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Microchiroptera have evolved a biological sonar system that enables aerial 

foraging in total darkness.  These echolocating bat species emit sequences of 

ultrasonic vocalizations and use the returning echoes to create acoustic images of the 

environment.  Bats orient their gaze in space by adjusting their sonar vocalizations, 

flight dynamics, and head aim in a coordinated manner when approaching targets. 

 Insectivorous species of echolocating bats have been shown to actively modulate the 

features of sonar vocalizations with changing target distance.  Therefore, variations in 

the time–frequency structure and temporal patterning of sonar calls produced by 

foraging bats reflect adaptive goal directed behaviors. 

 

The bat's heavy reliance on sound production and processing is reflected in 

neural specializations of auditory and motor structures.  The experiments described in 

this dissertation probe the midbrain superior colliculus (SC), a vertebrate 

sensorimotor nucleus mediating orienting behaviors, and they specifically explore 



  

adaptations in the SC of the insectivorous bat, Eptesicus fuscus, for acoustic 

orienting.  The anatomical experiments conducted demonstrate that the bat SC has 

projections to pre–vocal motor control regions in the brainstem: paralemniscal 

tegmentum area, cuneiform nucleus, and midbrain reticular formation.  Further 

insights were gained by developing chronic neural recording techniques to study SC 

neuronal activity in actively echolocating bats.  These are the first chronic recordings 

in unrestrained, freely behaving bats.  The physiological experiments reveal two 

bouts of neural activity prior to each sonar vocalization, and suggest a relationship 

between the timing of pre–vocal activity and sonar call duration. 

 

Based on the anatomical findings and the functional pre–motor activity 

identified here, along with previous electrical and chemical microstimulation studies 

in the bat midbrain, a conceptual model is proposed for the SC of bats that suggests 

its role in orienting acoustic gaze along the range axis.  This role of the bat SC is 

similar to that proposed for primate and feline SC in controlling the visual depth of 

focus via vergence eye movements.  The parallel between the visuomotor and 

echolocation systems for orienting gaze to objects at different distances suggests that 

the computations performed by the SC serve common functions across modalities and 

effort organs. 
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Preface 

In my graduate I have endeavored research to study neural mechanisms that 

underlie animal behaviors.  To that end I have been strongly influenced by the 

neuroethological approach to studying the biology of behavior, and the manner by 

which many neuroethologists conduct their science.  Animals live in a rapidly 

changing environment, and have many subtle and sophisticated behaviors that they 

employ to extract information from their surroundings.  Hence, animals actively 

gather sensory information by dynamically adjusting their behaviors.  I have learned 

to appreciate these behaviors that have been shaped by generations of evolution, since 

ultimately understanding how animals extract information is crucial in guiding 

neurophysiological research.  

I have been introduced to and have studied a number of animal systems, but 

for my dissertation research I have focused on the echolocating bat, Eptesicus fuscus, 

a species commonly found throughout North America.  Echolocating bats represent 

an excellent example of how organisms can use auditory information in conjunction 

with self–generated sounds to move within and interact with the world.  This behavior 

as used by microchiropteran bats is amazing since it is a dynamic, intricate, 

orchestrated behavior that happens in the blink of an eye.  Bats can acquire within a 

fraction of a second sufficient auditory information to detect and direct high–speed 

attacks in order intercept ephemeral targets – flying insects – dancing through the 

night sky.   This dissertation is an effort to understand that beautiful and tantalizingly 

complex behavior, echolocation. 
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In this research I focus on only one aspect of the echolocation behavior, the 

production of sonar vocalizations.  Indeed, it is even further specific, as the 

dissertation focuses on the role of one nucleus in sonar vocal production.  I have 

made all due efforts to study the system in as natural a behavioral state as possible, 

for as the ever vigilant neuroethologist in me reminds, the behavior is most important, 

the behavior should guide the scientific question. 

In the hands of some the ability to record neuronal activity from living, 

breathing, behaving animals has reached remarkable levels, and their success is built 

on the research of a large number of other researchers, technicians and engineers.  

However, I was reluctant to begin tackling this goal in the bat, since the task even 

today remains technically quite challenging.  Nonetheless, I began down this road, 

and have made progress to the point now where we can record routinely from 

unrestrained, tethered, freely behaving bats.  This has not previously been 

accomplished, so I hope it will prove useful to the neuroethology field at large. I also 

hope that the results of my research will contribute, however small, to the scientific 

knowledge at large.
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“When we try to pick out anything by itself, 

we find it hitched to everything else in the universe.” 

– John Muir 

Chapter 1: Introduction 

 

This dissertation considers the hypothesis that neurophysiological processes 

co–vary with behaviors in a task dependent manner.  The introduction first develops 

the idea that behavioral orienting of gaze is part of an ongoing cycle of perception.  

Next, in support of the hypothesis, two examples of co–variation between neuronal 

activity and orienting behaviors of behaving animals are presented; one in the visual 

system, the other in the somatosensory system.  This is followed by a summary of 

current knowledge on the acoustic orienting behavior of the echolocating bat.  This 

auditory specialist produces sonar vocalizations to explore its environment, and 

processes the acoustic information in reflected echoes to guide orienting behaviors.  

Historically, research on neural processing in this animal has focused on auditory 

processes in the primary ascending pathway nuclei and the cortex, while the animal 

passively listened to sounds.  In contrast, this dissertation will focus on the superior 

colliculus (SC), which generates commands for gaze orienting movements, and 

examines its functional properties in actively vocalizing bats.  The third part of this 

Introduction is devoted to introducing the SC, and its novel role in bats, acoustic 

orientation by sonar.  
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Active Sensing 

Gaze 

Organisms operate in a complex and continually changing world.  Their 

continued survival depends on a steady assessment of biologically relevant 

information.  The information that animals gather from the environment is derived 

from the compliment of sensory transduction organs that have evolved.  For animals 

to successfully navigate and forage within their environment an important question 

concerns how sensory information is sampled. 

 

The means of sampling is constrained by the morphology and function of a 

particular sensory organ.  This point cannot be underestimated, because the design of 

a sensory organ will determine and shape how the sampling is ultimately achieved.  

Simultaneous acquisition of the entire physical range of a sensory modality, at each 

moment in time, is not observed among biological organisms.  Generally, sensory 

organs sample a limited range of a space, and within this subspace they have regions 

of higher and lower sensitivity, along with varying spatial and temporal resolution. 

 

Given the constraints on sensory sampling imposed by form and function, 

animals have developed behavioral strategies to adjust their gaze.  Here, gaze refers 

to the locus in space (defined in terms of azimuth, elevation and range) from which 

the highest resolution sensory information is acquired.  The gaze can be directed by: 

a) adjusting the orientation of a sensory apparatus, or b) orienting the body to acquire 

sensory information.  The acquisition of sensory information by directing gaze is 
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accomplished using species–specific behaviors.  For instance, head orienting 

movements facilitate sound localization in the auditory system, saccadic eye 

movements align the fovea for high–resolution analysis in the visual system, and 

haptic exploration mediates tactile discrimination in the somatosensory system. 

 

This working definition of gaze can be considered spatial gaze and needs to be 

expanded to account for classes of animals that actively probe the environment by 

producing their own signals and by controlling the rate at which they sample 

information.  Classes of animals that fall into this category are the echolocating bats, 

cetaceans, and weakly electric fish.  All of these classes of animals produce a signal 

that is emitted into the environment, is modified by the environment, and returned 

back to the animal.  Thus the animals can compare the outgoing and altered incoming 

signals to gather information about their environments.  Therefore, there is another 

component that needs to be added to the definition of gaze: adjusting the time of 

emitting a signal and responding to returning signals with appropriate delays. 

 

This last method of adjusting gaze is important for the animal model used in 

the experiments described here, the echolocating bat.  Bats emit high intensity, broad 

bandwidth, variable duration sonar signals, and use the returning echoes to generate 

an image of their environment.  Therefore, the time of return of echoes is as important 

as the direction from which echoes arrive.  The importance of this additional 

dimension of gaze control will prove important for acoustic sampling when we relate 
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the sonar vocalizations bats produce with, a) the distance of targets during foraging, 

and b) the features of vocal pre–motor neuronal firing. 

 

Sampling the World 

Orienting gaze for the purpose of sampling sensory space is a process that 

changes dynamically and involves an active sensing process.  Other scientists have 

already proposed this idea for visual information processing (Aloimonos et al., 

1988;Findlay and Gilchrist, 2003) where the visual world is sampled by sequences of 

fixation–movement–fixation of the fovea of the human eye.  This active process is 

part of an overall cycle of the kind described by the psychologist Ulric Neisser 

(Neisser, 1976).  Neisser suggested a ‘perceptual cycle’ in which exploratory 

behaviors serve to sample sensory space, and in turn the sensory sampling generates 

perceptions that are acted upon by cognitive factors, which then direct future 

behaviors.  The cognitive factors themselves Neisser categorized into ‘schemata’.  He 

considered the schemata as a modifiable collection of knowledge relevant to the 

current behavior, which prepared the perceiver to accept some information rather than 

others, and thus control the evolution of the behavior.  These cognitive factors come 

into play when considering important questions related to how sensory sampling is 

achieved: How is the decision made when to redirect gaze?  How is it determined 

where to direct the gaze in order to take the next sample? What information is taken 

in during each sample? How is information from one sample integrated with that 

from previous and subsequent samples?  Therefore, Neisser considered the 

construction of a mental image (representation), not as a static image for a 
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homunculus to examine, but rather that at each moment the perceiver is constructing 

expectations of certain kinds of information that enable the perceiver to accept and 

interpret that information when it becomes available.  Thus schemata generate 

expectations that direct exploratory behavior, the exploratory behaviors result in 

information that modifies the original schemata, which then drives further 

exploration.  This cycle has been referred to as the Neisser perceptual cycle (Neisser, 

1976) (Figure 1). 

 

What guides the evolution of the sampling process during active sensing?  

This challenging question is only partially addressed by observations of the animal’s 

behavior, an understanding of the physical processes in signal transmission, and our 

knowledge of peripheral sensory signal transduction.  This is because the cognitive 

factors in the perceptual cycle, i.e. the schemata, play an important role in the 

sampling process as well.  The components are in part made up of the arousal state of 

the animal (e.g. anesthetized, sleep, awake, attentive), experiences (prior 

probabilities) that guide decision making in animals (e.g. memory of an environment, 

complexity of a behavioral task, coordination of motor plans), and the objectives of 

the animal (e.g. foraging, exploring, navigating).  Experimentally if an animal’s 

arousal state, experiences, and objectives can be constrained, and if the entire context 

within which an organism operates is appropriately designed and controlled, the 

evolution of the sampling process can be simplified.  Developing an experimental 

design to completely constrain behavior is nontrivial, however, it should be kept in 

mind that the answers gathered are a function of internal states of the animal.
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Figure 1 Ulric Neisser's 'perceptual cycle'. 

Neisser considered that each at moment the perceiver is constructing anticipations of 

certain kinds of information, which enable the acceptance of the information when it 

becomes available.  Interactions with the environment, therefore, occur continuously 

in a cyclical manner where sampling provides available information in the 

environment, which in turn serves to modify schema of the present environment, that 

then direction further exploration. (Adapted from "Cognition and Reality", Neisser, 

1976). 
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During experiments, measurement of an animal’s behavior is crucial since the effects 

of active sensing in freely moving animals can be observed behaviorally, when 

animals shift between behavioral strategies to complete tasks (Carvell and Simons, 

1995;Hollins and Risner, 2000;Gamzu and Ahissar, 2001), as well as physiologically, 

as changes in neuronal firing patterns or receptive field properties (Ahissar et al., 

1992;Ghazanfar and Nicolelis, 1999;Ahissar et al., 2000;Knierim and McNaughton, 

2001;Krauzlis, 2003;Carello and Krauzlis, 2004).  Thus, data from freely behaving 

animals suggests that when an animal shifts between classes of behaviors a 

corresponding change occurs in the firing pattern or mode of operation of neurons.  In 

terms of sensory sampling and gaze, an organism’s ability to actively redirect its gaze 

by employing different behaviors will impact the characteristics of sensory 

information acquired by its central nervous system.  Importantly, the changing 

behavior co–occurs with, or is preceded by, dynamic changes in neuronal patterns of 

activity.  To illustrate this point two examples – one involving eye movements in 

primates, the other whisker movements in rodents – are expanded upon below. 

 

A Means to an End: Primate Eyes and Rodent Whiskers 

Primate Eyes 

Primates have developed complex eyes with a retinal region that contains a 

specialized central area, the fovea, with an especially high density of photoreceptors.  

To see things with high resolution the orientation of the eyes are continuously 

changed to align the fovea with objects of interest.  Three classes of eye movements 

are employed by primates to reorient their eyes: saccades, smooth pursuit, and 
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vergence eye movements.  The last class of eye movements is used to change the 

depth of focus, and has received comparatively little attention in terms of 

psychophysics and neurophysiology experiments, and will not be considered further 

in this section.  Visual saccades are discrete eye movements that ‘ballistically’ change 

the orientation of the eyes and thereby translate the image of the object of interest 

from an eccentric retinal location to the fovea.  Smooth pursuit is a continuous 

movement that slowly (relative to saccades) rotates the eyes to compensate for motion 

of the visual object, minimizing blur that would otherwise compromise visual acuity.  

Saccades are driven by a wide variety of signals, whereas smooth pursuit is primarily 

driven by visual motion (Rashbass, 1961).  A network of circuits that involve the 

parietal (lateral intraparietal area, LIP) and frontal cortex (frontal and supplementary 

eye fields, FEF and SEF), the basal ganglia, the cerebellum, the midbrain superior 

colliculus (SC), and brainstem reticular formation mediate these two classes of eye 

movements (Figure 2). 

 

The SC is an important midbrain site for generating coordinated eye–head 

gaze orienting movements.  (The superior colliculus in bats and mammals in general 

is discussed at greater length in subsequent sections and chapters).  In primates the 

intermediate and deep layers contain a motor map in which each site is thought to 

encode a specific gaze vector (for reviews, see Wurtz and Albano, 1980;Sparks, 

1999).  Three lines of evidence support SC involvement in generating a command for 

adjusting visual gaze.   
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Figure 2 Schematic of the macaque brain showing major brain regions involved 

in both smooth pursuit and saccadic eye movement control. 

Dashed lines demarcate regions that are beneath the cortex in macaques, and arrows 

indicate anatomical connections. CN caudate nucleus of the basal ganglia, FEF 

frontal eye field, LIP lateral intraparietal area, PMN brain stem premotor nuclei 

(PPRF, riMLF, cMRF), PON precerebellar pontine nuclei, PPRF paramedian pontine 

reticular formation, riMLF rostral interstitial nucleus of the medial longitudinal 

fasciculus, SC superior colliculus, SEF supplementary eye field, SNr substantia nigra 

pars reticulate, Verm vermis (cerebellum), VN vestibular nucleus, VPF ventral 

paraflocculus (cerebellum) (Modified from Krauzlis, 2004). 
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First, electrical stimulation evokes gaze shifts whose vectors are determined by the 

site of stimulation (Schiller and Stryker, 1972;Freedman et al., 1996).  Second, tecto–

reticular neurons projecting to the pons discharge most vigorously for a specific gaze 

saccade vector (Munoz et al., 1991;Scudder et al., 1996a).  Third, focal 

pharmacological inactivation of small zones in the map selectively impairs gaze shifts 

encoded by that area (Hikosaka and Wurtz, 1985a;Hikosaka and Wurtz, 1986). 

 

Neurons in most parts of this motor map modulate their activity during the 

preparation and execution of saccades (Glimcher and Sparks, 1992;Munoz and 

Wurtz, 1995a).  However, in the rostral SC (rSC), corresponding to the central visual 

field, many neurons modulate their firing rates during both smooth pursuit eye 

movements and small amplitude saccades.  This activity is not simply a visual 

response because it persists in the absence of a visual target (Sparks et al., 

1976;Sparks, 1978;Krauzlis, 2003).  Moreover, activating the rSC with currents too 

weak to directly evoke eye movements nonetheless biases the metrics of both the 

pursuit and saccadic eye movements that are ultimately generated (Carello and 

Krauzlis, 2004).  Thus the neurons in the rSC that are involved in the preparation of 

saccades also mediate the metrics of pursuit eye movements.  In contrast, while 

changes in the tonic activity of rSC neurons directly gate the initiation of pursuit and 

saccades, the triggering of saccades also requires the recruitment of visual saccade–

related burst neurons in the caudal SC.  The neurons in the rSC exhibit selectivity for 

stimuli that will be the target of pursuit and saccadic eye movements, and this 

selectivity can predict the timing of pursuit and saccadic choices (Krauzlis and Dill, 
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2002).  Together these results suggest one function of the rSC is to specify the eye 

movement goal, and to an extent the overall pattern of activity influences the strategy 

used to achieve the goal (Bergeron et al., 2003).  Thus the SC in primates serves as a 

substrate for generating saccades and smooth pursuit, and the pattern of activity in 

this structure influences the selected goal and the eye movement that will be 

generated to achieve this goal.   

 

Rodent Whiskers 

A more elaborate understanding of how changing behaviors co–occur with 

different neuronal modes of activity is observed in a number of mammalian species, 

including rats, hamsters, walruses, and seals that have developed an elaborate, 

evolutionarily conserved spatial array of facial mystacial vibrissae.  The direction, 

frequency, amplitude and duration of motion of these vibrissae can be voluntarily 

controlled.  The most widely studied are the well–organized macrovibrissae, thought 

to function either as distance detectors (Brecht et al., 1997) or operate in a touch like 

manner comparable to primate fingertips to provide high–resolution information 

(Carvell and Simons, 1990).  These animals also possess shorter and more numerous 

microvibrissae located more anterior to the macrovibrissae and close to the mouth 

(Wineski, 1985;Brecht et al., 1997) (Figure 3). 
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Figure 3 Drawings of the rat mystacial pad vibrissae from the side and the top. 

The letters are the naming convention used in the field for the different rows of 

whiskers.  The macrovibrissae are the most heavily investigated in studies, and are 

the whiskers discussed in the text (Modified from Brecht et al., 1997). 

External mystacial 
microvibrissae 

Lower Jaw 
Microvibrissae-field 

Mystacial 
Macrovibrissae-field

External mystacial 
microvibrissae 
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While the exact functions of the macrovibrissae are still debated, it is agreed 

that the whiskers permit sampling of somatosensory information from the 

environment.  Multiple classes of whisker movements are behaviorally observed and 

experiments suggest that these animals actively choose the appropriate class of 

movements for acquiring essential tactile information.  These whisker movements can 

broadly be classified into three groups: quiet immobility, whisker twitching, and 

whisking (Welker WI, 1964;Carvell and Simons, 1990;Nicolelis and Fanselow, 

2002b). 

 

The neurophysiological correlates to these classes of behavior have been most 

extensively studied in the highly developed rat vibrissal trigeminal somatosensory 

system.  Experiments have shown that each type of whisker movements employed by 

the rat is suited to convey different classes of information (simple versus complex), 

permits different degrees of behavioral sensitivity to stimuli, and is best correlated 

with distinct modes of firing (bursting and tonic) in thalamic neurons projecting to the 

cortex.  The main loop is made of projections from the trigeminal brainstem complex 

to neurons in the ventral posterior medial (VPM) nucleus of the thalamus. In the rat, 

VPM contains only one type of neuron (excitatory neurons) that project to layer IV of 

the primary somatosensory cortex (so called barrel cortex). 

 

The pattern of activity of VPM neurons is related with the observed whisking 

behavior.  For instance, when rats sit still and exhibit no movements of their facial 

whiskers (the quiet immobility state) thalamic VPM neurons are generally 
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depolarized and tend to fire tonically (McCormick and von Krosigk, 1992). During 

this quiet period VPM neurons respond to tactile stimuli with a stereotyped sequence 

of excitation and inhibition, rendering them incapable of responding to rapidly 

changing incoming sequences.  However, this state allows VPM neurons to respond 

robustly to the presence of a single stimulus.  Based on this finding it has been argued 

that when rats are in quiet immobility VPM neurons are in a stimulus detection state 

(Nicolelis and Fanselow, 2002b). 

 

When rats are sitting still but exhibit rhythmic, small–amplitude, whisker–

twitching movements (7–12 Hz), a second potentially more sensitive stimulus 

detection mode occurs.  This behavioral state is accompanied by a highly 

synchronous 7–12 Hz oscillatory activity in the thalamo–cortical loop (Welker WI, 

1964;Semba and Komisaruk, 1984).  Experiments have demonstrated that shortly 

after onset of oscillatory activity in the VPM–SI oscillatory loop, rats begin whisker–

twitching movements that are phase–locked to the neural oscillations.  During this 

state VPM neurons exhibit periods when the probability of a response to a tactile 

stimulus is substantially enhanced (hypersensitive period), higher than during any 

other behavioral state (Fanselow et al., 2001).  In addition, VPM and SI neurons fire 

bursts of action potentials substantially more frequently than during quiet immobility 

state (approximately x6 more likely) (Nicolelis and Fanselow, 2002a).  The period of 

heightened sensitivity occurs after a burst of action potentials in VPM when the 

thalamic neurons are hyperpolarized and can produce Ca2+ spikes mediated by T–type 

Ca2+ channels (Gutierrez et al., 2001;Sherman, 2001).  Remarkably, this period 
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coincides with the time when the rat’s whiskers begin to move forward, and therefore 

when these neurons are capable of bursting.  Thus, in this scheme the occurrence of 

each VPM burst ‘resets’ the activation state so that the period when neurons in VPM 

burst occurs during the retraction phase of whisker twitching movements, and the 

period when the VPM neurons are able to burst occurs during the protraction phase of 

whisker twitching. 

 

The third behavioral whisker movement strategy, whisking, is characterized 

by large amplitude back and forth sweeps at a rate of 4–6 Hz permitting repeated 

contact between vibrissae and objects in the environment.  This behavioral state too 

has a corresponding physiological state suited for acquisition of complex and rapidly 

presented stimuli.  Essentially, whisker deflection results in a volley of information 

being sent to VPM neurons, as well as activation of cholinergic reticular formation 

(RF) neurons.  Stimulation of cholinergic RF neurons is known to depolarize VPM 

neurons (Steriade and Deschenes, 1988) and it is known that activity in the RF is 

substantially increased during aroused states (Steriade et al., 1990).  The increased 

level of excitation from brainstem trigeminal neurons to VPM neurons plus their 

more depolarized state results in a tonic mode of firing.  This mode of firing 

facilitates the transmission of information provided by the complex sequences of 

multi–whisker deflections, as each whisker deflection results in a change in the tonic 

rate of VPM firing. 
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Thus the rat somatosensory system is a complex and dynamic system that is 

capable of shifting its physiological state to maximize the type of tactile information 

sampled by a particular active exploratory behavior.  Therefore, it putatively can 

choose from multiple functional modes to actively examine and analyze tactile inputs 

based on expectations built throughout a lifetime of vibrissae movements. 

 

Two specialized animal sensori–motor systems, one vision–based in primates 

and the other somatosensory–based in rats, have been briefly reviewed.  In both 

systems, actively changing behavioral strategies occurred concomitantly with changes 

in neuronal processing that putatively aided in the processing of specific types of 

information. Therefore, different classes of eye movements involved with shifting the 

high–resolution fovea co–occur with different rates and temporal patterns of neural 

activity in the suprior colliculus, and separate classes of rat whisker movements take 

place concurrently with changning sensitivity in somatosensory thalamocortical 

neurons that permits greater sensitivity during protraction.  In the next section 

attention is focused on an auditory specialist, the echolocating bat, which has evolved 

an active biological sonar system for orienting in the world. 

 

Echolocating Bats 

Echolocating bats are in the suborder Microchiroptera and exhibit tremendous 

diversity, with bat species displaying behavioral, anatomical and physiological 

adaptations to a broad range of habitats, including desert and tropical rain forest 

ecosystems (Jones et al., 2002).  The bats of this suborder have evolved a biological 
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sonar system that permits aerial foraging in complete darkness (Griffin, 1958).  In 

addition to specializations in their auditory system, they have evolved a specialized 

larynx to produce ultrasonic vocalizations, with different bat species showing 

different degrees of specialization based on the structure of their sonar calls 

(Griffiths, 1983).  The structure of their sonar vocalizations are closely linked to the 

ecological system they live and the acoustic conditions they encounter while foraging.  

Several schemes have been proposed to categorize bats according to their habitat and 

sonar signal characteristics (Aldridge and Rautenback, 1987;Neuweiler, 1990;Fenton 

MB, 1995;Schnitzler and Kalko, 2001;Schnitzler et al., 2003).  When foraging, bats 

control the timing, duration, frequency content and intensity of sonar signals to probe 

the environment.  Sound recordings, made in the field and laboratories, demonstrate 

that foraging bats actively adapt the temporal patterning and features of their sonar 

vocalizations based on the relative location of targets in space and the constraints of 

the space they forage in (Simmons et al., 1978;Wadsworth and Moss, 2000;Surlykke 

and Moss, 2000;Simmons et al., 2001;Moss and Surlykke, 2001;Schnitzler and 

Kalko, 2001).  The spectro–temporal structure of bat sonar vocalizations provide 

certain benefits and trade–offs for detecting, tracking, localizing in azimuth and 

elevation, and determining the range of targets when foraging (Altes, 1976;Simmons 

and Stein, 1980).  The information in the returning echoes is used to determine the 

location, range, size and other features of sonar targets (Moss and Schnitzler H-U, 

1995). In turn, the acoustic information the bat processes guides subsequent adaptive 

motor behaviors, including adjustments of the head aim, flight path and dynamics, 

presumably pinna movements and the features of successive sonar vocalizations 
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(Griffin, 1958;Griffin et al., 1962;Pye and Roberts, 1970;Hartley et al., 1989;Ghose 

and Moss, 2003). 

 

The following sections introduce in more detail aspects of bat echolocation 

including, sound localization, sonar vocal repertoire, sonar beam pattern, and sonar 

production mechanisms. 

 

Sound Localization 

For spatial orientation, bats exploit the same auditory cues used by other 

species to localize the direction of sound sources, i.e. interaural intensity differences 

(IID) and interaural temporal differences (ITD) (Simmons, 1979).  ITD cues are not 

thought to be in echolocating bats based on the physical size of their heads and the 

wavelength of the sonar frequencies they emit.  Binaural cues for sound localization 

are used to estimate the azimuth of a sonar target (Simmons et al., 1983).  Monaural 

spectral cues are considered essential for determining the elevation of a sound source 

in space (Simmons and Lawrence, 1982).  The bat’s pinna–tragus system creates 

patterns of acoustic interference that are used by the bat to estimate target elevation 

(Wotton et al., 1996).  The third spatial dimension, target range, is estimated from the 

time delay between an outgoing sonar vocalization and its returning echo (Hartridge, 

1945;Simmons, 1973;Feng et al., 1978) the time delay being converted into an 

estimate of target distance.  FM–bats show extraordinary spatial selectivity along this 

‘range axis’ (Moss and Schnitzler H-U, 1995).  While species of bats have been 

studied that can use passive auditory cues for target localization (Fuzessery ZM et al., 
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1993;Barber et al., 2003), the majority of echolocating bat species actively generate 

cues by emitting sonar vocalizations and listening to the returning echoes. 

 

Sonar Repertoire 

Each species of bat has a distinct repertoire of signals that it uses for 

echolocation, the features of these sounds ultimately determines the acoustic 

information available to its sonar imaging system (Carvell et al., 1991;Altes and 

Titlebaum, 1970;Altes, 1976).  Bat sonar signals fall broadly into two categories, 

constant frequency (CF) and frequency modulated (FM) components (Figure 4).  

Species using CF–FM signals for echolocation typically forage in dense foliage, and 

some of these species adjust the frequency of their sonar vocalizations to compensate 

for Doppler shifts in returning echoes (Schnitzler, 1973;Metzner et al., 2002).  The 

CF–FM bat’s Doppler shift compensation (DSC) serves to cancel a rise in echo 

frequency introduced by its own flight velocity and isolates spectral modulations in 

echoes that come from fluttering insect wings (Schnitzler and Flieger, 1983).  In some 

Doppler shift compensating bats, researchers have identified auditory specializations, 

which give rise to heightened sensitivity and frequency selectivity in the spectral 

region of the bat’s CF signals (Neuweiler, 2003). 

 

By contrast, many FM–bats forage in the open or at the edge of forests, using 

shorter duration, broadband signals that are well suited for three dimensional (3–D) 

target localization and for separating figure and ground.  FM–bats can discriminate 

differences in echo delay, the cue for target distance, of less than 60 microseconds 
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(Moss and Schnitzler H-U, 1995;Simmons, 1973), and they use this delay information 

to control the timing of sonar vocalizations (Moss and Surlykke, 2001). 

 

The clear dichotomy between foraging habits (open space versus close space 

hunters) based on call structure is not an absolute limiting factor.  More recent 

infrared high–speed video imaging of FM–bats in natural conditions at night 

demonstrate bats able to use their echolocation calls in a wide range of environments 

including near and in vegetation (Simmons et al., 1978;Simmons et al., 2001). 

 

Foraging bats change the features of their sonar vocalizations as they detect, 

approach, and intercept a target.  The characteristics of sonar vocalizations have been 

used to divide the bat’s insect pursuit sequence into three different phases: search, 

approach, and capture (Griffin et al., 1960).  During the search phase, signals 

produced by Eptesicus fuscus are characterized by narrowband FM sweeps, with 

durations of 15–20 ms at a repetition rate of 5–10 Hz.  Once a bat detects a prey item, 

it produces approach phase signals that show broadband FM, shorter durations (2–

5ms), and 20–80 Hz repetition rates.  In the final phase of capture, the terminal buzz, 

signals shorten further in duration (0.5–1ms), are produced at very high repetition 

rates (150–200 Hz), and show a drop in overall frequency with the sweep frequencies 

extending below 20 kHz (Surlykke and Moss, 2000). 
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Figure 4 Diversity of sonar vocalizations from four different species of 

echolocating bats. 

Each row illustrates the type of sonar calls emitted as bats approach a target (left side 

of figure).  The spectrograms show the variation in sonar spectral content, duration 

and pulse interval as bats attack a target.  Typical of insectivorous echolocating bats, 

signal repetition rate increases and the duration decreases as the animal approaches its 

prey.  The dashed line indicates the change from search or orienting signals to 

approach signals. (Modified from Simmons et al., 1979). 
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These phases with different call characteristics provide a good first order scheme for 

classifying sonar calls, but much greater flexibility is observed when bats are hunting 

in a variety of natural conditions.  This versatility in the use of echolocation for a 

variety of tasks beyond insect capture is demonstrated in recent field–work (Simmons 

et al., 2001) where Eptesicus employs echolocation while pursuing other bats, 

gleaning prey, or hunting very close to vegetation.  More specific examples can be 

seen in laboratory experiments with CF–FM and FM–bats.  Both Rhinolophous 

ferrumequinum and Eptesicus fuscus generally adjust the duration and repetition rate 

of their vocalizations in a graded manner, but can also demonstrate abrupt transitions 

where they produce distinct groups of sonar calls (sets of two or three calls) when 

hunting (Smotherman and Metzner, 2004;Moss et al., 2005).  In this manner, dynamic 

sonar vocalization patterns form part of a complex set of adaptive behaviors to 

potentially improve the acoustic information gathered (Moss and Surlykke, 2001). 

 

Sonar Beam Pattern 

Echolocating bats emit their high–frequency orientation pulses from either the 

mouth or nostrils in a species–specific obligate manner (Griffin, 1958;Sales and Pye, 

1974).  The directionality of sonar emission is an important parameter for the 

echolocation system of bats.  A directional emitter can save energy by ensonifying 

only the target, rather than the whole environment, and the resulting attenuation of 

echoes from areas other than the target improves the resistance to clutter.  A 

directional receiver has increased sensitivity on–axis, and can help to improve the 

binaural angular acuity of systems that use interaural level difference (ILD) cues for 
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sound localization (Grinnell and Grinnell, 1965).  The trade–off in employing a 

directional emission system is that it must scan to probe the environment. 

 

Echolocating bats like Eptesicus fuscus are oral emitters and do so with their 

mouths wide open, forming a rudimentary horn (Strother and Mogus, 1970).  The 

sonar beam emission patterns have been investigated for a number of bats species, 

including oral and nasal emitters as well as CF–FM and FM bats.  Hartley and 

Suthers have conducted a number of these studies and for Eptesicus fuscus (Hartley 

and Suthers, 1989) they identified four main points: 1) Sound emission is directional 

and most intense in both the horizontal and vertical dimensions to give a mainlobe 

aimed forward of the animal. 2) The mainlobe is narrower at higher frequencies. 3) 

The axis of the mainlobe varies its orientation with frequency, such that it is directed 

more ventrally at lower frequencies. 4) A prominent ventral sidelobe is present at 

higher frequencies. 

 

The characteristics of this emission pattern have a great deal of similarity with 

that observed in two other FM emitting bat species, Carollia perspicillata (Hartley 

and Suthers, 1987) a nasal emitter, and Myotis grisescens (Shimozawa et al., 1974) an 

oral emitter.  Both have well–defined mainlobe with a ventral sidelobe below it.  

Additionally, the relative intensities of ventral sidelobes compared to the mainlobe 

are similar in both species at –6 dB.  For all these bats the half–power (-3dB) point 

relative to the beam center axis is at approximately ±20°, which we can refer to as a 

40° cone of maximum signal intensity that the bat may then reorient in space to 
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maximize the echo returns.  Therefore, the emission patterns of the FM emitting bats 

mentioned above appears conserved and may reflect an advantage for sound 

processing in the echolocation system.  Whether the emissions patterns can be 

adaptively changed during echolocation is still an open question, as all the 

experiments described above were conducted in bats that spontaneously vocalized 

outside of any insect pursuit behavior, or were forced to vocalize by brain electrical 

microstimulation.  

 

Neural Control of Sonar Vocal Production 

The spectro–temporal parameters and patterning of sonar vocalizations is 

critical to echolocation behavior.  A number of experiments, reviewed below, have 

been conducted over the last thirty years to identify and delineate the contribution of 

nuclei involved in the sonar vocal production circuitry.  These experiments have 

relied heavily on electrical and chemical microstimulation and pharmacological 

manipulation techniques to ascertain the functional contribution of regions involved 

in producing sonar calls.  The majority of these experiments have focused on 

brainstem loci, with one notable exception that studied regions in frontal cortex 

(Gooler and O'Neill, 1992).  These studies used microstimulation techniques to 

identify cytoarchitecturally well defined regions (and others less so) that elicit 

vocalizations, and have also attempted to map out their interconnections.  The general 

consensus is that a distributed organization, rather than more limited and localized 

organization, is responsible for vocal production and audio–vocal integration.  This 

network involves nuclei in the mesencephalon, such as the paralemniscal tegmentum 
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area (PLa), periaqueductal gray (PAG), parabrachial nucleus (PB), and the superior 

colliculus (SC).  Their direct and indirect projections to metencephalic and 

myelecnchehalic nuclei such as the nucleus retroambiguus (RA) and nucleus 

ambiguus (NA), which project to the laryngeal motor neurons, have been elucidated 

(Rübsamen and Schweizer, 1986;Suga and Yajima, 1989;Metzner, 1996;Schuller et 

al., 1997;Fenzl and Schuller, 2002). 

 

Larynx and Nucleus Ambiguus 

Four bat species have predominantly served as systems for studying the 

mechanisms involved in sonar vocal production: Pteronotus parnelli, Rhinolophus 

rouxi and Rhinolophus ferrumequinum all CF–FM bat species, and Eptesicus fuscus a 

FM bat species.  These studies have evaluated the structure of the bat larynx, and 

have used various techniques to record from the nerves innervating the laryngeal 

muscles, the nucleus ambiguous, as well as respiratory dynamics that are coupled to 

vocal production. 

 

Suthers and Fattu have studied the mechanisms of vocal production in 

Eptesicus fuscus at the level of the larynx.  Bats emit sonar calls at various rates 

ranging from 1–200 calls/sec.  These investigators (Suthers and Fattu, 1973;Fattu and 

Suthers, 1981) found that the maximum sound pressure level of sonar calls is 

positively correlated to the magnitude of the subglottic pressure at the onset of 

phonation.  For short duration sonar calls subglottic pressure drops rapidly, and for 

long duration calls it shows the smallest rate of decline.  They suggested that the 
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ability of Eptesicus to produce high intensity sounds is a function of the high 

subglottic pressures that is due in part to their extremely non–compliant lungs (Fattu 

and Suthers, 1981).  

 

The control of parameters of sonar vocalizations has been studied by selective 

laryngeal neurotomy.  These studies have found that specific nerves innervating the 

larynx control separate broad aspects (spectral and temporal) of the vocal structure. 

Frequency control in the larynx is mainly accomplished by the cricothyroid muscle, 

which alters the tension of the vocal folds.  The cricothyroid muscle is innervated by 

the motor branch of the superior laryngeal nerve (SLN).  Sectioning both SLNs 

results in dramatic decreases of the emitted frequency (Novick and Griffin, 

1961;Schuller and Suga, 1976).  In contrast the recurrent (inferior) laryngeal nerve 

(RLN) innervates several pairs of intrinsic laryngeal muscles.  These muscle groups 

include the posterior cricoarytenoid muscle that opens the glottis, and the lateral 

cricoarytenoid muscles that close the glottis.  Therefore, while sectioning the RLN 

has multiple potential side effects as it innervates a number of muscles, it does not 

markedly change the structure (spectrally) of the emitted sonar call (Novick and 

Griffin, 1961;Schuller and Suga, 1976;Suthers and Fattu, 1982). 

 

In R. ferrumequinum, two recording studies have been conducted that 

examined the functional contribution of intact SLN and RLN during sonar vocal 

production.  In these experiments sound playbacks were used to elicit Doppeler shift 

compensation calls (see page 19) from the bat or electrical stimulation of the central 
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grey matter was used to elicit calls.  The activity of the SLN was closely tied to the 

emission of sonar calls. The nerve activity started 30–50 ms prior to vocal onset and 

continued during the sound emission.  The bats spontaneously produced calls with 

durations of 50 ± 5 ms.  The spike count and the emitted CF frequency component 

were linearly related and highly correlated (r=0.96,0.95, two bats tested) (Schuller 

and Rübsamen, 1981).  RLN activity was present both in cases where subthreshold 

microstimulation was used (not eliciting sonar calls) and when sonar calls were 

elicited.  In both cases the discharge rate of the RLN was sustained during inspiration 

and reduced to spontaneous levels during exhalation, corresponding to the time of 

vocalization.  However, when the stimulation level was higher and the bat vocalized, 

the activity during inhalation remained unaffected, but a pronounced peak in nerve 

activity was observed approximately 20 ms prior to exhalation (and vocal onset).  

During the CF component of the vocalization the nerve maintained an elevated but 

steadily decreasing level of activity, and the terminal FM–sweep was preceded by a 

brief burst of RLN activity.  The authors proposed that these two bursts of RLN 

activity correspond to the closing of the glottis to build–up sub–glottal pressure, prior 

to expiration, and the opening of the glottis that causes a rapid decrease in subglottic 

pressure and ends the emitted call (Rübsamen and Schuller, 1981). 

 

The contribution of nucleus ambiguus neurons to sonar call production has 

been studied using single–unit neural recordings techniques in R. rouxi that 

spontaneously emitted sonar calls (Rübsamen and Betz, 1986).  Neurons with a 

variety of pre–motor discharge patterns were identified.  The discharge pattern of 
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different neuronal classes was correlated with the onset (on–chopper, on–tonic, prior–

tonic), offset (pre–off–tonic, off–pauser, off–tonic) of sonar vocalizations, or the 

frequency shift of the CF component during DSC behavior (r=0.68–0.8, 14/19 units 

tested).  The activity of these motoneurons drives, via the SLN and RLN, the separate 

laryngeal muscles.  The authors classified the different discharge patterns with the 

activity of different muscles during call production.  The call production occurs 

during expiration and can be broadly classified into three periods: abductors 

(posterior cricoarytenoid muscle) open the glottis for inspiration, adductors (lateral 

cricoarytenoid muscle) close the glottis for vocalization, and tension of the 

cricothyroid muscle influences the emitted frequencies.  The authors suggested that 

on–type discharge patterns serve to close the glottis, the off–type discharge patterns 

serve to open the glottis, and the pre–off–tonic discharge pattern serves to control 

emitted CF frequency.  The activity pattern of the different classes of neuronal 

discharges was in good correspondence with their observations. 

 

Paralemniscal Tegmental Area 

In the midbrain, studies have focused their attention on the PLa as a site for 

temporal and frequency control of emitted sonar vocalization in CF-FM bats 

(Metzner, 1989;Schuller and Radtke-Schuller, 1990;Schuller et al., 1997). Electrical 

microstimulation of the PLa in two CF-FM bat species (Rhinolophous rouxi, 

Pteronotus parnellii) elicits sonar vocalizations.  Additionally, the PLa in 

Rhinolophus rouxi projects to the vicinity of laryngeal motoneurons (Schuller and 

Radtke-Schuller, 1990;Metzner, 1996), providing a direct putative pathway for 
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shaping motor neuron activity.  In addition, Metzner (Metzner, 1993;Metzner, 1996) 

showed that auditory as well as vocal related responses were evident in this nucleus, 

suggesting the PLa sits within a feedback circuit for updating vocalizations.  

However, lesions of the PLa do not eliminate the ability to produce sonar 

vocalizations (Pillat and Schuller, 1998), suggesting that it not a mandatory 

component of the sonar vocal circuitry.  

 

Ventral Midbrain Tegmental Pre–Motor Vocal Nuclei: PB, NCAT, PAG, & DMN 

More recent experiments have studied the role of the parabrachial nucleus 

(PB) in sonar vocalizations in the CF-FM bat, Rhinolophus ferrumequinum 

(Smotherman et al., 2003).  Using iontophoretic application of GABAergic and L-

glutamate agonists and antagonists, the authors demonstrated that the PB plays a role 

in the control of call frequency.  Application of muscimol (GABAA agonist) or 

CNQX (6-cyano-7-nitroquinoxaline-2,3-dione; a glutamatergic antagonist) lowered 

the call frequency emitted at rest and during DSC behavior.  Conversely, excitation 

induced by application of AMPA or by blocking inhibition using BMI (bicuculline 

methiodide, a GABAA antagonist) increased sonar call frequencies.  These results 

provide evidence that the PB nucleus is part of a circuit for controlling the frequency 

modulation of sonar calls. 

 

The nucleus of the central acoustic tract (NCAT), receives auditory 

information directly from the cochlear nucleus and sends projections, that bypass the 

inferior colliculus, to the deep layers of the superior colliculus and to the 
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suprageniculate nucleus (in the auditory thalamus) (Figure 5).  In bats this pathway 

was demonstrated in Pteronotus parnellii (Casseday et al., 1989) and later in 

Rhinolophus rouxi (Behrend and Schuller, 2000).    Additionally in P. parnellii the 

thalamic target of the NCAT, the suprageniculate nucleus, projects to a circumscribed 

region of the bat frontal cortex, a region that receives direct projections from the 

primary auditory cortex (Kobler et al., 1987).  As such, this pathway conveys 

auditory information from the cochlea to the frontal cortex in approximately four 

synapses, and has therefore been proposed to provide rapid auditory information to 

regions that can guide orienting behaviors. 

 

Studies in the CF– FM bat Rhinolophus rouxi demonstrate that the NCAT 

receives bilateral projections from the cochlear nuclei.  Contralateral projections are 

excitatory and ipsilateral projections are inhibitory with 53% of cells being E/I cells, 

23% being E/E cells, the remainder being E/O in their response type (Behrend and 

Schuller, 2000).  The latencies of response were 2.5–5.0 ms, the units had little to no 

spontaneous firing rate, no tonotopic organization was evident, and 80% of cells had 

best frequencies around the bats CF resting frequency.  Electrical microstimulation of 

NCAT resulted in normal–like sonar vocalizations with latencies of 25–70 ms. 

Stimulation generally resulted in concomitant ear movements.  Unilateral lesions of 

NCAT results in loss of the Doppler shift compensation (DSC) behavior that did not 

return even after 24 hours. 
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Three additional midbrain sites have been implicated as components of a 

sonar vocal production circuit.  This includes the PAG and the deep mesencephalic 

nucleus (DMN).  While electrical stimulation of the PAG in Eptesicus fuscus elicited 

communication calls (Valentine et al., 2002), chemical stimulation in the neotropical 

FM bat, Phyllostomus discolor, elicited communication calls and sonar calls from 

separate loci within the nucleus (Fenzl and Schuller, 2002).   The PAG has been 

implicated as a mandatory vocal motor output pathway in other mammalian species 

(Jürgens, 2002), so this result suggests that it has been co–opted into serving a role in 

sonar vocal control.  The DMN is also thought to play a role in vocal production but 

has not been extensively studied, outside of demonstrating that electrical 

microstimulation of this nucleus elicits sonar vocalizations (Schuller and Radtke-

Schuller, 1990). 
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Figure 5 The central acoustic tract is a paralemniscal pathway in mammals. 

This pathway bypasses the primary auditory nuclei in the brainstem, and projecting 

straight to the auditory thalamus.  It also sends projections to the SC, providing the 

SC with rapid auditory information. The entire pathway has been demonstrated in the 

mustached bat, Pteronotus parnellii.  CN cochlear nucleus, NCAT nucleus of the 

central acoustic tract (also referred to as the anterolateral periolivary nucleus, SC 

superior colliculus, Sg suprageniculate nucleus (Adapted from Casseday et al., 1989). 
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The third midbrain site implicated in sonar vocal control is the superior 

colliculus (SC).  This structure is one of the most extensively studied sensori–motor 

structures in vertebrates and is involved in orienting an animal’s gaze.  A role for the 

SC in vocal control has not previously been reported among non–bat species.  

Furthermore, and similar to other species, microstimulation of the SC elicits other 

species–specific orienting behaviors like pinna movements (Schuller and Radtke-

Schuller, 1990;Valentine et al., 2002), and head movements (Valentine et al., 2002).  

In addition the SC in Eptesicus fuscus has auditory specializations related to 

processing of acoustic information.  These sensori–motor specializations make the bat 

SC a putative site for audio–vocal integration, where converging auditory information 

guides the production of sonar vocalization and other orienting behaviors.  In the next 

section, important aspects of the anatomy and function of the mammalian SC are 

described, and current knowledge of the bat SC is reviewed, and serves as the basis 

for the experiments described in this dissertation. 

 

The Superior Colliculus 

The superior colliculus (SC), or the non-mammalian vertebrate homologue, 

the optic tectum (OT), is a prominent structure in the mesencephalon (Figure 6).  

Anatomical and neurophysiological evidence strongly supports the SC’s role in 

sensori-motor integration processes that underlie species–specific orienting behaviors.  

The functional organization of the SC (OT) reflects the importance of a sensory 

modality to an animal’s goal-directed behaviors.  Comparative animal studies indicate 

a role for the SC (OT) in the saccadic eye–movement system (Sparks, 1986), smooth–
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pursuit eye movements (Krauzlis, 2004) and vergence eye movements (Chaturvedi 

and Van Gisbergen, 1999) in primates, the control of head, eye, and pinna in cat 

(Guitton and Munoz, 1991;Munoz and Guitton, 1991;Stein and Clamann, 1981) and 

head turning in barn owl (du Lac and Knudsen, 1990;Masino and Knudsen, 

1992;Masino and Knudsen, 1993).  Other studies have identified specializations of 

the OT that support its role in visual prey–capture behaviors (approach, snapping) in 

frog (Ewert, 1997) and visual and infrared–imaging based head–turning in 

rattlesnakes (Hartline et al., 1978), and in orienting and evasive behaviors in the rat 

(Dean et al., 1989) and goldfish (Herrero et al., 1998;Herrero et al., 1999). 
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Figure 6 Schematic drawings of the rat and cat brain highlighting the location 

of the midbrain superior colliculus. 

Drawing of the A) bat (Eptesicus fuscus) and B) cat brain showing the relative 

positions of the superior colliculus in each. Scale bat for bat is 8 mm. CBR cerebral 

cortex, SC superior colliculus, IC inferior colliculus, CBL cerebellum (cat drawing 

modified from Stein and Meredith, 1993).

Superior 
Colliculus

CBR 

A B



 

 36 
 

 

The Superior Colliculus in Mammals 

Anatomically the SC in mammals generally has seven–lamina as identified in 

Nissl and myelin stained anatomical sections, that are oriented parallel to the dorsal 

surface.  On the basis of anatomical connections and functional responses the layers 

can be grouped into the superficial layers which are more dorsal and the sensori–

motor deep layers which are more ventral.  The superficial layers are comprised of 

the stratum zonale (SZ), the stratum griseum superficiale (SGS), and the stratum 

opticum (SO).  The deeper layers encompass the stratum griseum intermediale (SGI), 

the stratum album intermediale (SAI), the stratum griseum profundum (SGP), and the 

stratum album profundum (SAP) (Figure 7). 

 

The intermediate and deep layers of the SC are connected with a multitude of 

structures that are related to visual, auditory and somatosensory motor functions (for 

review see Wurtz and Albano, 1980;Huerta and Harting, 1984b), and to other sensory 

modalities that other animal species may possess.  Neurons with many different 

functional properties have been identified in the intermediate and deep layers, 

including classes of sensory (uni–modal and multi–modal), pre–motor, and sensori–

motor all of which generally have spatially tuned receptive fields.  In most vertebrates 

studied the sensory neurons within these deeper layers are topographically organized, 

and are aligned with the visual representation present in the superficial layers.  In 

addition, the deeper layers contain ‘motor’ maps of movements, such as eye 

movement (as in primates), and head and pinna movement maps (as in cats and bats).   
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Figure 7 A drawing of the lamina of the cat superior colliculus made from a 

coronal, Nissl stained, cross–section. 

The seven lamina identified in cat are marked on the figure from dorsal to ventral, 

and the alternating pattern of cell body layers is evident alternating with the fiber 

layers (Modified from Kanaseki and Sprague, 1974).  

D

L
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In most vertebrates the motor maps are aligned with their sensory space maps (see for 

example Schiller and Stryker, 1972).  The motor map is comprised of different 

classes of pre–motor neurons that discharge prior to and during orienting movements.  

In addition, when the SC is stimulated (electrically or chemically) well coordinated, 

natural movement sequences resembling tracking, pursuit, avoidance, defensive, or 

escape behaviors can be elicited (Hess et al., 1946;Dean et al., 1989). 

 

The connectivity and important functionality of the different lamina are 

briefly reviewed in the following subsections, with an emphasis on the deeper SC 

layers/lamina, where the recording experiments described in Chapter 2 are conducted. 

In addition, the focus will be on visual and oculomotor related functions of the SC, as 

these are by far, the most extensively studied and understood aspects of the SC and 

pertinent to discussions later in this dissertation. 

 

The Superficial Layers 

The SZ and SGS lamina have relatively few afferent and efferent connections 

when compared to the deep layers of the SC and all of these connections are to the 

visual system.  These superficial laminae respond only to visual stimulation, and have 

small visual receptive fields.  The neurons in the superficial layers can be further 

subdivided into sub layers based on the distribution of response latencies from optic 

nerve stimulation (Hoffmann, 1973), and differential connections (Mize, 1996). 

 

The most superficial part of these layers receives input from the W retinal 

pathway (Schiller and Malpeli, 1977).  They have slow axonal conduction velocities, 
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large receptive fields, poor spatio–temporal resolution, poor contrast sensitivity, and 

respond maximally to slowly moving stimuli (Schiller and Malpeli, 1977;Sur and 

Sherman, 1982).  The lower part of the visual layers in SC receives inputs from Y 

retinal cells.  These cells have the best temporal resolution, contrast sensitivity, and 

conduction velocity, and are involved in motion processing.  These cells are similar to 

primate M (magnocellular) cells.  The cells in the SC receiving Y retinal cell input 

project to the posterior nucleus of the thalamus (the pulvinar).  Y–cells in the SC also 

receive strong excitation from cortical areas 17 and 18 (Palmer and Rosenquist, 

1975), and there responses are disrupted when their magnocellular inputs are 

inactivated (Schiller et al., 1974;Schiller et al., 1979).  The SO is the sole retinal 

recipient layer in the SC.  Additionally, the visual receptive fields of neurons in these 

layers have retinotopic organization primarily of the contralateral hemi–field and a 

limited extent of the ipsilateral field, with central regions being represented rostrally, 

peripheral regions caudally, upper visual hemi–field medially and lower hemi–field 

laterally (Schiller and Stryker, 1972). Cortical projections to these SC layers obey the 

retinotopic organization.  These cells respond to visual stimuli within their spatial 

receptive field.  After a saccade these visual cells exhibit a suppression of their 

background firing rate resulting from a corollary discharge that occurs during a 

saccade in the oculomotor system (Richmond and Wurtz, 1980). 

 

The Deeper Layers 

The deeper layer of the mammalian SC, comprising the intermediate and deep 

layers (SGI, SAI, SGP, SAP), in contrast to the superficial ones, receives inputs from 
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a multitude of different functional areas.  The arise from visual, and nonvisual 

sensory modalities, frontal and parietal cortical regions, and basal ganglia structures 

and send descending and/or ascending projections to the brainstem reticular 

formation, spinal cord, and thalamus (Huerta and Harting, 1984a).  The dominant role 

of the SC in visual and oculomotor function has guided much of the research and 

theories on SC function (Sparks, 1999;Sparks, 2002;Wurtz and Albano, 1980). 

 

The studies of the SC in visual animals have identified a retinotopic visual 

map in the deeper layers of the SC that is in register with the topography observed in 

the superficial layers (Schiller and Stryker, 1972).  Other sensory modalities are also 

mapped in the deeper layers and are aligned with the visual representation found in 

the deeper layers. Thus the superficial and deep layers have sensory maps in register.  

The spatial receptive fields of sensory neurons in the intermediate and deep layer are 

large (Wurtz and Albano, 1980).  In addition, many of these neurons are responsive to 

multiple sensory modalities (Meredith et al., 1992;Wallace et al., 1996), and show 

supra–linear responses when stimuli from two or more modalities are simultaneously 

presented as compared to individually presenting stimuli.  These multi–modal sensory 

neurons create an integrated sensory representation of the world and are heavily 

shaped in their response profile by projections from the anterior ectosylvian sulcus 

and its surround, in the parietal cortex (Wallace et al., 1993;Jiang et al., 2001). 

 

In addition to the topographically organized sensory neurons, the deep layers 

of the SC have pre–motor neurons that discharge, prior to and during, species–
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specific gaze orienting movements such as saccadic eye, head, vibrissal and pinna, 

and body movements.  These pre–motor neurons are organized topographically in 

register with the retinotopic map (Robinson, 1972), and have been extensively studied 

in visual animals like monkeys and cat (for review see Moschovakis et al., 1996).  

The mapping observed from electrical stimulation experiments in the SC shows that 

electrical stimulation results in contralateral movements such that, stimulation of 

rostral sites elicits small amplitude movements, stimulation of caudal sites elicits 

large amplitude movements, stimulation of medial sites elicits upward movements, 

and stimulation of lateral sites elicits downward movements.  This has been shown 

both for (saccadic) eye movements (Robinson, 1972;Roucoux and Crommelinck, 

1976), head movements (Freedman et al., 1996;Corneil et al., 2002b;du Lac and 

Knudsen, 1990), and other species–specific orienting behaviors.  The effect of 

electrical stimulation can be largely explained by a specific pattern of SC projections 

onto the brainstem and spinal cord movement generators (Moschovakis et al., 1998).   

 

The collicular efferent pathways have a complex pattern of terminations in the 

brainstem and in the cervical spinal cord (Huerta and Harting, 1984a;Grantyn, 

1988;Moschovakis et al., 1996), which in turn transform collicular input and project 

to motor neurons (Masino, 1992).  Two classes of efferent neurons involved in 

orienting movements have been identified.  The first kind of efferent neurons, the T 

neurons, are predominantly located in the intermediate layer (SGI), and sometimes in 

adjacent layers (SO,SGP) (Moschovakis and Karabelas, 1985).  These T neurons 

provide a commissural branch (tecto–tectal), issue recurrent collaterals distributed 
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within a more or less restricted area of the deeper layers, and project to 

pontomedullary structures.  The T group of neurons have various morphologies and 

are composed of two distinct populations, immunoreactive for glutamate or GABA in 

roughly equal proportion (Olivier et al., 2000).  The second class of efferent neurons, 

called X neurons, are located in the SGI and SGP and are excitatory (i.e. 

glutamatergic).  X neurons are mostly large and multipolar and project to hindbrain 

reticular formation and into the cervical spinal cord.  These neurons have 

intracollicular collaterals in some animals but not others (Grantyn and Grantyn, 

1982;Moschovakis and Karabelas, 1985;Moschovakis et al., 1988). 

 

The target structures of T and X neuron efferents are associated with orienting 

motor behaviors.  In the T class of cells specifically, vigorous bursts of activity 

precede the initiation of saccadic eye movements by 20 ms (Scudder et al., 

1996a;Sparks, 1978), and are referred to as saccade–related burst neurons.  In the SC, 

this burst of activity occurs on the retinotopic movement map in accordance with the 

size and direction of the impending saccade.  For instance, cells in the anterior SC 

will discharge for small amplitude saccades, and if the receptive field includes the 

foveal region they discharge during target fixation, while cells in the caudal SC will 

discharge for a large amplitude saccade.  Population coding of the saccadic eye 

movements was demonstrated in the SC by local injections of lidocaine (a Na+ 

channel blocker) (Hikosaka and Wurtz, 1986;Hikosaka and Wurtz, 1986;Aizawa and 

Wurtz, 1998;Quaia et al., 1998), which showed that the direction, amplitude and 
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velocity of saccadic eye movements are determined by the entire population of active 

SC cells. 

 

A number of classification schemes have been created in the study of superior 

colliculus neurons.  The saccade–related burst cells (Wurtz and Goldberg, 

1971;Mohler and Wurtz, 1976;Sparks, 1978), have been called ‘burst’ cells by others 

(Munoz and Wurtz, 1995a;Munoz and Wurtz, 1995b) are thought to contribute to 

saccade initiation.  These authors also identified a second class of cells that have a 

slow build–up of activity starting hundreds of milliseconds prior to a change in visual 

gaze.  They referred to neurons with this discharge pattern as ‘build–up’ cells, similar 

to those found in cats (Munoz and Guitton, 1991) (Figure 8).  These cells discharge to 

a flashed target (T), but as long as fixation is required, their discharge decreases 

slowly.  When the fixation point (FP) disappears and the monkey is allowed to shift 

its visual gaze to the memorized location, the discharge of the buildup cell increases, 

and changes into a high frequency burst at saccade onset.  Since the activity increases 

slowly over 100–150 ms before the saccade could be regarded as an argument for the 

movement preparation in the SC. 
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Figure 8 The discharge pattern of burst and buildup neurons during memory 

guided saccades. 

The discharge pattern of burst and buildup neurons during memory guided saccades.  

In the upper panel is displayed the discharge of a burst cell, which is represented by a 

spike raster and a spike density function (spden, σ=4 ms).  The eye horizontal 

position (Eh) is shown below with a schematic representation of the behavioral 

paradigm. While the fixation point (FP) remained illuminated, the Target was flashed. 

After a random period of time (400-800 ms), the FP was turned off and the monkey 

was required to make a saccade in the direction of the remembered location of the T 

flash. On the left, the discharge of the burst cell is aligned with the T onset, whereas 

on the right, this discharge is aligned with the beginning of the eye movement. The 

burst cell discharged mainly just before and during the saccade. (B) In contrast, the 

buildup cell exhibited a sustained response after the presentation of the target and this 

discharge increased until the saccade was performed. (Modified from Munoz and 

Wurtz, 1995a). 
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The Superior Colliculus in Echolocating Bats 

Few studies have been directed toward understanding the function of the 

superior colliculus among auditory specialists like the echolocating bat, when 

compared to SC function in visual specialists like cats and monkeys.  However, based 

on current studies in the echolocating bat, the SC shows many shared properties with 

that seen in other animals, in addition to functional specializations for acoustic 

orientation using sonar.  These functional adaptations are consistent with species–

specific morphological and functional adaptations observed in bat species.  The 

evidence derived from anatomical, physiological and behavioral studies of the bat SC 

provide a basis for the transformation or linking of an acoustic representation of 

auditory space with motor pathways that can mediate acoustic orientation by sonar 

(Shimozawa et al., 1984;Wong, 1984;Covey et al., 1987;Casseday et al., 

1989;Reimer, 1991;Valentine and Moss, 1997;Valentine et al., 2002;Schuller et al., 

1997;Behrend and Schuller, 2000). The following subsections review current data on 

bat SC anatomical connectivity, response properties of auditory neurons, and 

microstimulation experiments that elicit species–specific orienting behaviors.   

 

Anatomical Connections of the Superior Colliculus in the Echolocating Bat 

Two lines of anatomical investigations have elucidated the connections of the 

superior colliculus in echolocating bats.  The first line has focused on the connections 

of the superior colliculus with primary auditory structures and vocal motor nuclei.  

These studies have attempted to identify roles for the SC in echolocation and acoustic 
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orienting.  The second line of investigation has evaluated retinofugal projections 

among animal species that rely on vision to varying degrees.  Therefore, these 

comparative studies have evaluated the SC connections and their relative strength 

among different microchiropteran bat species, megachiropteran bat species and non–

echolocating species.  The first set of studies is most pertinent in the context of this 

dissertation and is described below.  The later line of inquiry is introduced afterwards 

and the basic findings highlighted. 

 

In bats, as in other mammals, the SC has populations of neurons that support 

sensory representations of space and pre-motor neurons related to orienting 

behaviors.  In bats it is proposed that the SC uses auditory information to guide 

orienting behaviors like body and head aim, and pinna movements.  In line with this, 

experiments have demonstrated that the bat SC receives auditory information via two 

separate auditory pathways: the extralemniscal (Casseday et al., 1989) and the  

lemniscal (primary) auditory pathway.  The extralemniscal pathway, the central 

acoustic tract (CAT) (Figure 5), was first described by Ramón y Cajal in mouse, and 

later elaborated on by Papez in cat (Papez, 1929).  This pathway conveys auditory 

information from the cochlear nucleus to the nucleus of the central acoustic tract 

(NCAT), which sends projections, that bypass the inferior colliculus, to the deep 

layers of the superior colliculus and to the suprageniculate nucleus, a thalamic 

auditory nucleus dorsomedial to the ventral division of the medial geniculate body.  

The suprageniculate nucleus in turn projects to a region of the frontal cortex (shown 

in P. parnellii) (Kobler et al., 1987).  This site in frontal cortex receives direct 
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projections the mustached bat’s primary auditory cortex, and has robust single–unit 

responses to auditory stimuli.  Tracer injections into this auditory frontal cortex 

region demonstrate anterograde projections to the deep layers of the superior 

colliculus.  Therefore, a pathway conveying auditory information from the cochlea to 

the frontal cortex exists, which send descending projections back to the SC, thereby 

influencing brainstem motor pathways.  

 

Two reports have described the projections of superior colliculus using wheat 

germ agglutinin conjugated to horse–radish peroxidase (WGA–HRP) tracer deposits 

into the SC (Covey et al., 1987;Zhang et al., 1987).  The qualitative pattern of SC 

projections observed in these two bat species (Pteronotus parnellii and Eptesicus 

fuscus), are similar to those observed in such disparate species as frogs  (Masino and 

Grobstein, 1990), turtles (Sereno, 1985), snakes (Hartline et al., 1978), owls (Masino 

and Knudsen, 1992), cats (Grantyn and Grantyn, 1982) and primates (Scudder et al., 

1996a;Scudder et al., 1996b;Moschovakis et al., 1998).   

 

The first report evaluated extensively the connections of the SC in the 

mustached bat, Pteronotus parnellii (Covey et al., 1987), using tracer injections into 

the SC as well as into various structures that project to the SC – the eye, inferior 

colliculus, deep cerebellar nuclei, and dorsal nucleus of the lateral lemniscus.  They 

found that the SC was composed almost entirely of layers below SO. The superficial 

and retinal recipient layers of the SC were small in comparison to other mammals, 

SGS and SAS (layers 1 and 2) showed no clear means of differentiation, and the 
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authors observed a sparseness or absence of pathways connecting the SC with the 

visual system.  The primary sources of afferent input were from auditory structures: 

the central nucleus of the inferior colliculus (ICc), the nucleus of the central acoustic 

tract (referred also as the anterolateral periolivary nucleus, ALPO), and parts of the 

dorsal nucleus of the lateral lemniscus (DNLL), all part of the so–called lemniscal 

pathway.  The principal outputs were to the cerebellum, the zona incerta (ZI) and the 

paralemniscal tegmentum area (PLa) (implicated in triggering sonar vocalizations 

vocal production), and the medial nucleus of the dorsal thalamus, which sends 

projections to the frontal cortex (Kobler et al., 1987), and in primates contain neurons 

with responses temporally linked to onset of eye movements.  The second report 

described connections of the SC in the big brown bat, Eptesicus fuscus (Zhang et al., 

1987).  Their findings were consistent with studies in other animal systems, however, 

unlike the specialized connections related to acoustic orienting observed in P. 

parnellii (Covey et al., 1987), these authors did not report any pathways distinct to 

Eptesicus fuscus. 

 

The retinofugal pathways have been studied at some depth, in a number of 

echolocating bat species including E. fuscus.  While echolocating bats rely heavily on 

their echolocation system when foraging and navigating they still have preserved 

visual pathways that are similar to that in other mammals.  Studies (Pentney and 

Cotter, 1976a;Cotter and Pentney, 1979;Cotter, 1985) have examined retinofugal 

pathways in echolocating bats Myotis sodalis, Myotis lucifigus, Eptesicus fuscus, 

Pteronotus parnellii and Artibeus jamaicensis, and nonecholocating bats Pteropus 
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gigantus.  These authors emphasize that the overall retinal projections are remarkably 

similar to that in other mammals, but that the different morphologies and functions of 

microchiropteran visual systems seem adapted to species–specific behaviors, feeding 

habitats and environments.  In turn, the reduced reliance on vision in some bat species 

is associated with less developed visual systems. For instance in Artibeus jamaicensis 

which inhabits the tropics of the New World and feeds primarily on plants, the eyes 

are larger, the vision is functionally more sensitive and discriminatory (Suthers, 1966) 

(Hope and Bhatnagar, 1979a;Hope and Bhatnagar, 1979b), the retinal projection 

pathways are larger and the target visual nuclei are better developed, when compared 

with that of Eptesicus fuscus (Cotter, 1985). 

 

Receptive Field Properties of Auditory Neurons in the Superior Colliculus of 

Echolocating Bats 

A series of studies by P.H. Jen and colleagues first described the response 

properties of auditory neurons in the superior colliculus of the insectivorous bat 

Eptesicus fuscus (Sun et al., 1983;Jen et al., 1984;Shimozawa et al., 1984).  Using 

free-field acoustic stimulation, presenting stimuli across the frontal 180°, and ±40° in 

elevation, they demonstrated sensitivity to ultrasonic signals, with spatial receptive 

fields in the contralateral hemisphere.  For all the neurons tested, the size of the 

spatial response area of each neuron was large, varying between 20° and 40°, sharply 

defined, and circular or elliptical (along the azimuth) in shape.  These areas were 

shown to expand with increasing stimulus intensity, in some cases encompassing the 

entire contralateral hemifield, while the best azimuth (BA, the stimulus azimuthal 



 

 50 
 

angle that generated the best response) did not change.  The response patterns were 

similar to the responses of IC neurons to ultrasonic stimuli, i.e. zero to low 

spontaneous firing rates and onset type responses (Schlegel et al., 1988).  Best 

frequencies (BF) of the recorded neurons were in the range of 23–85 kHz, but with a 

greater amplitude–sensitivity to FM sweeps as compared to pure tones.  The response 

to tones was not tonotopically organized along the dorsal–ventral axis as it is in the 

IC.  These studies, which used penetrations normal to the brain surface, could not 

demonstrate any precise representation of the auditory space in the SC of this bat 

species (based on 70 penetrations and 123 single–units recorded) (Shimozawa et al., 

1984), which is a striking difference to the topography observed in the OT of owls, 

and in the SC of cats, and monkeys.  Other investigators have also reported similar 

findings in Eptesicus fuscus (Poussin and Schlegel, 1984).  These authors also 

reported that all the SC neurons in their population had BA, but that 20% of these 

neurons showed shifts in the BA toward the mid–line with decreasing stimulus 

intensity (tones at BF, 50–90 dB SPL).  As in the previous studies there was no 

evidence of a point–to–point mapping of auditory space among the SC neurons tested 

(n=130). 

 

The responses of auditory neurons in the SC of another FM–bat species from 

the Vespertilionidae family, Myotis lucifigus, have been studied (Wong, 1984).  In 

this study free–field, downward sweeping, FM stimuli were presented to bats.  The 

latencies for response were similar to that observed in Eptesicus fuscus.  Two classes 

of neurons were described based on their BA spatial tuning.  The first class was 
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referred to as hemi–field neurons, represented one–third of their population, 

responded to stimuli originating from a large part of the contralateral side, 

independent of stimulus intensity.  The second class of neurons was referred to as 

azimuth–sensitive, and exhibited spatial selectivity near the neurons’ minimum 

threshold for specific azimuths, generally on the contralateral side, and showed 

broadening of azimuthal tuning at progressively higher stimulus intensities, to the 

point where spatial tuning disappeared, very similar to the observations in Eptesicus 

fuscus.  The two classes of neurons in Myotis showed a corresponding segregation in 

BFs, the azimuth–sensitive neurons having BFs in the range of 80–100 kHz, while the 

hemi–field neurons were tuned to frequencies below 70 kHz.  This study used oblique 

penetrations along a caudal–rostral axis, and showed that the BA of neurons within a 

penetration systematically shifted with location, caudal–rostral and dorsal–ventral, 

with sounds originating from 0°–10° ipsilateral represented in the rostral SC, and 

sounds from 30°–40° contralateral represented in the caudal SC.  

 

The previously mentioned studies of SC have used free-field methods of 

auditory stimulation in bats producing FM calls.  One other study has examined the 

SC in the CF–FM horseshoe bat, Rhinolophus rouxi (Reimer, 1991), and used 

dichotic stimulation.  Tonal stimuli were primarily used as the responses to FM 

signals and bat-like calls were similar to the pure tone responses.  Recordings of 

auditory neurons demonstrated an over–representation of neurons with best 

frequencies (BF) at the CF component of this species’ CF–FM call.  Half the neurons 

recorded (246/592) responded to acoustic stimuli with very low firing rates.  Neurons 
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with higher BF had higher Q10 dB values (> 50), and response latencies were similar 

(mean: 9 ms, range: 3–36 ms) to those reported in E. fuscus and M. lucifigus.  Little 

indication of tonotopy was observed.  However, at ventral sites, in the rostral SC, 

extending down into the MRF neurons with lower BF were predominant.  The author 

speculated that neurons in this rostral region may be less influenced by CF 

information, and may encode the shorter duration CF–FM calls that have a shorter CF 

component.  The majority of the units (65%) responded to monaural stimulation from 

the contralateral side, with 32% responding to stimulation from either ear and the 

remaining 3% requiring binaural stimulation. 

 

Further studies of the superior colliculus in Eptesicus fuscus (Valentine and 

Moss, 1997) have identified two populations of spatially selective auditory neurons.  

The first population showed selectivity to auditory stimuli in both azimuth and 

elevation (2–D neurons) similar to that found by Jen and colleagues.  A second 

population (3–D neurons) showed spatial selectivity to azimuth, elevation, and echo 

delay, the bat’s cue for target range.  Neurons with echo delay–sensitivity respond in 

a facilitative manner to pairs of FM sounds separated by specific temporal delays, i.e. 

their response to a pair of sounds is greater than the sum of the responses to the 

component parts.  These neurons have a putative role in encoding target distance in 

the bat auditory system (Feng et al., 1978;Suga et al., 1978).  This population of 

neurons had best echo delays (BD) ranging from 4–20 ms (mean: 13.5 ± 8.1 ms), a 

behaviorally relevant range of delays during insect pursuit, and Q50 dB ranging from 



 

 53 
 

0.70–5.56 (mean: 1.68 ± 1.01).  These 3–D neurons show no particular topographic 

organization within the SC. 

 

Activation of Orienting Behaviors by Microstimulaion of the Superior Colliculus in 

Echolocating Bats 

Behavioral context shapes the sonar vocalizations bats produce.  This is 

evident in numerous bat species when measuring the considerable variation in 

duration, bandwidth, spectral content, and temporal patterning of sonar vocalizations 

during insect pursuit (variations shown for selected species in Figure 4).  The 

variations in call design, the relative motion of the bat with respect to targets of 

interest, and the changes in call structure and temporal patterning all influence the 

information available to the bat’s auditory system in returning echoes. 

 

Electrical and chemical microstimulation experiments in the big brown bat SC 

elicit sonar vocalizations, head and pinna movements (Valentine et al., 2002). The 

microstimulation has revealed a basic topographic map of pinna movements, and in 

experimental cases in which the animal's head was not restrained, coordinated 

movement of pinna, head, and sonar vocal production.  A detailed analysis of the 

coordination of motor behaviors was not possible due to the limitations in the audio 

and video recording configuration (Valentine et al., 2002). 

 

The sonar vocalizations elicited by electrical stimulation resemble those 

produced by the bat in the approach phase of insect pursuit, i.e. 2–5 ms duration, > 30 
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kHz bandwidth of the fundamental, with multiple harmonics.  At threshold levels of 

stimulation one sonar vocalization was producd for each stimulus train.  Increases in 

the strength of electrical microstimulation (from 9-15 µA) elicited higher vocal 

repetition rates, and the total number of vocalizations produced, but only a modest 

change in the range of call durations.  Similar findings from electrical micro 

stimulation experiments in the SC of a CF–FM bat species, Rhinolophous rouxi have 

been reported (Schuller and Radtke-Schuller, 1990).  Direct electrical stimulation of 

the periaqueductal gray (PAG), that lies ventral to the SC, elicits communication calls 

(Valentine et al., 2002;Fenzl and Schuller, 2002). 

 

Proposed Experiments 

The echolocating bat’s adaptive motor behaviors serve to constrain the time–

scales over which neuronal operations must take place.  The temporal patterning of 

the bat’s echolocation signals provides explicit data on the likely timing of vocal–

motor commands for spatially guided behavior.  Given the current understanding of 

sonar vocal behavior in foraging bats, this active mode of sensing provides fertile 

ground for neurophysiological investigations.  This dissertation research has 

concentrated on neural recordings in awake and freely behaving bats, and has focused 

the relation of this activity to the temporal parameters of sonar vocalization used by 

bats engaged in echolocation behavior.  In support of this work experiments using 

microstimulation and tract tracing techniques have been conducted to show the 

connections of the SC, both functional and anatomical, with sonar vocal production. 
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To study the role of the SC in sonar vocal control three sets of experiments 

were conducted.  Two of these experiments required neural recordings from freely 

echolocating bats.  For this purpose, chronic neural recording techniques for the bats 

were developed.  The first experiment involved neural recordings from bats resting on 

a platform and spontaneously producing sonar vocalizations as they listened to 

electronically delayed playbacks of their sonar cries.  The design of the experimental 

set–up did not involve insect capture behavior and the bat was trained to maintain a 

relatively stable head position.  Therefore, with appropriate controls, neural 

recordings during this task isolated pre–motor activity related to sonar vocalizations, 

from head or pinna movements.  

 

The second experiment used a newly developed behavioral paradigm with an 

oscillating target.  Bats were trained to rest on a platform, and catch a tethered edible 

target oscillating toward and away from the bat on a pendulum arm, while neuronal 

activity from the SC was simultaneously recorded.  This target–directed behavior 

evoked a natural sequence of sonar vocalizations, closely approximating aspects of 

the bat’s echolocation behavior during insect pursuit and capture.  The vocalizations 

emitted showed a distinct relationship between target distance, call duration, and 

pulse intervals (PI) that were not observed in the echo playback paradigm.  This 

repertoire allowed a more extensive analysis of relationships between sonar call 

features and temporal patterning with simultaneously recorded neural activity and 

physical target position in space. 
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The third experiment used anatomical tract tracing techniques to identify 

anterograde connections of the SC with brainstem sonar–vocal control nuclei.  

Connections between the SC and pre–vocal nuclei serve as putative output pathways 

for influencing sonar vocalizations.  This experiment also addresses confounding 

issues related to microstimulation, in which the spread of current or chemical agonist 

to other loci may elicit the observed sonar vocalizations. 

 

In the following sections of this dissertation, Chapter 2 describes the two 

neurophysiological experiments by summarizing the background, information, 

elaborating the methods, giving the results, and discussing the findings.  The 

anatomical experiments are described in Chapter 3, in a similar manner.  Finally, 

Chapter 4 discusses the conclusions of the study, as well as presents a conceptual 

model for the role of the bat superior colliculus in acoustic orientation by sonar, 

specifically sonar vocal production.
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Chapter 2: Vocal Pre–Motor Activity in the Superior Colliculus of 

the Echolocating Bat, Eptesicus fuscus. 

 

Introduction 

 
Echolocating bats employ temporally complex, dynamic sequences of sonar 

vocalizations to successfully orient and hunt in darkness (for review, see Griffin, 1958) 

(Figure 9A).  Echolocation, like whisking in rodents, or oculo–motor control in primates, 

is an active process in which behavioral strategies are rapidly adapted and changed to 

handle evolving task demands (Griffin et al., 1960;Surlykke and Moss, 2000).  Also, 

similar to the somatosensory system of rodents and the visual system of primates, 

feedback is essential to the bat in order to select and produce appropriate behavioral 

responses to changing acoustic information (Wadsworth and Moss, 2000).  One neural 

structure implicated in the orienting behaviors of all these mammals is the midbrain 

superior colliculus (SC), which has evolved functional specializations for the control of 

species–specific orienting behaviors.  In the case of echolocating bats, the SC has been 

implicated in the production of complex sonar vocalizations, as well as head and pinna 

movements (Valentine et al., 2002;Schuller and Radtke-Schuller, 1990). 

 

The functional organization of the SC reflects the relative importance of a sensory 

modality to an animal’s species–specific behaviors.  Comparative animal studies indicate 

a role for the SC in the saccadic eye movements (Robinson, 1972;Sparks, 2002), smooth–

pursuit eye movements (Krauzlis, 2004) and vergence eye movements (Gnadt and Beyer, 
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1998;Chaturvedi and Van Gisbergen, 1999) in monkeys, the control of the head, eyes, 

and pinnae in cat (Guitton and Munoz, 1991;Stein and Meredith, 1993) and in orienting 

and evasive behaviors in the rat (Dean et al., 1989).  Other studies have identified 

specializations of the optic tectum (OT, the non-mammalian homolog to the SC) that 

support head turning in barn owl (du and Knudsen, 1990), and a role in snapping and 

body and head turning behaviors in frog (Ewert, 1997), head orienting in rattlesnakes 

(Hartline et al., 1978;Dacey and Ulinski, 1986), and tail, head, and eye movements in 

goldfish (Herrero et al., 1998).  The SC’s role in controlling orienting behaviors is 

mediated by a number of pathways to brainstem nuclei that transform SC commands and 

in turn project to motoneurons (Masino and Knudsen, 1990;Moschovakis et al., 1996). 

 

Echolocating bats comprise approximately one–fourth of all extant mammalian 

species (Jones et al., 2002).  They are extremely successful aerial predators that have 

evolved a biological sonar system.  This system allows bats to orient and forage in three–

dimensional space in total darkness.  Bats orient in space by coordinating flight 

dynamics, head movements and sonar vocalizations (Griffin et al., 1960).  The 

diminished role of the vision in the orienting behavior of insectivorous echolocating bats 

is supported by various reports in the literature.  Experiments on the visuo–motor system 

in echolocating bats describe solely head orienting movements to visual stimuli (Suthers, 

1966;Suthers et al., 1969).  In addition, Walls (Walls, 1963) states that microchiropteran 

bats do not move their eyes, even reflexively, and no morphologically distinct foveal 

region has been identified in the retina (Neuweiler, 1993).   
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Figure 9 Sonar vocal behavior, neural circuitry, and experimental subjects.   

A) Time waveform and selected spectrograms of a sequence of sonar vocalizations 

produced by a flying bat attacking a stationary insect target.  Typical of an insect pursuit 

sequence there are dynamic changes in the sonar pulse intervals as bats approach and 

capture a target (top panel).  The representative spectrograms demonstrate the change in 

bandwidth, call duration, and sweep rate during insect capture (bottom panel).  Asterisks 

(*) are positioned below calls for which spectrograms are shown.  B) Network of input–

output pathways that connect the SC with the sonar vocal production circuitry. Lemniscal 

(black arrow, top) and paralemniscal (gray arrow, at side) auditory inputs are integrated 

in the SC, which in turn projects to the laryngeal motorneurons indirectly via a tecto–

tegemento–bulbar pathway. C) Top-view drawing of the bat brain showing the 

dorsomedial position and relative size of the superior colliculus compared with adjacent 

structures. Scale bar is 5 mm. D) Photograph of a 15-gram bat with chronic implant prior 

to recording session. The small interface board mates with a head–stage board has 

amplifiers incorporated.  
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These factors together with the small number of retinal ganglion cells (RGC) (when 

compared to other mammals), the low RGC density (Pettigrew et al., 1988) all suggest 

the use of vision is limited. 

 

Bats actively produce ultrasonic vocalizations and use the information contained 

in the returning echoes to determine the position, size and other features of sonar targets 

(Simmons, 1973;Simmons et al., 1988;Simmons et al., 1990;Moss and Schnitzler H-U, 

1995) .  The timing, duration, frequency content, and intensity of the sonar signals 

employed by bats effectively determines the acoustic information available to its acoustic 

imaging system (Simmons et al., 1975;Simmons and Stein, 1980). 

 

Each species of bat has a distinct repertoire of signals that it uses for echolocation.   

In this study we used an insectivorous bat from the Vespertilionidae family, Eptesicus 

fuscus.  Foraging bats adjust the timing and the features of their sonar vocalizations as 

they search for, approach, and intercept a target.  The characteristics of their sonar 

vocalizations have been used to divide the bat’s insect pursuit sequence into three 

different phases (Griffin et al., 1960).  During the search phase, signals produced by 

Eptesicus fuscus are characterized by narrowband FM sweeps, with durations of 15–20 

ms at a repetition rate of 5–10 Hz.  Bats foraging in open spaces with little clutter 

primarily produce these calls.  Once E. fuscus detects a prey item, it produces approach 

phase signals that are broadband, multi–harmonic FM, with shorter durations (2–5ms) at 

a repetition rate of 20–80 Hz.  In the final phase of capture, terminal buzz, signals shorten 
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further in duration (0.5–1ms), are produced at even higher repetition rates (150–200 Hz), 

and show a drop in sound frequency to below 20 kHz (Surlykke and Moss, 2000).  This 

dynamic variation in the vocal production patterns of bats hunting insects is 

demonstrative of a context–dependent change in vocal behavior during hunting. 

 

The adaptive vocal behavior observed in bats is shaped by audio–vocal feedback, 

and functional specializations in the SC may support orienting by sonar.  Evidence 

derived from anatomical and physiological studies suggests that the SC of bats links 

auditory spatial localization with motor pathways for acoustic orienting (Figure 9B,C) 

(Shimozawa et al., 1984;Wong, 1984;Covey et al., 1987;Casseday et al., 1989;Sinha et 

al., 2000).  Biologically relevant specializations are observed both in sensory responses 

and motor behaviors of this bat species.  On the sensory side, two populations of spatially 

selective auditory neurons have been identified.  One population shows selectivity to 

auditory stimuli in both azimuth and elevation (2–D neurons) (Shimozawa et al., 

1984;Jen et al., 1993;Valentine and Moss, 1997;Reimer, 1991).  The second population 

(3–D neurons) shows spatial selectivity to azimuth, elevation, and echo delay, the bat’s 

cue for target range (Valentine and Moss, 1997).  Electrical and chemical 

microstimulation experiments in the SC of Eptesicus fuscus elicits sonar vocalizations, as 

well as head and pinna movements (Valentine et al., 2002).  The sonar vocalizations 

elicited using electrical stimulation resemble those produced by the bat in the approach 

phase of insect pursuit, i.e. 2–5 ms duration, > 30 kHz bandwidth of fundamental, with 

multiple harmonics.  By parametrically varying the electrical microstimulation 

parameters, changes in vocal repetition rate, and the total number of vocalizations can be 
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elicited.  Chemical stimulation with non-lesion, low–volume injections of kainic acid 

elicit a broader range of sonar calls, all identical to calls these bats naturally produce 

when freely echolocating.  Similar findings have been reported using microstimulation 

techniques in the SC of an old world bat species, Rhinolophous rouxi (Schuller and 

Radtke-Schuller, 1990).  Control experiments in which the adjacent periaqueductal grey 

(PAG) was stimulated failed to produce sonar calls but instead elicited long duration, 

lower frequency signals characteristic of communication calls (Valentine et al., 2002).  

These experiments demonstrated that SC stimulation could trigger sonar calls, and affect 

the number of calls produced, call duration, and repetition rate.   

 

Based on the role of the SC in orienting, and the specializations identified in the 

bat SC, we investigated the functional relationship between SC neuronal activity and 

sonar vocal production in freely echolocating bats.  To accomplish this we developed 

chronic neuronal recording techniques for use in unrestrained and freely behaving bats 

(Figure 9D). We focused on interactions between the temporal parameters of sonar calls 

and SC neuronal activity and specifically set out to: 1) identify whether pre–motor neural 

activity was present in the SC and correlated with sonar vocalizations, 2) determine 

relationships between observed vocal pre–motor activity and sonar vocal parameters, and 

3) ascertain whether the time–scales over which echolocation behaviors operate are 

related to the time–scales over which neuronal computations take place. 

 

Two behavioral experiments were designed to engage the bat in echolocation 

behavior, both of which permitted the bat to remain at rest while performing in a target–

capture or undirected echolocation task.  In the goal–directed echolocation task, bats used 
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echolocation to track and capture a tethered edible target that swung on a pendulum 

toward and away from the bat.  This task evoked vocal behavior similar to that produced 

by bats engaged in insect capture and elicited from each bat a wide range of sonar call 

parameters very similar to that observed during the approach and terminal phase of 

natural insect pursuit.  In the undirected task bats were trained to spontaneously produce 

sonar calls, while listening to attenuated and delayed playbacks of their sonar calls.  Data 

from both these behavioral paradigms were compared with vocal behavior during free 

flight insect capture behavior recorded in a laboratory flight room. 

 

It is reported here that neuronal activity in the bat SC is temporally coupled to 

sonar vocal onset, that the firing pattern of pre–motor events occurs in two discrete bouts, 

which has been termed as short lead events (SLE) and long lead events (LLE).  The SLE 

show tight coupling to vocal onset and the timing of LLE appears related to sonar call 

duration.  Brief preliminary results have been reported (Sinha and Moss, 2004). 

 

Methods 

Animals.  Adult insectivorous bats (Eptesicus fusucs) ranging from 13–18 grams were 

collected from the wild and housed in a bat vivarium at the University of Maryland.  Bats 

were housed under constant 12:12 hour, light:dark conditions and given food and water 

ad libitum.  The Institutional Animal Care and Use Committee at the University of 

Maryland approved all the procedures described here. 
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Surgery.   Bats were anesthetized with isoflurane gas (2–3 % / 700 cc / min O2, NLS 

Animal Health).  The muscles of mastication overlying the skull were undermined and 

deflected from the midline exposing the skull surface.  A stainless steel skull screw (Fine 

Science Tools, Inc.), inserted rostral to the cortex approximately over the olfactory bulb 

region, was then secured for use as an animal ground.  A craniotomy was performed over 

one superior colliculus, exposing the duramater.  A custom, light–weight (< 0.5 g), 16–

channel electrode interface board (EIB) (Neuralynx, Tuscon, AZ) was positioned over the 

craniotomy site.  The implant was constructed of two to nine, 30–gauge stainless steel 

cannula, soldered in a 3x3 matrix configuration to the EIB, with the cannula tips angled 

(20°) toward the central cannula.  Adjacent electrodes were spaced 350µm apart at the 

level of the EIB board. The EIB was a printed circuit board with no electronics, and with 

a 20–pin Omnetics connector (Omnetics, Corp.) for mating during experiments to an 

active head–stage board. All cannula were insulated externally, served as extra–cranial 

guide tubes, and functioned as a means of electrical contact between the electrodes and 

the EIB.  All but one cannula was loaded with 75µm diameter platinum/iridium wire 

recording electrodes (1.0–3.0 MΩ) (Microprobe, Inc., Bethesda, MD). The remaining 

cannula was loaded with a 1.0 kΩ platinum\iridium reference electrode.  The EIB was 

positioned with a three–stage micromanipulator over the craniotomy site, and the exposed 

dura was covered with biomedical grade Silastic (Dow Corning).  This prevented dental 

cement or cynoacrylate from contacting the brain. The EIB was secured to the skull with 

cement or medical grade cynoacrylate (Loctite 4113, CT).  A fine insulated, 32–gauge 

insulated wire attached to the skull screw, was then secured to the implant and served as 

animal ground. 
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Histology.  Bats were deeply anesthetized with sodium pentobarbital (0.04 ml/bat, 

intraperitoneal).  Intracardial perfusion with saline was followed by a 4% buffered 

paraformaldehyde fixative and the brain tissue removed from the skull and blocked.  The 

brains were subsequently stored in sodium phosphate buffered saline (PBS) (0.1M; 

pH=7.2) with 30% sucrose overnight, sectioned at 40 µm on a sliding freezing 

microtome, mounted and Nissl stained.  Electrode tracts were reconstructed based on this 

material. 

 

Free Flight Experiments.  In free flight experiments (Figure 10A) Eptesicus fuscus were 

trained to capture tethered whole mealworms (Tenebrio molitor) in a large flight room 

(6.4 x 7.3 x 2.5 m) lined with acoustical foam (Sonex). Their vocalization behaviors were 

studied under open-space and clutter conditions. In the open–space condition, no 

obstacles were in the vicinity (within 1 m) of the insect target; however, the walls, 

ceiling, and floor of the flight room prevent us from creating a truly open space 

environment. Experiments were carried out using only long–wavelength lighting (>650 

nm) by using filters (Plexiglas #2711, Reed Plastics, MD and Bogen Filter #182). This 

eliminated wavelengths of light that this bat species is sensitive to (<650 nm) (Hope and 

Bhatnagar, 1979b).  Mealworms were suspended at a height of about 1.5 m above the 

floor by monofilament line (Trilene Ultra Thin, 0.1 mm diameter) within a 5.3 m target 

area in the center of the room. A mealworm was suspended at a randomly selected 

location within the target area, and then the bat was released in a random direction to 

orient to the target area and find the mealworm. So that the bat would not memorize the 

target area, the mealworm was suspended outside the target area 50% of the time, and 
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those trials were not recorded. Once each bat achieved a consistent capture rate of nearly 

100% in open-space conditions (typically within 2 weeks of introduction to the task), 

audio and video recordings were recorded in order to quantify the features of the sonar 

vocalizations and how these features were related to target distance. 
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Figure 10 Experimental design for the flight room experiments and the two different 

behavioral paradigms used for chronic reocrdings. 

A) Top–view of the flight room, showing position of high–speed cameras (240 frames/s). 

Bats are permitted to fly within the entire room, but the edible target is only hung within 

the target area.  B) During trials sonar calls produced by a bat are acquired, modified to 

simulate sonar echoes, and played back to the bat.  Playback echoes are either from a 

loud intensity group (I) or a soft intensity group (II).  The delays of the playback echoes 

are randomly chosen during the trial from a limited range of values.  C) Schematic of the 

echo playback set–up.  Bats rest on a behavioral platform and produce sonar vocaliza-

tions directed toward an ultrasonic microphone.  The signals are modified by a computer 

and played back to the bat via a speaker positioned above and behind the microphone.  D) 

Schematic of the oscillating target set–up.  Bats are trained to rest on a platform and use 

echolocation to track and capture a moving target. The target, positioned on a horizontal 

arm connected to a vertical pendulum, swings in a single plane intersecting the bat’s 

position. 
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Video recordings were made with two gen–locked (frame synchronized), high–

speed video cameras (Kodak MotionCorder, 640x240 pixels, 240 Hz frame rate, and 

1/240-s shutter speed) were positioned just below the ceiling in the corners of the flight 

room. A calibration frame (Peak Performance Technologies) was placed in the center of 

the room and filmed by both cameras prior to each recording session.  The high–speed 

video cameras were used to record target position, bat flight path and capture behavior. 

The resulting images were used in calculation of the three-dimensional positions of the 

bat, target, and microphones.  The video buffer contained 1963 frames, allowing for 

recording of 8.18 s of data at 240 frames/s. Using an end–trigger on the video, we 

captured the behavior leading up to and just following successful and unsuccessful insect 

captures. 

 

Echolocation signals were recorded using two ultrasonic transducers (Ultrasound 

Advice) placed within the calibrated space.  Microphone signals were amplified, 

bandpass filtered (10–99 kHz, 40-dB gain, Stewart, VBF-7) and recorded digitally on 2 

channels of an IoTech Wavebook 512 at a sample rate of 240 kHz/channel. The 

Wavebook, controlled by a laptop computer (Dell Inspiron 7000), was set to record 8.18 s 

prior to the trigger; the trigger was set to simultaneously stop the audio and video 

acquisition. The experimenter triggered the system on each trial after the insect capture 

was attempted and/or accomplished. 

 

Platform Experiments.  Two types of behavioral platform experiments were conducted: 

echo playback (EPB) and oscillating target (OscT).  In both behavioral paradigms bats 
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were trained to rest on a platform, and remain oriented towards a sound stimulus or target 

in front of them while freely echolocating.  Each behavioral design permitted tethered 

chronic neuronal recordings.  To attain a consistent level of performance one to three 

weeks of training was required for each animal, with daily sessions to maintain 

performance.  Sonar vocalizations and neuronal activity were simultaneously recorded in 

both paradigms.  On a subset of echo playback trials video recordings of head & pinna 

movements were recorded.  In every experiment low–level, long wavelength lighting, 

outside the spectral sensitivity range of this bat species was used to eliminate visual cues 

(Hope and Bhatnagar, 1979b). 

 

In both behavioral paradigms vocal and neural data were recorded digitally and 

stored to a computer hard disk.  All recording devices were synchronously triggered 

using one master trigger operated by the experimenter.  When video recordings were 

made, the master trigger also controlled acquisition of video recordings.  Echo playback 

experiments were conducted in a double–walled acoustic booth.  The room interior was 

lined with acoustic foam to minimize sound reflection. Oscillating target experiments 

were conducted in a large, carpeted, laboratory flight room (6.4 x 7.3 x 2.5 m), with 

ceilings and walls lined with acoustic foam. All large objects were covered with felt cloth 

to dampen echo returns.  Neural recordings methods were identical in the two paradigms 

and are described at the end of the methods section. 

 

Echo Playback Paradigm.  Bats use the time delay between their sonar vocalizations and 

returning echoes, to determine an object’s distance (Hartridge, 1945;Simmons, 1973).  
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Bats accept as "echoes" computer–generated playback sounds, triggered by the bat’s 

vocalization, and delivered at a specified delay within the operating range of the bat’s 

sonar (echo delays up to 30 ms, corresponding to ~5m distance).  Bats seem to perceive 

these "echoes" as targets at a distance corresponding to the playback delay (Simmons, 

1973).  These phantom, or virtual, targets can be computer–generated, and thus useful 

because all features of the echo waveform can be kept constant while manipulating only a 

single variable (Moss and Schnitzler H-U, 1995). 

 

This experiment used a virtual target playback system.  Bats were trained to rest 

on an elevated platform and produce sonar vocalizations.  A horizontally oriented 

Ultrasound Advice condenser microphone placed 105 cm in front of the bat and in line 

with the bat’s position picked up the bat’s sonar vocalizations (Figure 10B,C).  The bat’s 

echolocation sounds were hardware filtered (20–99 kHz, due to practical limitations in 

computer processing), digitized, electronically delayed, attenuated, band–pass filtered 

(20–99 kHz), and broadcast back to the bat through a custom electrostatic speaker, with 

flat (± 5dB) frequency response between 30–100 kHz.  The loudspeaker was positioned 

in front of, and just above, the microphone, to eliminate feedback. 

 

Sonar echoes also return from the microphone, speaker and other objects in the 

room.  In previous experiments using this system, bats have reached behavioral criterion 

level in phantom echo tasks (Moss and Schnitzler H-U, 1995), suggesting that the bat can 

learn to respond to electronically delayed sonar signals as target echoes.  Steps were 
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taken to temporally isolate playback echoes from echoes arising from real objects in the 

recording chamber. 

 

Echo Playback Behavior.  The primary aim of this task was to engage the bat in 

echolocation behavior, and permit the recording of pre–motor activity associated with 

vocalizations.  Therefore, bats were trained in a two alternative forced–choice echo 

discrimination task.  Bats were trained to rest on a platform, produce sonar vocalizations, 

and attend to virtual playback echoes presented from the centrally placed speaker.  They 

were trained to report ‘loud’ echoes by turning to the right, and trained to report ‘soft’ 

echoes by turning to the left.  Correct responses were rewarded with food.  Head aim was 

tracked (see below) during training, and training trials were aborted if head aim deviated 

by more than 10° from the centrally placed speaker.  Training continued until head 

movements were less than 10° from center.  Each trial consisted of twenty to thirty 

vocalizations and their corresponding playback echoes.  At the end of a trial, playback 

echoes were terminated and bats were required to make a decision. 

 

Trials with ‘loud’ and ‘soft’ echoes were randomly interleaved.  In trials with 

‘loud’ echoes, vocalizations were attenuated by 5 dB SPL and trials with ‘soft’ echoes 

had sonar calls attenuated by 20 dB SPL.  In each individual trial, playback signals were 

either from the ‘loud’ or the ‘soft’ group.  The amplitude range of the playbacks fall in 

the range of behaviorally relevant echo amplitudes for bats (Moss and Schnitzler H-U, 

1995).  For every vocalization the bat received playback echoes with a small range of 

delays (1–5 ms).   The playback echo values (~6 ms for time–of–flight plus the added 
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delay of 1–5 ms) were within the range of behaviorally relevant echo delays (4-30 ms; 

Moss and Schnitzler H-U, 1995).  Sonar vocalizations and playback echoes were visually 

monitored on a digital oscilloscope during sessions.  Given the directional sensitivity of 

the microphones used, and the threshold for triggering of the echo playback system, head 

aim that deviated by more than ~10° failed to trigger the playback system.  While 

monitoring the oscilloscope, if bats vocalized and playbacks were not returned, trials 

were aborted.  For video tracking of head aim an infrared sensitive high–speed video 

camera (Redlake) was mounted 0.5 m above the bat with a zoom lens to record close–ups 

of head and pinna movements in the horizontal plane.  Video recordings were made of 

infrared reflective markers positioned on the bat’s head (two markers), body (two 

markers), and pinna (two markers each ear) while on the behavioral platform.  These 

reflective markers were easily distinguished from background in video images.  Video 

data was recorded at rates of 250 Hz (1 frame/4 ms), and immediately transferred to tape.  

Due to the limitations of our data storage device, video recordings were only made of a 

subset of trials in a session.  Data was analyzed for trials in which bats were on task and 

all markers were visible.  Segments overlapping with and without sonar vocalizations 

were appropriately marked for later analysis.  Custom video analysis software (Matlab, 

Mathworks, Inc.) was used to track marker positions. 

 

Echo Playback Behavioral Analysis.  All sonar vocalizations were analyzed using custom 

sound analysis software written in Matlab (MathWorks, Inc.).  The start and end 

frequencies, duration, bandwidth, repetition rate, and pulse interval of the fundamental 

component of the sonar call was manually measured.  On trials where video recordings 
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were made of the head and pinna, trial segments were identified in which all markers 

were clearly visible.  For these segments all six markers were manually digitized.  Three 

measures were used and calculated from the video marker data: angular rotation, angular 

velocity and angular acceleration, all relative to the body.  Data was smoothed using an 

8–point sliding window average, to eliminate video marker tracking errors introduced by 

manual estimation.  Segments of video data around the time of occurrence of sonar 

vocalizations were analyzed to determine possible temporal relationships with sonar 

calls.  Each bat was analyzed separately.  For each measure individually, all video 

segments from a single trial were first aligned by the vocal onset time, and then 

normalized by calculating the z–score, for all the data, at each time point, preceding and 

after the sonar call onset, in a time–interval spanning [-80ms,+80ms]. Other time spans 

were also tested.  Trials with periods of inactivity and abortive movements were 

examined but excluded from summary records.    All digitized video segments of head 

and pinna movements were analyzed with custom video analysis software also written in 

Matlab (MathWorks, Inc.). 

 

Oscillating Target System.  The repertoire of sonar vocalizations in playback experiments is 

limited and less structured in comparison to those observed in natural settings (Surlykke 

and Moss, 2000) or in the laboratory flight room.  The oscillating target paradigm permits 

bats to rest on an elevated platform (95cm above ground), while using echolocation to 

track and capture a moving target, and allow tethered, chronic neural recordings (Figure 

2D).  Bats were trained to rest on a platform and capture a moving edible target.  

Mealworms (Tenebrio molitor) were used as the edible targets, were pierced with a 



 

 74 
 

sewing needle and held loosely tethered on a 0.2 mm diameter, 5cm long, nylon line.  

The nylon line was hooked at one end and attached to the sewing needle.  The needle was 

attached to a small diameter (0.3 cm) 54 cm steel arm, connected to a vertically hanging, 

pendulum arm (170 cm) (Figure 10D).  This arrangement ensured that the needle was 

held securely on the arm, but the nylon line could easily be dislodged if the bat pulled on 

the target.  The target moved along an arc, and the platform position was adjusted to 

ensure the target intersected the bat’s position on the platform.  Only at this position was 

the bat able to capture the food reward.  Neural data was continuously recorded during 

the session.  Vocal data was recorded in 10s blocks around the target oscillation time.  

These 10s blocks constituted the trials.  Fifteen to thirty trials were run for each recording 

session. 

 

Target position relative to the bat was determined using two microphones 

(Ultrasound Advice).  One microphone remained stationary, approximately 250cm in 

front of the bat, and 40 cm above the ground, referred to as the floor microphone.  The 

second microphone, referred to as the pendulum microphone, was mounted on the 

swinging pendulum arm, 10cm behind the target and 30cm to the side of the target, closer 

to the pendulum arm (Figure 10D), and oriented toward the platform.  Both microphone 

signals were simultaneously recorded with a National Instruments 6110 data acquisition 

card (National Instruments, Austin, TX) at 500 kHz/channel, using custom software 

written in the C programming language. 
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Oscillating Target Sonar Analysis.  Sonar vocalizations were quantified for each trial.  

Trials with periods of vocal inactivity and abortive movements were examined but 

excluded from summary records.  Off–line vocal data analysis was performed on the data 

from the stationary floor microphone.  The data was filtered (10kHz–100kHz), rectified, 

and convolved with a square window (0.5ms).  Times that exceeded a set threshold were 

identified as sonar calls.  The threshold was determined as 5x the standard deviation 

above the mean of a non–vocalization period.  Threshold crossings were used to calculate 

the onset and offset time, duration, repetition rate, and pulse interval of sonar 

vocalizations within each trial. The recorded vocal signals from the floor microphone 

were analyzed to determine the start and end frequencies on a subset of trials.  Sound 

analysis was completed using custom sound analysis software written in Matlab 

(MathWorks, Inc.).    

 

Oscillating Target Position Analysis.  Vocal signals from the two microphone channels were 

filtered (10kHz–100kHz) and cross-correlated.  The time–lag at the maximum peak in the 

cross–correlation was used to estimate the separation distance between the two 

microphones.  On every recording day, calibration measurements were made to 

determine the relative separations of the oscillating target apparatus.  These 

measurements were used to determine the range of angles the pendulum moved through 

and the distance to the platform at each point in its swing.  From this information and the 

time delay between the microphones when a vocalization was recorded the distance from 

the target to bat at the time of vocalization was established. 
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EMG Recordings. Teflon-coated silver wires (0.12 mm external diameter; Medwire, 

Co.) were threaded through 30-gauge hypodermic needles, with the ends fashioned into 

hooks, which protruded from the sharp ends of the needles. Pairs of wires were inserted 

close together into the muscles of mastication. The wires were placed so that they were 

close to the SC and above the mid–sagittal sinus. The wires were secured in place using 

tissue adhesive, and the protruding exposed ends of the wires soldered to gold pins. When 

recording EMG activity the gold pins were connected to a DAM 80 amplifier (World 

Precision, Inc), filtered (1Hz–3000Hz), amplified (x 5,000), and the data recorded to 

computer via a National Instruments 6110 DAQ card for later analysis. For the sonar 

vocal data, vocal signals were recorded using a Ultrasound Advice microphone, filtered 

(10kHz–99kHz), amplified (x2–5), and simultaneously recorded with the EMG data on a 

separate channel of the National Instruments card.  The NI DAQ card sampled each 

channel at 300 kHz. Vocalizations were analyzed as described above.  EMG data was 

analyzed the same manner as neural (described below). 

 

Neural Data Collection.  Bats were allowed to recover for several days after surgery before 

being returned to the behavioral apparatus for recording.  On recording days a head–stage 

board (20mm x 10mm, < 1g) (HS–16M, Neuralynx, AZ) with unity–gain buffers was 

connected to the implanted EIB.  A light–weight, 38–gauge wire tether conveyed a 

maximum of 16 neural channels to a Cheetah 32 Digital Interface data acquisition system 

(Neuralynx, AZ).  After amplification (5,000–10,000x), and band–pass filtering (0.001–

6) kHz, neural activity was recorded continuously along with synchronizing signals by 

the Neuralynx system.  Electrodes were advanced at least 12 hours prior to recording 
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sessions, and were advanced by (75µm –100µm) between recording sessions.  For each 

session a new site was recorded from.  Recording sessions lasted 30–50 minutes, during 

which time the bats remained connected.  Movement of the bats was not encumbered by 

the head–stage and tether assembly as they performed in behavioral experiments.  After 

each session, data were archived to CDs, and analyzed off–line. 

 

 

Data Analysis.  For all off–line analysis custom software for use in Matlab (Mathworks, 

Inc.) was written.  The continuously recorded wide–band signals were high–pass filtered 

(300Hz–6 kHz) digitally.  The power (root mean square) of the filtered signal was 

computed in a sliding window (0.25 msec) for event detection (Bankman et al., 1993).  

The standard deviation (SD) was calculated to estimate the variance of the baseline noise 

and to establish a detection threshold.  Events were defined as deflections of the 

continuously sampled voltage records exceeding an event criterion threshold.  Events 

with power of more than two times the SD from the baseline mean were extracted as 

‘spikes’.  If the power remained above threshold for more than 3 ms the events were 

rejected.  Event waveforms that were not biphasic were rejected.  Background periods of 

activity were measured in a 1 second, non–vocalizing, period preceding the start of a 

session and the start of selected trials.  This was used as a measure of the background 

event rate.  Neural and vocal data were aligned, and epochs of time (generally 60ms 

before to 20 ms after sonar vocal onset) around each sonar vocalization were inspected 

for events. Raster plots and PETH (Peri–Event Time Histograms) were constructed for 

display purposes.  PETH were constructed with 1ms and 2ms bin widths.  No difference 

in the PETH pattern was qualitatively observed so 2ms bins were subsequently used.  
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Bins were identified in which the number of events were above a trial criterion threshold.  

This trial threshold was set at mean + 2SD above the background event rate.  Other trial 

criterion thresholds were tested (1,3,4 SD) but changed the calculated measures little. 

Events in bins that exceeded the trial threshold were used for subsequent analyses.  

Events within over–threshold bins were analyzed using three measures: mean firing rates, 

the standard deviation of the event times preceding a sonar call, and timing of events 

relative to sonar vocalizations.
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Results 

Sonar Vocal Behavior 

Insectivorous bats of the species Eptesicus fuscus produce sonar vocalizations 

with a wide range of signal features.  When free flying bats attack stationary tethered 

mealworms in laboratory flight room (6.4 x 7.3 x 2.5 m) (Figure 10A) the variation in 

sonar features is strongly related to target distance (Figure 11A, left column).  [The 

free flight data was kindly provided by Ms. Chen Chiu].  The flight path and sonar 

call features used by the bat are representative of the bat’s natural behavioral strategy.  

The dimensions of the room may act to restrict the range of vocalizations features 

produced by the bat largely by limiting the duration of search calls to 5–6 ms.  The 

data presented in Figure 11A are taken from 14 separate attack sequence trials 

recorded from four different bats.  Figure 11A (top panel) shows the variation in 

sonar call duration with target distance.  The duration decreases approximately 

linearly with target distance.  Bats in the flight room generally do not fly directly 

toward a target (Figure 11B).  Instead, they display a curved intercept flight path with 

sometimes abrupt changes in distance, and this may account for the curvature 

observed in the relationship between call duration and distance.  The relationship 

between the pulse interval (PI, the time between the onset of consecutive calls) and 

the target distance is shown in Figure 11A (bottom panel).  The PI, shown on a log 10 

scale, has a much larger range of values than duration, and shows three different 

stages, which can be distinguished by a range of PIs used for a given distance.  First, 

for the largest PIs, there is only a weak relationship with distance, which may reflect 

the case in which the bat is searching for the target.   
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Figure 11 The temporal characteristics of sonar vocal sequences in different 

behavioral scenarios. 

The sonar call duration and pulse interval are shown as a function of target distance 

or trial time.  A) Data from two free flying bats attacking a stationary edible target.  

The call duration (top panel) and pulse interval (bottom panel) of the sonar calls as a 

function of target distance show distinctive characteristics.  B) During a non– pursuit 

directed echo playback experiment, call duration and pulse interval vary widely in a 

non–patterned fashion over the course of each trial.  C) In pursuit directed oscillating 

target trials, during which bats remain stationary and a target oscillates, duration and 

pulse interval vary closely with target distance.  Data in A–C are comprised of sonar 

calls, from all trials, during one session. The total number of calls for each plot is 

shown in the top panels.
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Next, an intermediate stage is marked by a consistent decrease in PI with decreasing 

target distance (0.5m – 1.0m).  The last stage has the smallest PIs (5–8 ms) and 

occurs over the shortest distances (0.0m – 0.5m), as the bat closes to capture the 

target.  Overall bats decrease their sonar call duration in a linear fashion and decrease 

their PI in an approximately exponential manner, when approaching a stationary 

target in free flight. 

 

In contrast to the dynamic pattern shown for the free flight case, the variation 

in sonar vocal parameters is more restricted in the echo playback condition (Figure 

11B).  The data come from 30 trials, from two bats, with trial lengths varying from 6–

20 seconds.  The range of sonar call durations is more limited across trials in this 

condition, and is more similar to the longer duration calls used in the free flight case.  

Additionally, bats use much larger PIs here than in the free flight case, by 

approximately an order of magnitude.  Both the sonar call duration and PI are 

comparatively constant within each trial, with no overall pattern of variation observed 

across trials. 

 

 The vocal behaviors during the oscillating target experiments (Figure 11C) 

show both similarities and differences to that observed in the free flight scenario.  

Similar to the free flight case sonar call duration decreases steadily with target 

distance, and spans a similar range of call durations over the range of target distances 

studied (0m – 1.6m).  In contrast to the free flight case, the rate of change of call 

duration with target distance is smaller, and the PI produced by the bat spanned a 10x 

larger range of values.  In addition, the target distance and PI in oscillating target 
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experiments showed an exponential relationship across a wide range of target 

distances investigated (Figure 11A, bottom).  The extended period of short PI 

observed at short distances in the free flight case is not evident in the oscillating 

target trials except at the very shortest distances (< 0.2 m), although the bat employed 

a similar range of short PIs.  The differences in vocal behavior between conditions 

may be a result of the predictable fixed path of the oscillating target tracked by the 

stationary bat, in contrast to the stationary target and variable flight paths used by bats 

in the free flight situation. 

 

Representative data from one oscillating target trial (Figure 12A) shows target 

distance and call duration over the course of a single trial, and demonstrates the 

changes in vocal call duration and PI used when the bat tracked the target.  In the 

beginning of the trial the target is held at the start position and the bat consistently 

uses longer duration calls.  When the target was released the bat steadily decreased 

the call duration it produced, called only a few times when the target receded, and 

again used a sequence of decreasing call durations during the second approach.  This 

variation in call duration is exponentially related with changes in PI (Figure 12B), 

evident in the linear relationship in the log–linear plot, and shows the co–variation in 

these parameters as the target distance decreases. 

 

 Thus, the dynamic target–oriented vocal behavior during the oscillating target 

paradigm closely resembles the vocal behavior observed during free flight insect 

capture.  In both experiments duration and PI co–vary as a function of target distance.   
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Figure 12 Variation in sonar call durations with target distance and pulse interval 

in an oscillating target trial. 

A) The close coupling between sonar call duration and target distance is highlighted 

in an oscillating target trial. Target distance (red diamonds) and call durations (black 

circles) are shown as a function of trial time (12 seconds).  Sonar call duration versus 

pulse interval for all 1392 calls in Figure 11C. B) Pulse interval varies over a wide 

range during both oscillating target and free flight trial conditions. The exponential 

relationship between call duration and PI is made clear in this log–linear plot. 
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In contrast, the vocal behavior during the non–target directed echo playback paradigm 

does not show the dynamic variation in call parameters seen in the free flight case.  

Instead the call parameters were closer to those employed when the bat was at greater 

distances relative to the target, and it was potentially still searching for the target. 

 

Pre–motor activity in the Superior Colliculus 

Bats in the echo playback (EPB) experiments were trained to spontaneously 

vocalize, and for each sonar vocalization produced they were presented with an 

attenuated, delayed playback of that sonar call (see Methods).  Bats emitted species–

specific downward sweeping, multi–harmonic, short duration sonar vocalizations 

when using echolocation in the task (Figure 13A).  When analyzing SC neural 

activity, neural activity was consistently observed preceding the onset of sonar 

vocalizations (Figure 13 B–C, red vertical ticks).  Figure 13B shows a filtered (300–

3000) Hz, five–second neural trace showing peaks in pre–motor activity close to 

sonar call onsets (indicated by red ticks).  Figure 13C shows the same neural trace as 

in Figure 13B, with the data rectified and smoothed and demonstrates the near one–

to–one correspondence between the SC neural activity and the sonar vocalizations.  

Neuronal activity recorded in the SC during this task was characterized by a low 

mean baseline event rate (20 ± 17 events/s, n=10 sites, two bats). 

 



 

 85

Figure 13 Bat sonar call time waveform, power spectrogram, and time aligned 

pre–motor neural activity with sonar vocalizations in the SC. 

A) Time waveform and spectrogram of a single 3.8 ms duration sonar vocalization 

produced during an echo playback experiment.  B) Simultaneously recorded neural 

activity in the SC. Bouts of neural activity in the superior colliculus consistently 

precedes sonar vocalizations. Red ticks in B and C are identically placed, and 

represent the onset of sonar vocalizations. C) Rectified waveform of the neural 

activity in B low–pass filtered (< 100 Hz) with an eighth–order Butterworth filter.
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In Figure 14A,B a representative raster and peri–event time histogram (PETH) 

from a single EPB trial is shown.  The plots were constructed by aligning the peri–

vocal events relative to sonar call onsets (t=0).  Raster plots represent consecutive 

sonar calls from the start to end of a trial.  The pre–motor activity is characterized by 

two brief bouts of activity that are comprised of long lead events (LLE) and short lead 

events (SLE), separated by a brief return to near baseline event rates.  This bimodal 

distribution in event lead times prompted us to evaluate the two groups of events 

separately (Figure 14B).  The plots in Figure 14A,B illustrate the increase in event 

rate preceding call onsets, the distinct reduction in event rate between LLE and SLE, 

and the return to baseline event rates before or shortly after call onset (< 1 ms), which 

is evident at all our recording sites (n=44).  Relative to the SLE, the LLE occurs over 

a larger range of lead times [-40.6,-8.4] ms (10th–90th percentile), have a mean lead 

time of -22.2 ± 3.9 ms (mean ± SD) (n=10 sites, 2277 calls, two bats).  The SLE, by 

contrast, have a smaller range of lead times, [-5.1,-2.2] ms (10th–90th percentile), a 

mean lead time of -3.6 ± 0.7 ms, and are precisely time–locked to the call onset (n=10 

sites, 2277 calls, two bats).  These events consistently occur prior to sonar 

vocalizations (Table 1). 
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Figure 14 Sonar–related pre–motor activity is consistently observed in all 

recordings from the superior colliculus. 

A) (Top) Raster of events preceding the onset of sonar vocalizations during one trial 

(bat epb1).  Ordinate represents consecutive sonar calls from first to last call in the 

trial. Call onset is at time = 0, and the raster extends from 60 ms before to 10 ms after 

sonar vocal onset. During this trial 74 sonar calls were produced. (Bottom) Both long 

and short lead events are apparent and evident in the peri–event time histogram (A, 

bottom). The red (dashed) line shows the baseline activity level, and the blue (solid) 

line represents the criterion threshold (mean±2SD) utilized for determining change 

from baseline activity. A reduction in event rate is observed between long lead and 

short lead events, and after call onset. B) The pulse interval and sonar call duration of 

vocalizations produced during the trial shown in A. PI is longer than >60 ms in echo 
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playback trials. C) Linear regression using the mean LLE time as the single predictor 

for estimating sonar call duration.  All events preceding the sonar calls (n=1026) from 

one recording session (including trial in A) are included. Only a gradual increase in 

mean LLE times is observed with increasing call duration (y=-0.03x+3.00, r=0.14, 

p<0.001). D) Linear regression using the spread (see Methods) of LLE times for each 

call is used as the single predictor of call duration. The spread shows only a slight 

increase with call duration (y=-0.05x+3.34, r=0.13, p<0.001).
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Three measures were used to characterize the pre–motor activity: the mean 

LLE time for each call, the spread (1 standard deviation) of LLE times for each call, 

the LLE event rate for each call.  Figure 14C–D, respectively, show the linear 

regression fit of the mean LLE times and the spread of LLE times versus the 

corresponding call duration (n=1026 calls, from 14 EPB trials).  Both parameters are 

significantly related to the call duration (mean LLE time: F(1026)=18.0, p < 0.001; 

spread in LLE time: F(1026)=19.5, p < 0.001), but have very low correlation 

coefficients (r = 0.14 for LLE; r = 0.13 for SLE).  Mean LLE time and spread are not 

significantly related with PI.  Mean event rate is not significantly related to either call 

duration or call PI. 

 
Behavior Events Occurrence SE  

Echo Playback All Events 0.98 0.01 

 LLE 0.98 0.00 
 SLE 0.82 0.04 

Oscillating Target All Events 0.93 0.00 

 LLE 0.68 0.02 
 SLE 0.67 0.02 

 

Table 1 Occurrence of neural events prior to sonar calls for Echo Playback and 

Oscillating Target Paradigms. 

Neural events were consistently observed to occur prior to sonar vocalizations in both 

the echo playback  and oscillating target behavioral paradigms. 
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Oscillating Target 

Bats trained in the oscillating target (OscT) paradigm produced naturalistic 

sonar calls and pursuit and capture sequences (Figure 11B, and Figure 12A).  This 

permitted the investigation of changes in pre–motor activity from a chronically 

implanted bat producing echolocation calls characteristic of a free flying foraging 

animal.  Neuronal activity during OscT trials is characterized by a low mean baseline 

event rate (23 ± 16 events/s, n=35sites, 3 bats), similar to that observed in EPB trials.  

LLE occur over a range of lead times [-29.8,-7.1] ms (10th–90th percentile), and have 

a mean lead–time of   -17.5 ± 9.1ms (mean ± SD) (n=35 sites, 15724 calls, three 

bats).  For OscT trials, the SLE has lead times that span [-3.0,+0.4] ms (10th–90th 

percentile), a mean lead time of -1.2 ± 1.3 ms, and are time–locked to the call onset as 

in EPB trials (n=35 sites, 15724 calls, three bats).  The LLE and SLE occur 

consistently prior to sonar vocal onsets, but with a lower rate of occurrence than in 

EPB trials (Table 1). 

 

Figure 15 shows a representative example of the observed pre–motor activity 

pattern in an OscT trial.  The pattern of activity evident in the EPB experiments is 

still evident here, with distinct LLE and SLE activity relative to sonar call onsets 

(t=0), the reduction in event rate between LLE and SLE, and the return to baseline 

levels after call onset.   
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Figure 15 Pre–motor neuronal activity in the SC during an oscillating target trial. 

See caption on next page.
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Figure 15 Pre–motor neuronal activity in the SC during an oscillating target trial. 

A) Raster and peri–event time histogram show a pattern of pre–motor activity similar 

to that observed in echo playback recordings.  LLE and SLE precede sonar 

vocalizations with a reduction toward baseline between the two event groups.  Data is 

aligned to sonar call onset (lead time = 0).  LLE in the raster show a tendency toward 

shorter lead times during the trial, and correspond to times when the target is 

approaching the bat. B) Pulse interval (PI, gray, filled), start (black, filled) and end 

(black, open) frequency, calls duration (black, open), and target distance (black, 

filled) of sonar vocalizations produced during trial shown in A).  The oscillating 

target approaches and recedes from the bat twice in this trial. Each sonar call 

parameter is modulated as a function of the target distance.  Sonar call duration and 

pulse interval are clearly decreased whenever the target approaches. C) Linear 

regression using the mean LLE time as the single predictor of sonar call duration for 

all sonar calls in one recording session (n = 738 calls).  The data shows an increase in 

mean LLE time for increasing sonar call durations (y=-0.11x+0.66, r=0.73, 

F(1231)=1425, p < 0.001).  D) Reduction in the relation between sonar call duration 

and mean LLE time when mean LLE time is not associated with the call it precedes. 

Each panel shows the sonar call duration versus the mean LLE time (as in C).  Except 

for the top left panel, the other panels show the data with mean LLE time associated 

with the sonar call duration 1, 3, and 5 calls ahead in the vocal sequence. r is the 

variance accounted for.
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In addition, when examining the raster plots from OscT trials, there is a noticeable 

decrease in the lead–time of LLE over the course of the trial.  When evaluated with 

respect to target distance, the decreasing LLE lead–times occur when the oscillating 

target was swinging toward the bat, i.e. approaching the bat. 

 

Based on this observation, the mean of the LLE times for each sonar call was 

calculated and plotted against the corresponding call duration (Figure 15C).  A clear 

trend is observed in which larger mean LLE times correspond with longer call 

duration, and shorter mean LLE times correspond with shorter call durations.  A 

linear regression fit of this data shows a significant relationship between these two 

parameters (F(1231)=1425, p<0.001), and accounts for a large fraction of the 

observed variance, r=0.73.  If the mean LLE time of one call is associated with the 

call duration of a sonar pulse later in the vocal sequence, and the linear regression 

analysis is performed, the amount of variance accounted for decreases.  Figure 15D 

shows the results of such an analysis when the mean LLE time of one call is 

associated with the duration of a call one, three, or five calls forward in the sonar 

pulse sequence (backward comparisons show similar results).  The variance 

accounted for steadily decreases suggesting the mean LLE times are associated with 

the upcoming call. 
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Figure 16 Representative plots of sonar call duration versus mean LLE time.   

Each figure is constructed from data taken at different recording channels. A) A linear 

relation is observed at the majority of sites, and three examples are shown here. B) A 

fraction of the recording sites have deviations from a linear relationship and three 

separate examples are presented. C) In a subset of cases there is clearly a departure 

from a linearity, and the relationship can be better described as piecewise linear.
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This relationship was examined across all the OscT sites, and three categories 

were constructed: 60% (21/35) of sites appeared well approximated by linear trends, 

17% (6/35) showed a less clear linear trend, and 23% (8/35) showed a poor linear 

trend, but in general a piecewise linear trend.  Representative plots from these three 

separate categories are shown in Figure 16A,B,C (linear, linear–like, not linear 

respectively).  For the first two categories single predictor linear regression 

parameters and r–values were calculated.  The distribution of regression values is 

shown in Figure 17A, and the line fits in Figure 17B.  The slopes of the linear fits 

were in the range [0.017–0.118], with a mean (SD) of 0.065 ± 0.028.  Therefore, a 1 

ms increase in call duration corresponds to an approximately 15ms increase in mean 

LLE time.  Mean LLE time was not significantly related to PI when a linear 

regression analysis was performed. 

 

Event rate and spread were also investigated in OscT trials, and related to 

sonar call duration.  Both these parameters had essentially linear relationships with 

call duration, but by themselves accounted for only a small amount of the overall 

variance.  Combined with the mean LLE times, these three predictors generally 

increase the overall variance accounted for in a multiple linear regression analysis.  

The three predictor r–values are plotted against the single (mean LLE) predictor r–

values in Figure 17C. 
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Figure 17 Linear regression analyses using mean LLE time to predict call 

duration. 

Linear regression analyses were performed for all sites (n=27) for which sonar call 

duration and mean LLE time were well approximated by linear relationship.  A) 

Histogram of the r–statistic values calculated from the linear regression analyses.  At 

each recording site, the mean LLE time was the single predictor to estimate sonar call 

duration.  This measure generally accounts for >50% of the variance in sonar call 

duration. B) Linear regression line fits from the 27 sites, in the superior colliculus of 

three bats. The lines have a mean slope of 0.065 ± 0.028. C)  R–statistics from linear 

regression using event rate, spread, and mean LLE time as predictors of sonar call 

duration plotted against single predictor (mean LLE time) r–statistic values. A modest 

increase in the variance–accounted–for is observed at the majority of sites, as 

demonstrated by most points lying above the unity line.
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The sonar call duration versus the SLE activity is shown, in Figure 18, in an 

eight millisecond window [-6,+2] ms around each call (lead time = 0).  The data is 

taken from three different sites in three different bats, with the n–values in the panels 

representing the number of calls that contributed to each figure (n=1117, 2260, 2268 

calls).  The three panels show the range of deviation we observed in our SLE data, 

with events occurring well–locked to sonar onset and with fairly high precision.  No 

obvious relationship was observed with sonar call duration or PI.  Short lead events 

did not show any statistically significant relationship with call duration or PI when a 

linear regression analysis was performed.  Even when different threshold criteria were 

used to select events linear regression analysis returned non–significant results. 

 

Neural recordings were made from seventeen separate penetrations, at seven 

potentially different depths.  We did not identify any relationships between the 

histologically reconstructed recording sites, either in depth or along the medial–lateral 

or rostral–caudal dimensions, and the pattern of pre–motor neural activity.  The 

question of site–specificity of the vocal pre–motor pattern of activity can be more 

thoroughly addressed with future improvements in our chronic recording techniques. 
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Figure 18 Short lead events are time–locked well to sonar vocal onsets. 

Data in A–C is from three different sites in three different bats, and is comporised of 

all the SLE data from single sessions.  The short lead event data was collected while 

bats used echolocation to track an oscillating target swinging toward and away from 

the bat.  Top panels are sonar call duration versus short–lead event times showing the 

uniform occurrence of event times with sonar call duration.  Bottom panels show 

histograms of the number of events at each time showing the precision of short–lead 

events. Time bins are 0.25ms. Values shown in bottom panels represent the number 

of sonar calls used to construct each plot.  Dots at the top of the ordinate in the 

bottom panels draw attention to the different range of values. 
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Controls 

Four control experiments were conducted to determine whether the observed 

pre–motor activity in the SC was related to non–sonar vocalizations, potentially to 

other orienting movements, or to artifacts.  Data from all the control experiments are 

shown in Figure 19. 

 

First, neural activity was recorded in the SC while bats produced non–sonar 

vocalizations (Figure 19A; n=6 sites total recorded).  Raster plots (Figure 19A, top 

left panels) and their corresponding PETH (Figure 19A, bottom left panels) aligned to 

vocal onsets (t=0) (spanning 60 prior to, until 10 ms after call onset) showed no 

distinct LLE or SLE pattern of activity.  The PIs of these non–sonar vocalizations 

(Figure 19A, top right) encompassed a similar range of PIs as the sonar vocalizations 

(Figure 11B,14B).  However, the calls produced had much lower start and end 

frequencies (within the human audible range), and a more variable range of call 

durations, with many calls > 5 ms in duration (Figure 19A, bottom right).  When bats 

produced sonar vocalizations, pre–motor activity with LLE and SLE were 

consistently observed at these same sites.  

 

 Next, high–speed video recordings were made of the bat on the platform while 

it was engaged in the echo playback experiment.  Infra–red markers on the pinna, 

head and body were tracked for a subset of trial segments (n=20 trials segments; 50 

sonar calls; 3 bats).   
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Figure 19 Control experiments conducted to verify relationship between SC pre-

motor neural activity and sonar vocalizations.  

A) Simultaneous neural recordings were made when bats produced non–sonar calls. 

(Left Panels) A raster plot and their corresponding peri–event time histograms do not 

show long–lead events or short–lead events when bats produce non–sonar calls.  The 

raster and peri–event time histogram (PETH) show SC neural activity around vocal 

onset (t=0), for n=79 non–sonar calls from a single site.  (Right Panels) Pulse interval, 

bandwidth, and call duration of non–sonar calls. B) Head movements were tracked 
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during the production of sonar vocalizations.  The movement trajectories were 

normalized for comparison using a z–score function.  A reduction in the amount of 

head rotation is seen preceding the expected time of pre–motor activity, and 

becoming variable at less reliable amounts of time after call onset. Data are from 

three bats (four sessions), aligned to sonar call onset (t=0).  Vertical gray bar 

represents mean time of expected long–lead events ± 1SD.  C) No pre–vocal neural 

activity is observed in the inferior colliculus prior to sonar vocalizations. Gray dots 

represent the time of the last call and black dots are event times. The PETH shows 

low firing rates. Sonar pulse intervals range from 20–410 ms, similar to the range 

observed during echo playback experiments.  For sonar call bandwidth, start 

frequencies (black, closed circles), and end frequencies (black, open circles) are 

shown.  D) Raster and PETH of electromyogram events recorded from the muscles of 

mastication on the dorsal surface of the skull.  Events around sonar calls (n=100 sonar 

calls) are aligned to call onset (lead time=0), and do not show deviations in rate 

before or after call onset. The event rate remains low (50 ± 5 events/s) during the 

sonar call onsets. 
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Three measures, head turn angle (θ) with respect to the body, its first derivative 

(angular velocity), and second derivative (angular acceleration) were calculated for 

each trial segmented.  Eighty millisecond segments of data around each sonar call 

onset (±40 ms) were plotted for each measure.  Plots of these three measures did not 

show any consistent pattern relative to the time of sonar vocal onset.  Next, we 

normalized the θ data for each trial segment using a z–score measure, and then 

reanalyzed the data (Figure 19B).  There was evidence in the aligned data of a 

reduction in the variance of the head movement prior to the occurrence of the LLE 

(gray bar, centered on mean ±1SD).   At a variable time after the sonar vocal onset 

the amount of head movement increased once again.  Slight pinna movements were 

observed, but these were within the noise level of our video marker tracking. 

  

Third, neural activity was recorded from the inferior colliculus (IC) while bats 

spontaneously produced sonar vocalizations.  The IC is located adjacent and 

immediately caudal to the SC.  If the pattern of SC pre–motor activity were not 

specific to the SC, then we would expect a similar pattern to be evident in the IC as 

well.  Figure 19C shows data recorded during 89 sonar calls from one IC site.  Similar 

data was recorded from four other IC sites.  The raster (Figure 19C, top left) and 

PETH (Figure 19C, bottom left) are aligned to sonar call onset (t=0), shows no 

evidence of LLE or SLE, and have little overall activity prior to call onsets.  Figure 

19C (right panels) shows the PI, start and end frequency, and duration of emitted 

calls.  The variation in the pulse interval, frequency content, and duration are similar 

to the range of values observed in the SC recordings (Figure 14B,15B). 
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Fourth we made EMG recordings from the muscles of mastication that lie on 

the dorsal surface of the head, adjacent to the chronic implant.  These muscles flex 

when the animal moves its jaw, as during chewing or calling.  Vocal and neural 

recordings were made from 2 bats trained to spontaneously produce sonar 

vocalizations for variable periods of time (5–20 seconds), while resting on a platform.  

The peri–vocal raster and PETH (Figure 19D) shows EMG activity in a window 

spanning 100 ms prior to, until 20 ms after, call onset (n=100 sonar vocalizations).  In 

contrast to the neural recordings in Figure 14,15, we observed no pattern of activity 

that was similar to the LLE and SLE observed in SC recordings.  The firing rate 

remained essentially constant and low, and did not change in pattern before or after 

the calls onset (time = 0).

Discussion 

This study provides the first detailed description of pre–motor activity in the 

superior colliculus of echolocating bats.  Electrophysiological and behavioral 

techniques were developed that permit tethered, multi–channel, chronic recordings 

from unrestrained bats engaged in echolocation.  Several features of the pre–motor 

activity indicate that the bat SC may generate commands that shape sonar vocal 

parameters.  Initial experiments suggest that the SC pre–motor activity precedes sonar 

onsets at every recording site, and that the temporal dynamics of a distinct subclass of 

events is related to sonar pulse duration, a vocal parameter that bats adjust with target 
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distance.  These results support the hypothesis that pre–motor activity seen in the bat 

superior colliculus participates in spatial orienting along the range axis. 

 

Superior Colliculus Activity Related to Sonar Vocalizations 

The pre–motor activity we observe in the bat SC is consistently characterized 

by a temporally broad set of long lead events (LLE) and comparatively precise set of 

short lead events (SLE).  The mean event rate returns to baseline within 

approximately 1ms of the start of each sonar call.  This pre–motor pattern of activity 

is evident at all SC recording sites.  During the pre–motor discharge the mean firing 

rate increases from 20 events/s at baseline to >300 events/s, in a window of time 

spanning approximately 30 ms prior to vocal onset.  This pre–motor activity precedes 

sonar vocalizations in both behavioral paradigms over 90% of the time.  The pre–

motor SLE precedes each sonar vocalization with a particularly short lead–time, 

~3ms, and has a discharge pattern with high temporal precision (SD < 1.5 ms) (Figure 

14A, 15A).  No consistent changes in the timing or event rate were observed for the 

SLE relative to sonar vocal duration or PI.  This short lead–time is inconsistent with 

directly influencing the upcoming sonar vocalization, based on the number of 

estimated synapses between the SC and the laryngeal motoneurons, but may serve 

other functions. 
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Controls 

All experiments in the booth and the flight room were conducted using long 

wavelength light (>650 nm), at low intensity levels (<0.1 lux).  Based on 

electroretinogram recordings (Hope and Bhatnagar, 1979a;Hope and Bhatnagar, 

1979b) these wavelengths and intensities would eliminate visual cues available to 

Eptesicus fuscus during the experimental trials.  

 

To further examine the relationship between SC pre–motor activity and sonar 

vocal production four control experiments were conducted.  The first of these control 

experiments suggest that SC pre–motor activity is related specifically to sonar vocal 

production and not to the production of non–sonar calls.  Peri–vocal neural activity 

recorded on a subset of trials when the bat produced non–sonar calls did not have the 

characteristic pattern of LLE or SLE.  This is consistent with stimulation experiments 

in the bat SC that elicit sonar calls but not communication calls (Valentine et al., 

2002;Schuller and Radtke-Schuller, 1990).  Second, recordings were made from sites 

in the inferior colliculus while simultaneously recording sonar vocalizations.  Pre–

motor activity at these IC sites was not observed.  Third, neural activity was recorded 

from the muscles of mastication that are located on the dorsal surface of the skull 

adjacent to the implant.  The EMG neural activity changed < 1SD of the mean around 

vocalizations, and was not modulated relative to the onset or duration of sonar calls. 

 

Lastly, no clear relationships between the pre–motor SC activity and head or 

pinna movements in our echo playback paradigm were identified.  First, the 
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occurrence and timing of neural activity with sonar vocalizations is very consistent 

(>90%).  However, the timing of head movements relative to sonar vocalizations is 

highly variable.  A reduction in the size of head movements preceding the occurrence 

of the LLE, and an increase in the size of head movements at a variable time after the 

production of sonar calls was observed.  The inconsistent relationship between head 

movements and sonar vocalizations suggests that there is no reliable relationship 

between head movements and the observed pre–motor activity.  No detectable pinna 

movements, above the measurement–induced errors, were observed in our video 

recordings.  These findings do not exclude the possibility that pre–motor activity 

related to head or pinna movements is present in the bat SC.  Two factors may 

account for the absence of a relationship between pre–motor activity and head/pinna 

movements in our data set.  The first possibility is that the identified pre–motor 

activity was not related to the types of head and pinna movements the bat employed 

in our behavioral paradigms.  In both the echo playback and the oscillating target 

paradigms, bats were trained to attend to locations in front of them.  In the echo–

playback experiments all stimuli were presented from a single speaker positioned in 

front of the bat.  In the oscillating–target experiments the target only moved in a plane 

intersecting the bat’s position so that the target approached and receded from it.  

Therefore, both paradigms eliminated the need for lateral movements to perform the 

task, and also removed any uncertainty related to target position or sound source 

direction.  Those head or pinna movements that were observed were small in 

amplitude, and not ballistic.  As such, it can be said that pre–motor activity was not 

related to head or pinna movements, at least to the accuracy of our video recording 
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methods.  The second possibility is that movements related to the pre–motor activity 

was too fast to be identified based on our video sampling rate (250 frames/s) and data 

smoothing. 

 

Sonar Call Duration and PI 

The vocal pre–motor activity in the SC shows a change in temporal dynamics 

related to the sonar call duration, namely a reduction in the mean LLE time occurs 

with a decrease in sonar call duration.  A similar relationship is not observed, 

however, between mean LLE time and sonar PI, despite the fact that call duration and 

PI are coordinated during behavioral trials.  There are a few possible explanations for 

this difference.  First, there is a wide range of pulse intervals associated with any 

given sonar call duration, so a trend evident between LLE activity and call duration, 

may be obscured when comparing it to the more variable sonar PI.  But this seems 

unlikely since even at the lowest call duration, where the PI shows the least 

variability, there is no observed relationship between mean LLE time and PI.  Second, 

the decision of when to produce a sonar vocalization is a complex process that is 

likely based on the integration of information across multiple sonar vocalizations 

(Moss and Surlykke, 2001), and involves a network of brain areas.  This process 

involves spatial localization of sound sources, target selection, target feature analysis, 

and target intercept planning.  However, once the decision to vocalize is made, the SC 

may be engaged to orient the bat’s gaze by performing body, head, and pinna 

movements, in coordination with sonar call production. 
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Latency of Vocal Pre–motor Activity 

The event lead–times we observed are shorter than the reported latencies 

between electrical stimulation of the SC and vocal onset in Eptesicus fuscus (170±63 

ms, n=21 sites) (Valentine et al., 2002) and Rhinolophus rouxi (47±22 ms, n=103 

sites)(Schuller and Radtke-Schuller, 1990).  The discrepancy may be due in part to 

two factors.  First, sonar vocal production is coupled with respiration (Fattu and 

Suthers, 1981;Rübsamen and Schweizer, 1986;Schuller and Radtke-Schuller, 1990);  

therefore, eliciting a sonar vocalization requires the coordinated recruitment of both 

respiratory and vocal motor pathways (Jürgens, 2002).  Thus, simple electrical 

stimulation in a midbrain nucleus may be an imprecise technique to appropriately 

recruit these two motor pathways, and result in a larger and longer range of latencies 

between stimulation and vocal onset.  Second, bats of both species can produce sonar 

vocalizations with short pulse intervals (< 10–50 ms).  For this to occur, circuits that 

contribute to vocal production must operate on a similar time–scale, in order to 

generate the appropriate vocalizations.  Therefore, the observed pre–motor activity is 

more consistent with behaviorally observed patterns of vocalizations, and the long 

latencies observed in electrical stimulation may simply not reflect the temporal 

dynamics of neural activity when bats are actively vocalizing. 

 

Patterns of Neural Activity in Different Behaviors 

The trend observed between the sonar call duration and mean LLE time in the 

oscillating target paradigm, is not evident in the echo playback paradigm.  In both 

cases the threshold for detecting pre–motor activity was based on the mean 
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background event rate.  This rate was similar in both paradigms, indicating that other 

factors contributed to the difference.  The foremost distinction was the range of call 

durations utilized by bats in the two behavioral paradigms.  Bats in the oscillating 

target paradigm routinely made calls between 0.5–4.0 ms, in contrast to the 2.5–4.0 

ms calls identified in echo playback paradigm.  This limited range of call durations 

may obscure a detectable trend if the slope in the relation is low.  At some sites tested 

in the oscillating target paradigm (Figure 18C) only a weak relation was observed 

between longer call duration and mean LLE time, and this may contribute to the 

absence of an effect in the echo playback paradigm.  Second, the two behavioral 

conditions had different goals in order to successfully complete the task.   In the 

oscillating target paradigm bats had (1–2)s intervals in which to produce 

vocalizations and capture the target, while in the echo playback paradigm bats were 

given (6–12)s to complete a discrimination task.  Future experiments that manipulate 

task demands in a parametric manner will be necessary in evaluating how neural 

responses may change due to the behavioral context. 

 

Superior Colliculus Connections for Sonar Vocal Control 

Given the importance of sonar call features to echolocation behavior, a 

number of experiments have sought to identify nuclei involved in the sonar 

production circuitry. Using electrical and chemical microstimulation and 

microdialysis techniques several regions involved in sonar vocal production have 

been identified.  Experiments have primarily focused on loci in the ventral 

tegmentum and hindbrain that elicit and affect properties of sonar vocalizations 
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(Rübsamen and Schweizer, 1986;Suga and Yajima, 1989;Metzner, 1996;Schuller et 

al., 1997;Fenzl and Schuller, 2002;Smotherman et al., 2003).  These regions have 

been implicated in both triggering sonar vocalizations, as well as impacting the 

frequency and intensities of emitted calls. 

 

The SC may in part act as an interface for vocal motor control between higher 

brain regions and brainstem nuclei.  The overall pattern of sonar–related activity in 

the superior colliculus may be derived in part from other regions.  For example, 

projections have been demonstrated in the mustached bat, Pteronouts parnellii, from 

regions of the frontal cortex (Kobler et al., 1987).  These anatomically identified 

regions receive projections from the auditory cortex and a division of the auditory 

thalamus, the suprageniculate nucleus.  This frontal cortex region contains auditory 

neurons, and projects heavily to the deep layers of the superior colliculus.  This 

pathway from frontal cortex to the SC may shape the pre–motor activity we observe, 

and may be homologous to the projections observed in monkeys from the frontal and 

supplementary eye fields (FEF/SEF) to the SC for mediating eye movements 

(Segraves and Goldberg, 1987;Stanton et al., 1988).  In addition to projections from 

cortex, the SC receives putative GABAergic projections from two nuclei, the zona 

incerta in the medial thalamus, and the substantia nigra pars reticulata.  Both these 

projections may act to gate pre–motor activity in the superior colliculus, and thereby 

control the timing and type of behaviors the animal produces.  The inhibitory 

projections from these two nuclei may underlie the low background firing rates we 

observe in the SC, and disinhibition may explain the large and comparatively brief 
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bursts of discharges observed prior to sonar vocalizations used by bats while 

orienting. 

 

 Two auditory input pathways shape the pattern of activity observed in the SC 

(for review see Huerta and Harting, 1984b).  The first is the lemniscal pathway, 

which projects via the cochlear nucleus to multiple brainstem targets, that in turn 

terminate in the inferior colliculus (for review see Oertel, 1999) which in turn projects 

to the SC (Covey et al., 1987;Sinha et al., 2000).  This is the best–studied auditory 

input pathway to the SC, both in mammals and other vertebrates, and provides a basis 

for the spatial representation of sound source location observed in the SC.  The 

second pathway, identified two bat species, in two separate families (Casseday et al., 

1989;Behrend and Schuller, 2000), involves a pathway know as the central acoustic 

tract that bypasses the lemniscal pathway altogether.  Projections from the CN ascend 

to the nucleus of the central acoustic tract, and then to the SC and the suprageniculate 

nucleus in the auditory thalamus.  This pathway provides rapid (4–6 ms) auditory 

input to the SC, and likely contributes to the short latency responses observed in SC 

auditory units (Jen et al., 1984;Wong, 1984;Reimer, 1991).   

 

 In turn the SC projects heavily onto the PLa, one of the largest ventral 

tegmenutm targets of SC outputs.  The PLa has been intensively studied as a site for 

temporal and frequency control of emitted sonar vocalizations in bat species that use 

CF–FM echolocation signals and exhibit DSC behavior (Pillat and Schuller, 

1998;Schuller et al., 1997;Metzner, 1989).  Experiments have shown that neurons in 
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this area respond to auditory stimuli, that responses are modulated by the presence or 

absence of spontaneous vocalizations, and that stimulation of this area elicits sonar 

when stimulated (Metzner, 1989;Metzner, 1993).  However, sonar vocalizations are 

still produced even when this nucleus is lesioned (Pillat and Schuller, 1998), though 

the subsequent quality of these vocalizations has not been rigorously evaluated.  In 

addition to this target nucleus, the SC in E. fuscus shows anterograde projections to 

the parabrachial nucleus and the cuneiform nucleus (Sinha et al., 2000), both 

implicated in vocal production and orienting movements (Metzner, 1996;Smotherman 

et al., 2003).  This indirect tecto–tegmental pathway for influencing sonar 

vocalizations is similar to the tecto–tegmental pathways observed in other species that 

are implicated in mediating other species–specific orienting behaviors.  Indirect tectal 

pathways for mediating orienting behaviors have been demonstrated in such disparate 

species as frogs (Masino and Grobstein, 1990), turtles (Sereno, 1985), snakes 

(Gruberg et al., 1979;Dacey and Ulinski, 1986), owls (Masino and Knudsen, 1992), 

cats (Grantyn and Grantyn, 1982), and primates (Scudder et al., 1996a). 

 

Role of Collicular Vocal Pre–motor Activity 

 

Motor Commands for Controlling the Features of Vocalizations 

Echolocating bats can carefully control their head aim, and presumably pinna 

movements, to gather acoustic information from specific directions (azimuths and 

elevations) in space (Griffin et al., 1962;Griffin et al., 1962;Pye and Roberts, 

1970;Ghose and Moss, 2003).  Bats use the time delay between sonar emission and 
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returning echo to determine target distance (Simmons, 1973), a dimension bats must 

measure accurately to successfully orient in space.  This appears crucial when one 

considers the high flight speeds of bats during insect pursuit (>3 m/s), and the short 

operating range of sonar due to physical constraints like excess attenuation of high 

frequencies (Simmons and Lawrence, 1982).  In addition, multiple objects exist in the 

environment at multiple distances from the bat and can have potentially deleterious 

affects on range discrimination (Simmons et al., 1988;Masters and Raver, 1996), so a 

mechanism to focus on a limited range of distances would seem beneficial. 

 

The data shows that the LLE occur early enough relative to sonar vocal onset 

(Figure 14A, 15A) to influence the features of upcoming sonar vocalizations, since 

the SC is separated from the laryngeal motor neurons by approximately two to four 

synapses (Covey et al., 1987;Sinha et al., 2000;Schuller et al., 1997).  Furthermore, as 

sonar vocalizations are produced with shorter durations, the lead–time of the LLE 

decreases (Figure 16C), further supporting the prospect that changes in the pattern of 

LLE activity contribute to the upcoming sonar vocalization.  In addition, when the 

mean LLE time is related to the duration of calls further forward or backward in time, 

rather than the upcoming call, the relationship between mean LLE time and call 

duration deteriorates, again suggesting the LLE influences the upcoming sonar call 

(Figure 16D).  There is also the notable relationship between sonar call duration and 

the target distance.  Thus, one possibility is that the pre–motor LLE activity in the bat 

SC is related to commands for changing the sonar pulse duration as well as initiating 

calls.  Such adjustment of sonar call duration has parallels with the control of 
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vergence eye movements in primates.  Three mechanisms exist to adjust the depth of 

focus in primates: accommodation, disconjugate vergence (convergence and 

divergence) eye movements, and pupillary constriction (Miles, 1985).  Recent 

experiments suggest the rostral pole of the SC in macaques plays a role in the control 

of vergence eye movements (Gnadt and Beyer, 1998;Chaturvedi and Van Gisbergen, 

1999;Chaturvedi and Van Gisbergen, 2000;Suzuki et al., 2004).  Therefore, the pre–

motor activity observed in the bat SC might influence sonar call duration for the 

purpose of directing acoustic gaze along the range axis. 

 

Efference Copy 

Efference copy motor signals are common in sensori–motor control systems, 

and are useful for providing information about intended motor activity, to modulate 

sensory information such as reafferent signals, or used during motor learning as an 

internal prediction to compare with target reference (Bell et al., 1997;Troyer and 

Doupe, 2000;Sommer and Wurtz, 2004).  The short lead–time of the SLE makes its 

casual role in sonar vocal production highly unlikely, however it activity may 

represent a form of efference copy, signaling an impending sonar vocalization.  This 

is important in echolocation behavior in order to process echoes arising from self–

generated sonar vocalizations. 

 

Two potential mechanisms whereby SLE activity could act as an efferent copy 

signal for impending vocalization are described.  First, the amplitude of sonar calls 

emitted by bats like Eptesicus are approximately 110 – 120 db SPL (Grinnell, 1963).  
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Such large amplitude signals would render echoes difficult to detect.  A neural 

mechanism, identified in bat species, involves a central source of attenuation that 

mitigates the effect of intense sounds (Suga and Schlegel, 1972).  This neural 

attenuation, which acts in addition to the middle ear reflex (MER) (Jen and Suga, 

1976), reduces the responses of auditory neurons, arises only when bats vocalize, and 

is first apparent at the level of lateral lemniscal nuclei (LL) (Suga and Schlegel, 

1972).  One potential source of this neural attenuation may be the SLE activity 

observed in the SC.  A possible means of testing this proposal is by inactivating the 

SC and recording in the LL nuclei.  By eliminating the SLE activity the magnitude of 

neural attenuation can be measured at the level of the LL during and after sonar vocal 

production. 

   

A second potential function for SLE activity may be to act within the SC 

itself, and affect the response profile of auditory neurons in the SC.  The bat SC has 

auditory neurons with two–dimensional spatial receptive fields (Sun et al., 1983;Jen 

et al., 1984;Shimozawa et al., 1984;Poussin and Schlegel, 1984;Reimer, 1991), as 

well as delay–tuned neurons (Valentine and Moss, 1997).  Both classes of neurons 

can respond with short latency (~6ms) to auditory stimuli in passively listening bats.  

Thus the SLE may serve to modulate the neural response to acoustic stimuli when the 

bat vocalizes.  A potential future experiment could measure the firing rate of SC 

auditory neurons, and determine if the response to an externally applied auditory 

stimulus is differentially modulated when the bat does and does not vocalize. 
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For this report we developed chronic neuronal recording techniques for 

unrestrained and freely behaving bats.  The method permitted us to make multi–

channel recordings from the bat superior colliculus a structure involved in orienting 

behaviors, which includes sonar vocal production in bats.  Our data demonstrates that 

pre–motor activity is evident in the SC and this activity is related specifically to sonar 

vocal production.  In addition, the vocal pre–motor activity shows changes in 

temporal dynamics related to sonar call duration, a parameter that bats finely adjust 

with changes in target distance during insect capture.
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Chapter 3: Anatomical Connections of the Superior Colliculus 

for Sonar Vocal Control in the Echolocating Bat, 

Eptesicus fuscus. 

 
 

Introduction 

Echolocating bats are highly successful mammals constituting approximately 

25% of extant mammalian species (Jones et al., 2002).  Bats have evolved a 

biological sonar system that supports three-dimensional spatial perception (Griffin, 

1958).  These nocturnal animals orient in space by producing ultrasonic vocal signals 

and listening to reflected echoes.  The bat’s sonar receiver uses binaural differences to 

estimate the direction of returning echoes (Simmons, 1979), and time delay between 

outgoing sonar vocalizations and reflected echoes to estimate target distance (Feng et 

al., 1978;Suga et al., 1978).  This acoustic information is used to direct spatial 

orienting behaviors such as the movements of their wings, body, head and pinna and 

sonar vocalizations.  The production and control of sonar vocalizations is a critical 

component of the orienting behavior in bats. Bats dynamically change the features of 

their sonar calls when they search for, approach, and pursue prey by manipulating the 

frequency content, spectral contour, call duration, and repetition rate (Simmons et al., 

1979;Simmons et al., 2001;Moss and Surlykke, 2001;Wilson and Moss, 2004). 
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The circuits underlying audio-vocal integration are likely to include 

mesencephalic structures like the superior colliculus (SC).  At least two lines of 

evidence support a role for the SC in the control of species–specific orienting 

behaviors that for the bat include sonar call production.  First, electrical stimulation 

evokes orienting behaviors whose metrics are generally determined by the site of SC 

stimulation (monkey: Robinson, 1972;Freedman et al., 1996;Corneil et al., 

2002a;Krauzlis et al., 2004;cat: Roucoux and Crommelinck, 1976;bat: Schuller and 

Radtke-Schuller, 1990;Valentine et al., 2002;rat: Dean et al., 1989;owl: Masino and 

Knudsen, 1993;fish: Herrero et al., 1998).  Second, ablation studies of the entire SC 

(Sprague and Meikle, 1965;Schneider, 1969;Albano and Wurtz, 1982) or focal 

pharmacological inactivation of zones within the SC (Hikosaka and Wurtz, 

1985a;Hikosaka and Wurtz, 1986) result in selective impairments of sensory 

processing and orienting behaviors, when appropriate behavioral assays are used to 

probe for deficits. 

 

The basic structure of the bat SC is similar to that found in other mammals 

(Cotter, 1985;Covey et al., 1987;Zhang et al., 1987;Sinha et al., 2000), therefore 

frequently comprised of seven laminae, with alternating lamina of fibers and somata.  

The SO layer receives direct retinal projections, and combined with the two most 

superficial layers (SAS, SGS) are involved in visual processing, as determined using 

tracer injections into the retina or degeneration and autoradiographic techniques 

(Pentney and Cotter, 1976b;Cotter, 1985;Cotter and Pentney, 1979).  In other 

mammals, these anatomical findings are similar, and in addition the contralateral 



 

 119

visual hemifield is represented in a topographically organized manner (Cynader and 

Berman, 1972).  The intermediate (SAI, SGI) and deep layers (SAP, SGP), i.e. the 

ventral four layers, have been studied primarily from the perspective of echolocation, 

and have patterns of projections similar to those described in non–echolocating 

mammals (Covey et al., 1987;Zhang et al., 1987;Sinha et al., 2000;Huerta and 

Harting, 1984b in non-bat species). 

 

The SC in the insectivorous bat, Eptesicus fuscus (family Vespertilionidae), 

shows functional specializations related to acoustic orienting via sonar.  Namely, two 

neuronal populations of spatially tuned auditory neurons have been identified.  The 

first population responds to auditory stimuli with specific azimuth and elevation and 

has a putative role in guiding acoustic orientation (Sun et al., 1983;Shimozawa et al., 

1984;Wong, 1984;Reimer, 1991;Jen et al., 1993;Valentine and Moss, 1997).  The 

second population of auditory neurons shows direction selectivity along with 

enhanced responses to echoes with specific delays relative to emitted vocalizations 

(Valentine and Moss, 1997).  This second class of neurons, referred to as 3–D 

neurons, is believed to underlie the representation of target distances in echolocating 

bats (Feng et al., 1978;Suga et al., 1978). 

 

Motor specializations related to sonar vocal production have also been 

described for the bat.  Our previous experiments have shown that chemical and 

electrical micostimulation of the SC elicits species–specific sonar vocalizations, a 

component of the overall orienting behavior central to echolocation (Valentine et al., 
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2002).  In particular, the sonar vocalizations elicited were coupled to head and pinna 

movements, thus implicating this neural structure in motor commands for the 

production (sonar vocalization and head movements) and reception (head, body and 

pinna movements) of echolocation signals.  Stimulation of the SC in another bat 

species, Rhinolophus rouxi (family Rhinolophidae) also elicited species–specific 

sonar vocalizations (Schuller and Radtke-Schuller, 1990). 

 

The goal of the present study was to characterize the efferent pathways of the 

SC that potentially mediate sonar vocal production in Eptesicus fuscus.  Two previous 

studies have looked at the connections of the bat SC but have emphasized the 

auditory afferent inputs and the role of the SC in head, pinna and body orienting 

movements (Eptesicus fuscus, Zhang et al., 1987;Pteronotus parnellii, Covey et al., 

1987).  We report here on the pattern of SC afferent and efferent connections in E. 

fuscus, and emphasize connections of the SC with pre–motor structures implicated in 

sonar vocal production (Fenzl and Schuller, 2002;Schuller and Radtke-Schuller, 

1990;Metzner, 1993).  We identify one circuit potentially involved with audio–vocal 

control and hypothesize that this circuit plays a role in the adaptive vocal behavior of 

bats. 

 

A part of this work has previously been reported (Sinha, 2001). 
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Methods 

Animal Subjects.  Adult insectivorous bats (Eptesicus fuscus) ranging from 13–18 

grams were collected from the wild and housed in a bat vivarium at the University of 

Maryland.  Bats were housed under constant 12:12 hour, light:dark, conditions and 

given food and water ad libitum.  All procedures described here were approved by an 

Institutional Animal Care and Use Committee at the University of Maryland.  The ten 

animal subjects that were used for this study, were housed in the lab less than one 

year prior to use, and were of both sexes. 

 

Surgical Methods.  Bats were anesthetized with isoflurane gas (2–3 % / 700 cc / min 

O2, NLS Animal Health).  Blunt dissection was used make a midline incision, and the 

muscles of mastication overlying the skull were deflected from the midline.  After 

exposing the skull a metal post was adhered to the skull surface with a biomedical 

grade cynoacrylate (Loctite 4113).  The superior colliculus is a dorsal structure in this 

bat species and can be identified using skull landmarks.  A craniotomy was performed 

over one superior colliculus using a sharpened Beaver Eye blade (Becton Dickinson, 

NJ, USA).  The dura was deflected, and small quantities (5–15 nl) of tracer consisting 

of 10-15% biotinylated dextran amines (BDA, 10,000 MW, Vector Laboratories, CA, 

USA) were injected through a glass pipette attached to a 0.5 µl Hamilton syringe into 

the superior colliculus using established skull landmarks.  Wounds were closed with 

Vetbond tissue adhesive (3M, Inc., MN, USA) and bats were returned to the colony 

room to recover. 
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After a survival period of 4–5 days, bats were deeply anesthetized with 

sodium pentobarbital (0.04 ml/bat, intraperitoneal).  Perfusion with saline was 

followed by a 4% buffered paraformaldehyde fixative and the brain tissue removed 

from the skull and blocked.  The brains were subsequently stored in sodium 

phosphate buffered saline (PBS) (0.1M; pH=7.2) with 30% sucrose overnight, 

sectioned at 40 µm on a sliding freezing microtome and processed for BDA using the 

avidin-biotin method.  Sectuibs were washied three times ub PBS, incubated ub 

avidin–biotin sloutino for 1–2 hours (Vector Elite Standard Kit, Vector Laboratories, 

CA, USA) and processed with diaminobenzidine (DAB) or the blue SG chromogen 

(Vector Laboratories, CA, USA).  Alternate sections were counterstained with neutral 

red in order to facilitate identification of nuclear boundaires 

 

Anatomical Analysis Methods.  Labeled fibers, prominent processes and retrogradely 

labeled cell bodies were plotted onto large drawings using a camera lucida.  The plots 

were then transferred to computer with Corel Draw to aid comparison of cases.  No 

published brain atlas exists for the species studied here, so whenever possible journal 

papers related to neuroanatomy of Eptesicus fuscus were consulted to confirm 

identification of cytoarchitectural boundaries.  When information was unavailable, a 

rat and mouse atlas was consulted to identify regions with label.  Selected sections 

were photographed through a CCD camera mounted to microscope (Zeiss). 
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Abbreviations 

BIC brachium of the IC 
CP cerebellar peduncle 
CUN cuneiform nucleus 
dMRF deep mesencephalic reticular 

formation 
DNLL dorsal nucelus of the lateral 

emniscus 
DTD dorsal tegmental decussation 
IC inferior colliculus 
ICC central nucleus of the inferior 

colliculus 
ICX external shell of the inferior 

colliculus 
INLL inferior nucleus of the lateral 

lemniscus 
MGB medial geniculate body 
nBIC nucleus of the brachium of 

the IC 

PLa paralemniscal tegmentum area 
PAG  periaqueductal gray 
Pt pretectal nucleus 
Pp peripeduncular nucleus 
SC superior colliculus  
Sg suprageniculate nucleus 
SAI  stratum album intermediale 
SAP stratum album profundum 
SGI stratum griseum intermediale 
SGP stratum griseum profundum 
SGS stratum griseum superficiale 
SO stratum opticum 
SZ stratum zonale 
SNc substantia nigra pars compacta 
SNr substantia nigra pars reticulata 
VNLL ventral nucleus of the lateral 

lemniscus 
ZI zona incerta 
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Results 

As in other mammals, the SC of the echolocating bat Eptesicus fuscus is a 

mesencephalic multi–lamina structure, with six identifiable laminae when studied in 

Nissl and myelin stained sections.  The two superficial layers, the SZ and SGS found 

in other mammals, are not clearly identifiable in some bat species, including 

Eptesicus fuscus (Cotter, 1985).  We have followed conventional subdivisions and 

nomenclatures in discussing its structure (Kanaseki and Sprague, 1974).  The nucleus 

in E. fuscus is located on the dorsal surface of the brain, rostral to the IC, and spans 

the dorsal border of the PAG located on the midline (Figure 20A,B).  The six SC 

layers, most evident only across the middle third of the SC’s rostral-caudal extent is 

shown in Figure 20C.  We used BDA for both anterograde and retrograde tracing, 

examined all cases, but for our final analysis we only selected cases in which 

injections of BDA were confined to within the SC (Figure 21).  All cases used for 

analysis demonstrated similar projection patterns.  In general the extent of BDA 

labeling spanned the majority of layers in SC, and thus prevented specific analysis of 

projection patterns from and to specific SC layers. 

 

Although retrogradely labeled somata were observed in the contralateral SC, these 

were few in comparison to those found ipsilaterally.  The contralateral cell bodies 

were found in SGI and SGP.  In contrast, numerous labeled fibers were found 

projecting to the contralateral SC, both to medial as well as lateral contralateral SC, 

and to intermediate and deep layers.  The projecting fibers had few branches. 
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Figure 20 The superior colliculus is a multi-lamina, mesencephalic nucleus. 

A) In the bat, Eptesicus fuscus, the superior colliculus is located on the dorsal surface, 

rostral to the inferior colliculus and caudal to the cortical hemispheres. Scale bar is 5 

mm. B) Sagittal section at a rostral level of the SC. C) Nissl-stained sagittal section of 

the SC delineating the superficial (SGS), and intermediate and deep layers (SGI, 

SGP).  Scale bar = 1mm.
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Figure 21 Schematic drawing of the injection sites shown on a representative 

coronal section through the superior colliculus. 

Black traces in the superior colliculus demarcate the estimated extent of injection 

sites.  The extent of the four injection sites used for our analysis never impinged on 

the PAG. SC, superior colliculus. PAG, periaqueductal gray.  
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Projection Patterns of Caudal Structures 

Retrograde and anterograde connections of the SC were observed in numerous 

brainstem nuclei. Figure 22 summarizes the results of an exemplar case in which a 

BDA injection in the SC labeled brainstem nuclei (Figure 22 A–F: A) IC, B) BIC, C) 

NCAT, D) PAG, E) Cuneiform, F) dMRF).  The densest BDA label from the 

brainstem to the SC originated from auditory nuclei.  The most extensive labeling was 

observed in the ventral region of the ipsilateral ICc, where retrogradely labeled cell 

bodies and anterogradely labeled fibers and processes formed a well-circumscribed 

region (Figure 22A).  In addition, labeled cell bodies were observed in the ICc 

dorsally and close to midline, but this label was less dense than that observed in the 

ventrally located region.  A substantial number of labeled fibers were observed 

projecting mediolaterally through the ipsilateral BIC (Figure 22B), and labeled fibers 

and cell bodies were also observed in nBIC (Figure 22C). 

 

Label was also identified in a number of non-auditory pathway nuclei. 

Reciprocal projections were seen to the dorsal PAG (see figure 22D).  Numerous 

fibers extended from SC into the dorsal region of this nucleus, some extending long 

distances to the underlying third ventricle.   A sparse number of large cell bodies were 

observed in dorsal ipsilateral PAG, close to the border with SC, and had projecting 

axons into SC.  These retrogradely labeled cells were generally observed at the level 

of the SC injection site.  Ipsilateral CUN also showed punctate processes and labeled 

fibers.  The terminations were sparsely distributed across the entire nucleus with more 

label in the ventral aspect of the nucleus.  A few labeled somata were observed in the 
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medial region of the ipsilateral dMRF (Figure 22F).  Anterogradely labeled terminal 

fields were observed surrounding cell bodies in the medial aspect of the dMRF. 

In this region of the dMRF small cell bodies were interspersed with larger cell bodies; 

however, both small and large cell bodies appear to receive putative terminations 

from SC. 

 

Well-delineated projections to the ventrolateral tegmental region were 

observed (Figure 23A).  This region, referred to as the PLa, is just ventral to caudal 

SC and IC, and medial and rostral to the dorsal nucleus of the lateral lemniscus. The 

PLa is most easily distinguished just ventral to the IC, at the head of the lateral 

lemniscal fiber tract.  At this level, in Nissl-stained material, PLa has a circular aspect 

(Figure 23B), and is encircled by fascicles of the LL that are bifurcating just dorsally 

at the IC.  Cells of PLa form a more loosely organized group of large cell bodies, 

intermingled with smaller cell bodies, and fusiform magnocellular somata with their 

major axis oriented mediolaterally (Figure 23C,D).  This is in contrast to the cells of 

the IC and NLL that are more densely packed, smaller, and have more darkly stained 

somata.  In BDA labeled cases this level of PLa had widely branching, thin, 

distributed labeled processes.  BDA labeled fibers and processes medial to the lateral 

lemniscus extended along the dorsal-ventral extent of the lateral lemniscal tract.  

Although this label may represent the ventral extension of the PLa, the full ventral 

extent of the PLa is cytoarchitecturally difficult to discern. 
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Figure 22 Connections of the superior colliculus with brainstem nuclei. 

See caption on next page. 

 
 



 

 130

A) Numerous somata and processes were found in the ventral ICc.  B) The brachium 

of the IC had many mediolaterally projecting fibers.  C) Fibers were observed 

traversing down the lateral lemniscal fiber tract and ending in a region described as 

the NCAT.  D) Cell bodies and numerous fibers were found labeled in the dorsal 

ipsilateral PAG.  E) Numerous puncta and fibers were found in the CUN.  F) The 

region of the dMRF had large labeled somata with well-labeled axons.  Photographs 

in A, B, and C were taken at x20, D at x10, E and F at x40 magnification. 
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  Projections from the SC were strongest to the ipsilateral PLa, while the 

contralateral PLa showed few retrogradely labeled cell bodies.  The region of PLa 

receiving projections extended approximately 450 µm in the rostrocaudal extent. The 

rostral boundary of the PLa was conservatively estimated to be 360 µm caudal to 

injection site. 

 

Other brainstem nuclei had sparse retrograde labeling.  Labeled cell bodies 

were identified in the fastigial and dentate deep cerebellar nuclei, perihypogloassal 

nucleus and medial vestibular nucleus. 
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Figure 23 The paralemniscal tegmentum area receives dense innervagtion from 

the superior colliculus. 

A) Photograph at the level of the IC showing the labeling of the PLa (dashed circle) 

(x10 magnification).  B) Increased magnification (x40) of photograph in A, showing 

the fibers and puncta visible in the PLa.  C) Both fusiform (vertical arrows) and 

smaller spherical somata (arrowheads) are found in the PLa (x20).  D) Magnified 

(x40) photograph of C showing fusiform somata from C (vertical arrows) and one 

spherical soma (arrowhead). 
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Projection Patterns of Rostral Structures 

 Projections were seen to ventral mesencephalic nuclei, diencephalic nuclei, 

and auditory cortex.  BDA labeled somata were found predominantly in the ipsilateral 

SN (see figure 24a), with sparse retrograde labeling in the contralateral SN.  The cells 

were Golgi type I neurons, had stellate somata, with thick dendrites and extensive 

dendritic fields that projected ventrally toward and into the CP. The cells were found 

in the ventromedial SN, and were cells in SNr and SNc.  A few larger–diameter cells 

with stellate somata were found in the dorsolateral SN, and may represent cells in 

SNl.  These neurons had long dendrites that projected into CP. 

 

The ventral ZI had a large number of labeled somata. Two kinds were 

observed: the more numerous bipolar fusiform-somata and the smooth spherical 

somata that were more darkly labeled (see figure 24b).  Non-branching dendrites 

were observed from both types of somata and were oriented along the axis of the ZI.  

Labeled fibers were observed entering from the medial border. 

 

A large number of fibers were identified in the dorsal thalamus, along with a 

scattering of cell bodies.  Of note were labeled somata in the motor cortex (see figure 

24c).  These labeled cells were pyramidal cells in layer V. The somata were generally 

observed across the dorsal extent of motor cortex, but were in assemblies of two or 

three closely spaced cells.  Somata in these assemblies projected dendrites to partner 

cells, and extended longer dendrites, orthogonal to the layered structure, toward more 

superficial layers of cortex. 
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Figure 24 Projections to the SC from basal ganglia, thalamus, and cortex. 

A) Large somata, with long aspiny axons were labeled in the SN.  B) Numerous cell 

bodies and puncta were localized to the ZI.  C) Adjacent groups of a two to three 

somata were labeled in what is likely motor cortex.
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Discussion 

Echolocating bats are nocturnal, aerial predators that rely primarily on 

echolocation when foraging and orienting in space (Griffin, 1958).  Bats orient in 

space by adjusting their head, pinna and body aim in flight.  In addition, they vary the 

frequency, harmonic content, call duration and repetition rate of their sonar 

vocalizations when hunting (Surlykke and Moss, 2000;Wilson and Moss, 2004), and 

suggests that sonar vocalizations are an integral component of the bats spatial 

orienting behavior.  The control of these sonar vocalizations depends on audio–vocal 

integration, and one structure implicated in sensori–motor integration is the superior 

colliculus.  In this study we report on the anatomical connections of the midbrain SC 

in the insectivorous bat, Eptesicus fuscus.  Specifically we investigated whether the 

SC in this species had anatomical connections with vocal motor structures.  Such 

efferent connections would provide putative output pathways allowing the SC to 

influence sonar vocal production.  The data from this study provides hodological 

evidence for a SC projection to vocal pre–motor nuclei, therefore, a tecto–tegmental 

pathway for influencing sonar vocal production. 

 

The major SC pathways described in this study are schematically illustrated in 

Figure 25. These pathways can conceptually be organized into three groups: auditory 

inputs, diencephalic motor control inputs, and outputs to pre–motor nuclei that 

mediate vocal control.  Structures in the first group include the AC, IC, nBIC and 

DNLL and provide direct auditory input to the SC.  The strongest labeling was 
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observed in the ventral ipsilateral ICc, where labeled cell bodies and terminal fields 

were identified.  Labeling along the BIC was extensive with fibers arrayed in parallel 

and extending dorsoventrally.  The auditory cortex showed labeled somata, with 

labeled pyramidal cells being in closely spaced groups of two or three.  Auditory 

neurons in the SC of Eptesicus fuscus have spatial receptive fields along the three 

spatial axes: azimuth, elevation, and range (Valentine and Moss, 1997), and this 

group of projections is likely to contribute to their selectivity.  The second group 

includes dense afferent projections from two diencephalic structures, ZI and SNr, 

which have been shown to play a role in gating orienting behaviors (Hikosaka and 

Wurtz, 1983;Hikosaka and Wurtz, 1985b;Basso and Wurtz, 2002;Mitrofanis, 

2005;Nicolelis et al., 1992).  Further studies will have to be conducted to evaluate the 

role of these putatively GABAergic projections on the gating of head and pinna 

movement, and sonar vocal production in bats.  The third group includes connections 

with vocal pre–motor nuclei in the midbrain ventral tegmentum.  These include the 

PLa, where SC projections terminate in a dense field ipsilaterally and sparse 

terminations contralaterally, and the dMRF, CUN, and dorsal PAG all of which 

comprise portions of the midbrain vocal–motor circuit in bats.    
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Figure 25 Schematic drawing of the connections identified after tracer injection 

into the superior colliculus of Eptesicus fuscus and vocal motor output pathways.  

The primary SC output pathway for influencing sonar vocal production is through 

anterograde projections onto the PLa and cuneiform nucleus. The PLa in turn projects 

to the facial nucleus, the vicinity of the where interneurons project to the nucleus 

ambiguus, and the nucleus ambiguus itself that contains the laryngeal motoneurons.  

Green arrows are target nuclei identified in this study in Eptesicus fuscus. Red arrows 

are afferent projections to the SC and gate motor control.  Black projections are 

pathways described in other bat species. 

 



 

 138

 

An Integrative Role in Vocal Production 

Historically, the circuits that underlie sonar vocal production in bats have 

primarily been investigated at the level of the midbrain ventral tegmentum (Suga et 

al., 1973;Metzner, 1989;Schuller and Radtke-Schuller, 1990;Metzner, 1996;Pillat and 

Schuller, 1998;Behrend and Schuller, 2000;Fenzl and Schuller, 2002;Smotherman et 

al., 2003), the hindbrain (Rübsamen and Schweizer, 1986;Rübsamen and Betz, 1986), 

and at the level of the larynx (Novick and Griffin, 1961;Schuller and Suga, 

1976;Fattu and Suthers, 1981;Rübsamen and Schuller, 1981;Schuller and Rübsamen, 

1981;Suthers and Fattu, 1982;Griffiths, 1983;Hartley and Suthers, 1990).  These 

studies have investigated the functional contribution of these midbrain ventral 

tegmental and hindbrain structures in generating the final spectral and temporal 

components of sonar vocalizations, their influence and coupling with the respiratory 

system, and have also attempted to relate them to vocal production pathways in other 

mammals (Jürgens, 1998;Jürgens, 2002). 

 

By contrast structures like the SC, which has a more integrative function in 

orienting behavior (Herrero et al., 1998;Isa and Sasaki, 2002;for reviews see, Dean et 

al., 1989;Sparks, 1999), have received little attention in studies of sonar vocal 

production, despite its functional role in affecting fundamental aspects of sonar vocal 

production (Schuller and Radtke-Schuller, 1990;Valentine et al., 2002;Sinha and 

Moss, 2004).  The SC in the echolocating bat could therefore serve as an interface 

linking cortical and basal ganglia structures involved in auditory, motor control, and 
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integrative functions with the brainstem vocal control nuclei described above.  

Further studies would be required to more fully evaluate this possibility. 

 

Currently, however, some evidence exists to support a role for the SC in sonar 

vocal production.  Two studies have evaluated the potential contribution of non–

primary cortical regions in orienting behaviors.  The first study (Kobler et al., 1987) 

identified a region in the frontal cortex of the mustached bat, Pteronotus parnellii, 

which received direct projections from the Sg nucleus of the auditory thalamus and 

the auditory cortex.  In addition this region had direct projections to the SC, which the 

authors suggested as possible link between the frontal cortex and brainstem motor 

pathways for mediating control of head, pinna and body orienting behaviors.  A 

second study (Gooler and O'Neill, 1987), also in the mustached bat, Pteronotus 

parnellii, demonstrated that microstimulation of the anterior cingulate cortex elicited 

both sonar vocalizations and spectrally–complex sounds with audible components 

(communication–like sounds).  These authors used HRP–WGA injections in the 

anterior cingulate cortex to identify its connections.  They primarily found 

connections with dorsal and ventral thalamic nuclei, and the auditory cortex.  

However, they did not identify anatomical connections with the superior colliculus, 

the frontal cortex regions described by Kobler and colleagues, or with the brainstem 

motor control nuclei.  The location of this anterior cingulate region versus the frontal 

cortex described by Kobler and colleagues is not entirely clear based on their report.  

Thus while the output pathway from the anterior cingulate region may be indirect and 
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involve the thalamic target nuclei, it may also be through the frontal cortex as 

suggested in another study (Kobler et al., 1987). 

 

Another line of evidence supporting SC involvement in sonar vocal 

production comes from experiments in Eptesicus fuscus.  In this bat species electrical 

and chemical microstimulation of the superior colliculus elicits pinna and head 

movements, similar to those reported in other vertebrate species, with the direction of 

the evoked behaviors corresponding to the site of stimulation, yielding a map of 

orienting movements.  Stimulation also elicits sonar vocalizations comparable to 

natural vocalizations of freely echolocating bats (Valentine et al., 2002)  Parametric 

changes in the stimulation parameters result in changes in the number of calls, the 

repetition rate of the calls, modest variation in call duration, and no changes in call 

frequency content.  Similar findings were made in electrical stimulation experiments 

of the SC in the horseshoe bat, Rhinolophus rouxi (Schuller and Radtke-Schuller, 

1990).  These results support a role for the superior colliculus in orienting behaviors 

that also encompasses sonar vocal control. 

 

In further support of a SC role in sonar vocal production are the efferents we 

observed terminating in the PLa, a structure implicated in sonar vocal production 

based on anatomical and microstimulation techniques (Metzner, 1989;Schuller and 

Radtke-Schuller, 1990;Metzner, 1996;Schuller et al., 1997;Fenzl and Schuller, 2002).  

The PLa has been identified based on its positions in the midbrain ventral 

tegementum and in three other bat species: the horseshoe bat, Rhinolophous rouxi 
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(Metzner, 1996), the New World mustached bat, Pteronotus p. parnellii (Schuller et 

al., 1997), and Phyllostamus discolor (Fenzl and Schuller, 2002).  The regions we 

have described as the PLa in Eptesicus fuscus, is located in the lateral part of the 

midbrain ventral tegmentum, similar to that described by other authors (Metzner, 

1996;Schuller et al., 1997).  This region is rostral and medial to DNLL, ventral to the 

IC, and is characterized by medium and large neurons.  Further studies will need to be 

conducted to verify the pattern of projections of PLa neurons in Eptesicus fuscus.  

Nevertheless, the pattern of PLa projections identified in bat species from different 

phylogenetic families are consistent;  from which we can tentatively infer that the 

PLa in Eptesicus also projects to regions adjacent to the motor nucleus of larynx, the 

nucleus ambiguus.  In addition, the PLa projects to the facial nucleus, probably 

influencing respiration and orofacial movements (Schuller et al., 1997;Fenzl and 

Schuller, 2002). 

 

Neurons in the PLa of R. rouxi respond to auditory stimuli in an enhanced 

manner, and electrical microstimulation or pharmacological manipulations influence 

of PLa neurons elicits sonar vocalizations and pinna movements (Metzner, 

1989;Schuller and Radtke-Schuller, 1990;Metzner, 1993).  The selectivity of auditory 

neurons to different spatial stimulus locations was not investigated in these studies.  

Therefore, while these experiments suggest that the PLa can act as an interface 

between auditory processing and motor control, they do not address the question of 

integration of spatial information for initiating and guiding orientation behaviors. The 

role of initiation and modulation of orienting behaviors could be performed by the 
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superior colliculus via its sensori–motor integration properties and connections to 

motor control nuclei. 

 

Control of Orienting Behaviors 

The SC in mammals participates in initiating and controlling orienting 

behaviors via its various connections to brainstem nuclei.  SC output is gated both by 

thalamic and basal ganglia structures associated with motor control, two important 

structures being the ZI and SNr.  In other mammalian species, the ZI and SN send 

projections to the intermediate and deep layers of the SC, layers with pre–motor 

neurons.  These projections play a permissive role in collicular initiation or 

modification of orienting responses (Kaelber and Smith, 1979;Hikosaka and Wurtz, 

1985b;Chevalier and Deniau, 1990).  This has been demonstrated in the ZI of cats 

using electrical stimulation techniques which elicit distinct eye and head orientating 

movements (Kaelber and Smith, 1979).  In macaques, when SNr cells are 

pharmacologically inactivated, monkeys produce uncontrolled saccades and cannot 

fixate a visual target (Hikosaka and Wurtz, 1985b). 

 

Projections of the ZI to SC have been reported previously in macaque, cat and 

rat (Ficalora and Mize, 1989;Kim et al., 1992;May et al., 1997).  In cats and rats these 

incertotectal projections have been identified as GABAergic neurons projecting to 

SC, and arises from a cytoarchitectonically distinct ventral subdivision (Grofova et 

al., 1978;Ficalora and Mize, 1989). The ZI projections terminate primarily within the 

SGI with a smaller projection in the SGP.  In rat, the ZI receives strong projections 
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from somatosensory structures, and contains a somatotopically-organized 

representation of body surface.  The incertotectal projection is more prominent in the 

rat, in comparison to the cat, and may be related to the well–developed trigeminal 

system in rat, and the role that tactile information plays in the initiation of orienting 

movements in this nocturnal animal.  Similarly, echolocating bats are nocturnal, and 

depend heavily on auditory cues for directing body, head and pinna movements 

during flight.  Consequently, it is possible that the projections of ZI neurons to the SC 

in bats may provide signals gating or controlling movement and sonar vocal control, 

or somatosensory information about the body. 

 

Neurons identified in the SNr of non–bat species are GABAergic as well 

(Vincent et al., 1978;Di Chiara et al., 1979), and project inhibition directly onto SC 

neurons.  The function of these neurons in orienting movements have been well 

described in the saccadic eye movement system of the macaque (Hikosaka and 

Wurtz, 1983;Hikosaka and Wurtz, 1985b;Basso and Wurtz, 2002).  SNr neurons 

generally fire at high rates and tonically inhibit saccade–related SC cells in the 

intermediate and deep SC (Chevalier and Deniau, 1990).  However, before saccades 

to visual targets, these cells briefly reduce their inhibition allowing a burst of spikes 

in the SC cells that, in turn, leads to initiation of a saccadic eye movement.  If the 

inhibition onto SC cells is removed (by reversibly inactivating the SNr) the monkey 

makes irrepressible saccades toward the contralateral visual field where cells in the 

SNr at the injection site have their visual or eye movement field. Also during visual 

fixation saccadic jerks occur (Hikosaka and Wurtz, 1985a).  Thus, the role of the SNr 
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in the echolocating bat may also be permissive, by controlling when and how much 

activity in the SC occurs, and thereby gating and controlling the production of head, 

pinna, and body movements in addition to sonar vocalizations. 

 

The intermediate and deep collicular layers that receive inputs from SNr and 

ZI, in turn give rise to three major efferent pathways.  These pathways innervate 

ventral tegmentum and hindbrain nuclei involved in control of orienting movements 

(Masino, 1992). Our injections of BDA into the SC revealed connections with both 

the ZI and SNr.  Thus, the SNr and ZI projections we observe in Eptesicus fuscus may 

serve to gate and control SC activity and thereby influence SC control over orienting 

movements of the head and pinna, as well as sonar vocal production. 

 

Conclusion 

We have shown that the SC of the echolocating bat, Eptesicus fuscus (family 

Vespertilionidae), has projections to pre–vocal nuclei in the midbrain ventral 

tegmental.  These pre–vocal nuclei have been reported to project to motor neurons in 

the hindbrain.  Thus this tecto–tegmental pathway can potentially mediate SC signals 

for controlling orienting behaviors.  These behaviors include head, pinna, and body 

movements as well as the important sonar vocalizations bat produce for acoustic 

orienting.  This pathway in E. fuscus (Vespertilionidae) from the SC via the PLa to 

brainstem motoneurons, for putatively influencing sonar vocal production, is also 

observed in three other bat species each from a different phylogenetic family: 

Rhinolophous rouxi (Rhinolophidae), Pteronotus p. parnellii (Mormoopidae), and 
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Phyllostomus discolor (Phyllostomidae).  Thus, this pathway appears to be conserved 

among echolocating bat species, independent of the spectro–temporal structure of 

their sonar calls, or the degree of specialization observed in their auditory system.  

Further studies to evaluate the contribution of this pathway to sonar vocal production 

will prove beneficial to our understanding of audio–motor integration in mammals. 
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Chapter 4: Conclusion 

Gaze in Bats 

In the Introduction I referred to gaze in bats and defined it as the locus in 

space (defined in terms of azimuth, elevation and range) to which bats direct their 

sensors and sonar beam aim to acquire acoustic information.  The echolocating bat 

adjusts its gaze by changing the direction of its head, pinna, and body during flight.  

In addition, the bat probes space using discrete sonar vocalizations, and thus the gaze 

of a bat should also encompass an interval within which echoes are processed.  

Therefore, the bat’s acoustic gaze will refer to a range of times, from a specific 

location in space, from which the bat receives optimal information. 

 

Echolocating bats contend with echoes from multiple sources in the 

environment when they forage.  By adjusting the spatial component of their acoustic 

gaze, bats can minimize the interference from clutter echoes.  As described in the 

Introduction, this is accomplished in part by producing a sonar beam pattern with 

limited spatial extent, and by doing so clutter objects are only weakly ensonified.  

Since the bat can turn its head, a second method of adjusting spatial gaze is by 

directing its head aim away from clutter objects.  A third possibility is the redirection 

of the pinna away from clutter echo sources.  Since a pinna has acoustic filtering 

properties, this can minimize the strength of the echo return from specific locations in 

space.  A fourth possibility for the bat is to redirect its flight path away from clutter 

objects altogether. 
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Two further possibilities for controlling gaze exist and are related to the 

production of echolocation pulses.  The first involves adjusting the frequency content 

of the sonar calls.  Analysis of the structure of the sonar call itself suggests that it can 

aid in rejecting clutter echoes, and serve to improve the potential target localization 

and range estimation accuracy, while reducing the effects of Doppler shifts created by 

the bats own motion and that of any flying prey (Altes and Titlebaum, 1970;Altes, 

1976;Simmons and Stein, 1980).  Bats accomplish this by varying the call duration, 

frequency and harmonic content of their sonar vocalizations.  The second method 

involves changes in the temporal parameters of sonar calls.  The temporal features are 

carefully adjusted during target pursuit sequences, by fine changes in the call duration 

and the pulse interval, i.e. the time from the onset of one call to the next.  We saw 

evidence for this in Chapter 2 in the oscillating target experiments, where bats 

reduced the call duration in relation to target distance (Figure 11C, 12; Examples in 

Appendix 3).  Therefore, by measuring the call duration, pulse interval, and the 

timing of calls relative to target distance we gain insights into where in time the bat is 

directing its gaze. 

 

Acoustic Gaze Along the Range Axis 

One structure involved in orienting gaze is the superior colliculus.  The 

introduction provided an overview of its role in orienting behaviors in echolocating 

bats.  One central question considered in this dissertation is the functional role of the 

SC in controlling the bat’s acoustic gaze.  Current models of the SC (Sparks, 2002), 
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drawing on data related to its involvement in the oculomotor system, suggest that 

neuronal activity in the SC encodes gaze error, but not the specific behavior to 

achieve the gaze adjustment.  Consequently, activity in the SC orients the axis of the 

visual fovea, by eye and head movements, in order to direct the visual gaze from the 

current position to a new location that brings the target onto the visual fovea.  If the 

gaze computations executed by the SC are evolutionarily conserved across organisms 

and taxa, independent of the specific sensory modalities involved, then it seems 

reasonable to hypothesize that the bat SC plays a role in the control of acoustic gaze, 

which for the bat includes vocal production patterns that change with target azimuth, 

elevation, and distance. 

 

Three lines of evidence support superior colliculus involvement in sonar vocal 

control.  First, the superior colliculus contains populations of auditory neurons that 

are spatially tuned.  These neurons have receptive fields that extend in azimuth and 

elevation (i.e. direction) or azimuth, elevation and range (i.e. direction and range) 

(Shimozawa et al., 1984;Reimer, 1991;Valentine and Moss, 1997).  They are the 

putative substrate for an auditory spatial representation within the SC.  Second, 

electrical microstimulation elicits sonar vocalizations (as well as head and pinna 

movements) and influences the temporal parameters of sonar vocalizations, but not 

the spectral parameters (Valentine et al., 2002).  In addition, chemical 

microstimulation elicits sonar vocalizations with a larger range of call durations and 

bandwidths (Valentine et al., 2002) that are part of the natural sonar repertoire of 

Eptesicus fuscus (Surlykke and Moss, 2000).  These data suggest that the SC is 
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sufficiently integrated into a larger vocal circuit to influence the control and 

production of naturalistic sonar calls recorded.  Third, anatomical connections 

between the superior colliculus and vocal control nuclei have been demonstrated in 

other bat species (Pteronotus parnelli, Covey et al., 1987;Rhinolophus rouxi, Schuller 

et al., 1997) and in Eptesicus fuscus (Chapter 3 of this dissertation).  These 

connections serve as a putative output pathway to nuclei that relay or transform SC 

motor outputs into signals that appropriately drive vocal motor neurons. 

 

The data cited above suggest that the SC is involved in the control and/or 

production of sonar vocalizations.  But what is the nature of this involvement?  Does 

it act solely as a permissive gate for triggering vocalizations (Figure 26A)?  Does it 

control features of sonar vocalizations (Figure 26B)?  Can it control both (Figure 

26C), therefore, when to vocalize and what type of sonar vocalization to produce? 

 

In support of the gating model in Figure 26A, the electrical microstimulation 

experiments previously described show a strong coupling between low–level 

stimulation and the initiation of echolocation calls.  In addition, the data presented in 

Chapter 2 of this dissertation further suggests a role for the SC in triggering calls, as 

pre–motor activity preceded the vast majority (>93%) of sonar calls.  These events 

occurred in a window of time consistent with, a) previous microstimulation 

experiments, and b) the range of pulse intervals evident in natural vocal behavior.  
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Figure 26 Three potential models depicting the contribution of SC pre–motor 

commands to sonar vocal production. 

Each has a common 3–dimensional input (3D) that represents a separate target–

selection mechanism that could arise from within or from outside the SC.  BVOCAL 

represents brainstem vocal control nuclei that interface with other BVOCAL neurons 

and motor neurons.  A) In the first model the SC only contributes a gating (WHEN) 

signal for triggering sonar calls.  B) In the second model the SC provides a metric–

specification (WHAT) signal that specify spectral and temporal sonar call features.  

C) In the third model SC motor commands supply a WHAT signal and a WHEN 

signal for shaping and gating calls. 
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The feature model in Figure 26B is supported by data from the oscillating target 

experiment.  The behavioral results convincingly showed that bats carefully adjust the 

temporal parameters of their sonar calls in relation with target distance (see Chapter 2 

of this dissertation, Figure 11C, 12).  Second, at many sites in the SC the pre–motor 

neuronal activity showed changes in timing relative to vocal onset.  These changes 

were related to sonar duration, specifically, the mean long–lead event time preceding 

each sonar call was linearly related to the call duration.  At most recording sites the 

neural–vocal relationship was linear, with longer mean lead times for longer call 

durations (Figure 17A).  At other sites the relationship only held for a fraction of the 

total range of call durations produced (Figure 17C).  For the remaining call durations, 

vocal pre–motor activity was present but was not temporally related to call duration 

or showed other non–linear trends. 

 

Combined, both sets of data support the model presented in Figure 26C, and 

are consistent with a conceptual model in which the bat SC contributes to acoustic 

gaze shifts along the range axis by triggering sonar calls and adjusting the call 

duration to alter the acoustic gaze along the range axis. 

 

Summary 

Echolocating bats orient and forage in their environment by producing sonar 

vocalizations and using the acoustic information in the returning echoes to guide their 

adaptive orienting behaviors.  These behaviors include the production of sonar 

vocalizations as well as head, pinna and body movements during flight.  The variation 
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in their echolocation behavior while hunting provides insight into the time–scales 

over which neuronal processes must take place.  

 

This dissertation had three main goals related to the control of sonar vocal 

production.  First, to explore ways in which neuronal activity varies during adaptive 

behaviors.  For this I used the echolocating bat as the model system, and explored the 

variation in superior colliculus pre–motor activity while bats actively used 

echolocation.  Second, to develop chronic recording techniques to support 

experiments in unrestrained, freely echolocating bats.  And third, to identify putative 

anatomical pathways by which the superior colliculus can influence sonar vocal 

control. 

 

For the first goal I designed a behavioral paradigm that permitted tethered, 

chronic recordings while bats produce realistic sequences of sonar vocalizations in a 

pseudo– insect capture behavior.  The experiments identified vocal pre–motor activity 

preceding the onset of sonar vocalizations.  Furthermore, the activity is specifically 

related to sonar vocal production and is temporally related to the call duration of the 

upcoming sonar vocalization.  The second goal involved the successful development 

and integration of light–weight (< 3g), chronic, recording devices and methods.  The 

role of the SC was further supported by tract tracing studies that identified anatomical 

connections between the SC and pre–vocal motor nuclei.  Collectively, these studies 

provide evidence supporting a role for bat SC in orienting along the range axis.  This 
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has parallels with a function of the SC in primate and feline vision, namely adjusting 

the depth of focus via vergence eye movements.  
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Appendices 

 

Appendix 1 Recording Tools 

Appendix 2 Photographs during an Oscillating Target Trial 

Appendix 3 Oscillating Target Vocal Data Quantification 
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Figure AI1 A) Photograph of an echolocating bat, Eptesicus fuscus, with 
implanted electrode interface board (EIB) for neural recordings.  B) Schematic of the 
bat brain showing the physical relationship of the superior colliculus with respect to 
primary auditory nuclei.  C) Electrode interface board with set of 30 gauge cannula. 
EIB with cannula are <1.2 g.  D) Pre–amplifier board that connects the electrode 
interface board, via a fine gauge wire tether, to recording devices. Scale bar is 1 cm. 

 
Figure AI2 See caption on next page. 
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Figure AI2 A) Schematic of cannula alignment tool used to position, align and 

hold 30–gauge cannula while assembling the electrode interface board. Screws hold 

the EIB and screen in alignment with plates.  The mesh has a pitch of 178 µm. The 

cannulae are placed though the EIB and the mesh, to orient them at an angle for 

subsequent soldering. B) A modified micrometer used is used as an electrode pusher 

to advance electrodes in each penetration.
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Figure AII1  Photographs of oscillating target set–up. (1-4) Bat resting on 

the platform and use echolocation to capture a swinging tethered edible target.  A 30 

frame per second camera was used to videotape the bat.  Photographs (1-4) are 120 

ms apart.  All recording sessions are done in low–lighting conditions. (5-6) Close–ups 

showing bat focusing on target.
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Figure AIII2  Data from three bats that were run in the oscillating target 

experiment.  The sonar call duration and PI respectively are plotted against the PI for 

all three bats (A, P50, n=1881 calls; B, P15, n=2443 calls; C, HP35, n=1992).  Data 

for each bat is measured from all the sonar calls, from all the trials, during one 

recordings session.  The spread in the call parameters at 70 and 150 cm, represent the 

resting position and the start position of the pendulum respectively.  The pendulum 

was at rest at these points (before the start of a trial, or before release of the 

pendulum).  All recording sessions are done in low–lighting conditions.
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 Figure AIII2  Distribution of call duration and PI for all sonar calls, in every 

trial, for three recording sites in P50, and one site in P15.   
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Figure AIII3 Distribution of call duration and PI for all sonar calls, in every trial, for 

three recording sites in HP35.   
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