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ABSTRACT

Title of Dissertation: STOCHASTIC MODELS FOR

THE ESTIMATION OF AIRPORT

ARRIVAL CAPACITY DISTRIBUTIONS

Tasha R. Inniss, Doctor of Philosophy, 2000

Dissertation directed by: Professor Michael O. Ball

Decision and Information Technologies,

Robert H. Smith School of Business

In this dissertation, statistical and integer programming methods are used to

calibrate models to estimate airport arrival capacity distributions. These dis-

tributions are an essential input to decision models used to regulate flow into

congested airports when demand for arrival resources exceeds the available ca-

pacity. The techniques developed make contributions to the body of knowledge

on air traffic flow management. On a more general level, the approach devel-

oped can be viewed as a clustering technique that maintains the time order of

imbedded time series data.

During instances of capacity-demand imbalances, efficient planning and decision-

making is contingent upon the “goodness” of the models that estimate airport

capacity over time. Airport capacities are subject to substantial uncertainty as
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they depend on stochastic weather conditions. The models developed in this

thesis are required inputs into a class of stochastic ground holding models that

determine the amount of ground delay to assign to incoming flights to balance

assigned ground delay and expected airborne delay optimally while minimizing

total delay. The models are judged by the amount of total weighted delay in-

curred in comparison to the amount of total weighted delay that would have been

realized under current operational procedures. (Airborne delay is weighted more

heavily than ground delay). Based on comparisons between the decision models

that employ the estimates developed in this thesis and current models, the results

of this thesis reduce the total amount of weighted delay. Another contribution

is the development of a new, simple decision model that more accurately esti-

mates the amount of delay incurred in a ground delay program as it dynamically

changes.

The statistical models calibrated in this thesis use empirical historical data to

generate (arrival capacity) probability distribution functions (vectors of capacity

scenarios). In the case considered in this thesis, the capacity scenarios (one-

parameter arrival capacity distributions) are used to model morning fog at San

Francisco’s International Airport. To determine seasonal capacity probabilistic

distribution functions (distributions that vary in time), a set partitioning integer

programming model is utilized.
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PREFACE

This report documents research supported by the National Center of

Excellence for Aviation Operations Research, under Federal Aviation

Administration Research Grant Number 96-C-001. This document

has not been reviewed by the Federal Aviation Administration (FAA).

Any opinions expressed herein do not necessarily reflect those of the

FAA or the U.S. Department of Transportation.
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Chapter 1

Introduction

Domestic air traffic has greatly increased over the last 10 years and is predicted

to continue to increase at a rate of 3 to 5% over the next 15 years.1. With this

great increase in air traffic comes a large increase in the demand for airspace

and airport resources. Unfortunately, airspace and airport capacities are not

increasing at a rate necessary to meet this rising demand. It is vital that new

methodologies and tools be developed to address the inevitable rise in congestion.

Because of this surge in air traffic and the limited capacity of airports, air traffic

flow management is becoming an increasingly difficult task.

When an airport’s capacity is reduced during “peak demand hours”, demand

for an airport’s resources exceeds the capacity at which the airport can meet this

demand. This is known as a capacity-demand imbalance. Demand refers to the

number of flights scheduled to arrive or depart in a given time period (rate of

flight arrivals or departures). Capacity is the maximum number of flight arrivals

or departures in a given time period. To address an arrival capacity-demand

imbalance, air traffic flow managers in the United States institute ground holding

1From the “CDM GDP Training Website” on Metron’s Homepage:

http://www.metsci.com/cdm/newmember.html#
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procedures to align the demand with the available capacity.

1.1 Ground Holding Procedures

During instances of capacity-demand imbalances, air traffic flow management

(TFM) in an efficient and safe manner is of premier importance. Any given

airspace is composed of flight paths, control facilities, sectors and airports. The

overall goal of TFM is to strategically plan and manage entire flows of air traffic,

provide the greatest and most equitable access to airspace resources, mitigate

congestion effects from severe weather and ensure the overall efficiency of the

system without compromising safety. In the United States’ National Airspace

System (NAS), there are 21,000 daily commercial flights that are monitored and

controlled by 21 Air Route Traffic Control Centers (ARTCCs), 462 airport tow-

ers and 197 Terminal Radar Approach Control Facilities (TRACONs). footnote-

See Metron’s homepage [23], www.metsci.com/cdm. The entire United States

airspace is monitored by a central Federal Administration Agency (FAA) facility

known as the Air Traffic Control System Command Center (ATCSCC) located

in Herndon, Virginia. A fundamental capability of all TFM centers is the ability

to monitor airspace for potential capacity-demand imbalances.

Managing traffic flow during capacity-demand imbalances is known as the

traffic flow management problem (TFMP). The TFMP has become increasingly

more important and difficult as the amount of air traffic has increased over the

years. The seriousness of this problem is evidenced by a steady increase in delays.

Ground holding procedures are a principal tool used to address the TFMP.

The two main ground holding procedures employed are ground stops and

ground delay programs (GDPs). A ground stop is an extreme FAA initiative

2



taken when arrival capacity drastically drops suddenly or when it is greatly un-

derestimated. In a ground stop, flights are held on the ground at their departure

airports until it is determined that the capacity-demand imbalance has abated.

The most widely used ground holding procedure is a GDP. In a GDP, flights in a

certain time window or at a certain distance away from a congested airport are

assigned delay to be taken on the ground until a time that they can safely land at

their terminal airports with little to no airborne delay. Currently during a GDP,

major airports submit to the ATCSCC their forecasted capacity on an hour-by-

hour basis. The specialists view projected demand for each of these airports to

determine if there will exist considerable capacity-demand imbalances. If there

will be a severe capacity-demand imbalance, specialists institute a national GDP

for the airports impacted. An advisory is sent out to airlines notifying them of the

plan to institute a GDP. The advisory contains the affected airports, the planned

start time of the GDP and the capacity that will be used to generate the GDP.

Airlines then have the option of responding to the advisory with a submission of

schedule changes in the form of delays or cancellations of flights. The specialists

at the ATCSCC then reevaluates the demand at the affected airports to deter-

mine if a GDP is still needed. If one is still needed, flights originally scheduled

to land at a congested airport during the time of the GDP are given delay to be

taken on the ground at their departure airports.

It should be noted that ground stops and GDPs are the domain of traffic flow

managers. In contrast, air traffic controllers (ATC) are concerned with the control

of a single flight throughout its whole course to ensure safety. ATC is centered

around shorter-term individual flight management, whereas TFM is concerned

with aggregates of flights throughout the whole airspace. The increasing severity

3



of the TFMP in the United States has led to the development of a new TFM

paradigm, Collaborative Decision Making (CDM).

1.2 Collaborative Decision Making (CDM) and

GDP Enhancements

Collaborative Decision Making (CDM), now known as Collaborative Traffic Flow

Management (CTFM), was motivated by a need for increased information sharing

and distributed decision-making. There was a desire to shift from a central

planning paradigm to a collaborative TFM paradigm in which airlines, through

their airline operational control centers (AOCs), would have more control, more

flexibility and more input into the air traffic flow management decision-making

processes. The philosophy of CDM is that with increased data exchange and

collaboration comes better and more effective decisions on the part of the traffic

flow managers. CDM goes hand-in-hand with the ATC concept of Free Flight,

an architecture in which more responsibility for flight maneuvering and aircraft

separation is given to the aircraft and pilot.

CDM was initially conceived in the fall of 1993 in an experiment known as

FADE (FAA/Airline Data Exchange). FADE was conducted to ascertain the

impact of airlines’ sending in updated scheduling information. In the summer

of 1994, a human-in-the-loop exercise was conducted at the ATCSCC to ascer-

tain the impact of dynamic schedule updates on the specialists’ decision-making

processes. It was determined from both experiments that dynamic schedule up-

dates decreased airline delay and had a positive impact on the decision-making

processes of the specialists at the ATCSCC. CDM evolved out of FADE and was

4



officially formed in 1995.2

In the spring of 1995, a “Role and Responsibilities” guideline for CDM was

drafted by the airlines and agreed to by the ATCSCC. In the guideline, it is stated

that the role of the ATCSCC is to monitor the NAS for constraints, make the

constraints known to the NAS users and work in cooperation with the NAS users

to develop solutions. The role of the NAS users is to notify the ATCSCC of all

schedule updates and changes based on the agreed upon solutions. Basically, the

ATCSCC would look for constraints, ration limited arrival resources and allow

the NAS users to plan and act according to their own economic objectives and

user-defined goals. In order to facilitate the above roles, Metron, Inc., a scientific

consulting firm, developed a decision-support tool known as the Flight Schedule

Monitor (FSM). Through FSM, both the ATCSCC and the NAS users can view

the predicted demand, capacity and all arrival information at a given airport

and can run “what if” scenarios to determine the impact of certain decisions. In

“what if” scenarios, different GDP parameters such as duration of a GDP and

scope of a GDP are input to ascertain the resulting amount of delay and number

of flights affected by the GDP. One of the most important aspects of CDM is

common situational awareness of all constraints in the NAS. This is achieved

through FSM.

In the summer of 1996, the FAA commissioned the National Center of Ex-

cellence for Aviation Operations Research (NEXTOR) to aid in addressing and

developing solutions to air traffic flow management problems. NEXTOR is a

consortium of four universities, the University of Maryland, the Massachusetts

2Most of the information in this section can be found at Metron’s website:

www.metsci.com/cdm
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Institute of Technology, the University of California at Berkeley, and the Virginia

Polytechnic University, certain affiliate universities and 20 industry partners in-

cluding Metron, Inc., Honeywell and Boeing. 3 The CDM working group is com-

prised of representatives from the FAA, the ATCSCC, the 33 participating airlines

and subcarriers, industry and the research and development community including

NEXTOR. The CDM working group meets monthly to discuss the progress of

the CDM paradigm and is currently expanding their efforts from GDP planning

to tackling problems within the enroute airspace. The new challenge is to apply

and implement principles and processes of CDM for route planning. This process

is known as Collaborative Routing (CR).

In this dissertation, the focus is on CDM efforts during the planning and im-

plementing of GDPs. The CDM working group focused initially on improving

GDP procedures, which are now known as GDP Enhancements (GDP-E). GDP-E

went into initial prototype operations in January 1998 at San Francisco Interna-

tional Airport (SFO) and Newark Airport (EWR) and full prototype operations

in September 1998 at all airports. Under new CDM GDP-E procedures, demand

is more accurately projected based on dynamic schedule updates from the airlines.

Currently, airlines have an incentive to send in schedule updates since delays and

control times are now given based on original scheduled times of arrival versus

estimated times of arrival. This procedure of assigning limited arrival resources

based on original scheduled arrival times is known as Ration by Schedule (RBS).

RBS is based on fair allocation principles, which have eliminated implicit penal-

ties to the airlines for providing up-to-date information. Other benefits to GDPs

3For more information about NEXTOR, visit www.nextor.umd.edu or

www.its.berkeley.edu/nextor
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under CDM have been derived from the development of the Compression Algo-

rithm that is used for inter-airline swapping of arrival slots that have been vacated

due to delays and cancellations and the ability of the specialists at the ATCSCC

to make dynamic revisions to GDP parameters. For additional benefits, see Ball

et al [4] and [24].

1.3 Motivation for Problem Studied

In this dissertation, models are developed to estimate arrival capacity distribution

functions (vectors of capacity scenarios) that are used as inputs into a class of

stochastic ground holding models, which describe airport capacity with probabil-

ity distribution functions. Prior to now, there were no methods for determining

capacity probability distribution functions. The use of random variables to de-

scribe capacity allow for consideration of stochastic weather conditions that is a

reflection of real, every day conditions. Thus, arrival capacity distributions are

better representations of the true nature of arrival capacity than deterministic

values set at the beginning of the day.

The estimation of arrival capacity distributions is most crucial during those

times when the demand for an airport’s arrival resources exceed the available

arrival capacity due to inclement weather conditions. CDM has been shown to

have made significant positive impacts on GDPs during instances of capacity-

demand imbalances. The stochastic models developed in this thesis will be an

integral part of the GDP process under CDM. After careful examination of the

procedures taken by the specialists during a GDP, the flow chart in Figure 1.1

was developed and depicts a proposed method of operations that is completely

in line with current CDM procedures.
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Figure 1.1: Proposed GDP-E Concept of Operations
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The flow chart, which will be referred to as the (Proposed) GDP-E Concept

of Operations, starts with the assessing of whether a capacity-demand imbalance

exists or is likely. This assessment is based on weather conditions such as ceiling

and visibility and the predicted arrivals or projected demand at an impacted

airport. If a capacity-demand imbalance is likely, then the specialists plan a GDP.

The GDP parameters such as the planned airport acceptance rate (PAAR) and

the duration of the GDP are used as inputs into the “arrival capacity distribution

generator”, which is based on the models in this dissertation. The other required

input is the time of year (day, month or season), which determines which capacity

probabilistic distribution will be used. The arrival capacity distribution generator

results in capacity scenarios and associated probabilities that will be used as

inputs into a stochastic ground holding model along with the aggregate projected

demand and the airborne to ground delay cost ratio. The output from the ground

holding model are the number of arrival slots to make available in each time

period or the number of flights that should be assigned ground delay in each time

period. The CDM procedures are then used to determine the individual flights

that should be assigned ground delay.

Capacity scenarios and associated probabilities are crucial inputs and neces-

sary for any stochastic ground holding model. Due to the facts that no methods

have been previously developed to determine capacity scenarios and the models

developed in this thesis can be used in conjunction with current ATCSCC CDM

procedures, this thesis makes valuable contributions to air traffic flow manage-

ment.
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1.4 Contents and Contributions of the Thesis

The focus of this dissertation is the calibration of models to estimate arrival

capacity distributions and the development of cost models that comparatively

evaluate a proposed planned airport acceptance rate (PAAR) relative with an

actual AAR. The contents and contributions of each subsequent chapter are listed

below.

Chapter 2: This chapter gives a background and description of airport

capacity along with a literature review of ground holding models, integer pro-

gramming and the statistical techniques used in the thesis.

Chapter 3: This chapter provides descriptions of the data sources and def-

initions of the data fields used to calibrate the statistical models of the thesis.

There are 3 main data sources: Ground Delay Programs’ Logs (GDP data), Sur-

face Airways Hourly Weather Data and the Aggregate Demand Lists. The data

from the latter source is used in Chapter 6 to evaluate the statistical models and

develop a general decision model to determine the appropriate PAAR. The former

two sources are the main sources used to calibrate the statistical models. The

models based on GDP data could be used as input into the Hoffman-Rifkin model

when weather data is not available. The GDP data is used to perform analysis

on the impacts of CDM on GDPs (Section 6.5.1). The data most appropriate to

develop the statistical models is a combination of the GDP data and the weather

data. The type of model needed is a conditional distribution, a distribution of

the length of inclement weather conditions given that a GDP is planned. Since

either inclement weather conditions or present or they are not, the weather data

does not provide a probability of having 0 hours of inclement weather conditions.

The GDP data is used to provide this probability. The resulting distribution
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gives capacity scenarios and associated probabilities that are entered into the

Hoffman-Rifkin model when both types of data are available.

Chapter 4: A capacity scenario is a distribution of arrival capacity over a

given period of time. Depending on the airport, the runway configuration, the

predicted demand and the severity of the weather conditions, a capacity scenario

can have a very complicated structure. This chapter presents four types of repre-

sentative capacity scenarios that are referred to as arrival capacity distributions

(ACDs). It should be noted that the types of ACDs presented are not exhaustive

and do not represent ALL possible types of capacity scenarios, but do capture

the majority of scenarios at most major airports. It was discovered that the sce-

narios with relatively simple structures are representative of capacity scenarios

at a broad range of airports. Since a capacity scenario is one realization of capac-

ity, a method is presented for determining a vector or probabilistic distribution

of capacity scenarios. This distribution is called a capacity probabilistic distri-

bution function (CPDF). The chapter ends with the derivation of the (overall)

conditional CPDF using GDP data and weather data.

Chapter 5: This chapter begins with a discussion of the types of CPDFs

that can vary over time depending on the underlying changing weather conditions.

These types include daily CPDFs, monthly CPDFs and seasonal CPDFs. The

primary focus of the chapter is on the seasonal CPDFs. The determination of the

“best” set of seasons is thoroughly explored. Seasonal clusters are determined by

a set partitioning algorithm whose objective is to minimize the sum of the costs

of each season. The cost function for the algorithm is based on the “difference”

between a season’s distribution and the distributions of the months contained in

the season. Since there are many ways to calculate this difference, the various
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cost functions are presented and resulting seasons are evaluated based on the

amount of homogeneity within a season and the variability between seasons. The

techniques presented gave rise to a type of clustering technique that determined

clusters while maintaining the time order of the data.

Chapter 6: The Hoffman-Rifkin static stochastic ground holding model is

described in greater detail than in Chapter 2. It is shown that the Hoffman-Rifkin

model does not accurately model GDP dynamics. Therefore, cost models are de-

rived to estimate the amount of total weighted delay for a given planned capacity

scenario. The results of the Hoffman-Rifkin model that use the CPDFs as input

with the added modifications are evaluated against the plans of the ATCSCC

on actual GDPs in 1998. The modified decision model results in a reduction in

total weighted delay during a GDP. An algorithm is given to determine the best

PAAR given any resulting actual scenario. This decision model incorporates the

dynamic changes in the amount of assigned ground delay due to a canceled GDP

or revised GDP.

Chapter 7: Conclusions and suggestions for future research are provided.
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Chapter 2

Background and Literature Review

2.1 Discussion of Airport Capacity

The effectiveness of a GDP is contingent upon an accurate demand profile and

a true representation of an airport’s available capacity during inclement weather

conditions. CDM procedures have contributed greatly to an increase in the accu-

racy of aggregate demand at airports, but have done little to determine the actual

available capacity at congested airports. Thus, the focus of the dissertation is

the development of models to capture the true nature and behavior of airport

(arrival) capacity.

An airport’s capacity or airport acceptance rate (AAR) is directly related to

weather conditions through an airport’s runway configuration and its landing pro-

cedures. Inclement weather conditions at an airport are used to determine which

runway configurations to institute and which landing procedures to implement.

There are 2 major types of landing procedures: Instrument Flight Rules (IFR)

and Visual Flight Rules (VFR). IFR is required when a (cloud) ceiling of less

than 1000 feet or a visibility of less than 3 miles exists. VFR refers to weather

conditions that have a ceiling that exceeds 1000 feet and a visibility that exceeds
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Land Depart IFR VFR VAPS

28L 28R 1L 1R 30 45 60 (daylight); 50 (non-daylight)

28L 28R 28L 28R 30 45 45

28L or 28R 1L 1R 30 N/A 30

28L 28R 1L or 1R 30 45 45

1L 1R 1L 1R 30 N/A 30

19L 19R 10L 19R 27-30 N/A 45

19L 19R 19L 19R 25-30 N/A 42

19L or 19R 10L 10R 27-30 N/A 30

19L 19R 10L or 10R 27-30 N/A 45

10L 10R 10L 10R 27-30 N/A 37

Any Single Runway 27 N/A 27

Table 2.1: AAR Chart for SFO (Courtesy of ATCSCC)

3 miles.

Under VFR conditions at SFO, aircraft normally arrive from the northwest

in dual side-by-side approaches on runways 28L and 28R. See Figure 2.1 for

runway layout at SFO. When IFR conditions exist, the AAR is reduced because

the landing of aircraft in pairs on the two closely spaced parallel runways is

considered unsafe. The combination of the runway configurations and the landing

procedures determines an airport’s operational capacity or AAR. Table 2.1 lists

the capacities or AARs for the various combinations of runway configurations

and landing procedures at SFO. VAPS is an acronym for visual approaches and

has the same conditions as VFR with the addition of a ceiling that exceeds 3500

feet and a visibility that exceeds 7 miles at the San Mateo Bridge for SFO.
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Figure 2.1: Runway Layout at SFO (Courtesy of the ATCSCC)
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Airport capacity is comprised of two interdependent capacities, the arrival

capacity and the departure capacity. The determination of an airport’s ca-

pacity is a difficult task because weather conditions, runway configurations, ar-

rival/departure ratios and the fleet (aircraft type) mix must all be considered.

Eugene Gilbo, from the Volpe Transportation Systems Center, proposes methods

in [16] and [17] for optimizing airport capacity by considering the complex rela-

tionship between arrival and departure capacities through an arrival/departure

capacity curve. Hall [19] expands Gilbo’s work by developing collaborative meth-

ods for allocating arrival and departure capacities. Hall’s work extends the CDM

GDP-E procedure and concepts to this more complex setting. Though it is rec-

ognized that additional efficiencies can potentially be gained by considering both

arrival and departure capacities simultaneously, arrival capacities and estimating

arrival capacity distributions for a GDP will be the focus of this thesis.

2.2 Ground Holding Models

The effective assignment of delay to flights during a GDP is a crucial element to

the effectiveness and fairness of a GDP. Fairness of a GDP refers to equitable allo-

cation of delay to each airline. There is a constant hedging between conservative

policies of assigning more ground delay that could lead to the underutilzation of

arrival resources and the liberal policies of assigning less ground delay that could

lead to more costly airborne holding delays. Thus, the ground holding problem

(GHP) seeks to determine an optimal balance between these policies for assigning

delay in a GDP.

The GHP was first discussed and described by Odoni in 1987 [31]. Odoni

referred to the deterministic GHP as the flow management problem in which
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travel times and capacities are deterministic, there exists a discrete time horizon

and the only capacitated element is the arrival airport.

There are three main assumptions required by the ground holding model,

which are based on the assumptions of the flow management problem. The

assumptions are (1) a discrete time horizon, (2) deterministic demand and (3)

deterministic capacity. The following is an integer programming formulation of

the GHP:

Minimize
∑
f∈F

T∑
t=1

XftCft(t− af)σ

subject to
T∑

t=af

Xft = 1

∑
f

Xft ≤ bt

0 ≤ Xft ≤ 1

where Xft is a binary variable which takes value 1 when flight f is assigned to

time period t and 0 otherwise, Cft is a cost factor associated with assigning flight

f to time period t, T is the number of time periods t, af is the scheduled arrival

time period of flight f , σ is a super-linear growth parameter used to penalize

increasing tardiness from the scheduled arrival time period and bt is the arrival

capacity for time period t.

There have been many mathematical programming models developed to solve

different versions of the GHP. There are different terms in the literature used to

define and distinguish the different versions of the GHP. “Static” means that

ground and airborne holds are decided once at the beginning of the day. “Dy-

namic” refers to models that allow for periodic updates as better weather and
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capacity information become available. “Deterministic” means that airport ca-

pacities can be forecasted exactly where as “stochastic or probabilistic” means

that the capacities are random variables described through probability distribu-

tion functions. This thesis is motivated by the requirement of stochastic versions

of the GHP for capacity probability distribution functions.

In 1987, Andreatta and Romanin-Jacur [2] developed a dynamic programming

algorithm for the single-airport static stochastic GHP for at most one time pe-

riod. This was the first paper written that developed an algorithmic approach to

determining the amount of ground delay to assign to flights bound for a congested

airport. The authors considered a single destination airport and n flights bound

for this airport. The dynamic program resulted in an optimal delay strategy that

minimized total expected delay for the n flights. The model in this paper is a

static, stochastic version of the GHP because it is assumed that airport capacity

information is known at the beginning of the day and is summarized using a

random variable:

“Airport capacity can be summarized by a random variable K t that

takes on 0,1,...,n with probability p(0), p(1), ..., p(n).”

In his thesis, Terrab [40] developed an efficient algorithm to solve the single-

airport static deterministic GHP optimally and heuristics for the single-airport

stochastic GHP. In 1991, Richetta [32], in his thesis, developed heuristics for the

single-airport dynamic stochastic GHP. In 1993, Terrab and Odoni [41] formu-

lated the single-airport static stochastic GHP with multiperiods as a dynamic

programming problem. They proposed several heuristics to solve their version

of the GHP and to handle large problem instances that occur in practice. Since

the authors were unable to prove that the formulation would yield an integer
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solution directly from the linear programming (LP) relaxation, they developed

a decomposition method to exploit the fact that the constraint matrix could be

partitioned into network matrices. Since this was a static stochastic version of

the GHP, the authors described airport capacity in the following manner:

“Capacities are random variables that are given a probabilistic fore-

cast [that can be thought of as] a number of scenarios, each scenario

representing a particular instance of the random capacity vector with

an associated probability.”

In a ground breaking paper in 1993, Richetta and Odoni [33] used stochastic

linear programming with one stage to solve the single-airport static stochastic

GHP with multiperiods optimally and expanded previous work by including the

dynamic case. They were able to overcome the limitations of the dynamic pro-

gramming formulation in the paper by Terrab and Odoni [41]. Previous work

determined amount of delay to assign on a flight by flight basis. In this paper,

the authors formulate the problem by considering flights in the aggregate. This

approach allows for the alignment of probabilistic airport capacity with current

weather forecasting procedures.

“There are Q alternative scenarios, each scenario providing a possible

capacity forecast for the entire time interval of interest with scenario

q having a probability equal to pq.”

At the beginning of the day, specialists at the ATCSCC are given weather

forecasts from different sources such as the National Weather Service (NWS), the

Aviation Weather Unit, and the meteorologists from different airlines and their

AOCs. Each of these forecasts could lend itself to a capacity forecast or scenario.
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The decision variables in the model indicate the number of flights of a certain

class originally scheduled to arrive at time i, but rescheduled to arrive at time j

under a certain capacity scenario q. The inputs are the number of aircraft of a

certain class scheduled to arrive at the capacitated airport, the cost of delaying

a single flight of a certain class for a given time period on the ground, the cost

of delaying a flight in the air, and the number of flights unable to land under a

certain capacity scenario.

In 1996, Glockner [18], in his thesis, considered a network of airports and

formulated a dynamic time-space network flow problem in which some arc capac-

ities are assumed to be random variables. These arcs are referred to as “restricted

arcs” and are used to capture the uncertainty of airport capacity.

In 1999, Hoffman, Ball, Rifkin and Odoni [5] formulated the single-airport

static stochastic GHP as an integer programming problem that can be solved in

polynomial time. They improve on Richetta and Odoni’s formulation by including

fewer decision variables and exploiting the network structure of the problem to

find an optimal solution using LP relaxation. As in other stochastic versions of

the GHP, arrival capacities are assumed to be random variables:

“Probabilistic information about the uncertain capacity is available in

the form of Q scenarios, M q , for 1≤ q ≤ Q, where M q,t , 1≤ t ≤ T,

is the arrival capacity of the airport during time t, if scenario q is

realized. The probability of the qth scenario occurring is pq.”

The most important contribution of the model in this paper is consistency

with the paradigm and procedures of CDM. The inputs to the model are the

aggregate demand for each time period, the cost of delaying a single flight on

the ground for a single time period, the cost of one period of airborne delay and
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the capacity scenarios and associated probabilities. The model minimizes the

total expected delay costs , which is the sum of the assigned ground delay and

expected airborne delay. The model outputs the optimal number of flights to be

delayed on the ground or the number of arrival slots (to make available) per unit

time. CDM procedures would then be used to determine the specific flights that

should be given ground delay.

The trend is towards a formulation of the GHP that is stochastic in nature

because it is a better representation of true conditions during a GDP. Thus, there

is a need for the estimation of arrival capacity scenarios with associated proba-

bilities. Methods for determining these arrival capacity scenarios and associated

probabilities are the subject matter of this thesis.

2.3 Integer Programming

A linear program (LP) is a constrained optimization problem of the form

min cx

subject to

Ax ≥ b

x ≥ 0

where cx is a linear function, A is anm by nmatrix, b is anm-dimensional column

vector, and x is an n-dimensional column vector of variables or unknowns. LPs

have a long history and many highly efficient commercial codes for solving them

are available. An integer program (IP) is an LP with the additional restriction

that the x vector can only take on integer values. In particular, the general IP

is NP-Hard whereas the LP problem can be solved in polynomial time. The
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added restriction of integrality makes the problem more difficult to solve. IP

solution methods are very often based on relaxing the integrality constraint and

yield the linear programming relaxation of the IP. The optimal solution to the

LP relaxation is used as a bound to the optimal solution to the IP. If the IP is

a maximization problem, then the optimal value for the LP relaxation is greater

than or equal to the optimal value for the IP. On the other hand, if the IP is a

minimization problem, then the optimal value for the LP relaxation is less than

or equal to the optimal value for the IP. If the LP relaxation is infeasible, then so

is the IP. If the optimal solution to the LP relaxation is an integer solution, then

this solution is feasible and optimal for the IP. This latter condition is a reflection

of the strength of the formulation of the IP. The strongest possible formulation

is one in which the solution to the LP relaxation yields an integer solution. This

is always the case when A is a totally unimodular matrix.

2.3.1 Totally Unimodular and Interval Matrices

It is desired to have the strongest possible formulation of the IP and that is one

in which the optimal solution to the LP relaxation is integer. This is the case

when matrix A is totally unimodular (TU). A TU matrix is defined as a matrix

in which the determinant of every square submatrix is +1, -1, or 0. A TU matrix

is closed under matrix operations, i.e. the transpose of a TU matrix is TU; a

TU matrix with a row or column deleted is TU; a TU matrix that has two rows

or columns interchanged is TU; a TU matrix with rows or columns duplicated

is TU. There exist matrices with columns that contain more than two nonzero

elements, but that still yield a TU matrix. One such matrix is known as an

interval matrix, which has the “consecutive ones” property. An interval matrix
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is an m by n (0,1) matrix that satisfy the following condition: if aij = akj =1

and k > i + 1, then alj = 1 for all l with i < l < k [28]. A matrix has the

“consecutive ones” property if in any given column, ones appear consecutively.

An interval matrix can be transformed into a network matrix using elementary

row operations that result in a matrix with network flow properties. If matrix A

has the “consecutive ones” property, then the IP can be solved using the LP.

2.3.2 Set Covering and Set Partitioning

Binary IPs, that is, IPs in which the variables are binary, constitute a very

important broad class of IPs. Binary variables are used to model problems where

a choice has to be made between an event occurring or not occurring. Thus the

variables take on the value 1 if the event occurs and 0 otherwise. Set covering

and set partitioning problems are special classes of binary IPs.

Let M = {1, ...,m} be a finite set and {Mj} a given collection of subsets of M .

Let A be the m by n incidence matrix of the family {Mj} for j ∈ N = {1, ..., n}.

So for i ∈M,

aij = 1 if i ∈Mj

= 0 if i /∈Mj ,

xj = 1 if j ∈ F

= 0 if j /∈ F .

We say that F ⊆ N covers M if
⋃
j∈F Mj = M. Thus, the set covering problem

has the following formulation:

Minimize
n∑
j=1

cjxj (cj is the cost of including Mj in the cover)
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subject to
n∑
j=1

aijxj ≥ 1 for i = 1, ...,m

xj ∈ Bn.

The set partitioning problem is formulated in a similar manner with the ex-

ception of the constraint being an equality constraint. In general, set covering

and set partitioning problems are NP Hard. In the case of problems whose ma-

trices have the consecutive ones property, the IPs can be solved efficiently using

the LPs, as stated in the previous section. The columns of the matrices can be

enumerated in polynomial time since the number of enumerations is no more than(
n
2

)
, where n is the number of feasible possibilities. A set covering problem can

be converted into a minimum cost shortest path problem and solved using stan-

dard network flow procedures. In Chapter 5, the problem of assigning months to

seasons in a least costly fashion will be formulated as a set covering/partitioning

problem with an added constraint of limiting the total number of seasons (covers)

chosen. The formulation with this added constraint yields a 0-1 incidence matrix

that is not totally unimodular. The matrix has what is known as the consecu-

tive ones property with wrap around. Though the incidence matrix is not TU, a

simple iterative procedure can be implemented to determine the optimal solution

efficiently.

2.4 Statistical Background

2.4.1 Probability and Empirical Distribution Functions

The probability distribution function (pdf), f(x), of a random variable X is a

real-valued function that satisfies the following properties:
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(i) f(x) > 0, x ∈ R;

(ii)
∑
x∈R

f(x) = 1 for discrete X ,∫
R
f(x) dx = 1 for continuous X ;

(iii) The probability of event X ∈ A is:

For X discrete: P (X ∈ A) =
∑
x∈A

f(x),where A ⊂ R ,

For X continuous: P (X ∈ A) =
∫
A
f(x) dx.

The function, F (x), defined by

F (x) = P (X ≤ x) for x ∈ R

is known as the cumulative distribution function (cdf) of the random variable X.

The properties of F (x) are:

(a) 0 ≤ F (x) ≤ 1

(b) If x′ < x′′, then F (x′) ≤ F (x′′).

(c) F (∞) = 1 and F (−∞) = 0.

(d) If X is a discrete random variable, then F (x) is a step function and

the height of each step at x equals P (X = x).

Thus, cdfs are nondecreasing and right-continuous functions that have a minimum

value of zero and a maximum value of one. It is possible to approximate an

unknown cdf using an empirical distribution function (EDF), Fn(x), which is

completely determined by observed values of a random variable,

Fn(x) = 1
n

n∑
j=1

I{xj ≤ x} , j = 1, ..., n,
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for each real number x.

An EDF is close to the true cdf for large n and possesses the same properties as

a cdf since:

Fn(x) is a relative frequency of {xj ≤ x} implies 0 ≤ Fn(x) ≤ 1;

Fn(x) is a nondecreasing function since the number of observed values

less than or equal to x does not decrease as x increases;

For all values of x less than the smallest observed value, Fn(x) = 0;

For all values of x greater than or equal to the largest observed value,

Fn(x) = 1.

Fitting (probability) distributions to data

Empirical distribution functions are used to estimate underlying cdfs and simi-

larly, there are methods to estimate underlying pdfs using empirical or observed

data. The most notable are graphical methods used to summarize the distribu-

tion of a univariate data set. Graphical methods allow for the viewing of the

location of the observed data, the spread of the data, the skewness of the data,

the presence of outliers and the presence of multiple modes. These methods in-

clude stem-and-leaf plots, boxplots, bar graphs, probability plots, and relative

frequency histograms (See [23] or [36]). The latter form will be the focus in this

dissertation. A frequency histogram is constructed by partitioning the range of

observed values (largest value minus smallest value) into k equal length subin-

tervals (bases of rectangles or bins) and by calculating the frequency (counts) of

observations in each subinterval (heights of rectangles or bins). To construct a

relative frequency histogram, simply divide the frequency in bin i, fi, by the total

number of data points, n. A relative frequency histogram estimates an under-
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lying pdf because
∑
i

fi/n = 1. If a resulting histogram contain many peaks and

valleys, a triangular (weighted) binning technique could be used to “smooth” out

the histogram. In a smoothed histogram, the frequency in a given bin i is the

sum of half of the original frequency in bin i, one quarter of the frequency in the

bin on the immediate left of bin i , and one quarter of the frequency in the bin

on the immediate right of bin i. Thus, a smoothed histogram can be determined

using the following formula:

1
4
fi−1 + 1

2
fi +

1
4
fi+1 , for the total number of bins k.

It should be noted that this is one alternative of choosing the weights for smooth-

ing the histograms. The weights can be chosen in any way that seems appropriate.

Kolmogorov-Smirnov (KS) Goodness of Fit Test

Nonparametric methods (tests) are used when the underlying distribution func-

tion is unknown or the assumptions about the underlying population are ques-

tionable. These tests include the Wilcoxon Mann-Whitney Test, the Wilcoxon

Signed Ranks Test, the Sign Test, the Runs Test and the Kolmogorov-Smirnov

Test (See [36]). The KS statistic is used in Section 5.3.4 of this dissertation.

To test whether an EDF comes from a specified formal cdf or to test if two or

more EDFs can be assumed to come from the same EDF, a Kolmogorov-Smirnov

Test can be used. This test makes no assumptions about the underlying distribu-

tion beyond continuity of F , so the KS statistic is referred to as a distribution-free

statistic. The KS statistic

KS = maxx
√∑

i(
ni
n

)[Fi(x)− F (x)]2, where x = 1, 2, ..., n,
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measures the maximum deviation of the EDF within classes i to the pooled EDF,

F , defined as

F = 1
n

∑
i(niFi).

2.4.2 Time Series

A time series is a sequence of observations ordered in time that are analyzed to

ascertain any type of historical pattern, which can be used to create a forecasting

model. The goal of analyzing a time series may be any of the following:

(i) description of the main properties and structure of the time series,

(ii) explanation of variation of one time series using variation of another,

(iii) prediction of future values of the time series,

(iv) control of the process whose quality is measured by the time series.

The most widely used mechanism to view and describe the main properties

of a time series is a time plot. Time plots graphically reveal any trends, cycles,

seasonal components or irregular fluctuations in a time series. A trend is defined

as a long-term upward or downward movement in a time series, a cycle refers to

a recurring up and down movement around trend levels, a seasonal component or

seasonality refers to periodic movement in a time series that is dependent on the

time of year, and irregular fluctuations are erratic fluctuations with no consistent

or regular pattern. Smoothing techniques are used to remove random fluctuation

and give a clearer view of the behavior of a time series. Smoothing techniques

include moving average smoothing and exponential weighted smoothing. The
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techniques differ in that past observations are weighted equally for moving av-

erages and unequally for exponential weighted averages. A moving average for

time period t, MAt, is calculated according to the formula

MAt =
(yt + yt+1 + ...yt−N+1)

N
.

In exponential smoothing, exponentially decreasing weights are assigned to

observations. More recent observations are weighted more heavily than more

remote observations and all observations are referred to as “dampened”. The

process of assigning weights starts with the assignment of an initial smoothed

value:

S0 = y1 (or average of first few observed values of series)

S1 = αy1 + (1− α)S0

S2 = αy2 + (1− α)S1

St = αyt + (1− α)St−1, where α is a smoothing constant

and 0 < α ≤ 1, t ≥ 1.

The series St is the smoothed estimate for time period t and equals a fraction

of the newly observed time series value for time period t plus a fraction of the

smoothed estimate made in time period t−1. An appropriate value of the smooth-

ing constant, α, can usually be determined from historical data. The basic equa-

tion for single exponential smoothing is

St = α
t−1∑
i=0

(1− α)iyt−i + (1− α)tS0.
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Exponential smoothing can be thought of as “geometric” smoothing since the

weights α(1 − α)t decrease geometrically with time t, for 0 < α ≤ 1. Moving

average smoothing techniques will be used to perform an analysis of seasonality in

Section 5.3.1. For a more in-depth treatment of time series analysis, see Chatfield

[10].

2.4.3 Analysis of Variance (ANOVA)

Analysis of variance (ANOVA) is used to study the effects of one or more indepen-

dent (predictor) variables on the dependent (response) variable. Most commonly,

ANOVA is used to test the equality of means by analyzing the total sum of squares

(about the combined mean), which is partitioned into different components (due

to model or due to random error).

Single-Factor or One-Way

A factor is an independent variable. Thus in single-factor ANOVA, the effects of

only one independent variable are being tested. For single-factor ANOVA, each

level of the factor is referred to as a “treatment”. The null hypothesis is equality

of factor level means. The Single-Factor ANOVA model can be written as

Yij = µ+ αj+ εij

where Yij represents the ith observation of the jth factor level

i = 1, ...nj , j = 1, ..., k,

nj is the number of observations for the jth factor level, k is the total number of

factor levels, µ is the overall mean of all factor level means, and αj is called the

effect of the jth factor level.
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The unknown parameters (µ, αj) are usually estimated from the data using the

method of ordinary least squares (OLS). In OLS,
k∑
j=1

nj∑
i=1

(Yij−µ−αj)2 is minimized

with respect to µ, α1, α2, ..., αk. As stated earlier, the equality of factor level

means are tested by analyzing the decomposition of overall variance (total sum

of squares). The deviation (Yij − Y..), the difference between each observation

and the overall mean can be decomposed into two components: deviation between

each factor level mean and the overall mean; and the deviation of each observation

around its respective factor level mean. Because

Yij − Y .. = Y .j − Y .. + Yij − Y .j

where:

Y .j =

∑
i

Yij

nj

Y .. =

k∑
j

nj∑
i

Yij

n
, n =

k∑
j=1

nj ,

we have the identity

∑
j

∑
i

(Yij − Y ..)
2 =

∑
j

nj(Y .j − Y ..)
2 +

∑
j

∑
i

(Yij − Y .j)
2

after squaring and then summing the deviations. In words, we say that the “total

sum of squares,” equals the sum of the “sum of squares due to model (treatment

sum of squares)” plus the “sum of squares due to random error (error sum of

squares).” Each sum of squares term divided by its associated degrees of freedom

results in its mean square (MS). The F -value that is used as a test statistic is the

ratio of the mean square of the model and the mean square error. Mean square of

the model can also be thought of as the mean squared deviation between groups

(treatments) and the mean squared error as the mean squared deviation within

groups. Large values of the F -statistic lead to the rejection of the null hypothesis
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Source of Variation SS df MS F

Between Groups SSModel =
∑
j

nj(Y.j − Y..)2 k − 1 SSModel

k−1
F =

Error(Within Groups) SSError =
∑
j

∑
i

(Yij − Y.j)2 n− k SSError
n−k

MSModel

MSE

Total SSTotal =
∑
j

∑
i

(Yij − Y..)2 n− 1

Table 2.2: ANOVA Table for One-Way Layout

of the factor level means being equal. All aforementioned values are summarized

in an ANOVA table (Table 2.2), which any statistical software will output.

Residual Analysis

The residual term, ε̂ij , in the Single-Factor ANOVA model is the difference be-

tween an observed value and its fitted (estimated) value:

ε̂ij = Yij − (µ̂+ α̂j) = Yij − Y .j.

In order for the results of an F -Test to be valid, there are assumptions on the error

terms that must be met: they must be independent, have zero mean, constant

variance (known as homoscedasticity), and must follow a normal distribution.

The adequacy of an ANOVA model is checked by graphical residual analysis. An

overall plot of the residuals should appear normally distributed with mean zero.

If the observations are from a time series, then the residuals could be plotted in

time order. One can say that the assumptions are satisfied if the time plot of

residuals appear to be a “horizontal band” and free of any systematic behavior.

If the plot appears funnel-shaped, then this is an indication that the constant

variance assumption has been violated. Serial correlation or “autocorrelation”

between successive residuals would violate the independence assumption. Serial
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correlation can be identified by plotting ε̂t versus ε̂t−1and looking for linear trends.

The Durbin-Watson Statistic [29],

N−1∑
1

(ε̂t − ε̂t−1)
2

N∑
1

ε̂2
t

,

may be used to test for serial correlation between successive residuals. This

statistic is calculated by dividing the sum of squared differences in successive

residuals by the sum of squared residuals. The value of the statistic ranges

between 0 and 4. A value close to 0 indicates positive autocorrelation whereas a

value close to 4 indicates negative autocorrelation.

There are many methods that could be implemented if the assumptions on the

error terms are not satisfied. If the errors do not have homogeneity of variance,

then transformations can be made on the original data to stabilize the variance.

These transformations include log or square root transformations (used when

variance is a function of the mean). An alternative method is applying a weighted

least squares method on the data. Weighted least squares can be used instead of

transformations if error variances are known completely. WLS can improve the

accuracy of estimates even if variances are not completely known, but testing of

hypotheses cannot be done without knowing the error variances. The weights

in the analysis are used to adjust the amount of influence of observations with

larger error variances on the model parameters.

Multiple Comparisons

When the F -test rejects the null hypothesis that there exists an equality of means,

the procedure of multiple comparisons allows one to determine where the differ-
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ences lie while controlling the simultaneous confidence coefficient (1-α). In gen-

eral, the procedure of multiple comparisons is used to determine if there exists

statistically significant differences between two or more factor level means. Each

comparison is known as a contrast, L, and is defined as

L =
∑

tjµj

where tj satisfies the restriction
∑

tj = 0.

There are three common methods of multiple comparisons that are used: the

Tukey Method, the Scheffe’ Method and the Bonferroni Method. The Tukey

method should be used when the factor level sample sizes are equal and the

multiple comparisons of interest are all pairwise comparisons. Scheffe’s method

is the most general method in that it can be used regardless of whether or not the

factor level sample sizes are equal and when all possible comparisons are sought.

The Bonferroni method can be used irregardless of the factor level sample sizes,

but only for a prespecified set of contrasts. The method that yields the greatest

amount of precision of the confidence intervals depend on the type and amount

of multiple comparisons being made. See [29] for more details on single-factor

ANOVA and multiple comparison procedures.
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Chapter 3

Description of Data: Sources and Preparation

The statistical models in this thesis are formulated based on data received from

the Federal Aviation Administration (FAA) and the National Climatic Data Cen-

ter (NCDC). The reliability of the models is strongly dependent on the amount

and quality of data that is used for model formulation and calibration.

In the following chapters, models will be presented for the estimation of a vec-

tor of capacity scenarios or airport arrival capacity distributions. These models

are formulated using ground delay program parameters and weather conditions

at San Francisco International Airport (SFO). The data collected are from two

main databases:

• Ground Delay Program (GDP) Logs in which data is recorded at the ATC-

SCC and archived by Metron, Inc.

• Surface Airways Hourly (TD3280) Weather Data, which is collected and

archived by the NCDC.

Section 3.1 describes the type of parameters that are found in the GDP

database and provides summary statistics of the data. Section 3.2 defines the
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Variables Definition of Variables

Airport airport at which GDP is run

Date date of the institution of GDP

Start Time planned start time of GDP

End Time planned end time of GDP

CNX Time cancellation time of GDP

AAR airport acceptance rate (set by ATCSCC)

Center(s) centers included in scope of GDP

Max Delay maximum delay incurred during GDP

Table 3.1: Data from GDP Logs

variables contained in the weather database while Section 3.3 explains the dif-

ficulties and sources of error when trying to merge the two databases. Finally,

Section 3.4 describes the data contained in Aggregate Demand Lists (ADLs) that

is used in the decision models of Chapter 6.

3.1 Ground Delay Program (GDP) Logs

On a daily basis, the specialists at the ATCSCC record all facility operations from

the beginning of the day until the end of the day. These records are included in a

daily report known as the Command Center Logs. One main component of these

logs are records of the national GDPs, the procedures and parameters at which

they were run and a digest and critique of the actions taken during a GDP. The

GDP logs are taken directly from GDP cover sheets that contain an hourly record

of all parameters and weather conditions pertinent to a certain GDP. Table 3.1

gives a list and description of the variables that are found in the GDP Logs.
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month: 1 2 3 4 5 6 7 8 9 10 11 12

1995 28 13 17 14 20 13 15 6 15 13 16 24

1996 20 22 9 7 10 12 9 8 18 11 16 22

1997 24 9 7 14 3 5 8 15 7 9 11 7

Table 3.2: Number of GDPs at SFO

It should be noted that there were some minor differences between the logs

from year to year. For example, in 1995, only a “duration” was given instead of

a “start time” and “end time”. It is a trivial matter to extract these fields from

the duration. There is also evidence of continuous improvements to the database

through the addition of more fields. One of the difficulties in working with real

data was a lack of consistency in the archived format.

Basic statistics were calculated on the GDP logs for SFO. Such statistics

include number of GDPs per month, percentage of GDPs canceled, percentage

of GDPs planned during morning hours and the actual average duration of the

morning GDPs. These statistics will play a vital role in the formulation of the

models which are presented in later chapters.

According to Table 3.2, there is no apparent trend in the numbers of GDPs.

What is of more interest is the percentage of GDPs planned and implemented that

were canceled. No less than 25% of the programs planned at SFO are canceled

for any given month in any given year (See Figure 3.1). This is an alarming

statistic which confirms the need for better predictive models to improve GDP

effectiveness.

Figure 3.2 gives the percentage of GDPs that are planned and implemented

during the morning hours, 1600Z-1900Z (8 am-11am local time). More than 50%
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Figure 3.1: Percentage of GDPs Canceled at SFO

of all programs are morning GDPs at SFO. This is principally due to the onset of

fog in the morning during the peak demand hours. Due to this high probability,

all analysis in this thesis are performed on morning GDPs at SFO.

Figure 3.2: Percentage of GDPs Implemented During Morning Hours at SFO
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3.2 Surface Airways Hourly Weather Data

Weather conditions and runway configurations play the principal role in deter-

mining airport capacities. Recall Table 2.1 and Figure 2.1. Since it is our goal

to predict and estimate arrival capacity distributions, it is imperative that we

consider weather conditions. Some of the models in this thesis are calibrated

using GDP parameters and weather data is used to support the assumption that

the use of distributions of GDP durations are appropriate surrogates for distribu-

tions of IFR conditions (in the case of morning fog at SFO) during instances when

weather data is not available. This was shown by comparing burnoff times of fog

at SFO with cancellation/end times of GDPs. Burnoff times for marine stratus

conditions during summer months were obtained from MIT’s Lincoln Laboratory.

It was determined that a GDP’s cancellation time was within 25 minutes from

the burnoff time of fog conditions during the months May-September.

Distributions of IFR conditions at SFO were derived using data from “Sur-

face Airways Hourly” from the NCDC during the years 1984-1992. This database

contains an hourly listing of surface weather observations that are taken at sta-

tions located primarily at major airports and military bases. See Table 3.3 for

a listing and description of the data fields. These stations are operated by the

National Weather Service (NWS), the U.S. Air Force Weather Service, the U.S.

Navy Weather Detachment and the Federal Aviation Administration (FAA). Data

at these stations are collected using the Automated Surface Observing System

(ASOS) that was designed primarily for aviation operations. The weather vari-

ables used to determine distributions of IFR conditions are ceiling height and

visibility. Recall that IFR conditions are marked by a ceiling below 1000 feet or

a visibility less than 3 miles.
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Variables Description

Year (self-explanatory)

Month (self-explanatory)

Day (self-explanatory)

Hour (self-explanatory)

CLHGT height of cloud ceiling in hundreds of feet

VISIB visibility in miles

WEATHER coded weather conditions (Table 3.4)

TEMP temperature in whole degrees Fahrenheit

DWPT dew point temperature in whole degrees Fahrenheit

WIND (direction) wind direction in whole degrees

WIND (speed) velociy of wind in knots

Table 3.3: Data from Surface Airways Hourly

Weather Codes

F: Fog

H: Haze

K: Smoke

L: Drizzle

Z: Freezing

W: Shower

R: Rain

S: Snow

IP: Ice Pellets

Table 3.4: Codes for Weather Data in Surface Airways Hourly
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3.3 Merging GDP Logs and Weather Data

There are many difficulties when trying to merge two databases. One must

determine the conditions on which to match in order to merge the databases.

The biggest drawback is the possible loss of information due to the lack of similar

fields or data. One possible cause for the difficulty is the fact that the range of

dates for weather data is 1984 to 1992 whereas the range for the GDP data is

1995 to 1997. Thus, there is no common data on which to merge the databases.

From a statistical point of view, the sample size of 3 years worth of data is

relatively small and inadequate to make definitive statistical conclusions. It is

well-known in the aviation and aviation weather community that reduction in

arrival capacity is due primarily to low ceiling and limited visibility conditions

[49]. In this dissertation, arrival capacity distributions will be solely based on

a conditional distribution of duration of IFR conditions given that a GDP is

planned. Chapter 4 will give a more detailed explanation about the derivation of

this conditional distribution.

3.4 Aggregate Demand Lists

At the start of each day, the AOCs submit their daily flight schedules (arrivals and

departures) over an “extra-net” known as the CDMnet. The CDMnet facilitates

data exchange between the AOCs and the ATCSCC and works in conjunction

with CDM procedures. Dynamic updates to schedules are submitted through the

CDMnet and viewed on FSM. The Volpe Transportation Systems Center merges

the data from the airlines and other data from the NAS to create aggregate

demand lists (ADLs). Dynamic changes such as delays or cancellations of flights
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Air Airline

Flt Flight ID

OETD Original Estimated Time of Departure

OETA Original Estimated Time of Arrival

OETE Original Estimated Time EnRoute

ETE Estimated Time EnRoute

LCTD Last Controlled Time of Departure

LCTA Last Controlled Time of Arrival

ERTA Earliest Runway Time of Arrival

ARTD Actual Runway Time of Departure

ARTA Actual Runway Time of Arrival

Table 3.5: Data fields in the Aggregate Demand Lists

are incorporated into the ADLs that are sent out via the CDMnet approximately

every 5 minutes [27]. Data in the ADLs contain information on a flight-by-flight

basis. Table 3.5 lists the flight data fields that are used in the decision models of

Chapter 6.
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Chapter 4

Airport Arrival Capacity Distributions

(Capacity Scenarios)

A capacity scenario is one possible sample path or realization of capacity over a

given interval of time, thus each scenario can be thought of a time series. The

capacity scenarios derived in this thesis are the required inputs into the Hoffman-

Rifkin Static Stochastic Ground Holding Model, as well as other stochastic ground

holding models. In this dissertation, each capacity scenario will be referred to as

an arrival capacity distribution (ACD). Since each ACD is one possible realiza-

tion of capacity, we desire to derive a vector of possible ACDs with associated

probabilities.

4.1 Types of Arrival Capacity Distributions

On any day, there is a given weather forecast that translates into a particular

capacity. As the weather (forecast) changes, so does the capacity. The severity

of the weather and the accuracy of the forecast determine the amount of fluctua-

tion in the capacity level. It is a normal practice for specialists at the ATCSCC
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to receive different weather forecasts from various sources. Each of these fore-

casts could realistically result in a different capacity scenario or arrival capacity

distribution (ACD). The strength of the forecast could possibly determine the

probability of a particular ACD.

We now describe, on a conceptual level, a range of possible ACD models. Just

as is the case for the Hoffman-Rifkin model, we assume that time is discretized

and the ACD models are based on this assumption. In any ACD, the x-axis

represents time of day, y-axis represents arrival capacity levels or number of

flights able to land, and each bar represents arrival capacity over a given time

interval, usually in one hour or 15-minute increments.

In general, an ACD can take almost any structure imaginable. Thus the num-

ber of possible ACDs is enormous. In this section, the four most representative

ACDs for almost any airport will be described. In the most general ACD model,

there can be a constant fluctuation in the arrival capacity level, as seen in Figure

4.1. We shall refer to this as the “general” ACD because it can be used to model

almost any given airport that may be plagued with constant weather or runway

configuration changes. In order to estimate this most general ACD model, each

arrival capacity level (level of reduced capacity), start time of reduced capacity

and end time of reduced capacity must all be estimated.

A simpler model allows for only 2 capacity levels and the distribution fluctu-

ates between these 2 levels. This type of model may adequately represent con-

ditions at an airport with few runway configurations or with one main weather

pattern that have many peaks throughout the day. This will be known as the

“2-Level” ACD (Figure 4.2).

A further simplification of the 2-Level ACD models has a structure in which
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Figure 4.1: Form of the General Arrival Capacity Distribution

Figure 4.2: Form of the 2-Level Arrival Capacity Distribution
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there is “normal” or maximum capacity at the beginning of the day, then reduced

capacity for a certain length of time, followed by a return to the “normal” level.

This model may capture most airports in which there is a consistent weather

pattern that occurs sometime after sunrise and only lasts for a finite length of

time. This ACD is appropriate for most airports whose arrival capacity level is

cut almost in half when inclement weather forces a change from VFR to IFR

approaches. In this case, we need only estimate the two parameters: start time

and duration of reduced capacity. Thus, this is referred to as the “2-Parameter”

ACD (Figure 4.3).

The simplest ACD is a distribution that has reduced capacity at sunrise,

remains constant at this level for a given time and then increases to the nor-

mal arrival capacity level. Therefore, the only parameter to be estimated is the

end time (duration) of the reduced capacity. Hence, this ACD model is the

“1-Parameter” ACD (Figure 4.4). This is a reasonable way to model ACDs as-

sociated with weather patterns that are present at sunrise, remain continuously

in place for a period of time and then clears.

In general, the task of estimating a vector of ACDs is quite daunting because

of the possible model complexity of an individual ACD. There is a range of

model complexities, which can be seen in the ACD models presented here. It was

discovered that the structure of the two simplest models, the 2-Parameter and 1-

Parameter ACDs, are representative of actual capacity scenarios for a reasonably

broad range of airports. In fact, the 1-Parameter ACD can be applied in one

very important and practical case. It can be used to model morning fog at San

Francisco’s International Airport (SFO). This case of modeling morning fog at

SFO is the focus of this dissertation.

46



Figure 4.3: Form of 2-Parameter Arrival Capacity Distribution

Figure 4.4: Form of 1-Parameter Arrival Capacity Distribution
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4.2 Estimating 1-Parameter ACDs at SFO

In the general case, we would have to estimate the reduced capacity value (IFR

capacity level), the start time of reduced capacity and the end time of reduced

capacity in order to estimate a general ACD. We will initially consider the case of

early morning GDPs that are typically caused by fog. A good example of where

this occurs is SFO. At SFO, morning fog exists at sunrise and lasts for a given

(stochastic) period of time. When the fog burns off, the arrival capacity level

returns to the “normal” value of 45 flights per hour (when visual approaches can

be performed, See Table 2.1). For this situation, we are only required to estimate

the duration of reduced capacity, since the start time is assumed to be at sunrise

and the IFR capacity for SFO is 30 flights per hour (See Figure B.1 in appendix).

Nominal IFR conditions at SFO are characterized by a ceiling of less than

2500 feet or a visibility of less than 3 miles. Since fog conditions are present at

sunrise, the start of reduced capacity is at sunrise. To estimate the duration of

reduced capacity, the duration of a GDP will be calculated. Morning GDPs at

SFO are planned to end at the burnoff time of fog or at the initial dissipation of

the stratus conditions.1 Recall that in Chapter 3, results were given to suggest

that the end time or cancellation time of a GDP corresponds to the burnoff time

of marine stratus conditions at SFO during the summer months. According to

[11], stratus clouds form during overnight hours and dissipate during the morning

hours. There are times when the dissipation or burnoff of the “cloudiness” occurs

after the late morning arrival traffic peak (1800Z) in which demand is high. Dur-

ing these times, there exists a capacity-demand imbalance due to fog. Therefore,

restricting attention to the morning GDPs at SFO is reasonable for capturing the

1From an e-mail correspondence with Forrest Terral at the ATCSCC on June 15, 1999.
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length of time of IFR conditions due to fog during peak demand times. Since fog

materializes during times of low demand, weather data can be used to give an

estimate of the duration of IFR conditions irregardless of demand.

GDP durations on days when GDPs were planned and durations of nominal

IFR conditions can be used for estimates of the durations of reduced capacity

in 1-Parameter ACDs. Thus, there are two sources of data that can be used to

estimate 1-Parameter ACDs for SFO. Since the Hoffman-Rifkin static, stochastic

ground holding model requires a vector of ACDs, the vector will be determined

by estimating a distribution of 1-Parameter ACDs.

4.3 Determining Distribution of 1-Parameter ACDs

In general, a distribution can be determined by binning a given set of observations

or empirical data to create a relative frequency histogram (see Section 2.4.1 for

more detail). The 3 years of empirical GDP data from SFO are used to create the

frequency histogram of duration of morning GDPs (Figure 4.5). This histogram

will be determined by considering the duration of GDPs conditioned on a GDP

being planned.

Notice the peak between 4 and 5 hours in Figure 4.5. This is due to the

operational procedures at the ATCSCC during the given 3 years of data. There

was a limit on the maximum number of hours a GDP could be run and that

limit was 4 hours. To remove the effect of operational procedures on the overall

distribution, a smoothing technique described in Section 2.4.1 is utilized. To

smooth out peaks and valleys in the histogram, a triangular binning technique is

used. In this technique, half of the number of data points in a given bin is added

to one-quarter the number of data points in the bin on the (immediate) left side
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Figure 4.5: Overall Frequency Histogram for SFO Morning GDP Data
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Figure 4.6: Smoothed Histogram for SFO Morning GDP Data
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of the given bin and one-quarter the number in the bin on its right side to give the

new frequency or number of data points in the given bin. This process is repeated

for all bins except the first and last bins. To account for end effects, smoothing of

“end” bins is done by taking the weighted sum of three-quarters of the frequency

in the given bin plus one-quarter of the frequency in the bin immediately next

to the given bin. The smoothing of all bins result in a “smoothed frequency

histogram” (Figure 4.6).

Figure 4.7: Relative Frequency Histogram for Duration of IFR Conditions

Each bin of a histogram corresponds to the duration of reduced capacity in

a particular ACD. Thus the histogram can be thought of as the distribution of

ACDs. To get an associated probability of an ACD (or bin on histogram), simply

divide the frequency in a given bin by the total sum of frequencies (relative

frequency):
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P(Si) =
Frequencyi

Sum of Frequencies
, for each scenario (ACD) S and bin i.

It can be argued that a distribution based on weather data is more represen-

tative of durations of IFR conditions. Figure 4.7 gives this type of distribution

using weather data with the relative frequencies along the y-axis.

Figure 4.8: “Conditional” Distribution of Durations of IFR Conditions

This distribution is a conditional distribution because it is the distribution of

duration of IFR conditions given that the duration equals or exceeds one hour.

Thus, there is no zero bin in this distribution, but there is a zero bin on the GDP

distribution. Since the goal is to estimate the duration of IFR conditions during
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instances of capacity-demand imbalances for which a GDP will be implemented,

some reasonable combination of the two distributions is sought. One alternative is

to derive a conditional distribution of the durations of IFR conditions given that

a GDP is planned. Recall that the distribution of GDP durations is a conditional

distribution: distribution of GDP durations given that a GDP is planned. If the

0-bin on the GDP data distribution is referred to as P (GL = 0|GDP is Planned),

then the “conditional” distribution of duration of IFR conditions given that a

GDP is planned is a weighted combination of P (GL = 0|GDP is Planned) and

P (IFR Durations|IFR ≥ 1). To determine this “conditional” distribution, we

simply include the zero bin from the GDP distribution in the distribution of IFR

conditions and normalize accordingly to derive the new associated probabilities.

See Figure 4.8.

Histograms are used to give information about an underlying pdf of empirical

data. In this section, histograms created using ALL available empirical (GDP

and weather) data were presented. The underlying pdf will be referred to as

a Capacity Probabilistic Distribution Function (CPDF) and is the vector of 1-

Parameter ACDs that will be used as input into the Hoffman-Rifkin model. The

underlying CPDF is a distribution that is based on weather conditions that are

highly stochastic in nature. It is feasible to think that the CPDF would change

according to the changes in weather. Thus, the fundamental mechanism that

controls the CPDF is continuously changing over time. A CPDF can be created

from any given set of observations, in this case, for the set of years of available

historical data at SFO. There are different types of CPDFs that can be derived by

partitioning the overall CPDF into subunits based on the underlying changing

mechanism (weather). In the next chapter, models are presented that are the
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result of partitioning the overall CPDF in different ways.
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Chapter 5

Determining Capacity Probabilistic Distribution

Functions (CPDFs) that Vary in Time

There is a class of stochastic ground holding models that are solved using prob-

abilistic distributions of “scenarios” or possible realizations of arrival capacity

as input (along with other inputs). These models are described in [2], [5], [18],

[21], [33], [34], and [35]. ACDs and the distribution of ACDs, CPDFs, could be

used in any of the models of this class. In this chapter, methods for partition-

ing (overall) CPDFs in different ways will be presented. Chapter 6 will discuss

the Hoffman-Rifkin static stochastic model and how to input the results of this

chapter into that decision model.

Given empirical data about capacity (or IFR conditions), relative frequency

histograms can be constructed and used to estimate CPDFs. Depending on how

the underlying weather mechanism (forecast) changes, daily, monthly or seasonal

CPDFs are all types of distributions that can be estimated. The type that will

ultimately be utilized depends on the operational preferences of the specialists at

the ATCSCC, as well as other factors.
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5.1 Daily CPDFs

Each day of a year is subject to a particular long-term climatic condition so it

may be desired to create daily histograms (CPDFs). In the case of GDPs , with

only 3 years of available data, each daily histogram would only contain 3 data

points. This is not a very informative histogram, nor much of a histogram at all.

There are nine years of weather data on which to create a daily histogram, but

the sample of nine points is still too small to be able to estimate an underlying

CPDF for the daily histogram. To account for this problem of sample size, the

data for a particular day is augmented by data from preceding and succeeding

days. One alternative for creating a histogram for a given day is by considering

data 15 days prior to the given day, 15 days after the given day and the given

day itself. This is reasonable because weather conditions are usually similar in a

given month (31 days).

There are many ways to weight the data during the 31 days used in a given

day’s histogram. The first alternative is to just weight each day’s duration equally

since it is assumed that the weather is more or less consistent during these 31

days. As an example, suppose the histogram for January 1st needs to be derived

using the 3 years of available GDP data. Then, the length on January 1st, the

lengths for the 15 days prior to January 1st and the lengths for the 15 days

after January 1st are used to create the January 1st histogram. The histograms

(Figures 5.1- 5.3), created using GDP data in the manner described above, reflect

the assumption of consistent weather.

Another way to weight the data is by a triangular weighting technique. In

this case, one gives more weight to the data during the week that contains the

day for which the histogram is being created (e.g. .5), less weight to the days
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Figure 5.1: Relative Frequency Histogram (Uniform Weighting) for January 1st
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Figure 5.2: Relative Frequency Histogram (Uniform Weighting) for January 2nd
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Figure 5.3: Relative Frequency Histogram (Uniform Weighting) for January 3rd
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contained in the second week centered around the given day (e.g. .3) and the least

weight to the data in the third week centered at the given day (e.g. .2). There

are various weighting techniques that could be utilized. It ultimately depends on

the amount of confidence one has in the consistency of the underlying changing

mechanism for a group of days.

5.2 Monthly CPDFs

Another way to address the problem of sample size for daily distributions is to

group the daily data by month. This grouping would yield monthly CPDFs. It is

possible that several months may have the same or similar CPDFs, especially in

the case of distributions of IFR or inclement weather conditions. Weather con-

ditions such as thunderstorms and snow occur at certain times of year or during

specific seasons. At SFO, the most prevalent weather conditions are radiation

fog and advection fog. Radiation fog is also known as ground fog and occurs

when the temperature drops to the dew point near the ground. Advection fog

occurs when warm, moist air moves over a colder land mass. According to the

Weather Sensing Group at MIT’s Lincoln Laboratory, radiation fog occurs more

than 100 days annually and advection fog is the next most frequently occurring

weather condition at SFO. (See Figure B.2) Based on conversations with special-

ists at the ATCSCC, fog is heaviest from September to the middle of March and

burnoff times are difficult to ascertain. Through the Marine Stratus Initiative at

SFO [11], which is led by the Weather Sensing Group at Lincoln Laboratory, it

has been determined that the stratus cloud season is during the months of May

to September. As an example, a possible CPDF may be the same during the

months September-March and the same during the months May-September, but
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different for the two groupings of months. The next section will present methods

for determining seasonal CPDFs. It can be assumed that seasonal GDPs corre-

spond to seasons of certain weather conditions. Thus, monthly distributions will

be grouped into seasons, based on some measure of similarity, to create seasonal

CPDFs.

5.3 Seasonal CPDFs

Decomposing an overall CPDF into groupings of months (seasons) based on some

measure of similarity (dissimilarity) is reminiscent of partitional clustering in

which data is partitioned into disjoint clusters. This partitioning is done by

minimizing a measure of dissimilarity within each cluster and maximizing the

dissimilarity between different clusters. The data used for this dissertation are

time ordered, so a simple clustering technique is not adequate. A method is

needed to perform clustering that is imbedded in a time series. This type of

clustering will be referred to as seasonal clustering. The resulting clusters must

be contiguous and homogeneity should exist within the clusters. Since the data

constitute a time series, time plots will be used to detect seasonal trends as an

initial step in determining seasonal clusters.

5.3.1 Detecting Seasonal Trends

In Section 2.4.2, the possible ways of detecting seasonal trends were discussed.

The one used in this thesis is the method of plotting time series data in a time

plot. This is an effective technique to gauge an overall trend in time-ordered

data.
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Figure 5.4 is a simple time series plot of average GDP lengths from month

to month for 1995 through 1997. Observe that the months October to March lie

above the horizontal line (average GDP length = 3 hours) and the months May

to September lie below the line. This observation gives credence to the idea that

the CPDFs would differ between these two groupings of months, as stated in the

previous section.

Figure 5.4: Time Series Plot of Average GDP Durations

There appears to be a seasonal trend in the time series plot of monthly av-

erage GDP Durations (Figure 5.4). A plot can also be created from the actual

daily GDP lengths. To remove random fluctuation, a moving average smoothing

technique is implemented. A 15-day centered moving average (CMA) is calcu-

lated for a given day using its GDP length (GL) (or length of IFR conditions)

and the lengths of GDPs (IFR conditions) 7 days prior to the desired day and 7

days after the desired day:

CMAt =
GLt−7 + ...+GLt + ...+GLt+7

15
.

Time series plots of averages of 15-Day CMAs of GDP durations and durations of

IFR conditions are Figures 5.5 and 5.6, respectively. The general trend appears
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Figure 5.5: Average Centered Moving Averages of GDP Durations

Figure 5.6: Average Centered Moving Averages of Durations of IFR Conditions
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to be similar in the time plots, but there are some differences. These differences

can be attributed to demand. In order for a GDP to be planned, the demand for

an airport’s arrival resource must be expected to exceed the available capacity.

Thus, a GDP is in effect as long as demand is high. Thus, the hours for a GDP,

as represented in Figure 5.5, are only during peak demand hours. The durations

of IFR conditions are not dependent on demand and thus, may be longer than

the durations of GDPs. This observation is reflected in Figure 5.6. In the next

sections, model formulation and solutions of a more rigorous analysis to ascertain

seasonal clusters are presented.

5.3.2 Model Formulation

Given the twelve months in a year, the goal is to partition the year into groupings

of (contiguous) months that contain the most similar weather conditions. The

problem of determining the optimal partitions (seasons) can be formulated as

a minimum cost shortest path problem or as a set covering/partitioning integer

programming problem. We note that the shortest path approach has a restriction

associated with it. It can not handle the case where a season starts in one month

and ends in a month at the beginning of the year. This is what is known as “wrap

around.” We will note later how this shortest path model can be imbedded into

an iterative procedure that can handle this more general case.

In general, a shortest path problem is a network optimization problem that

seeks to find the smallest distance between a given (source) node, node 0, and all

other nodes. Consider a network G with m nodes, n arcs and a cost cij associated

with each arc(i, j) in the network G. The length (cost) of a (directed) path is

the sum of the lengths of the arcs in the path. The shortest path problem can be
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thought of as a network in which it is desired to send one unit of flow at minimal

cost. The shortest path problem can be formulated as an integer program:

Minimize
m∑
i=0

m∑
j=0

cijxij

Subject to
m∑
j=0

xij −
m∑
j=0

xji =


1 if i = 0

0 if i 6= 0 or m

−1 if i = m


xij = 0 or 1 i, j = 0, 1, ...,m.

Here, node 0 is the origin (source) node of the shortest path and node m is the

destination. The constraints of the shortest path problem are known as flow

conservation equations and yield a node-arc incidence matrix that is totally uni-

modular, hence its optimal solution is the optimal solution to the LP relaxation.

In the case of partitioning a year into groupings of contiguous months, let m

equal the number of elements to be clustered (m = 12 months) and let D= [di,j]

be a dissimilarity matrix, where di,j is the cost of grouping contiguous months i

to j. The clustering problem is defined on an acyclic network with m+1 nodes as

illustrated in Figure 5.7. In this network, an arc from node i to node j represents

forming the cluster starting at element i + 1 and ending at element j. The cost

of arc(i, j), cij, is equal to di+1,j.

According to Bodin [9], the shortest path from node 0 to node m “in a graph

that contains exactly k branches defines a clustering of the original data into k

categories.” This shortest path is determined by minimizing the sum of dissimi-

larities along the arcs of the path. (In [37], Saigal gives a dynamic programming

algorithm to solve this such problem). Hence, the problem of determining the
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Figure 5.7: Network Representation of Seasonal Clustering Problem
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groupings of months (seasons) of the year into k seasons can be solved by finding

the shortest path from node 0 to node m containing exactly k arcs.

The problem can also be solved by a set covering/partitioning integer pro-

gramming model. The goal of the set covering integer program is to “cover” the

whole year by a finite number of covers or seasons with the smallest total cost

and the goal of the set partitioning IP is to cover the whole year by a finite DIS-

JOINT set of seasons in a least cost fashion. Section 2.3 contains a discussion of

integer programming and set covering. Recall that the set covering/partitioning

IP has the following formulation:

Minimize
n∑
j=1

Cj xj

subject to
n∑
j=1

aij xj ≥ 1, for each month i

xj ∈ {0,1}

and the formulation for the set partitioning IP is:

Minimize
n∑
j=1

Cj xj

subject to
n∑
j=1

aij xj = 1, for each month i

xj ∈ {0,1}

where A=[aij] is a 0-1 incidence matrix with aij = 1 if i ∈Mj (month i is in

candidate season Mj), 0 otherwise; {Mj } correspond to candidate seasons, j =

1, ..., n; n is the number of candidate seasons; Cj is the cost of including Mj in

the cover; and xj is a binary variable with value 1 when Mj is included in the

cover, and 0 otherwise.
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In this case of assigning months to seasons, the columns of A (i.e. the set

of Mj ’s) can be efficiently enumerated since a season is characterized by a start

month and an end month and the months must be contiguous. The possible

seasons can be enumerated according to length of (contiguous) months. If all

possible combinations are allowed, i.e. groupings 1 month in length (M1,..., M12),

2 months in length (M13,..., M24) up to 12 months in length, there are a total of

133 possible seasons. Since there are 12 months, there are 12 different seasons for

each possible season length except for the season of length 12 (only 1 way). Thus,

12 multiplied to 11 plus 1 results in 133 possible seasons. Intuitively, no weather

season lasts more than 5 months. If the length of the season is restricted to being

no more than 5 months, then there is a total of 60 possible seasons. Since there

are 12 months and 5 different possible season lengths, enumerating the seasons

yields 60 possible seasons in this candidate season set. Results will be given for

both the candidate season sets. The incidence matrix A (for a candidate season

set of size 60) is:
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A =

M1 M2 ... M12 M13 M14 ... M24 ... M49 M50 ... M60

Jan 1 0 0 1 0 1 1 0 1

Feb 0 1 0 1 1 0 1 1 0

Mar 0 0 0 0 1 0 1 1 0

Apr 0 0 0 0 0 0 1 1 0

May 0 0 0 0 0 0 1 1 0

Jun 0 0 0 0 0 0 0 1 0

Jul 0 0 0 0 0 0 0 0 0

Aug 0 0 0 0 0 0 0 0 0

Sep 0 0 0 0 0 0 0 0 1

Oct 0 0 0 0 0 0 0 0 1

Nov 0 0 0 0 0 0 0 0 1

Dec 0 0 1 0 0 1 0 0 1

Observe that the 0-1 incidence matrix, A, almost has the consecutive ones prop-

erty (Section 2.3.1); for example, the ones in columns M13, M14, M49 and M50

are consecutive. Recall that a matrix having this property is totally unimodular

(TU), and thus, the IP can be solved as an LP. This is a desired property because

LPs can be efficiently solved using commercial software whereas IPs are, in gen-

eral, more difficult. The consecutive ones property does not hold because there

are wrap around columns such as M24 and M60 in matrix A. Though a matrix

with consecutive ones and wrap around is not TU, it can be solved in polynomial

time using a simple iterative procedure. This procedure involves rotating rows

to delete the wrap around column and solving the LP for each rotation. The

solution chosen is the best solution of all the optimal solutions of the rotations.
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We note that a similar iterative procedure could be applied to make use of the

shortest path model to solve set partitioning problems with wrap around.

Partitioning the months of the year into a finite number of seasons containing

contiguous months can be formulated as either a minimum cost shortest path

problem or a set covering/partitioning integer programming problem. The for-

mulation chosen for this thesis is the set covering/partitioning formulation and

it will be used in subsequent sections.

5.3.3 Determining Seasonal Clusters using Average GDP

Durations

In this section, a seasonal “clustering” technique that assigns consecutive months

to a particular season based on some measure of similarity will be developed. A

way to derive a finite number of seasons that contain contiguous months in a least

costly fashion is desired. A set covering/partitioning integer program model will

be used to determine the seasons.

Since the seasons are chosen in a least costly fashion, a cost of a season

must be defined and determined. Conceptually, the cost of season Mj , Cj , is the

“difference” between a month’s CPDF and a season’s CPDF. In this analysis,

the cost function will be based on a difference in means. While this clearly

represents an approximation, it should be noted that it appears that there exists

a direct (increasing) relationship between the mean and the variance of GDP

Lengths (Figure 5.8). Hence, a cost function based on comparing means should

also capture differences in variances, in this case.

Several cost functions are possible for comparing seasonal and individual

monthly means. In this section, different cost functions will be given and com-
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Figure 5.8: Relationship Between Mean and Variance of GDP Duration

pared. Section 5.3.5 will discuss a way to evaluate the quality of a given set of

seasons based on a broader set of criteria.

The following cost functions are considered: (i) sum of squared deviations

(SoSqs), (ii) normalized sum of squared deviations, or (iii) seasonal variances.

The cost functions were chosen because they measure the difference between a

season’s mean and the means of the months contained in the season. The first

cost is the sum of squared deviations between a season’s value (average GDP

duration) and the values of the months contained within that season. The cost,

normalized sum of squared deviations, is the sum of squared deviations divided

by the number of months contained in that season. This cost function is chosen

due to the possibly of a longer season being penalized by having a larger value for

SoSqs. A seasonal variance is deemed appropriate because actual daily ground

delay durations are considered. A seasonal variance is determined by calculating

the variance of all daily GDP durations from the overall seasonal average. Table

5.1 gives the formulas for the three different clustering criteria. Here X .j is the
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Sum of Squared Deviations(SoSqs)
m∑
j=1

(X .j −X ..)
2

Normalized SoSqs
(

1
m

) m∑
j=1

(X .j −X ..)
2

Seasonal Variances
(

1
m−1

)∑
j

∑
i

(Xij −X ..)
2

Table 5.1: Seasonal Clustering Criteria (Cost Functions)

average over all days i in month j, X .. is the (overall) seasonal average over all

days i and all months j, and Xij is the GDP length on day i in month j.

As an example, the cost of the January/February GDP Season using SoSqs is

calculated:

C13 = (GDPAvg13 - GDPAvg1)
2 + (GDPAvg13 - GDPAvg2)

2

= (4.62 - 5.08)2 + (4.62 - 4.16)2

=.2116 + .2116

=.4232

where 13 denotes the January/February Season, 1 denotes month January and 2

denotes month February.

The candidate set of seasons must be enumerated and input into the set

covering/partitioning model. Each season has a value: the average duration

of a GDP in that season. For example, the value for January is the average

of the Jan95 average GDP duration, Jan96 average GDP duration and Jan97

average GDP duration. The value for the Jan/Feb season is the averages of all

GDP average durations for Jan95, Jan96, Jan97, Feb95, Feb96 and Feb97. It

is possible that the set covering/partitioning procedure, under certain seasonal

clustering criteria, could choose all seasons of length 1. Hence, a constraint
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limiting the number of seasons chosen is added to the set covering formulation.

Now our set covering problem (with added constraint) can be formulated as

follows:

Minimize
n∑
j=1

Cj xj

subject to
n∑
j=1

xj ≤ N

n∑
j=1

aij xj ≥ 1, for each month i

xj ∈ {0,1}

where N is the maximum number of covers or seasons.

To solve this set covering problem, the CPLEX Linear Optimizer 6.0 on a

SUN Sparc10 Station was used. Table 5.2 gives the set covering solutions in

terms of seasons for n = 60. Observe for N=4, there is “over-covering” that

occurs using the seasonal variance cost function. If set partitioning is used, then

the resulting seasons (Mar-Jul, Aug, Sep, Oct-Feb) are disjoint. This approach

seems more appropriate for a seasonal “clustering” method since the results of

the set partitioning model ensures disjoint clusters. This issue is discussed in

more detail in Section 5.3.6.

It is interesting to note that for N=4 and n=60, the seasons determined by

the SoSqs’ seasonal clustering criterion correspond to the boxed seasons in the

time plot of the monthly average GDP lengths averaged over all 3 years, 1995,

1996 and 1997 (Figure 5.9).

In the remainder of the dissertation, the seasons for this particular result

will be referred to as: Winter GDP Season (Nov/Dec/Jan/Feb/Mar), Spring

GDP Season (Apr/May/Jun), Summer GDP Season (Jul/Aug), and Fall GDP

Season (Sep/Oct). The relative frequency histograms that estimate the CPDFs

for these seasons are given in the appendix (Figures C.1, C.2, C.3, C.4). Notice
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For 60 Possible Seasons: N = 3 N = 4 N = 5

SoSqs
Apr-Jun

Jul-Oct

Nov-Mar

Apr-Jun

Jul/Aug

Sep/Oct

Nov-Mar

Apr-Jun

Jul-Sep

Oct/Nov

Dec/Jan

Feb/Mar

Normalized SoSqs

Apr-Aug

Sep/Oct

Nov-Mar

Feb-Jun

Jul-Sep

Oct/Nov

Dec/Jan

Apr/May

Jun

Jul/Aug

Sep/Oct

Nov-Mar

Seasonal Variances

Apr-Aug

Jul-Oct

Nov-Mar

Apr-Aug

Jul-Oct

Jul

Nov-Mar

Mar-Jun

Jul

Aug

Sep

Oct-Feb

Table 5.2: Set Covering Solutions of GDP Seasons (n=60)
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Figure 5.9: Average of Monthly Average GDP Durations over 1995, 1996, 1997

that some of these histograms have a peak at 4 hours and “valleys” at other

hours, thus the smoothing technique is implemented and results are given in

Figures C.5, C.6, C.7, and C.8. In Table 5.3, the relative frequencies or associated

probabilities of ACDs in a particular season are given for both the frequency

histograms and the smoothed histograms. (The set covering and set partitioning

results for the candidate season set containing 133 seasons are given in Table B.1

in the appendix.)

The results of this section assume that the seasons have fixed monthly bound-

aries. Since it is possible to have a season that begins or ends on an arbitrary

day, a method is needed to determine seasons with arbitrary boundaries. A set

covering formulation can also be used in this case. The objective of the set cover-

ing IP would be to minimize seasonal costs of all possible seasons with arbitrary

start and end days.

In this section, for fixed seasonal boundaries, the overall distribution using

GDP data was partitioned into seasonal clusters or subunits. The same proce-
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0 1 2 3 4 5 6 ≥7

Winter (Nov-Mar) .21 .09 .07 .06 .15 .08 .08 .26

Winter-Smoothed .14 .12 .08 .09 .12 .11 .07 .27

Spring (Apr-Jun) .35 .15 .10 .12 .13 .06 .01 .08

Spring-Smoothed .23 .21 .13 .13 .12 .07 .04 .07

Summer (Jul/Aug) .35 .29 .17 .10 .05 .02 0 .02

Summer-Smoothed .27 .30 .20 .12 .06 .03 .01 .01

Fall (Sep/Oct) .21 .10 .27 .08 .12 .10 .08 .04

Fall-Smoothed .14 .18 .19 .15 .11 .11 .08 .04

Table 5.3: ACD Probabilities for Frequency and Smoothed Histograms

dures could be applied using the weather data. In the next section, the clustering

criterion developed will be based on differences in distributions rather than dif-

ferences in means. This criterion will be applied to both the GDP data and the

weather data.

5.3.4 Determining Seasonal Clusters using Empirical Dis-

tribution Functions

In the previous section, CPDFs were based only on means due to the relationship

between the means and variances. Since it is possible to have two distributions

that have the same mean, but are different, the cost function (in this section)

will be based on differences in distributions instead of differences in means.

Recall from Chapter 2 that an empirical distribution function (EDF) is used

to estimate an underlying cumulative distribution function (cdf) of a group of

observations or empirical data. The Kolmogorov-Smirnov (KS) test is used to
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test if two or more samples come from the same distribution. Since the KS

statistic measures the maximum deviation between the EDFs within classes and

the pooled EDF, it will be used as the cost of a season in the cost function of the

set covering/partitioning formulation.

For any given season in the candidate season sets of size 60 or 133, an EDF

is calculated for each month j in the given season according to:

Fj(x) = 1
n

n∑
k=1

I{xk ≤ x}

where n is the number of data points (days of GDPs or IFR conditions) in month

j. For each real number x, Fj(x) calculates the proportion of data that is less

than or equal to that point x. The average of the monthly EDFs, known as the

pooled EDF, gives the EDF for the season. The pooled EDF, F (x) is computed

by:

F (x) = 1
n

∑
j njFj

where nj is the sample size for month j and n =
∑

j nj . The KS statistic is

appropriate for measuring the difference in a season’s EDF and the EDFs of the

months contained in that season. The KS statistic will be used as the cost of a

given season in any of the candidate season sets and is calculated as:

maxx
√∑

j

(nj
n

)
[Fj(x)− F (x)]2

A season whose KS statistic is small implies that the maximum deviation of

any month’s EDF from the seasonal EDF is small. Hence, the objective of the

set covering/partitioning formulation is to minimize the maximum deviation of

the months’ EDFs from the seasonal EDF or minimize the KS statistic for a

given season. Note that the KS statistic requires two or more classes (months) in
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order to be calculated, thus no single month seasons are allowed using this cost

criterion. Table 5.4 contains the resulting seasons using both the GDP data and

the weather data for 60 candidate seasons. Table B.2 in the appendix give the

results for the candidate season set of size 133.

The seasonal clustering criterion (cost function) developed in this chapter

have yielded many different sets of seasons. A method is needed to assess the

quality of the sets of seasons and to determine which set is the “best” set.

5.3.5 Post Analysis for Evaluating Sets of Seasons

In previous sections, different cost functions yielded different sets of seasons. The

question now is: which set of seasons is the “best” set? This section will discuss

different methods for evaluating the quality of a given set of seasons. One way to

evaluate a given set of seasons is by comparing the means of the different seasons

to ascertain if they are statistically different from each other. This can be done

using the method of multiple comparisons in a single-factor analysis of variance

(ANOVA). Single-factor ANOVA is used to test whether there do indeed exist

statistically differences in the means of the months. This must be performed

before multiple comparisons because if there does not exist a difference in means

(null hypothesis not rejected), then there is no need to determine where the

differences are.

Section 2.4.3 discussed assumptions that must be met in order for the results

of the F -Test of single-factor ANOVA to be valid. These assumptions can be

checked using graphical residual analysis. Figure 5.10 demonstrates that the

assumption of constant error variance or homoscedasticity is violated since the

time plot has a “dumbbell” shape. This implies that the day to day variability in
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For 60 Possible Seasons: N = 3 N = 4 N = 5

Covering (GDP Data)

Apr/May

Jun-Oct

Nov-Mar

Apr-Jun

Jul/Aug

Sep-Jan

Feb/Mar

Apr/May

Jun-Oct

Oct/Nov

Dec/Jan

Feb/Mar

Partitioning (GDP Data)

Apr/May

Jun-Oct

Nov-Mar

Apr-Jun

Jul/Aug

Sep-Jan

Feb/Mar

Apr-Jun

Jul/Aug

Sep-Nov

Dec/Jan

Feb/Mar

Covering (Weather Data)

Mar-Jun

Jul-Sep

Oct-Feb

Mar/Apr

May/Jun

Jul-Sep

Oct-Feb

Mar/Apr

May/Jun

Jul-Sep

Oct/Nov

Nov-Feb

Partitioning (Weather Data)

Mar-Jun

Jul-Sep

Oct-Feb

Mar/Apr

May/Jun

Jul-Sep

Oct-Feb

Mar/Apr

May/Jun

Jul-Sep

Oct/Nov

Dec-Feb

Table 5.4: Set Covering/Partitioning Solutions using KS statistics (n=60)

80



GDP durations is more extreme in the winter months than in the summer months.

Figure 5.11 demonstrates the departure from normality if the model with daily

GDP durations is used. A studentized residual is a residual divided by the square

root of the mean square error (estimate of variance). If the model is based on

average GDP durations instead of daily GDP durations, the assumptions are

more nearly satisfied (Figures 5.12 and 5.13). In Figure 5.12, the residuals lie

in a horizontal band with one possible outlier (October 96). It appears that the

averaging of the daily GDP durations remove enough variability in the data to

give constant error variance and normality of residuals.

Figure 5.10: Time Plot of Residuals of Daily GDP Durations

An F -test is used to determine if there are statistically significant differences

among the means of the months. Using the model involving the average GDP
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Figure 5.11: QQ Plot of Studentized Residuals of Daily GDP Durations
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Figure 5.12: Time Plot of Residuals of Monthly GDP Average Durations

durations, the F -test tested the hypothesis that all factor level (monthly) means

are equal and resulted in a p-value of .0030, which implies that there does exist

some linear function of parameters that is significantly different from 0. In other

words, there does exist a significant difference in means of the months.

The set of seasons from the previous sections give some idea of where the

differences are. The procedure of multiple comparisons can be used to evaluate a

given set of seasons. Multiple comparisons, also known as mean separation tests,

tests for equality between two or more factor level means. Each comparison is

known as a contrast, L, and is defined as L =
∑

tjµj, where tj satisfies the

restriction
∑

tj = 0.

Single-Factor ANOVA with multiple comparisons was implemented for the

Winter, Spring, Fall and Summer GDP Seasons. Table 5.5 lists the different

contrasts (in terms of seasons), their corresponding p-values and standard errors
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Figure 5.13: QQ Plot of Studentized Residuals of Monthly GDP Average Dura-

tions
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Contrasts p-values standard errors

Jul/Aug vs. Apr-Jun .0288 1.801

Nov-Mar vs. Apr-Jun .0015 2.401

Nov-Mar vs. Jul/Aug .0001 2.750

Nov-Mar vs. Sep/Oct .0053 2.750

Sep/Oct vs. Jul/Aug .0388 1.315

Table 5.5: Results of ANOVA Multiple Comparisons Test

that resulted from using the Scheffe’ multiple comparisons’ procedure. Based on

the p-values, there are statistically significant differences between the means of

the following pairs of seasons: Jul/Aug and Nov-Mar; Jul/Aug and Sep/Oct;

Jul/Aug and Apr-Jun; Nov-Mar and Sep/Oct; and Nov-Mar and Apr-Jun. It

should be noted that the hypothesis that there is a difference in the mean of the

Sep/Oct season and the mean of the Apr-Jun season could not be rejected. This

is due to the fact that they essentially have the same mean, but cannot be placed

in the same season because they are separated by the Jul/Aug season, which has

a mean that statistically differs from both seasons.

Caution should be taken with this method since the assumptions on the er-

ror terms were violated for the actual daily GDP durations. In practice, these

assumptions are not often satisfied. When this occurs, a weighted least squares

(WLS) method can be used. In ordinary least squares (OLS), the residual sum

of squares (
n∑
i=1

ε̂2
i =

n∑
i=1

(Yi− Ŷi)2) is minimized. In WLS, a weighted residual sum

of squares (
n∑
i=1

wi(Yi − Ŷi)2) is minimized, where wi is the weight of observation

i. Weights are used to adjust the amount of influence of each observation. The

normal equations to be solved are
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Source p-value

Model (OLS) .0030

Model (WLS) .0171

Month (OLS) .0015

Month (WLS) .0136

Year (OLS) .6629

Year (WLS) .5900

Table 5.6: F-Test Results for OLS and WLS

β = (XTWX)−1XTWY

where W is a diagonal weight matrix. According to the Gauss-Markov Theo-

rem, estimates from OLS are unbiased and have minimum variance among all

unbiased linear estimators. In other words, OLS estimates are best, linear un-

biased estimates (BLUE) if the Yi’s are uncorrelated and homoscedastic. If the

Yi’s are uncorrelated and heteroscedastic, then WLS with weights, wi = 1/Var

Yi, is BLUE. OLS is performed on GDP data to obtain error variances of the

observations to be used as weights in a weighted least squares procedure. WLS is

performed using sample derived weights for the purpose of making inferences on

the fixed effects of the model. Since we are estimating weights from the empirical

data, the resulting WLS estimators may be more efficient than OLS, but are not

BLUE. Table 5.6 demonstrates that there is little difference in the p-values for the

F -tests using OLS and WLS in the single-factor ANOVA. Using either method,

the results state that there do exist statistically significant differences in means

related to the month, but not to the year.

To avoid the issue of whether assumptions are satisfied or not for the F -test
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to be valid, the mean square ratio (better known as the F -value if normality is

satisfied) can be used to evaluate a given set of seasons. The mean square ratio

is the ratio of the mean square between groups (seasons) and the mean square

within groups (seasons): 
∑
s

ns(Y.s − Y..)2

k − 1



∑
s

∑
j

(Yjs − Y.s)2

n− k


It is desired to have seasons that exhibit homogeneity within seasons and vari-

ability between seasons. A mean square ratio that is large confirms that this is

the case. The mean square ratios are computed for pairwise contiguous seasons.

If the minimum of these values is greater than some large constant, e.g. 10, then

the set of seasons is valid. The set of seasons resulting from the set partitioning

procedure that minimized the KS statistic using weather data satisfy the mean

square ratio criterion. See Table 5.7. For the candidate season set of size 60, the

season Mar-Jun will be referred to as the “Rainy” Season, Jul-Sep as the “Sum-

mer Weather” Season and, Oct-Feb as the “Heavy Fog” Season. The CPDFs for

these seasons will be used as input into the Hoffman-Rifkin model and results

will be compared with Command Center plans in Sections 6.1 and 6.3.

Many cost functions were given in Sections 5.3.3 and 5.3.4 to determine sets

of seasons and the post analysis in this section is used to determine the best

set of seasons. Best refers to a set of seasons where there exists as much intra-

season homogeneity as possible and as much inter-season variability as possible.

One may be interested in conjecturing a set of seasons instead of performing

the complex process (set partitioning IP) of determining a set of seasons. One
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Contiguous Seasons Mean Square Ratio

n=60 Mar-Jun vs Jul-Sep 14.06

Jul-Sep vs Oct-Feb 24.39

n=133 May/Jun vs Jul-Sep 11.41

Jul-Sep vs Oct-Apr 23.33

Table 5.7: Mean Square Ratios of Weather Seasons

example of a set of seasons that could be conjectured is the “standard” set of

seasons that are actually referred to as the seasons of the year. The boundaries

of these seasons are determined by the dates of the Autumnal Equinox, the

Vernal Equinox, the Summer Solstice and the Winter Solstice. December 21st

separate the fall and winter seasons; March 21st separate the winter and spring

seasons; June 21st separate the spring and summer seasons; and September 21st

separate the summer and fall seasons. Since the exact dates of the Winter Solstice,

the Vernal Equinox, the Summer Solstice and the Autumnal Equinox change

year to year (but always occurring near the end of the months), the seasons are

assumed to be January to March, April to June, July to September and October

to December. This set of seasons did not satisfy the post analysis criterion

because not all mean square ratios of contiguous seasons exceeded 10. See Table

5.8.

The mean square ratios of 1.23 and 1.85 suggests that the within season dis-

similarity is basically the same as the between season dissimilarity, which implies

that the inter-season variability is small. Since we want (contiguous) seasons to

be as different as possible, the “standard” set of seasons is not a very good set.
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Contiguous Seasons Mean Square Ratio

Jan-Mar vs Apr-Jun 1.23

Apr-Jun vs Jul-Sep 13.89

Jul-Sep vs Oct-Dec 12.08

Oct-Dec vs Jan-Mar 1.85

Table 5.8: Mean Square Ratios of “Standard” Seasons

5.3.6 Seasonal “Clustering” Technique

In general, clustering refers to the grouping of objects that are similar. Partitional

clustering refers to the decomposition of a data set into a partition or set of

disjoint clusters through the minimization of a distance (cost) function. Thus,

based on the properties of partitional clustering, a seasonal clustering technique

(clustering with an imbedded time series) should have the properties that the

clusters chosen are the results of minimizing some cost function, they are disjoint

and they contain points that are contiguous.

Usually in a partitional clustering procedure such as K-means, there is a

process of searching through the set of all possible clusterings (partitions) to

determine the best partition of the data. The set of all possible partitions can

be too large so that a local optimization method is needed. In K-Means, a

data set of M points are partitioned into K clusters (P (M,K)), and the cost

criterion is the average squared distance of the observations from their nearest

center location. The nearest center location is usually determined by a standard

Euclidean distance function. The search procedure is an iterative procedure of

assigning data points to clusters that contain their nearest centers, recomputing

the center locations and then reassigning the observations until the centers change
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by a small (ε) amount.

In a seasonal clustering technique, there is restricted partitioning because the

number of possible partitions is reduced due to the restriction that time-order

of observations must be maintained. Thus, the set of all possible partitions can

be efficiently enumerated, as in a set covering/partitioning procedure. Hence,

set partitioning will be used as the search procedure (determination of clus-

ters/seasons) for the seasonal clustering technique. According to discussion in

Section 5.3.2, it is known that this IP, whose A matrix possesses the consecutive

ones property with wrap around can be solved efficiently. Thus, the seasonal

clustering problem can be solved efficiently.

As in partitional clustering, the determination of the best cost (objective)

function and appropriate number of clusters are difficult tasks. The cost (ob-

jective) function is based only on within season interaction. In the seasonal

clustering approach we have proposed, alternative sets of clusters/seasons were

generated by the set partitioning model based only on within season interactions.

A post-processing step then took into account the between season interactions.

See Figure 5.14. Recall from the previous section that the post-processing eval-

uation criterion is the mean square ratio between contiguous seasons.

The distributions are changing continuously because weather is a continuous

process. Because of the continuous process, there are periods between seasons

that are transition periods. The evaluation criterion yields the best set of seasons

with consideration to these transition periods. It might be desired to create some

type of combination of seasons on either side of a transition period to derive the

distribution for the transition period.

Seasonal distributions, which have satisfied the mean square ratio criterion,
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Figure 5.14: Perspective on Seasonal “Clustering”seasonalclustering
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may be better operationally than daily distributions because they correspond

more to the intuition of the specialists at the ATCSCC. In the case of SFO, the

specialists refer to times as “heavy fog” season or “rainy” season. These partic-

ular seasons last more than one day or one month. There is also the issue of

compactness of seasons. The lengths of resulting seasons that are most appropri-

ate depend on the particular situation being modeled. At SFO, seasons of length

one do not make sense because controlling weather conditions such as fog are

longer-lived.

5.4 Extension to CPDFs of 2-Parameter ACDs

In Chapter 4, the 2-Parameter ACD is described as a capacity scenario in which

both the start time of reduced capacity AND the duration of reduced capacity

must both be estimated. Ostensibly, estimating the 2-Parameter ACD is a more

challenging problem since both parameters must be estimated. This type of

ACD is most appropriate for modeling airports that are plagued with weather

conditions that could materialize at any time of the day, e.g. thunderstorms or

snow.

Currently, the operational procedures at the ATCSCC cannot accommodate

or is not equipped to handle this type of ACD where two parameters need to be

estimated. The specialists set a (planned) start time of a GDP to correspond

to the start time of reduced capacity. Thus, start time (of reduced capacity) is

assumed to be deterministic. In the case of deterministic start times, determining

the seasons that vary with start time can be considered a seasonal “clustering”

problem. The techniques presented in previous sections could then be used to

determine which intervals of start times have the same CPDFs. The problem
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now becomes how to find the breakpoints in start times that would determine

a change in the CPDFs. CPDFs of 2-Parameter ACDs can be generated in the

same way as the CPDFs of 1-Parameter ACDs. In the case of the 2-Parameter

ACDs, there would be an overall CPDF for each of the (planned) start times (or

intervals of start times) of GDPs. The seasonal “clustering” techniques could

again be used to partition the overall CPDF of 2-Parameter ACDs (for each of

the GDP start times) into seasonal CPDFs. Hence, we can determine seasonal

distributions of durations of IFR conditions given a GDP is planned for every

possible start time (or interval of start times). The arrival capacity distribution

generator in the ConOps flow chart (Figure 1.1) would need both the season and

the start time as inputs to output capacity scenarios (2-Parameter ACDs) with

their associated probabilities.

We now consider the case where decision processes and models are available

that allow the use of a bivariate distribution whose two parameters are start time

and duration of reduced capacity. In this case, instead of calibrating a CPDF

of 1-Parameter ACDs, we must calibrate a CPDF of 2-Parameter ACDs. In

principle, the same general approach can be applied, but the number of bins will

increase substantially. Thus, to get more accurate estimates, more empirical data

would be required. In addition, the seasonal clustering technique would become

more complex. If the data supports the hypothesis that start time of reduced

capacity is independent of duration of reduced capacity, then the problem could

be solved by estimating two CPDFs of 1-Parameter ACDS. Each of these could

be estimated using the methods of this thesis.
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Chapter 6

Decision Models and Evaluation of ACD Models

6.1 The Hoffman-Rifkin Static Stochastic Ground

Holding Model

In their theses, Ryan Rifkin (MIT)[35] and Robert Hoffman (University of Mary-

land)[21] developed integer programming models to address the static stochastic

version of the ground holding problem (GHP). (For a succinct description of the

model, see [5]). Recall that the GHP is the problem of determining an optimal

balance between the amount of delay to assign to flights to be taken on the ground

during a GDP and the amount of expected airborne delay. The Hoffman-Rifkin

static stochastic ground holding problem (H-R) [5] is formulated as:

Minimize
T∑
t=1

cgGt +
Q∑
q=1

T∑
t=1

capqWq,t

subject to

At −Gt−1 +Gt = Dt t = 1, ..., T + 1 (1)

G0 = GT+1 = 0
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−Wq,t−1 +Wq,t −At ≥ −Mq,t t = 1, ..., T + 1, (2)

q = 1, ..., Q

Wq,0 = Wq,T+1 = 0

At ∈ Z+,Wq,t ∈ Z+, Gt ∈ Z+ (3)

The objective of the H-R model is to minimize the sum of the costs of assigned

ground delay and the costs of expected (unplanned) airborne delay. The decision

variables, At, represent the number of flights that should arrive at the airport in

time period t with no airborne delays. One can think of At as a planned AAR

(PAAR) during time period t. Also, Wq,t is the number of flights delayed in the

air from time period t until a subsequent time period under scenario q and Mq,t

is the arrival capacity during time period t under scenario q. A sequence of Mq,t

for the whole time horizon, T , is one possible capacity scenario q or ACD. Recall

the various forms of ACDs as discussed in Chapter 4. The interpretation of Gt

has certain subtleties. It can be thought of as the number of flights delayed on

the ground from time period t to t+ 1. However, here time is measured relative

to the time at which these flights would arrive at the airport. The actual time at

which the delay would be taken is determined by choosing the specific flights to

be delayed and then subtracting the appropriate (flight-specific) en-route times.

Constraint set (1) states that all flights that are predicted to arrive in time period

t (demand or Dt) or were delayed on the ground from the previous time period

(Gt−1) must arrive in the current time period (At) or be delayed on the ground

until a subsequent time period (Gt). Constraint set (2) states that under scenario

q, all flights scheduled to arrive in the current time period or that are air delayed
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from a previous time period (Wq,t−1) must be air delayed until a subsequent time

period or must arrive in the current time period (Mq,t).

The inputs into the H-R model are: the number of predicted arrivals or de-

mand for each time period t (Dt), the cost of ground delaying one flight for one

time period (cg), the cost of one period of airborne delay of a single flight (ca),

and Q capacity scenarios (ACDs) with associated probabilities, pq. The output

of the model is the number of flights that should land in a given time period t,

At, i.e., the number of arrival slots that should be made available in each time

period t.

The H-R model assumes that all ground delay assigned under a particular

output scenario is realized, deterministic and independent of the scenario. The

model does not take into consideration the dynamic changes that may occur

if one scenario is planned and another occurs. Thus, the model does not give

the flexibility to make changes in assigned ground delay as forecasted weather

conditions change.

6.2 Adjusting Assigned Ground Delay for Dy-

namically Changing GDPs

The H-R model attempts to capture the stochastic nature of weather through the

probabilistic distribution of capacity scenarios. It outputs a particular scenario

based on demand, the air to ground cost ratio and the probability of the scenario.

It does not capture the existing ability to dynamically change assigned ground

delay as (predicted) conditions change. For example, if a dissipation of predicted

weather occurs, then it may be possible to reduce previously assigned ground
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delay. Thus, some assigned ground delay may be recovered if a GDP is canceled

due to dissipation of inclement weather. Alternatively, if the duration of poor

weather is longer than expected, then the GDP can be revised/extended, hereby

assigning additional ground delays.

6.2.1 Shortened Reduced Capacity Due to Canceled GDP

Here we consider the case where a GDP is canceled, thus the duration of reduced

capacity is shortened. Depending on how far a flight’s (controlled) departure

time is from the cancellation time of a GDP, the flight can recover some or all of

its assigned ground delay. Suppose a flight f had an original estimated time of

departure (OETD) of 12:30, but under a GDP, it was given a controlled time of

departure (CTD) of 1:15. Now suppose that the inclement weather clears such

that the GDP is canceled at 12:15. Since flight f is still on the ground at this

cancellation time and full capacity has been restored, it is allowed to take off as

soon as possible. However, a number of factors, e.g., the status of the passengers,

might delay the time at which the flight is able to depart. For example, its

actual runway time of departure (ARTD) might be 12:45. In this case, some of

its assigned delay (CTD-OETD) is recovered. The actual ground delay (GD)

realized is ARTD-OETD. In this scenario:

• Assigned GD = CTD - OETD = 1:15 - 12:30 = 45 minutes

• Actual GD = ARTD - OETD = 12:45 - 12:30 = 15 minutes

• GD Recovered = Assigned GD - Actual GD = CTD - ARTD = 1:15

- 12:45 = 30 minutes
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Flights whose CTDs are prior to the GDP cancellation time (CNXTime) will

incur all of their assigned GD. Thus, only flights that are controlled to depart

after the CNXTime can recover some of their assigned GD. If a flight’s OETD

is before the CNXTime, then the amount of assigned GD that is available for

recovery is CTD-CNXTime. See Figure 6.1.

Figure 6.1: Ground Delay Available for Recovery (Recoverable GD)

ARTD −max(OETD,CNXTime)

min(CTD −OETD,CTD− CNXTime)

The above percentage can be greater than 1 if a flight’s ARTD is greater than

its CTD. This means that the flight incurred extra delay (possibly) unrelated to

the GDP. In our data analysis, such flights are assumed to have incurred 100%

of their assigned GD. To determine the percentage of recoverable GD that was

recovered, we subtract the above value from 1:
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1 -

[
ARTD −max(OETD,CNXTime)

min(CTD −OETD,CTD− CNXTime)

]
Using the information in the ADL files (Section 3.4) for all flights scheduled

to arrive at SFO on all days in 1998 that a GDP was planned and run during

the morning hours, the percentage of recoverable GD recovered as a function of

a flight’s CTD minus CNXTime is calculated. Figure 6.2 graphs the change in

this percentage as a function of CTD-CNXTime. Our prior conception was that

the functional relationship should be logarithmic. (Other functions were fitted to

the data, but the log yielded the largest R2 value). However, it is difficult to fit

a good function (logarithmic) to the data. Since the log function can grow above

the value of 100, a more appropriate function may be one that has an asymptote

at y = 100.

The graph in Figure 6.2 contains data points whose values (percentages) were

fixed at 0 if they were originally negative and fixed at 100 if they originally

exceeded 100. As stated previously, any flight whose percentage is negative is

indicative of extra delay being incurred possibly from mechanical delays or other

types of problems. Flights whose percentages exceed 100 have made up more

delay than the oversimple model indicated was possible. Those flights might

have departed prior to their CTDs or could have been exempted from the GDP.

Several methods for filtering the data were implemented. Using the original

percentages, the data was filtered by removing those data points whose percent-

ages were below -10% or above 110% (Figure 6.3). The data was also filtered

by considering only those flights whose assigned GD was no more than 2 hours

(Figure 6.4). Another method of filtering is to calculate percentage of recovered

GD for those flights whose CTDs are no more than 3 hours after the CNXTime

(Figure 6.5).
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Figure 6.2: Plot of Percentage of Ground Delay Recovered as a Function of

Difference of (Controlled) Departure Times from Cancellation Times of GDPs

Figure 6.3: Filtered Percentage of GD Recovered for Percentages [-10,110]
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Figure 6.4: Percentage of GD Recovered for Assigned GD < 2 Hours

Figure 6.5: Percentage of GD Recovered for Flights Whose (Controlled) Depar-

ture Times Are Less Than 3 Hours After Cancellation Times of GDPs
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Figure 6.6: Plot of Percentage GD Recovered After All Filtering

Filter Reason

CTD - OETD = 0 Makes denominator 0 1143 1082

CTD - OETD ≮ 0 No control before scheduled 1082 1040

CTD - OETD ∈ [11,120] GD no more than 2 hours 1040 971

CTD - CNXTime < 180 Depart less than 3 hrs after CNX 971 761

% GD Recovered ∈ [-10,110] (see section) 761 587

Table 6.1: Filtering Criteria

No one filtering method resulted in a set of data to which a good logarithmic

function could be fitted (low R2), so a combination of filtering methods was used.

Table 6.1 lists the various filtering criteria, the reasons the criteria are reasonable,

and the number of observations before and after the particular filtering is per-

formed. Figure 6.6 is the result of the combination of filtering techniques. Though

the R2 value (amount of total variation explained by the function) increases, it

is still not a very good fit. Thus, averages of percentages of GD recovered are
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Time Intervals % GD Recovered

0-30 mins 42 %

31-60 mins 42 %

61-90 mins 66 %

91-120 mins 78 %

≥ 120 mins 80 %

Table 6.2: Actual Percentages of GD Recovered in a Canceled GDP

calculated in 30-minute intervals (Table 6.2). It is assumed that any flight whose

CTD is no more than 30 minutes after the CNXTime recovers none (0%) of its

assigned GD and any flight whose CTD is more than 2 hours after the CNXTime

recovers all (100%) of its assigned GD. Table 6.3 gives the average percentages

for each 30-minute bucket for this case. These assumptions will be observed and

the respective percentages will be used to modify the output of the H-R model.

The amount of assigned (recoverable) GD in a canceled GDP is adjusted by the

(recoverable) amount that is recovered,

Recoverable GD realized =

Assigned Recoverable GD - (% GD Recovered)*(Assigned Recoverable GD).

6.2.2 Lengthened Reduced Capacity Due to Revised GDP

With the emergence of CDM came the flexibility to “revise” different parame-

ters of the GDP as conditions (weather or demand) change. If a GDP is re-

vised/extended due to the worsening of weather conditions, then the originally

assigned ground delay is modified and, thus depends on the scenario. The H-R

model assumes that ground delay is deterministic and that, if reduced capacity
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Time Intervals % GD Recovered

0-30 mins 0 %

31-60 mins 40.80 %

61-90 mins 65.20 %

91-120 mins 77.15 %

≥ 120 mins 100 %

Table 6.3: Average Percentages of GD Recovered in a Canceled GDP

lasts longer than the duration in the planned scenario, then all “extra delay” is

in the form of airborne delay. Thus, it overestimates airborne delay.

Figure 6.7: Additional GD under Revised GDP

If a flight’s CTD is before the revised time (RevTime) of the GDP, then it

may indeed incur unplanned airborne delay (AD), but if the flight’s CTD is after

the RevTime, then it should incur only extra GD.

In a GDP, flight delays are initially calculated by setting a controlled time of

arrival (CTA). Assigned GD is set equal to CTA-OETA, and GD is then added to

the OETD to determine the CTD. Flights are exempted from the revised portion
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of the GDP if

CTD - RevTime < 0

and the airborne delay they may incur is calculated by subtracting their CTAs

under the planned scenario from their CTAs under the actual scenario. On the

other hand, flights whose CTDs satisfy

CTD - RevTime > 0

can be assigned additional delay on the ground. The additional delay is calculated

just as stated above for the other case, but all the delay is taken on the ground.

Hence, assigned GD from the H-R model needs to be adjusted appropriately for

the flights in a revised GDP.

6.3 Analysis and Computational Results

6.3.1 H-R Results (M PAAR) for Seasonal CPDFs

Recall that the required inputs into the H-R model are the demand or predicted

arrivals for each time period over a given (discretized) time horizon, the capacity

scenarios (1-Parameter ACDs) with their associated probabilities, the cost of one

unit of (assigned) ground delay, and the cost of one unit of expected airborne

delay.

Actual GDPs during 1998 were run through the H-R model to determine the

PAAR from the model (M PAAR) over a given time period. ADL files (Section

3.4) were used to determine the aggregate demand for each time period 4 hours

in advance of the planned start time of the GDP. Specialists at the ATCSCC
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plan a GDP at least 4 hours in advance based on forecasted weather conditions,

predicted demand and capacity. In the ADLs, there are only 7 periods (hours) of

predicted demand 4 hours in advance of the start time of the GDP. Thus, each

ACD contain only 7 periods of capacity. There are a total of 8 input capacity

scenarios (Table 6.4). The associated probabilities used depend on the seasonal

CPDFs of choice. For analysis purposes, the seasonal CPDFs used are those

resulting from the set partitioning method that minimized differences in EDFs

implemented on weather data (Section 5.3.3). These seasons were referred to as

the “Heavy Fog” (Oct-Feb) season, the “Rainy” (Mar-Jun) season and the “Sum-

mer Weather” (Jul-Sep) season. These seasonal CPDFs were chosen for analysis

because the F -values between contiguous seasons satisfy the mean square ratio

criterion for a good set of seasons (Section 5.3.5). The associated probabilities

for the 1-Parameter ACDs in the seasonal CPDFs (Figures 6.8, 6.9, 6.10) are

conditioned appropriately for the inclusion of the 0-hour reduced capacity ACD

from the GDP data. The costs of one unit (minute) of ground delay and air de-

lay were based on a study by the Air Transport Association (March 2, 2000) and

reported by Metron, Inc. [1] The study concluded that the cost of one minute

of delay at the gate is $24.30, the cost of one minute of taxi-out delay is $30.47

and the cost of one minute of airborne delay is $47.64. Based on these values,

one unit of airborne delay costs 1.96 times more than one unit of ground delay.

The H-R model was run with cg = 1 for three alternative airborne delay factors:

ca = 1.5, ca = 2.0, and ca = 2.5. The M PAAR results are given in Table 6.4. It

is observed that the output scenario corresponds to one of the input scenarios for

any given season. Each day of a given season has the same resulting scenario and

this may be due to consistent day-to-day projected demand levels. Based on the
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# of Hours of Reduced Capacity 1-Parameter ACD

0 45 45 45 45 45 45 45

1 30 45 45 45 45 45 45

2 30 30 45 45 45 45 45

3 30 30 30 45 45 45 45

4 30 30 30 30 45 45 45

5 30 30 30 30 30 45 45

6 30 30 30 30 30 30 45

7 30 30 30 30 30 30 30

Table 6.4: Capacity Scenarios (Inputs into the H-R Model)

Weather Season ca = 1.5 ca = 2.0 ca = 2.5

Oct-Feb 3 hours 4 hours 5 hours

Mar-Jun 2 hours 3 hours 4 hours

Jul-Sep 2 hours 2 hours 3 hours

Table 6.5: Results of the H-R Model (Number of Hours of Reduced Capacity)

assumption that the output scenario will be one of the input scenarios, a general

decision model used to cost out scenarios for a given plan is presented in Section

6.4.

6.3.2 Procedure for Comparing Planned and Actual Ca-

pacity Scenarios

Let F be a set of flights (f) scheduled to arrive at a congested airport. We denote

by M PAAR the PAAR based on results from the H-R model, by CC PAAR the
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Figure 6.8: Conditional Frequency Histogram for “Heavy Fog” Season
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Figure 6.9: Conditional Frequency Histogram for “Rainy” Season
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Figure 6.10: Conditional Frequency Histogram for “Summer Weather” Season
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PAAR based on the Command Center’s planned duration of the GDP, and by

ACT PAAR the PAAR based on the actual duration of the GDP (baseline).

Given the planned and actual durations of reduced capacity, the procedure

assigns CTAs or virtual arrival slots to the flights that fall into these durations

or thereafter. The procedure proceeds by calculating the amount of assigned

ground delay under each “plan”, adjusting the amounts appropriately depending

on whether the plan is greater than the actual or vice versa, and finally calculating

the total weighted delay of a given plan in comparison to the total weighted delay

of an actual “plan”.

For each f ∈F, the data fields to be used in the model are:

M CTAf is the controlled time of arrival under M PAAR.

CC CTAf is the controlled time of arrival under CC PAAR.

ACT CTAf is the controlled time of arrival under ACT PAAR.

OETAf is the original estimated time of arrival.

CTDf is the actual controlled time of departure.

GDf
xxx is the amount of assigned GD under plan xxx.

ADf
xxx is the amount of AD under plan xxx.

TGDxxx is the total amount of assigned GD for all flights under plan xxx.

TADxxx is the total amount of (weighted) AD for all flights under plan xxx.

TWDxxx is the total weighted delay (sum of GD and weighted AD) for all

flights under plan xxx.

The time parameters are:

t0 is the start time of the GDP (GDP Start) under any of M PAAR, CC PAAR,

ACT PAAR.

T is the entire time horizon for time period t, t = t0, ..., T .
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tM1 is the planned end time of the GDP under M PAAR.

tCC1 is the planned end time of the GDP under CC PAAR.

tACT1 is the end time of the GDP under ACT PAAR, i.e. the actual end time

of reduced capacity.

t0 ≤ t ≤ txxx1 is the time interval of reduced capacity under plan xxx.

The overall approach to comparing the total weighted delay incurred under

M PAAR and under CC PAAR to total weighted delay under ACT PAAR is

as follows:

Main Routine

Step 1:

Determine M PAARt for t0 ≤ t ≤ tM1 ;

Determine CC PAARt for t0 ≤ t ≤ tCC1 ;

Determine ACT PAARt for t0 ≤ t ≤ tACT1 .

Step 2:

(1) Determine set of flights to include in GDP:

• Under M PAAR: {f ∈ F : t0 ≤ OETAf ≤ tM1 }

• Under CC PAAR: {f ∈ F : t0 ≤ OETAf ≤ tCC1 }

• Under ACT PAAR: {f ∈ F : t0 ≤ OETAf ≤ tACT1 }

(2) Initialize M CTAf , CC CTAf , and ACT CTAf to OETAf for OETAf =

GDP START (t0), for all flights that satisfy OETAf ≥ t0.

Step 3:

Assign flights CTAs or virtual slots under each of M PAAR, CC PAAR,

ACT PAAR (See Subroutine).

Step 4:
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Determine amounts of (initial) assigned GD for each flight f under each of

M PAAR, CC PAAR, and ACT PAAR.

• GDf
M PAAR = M CTAf −OETAf ;

• GDf
CC PAAR = CC CTAf −OETAf ;

• GDf
ACT PAAR = ACT CTAf −OETAf .

Step 5:

Adjust assigned GD and determine AD when planned duration is shorter or

longer than actual duration (as discussed in Sections 6.2.1 and 6.2.2).

If M PAAR < ACT PAAR (planned too short), then GDP may be revised

and

for CTDf >RevTime, GDf
M PAAR = GDf

M PAAR+(ACT CTAf−M CTAf);

for CTDf <RevTime, ADf
M PAAR = ACT CTAf −M CTAf .

If M PAAR > ACT PAAR (planned too long), then GDP may be canceled,

and the adjusted GD is:

GDf
M PAAR = GDf

M PAAR−GDf
Re coverable∗%GDfRecovered(CTDf−CNXTime).

(Similarly, assigned GD can be adjusted and AD calculated under CC PAAR.)

Step 6:

Determine Total Assigned GD under M PAAR (TGD M) by

TGD M =
∑
f∈F

GDf
M PAAR.

Determine Total Airborne (weighted) Delay (TAD M) under M PAAR for

Revised/Extended GDP by

TAD M = (
∑
f∈F

ADf
M PAAR)*ca.
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(Similarly, total assigned GD and weighted AD can be calculated under CC PAAR.)

Step 7:

Calculate Total Weighted Delay Under M PAAR (TWD M) by summing total

GD and total weighted airborne delay,

TWD M = TGD M + TAD M.

(Similarly, total weighted delay can be computed for CC PAAR.)

Step 8:

Calculate Average Total Weighted Delay over representative sample of GDP

Days under M PAAR:

AvgTWD M = 1
n

n∑
d=1

Sumd(TGD M,TAD M).

(Similarly, average total weighted delay can be computed for CC PAAR.)

Step 9:

Compare average total weighted delay under M PAAR and CC PAAR to

ACT PAAR according to:

AvgTWD M - Avg(TGD ACT) compared to

AvgTWD CC - Avg(TGD ACT).

Subroutine:

If M PAARt = 30 (flights per time period t), then the set of virtual slots,

S, is {max(OETAf , t0) = M CTA0, max(OETAf , M CTA0 +2), max(OETAf ,

M CTA0 + 4), ..., tM1 }.

If M PAARt = 45 (for t≥ tM1 ), then the set of virtual slots, S, is {max(OETAf ,

M CTAtM1
+1), max(OETAf , M CTAtM1

+3),max(OETAf , M CTAtM1
+4), max(OETAf ,

M CTAtM1
+ 6), ..., T}.

(Similarly, flights can be assigned CTAs under CC PAAR and ACT PAAR.)
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AvgTGD M = 7284 AvgTGD CC = 8914 Avg(TGD ACT) = 6875

AvgTAD M = 2417 AvgTAD CC = 1314 Avg(TAD ACT) = 0

AvgTWD M = 9007 AvgTWD CC = 9850 Avg(TWD ACT) = 6875

Table 6.6: Total Weighted Delay of H-R Plans Vs Command Center Plans

6.3.3 Comparisons of H-R Results with Command Center

Plans

GDP days used in the analysis of M PAAR and CC PAAR are days in 1998

whose ADL files did not contain any unreliable data due to temporary lapses

in the data stream over the CDMnet and whose initial PAAR is 30 flights per

hour. Due to these restrictions, there were not many GDP days available for

analysis. Therefore, a representative sample, a sample that represented the over-

all outcomes of the GDPs, was chosen. This representative sample is based on

the breakdown of the types (outcomes) of GDPs in 1998 at SFO. (See Figure

6.11) The representative sample includes 11 GDPs, of which 6 are canceled, 4

are revised/extended and 1 is run out. Run out means that the original planned

duration of the GDP is the same as the actual duration of the GDP.

Average total weighted delay was determined for M PAAR, CC PAAR, and

ACT PAAR according to the procedure in Section 6.3.2. Table 6.6 gives a sum-

mary of these results. See Appendix D for the detailed breakdown of results.

According to Table 6.6, both the average of total GROUND delay and average

of total weighted delay under M PAAR are less than these values under the

Command Center’s plan. The H-R model produces less total weighted delay

than the Command Center’s plan and this is confirmed because the difference

between the average total weighted delay under M PAAR and the average total
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Figure 6.11: Percentage of Outcomes of 1998 Morning GDPs

(ground) delay under ACT PAAR is less than the difference between the average

total weighted delay under CC PAAR and the average total (ground) delay under

ACT PAAR:

AvgTWD M −Avg(TWD ACT ) = 9007− 6875 = 2132 minutes, and

AvgTWD CC −Avg(TWD ACT ) = 9850− 6875 = 2975 minutes.

Overall for the representative sample of GDP days in 1998, there could have

been a savings of 843 delay minutes if our model had been used. Since there

is a reduction in delays, our model is capturing what it should. In general, our

model results in shorter planned durations of GDP than is currently employed.

It appears that the best recommendation to the ATCSCC is to plan shorter

programs since there is a reduction in delay minutes. Though delay is reduced,

planning shorter programs may not be operationally feasible. See Section 6.5 for
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a more detailed discussion.

6.4 Proposed General Decision Model

In Section 6.1, the resulting (output) ACD was one of the input capacity scenar-

ios. Thus, the number of possible solutions is very small, so that a strategy of

enumerating all possible solutions and costing out each one is computationally

feasible. We propose this approach as a general decision model and show how

to cost out each solution. This decision model is an improvement over the H-R

model because the amount of ground delay assigned is adjusted depending on if

the plan is too short or too long. In addition, airborne delays are more accurately

estimated.

Section 6.3.2 gave an algorithm for comparing an M PAAR to a CC PAAR.

This approach can be generalized to compare a planned duration of reduced

capacity (PAAR) to all possible actual durations of reduced capacities (AAR).

Thus, this decision model is calculating a cost for a particular decision (solution)

based on an outcome of one of the scenarios. The algorithm for this costing out

process is:

For each proposed solution i,

For each scenario j,

For each possible cancellation/revised time tk,

Calculate costijk, the cost of using solution i when scenario j occurs

([
∑
f∈F

(GDf
s +ADf

s )]);

costi = costi + pj ∗ qk∗costijk;

Output i∗ = argmin {costi}.
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6.5 Benefits Analysis and Future Vision of CDM

With the inception of initial CDM prototype operations in January 1998 came

new procedures and methodologies to make decision-making more distributive

between the ATCSCC and the airlines and to give everyone a common view of

the airspace. CDM with its new procedures has made a significant impact on the

effectiveness of GDPs and thus has decreased the amount of unnecessary delay.

The work in this thesis is principally aimed at new decision procedures. However,

as a by-product, we were able to estimate some impacts of CDM procedures on

system performance.

6.5.1 Increase in GDP Effectiveness under CDM

Analyses were performed on GDPs prior to CDM and after the inception of CDM

to gauge the benefits and impact of CDM on GDPs. CDM went into initial

prototype operations in January 1998 at SFO and EWR. It was hypothesized

originally that any cancellation of a GDP is an indication of an inappropriately

planned program, and therefore, the number or percentage of canceled programs

should decrease as time passed from Pre-CDM to CDM phases.

Using PROC CATMOD in SAS, loglinear analysis was performed on cell

frequencies in contingency tables where there are no a priori distinctions between

response and predictor variables. All variables are treated as response variables.

Based on analysis and comparison of counts of canceled GDPs between 1997 and

1998 (for ATL, BOS, EWR, ORD, SFO and STL), there exists a statistically

significant interaction between airport/ # of GDPs canceled and airport/ year/

# of GDPs canceled. For airport/ # of GDPs canceled, the p-value is 0.0003

and for airport/ year/ # of GDPs canceled, the p-value is 0.0007. These results
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suggest that there is a significant impact of CDM on the effectiveness of GDPs

at various airports.

CDM went into full prototype operations in September 1998 at all airports.

Analyses to measure GDP effectiveness were performed on “GDP Heavy” airports

(airports having many planned GDPs) for three time intervals that are referred

to as the “Pre-CDM”, “Transition to CDM” and “CDM” phases. The Pre-CDM

Phase is from September 1996 through August 1997; The Transition to CDM

Phase is from September 1997 through August 1998; The CDM Phase began in

September 1998 and is currently being employed. The sources of the data for the

analyses are the GDP Summaries and Logs from the ATCSCC and archived at

Metron, Inc. (See Section 3.1 for a description of the data fields) The histograms

in Figures 6.12 and 6.13 demonstrate the decrease in errors in the planning of

GDPs (thus the increase in GDP effectiveness), but not the total elimination of

planning errors.

Figure 6.12: Percentage of GDPs Canceled

Figure 6.12 shows that, though, there is erratic behavior during the “Tran-

sition to CDM Phase”, the comparison of “pre-CDM” to “CDM” indicates that
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there has been a decrease in the percentage of canceled GDPs. This metric is

strongly affected by the weather conditions and forecasted demand. Cancellations

of GDPs occur as soon as it is decided that there is no need for a GDP, which is

sometimes based on better weather and demand information. Since there are in-

stances when a cancellation of a GDP is a desired action, further stratification of

cancellations is needed to extract those that are indeed undesirable. Therefore,

a more representative metric of GDP effectiveness is the “Percentage of GDP

Cancellations Near Start”. (See Figure 6.13)

Figure 6.13: Percentage of GDP Cancellations Near Start

The type of GDP cancellation known as “GDP Cancellations Near Start”

occurs within the time frame from 30 minutes prior to the planned start time of

a GDP to 30 minutes after the planned start time of a GDP. In this context “start

time of a GDP” refers to the time the first controlled flight is scheduled to land,

thus referring to arrivals and not departures. Since ground delays are assigned

and taken before flights take off, many flights will have absorbed delays well in

advance of the start time of a GDP. If a GDP is canceled at or near its planned

start time, this is an indication that there was no need for the GDP. Thus, nearly
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all the (sometimes substantial) delays that have been absorbed prior to the start

of the canceled GDP were found to be unnecessary. If there is a need for a

cancellation of a GDP, then ideally it should be done in timely enough fashion

to allow airlines to recover delay caused by the institution of the GDP. Under

CDM, specialists have more accurate demand information to plan accordingly.

Furthermore, they have the opportunity to delay the institution of a GDP until

the “critical decision point”. Since they can delay it for a much longer period of

time than during the “Pre-CDM” phase, they have the option to wait until better

and more accurate weather and demand information is available. Thus, decisions

to institute GDPs are based on superior data quality and accuracy and should

generally result in fewer cancellations near GDP start times. It is interesting

to note that out of all the “GDP Heavy” airports, San Francisco International

Airport (SFO) seems to be most in need of better capacity estimations in order

to further improve GDP effectiveness. According to Figure 6.12, the percentage

of canceled GDPs for SFO still exceeds 40% even after the implementation of full

prototype operations. What really compounds this observation is the fact that

prototype operations were in effect at SFO since January 1998. It is evident in

Figure 6.13 that CDM is making a significant positive impact on the percentage of

GDPs canceled near the start time of the GDPs, yet SFO is the only airport with

a percentage greater than 7%. It is due to these observations that the focus of this

dissertation was on SFO and the development of models and capacity scenarios

for SFO. The graphs in this chapter have shown that there is an increase in GDP

effectiveness due to CDM. The models developed in this dissertation can be used

in conjunction with CDM procedures to further improve GDP effectiveness.
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6.5.2 Incremental GDPs

The results of Section 6.1 suggest that the Command Center should generally

plan shorter programs (depending on the season or airborne delay cost factor).

It was shown in Section 6.3.3 that planning shorter programs should lead to

less total weighted delay. Though planning shorter programs would lead to a

reduction in delay minutes, it may not lend itself to the operational preferences

of the users (airlines). For example, if a GDP was initially planned to last 2 hours,

the users would request either a temporary ground stop (GS) or increased miles-

in-trail (MIT) restrictions.1 Ground stops were described in Section 1.1. MIT is

an initiative taken by the specialists that “spaces” out the aircraft more along

routes in the airspace, in other words, a larger separation distance. The users

would prefer a GS or MIT for shorter durations because they consider them to be

less intrusive to their operations than a GDP. A short duration GDP would cause

the loss of planning and substitution flexibilities. Using the current procedures,

the biggest consequence of planning shorter programs, which may need to be

revised/extended, is the loss of equity. In a short program, only flights that

are close to the congested airport (short-haul flights) are given GD. Long haul

flights are allowed to take off as originally scheduled. If the program needs to be

revised/extended, the (long-haul) flights in the air will incur airborne delay, but

the (short-haul) flights on the ground will incur extra GD to accommodate the

airborne delay of the airborne flights that were not assigned any GD at all. Thus,

short-haul flights are given an unequitable amount of delay. This is a serious issue

that needs to be addressed.

1Based on a phone conversation with Jill Charlton of the Quality Assurance Department at

the ATCSCC on June 26, 2000.
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One way to address the equity issue is to plan the short programs, but in-

clude both the short-haul and long-haul flights. Thus, if the GDP needs to be

revised/extended, both types of flights would incur extra delay. This process is

more equitable. Another way is to consider a GDP as incremental. In this case,

at time t, decisions in a GDP are only made about flights scheduled to depart in

the next time period (t + 1). This process is performed incrementally for each

time period (only flights in the next time period are considered). This process is

more equitable because all flights will be considered, just not at the same time

period. In a given time period, it may be decided that no flights need to be

delayed, but this depends on the weather conditions and not on the length of the

flight (short-haul or long-haul).
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Chapter 7

Conclusions

7.1 Contributions of Thesis

The goal of this thesis is to develop statistical models to estimate capacity prob-

abilistic distribution functions (CPDFs) that contain capacity scenarios that are

used as inputs into stochastic ground holding models. Towards the goal of this

thesis, we estimated CPDFs by relative frequency histograms, which we gener-

ated using empirical GDP/weather data. The capacity scenarios called ACDs are

derived from the CPDFs along with their respective probabilities. The structure

of the 1-Parameter ACD, which is used to model morning fog at SFO, makes this

a relatively simple process: the bins on the histogram of the CPDFs correspond

to the duration of reduced capacity in the 1-Parameter ACD and the relative

frequency of the bin gives the probability of the ACD.

Since weather is a continuous process, the CPDFs may vary in time. Set

partitioning models are used to determine when a CPDF changes and, thus yields

the breakpoints (boundaries) of the seasonal distributions. Various cost functions

are presented and thoroughly explored. The outputs (sets of seasons) of the

different cost functions are evaluated using a post-processing mean square ratio
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criterion. The methodology used to determine and evaluate seasonal distributions

has a broader applicability because it can be generalized to create a seasonal

“clustering” technique that determines seasonal clusters while maintaining time-

order of data.

The 1-Parameter ACDs with their associated probabilities were entered into

the Hoffman-Rifkin (H-R) static stochastic ground holding model and resulted

in a scenario that corresponded to one of the input scenarios. Analysis of the

H-R model and its limitations resulted in our developing a new, simple, general

decision model that would cost out all possible scenarios given a planned scenario.

This general decision model allows for changes to be made to assigned ground

delay according to dynamic changes in GDP plans. A procedure was provided for

comparing proposed capacity scenarios to actual capacity scenarios. The modified

H-R model developed in this thesis yielded less total weighted delay (sum of

ground delay and weighted airborne delay) than the plans of the specialists at

the ATCSCC for actual GDPs in 1998.

7.2 Directions for Further Research

With the tremendous growth of air traffic demand and congestion of the airspace

comes an increase in the need for innovative methodologies and improved decision-

support tools for effective CTFM. To this end, the models of this thesis make

valuable contributions. The research in this thesis creates a foundation on which

further research can be built for the development of models that would increase

the effectiveness of CDM procedures.

Accurate estimation of capacity is contingent on the quality and accuracy of

weather forecasts. The stochastic nature of weather can be captured by assuming
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arrival capacity is a random variable described through arrival capacity distribu-

tions (ACDs). This thesis focused on modeling morning fog at SFO using the

1-Parameter ACD. To model other weather conditions at other major airports,

the 2-Parameter ACDs can be used as described in Section 5.4. The techniques

of this thesis can be directly applied to this case, although the size of the set

partitioning problems will increase substantially.

Seasonal boundaries in Sections 5.3.3 and 5.3.4 are assumed to be fixed

monthly boundaries. Since it is possible for seasons to begin or end on an

arbitrary day, derivation of seasons with arbitrary boundaries may be worth-

while. These types of seasons may increase the value of the mean square ratio

for contiguous seasons since the actual start and end days of weather seasons are

captured.

A possible fruitful area of research is in sensitivity analysis of the input param-

eters of the H-R or modified H-R models. It may be worthwhile to determine the

effects of altering the ground delay to airborne delay cost ratio or the probabilities

of the input ACDs.

There should be a constant evaluation of the impacts of CDM on operational

procedures and decision-making. For CDM performance analysis, we suggest that

distributions of GDP durations prior to and after the inception of CDM be com-

pared to ascertain the effects of CDM on the durations of GDPs. Distributions of

GDP durations are affected by cancellations and revisions/extensions of GDPs.

It is possible that the ability to revise a program either “up” or “down” results in

longer-duration GDPs. Such an analysis would naturally employ the distribution

of GDP durations obtained in this thesis.
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Appendix A

Glossary

AAR: Airport Acceptance Rate

ACD: Arrival Capacity Distribution

AD: Airborne Delay

ADL: Aggregate Demand List

ANOVA: Analysis Of VAriance

AOC: Airline Operational Control Center

ARTA: Actual Runway Time of Arrival

ARTCC: Air Route Traffic Control Center

ARTD: Actual Runway Time of Departure

ASOS: Automated Surface Observing System

ATC: Airline Traffic Control

ATCSCC: Air Traffic Control System Command Center

ATL: Atlanta’s Hartsfield Airport

BLUE: Best Linear Unbiased Estimators

BOS: Boston’s Logan Airport

CDF: Cumulative Distribution Function

CDM: Collaborative Decision Making
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CMA: Centered Moving Average

CPDF: Capacity Probabilistic Distribution Function

CR: Collaborative Routing

CTA: Controlled Time of Arrival

CTD: Controlled Time of Departure

CTFM: Collaborative Traffic Flow Management

df: degrees of freedom

EDF: Empirical Distribution Function

ETA: Estimated Time of Arrival

ETD: Estimated Time of Departure

EWR: Newark’s Airport

FAA: Federal Aviation Administration

FADE: FAA/Airline Data Exchange

FSM: Flight Schedule Monitor

GD: Ground Delay

GDP: Ground Delay Program

GDP-E: Ground Delay Program Enhancements

GHP: Ground Holding Problem

GL: GDP Length

GS: Ground Stop

H-R: Hoffman-Rifkin (static stochastic ground holding model)

IFR: Instrument Flight Rules

IP: Integer Program

KS: Kolmogorov-Smirnov

LP: Linear Program
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MA: Moving Average

MIT: Massachusetts’s Institute of Technology

MIT: Miles-In-Trail

MS: Mean Square

NAS: National Airspace System

NCDC: National Climatic Data Center

NEXTOR: National center of EXcellence for AviaTion Operations Research

NP: Nondeterministic Polynomial

NWS: National Weather Service

OAG: Official Airline Guide

OETA: Original Estimated Time of Arrival

OETD: Original Estimated Time of Departure

OLS: Ordinary Least Squares

ORD: Chicago’s O’hare Airport

PAAR: Planned Airport Acceptance Rate

PDF: Probability Distribution Function

RBS: Ration By Schedule

SFO: San Francisco’s International Airport

SS: Sum of Squares

STL: St. Louis’ International Airport

TAD: Total Airborne Delay

TFM: (air) Traffic Flow Management

TFMP: Traffic Flow Management Problem

TGD: Total Ground Delay

TU: Totally Unimodular
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TWD: Total Weighted Delay

VAPS: Visual APproacheS

VFR: Visual Flight Rules

WLS: Weighted Least Squares
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Appendix B

MIT’s Lincoln Laboratory Graphs and Chapter

5 Tables

The following graphics are being reproduced with permission of David A. Clark

of MIT’s Lincoln Laboratory. Graphics are adapted from :

Clark, D.A. (1995), “Characterizing the Causes of Low Ceiling and Visibility at

U.S. Airports”, 6th Conference on Aviation Weather Systems, Dallas, TX.
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Figure B.1: IFR Capacity at SFO
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Figure B.2: Frequency of IFR events at Major US Airports
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133 Seasons: SoSqs No Singles Normalized Variances

N=3 (Cov)

Apr-Nov

Dec/Jan

Feb/Mar

Apr-Nov

Dec/Jan

Feb/Mar

Apr-Nov

Dec/Jan

Feb/Mar

Jan-Dec

Jul

Jul/Aug

N=3 (Par)

Apr-Nov

Dec/Jan

Feb/Mar

Apr-Nov

Dec/Jan

Feb/Mar

Apr-Nov

Dec/Jan

Feb/Mar

Jul

Aug

Sep-Jun

N=4 (Cov)

Apr-Nov

Dec

Jan

Feb/Mar

Apr-Nov

Dec/Jan

Feb/Mar

Jul/Aug

Apr-Oct

Nov

Dec/Jan

Feb/Mar

Jan-Dec

Jul

Jul/Aug

Jul/Sep

N=4 (Par)

Apr-Nov

Dec

Jan

Feb/Mar

Apr-Sep

Oct/Nov

Dec/Jan

Feb/Mar

Apr-Oct

Nov

Dec/Jan

Feb/Mar

Jul

Aug

Sep

Oct-Jun

N=5 (Cov)

Apr-Nov

Dec

Jan

Feb

Mar

Apr-Nov

Apr/May

Dec/Jan

Feb/Mar

Jul/Aug

Apr-Oct

Nov

Dec

Jan

Feb/Mar

Jul

Aug

Sep

Oct

Nov-Jun

N=5 (Par)

Apr-Nov

Dec

Jan

Feb

Mar

Apr-Jun

Jul-Sep

Oct/Nov

Dec/Jan

Feb/Mar

Apr-Oct

Nov

Dec

Jan

Feb/Mar

Jul

Aug

Sep

Oct

Nov-Jun

Table B.1: Set Covering and Partitioning Solutions of GDP Seasons(n=133)
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For 133 Possible Seasons: N = 3 N = 4 N = 5

Covering (GDP Data)

Apr-Nov

Dec/Jan

Feb/Mar

Apr-Nov

Dec/Jan

Feb/Mar

Jul/Aug

Apr-Nov

Dec/Jan

Feb/Mar

Jul/Aug

Oct/Nov

Partitioning (GDP Data)

Apr-Nov

Dec/Jan

Feb/Mar

Apr-Sep

Oct/Nov

Dec/Jan

Feb/Mar

Apr-Jun

Jul/Aug

Sep-Nov

Dec/Jan

Feb/Mar

Covering (Weather Data)

Apr-Nov

Dec-Mar

May/Jun

Apr-Nov

Nov-Feb

Mar/Apr

May/Jun

Apr-Nov

Dec/Jan

Jan/Feb

Mar/Apr

May/Jun

Partitioning (Weather Data)

May/Jun

Jul-Sep

Oct-Apr

Mar/Apr

May/Jun

Jul-Sep

Oct-Feb

Mar/Apr

May/Jun

Jul-Sep

Oct/Nov

Dec-Feb

Table B.2: Set Covering/Partitioning Solutions using KS statistics (n=133)
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Appendix C

Chapter 5 Graphs
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Figure C.1: Relative Frequency Histogram for Winter GDP Season
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Figure C.2: Relative Frequency Histogram for Spring GDP Season
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Figure C.3: Relative Frequency Histogram for Summer GDP Season
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Figure C.4: Relative Frequency Histogram for Fall GDP Season
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Figure C.5: Smoothed Histogram for Winter GDP Season
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Figure C.6: Smoothed Histogram for Spring GDP Season
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Figure C.7: Smoothed Histogram for Summer GDP Season
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Figure C.8: Smoothed Histogram for Fall GDP Season
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Appendix D

Comparison of Results of H-R Model

(M PAAR) and Command Center Plan

(CC PAAR)
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