gasiorowski JZ, et al. Hydroporation 
as the mechanism of hydrodynamic delivery. Gene Ther 2004;11:675-82. 

151.Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH. Gene transfer into mouse 
lyoma cells by electroporation in high electric fields. EMBO J 1982;1:841-5. 

152.Anwer K, Kao G, Proctor B, Anscombe I, Florack V, Earls R, et al. Ultrasound 
enhancement of cationic lipid-mediated gene transfer to primary tumors following systemic 
administration. Gene Ther 2000;7:1833-9. 

153.Zeira E, Manevitch A, Khatchatouriants A, Pappo O, Hyam E, Darash-Yahana M, et al. 
Femtosecond infrared laser-an efficient and safe in vivo gene delivery system for prolonged 
expression. Mol Ther 2003;8:342-50. 

154.Chuang YC, Chou AK, Wu PC, Chiang PH, Yu TJ, Yang LC, et al. Gene therapy for 
bladder pain with gene gun particle encoding pro-opiomelanocortin cDNA. J Urol 
2003;170:2044-8. 

155.Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency 
virus. Cell 1988;55:1189-93. 



 

155  

156.Joliot A, Pernelle C, Deagostini-Bazin H, Prochiantz A. Antennapedia homeobox peptide 
regulates neural morphogenesis. Proc Natl Acad Sci U S A 1991;88:1864-8. 

157.Joliot A, Prochiantz A. Transduction peptides: from technology to physiology. Nat Cell 
Biol 2004;6:189-96. 

158.Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev 
Immunol 1999;17:593-623. 

159.Champion JA, Mitragotri S. Role of target geometry in phagocytosis. Proc Natl Acad Sci 
USA 2006;103:4930-4. 

160.Mercer J, Helenius A. Virus entry by macropinocytosis. Nat Cell Biol 2009;11:510-20. 

161.Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release 
2010;145:182-95. 

162.Hillaireau H, Couvreur P. Nanocarriers' entry into the cell: relevance to drug delivery. 
Cell Mol Life Sci 2009;66:2873-96. 

163.Pardridge WM, Buciak JL, Friden PM. Selective transport of an anti-transferrin receptor 
antibody through the blood-brain barrier in vivo. J Pharmacol Exp Ther 1991;259:66-70. 

164.Pardridge WM, Eisenberg J, Yang J. Human blood-brain barrier transferrin receptor. 
Metabolism 1987;36:892-5. 

165.Parton RG, Joggerst B, Simons K. Regulated internalization of caveolae. J Cell Biol 
1994;127:1199-215. 

166.Kirkham M, Parton RG. Clathrin-independent endocytosis: new insights into caveolae 
and non-caveolar lipid raft carriers. Biochim Biophys Acta 2005;1746:349-63. 

167.McIntosh DP, Tan XY, Oh P, Schnitzer JE. Targeting endothelium and its dynamic 
caveolae for tissue-specific transcytosis in vivo: a pathway to overcome cell barriers to drug 
and gene delivery. Proc Natl Acad Sci U S A 2002;99:1996-2001. 

168.Muro S, Wiewrodt R, Thomas A, Koniaris L, Albelda SM, Muzykantov VR, et al. A 
novel endocytic pathway induced by clustering endothelial ICAM-1 or PECAM-1. J Cell Sci 
2003;116:1599-609. 



 

156  

169.Muro S, Cui X, Gajewski C, Murciano J-C, Muzykantov VR, Koval M. Slow 
intracellular trafficking of catalase nanoparticles targeted to ICAM-1 protects endothelial 
cells from oxidative stress. Am J Physiol, Cell Physiol 2003;285:C1339-47. 

170.Muro S, Gajewski C, Koval M, Muzykantov VR. ICAM-1 recycling in endothelial cells: 
a novel pathway for sustained intracellular delivery and prolonged effects of drugs. Blood 
2005;105:650-8. 

171.Muro S, Mateescu M, Gajewski C, Robinson M, Muzykantov VR, Koval M. Control of 
intracellular trafficking of ICAM-1-targeted nanocarriers by endothelial Na+/H+ exchanger 
proteins. Am J Physiol Lung Cell Mol Physiol 2006;290:L809-17. 

172.Garnacho C, Shuvaev V, Thomas A, McKenna L, Sun J, Koval M, et al. RhoA activation 
and actin reorganization involved in endothelial CAM-mediated endocytosis of anti-PECAM 
carriers: critical role for tyrosine 686 in the cytoplasmic tail of PECAM-1. Blood 
2008;111:3024-33. 

173.Serrano D, Bhowmick T, Chadha R, Garnacho C, Muro S. Intercellular adhesion 
molecule 1 engagement modulates sphingomyelinase and ceramide, supporting uptake of 
drug carriers by the vascular endothelium. Arterioscler Thromb Vasc Biol 2012;32:1178-85. 

174.Tuma P, Hubbard AL. Transcytosis: crossing cellular barriers. Physiol Rev 2003;83:871-
932. 

175.Muro S, Garnacho C, Champion JA, Leferovich J, Gajewski C, Schuchman EH, et al. 
Control of endothelial targeting and intracellular delivery of therapeutic enzymes by 
modulating the size and shape of ICAM-1-targeted carriers. Mol Ther 2008;16:1450-8. 

176.Derksen JT, Morselt HW, Kalicharan D, Hulstaert CE, Scherphof GL. Interaction of 
immunoglobulin-coupled liposomes with rat liver macrophages in vitro. Exp Cell Res 
1987;168:105-15. 

177.Marsh EW, Leopold PL, Jones NL, Maxfield FR. Oligomerized transferrin receptors are 
selectively retained by a lumenal sorting signal in a long-lived endocytic recycling 
compartment. J Cell Biol 1995;129:1509-22. 

178.Vyas SP, Sihorkar V. Endogenous carriers and ligands in non-immunogenic site-specific 
drug delivery. Adv Drug Deliv Rev 2000;43:101-64. 

179.Garnacho C, Albelda SM, Muzykantov VR, Muro S. Differential intra-endothelial 
delivery of polymer nanocarriers targeted to distinct PECAM-1 epitopes. J Control Release 
2008;130:226-33. 



 

157  

180.Oh P, Borgstrom P, Witkiewicz H, Li Y, Borgstrom BJ, Chrastina A, et al. Live dynamic 
imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium 
in the lung. Nat Biotechnol 2007;25:327-37. 

181.Eniola AO, Hammer DA. In vitro characterization of leukocyte mimetic for targeting 
therapeutics to the endothelium using two receptors. Biomaterials 2005;26:7136-44. 

182.Sun D, Nakao S, Xie F, Zandi S, Schering A, Hafezi-Moghadam A. Superior sensitivity 
of novel molecular imaging probe: simultaneously targeting two types of endothelial injury 
markers. FASEB J 2010;24:1532-40. 

183.Eniola AO, Willcox PJ, Hammer DA. Interplay between rolling and firm adhesion 
elucidated with a cell-free system engineered with two distinct receptor-ligand pairs. Biophys 
J 2003;85:2720-31. 

184.Gunawan RC, Auguste DT. The role of antibody synergy and membrane fluidity in the 
vascular targeting of immunoliposomes. Biomaterials 2009;31:900-7. 

185.Gunawan RC, Almeda D, Auguste DT. Complementary targeting of liposomes to IL-
1alpha and TNF-alpha activated endothelial cells via the transient expression of VCAM1 and 
E-selectin. Biomaterials 2011;32:9848-53. 

186.Robbins GP, Saunders RL, Haun JB, Rawson J, Therien MJ, Hammer DA. Tunable 
Leuko-polymersomes That Adhere Specifically to Inflammatory Markers. Langmuir 
2010;26:14089-96. 

187.Ha SH, Carson A, Agarwal A, Kotov NA, Kim K. Detection and monitoring of the 
multiple inflammatory responses by photoacoustic molecular imaging using selectively 
targeted gold nanorods. Biomedical Optics Express 2011;2:645-57. 

188.Aird WC. Endothelium in health and disease. Pharmacol Rep 2008;60:139-43. 

189.Ricard I, Payet MD, Dupuis G. VCAM-1 is internalized by a clathrin-related pathway in 
human endothelial cells but its alpha(4)beta(1) integrin counter-receptor remains associated 
with the plasma membrane in human T lymphocytes. Eur J Immunol 1998;28:1708-18. 

190.Vestweber D, Blanks JE. Mechanisms that regulate the function of the selectins and their 
ligands. Physiol Rev 1999;79:181-213. 

191.Kneuer C, Ehrhardt C, Radomski MW, Bakowsky U. Selectins - potential 
pharmacological targets? Drug Discov Today 2006;11:1034-40. 



 

158  

192.Setiadi H, Sedgewick G, Erlandsen SL, McEver RP. Interactions of the cytoplasmic 
domain of P-selectin with clathrin-coated pits enhance leukocyte adhesion under flow. J Cell 
Biol 1998;142:859-71. 

193.Voinea M, Manduteanu I, Dragomir E, Capraru M, Simionescu M. Immunoliposomes 
directed toward VCAM-1 interact specifically with activated endothelial cells - A potential 
tool for specific drug delivery. Pharmaceutical Research 2005;22:1906-17. 

194.Ying X, Wen H, Lu WL, Du J, Guo J, Tian W, et al. Dual-targeting daunorubicin 
liposomes improve the therapeutic efficacy of brain glioma in animals. J Control Release 
2010;141:183-92. 

195.Markoutsa E, Papadia K, Clemente C, Flores O, Antimisiaris SG. Anti-Abeta-MAb and 
dually decorated nanoliposomes: effect of Abeta1-42 peptides on interaction with 
hCMEC/D3 cells. Eur J Pharm Biopharm 2012;81:49-56. 

196.Balyasnikova IV, Metzger R, Visintine DJ, Dimasius V, Sun ZL, Berestetskaya YV, et 
al. Selective rat lung endothelial targeting with a new set of monoclonal antibodies to 
angiotensin I-converting enzyme. Pulm Pharmacol Ther 2005;18:251-67. 

197.Kaewsaneha C, Tangboriboonrat P, Polpanich D, Eissa M, Elaissari A. Janus colloidal 
particles: preparation, properties, and biomedical applications. ACS Appl Mater Interfaces 
2013;5:1857-69. 

198.Jones MR, Mirkin CA. Materials science: Self-assembly gets new direction. Nature 
2012;491:42-3. 

199.Kissel K, Hamm S, Schulz M, Vecchi A, Garlanda C, Engelhardt B. 
Immunohistochemical localization of the murine transferrin receptor (TfR) on blood-tissue 
barriers using a novel anti-TfR monoclonal antibody. Histochem Cell Biol 1998;110:63-72. 

200.Marlin SD, Springer TA. Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand 
for lymphocyte function-associated antigen 1 (LFA-1). Cell 1987;51:813-9. 

201.Jevnikar AM, Wuthrich RP, Takei F, Xu HW, Brennan DC, Glimcher LH, et al. 
Differing regulation and function of ICAM-1 and class II antigens on renal tubular cells. 
Kidney Int 1990;38:417-25. 

202.Altieri DC, Duperray A, Plescia J, Thornton GB, Languino LR. Structural recognition of 
a novel fibrinogen gamma chain sequence (117-133) by intercellular adhesion molecule-1 
mediates leukocyte-endothelium interaction. J Biol Chem 1995;270:696-9. 



 

159  

203.He X, Miranda SR, Xiong X, Dagan A, Gatt S, Schuchman EH. Characterization of 
human acid sphingomyelinase purified from the media of overexpressing Chinese hamster 
ovary cells. Biochim Biophys Acta 1999;1432:251-64. 

204.Garnacho C, Dhami R, Simone E, Dziubla T, Leferovich J, Schuchman EH, et al. 
Delivery of acid sphingomyelinase in normal and niemann-pick disease mice using 
intercellular adhesion molecule-1-targeted polymer nanocarriers. J Pharmacol Exp Ther 
2008;325:400-8. 

205.Muro S, Dziubla T, Qiu W, Leferovich J, Cui X, Berk E, et al. Endothelial targeting of 
high-affinity multivalent polymer nanocarriers directed to intercellular adhesion molecule 1. J 
Pharmacol Exp Ther 2006;317:1161-9. 

206.Papademetriou IT, Garnacho C, Schuchman EH, Muro S. In vivo performance of 
polymer nanocarriers dually-targeted to epitopes of the same or different receptors. 
Biomaterials 2013;34:3459–66. 

207.Garlanda C, Parravicini C, Sironi M, De Rossi M, Wainstok de Calmanovici R, Carozzi 
F, et al. Progressive growth in immunodeficient mice and host cell recruitment by mouse 
endothelial cells transformed by polyoma middle-sized T antigen: implications for the 
pathogenesis of opportunistic vascular tumors. Proc Natl Acad Sci U S A 1994;91:7291-5. 

208.Papademetriou J, Garnacho C, Serrano D, Bhowmick T, Schuchman EH, Muro S. 
Comparative binding, endocytosis, and biodistribution of antibodies and antibody-coated 
carriers for targeted delivery of lysosomal enzymes to ICAM-1 versus transferrin receptor. J 
Inherit Metab Dis 2013;36:467-77. 

209.Muro S. Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1. In: 
Aird WC, editor. Endothelial biomedicine. 1 ed. New York: Cambridge University Press; 
2007. p. 1058-70. 

210.Couty JP, Rampon C, Leveque M, Laran-Chich MP, Bourdoulous S, Greenwood J, et al. 
PECAM-1 engagement counteracts ICAM-1-induced signaling in brain vascular endothelial 
cells. J Neurochem 2007;103:793-801. 

211.Carlos TM, Harlan JM. Leukocyte-endothelial adhesion molecules. Blood 1994;84:2068-
101. 

212.Warram JM, Sorace AG, Saini R, Umphrey HR, Zinn KR, Hoyt K. A triple-targeted 
ultrasound contrast agent provides improved localization to tumor vasculature. J Ultrasound 
Med 2011;30:921-31. 



 

160  

213.Henninger DD, Panes J, Eppihimer M, Russell J, Gerritsen M, Anderson DC, et al. 
Cytokine-induced VCAM-1 and ICAM-1 expression in different organs of the mouse. J 
Immunol 1997;158:1825-32. 

214.Romer LH, McLean NV, Yan HC, Daise M, Sun J, DeLisser HM. IFN-gamma and TNF-
alpha induce redistribution of PECAM-1 (CD31) on human endothelial cells. J Immunol 
1995;154:6582-92. 

215.Schuchman EH, Desnick RJ. Niemann-Pick Disease Types A and B: Acid 
Sphingomyelinase Deficiencies. In: Scriver C, Beaudet A, Sly W, Valle D, Childs B, Kinzler 
K, et al., editors. The Metabolic and Molecular Bases of Inherited Disease. 8th ed. New York: 
McGraw-Hill; 2001. p. 3589-610. 

216.Grill J, Van Beusechem VW, Van Der Valk P, Dirven CM, Leonhart A, Pherai DS, et al. 
Combined targeting of adenoviruses to integrins and epidermal growth factor receptors 
increases gene transfer into primary glioma cells and spheroids. Clin Cancer Res 2001;7:641-
50. 

217.Li X, Zhou H, Yang L, Du G, Pai-Panandiker AS, Huang X, et al. Enhancement of cell 
recognition in vitro by dual-ligand cancer targeting gold nanoparticles. Biomaterials 
2011;32:2540-5. 

218.Jefferies WA, Brandon MR, Hunt SV, Williams AF, Gatter KC, Mason DY. Transferrin 
receptor on endothelium of brain capillaries. Nature 1984;312:162-3. 

219.Fishman JB, Rubin JB, Handrahan JV, Connor JR, Fine RE. Receptor-mediated 
transcytosis of transferrin across the blood-brain barrier. J Neurosci Res 1987;18:299-304. 

220.Dautry-Varsat A. Receptor-mediated endocytosis: the intracellular journey of transferrin 
and its receptor. Biochimie 1986;68:375-81. 

221.Conrad ME, Umbreit JN. Iron absorption and transport-an update. Am J Hematol 
2000;64:287-98. 

222.Rothlein R, Dustin ML, Marlin SD, Springer TA. A human intercellular adhesion 
molecule (ICAM-1) distinct from LFA-1. J Immunol 1986;137:1270-4. 

223.Rothlein R, Wegner C. Role of intercellular adhesion molecule-1 in the inflammatory 
response. Kidney Int 1992;41:617-9. 



 

161  

224.Fuchs H, Lucken U, Tauber R, Engel A, Gessner R. Structural model of phospholipid-
reconstituted human transferrin receptor derived by electron microscopy. Structure 
1998;6:1235-43. 

225.Jun CD, Carman CV, Redick SD, Shimaoka M, Erickson HP, Springer TA. 
Ultrastructure and function of dimeric, soluble intercellular adhesion molecule-1 (ICAM-1). J 
Biol Chem 2001;276:29019-27. 

226.Lossinsky AS, Mossakowski MJ, Pluta R, Wisniewski HM. Intercellular adhesion 
molecule-1 (ICAM-1) upregulation in human brain tumors as an expression of increased 
blood-brain barrier permeability. Brain Pathol 1995;5:339-44. 

227.Carpén O, Pallai P, Staunton DE, Springer TA. Association of intercellular adhesion 
molecule-1 (ICAM-1) with actin-containing cytoskeleton and alpha-actinin. The Journal of 
Cell Biology 1992;118:1223-34. 

228.Frey A, Giannasca KT, Weltzin R, Giannasca PJ, Reggio H, Lencer WI, et al. Role of the 
glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal 
epithelial cells: implications for microbial attachment and oral vaccine targeting. J Exp Med 
1996;184:1045-59. 

229.DeGraba T, Azhar S, Dignat-George F, Brown E, Boutiere B, Altarescu G, et al. Profile 
of endothelial and leukocyte activation in Fabry patients. Ann Neurol 2000;47:229-33. 

230.Shen JS, Meng XL, Moore DF, Quirk JM, Shayman JA, Schiffmann R, et al. 
Globotriaosylceramide induces oxidative stress and up-regulates cell adhesion molecule 
expression in Fabry disease endothelial cells. Mol Genet Metab 2008;95:163-8. 

231.Nanami M, Ookawara T, Otaki Y, Ito K, Moriguchi R, Miyagawa K, et al. Tumor 
necrosis factor-alpha-induced iron sequestration and oxidative stress in human endothelial 
cells. Arterioscler Thromb Vasc Biol 2005;25:2495-501. 

232.Visser CC, Voorwinden LH, Crommelin DJ, Danhof M, de Boer AG. Characterization 
and modulation of the transferrin receptor on brain capillary endothelial cells. Pharm Res 
2004;21:761-9. 

233.Pardridge WM, Boado RJ. Reengineering biopharmaceuticals for targeted delivery 
across the blood-brain barrier. Methods Enzymol 2012;503:269-92. 

234.Bjorn MJ, Groetsema G. Immunotoxins to the murine transferrin receptor: intracavitary 
therapy of mice bearing syngeneic peritoneal tumors. Cancer Res 1987;47:6639-45. 



 

162  

235.Daniels TR, Bernabeu E, Rodriguez JA, Patel S, Kozman M, Chiappetta DA, et al. The 
transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim 
Biophys Acta 2012;1820:291-317. 

236.Boado RJ, Zhang Y, Wang Y, Pardridge WM. Engineering and expression of a chimeric 
transferrin receptor monoclonal antibody for blood-brain barrier delivery in the mouse. 
Biotechnol Bioeng 2009;102:1251-8. 

237.Panaccio M, Zalcberg JR, Thompson CH, Leyden MJ, Sullivan JR, Lichtenstein M, et al. 
Heterogeneity of the human transferrin receptor and use of anti-transferrin receptor antibodies 
to detect tumours in vivo. Immunol Cell Biol 1987;65 ( Pt 6):461-72. 

238.Takahashi S, Esserman L, Levy R. An epitope on the transferrin receptor preferentially 
exposed during tumor progression in human lymphoma is close to the ligand binding site. 
Blood 1991;77:826-32. 

239.van Driel IR, Goding JW. Heterogeneous glycosylation of murine transferrin receptor 
subunits. Eur J Biochem 1985;149:543-8. 
 
 


	Iason Titos Papademetriou, Doctor of Philosophy, 2013
	Dedication
	Acknowledgements
	Table of Contents
	Section 1: Introduction and Overview
	1.1. Problem Description and Motivation
	1.2. Our approach
	1.3. Significance and Novelty

	Section 2: Background
	2.1. Drug Delivery: Purpose and Challenges
	2.2. Drug Delivery Systems
	2.3. Targeting Strategies in Drug Delivery
	2.4. Targeting to Cells and Subcellular Compartments
	2.5. Transport Into or Across Cells
	2.6. Targeting and Endocytosis of Nanocarriers: Role of Size and Valency
	2.7. Combination Targeting

	Section 3: Methods
	3.1. Materials
	3.2. Iodination of Proteins
	3.3. Preparation and Characterization of Antibody-coated Nanocarriers
	3.4. Cell Culture
	3.5. Binding Studies
	3.6. Imaging of Endothelial Engulfment Structures
	3.7. Endocytosis Studies
	3.8. Biodistribution Studies in Mice
	3.9. Statistics

	Section 4: Results and Discussion
	4.1. Combination Targeting to Multiple Receptors with Similar Functions
	U4.1.1. Introduction
	U4.1.2. Binding and endocytosis of antibody-coated nanocarriers single-targeted to ICAM-1, PECAM-1, or VCAM-1
	U4.1.3. Binding and endocytosis of antibody-coated nanocarriers dual-targeted to PECAM-1 and VCAM-1
	U4.1.4. Binding and endocytosis of antibody-coated nanocarriers dual-targeted to ICAM-1 and PECAM-1
	U4.1.5. Binding and endocytosis of antibody-coated nanocarriers dual or triple-targeted to ICAM-1, PECAM-1, and/or VCAM-1
	U4.1.6. Biodistribution of antibodies vs. antibody-coated nanocarriers single-targeted to ICAM-1, PECAM-1, or VCAM-1
	U4.1.7. Biodistribution of antibody-coated nanocarriers dual- or triple-targeted to ICAM-1, PECAM-1, and/or VCAM-1
	U4.1.8. Biodistribution of a therapeutic cargo by triple-CAM-targeted nanocarriers
	U4.1.9. Conclusions

	4.2. Combination targeting to multiple receptors with different functions
	U4.2.1. Introduction
	U4.2.2. Binding of antibodies vs. antibody-coated nanocarriers or micron-sized carriers targeted to ICAM-1 or TfR
	U4.2.3. Endocytosis of antibodies vs. antibody-coated nanocarriers targeted to ICAM-1 or TfR
	U4.2.4. Binding and endocytosis of nanocarriers dual-targeted to ICAM-1 and TfR
	/
	U4.2.5. Biodistribution of antibodies vs. antibody-coated nanocarriers targeted to ICAM-1 or TfR
	U4.2.6. Biodistribution of antibody-coated nanocarriers targeted to ICAM-1 and TfR
	U4.2.7 Biodistribution of a therapeutic cargo single- or dual-targeted nanocarriers
	U4.2.8. Conclusions

	4.3. Combination Targeting to Multiple Epitopes of the Same Receptor
	U4.3.1. Introduction
	U4.3.2. Binding of antibodies vs. antibody-coated nanocarriers targeted to different TfR epitopes
	U4.3.3. Binding of antibody-coated nanocarriers targeted to multiple TfR epitopes
	U4.3.4. Biodistribution of antibodies vs. antibody-coated nanocarriers targeted to different TfR epitopes
	U4.3.5. Biodistribution of antibody-coated carriers targeted to multiple TfR epitopes
	4.3.6. Conclusion


	Section 5. Overall conclusions
	5.1 Summary.
	5.2. Future Directions
	5.3. Publications


