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Abstract

We consider the problem of directly transmitting a binary source with an inherent
redundancy over a binary channel with additive stationary ergodic Markov noise. Our
objective is to design an optimum receiver which fully utilizes the source redundancy in

order to combat the channel noise.

We investigate the problem of detecting a binary iid non-uniform source transmitted
across the Markov channel. Two mazimum a posteriori (MAP) formulations are consid-
ered: a sequence MAP detection and an instantaneous MAP detection. The two MAP
detection problems are implemented using a modified version of the Viterbi decoding
algorithm and a recursive algorithm. Necessary and sufficient conditions under which
the sequence MAP detector becomes useless as well as simulation results are presented.
A comparison between the performance of the proposed system with that of a (substan-
tially more complex) traditional tandem source-channel coding scheme exhibits a better
performance for the proposed scheme at relatively high channel bit error rates.

The same detection problem is then analyzed for the case of a binary symmetric
Markov source. Analytical and simulation results show the existence of a “mismatch”
between the source and the channel. This mismatch is reduced by the use of a rate-one
convolutional encoder. Finally, the detection problem is generalized for the case of a

binary non-symmetric Markov source.
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1 Introduction and Motivation

A source with memory as well as a memoryless source with a non-uniform distribution are
sources with redundancy. For a finite alphabet of size J, a uniformly distributed ¢¢d random
process contains a maximal amount of information and exhibits no redundancy. Its entropy
rate is equal to log, J bits/sample. The total redundancy a stationary ergodic J-ary alphabet

source {X,}52, possesses is equal to the difference between log, J and its entropy rate Ho,(X)
[8]: pr = log, J — Hoo(X), where Hoo(X) 2 limpaco LH(X1,Xs,...,X,). More specifically,
we can write pr = pp + pym where pp = log, J — H(X}) denotes the redundancy in the form

of non-uniform distribution and pp = H(X1) — He(X) denotes the redundancy in the form
of memory [8].

In many practical signal compression schemes, after some transformation, the transform
coefficients are turned into bit streams (binary source). Due to the suboptimality of the
compression algorithm, the bit stream might contain some redundancy (in the form of memory
and/or non-uniformity). This paper addresses the advantages of using this redundancy in
controlling channel noise as opposed to further removal of this redundancy to leave room for
error control coding.

We consider a binary source with an inherent redundancy which we make no attempt to
eliminate. The source is directly transmitted over a discrete noisy channel. Our objective is
to design an optimum receiver which fully exploits the source redundancy in order to combat
the impairments introduced by the channel noise.

The channel considered is a binary channel with additive noise modeled according to a
finite version of the Polya contagion urn scheme [1]. The errors in this channel propagate in
a fashion similar to the spread of a contagious disease through a population; the occurrence
of each “unfavorable” event (i.e., an error) increases the probability of future unfavorable
events. The resulting noise process is a stationary ergodic homogeneous Markov process with
memory (order) M, where M is a positive constant. The motivation for the use of such a
channel is founded in the fact that most real-world communication channels — in particular the
digital cellular channel — have memory; our contagion-based model offers an interesting and
less complex alternative to the Gilbert-Elliott model [4] and others [5].

We first investigate the problem of detecting a binary iid non-uniform source transmitted

across the contagion Markov channel of order one (M = 1). The optimum receiver that mini-



mizes the probability of error is a mazimum a posteriori (MAP) detector. In a manner similar
to the use of channel codes for error correction, the redundancy, due here to the non-uniform
distribution of the source, is used by the MAP detector to provide some protection against
channel errors. We present two MAP formulations: a sequence MAP detection which involves
a large delay, and an instantaneous MAP detection which involves no delay. In sequence MAP
detection, we determine the most probable transmitted sequence or vector given a received
vector that we observe at the channel output. In instantaneous MAP detection, we estimate
the most probable transmitted bit at a particular time given all the received bits up to that
time. The solution of the first problem results in a “Viterbi-like” implementation while the
latter problem yields a recursive implementation. Necessary and sufficient conditions under
which the sequence MAP detector is not useful are derived. These results are in the same spirit
as previous results on MAP detection of Markov sources over discrete memoryless channels
[2, 9]. Simulation results for different values of the source and channel parameters, as well as
for different orders of the Markov noise process (M = 1,2,5) indicate an improvement in the
performance of the MAP detectors as the channel capacity increases. We also show that for
channels with relatively high bit error rates (e.g., digital cellular channels) the performance of
this system (with low complexity) is superior to that of a traditional tandem source-channel
coding scheme where the source and channel codes are separately designed with the assumption
that the Markov channel is rendered memoryless by means of an interleaver and de-interleaver.

We next analyze the same detection problem with the variation that the source is a binary
symmetric stationary ergodic Markov process. In this case, the redundancy in the source is
introduced by the Markov dependence between successive source symbols. The two MAP
formulations above (sequence and instantaneous) are also studied for this system. As for the
case of the binary iid source, the two MAP detection problems can be implemented using
a modified version of the Viterbi decoding algorithm and a recursive algorithm. For the
case of M = 1, we establish a necessary and sufficient condition under which the sequence
MAP detector does not offer any improvement. The condition establishes the existence of a
mismatch between the binary symmetric Markov source and the Markov channel; this causes
a deterioration in the performance of the sequence MAP detector as the noise correlation
parameter (and hence channel capacity) increases. This is illustrated by simulation results for
the sequence and instantaneous MAP decoders. We reduce the mismatch (which is significant
for high values of the noise correlation parameter) by the use of a simple rate-one convolutional

encoder, where by rate one, we mean that the encoder outputs as many symbols as it accepts.



The purpose of the convolutional encoder is to convert the symmetric Markov source into a
non-uniform iid random process, by transforming its redundancy from the form of memory into
redundancy in the form of non-uniform distribution. Simulation results showing considerable
improvement by the use of this simple code are obtained.

We finally generalize our detection problem by assuming that the source is a binary non-
symmetric stationary ergodic Markov process, hence containing redundancy both in the form of
memory and non-uniform distribution. General conditions for the uselessness of the sequence

MAP detector are derived. These conditions narrow down to the conditions obtained for the

special cases of non-uniform iid source and symmetric Markov source respectively. Through
simulation, it is portrayed that the non-symmetric Markov source behaves like a non-uniform

iid source when pp >> pp.

2 Channel Model

Consider a discrete channel with memory, with common input, noise and output binary alpha-

bet and described by the following equation: Y, = X, & Z,, for n = 1,2,3,... where:

o @ represents the addition operation modulo 2.

e The random variables X,,, Z, and Y, are respectively the input, noise and output of the

channel.
o {X,} L {Z,}, i.e. the input and noise sequences are independent from each other.
o The noise process {Z,}, is a homogeneous stationary mixing (hence ergodic) Markov

process of order M. By this we mean that the noise sample at time n, Z,, depends

statistically on the previous noise samples (Z,_pr,. .., Zn—2, Zn-1), i.€.,
Pr{Zn = enlzl =é€1,.. -,Zn—l = en-—l} = PT{Zn = eann—M = Cn-M,-- '>Zn—l = en—l}-

We assume that the process {Z,} is generated by the finite-memory contagion urn scheme

derived in [1]. The marginal distribution of the noise process or the channel bit error rate
(BER) is then given by

Pr{Z,=1}=¢=1- Pr{Z, = 0}.
We assume that € < 1/2. Furthermore, its transition probability is governed according to

€+ (en1ten2+t - +em)d
14+ Mé ’

PT{Zn = 1|Z -M = €Ep_M,.. -aZn—l = en_l} =



where ¢; = 0 or 1, for ¢ = 1,2,...,n — 1 and where n > M 4 1. Here, § is a positive
parameter which determines the amount of correlation in {Z,}. The correlation coefficient of

the noise process is =2=. Note that if § = 0, the noise process {Z,} becomes independent and

1+6

identically distributed (iid) and the resulting additive noise channel becomes a memoryless
binary symmetric channel (BSC).
For the case of M = 1, we denote the transition probabilities Pr{Z, = €,|Z,-1 = €n—1} by

Q(enlen-1):

o- (08 &)-(E &)

146 146
We note that the transition matrix of this first order Markov model is general; it can

represent any first order binary Markov chain with positive! transition matrix.

A. The Distribution of the Noise
For an input block X" = (X;, Xs,...,X,) and an output block Y™ = (¥1,Y%,...,Y;), the

block transition probability of the resulting binary channel is as follows [1}:

e For blocklength n < M, we have

Pr{Y" =y" | X" = 2"} = L(n,d,¢, 6), (1)
where

(13 (e + i6)] [n'f—d 11— e+ j6)]
[n (1 +16)]

L(n,d,e,6) = , (2)

and d = dg(y", ") is the Hamming distance between z™ and y".
e For n > M + 1, we obtain
Pr{Y"=y" | X"=2"} = Pr{Z" =¢"}

= ] Pr{Zi=ei| Zios = €ic1y- -, Ziom = €i-m}

=1

no e+ s8im16]7 [1— e+ (M —5;.1)8 1-e
= L(M,k,6,5) H [ } [ (3)
AL T Ms T+ Mb

1A positive transition matrix is a matrix whose entries are all strictly positive.
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where
e =z; Dy,
E=eiteoe+em

and
8i-1 =¢€i1+ -+ e-M.

B. Capacity of the Channel
The capacity Cps of this additive Markov channel is increasing with the memory M and is

given by [1]:

M
M €+ ké
CM—l—kZ:%( P )L(M,k,e,&)hb(1+M6), (4)
where hy(z) = —zlog,(z) — (1 — ) log,(1 — ) is the binary entropy function. Note that Cy

is also increasing with the correlation parameter §.

3 Detection of Binary I.I.D. Sources

Let {X,}22, be a binary iid non-uniform source with probability distribution Pr{X, = 0} =
p=1— Pr{X, = 1}, where p > 1/2. We denote Pr{X, = 0} and Pr{X, = 1} by P(0) and
P(1), respectively. We investigate the problem of detecting this source when it is transmitted
across an additive Markov channel of order one (M = 1). The receiver we design is a mazimum
a posteriori (MAP) detector which is optimum in the sense of minimizing the probability of

error [10]. We present two MAP formulations:

o A sequence MAP detection which involves a large delay and minimizes the sequence

probability of error.

o An instantaneous MAP detection which involves no delay and minimizes the bit proba-

bility of error.



3.1 Implementation of the MAP Detectors

A. Sequence MAP Decoding
Given that we observe Y™ = y™ = (y1,¥2,...,¥s) at the output of the channel, we desire

to determine the most probable transmitted sequence ™ where

" =arg max Pr{X" =z"|Y" =y"}. (5)

But (5) is equivalent to

&" = arg max Pr{Y"=y"|X" =z"}Pr{X" ="}

zne{0,1}n
= argzng}g,);}" Pr{Z" =y" @ "} Pr{X" = z"}

= arg ng}%)f} Pr{Z, =y, ® z,} H Pri{Zy = yx ® zi|Zkc1 = Y1 ® wk—l}]
z 0 i k=2

« [H PriX, = a:k}] ()

k=1

Since the logarithm function is monotonic, the above equation is equivalent to

" = arg R log (Pr{Z, = z; ® 31} P(z1)) + D _ log (Q(yx ® zk|yx—1 & xk_l)P(wk))} . (7)
z ! k=2

As expressed in equation (7), the sequence MAP detector can be implemented using the Viterbi
algorithm [3]. We let 2" be the state sequence. The trellis has two states, with two branches
leaving and entering each state. For a branch leaving state z;_; at time £ — 1 and entering
state z; at time k, the path metric is log (Q(yx ® zk|yk-1 ® zk-1)P(zk)). The surviving path
for each state is the path with the largest cumulative metric up to that state.

The sequence MAP detector involves a large delay since it needs to observe the entire
sequence y" at the output of the channel in order to estimate z,. For a given sequence length

n, this detector minimizes the sequence probability of error.

B. Instantaneous MAP Decoding
Unlike the sequence MAP detector, the instantaneous MAP detector minimizes the bit

probability of error. Furthermore, it carries no delay; it decodes z,, as soon as it observes y,.

Here, the problem is to determine the most probable transmitted bit &, where

7



#, = arg z,{?ﬁ)ﬁ} Pr{X, =z,|Y" =y"}. (8)

Solving the equation above is equivalent to solving

&, = arg ,max Pr{X, =z, Y" =y"}. (9)
Let f™(z,) = Pr{X, = z,,Y" = y"} denote the objective function? that we wish to maximize

at time instant n. We can rewrite f(™(z,) as

foNz,) = 3 Pr{X" =z",Y" = y"}

zn=1 G{O,l}“‘l

= > Pr{iZ" =y" 2"} Pr{X" = 2"}

gn—1 6{0,1}”‘1

= > [ﬁ Qyr © Thlyr—1 @ wk-l)P(mk)] [(Pr{Z; = y1 @ 21} P(z1))

gn—1 6{0,1}"_1 k=2

= P(IL‘n) Z Q(yn ® $n|yn—1 & mn—l)

Tn—1 E{Ovl}

X Z [ﬁ Qyx ® Tk|yr-1 & I'Jk—l)P(CL'k)] [Pr{Z, = y1 ® =1} P(z1)).

zn—2 E{O,l}"—2 k=2

If we examine the last two equations above, we realize that the second summation in the
last equation is nothing but =Y (z,_;). Therefore, the instantaneous MAP detector can be

implemented using the following recursion:

f(l)(l'l) = Pr{Z, =y ® z1}P(z1), (10)
f(n)(xn) = P(xn) z Q(yn 2] mn'?/n—l 5] mn—l)f(n—l)(wn—l)a n = 27 3a R} (11)
zn—1€{0,1}

where

20f course, f(")(z,) depends also on the observed sequence y". Yet, we omit showing this dependency
explicitly for notational simplicity.



En = argznrrel?o)'(l} f(")(a:,,), n=123,.... (12)

We note that there exists a gap betwee and instantaneous MAP detectors:
one has large delay while the other has no delay MIP0| P detector whose delay is in between
that of the sequence and instantaneous MAP detectors, is proposed. This detector mitigates

the large delay problem of the sequence MAP detector at the cost of some performance loss.

3.2 Analytical Results for Sequence MAP Detection

When we use a MAP detector, a natural question arises: Under what conditions on the system
parameters, will the MAP detector not be useful; that is, it will perform no better than if we
use no decoder at all at the channel output (“accept what you see” decoding rule) ?

Since we are dealing with a channel with memory, it is difficult (if not impossible) to
completely answer this question in an analytical manner, particularly for the case where the
decoder is an instantaneous MAP detector. We nevertheless shed some light on this question
for the case of the sequence MAP detector, with the following results.

In the following theorem, we will need to assume that the first transmitted bit is not affected
by the channel noise. This is known a priori by the MAP detector. Thus, the MAP detector
will assume that the first bit is received without error. Any such restriction on the first bit
will only have a diminishingly small effect on the system performance as the sequence length

becomes large.

Theorem 1 Given p € (3,1), e € (0,1), and § > 0, assume that the channel noise does not

affect the first bit (i.e., X; = Y] almost surely). If

l—e+é6]| |[1—p
e+6 P

then X™ = Y™, n > 2, is an optimum sequence (MAP) detection rule.

> 1. (13)

Remark: Note that (13) is equivalent to

Al—e—p

6<6, = 14
=01 2p__1) ( )

which holds only if 1 — ¢ > p.



Proof 1 We need to show that if (13) holds, then Vz",y™ € {0,1}" with z; = 4,
Pr{iX" =y"|Y" =y"} > Pr{X" =2"|Y" = y"},

or

G PriXr=yrYr =yt
Pr{X» = an|Yn =y} —

Using the noise distribution given in (3), we can write « as

Pr{Y™ =y"|X" = y"} Pr{X" = y"}

@ T Pr{Yn =y X = 2} Pr{X" = 2}
_ |[_pr{zn=0} P(yl)] [ T _Q010)  P(ys) (15)
Pr{Zi=21® 9} P(r1)] [i=; Qeles—1) Plzx)]’
where ex = 2 D yr, £ = 1,2,...,n. Note that the first factor above is unity since z; = y;.

Defining O(exlex—1) £ (1 + 8)Q(erler), lie., Q010) = 1 — e+, GOI1) = 1 — ¢, Q(1]0) = ¢

and Q(1|1) = € + 8], we get

T [1—e+5 P(yk)]
ion L Q(exlex—1) Plz)}

We define

K = {2,3,...,n},
A = {kekK:zk=ykTh-1 = Yr1},
B = A={keK:kdA}={keK:ex=10rey =1}

Therefore, equation (16) becomes

1—e+6 Pyx)
keB Q(6k|6k-1) P(zy) '

a =

10

(16)



Case 1: e, =0

If e, = 0, we partition B as follows:

N
B=UB;; B.‘ﬂB,'=0, z:,é], i,j=1,2,...,N,

1=1

where
B; = {m,-+ 1,m,~+2,...,m.'+L,~},
em; = €mi+L, =0,
Emi4l = €mi42 = *** = €mipLi-1 = 1,

with N denoting the number of partition sets and L; denoting the cardinality of B; (L; = |B;]).

To illustrate the partition above, consider for n = 24 the noise sequence
e™ = (000111001100001111010000).

Then B = {4,5,6,7,9,10,11,15,16,17,18,19,20,21} and its partitioning sets are By = {4,5,6,
7}, By = {9,10,11}, By = {15,16,17,18,19} and By = {20,21}. Here N = 4, L, = 4, L, = 3,
Ly =5and Ly =2.

Note that L; >2 Vi€ {1,2,...,N} and thus

B1= 3B = 3L > 2, (21)

=1 =1
with equality if and only if the errors occur in isolation (i.e., if and only if Iy = Ly = --+ =
Ly =2).

We now can rewrite (20) as

N
a=]Je, (22)
where
o = 1—e+é Ply)] _ mit L, [1—e+5 P(yk)]
1 wes; LQ(erler=1) P(zr)|  omist LQexer—1) Plzk)

l1—€e+8 P(ymi+1) [mith-1 1 _ 4§ P(yx)
Q(em.‘+1|em|')P(wm'+1) | k=m+2 Q(eklek—l) P(xk)

1 _€+6 P(ym|+L‘)
Q(ems+L| |em|+L|—1) P(xmt+L')

11



Noting that p > 3 and that (em;,€mi+1)€mi42- - +» €mi+Li=1s €mitr,) = (0,1,1,...,1,0), we

obtain

Li—-2
o > [1—6+61—p] [1—e+61—pl [1 6—1—6] (23)
€ P e+6 P 1—ce¢

with equality if and only if (Tm; 41, Tmi+2, -« s Tmi+Li-1) = (0,0,...,0). Substituting (23) in
(22) yields

N
a = Ha,-
i=1
1—e+61—pN l—e+é61—p BI=2N 1 e 161V
€ p e+ p 1—e¢ '

v

(24)

The second factor above is > 1 by hypothesis and by (21). The last factor is > 1 since é > 0.
Finally, the first factor is > 1 since % > e%s Therefore o > 1.
Case 2: e, =1

If e, = 1, we again partition B as follows:

N

B=JB; B;(\B;=0, i#j, ¢5=12,...,N,

i=1

where By, Bs,...,Bn_; are defined as in Case 1, and By is defined as:
Bv={n—-Ly+1,n—Ly+2,...,n},

such that e,—r, =0 and eppy41 = €p-py42 = =€, =1. Fori =1,2,...,N — 1, we can
lower bound o; 2 [ies, [——Eﬂ— f_(yﬁ] by expression (23). For : = N, we get the following

Q(exlex—1) P(zk)

lower bound on ap

Ly-1
ax = I [} €+6 P(yk)]z[l e+d 1 p] [1—e+51 p} |
vesy LQ(exler-1) P(zk) € P e+é p

with equality if and only if (Zn—rLy+1,Tn-Ly+2:--+,%n) = (0,0,...,0). We then get

12



N
a = Ha,-
i=1
l—e+é61-p NTl—€e+6 l1-p B=CN-D 1) _ ¢4 61V
€ P e+6 p 1—e¢ '

(25)

By the same arguments as before and the fact that |B| > 2N — 1 (with equality if and only if
Li=L; =---=Ly_; =2 and Ly = 1), each of the three factors above is > 1. Therefore,

a>l.
[ |

Note that if p = %, i.e., if the iid source is uniform (and hence exhibits no redundancy),

then we can clearly observe from equation (16) that « is always > 1 (similarly 6, = +oo)
and thus the sequence MAP detector is always useless. This can also be explained by the fact
that if the source contains no redundancy at all, then the MAP detector fails to provide any

protection against channel noise. Also, note that if the inequality in (13) is strict then the

sequence MAP detector is unique and is given by X™ = Y™ In the remaining of this paper,
we will not emphasize this point since the uniqueness of the MAP detector will be clear from

the context.

Theorem 1 is only a sufficient condition. A necessary condition could not be derived ana-

lytically, except for the following theorem, which is an asymptotic “weak” converse.

Theorem 2 Given p € (3,1) and € € (0, 3), if

l—e+é| [1—p
] B < (26)

then J ng > 0 sufficiently large, such that for n > ny, X" = Y™ is not an optimal detection

rule.

Proof 2 The result is proved by a counterexample: we show that 3 ng, 2™ and y™ such that
a <1 for n > ng.

Let z™ = (0,0,0,...,0) and y™ = (0,1,1,...,1). Using these two sequences in (16), we obtain

[1——p}n_1 [1—6+5] [1—6—[—6]71—2
a=|—— .
P € €e+6

13




Now by hypothesis, 3 ng, such that V n > ng,

1—-p]" 2 [1—€+6 "_2< P [ € ]
p €+46 1—p| 1—€+6)°

and thus Vn > ng, a < 1. [ |

We refered to the above theorem as an asymptotic “weak” converse, since the counterex-
ample we provided in proving the result, utilizes input and output sequences which yield a
non-typical noise sequence (i.e., the sequence can occur with low probability). We now derive
a necessary and sufficient condition for which the all-zero sequence is the optimal sequence.

We will assume that the first transmitted bit is zero. First we need the following lemma.

Lemma 1 Let p € (3,1), € € (0,3), § > 0 and L > 2. Assume that zf = (zo,71,...,21) =
0,1,1,...,1,0). If

a €l—e) p
= >
! (1—e+6)21—p_1’ (27)

then V y& € {0,1}F+1,

o2 Q(yklye-1) P(0)
- H Q(6k|€k-1) P(z) 2 )

k=1

where e} = 25 @ yE, P(0) =p=1—P(1), Q(0]0) =1 — ¢+, Q(1]0) = ¢, Q(0]1) = 1 — ¢ and
Q(1]1) = e + 6.
In addition, the above also holds when z§ = (0,1,1,...,1).

Proof See Appendix.

Theorem 3 Given p € (3,1), e € (0,1), § > 0 and n > 3, assume that X; = 0 almost surely.

Then X" = 0", is an optimal sequence (MAP) detection rule if and only if

e(l—¢) p
T—ctopi-_p=n (29)

14



Proof 3 We first show that if (29) holds, then Vz",y™ € {0,1}" with z; =0,

a Pr{Y™ =y"|X" = 0"}Pr{X" = 0"}
= > 1.
Pr{Yr = yr| X" = gn} Pr{X" = an} —

As in Theorem 1, we rewrite o as

_|__Pr{Z =wn} PO) ™ Qyelye-1) P(0)
a= = (30)
Pr{iZ,=z:® yl} P(wl) k=2 Q(eklek—l) P(‘”k)
where e, = ¢ D yx, k = 2,3,...,n. The first factor in the above expression is unity since

z1 = 0. Analogous to Theorem 1, we write K = {2,3,...,n},B={k €K :zy =1lorzs =1}

and partition B as

BzUBH Btﬂszwa 7’#.% 7'7.7:‘1?277N>
where
1. B; = {m1+ 1,m; +2,...,m,~+L,~},
2. Ty = TmytL; =0,
3. T+l = T2 = = T 4L, -1 = 1)

for: =1,2,...,N — 1. For i = N, conditions (1) — (3) above hold with the exception that

Tmy+Ly May be 0 or 1. In any case, we write a = I'[fY__l a; where

Q(yklye—1) P(0)
I—zls Q(exrlex-1) Plzi)

For each ¢, we shift the index (in B;) by m;, let L = L; and apply the above Lemma to show
that a; > 1. Therefore, a > 1.

To prove the converse, assume that (29) does not hold and let 2™ = y™ = (0,0,...,0,1,0,...,0).
Then

e(l1 —¢€) P

=(l—-€-f-6)2 1-—p<1'

15



Observation: In the case of sequence MAP detection, we obtained the estimate of the trans-
mitted source sequence z™ given that we received y" at the channel output. It is pertinent to
remark that this is the same as adding the received sequence y™ to the estimate of the noise
sequence (given y"); i.e.,

arg max Pr{X"=2a"Y"=y"} =" Qarg max Pr{Z"=2z"[Y"=y"}.

3.3 Simulation Results

In Figures 2-7, simulation results for the sequence and instantaneous MAP detectors are plot-

ted. Each simulation was performed on 1,000 samples of the iid source and the experiment

was repeated 500 times. In Figures 2-6 , ¢ = Pr{bit error} = Pr{X, # X,} and the average
values of € (over the 500 experiments) are plotted versus the channel bit error rate e. The
straight line labeled “w/o MAP” indicates the probability of bit error when no MAP detection
is performed (i.e., € = €). Figure 7 shows the plot of the average value of é versus the channel
correlation parameter 4.

In Figures 2, 3 and 7, the performances of sequence MAP detection for the iid source
(with p = 0.95 and 0.99 respectively) over the contagion Markov channel (with M = 1), are
presented. We can remark in each of the figures, that as § increases, the performance of the
MAP detector improves. This is due to the fact that as § increases, the noise correlation
in the channel increases (hence decreasing the noise entropy rate and increasing the channel
capacity) which enhances the detector’s capability in estimating the transmitted sequence. We
furthermore observe that for fixed § and ¢, the gain achieved in Figure 3 is higher than the
one attained in Figure 2. This can be explained by the fact that the iid source in Figure 3
(with p = 0.99) is more non-uniform than the iid source in Figure 2 (with p = 0.95); it thus
contains a larger amount of redundancy which is used by the MAP detector to combat the

channel noise.

In Figures 4 and 5, the performances of instantaneous MAP detection for the iid source
(with p = 0.95 and 0.99 respectively) over the contagion Markov channel are presented. As
before, the performance for the source with p = 0.99 is better than the one for p = 0.95.
Figure 6 shows the effect of the order M of the Markov channel on the performance of the
sequence MAP detection for a source with p = 0.95 and a channel with § = 1.0. Here again, the
performance improves as M increases, since the channel capacity increases with the memory

M. In the implementation of the sequence MAP detector, the state at time k consists of
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the vector (zg,Zk-1,-..,Tk—m+1). Thus, there are 2M states with two branches entering and
leaving each state.
The analytical results of Theorems 1 and 3 are illustrated in Figures 2, 3 and 7. Theorem 1
is illustrated in Figure 7 where the performance is given versus the values of §. With p = 0.95
and € = 0.01, the sufficient range on é for which the MAP detector is useless (i.e., € = ¢ = 0.01),
is § < 6, = 0.0444 = 107%. As we can note from Figure 7, the curve of ¢ diverges from the
constant value of € = 1072 for a § larger than &;; this is because Theorems 1 offers only a
sufficient condition. The asymptotic converse given in Theorem 2 relies on a non-typical noise
sequence; it thus has a low chance of occurring in a simulation.
Furthermore, the simulations shown in Figures 2 and 3 agree with Theorem 3. Theorem
3 offers a necessary and sufficient condition for which the all-zero sequence is the optimal

sequence. Note that (29) is equivalent to

e2 € = 214 (1= p)(1+26) = /o7 — 4p8(1L— P)(1 +5)] .

We plot in Figures 2 and 3 the values of €(®%, ¢(1) and €. Note that the performance curves
flatten out exactly at € = ¢®) and ¢ = 1 — p. Finally, note that for § = 10 and p > 0.95, the

all-zero sequence is never the optimal sequence since (29) does not hold.

3.4 Comparison with Tandem Source-Channel Coding Schemes

The system we design in this paper, which consists of directly transmitting the source over
the Markov channel and utilizing a MAP detector at the receiver, is in a “loose” sense, a joint
source-channel scheme. We now compare this proposed system against the traditional tandem
source-channel coding scheme where the source and channel codes are designed separately.
The traditional approach to handling a channel with memory is to use an interleaver and a
de-interleaver. The purpose of the interleaver and de-interleaver is to convert the channel with
memory into a memoryless channel. This is because most well-known channel codes are de-
signed for the memoryless channel. The tandem scheme considered includes an interleaver/de-

interleaver pair as it is depicted in Figure 1. It consists of the following

e Huffman encoder: We assume that the binary iid source has distribution p = 0.9; thus its
entropy rate is 74(0.9) = 0.469 bits/sample. Grouping the source binary stream in blocks
of 4 bits, we encode the source stream using a 4’th order Huffman code with average code

length of 0.49255 bits/sample.
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o Convolutional Encoder: We match the output of the Huffman encoder to a convolutional

encoder of rate R = % = % The convolutional code has an input memory m = 2

(4 states) and the following tap coefficients (1,0,1) and (1,1,1) [6]. Its minimum free
distance is dfr.e = 5, its minimum distance is dpmi» = 3 and its constraint length is

n(m + 1) = 6 bits.

o Interleaver, Markov channel, de-interleaver: This renders the channel memoryless; i.e.,

it transforms the bursts of errors in the Markov channel into isolated errors and thus
enhances the error correction capability of the convolutional code.

o Decoders: ML decoder implemented using the Viterbi algorithm (3, 6] and a Huffman

decoder.

It is pertinent to point out that the complexity of the proposed system is substantially lower
than that of the tandem scheme: the tandem scheme contains 2 decoders (Viterbi and Huff-
man), 2 encoders, an interleaver and a de-interleaver, while the proposed system contains only
a MAP decoder. Furthermore, the use of the interleaver/de-interleaver in the tandem scheme
introduces a larger delay than in the proposed system.

In Figure 8, we compare the performance of the proposed scheme using sequence MAP
detection for p = 0.9 and § = 10, with that of two tandem schemes with interleaving lengths
L =100 and L =1 (no interleaving) respectively. We use the same interleaving procedure as
in [6]. The simulations were run 50 times on 10,000 samples of the iid source. We observe that
the non-interleaved tandem scheme (L = 1) behaves very badly; this is expected because the
convolutional code is designed for a memoryless channel, and hence our need for interleaving.
Indeed, the tandem scheme using interleaving (with L = 100) performs much better than the

non-interleaved scheme.

More importantly, we remark that the proposed scheme outperforms the tandem scheme
with L = 100 when the channel bit error rate is high (¢ > 1072?). The performance of the
tandem scheme is excellent for very low values of ¢ (all simulation errors are corrected for
€ < 107%). However, as the channel becomes more noisy, the tandem scheme breaks down;
this is due to the effect of error propagation in the Huffman decoder. This suggests to us that
for noisy channels with relatively high bit error rates (e > 107?) (e.g., cellular channels), the

proposed system beats the tandem scheme while being substantially less complex.
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4 Detection of Binary Markov Sources

4.1 Symmetric Markov Sources

In Section 3, the source is assumed to be a non-uniform iid random process. Therefore, the
redundancy it contains is strictly in the form of a non-uniform distribution (pp > 0 and
pm = 0). We now consider the same problem studied in Section 3, with the exception that
the binary source is a symmetric stationary ergodic Markov process. In this case, the source
redundancy is strictly in the form of memory (pps > 0 and pp = 0). We assume that the
Markov source has a uniform marginal distribution (Pr{X, =0} = Pr{X, = 1} =1/2) and

the following transition probabilities:
Pr{X, =1|X,-1 =1} = Pr{X, =0|X,—; =0} = ¢,
and
Pr{X, =1|X,-1 =0} = Pr{X, =0|X,-1 =1} =1 —gq,

where ¢ > 1/2. For notational simplicity we denote Pr{X,, = u|X,_1 = v} by P(ulv).

As for the iid case, we present two MAP formulations: a sequence MAP detection and
an instantaneous MAP detection. The implementation of both MAP detectors is exactly the
same as the ones described by equations (7), (10) and (11) in Section 3.1 upon replacing P(z)
by 1/2 in (7) and (10), P(zx) by P(zk|zk-1) in (7) and P(z,) by P(zs|zn-1) in (11) (with

P(z,|zn-1) placed inside the summation in (11)).

A. Analytical Results for Sequence MAP Detection

In the following theorem, we derive a necessary and sufficient condition under which the
sequence MAP detector is useless.
Theorem 4 Given g € (1,1), e € (0,3), 6 > 0 and n > 3, assume that X; = Y; almost surely.
Then X™ = Y™, is an optimal sequence (MAP) detection rule if and only if

(16z16_+e()8)2 (1;‘1)2 > 1. (31)

Remark: (31) is equivalent to

52522(%,‘) el—¢) +e—1. (32)
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Proof 4 We start by proving the direct part; i.e., we need to show that if condition (31) holds,
then V z",y" € {0,1}" with z; = y,,

Q2 PO ==y}
Pr{Xr =gn|Y" =yr} ~

Following the same method as in Proof 1 with the same definitions of the sets K,.4 and B
(given by equations (17), (18) and (19) respectively), we have

~1 —€e+6 P(yrlyr—1)
keB Q(exler—1) P(z|zk-1) ,

Q=

where Q(0]0) =1 —€e+6, Q(0]1) =1 —¢, Q(1]0) = e and Q(1|1) = € + 6.

Case 1: ¢, =0

If e, = 0, we partition B in the same way as in Case 1 of Proof 1. We can then write « as

N
a=][]a, (33)

=1

where

o = { 1—€+68 Plylye-1)] _ mitli [ l—€e+é P(yklyk—l)]
' xeB, LQexlex=1) P(zrlzi—1)]  jomoi LQ(erler—1) P(zrlzi-1)

_ [ l—€+6 P(Ymit1|¥m:) ] mtlicl 14§ P(yklyk-1)
Qlemitilem,) P(@m+11Tmi) | | emyz Qexler-1) Plzxlzr-1)

X [ 1 —¢ + 6 P(ymt+L| lym;+L|_l)]
Q(em.+L. Iem,+L.—l) P(xmt +L| ;mm;+L¢—1)

(34)

Recalling that ¢ > 1 and that (em,, €mi41;€mit2; - - - €mitLi=1, €m,+L,) = (0,1,1,...,1,0), we

get

o > [1—e+5 l—q] ™ALl e 1 6 Plyrlye-1) [1—6+6 l—q}
b= € q kemny2 €6 Plailzeoa) 1—e¢ q |
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We now note that for k € {m; +2,m; +3,...,m; + L; — 1}, ex = ex—1 = 1; this implies that
Y D yk-1 = (1@ zx) ® (1 ® 4—1) = 1 D k1. Therefore,

P(yx|yr—1)

= 1.
P(mk|:1:k_1)

Note that the above equation holds because the Markov source is symmetric; the result is not

true for non-symmetric Markov sources. We then obtain

(1—e+6)?2 (1—q\? ] — et §]52
" e [6(1‘6) (q)“e+6] ' (35)
Substituting (35) in (33) yields
N
(1—e+6)? (1-4q\> | — 4 6]8-2N
"z leﬂ-@ ( q) ] [?I?% - (36)

The first term above is > 1 by hypothesis and the second term is > 1 because |B| > 2N and
l1—e>e Thus a > 1.

Case 2: e, =1

If e, = 1, we again partition B as in Case 2 of Proof 1. For ¢« = 1,2,...,N — 1, we can

. N - P(ys|ve—
similarly lower bound a; = [[ies, [ Q-(tkl‘:::) P((:::::—ll))

] by expression (35). For i = N, we get

the following lower bound on ay

R [1—6+5 P(yx|ye-1) >

1-e+51-q}F-e+5rw*
Q(erler-1) Plaxlzrr) ‘

€ q e+6

keBy

Therefore,

> -1—6+51—q-N 1 — ¢4 6]/FI-CN-Y 1—6-|-<51—qN_1
® = € q e+6 1—e¢ q
i i N-1
S l—e+61—¢q]l [{(1—e+68)? [1—4q\* (37)
- € q e(l—¢) q ’
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where the last inequality holds since [B| > 2N — 1 and !-:—_%é > 1. The second term in (37) is

> 1 by hypothesis. The first term is > 1 because 1 > \/ﬁ and because of the hypothesis.
€\1—¢

Therefore, a > 1.
To prove the converse, we employ the following counterexample: let ™ = (0,0,...,0) and

y* =(0,0,...,0,1,0,...,0). If (31) does not hold, then we get

o [1—e+5 1—ql [1—6+6 1—g¢ <1

€ q l-e¢ q

Observations:

e Note that if ¢ = %, then the Markov source becomes a uniformly distributed iid random
process with zero redundancy. Thus, as mentioned in Section 3, the sequence MAP

detector is always useless. This can also be seen from equations (36) and (37) which

indicate that a > 1 for ¢ = 1.

o For § =0, (31) reduces to the necessary and sufficient condition given in [9] for the BSC.

o The necessary and sufficient condition derived in Theorem 4, indicates that for fixed
values of € and ¢ (hence for a fixed value of §;), as the channel correlation parameter é
increases (hence as the channel capacity increases), the likeliness of the uselessness of the
sequence MAP detector increases (cf. (32)). Therefore, the performance of the sequence
MAP detector deteriorates with increasing §; this shows the existence of a mismatch

between the symmetric Markov source and the contagion Markov channel which prevents
the MAP detector to fully exploit the capacity of the channel.

B. Simulation Results
In Figures 9-11, we present simulation results for the sequence and instantaneous MAP

detectors. We performed each simulation on 1000 samples of the symmetric Markov source
and repeated the experiment 500 times.

As predicted by Theorem 4, we remark from the plots that the performance of the MAP
detectors deteriorates as the value of § increases. This is clearly illustrated in Figure 11, where

€ increases as a function of § and then reaches a constant value of € = ¢ = 0.01 (MAP is useless)
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at the point corresponding to § = é; = 0.9 = 107%%°_ as given by Theorem 4. We note that,
contrary to our expectation, the curve in Figure 11 is not exactly a zero slope straight line for

0 > 6; this may be due to some slight inaccuracies in the simulation.

C. Rate-One Convolutional Encoding

If we directly connect a binary symmetric Markov source to the contagion Markov channel,
a mismatch occurs between the source and channel as the correlation parameter § increases. In
this section, we attempt to reduce this mismatch by the use of a rate-one convolutional code.
More specifically, we attempt to improve the performance of the sequence MAP detector for
high values of . This is achieved by the use of a simple rate-one convolutional code, where by
rate-one, we mean that the convolutional encoder produces as many bits as it receives. The
purpose of this code is not to introduce additional redundancy but to transform the redundancy
in the symmetric Markov source from the form of memory into redundancy in the form of non-

uniform distribution. This is because, if the source redundancy is in the form of non-uniform
distribution, no such mismatch occurs between the source and the channel, as we have seen in

Section 3.

We employ a rate-one convolutional code described by V,, = X, @ X,,—1, n = 1,2, ..., where
{X,}, is the symmetric Markov source studied in this section and {V,}22; represents the
output of the convolutional encoder. We assume that X, = 0 almost surely; that is V; = X;.
Due to the symmetry in the source, we can easily verify that Pr{Vi = v,} = ¢ (1 — ¢)'™,

where v is 0 or 1, £ = 1,2,.... Furthermore, we can write
Pr{Vi =wuVi =v1,...,Vic1 = g1} = Pr{Xy= e(k)|X1 =eM .., Xeo = e(k_l)}
= Pr{Xy=eP|X;_ =Y}

— q‘uk (1 _ q)l—’uk
= Pr{Vi = v}

where ¢ 2 n®...0uv, 1 =1,2,... k. Therefore, {V,} is a non-uniform iid process with
distribution given by Pr{V; = 0} = ¢, where ¢ > 1/2.
The new system functions as follows. A sequence of N samples of the symmetric Markov

source XV is fed into the rate-one convolutional encoder. The output of the encoder is then

sent over the Markov channel. At the receiver, we use the sequence MAP detector which
estimates the most likely transmitted sequence V. The convolutional decoder is described by

the following relation X'k = Vk @Xk_l, k=1,2,...,N with Xl = Vl We therefore obtain XV,
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Note however, that decoding errors in the MAP sequence detector cause error propagations in
the convolutional decoder, which may be significant if an odd number of decoding errors occur.
We limit the effect of the propagation by grouping the N source samples into small blocks of
length n.

The performance of this system for ¢ = 0.99 and § = 10 is shown in Figure 12. We
performed the simulations on N = 500,000 source samples with N = n - T where T is the
number of trials and n is the number of source samples transmitted per trial. The results
clearly indicate that the coded system outperforms the uncoded system. Furthermore, for
large ¢, the performance of the coded system improves as n decreases, as expected, since for

small n the effect of the error propagation in the convolutional decoder is limited.

4.2 Non-Symmetric Markov Sources

We generalize our detection problem by considering a binary non-symmetric stationary ergodic
Markov source. In this case, the source redundancy is in the form of memory (ppr > 0) as
well as in the form of a non-uniform distribution (pp > 0). The transition and marginal

distributions of the source are given as follows

Pr{X, = 0|X._1 = 0} £ P(0[0) = qo,

PT{Xn = 1[Xn—1 = 1} £ P(1|1) =4,
and

Pr{Xn=0}=1—Pr{Xn=1}=-21—;iflq—,
— 4o — 41

where we assume that ¢o > 1/2 and 1 — ¢o < ¢1 < go. Note that
o If go = ¢, then the source becomes a symmetric Markov source.

o If g9 = 1 — q;, then the source becomes a non-uniform iid source with distribution

Pr{X, =0} = q.

As in the case of the symmetric source, the implementation of the sequence MAP detector
for the non-symmetric Markov source is according to equation (7) with replacing P(z1) by
Pr{X; = z;} and P(z¢) by P(zi|re—1).

We derive a theorem offering general conditions for the uselessness of the sequence MAP

detector. But first we need the following lemma.
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Lemma 2 Let ¢ € (3,1), @1 € [1 — g0,9), € € (0,3), 6 > 0 and L > 2. Assume that
el = (eg,e1,...,er) = (0,1,1,...,1,0). Then V y¢ € {0,1}£+1,

a 11 Prlye-1) o 1—g)(l—q1) (@ o
s = 2 5 ) (38)
ic1 P(@elze-1) % 90
where x5 = €5 © yg, P(0[0) = go, P(1|0) = 1 — go, P(0[1) = 1 — g1 and P(1]1) = q.
In addition, the above also holds when ¢} = (0,1,1,...,1).

Proof See Appendix.

Theorem 5 Given o € (3,1), ¢1 € [1 — g0,90), € € (0,3), § > 0, and n > 3, assume that
X1 =Y almost surely. Then
(i) X® = Y™ is an optimal sequence (MAP) detection rule if

(1—e+6)* (1—q)(1—q)

>1 9
{1-9 i " )
and
1—€+6ql
—_ = >1. 40
18 > (40)

(i) If (39) does not hold, then X™ = Y™ is not an optimal sequence detection rule.
(ii1) If (40) does not hold, then 3 ng > 0 such that V n > ng X" = Y™ is not an optimal

sequence detection rule.

Proof 5 (i) Assuming (39) and (40) hold and following the same method as in Theorem 4, we
obtain for e, = 0 (Case 1) that a = [T a;, where

o = |t 9)” {1“6‘*'5]&_2 ml Plyelys-1)
' [ (1 — ) ] €e+6 LJ’T}H P(zglze—1) |

Applying Lemma 2 yields

v [(1—e+5)2 (1—qo)(1—ql)} [1—e+5 ﬂ]’“ -

el—¢ qé e+6 qo
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where the last inequality follows by hypothesis. Hence, o = [[Y; o; > 1. Note that for e, = 1
(Case 2), we get

ay = -1_6+6] [1—6+6ILN—1 Bid P(yxlyr-1)

N € )  kmmy+1 P(zi|zk-1)
5 [lmet6 (1-g)(1—q)|[L—e+$ 1—6+52LN-2>1
- € q e+ 6 e+d6 qo -

Thus o = [I¥, a; > 1.
(ii) Suppose that (39) does not hold. Take y" = (0,0,...,0,1,0,...,0) and =" = (0,0,...,0).
Then

[1—6+6 l—qo] [1—6—}—5 1—q1]
o= < 1.
€ Jo 1—c¢ do

(iii) Suppose that (40) does not hold. Let y" = (0,1,1,...,1) and =™ = (0,0,...,0). Then

[1—e+51-—q0 1—€+6 qlr‘z
o = - .
€ o e+6 qo

Then for n sufficiently large, o < 1.

Observations:

o If go = ¢1 = q (symmetric Markov source), (40) always hold and (39) reduces to

T ()

which along with (ii) is the same as Theorem 4.

e If go =1 — ¢; = p (non-uniform iid source with distribution p), (39) and (40) reduce to

(l-e+é6)?1—p
el —¢) P
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and

l1—e+d61-p
>1 42
e+6 p — (42)

respectively. Note that (42) implies (41), and hence (42) and (iii) are equivalent to

Theorems 1 and 2, respectively.

Simulation results of the performance of the sequence MAP detector are presented in Figures 13
and 14. The simulations were performed on 1,000 samples of the non-symmetric Markov source
and the experiment was repeated 500 times. In both figures, we notice that the performance
of the MAP detector improves with §, we have no mismatch in these cases. This can be
explained by the fact that for these cases, the non-symmetric Markov source behaves like a
non-uniform iid source because its redundancy in the form of non-uniform distribution is much
more dominant than its redundancy in the form of memory (pp >> par). Indeed, using the

following redundancy formulas

l—q )
=1-HX))=1-h | ——— |,
Pp (%) b(z"%—(h

l—q 1—q ( l—q >
=H(X;)—-H(X|X1)="h — h —[1=————1h ,
o = H(X:) — H(Xal X)) b(z_qo_ql) st hu(an) — (1= 722 ) (o)

we obtain

o For ¢o = 0.99 and ¢; = 0.45, pp = 0.8585 >> ppr = 0.044.
e For ¢o = 0.99 and ¢; = 0.1, pp = 0.9193 >> ppr = 0.0048.

Finally, we can similarly assert that in cases where pys >> pp, the source tends to behave like
a symmetric Markov source; this will result in a mismatch between the source and the channel

as demonstrated in the previous subsection.

5 Conclusions

In this paper, we analyzed the MAP detection problems (sequence and instantaneous) of a
source with an inherent redundancy transmitted over a discrete channel with additive Markov

noise. The proposed MAP detectors exploit the source redundancy in order to combat channel
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errors. The problem was investigated for three cases: (i) non-uniform iid source, (ii) symmetric
Markov source, and (iii) non-symmetric Markov source. In all cases, analytical results giving
conditions for the uselessness of the sequence MAP detector as well as simulation results were
presented. For the case of the non-uniform iid source, we showed that our proposed simple
system beats a traditional tandem source-channel coding scheme for high channel bit error
rates. A mismatch was established for case (ii) between the source and the channel. This

mismatch was reduced for high values of the channel correlation parameter by the use of a
rate-one convolutional encoder.
Applications of the MAP detection problem in a combined source-channel coding system

are currently under investigation [7]. Future work may consist of comparing the results above
to those obtained by detecting binary sources over the Gilbert-Elliott channel with potential

applications to digital cellular channels.

6 Appendix

In this Appendix, we prove Lemmas 1 and 2 stated in Sections 3.2 and 4.2 respectively.

Proof of Lemma 1 First assume that =% = (0,1,1,...,1,0). Rewrite « as

o = [@1lwo) Q(yLIyL-l)] [L'I(Q(yklyk—l) P )H P ]
P

B Q@llyo) Q(!/LWL—l) k=2 Q(_?jklyk—l) 1- l-p

where the overbar denotes the binary complement. Define the terms inside the first set of
brackets above as g. Note that when L = 2, y; = y_; and the minimum value of g (under the

constraint that y; = yr—1) is (T‘_(_IC—:L%;, which is achieved when (yo,y1,¥2) = (0,1,0). Thus, for
L =2,

P e(l—c¢) P
= >
I T T U—eté21-p

We now assume without loss of generality (w.l.o.g.) that L > 2. Partition the index set
K =1{2,3,...,L — 1} as follows

K:=K:()0 U K:01 U K:IO U ,Clla
where

Kabé{kGIC:ykq:G,yk:b}, a7b€{071}'
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Therefore,

oA ﬁ[@yklyk 1) P ]
k=2 LQG|Ti-1) 1 -
p 1572 l1—¢+6 €+ 6 € 1—e¢
.1 — P} | k€Koo €+6 } [kexll l—e+ 6} [kenol 1- GJ [kelcw ¢ }
[ p 18-21 e+ 6 IlCul—I’Cool[ e 1Ko1l=IK10l
o |1-p)] |1-e€+6 1—6] '
Case 1: y1 = yr-—1
Consider the sequence (y1,¥2,...,Yyr-1). For every transition from 0 to 1, there is a cor-

responding transition from 1 to 0 (because y; = yr-1). Thus, |Ke| = |K10|. Also, note that
|Koo| > 0 and |Ky;| < |[K| = L — 2. Hence

L-2 L-2
p 6+6 >lL-—2>1,
1-p l1—€e+6 - -

m >

note

e(l—e

)7 . Therefore,

that the minimum value of g under the constraint y; =y, is -

p e(l—¢) p
=g —L—m > =Im > 1.
*=IT S, = [(1—6+5)"’1—P]m "=

Case 2: y1, =0, yp—1 =1
In this case: |Koo| 2 0, |Ko1| = 1, |K10| = |[Ko1| = 1 and |Kq1| £ L — 3. Thus

- L-2 L-3
m > p e+ 6 [ € ]
- [1-p l—€e+6 1—e¢

_ [ p e+ L-3 p €
T |l-pl-e€+56 l-pl—e|

The first term in the right hand side of the above equation is > I£~3 by the same argument as

before. The second term is > I because 1%, > =55 2 (15(16_}_2% Thus m > 1. The minimum

value of ¢ in this case is Hence

11—5!2
(1—e+68)(e+6) "
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)2
a=g—p—m> (1-¢ P m >1lm > 1.

1-p = (I-€e+68)(e+6) 1—p ~

Case 3: y1=1,yp1 =0
Here we have: |Koo| > 0, |K10| > 1, |Ko1| = |K10| — 1 and |Ky1] < L — 3. Thus

L-3
m> | P e+ p l—e¢ '
T ll—-pl—e€+6 1—-p ¢

The minimum value of ¢ in this case is m. Therefore,
> [ €’ P l—€¢ p p et+s 177°
a
T M —e+8)(e+6) 1—p e l—p|l[l—-pl—€c+$

- -(1—1:)2%) (1fp)2} [lfp 1itisr—3'

The second term above is > [¥~3 by previous arguments. The first term is > I? because ;Il_g >

1_#“_6 and 1 > (%‘_15—';3)—2. Thus « > IX=! > 1. This proves the Lemma for z% = (0,1,1,...,1,0).

Note that in all three cases, m > 1.

Now, assume that zf = (0,1,1,...,1). We write a as

o= e 2] I (S 2]

The minimum value of Q(y1|y0)/Q (¥ |yo) is 1=ers- Lhus, the first term in the right hand side of

the expression of o above is > [ > 1. By replacing L by L — 1, we can use the same arguments

as before to show that the second term (= m) is also > 1. Thus a > 1.
|

Proof of Lemma 2  First assume that e¥ = 2L @ y¢ = (0,1,1,...,1,0). Write

o ﬁ }Ij(yklyk—l) [P(yllyo)] lLﬂl P(yklyk—l)] [P(yLlyL—l)] 7

P@-llyo) k=2 P(ﬂkﬁik-l) P(yLI?L_l)
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where the overbar denotes the binary complement. Note that when L = 2, s = %Z‘ﬁ%ﬁ‘i%’

the minimum value of which is M’g—élﬂﬁ. Thus, we may assume w.l.o.g. that L > 2. Now

partition the set X = {2,3,..., L — 1} as follows

K=Kep U Ku U Ky U Ky,
where
Kas £ {k € K : yoor = a, s = b}, a,b € {0,1}.

We then rewrite s as

N P(yllyo) P(yLlyL—l)] [ﬂ] IK111=1Koo| [1 _ qO]IK01|—IIC10|. (43)

P(yllyo) P(yL|yL—1) do 1 —q

The first factor in the right hand side of (43) is defined as u. The product of the next two
factors is defined as v. Note that 1—¢o < q; < go impliesthat 1 —gp < 1—¢; < qo. Furthermore,

since qo > %, qo(l - (Io) < ‘h(l - ‘I1)-

Case 1: yy = yp—1
The minimum value of u in this case is &%ﬂl Furthermore, |Ko1| = |K1ol, |[Koo| > 0
and |[Ky1] £ L — 2. Therefore by (43)

S

L—
SIETEAYTE
— 2 .
%
Case 2: y1 =0, yp1 =1
Here, the minimum value of u is %ﬁ Also, |Ko1| 2 1, |Kio] = |Ko1| = 1, |Koo| > 0 and
IK:III _<_ L - 3. Thus

- [

9% 9o 1—-q

L-3

_ [ -a) —ql)] [g

9001 90
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Case 3: y1 =1, yp-1 =0
The minimum value of u is (=% Also, |K10] 2 1, |Koa| = |K10] = 1, |Kool > 0 and

qoq
lxul S L - 3 Thus

e =
Tl 9n 9 1-qo

_ [-g)1 - ql)l [9_] 7 [(1 — go)(1 - «n)] (g_)

qoq1 qo ¢I3 90

L—
Note that in each case, v > (%) ? Now, assume that el = (0,1,1,...,1). Replacing L — 1

by L in (43), we write

o Pllw) . Pl (@)"
~ P(1lyo) z P(71y0) (CIO) '

Note that the minimum value of 2&0) is 1=%0 Thys
P(y,lvo) 90

= (52 (0) =)

This completes the proof of the lemma.
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Encoder Encoder leaver
Markov
Channel
Huffman Viterbi | De-inter- {_
Decoder Decoder leaver
Figure 1: Block Diagram of the Tandem Scheme.
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Figure 2: Performance of Sequence MAP Detector for IID Binary Source with p = 0.95 over
the Contagion Markov Channel (M = 1); e = Channel Bit Error Rate; é = Pr{bit error}; and

é§ = Correlation Parameter of the Channel.
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Sequence MAP Detection (p=0.99)
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Figure 3: Performance of Sequence MAP Detector for IID Binary Source with p = 0.99 over
the Contagion Markov Channel (M = 1); ¢ = Channel Bit Error Rate; ¢ = Pr{bit error}; and
6 = Correlation Parameter of the Channel.

Instantaneous MAP Detection (p=0.95)
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Figure 4: Performance of Instantaneous MAP Detector for IID Binary Source with p = 0.95
over the Contagion Markov Channel (M = 1); ¢ = Channel Bit Error Rate; ¢ = Pr{bit error};
and ¢ = Correlation Parameter of the Channel.
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Instantaneous MAP Detection (p=0.99)
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Figure 5: Performance of Instantaneous MAP Detector for IID Binary Source with p = 0.99
over the Contagion Markov Channel (M = 1); ¢ = Channel Bit Error Rate; ¢ = Pr{bit error};
and é = Correlation Parameter of the Channel.

Sequence MAP Detection (p=0.95; §=1.0)
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Figure 6: Performance of Sequence MAP Detector for IID Binary Source with p = 0.95 over
the Contagion Markov Channel of Order M with § = 1.0; ¢ = Channel Bit Error Rate; and

¢ = Pr{bit error}.
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Figure 7: Performance of Sequence MAP Detector for IID Binary Source with p = 0.95 over
the Contagion Markov Channel (M = 1) with € = 0.01; € = Pr{bit error}; and § = Correlation

Parameter of the Channel.
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Figure 8: Comparisons of Proposed Sequence MAP Detection System Versus Tandem Source-
Channel Coding System; Binary IID Source with p = 0.9; ¢ = Pr{bit error}; e = Channel Bit
Error Rate; 6 = Correlation Parameter of the Channel; and L = Interleaving Length.
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Sequence MAP Detection (¢=0.99)

10—0.5

10~1

10-—1.5

102

10—2.5

10—3

10—3.5

0 | 1 I 1 1 1 -

0 107%5% 1072 1072% 107% 10-!° 107! 1070°

€

Figure 9: Performance of Sequence MAP Detector for Binary Symmetric Markov Source with
g = 0.99 over the Contagion Markov Channel (M = 1); ¢ = Channel Bit Error Rate; é =
Pr{bit error}; and § = Correlation Parameter of the Channel.
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Figure 10: Performance of Instantaneous MAP Detector for Binary Symmetric Markov Source
with ¢ = 0.99 over the Contagion Markov Channel (M = 1); e = Channel Bit Error Rate; é =
Pr{bit error}; and 6§ = Correlation Parameter of the Channel.
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Sequence MAP Detection (¢=0.95; €=0.01)
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Figure 11: Performance of Sequence MAP Detector for Binary Symmetric Markov Source with
g = 0.95 over the Contagion Markov Channel (M = 1) with € = 0.01; é = Pr{bit error}; and
6 = Correlation Parameter of the Channel.

Coded Vs. Uncoded (¢=0.99; 6=10)
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Figure 12: Performance of the Coded System with Sequence MAP Detection for Binary Sym-
metric Markov Source with ¢ = 0.99 over the Contagion Markov Channel (M = 1) with § = 10;
¢ = Pr{bit error}; ¢ = Channel Bit Error Rate; and § = Correlation Parameter of the Channel.
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Sequence MAP Detection (go=0.99; ¢:=0.45)
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Figure 13: Performance of Sequence MAP Detector for Binary Non-Symmetric Markov Source
with go = 0.99 and ¢; = 0.45 over the Contagion Markov Channel (M = 1); € = Pr{bit error};
€ = Channel Bit Error Rate; and 6 = Correlation Parameter of the Channel.

Sequence MAP Detection (go=0.99; ¢:=0.1)
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Figure 14: Performance of Sequence MAP Detector for Binary Non-Symmetric Markov Source
with go = 0.99 and ¢; = 0.1 over the Contagion Markov Channel (M = 1); é = Pr{bit error};
€ = Channel Bit Error Rate; and § = Correlation Parameter of the Channel.
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