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How the brain processes information is poorly understood. It has been suggested that 

the imbalance of excitation and inhibition (E/I) can significantly affect information 

processing in the brain. Neuronal avalanches, a type of spontaneous activity recently 

discovered, have been ubiquitously observed in vitro and in vivo when the cortical 

network is in the E/I balanced state. In this dissertation, I experimentally demonstrate 

that several properties regarding information processing in the cortex, i.e. the entropy 

of spontaneous activity, the information transmission between stimulus and response, 

the diversity of synchronized states and the discrimination of external stimuli, are 

optimized when the cortical network is in the E/I balanced state, exhibiting neuronal 

avalanche dynamics. These experimental studies not only support the hypothesis that 

the cortex operates in the critical state, but also suggest that criticality is a potential 

principle of information processing in the cortex. Further, we study the interaction 



  

structure in population neuronal dynamics, and discovered a special structure of 

higher order interactions that are inherent in the neuronal dynamics.  
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Figure 5.1: Measuring spontaneous and stimulus-evoked activity from cortical 

networks.  A,  Light-microscopic image of a somatosensory cortex and dopaminergic 

midbrain region (VTA) coronal slice cultured on a 60 channel microelectrode array. Yellow 

dot: stimulation site. Black dots: recording sites. B, Number of extracellular spikes correlates 

with the size of simultaneously recorded nLFP burst (R = 0.84 ± 0.13; n = 5).  Each point 

represents total number of spikes versus the corresponding spontaneous nLFP burst size.  C, 

Example recordings of spontaneous LFP fluctuations (left) and nLFP rasters (right) for three 

drug conditions (top–AP5/DNQX, middle–no drug, bottom–PTX.)  D, Examples of LFP 

evoked by 70 µA stimulus (left) and rasters recorded during the application of four stimuli of 

amplitudes 50, 40, 90, 150 µA (yellow line: stimulus time) (right) for three drug conditions.  

For both spontaneous (C) and stimulus-evoked (D) activity AP5/DNQX (PTX) typically 

results in reduced (increased) amplitude LFP events with lesser (greater) spatial extent.  In 
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(C), (D), black dots on the LFP traces indicate nLFP events, raster point color indicates nLFP 

amplitude, and all scale bars (left) represent 50 µV, 100 ms……………………….………118 

 

Figure 5.2: Change in the ratio of excitation/inhibition moves cortical networks away 

from criticality.  A,  Top: Probability distribution functions (PDFs) of spontaneous cluster 

sizes for a normal (no-drug, black), disinhibited (PTX, red), and hypo-excitable 

(AP5/DNQX, blue) cultures. Broken line: -3/2 power-law.  Cluster size s is the sum of nLFP 

peak amplitudes within the cluster; P(s) is the probability of observing a cluster of size s.  

Bottom: Corresponding cumulative distribution functions (CDFs) and quantification of the 

network state using κ, which measures deviation from a -1/2 power-law CDF (broken line).  

Vertical gray lines: The 10 distances summed to compute κ, shown for one example PTX 

condition (red).   B, Simulated cluster size PDFs (top) and corresponding CDFs (bottom) for 

different values of the model control parameter σ.  C,  Summary statistics of average κ values 

for normal, hypo-excitable, and disinhibited conditions (* p < 0.05 from normal).  D, In 

simulations, κ accurately estimates σ.  Broken line: κ = σ. Colored dots: examples shown 
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Figure 5.3: Peri-stimulus time histograms (PSTHs) of evoked activity.  nLFP versus time 

averaged over 40 stimuli at each stimulus level (color coded) are compared for three drug 

conditions (left – PTX, middle – no drug, right – AP5/DNQX).  In the AP5/DNQX condition 

the system is relatively insensitive due to suppressed excitation, i.e. the PSTH is flat until a 

stimulus level of about 60 µA is reached.  In the PTX condition, the largest stimulus levels 

result in very similar PSTHs, demonstrating the tendency for response to saturate when 
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inhibition is suppressed.   Note that the response to a given stimulus level, R, in the main text 

was defined as the integral of the PSTH……………….…………………………………...122 

 

Figure 5.4: Stimulus-response curves and dynamic range ∆.  A, Experimental response R 

evoked by current stimulation of amplitude S for three example cultures with different κ 

values.  Orange arrows: range from Smin to Smax; length is proportional to ∆.  Note that ∆ is 

largest for 1≅κ .  B, Model response evoked by different numbers of initially activated sites; 

∆ is largest for 1≅σ . Like the experiment, each point is calculated from 40 stimuli.   Error 

bars: 1 S.E. C,  Experimental summary statistics for ∆ under different pharmacological 

conditions (* p < 0.05 from normal).  D, Simulation summary statistics for ∆ comparing 

different ranges of κ  (* p < 0.05 from 1≅σ )……………………………………………..123 

 

Figure 5.5: Network tuning curve for dynamic range ∆ near criticality.  A, In 

experiments, ∆ peaks close to 1≅κ  and drops rapidly with distance from criticality.  Paired 

measurements share the same symbol shape; normal (no-drug) condition was measured just 

before the drug condition.  Circles: unpaired measurement. B, In simulations, ∆ is also 
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Figure 5.6:  Effect of limited stimulus range on ∆.  A, The black line is a re-plot of binned 

and averaged data from Fig. 5.5A of the main text.  The blue and red lines represent the same 

experiments, but reprocessed using only < 150 and < 100 µA respectively.  The peak of ∆ 

near κ = 1 is attenuated, but still exists. B, In the model, we verify that we should expect 
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attenuation of the ∆(κ) curve, when the stimulation range is decreased. The strong peak 

vanishes only for a severely truncated range (Smax = 16)………………………………..….126 

 

Figure 5.7: Effect of network size on ∆. Increasing the system size from N = 250 to N = 

1000 model neurons causes only slight shifts in ∆.  For σ < 1 there is a tendency for slightly 

lower ∆ at higher N. ………………………………………………………………………...127 

 

Figure 6.1: Power law organization of neuronal avalanches identifies interactions 

between locally synchronized neuronal groups and the insufficiency of pair-wise model 

in explaining it. A, Lateral view of the macaque brain showing the position of the multi-

electrode array in pre-motor cortex (red square; not to scale). PS, Principal Sulcus. CS, 

Central Sulcus.  B, Example period of continuous LFP at a single electrode. Asterisks 

indicate the peak negative deflections in the LFP (nLFPs) detected by thresholding (broken 

line; -2.5SD). C, Identification of nLFP clusters and patterns. Top: nLPFs that occur in the 

same time bin or consecutive bins (∆t = 2 ms) define a spatiotemporal cluster, whose size was 

measured by its number of nLFPs (two clusters of size 4 and 5 shown; gray areas).  Bottom: 

Patterns represent the spatial information of clusters only.  D, Neuronal avalanche dynamics 

are identified when the sizes of all clusters distribute according to a power law with slope 

close of -1.5.  The cut-off of the power law reflects the finite size of the microelectrode array 

and changes with the area of the array used for analysis.  Four distributions from the same 

original data set (solid lines, Monkey A) using different areas (inset), i.e., number of 

electrodes (n), are superimposed. The power law reflects interactions between neuronal 

groups from different sites and vanishes for shuffled data (broken lines). A theoretical power 

law with slope of -1.5 is provided for reference (dotted line). E and F, the Ising model (red) 

fails to reconstruct the power law distribution of the 10-eletrode group as showing in D 
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(orange) (E) and other thirty randomly chosen, spatially compact 10-eletrode groups (F). For 

comparison, the prediction when no interactions are assumed is also given (Independent 
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Figure 6.2: Coherence potentials indicate the presence of intrinsic threshold in the nLFP 

cluster formation. A, Coherence potential analysis utilizes the full baseline excursion of the 

nLFP waveform (red). B, The nLFP waveform at a target electrode is compared with the 
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wise comparison are quantified by the Pearson correlation coefficient r. Comparisons for 
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(random; green rectangle). C, Similarity in nLFP waveforms at distant sites increases non-

linearly with the increase in nLFP amplitude. Plotted are the fraction of electrodes on the 

array with high similarity (r >0.8) with the source electrode nLFP as a function of nLFP 

amplitude (Note that it is different from the minimal nLFP amplitude used in Thiagarajan et 

al., 2010). Black: average increase in nLFP waveform similarity over all target channels (n = 

91). Green: Expectation in similarity for random comparisons. Arrows mark threshold (-2.5 

SD) used for nLFP detection in the current neuronal avalanche analysis. D, The non-linear 

coherence potential function is revealed for high-similarity requirements. Coherence potential 

probability plotted as a function of minimal similarity r > Rmin. Note the increase in non-

linearity with higher similarity requirement. E, Difference between functions in (D) and 
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Figure 6.3: Dichotomized Gaussian (DG) model. A, The distribution of a 3-dimensional 

Gaussian and its projections at individual 2-dimensional subspaces. Marginal distributions at 

a 2-dimensional space are represented by probability density contours. Λ: pair-wise 
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covariance.   B, Converting continuous variables to binary variables (events) by thresholding. 

Three continuous Gaussian variables with pair-wise covariance as specified in (A) and 

without high-order interactions. Red line: threshold applied to each variable. To fit the DG 

model to the data, the pair-wise covariance (Λ) of the multi-dimensional Gaussian and the 

level of each threshold need to be adjusted in such a way that the resulting binary variables 

have the identical event rates and pair-wise correlations as the data……...………………..149 

 

Figure 6.4: The DG model predicts 2nd as well as higher-order interactions in neuronal 

avalanches significantly better than the Ising model. A, The DG model (blue) reconstructs 

the power law in avalanche size probability (dots) more accurately than the Ising model (red). 

The results for data, the Ising and Ind model are replotted from Fig. 6.1E (top panel).  B, The 

DG model is also superior in predicting the probabilities of individual patterns 

(corresponding data from a). Observed pattern probability P is plotted against model 

predictions. Solid line indicates equality. Most common pattern (all zeros; inactive) not 

shown for visual clarity.  C, Quantification of model prediction demonstrates 1–2 orders of 

magnitude of improvement when using the DG model as compared to the Ising model. Left: 

Cumulative distribution of JS divergence between the observed and predicted cluster size 

distribution for n = 30 randomly chosen, spatially compact 10-electrode groups out of n = 91 

electrodes (monkey A; cf. Fig. 6.1F). Right: Corresponding analysis for pattern probability 

distributions. Time bins of the original data set were randomly assigned to one of two sets.  

Model parameters were determined from one set only and predictions were made for the 

second set. Half-data: to use the results measured in one half to predict the corresponding 

behavior of the other half. D, The DG model accurately predicts 2nd (θij) and 3rd order (θijk) 

interactions. In comparison, the Ising model is less accurate for 2nd order interactions (arrow) 

and fails completely to predict 3rd order interactions (ellipsoid, arrow).  Measured interactions 
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randomly chosen 3-electrode groups from 91-electrode activity (monkey A).  E, 

Corresponding measured pattern probability plotted against model predictions (over all 3-

electrode groups).  Solid line indicates equality. F, The DG model accurately predicts the 
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24, 47, 91 electrode sites are shown (cf. Fig. 6.1D)……………………….………………..153 
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Figure 6.6: For strongly coupled sub-groups, the DG model predicts spike patterns in 

ongoing and stimulus-evoked activities significantly better than the Ising model. A-C, 

Ongoing spiking activity during avalanche dynamics in monkey A.  A, DG and Ising model 
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Chapter 1: Introduction 
 
 

1.1   How does the brain process information? 
 
 
Our seat of emotion, memory, perception, learning, and consciousness is located in 

the human brain. In particular, the cerebral cortex is the key component in the brain 

that embeds and orchestrates these higher brain functions. It receives and processes 

sensory, visual, auditory, and olfactory stimuli, generates output signals to control 

motor behavior, it also associates and coordinates multiple modalities of information. 

The cortex is a layered structure and each layer has a destined function: sensory 

signals collected from sensory receptors, for example, the photoreceptors in the eye, 

through thalamic relay nuclei provide inputs to layer IV in primary visual cortex.  

They are then processed further in superficial layers II and III, sent down to deeper 

layers V and VI, and out of primary visual cortex to other brain regions including 

higher cortical areas. For instance, if attention needs to be shifted to a particular 

object, sensory information is sent to prefrontal cortex where eye movement is 

planned, then through the relay by superior colliculus in the midbrain as well as to 

other subcortical regions such as striatum in the basal ganglia in order to control 

saccadic eye movements.  

 

As illustrated, performing even a simple eye movement involves multiple brain 

regions. To understand how these regions communicate with each other and how the 

brain stores, transmits and processes information, or generally speaking, the principle 
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of information processing, is a central question in neuroscience.  Regarding the 

example of vision, a more specific but often raised version of this question is the 

following: What are the mechanisms that relate different modalities of information, 

such as spatially or temporally contiguous events in the external world, in order to 

form a coherent image about when and where these external events occur? It is 

known that at early stages of sensory processing, different modalities of input, e.g. the 

color, shape, and orientation of a red horizontally oriented bar, are processed 

separately by distinct groups of neurons in the visual cortex. However, at a higher 

level, these extracted features need to be integrated such that the subject perceives a 

coherent image of a red bar. How are different modalities of sensory information 

converged? This so-called ‘binding problem’ (Roskies, 1999; Malsburg, 1999) is 

extremely common, like associating a person’s voice to appearance, or relating the 

image of an apple to its taste, etc. One suggested solution to the binding problem is 

converging the representations of lower level features to a so called higher level 

‘grandmother neuron’, a specific neuron that will only respond in the presence of a 

red bar, for instance. In fact, neurons that are highly selective to a very complex 

stimulus have been found in the visual processing stream at higher cortical level.  For 

example, ‘face cells’ only respond to the face of a particular person, Angelina Jolie or 

Brad Pitt, an extraordinary feat of selectivity given the computational demands of 

categorizing people’s faces among the myriads of possible viewing angles and small 

changes in appearances. Unfortunately, this solution can never be exhaustively 

applied to every possible stimulus in the outside world. If every single higher level 

neuron in the visual cortex responds to a specific combination of color, shape, 
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orientation, movement, etc, the number of all possible combinations far exceeds the 

total number of available neurons, which is at the order of 1010 in humans.  

 

This problem also exists in the classical neural network, primarily proposed by Hebb, 

where a neuron has one degree of freedom and a brain state is described by a vector 

of neural activities (Hebb, 1949). The population coding or the cell assembly idea 

originated from the classical neural network fails when the external stimulus is more 

complex, for example if a green ellipse is superimposed on the image of a red bar. 

The four neuronal groups that respond to red, green, bar and ellipse are 

simultaneously firing.  How can the brain associate red to the bar while it associates 

green to the ellipse? How can the brain prevent combining red with the ellipse and 

green with the bar? It is known as the ‘superposition catastrophe’ (Malsburg, 1999) 

and the classical neural network models fail. 

 

Malsburg suggested that each neuronal group carry two distinct signals, one 

represents the effectiveness of stimulus, and the other is a tag to a specific object. The 

‘effectiveness’ is carried by firing rate, and the ‘tag’ is signified by the synchronized 

spiking activity. The idea is that the activities of neurons representing different 

features of the same object are temporally correlated: the activities of ‘red’ neurons 

are correlated with the activities of ‘bar’ neurons, and ‘green’ neurons are correlated 

with ‘ellipse’ neurons, but ‘red’ are not correlated with ‘ellipse’. Developed and 

extended by Singer’s group and others, synchronized neuronal activity is proposed as 

a coding strategy employed in the brain. Such temporally correlated activity would 
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have a stronger influence on downstream neurons that process the binding 

information than uncorrelated ones (Singer, 1999; Fries, 2009). Since Gray et al. 

discovered that synchrony facilitated feature binding in vision, neuronal 

synchronizations, particularly in the form of phase-locked 30 – 80 Hz oscillations, so-

called gamma-oscillations, have been extensively studied, and have been proposed to 

coordinate separate brain regions to function coherently (Gray et al., 1989; Singer, 

1999; Varela et al., 2001; Fries et al., 2007; Fries, 2009). The importance of neuronal 

synchronization for normal cortex function is further supported by the abnormal 

levels of synchrony in many brain disorders, for example, decreased synchrony in 

schizophrenia and increased synchrony in epilepsy (Uhlhaas and Singer, 2006).  

 

The synchrony coding hypothesis has raised as much enthusiasm as critiques. Shadlen 

and Movshon pointed out some flaws in it: 1) what neurons could readout the 

upstream synchrony codes? If there are synchrony detecting neurons, this hypothesis 

is barely different from the original ‘grandmother cells’ idea; 2) the inability to 

distinguish special synchrony ‘tags’ from more common synchrony, which results in 

stronger influence on downstream neurons; 3) the lack of direct evidence that 

synchrony acts as the signal for binding, etc (Shadlen and Movshon, 1999). In 

addition, other studies identified conflicting results of change in synchrony in brain 

disorders (Netoff et al. 2002; Garcia Dominguez et al. 2005; also see Uhlhaas et al. 

2006).  
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To conclude, till now there has been no converging theory of how the cortical 

networks process information.  

 

1.2   Neuron: the basic information processing unit 
 
 
It is worth mentioning how a single neuron receives input and generates output, 

because it is the fundamental unit to process information in the brain and has been 

relatively well studied.  

 

A neuron is composed of a cell body, as well as dendrites, through which inputs from 

other neurons are received, and axons, through which output signals are sent. The 

intracellular volume of the neuron is separated from the extracellular space by a thin 

lipid bi-layer across which a negative membrane potential is maintained through ion-

selective channels. The membrane potential is created by the difference of ion 

concentrations between the two regions, mainly a high extracellular sodium 

concentration and a high intracellular potassium concentration. In the absence of 

major inputs, the membrane potential fluctuates around -70 mV, which is also called 

the resting potential. There are two primary types of neurons, excitatory and 

inhibitory. Excitatory neurons send excitatory signals to other neurons, meaning they 

tend to activate others, and inhibitory neurons do the contrary, when active, they tend 

to suppress the activity of other neurons.  Each matured neuron constantly receives 

both excitatory and inhibitory inputs from many of its neighbors. Excitatory inputs, 

consisting of influx of ions like Ca2+ and Na+, will increase/depolarize the cell’s 

membrane potential, while inhibitory signals, like influx of Cl-, will 
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decrease/hyperpolarize membrane potential. Within a small time window, usually 

several milliseconds, the total excitation may exceed inhibition by a certain amount, 

i.e. the membrane potential is depolarized above a threshold, usually around -40 mV.  

Once the membrane potential reaches threshold, the activity of a combination of 

voltage-dependent ion-selective channels will generate a short-lasting, stereotypic 

positive membrane potential change up to +50 mV, called the action potential or 

spike. The action potential can be viewed as an all-or-none electrical event that 

rapidly propagates from the cell body to the end of its axon, and is relayed from 

neuron to neuron through synapses, a structure between the axon of presynaptic 

neuron and dendrites of postsynaptic neuron. Thus, while the subthreshold membrane 

potential functions as an analog integration of many inputs, the action potential 

conveys a binary signal of sufficient excitation, i.e. threshold crossing. When the 

action potential propagates to the end of the axon of the presynaptic neuron, neural 

transmitters are released at the synapse, reach the postsynaptic site at the dendrites of 

the target neurons and trigger the opening of ion channels and selective influx of 

charged ions.  For excitatory cortical neurons, the neurotransmitter released is 

glutamate, which opens Ca2+ and Na+ channels that depolarize the postsynaptic 

neurons.  In contrast, inhibitory cortical neurons release the neurotransmitter GABA, 

which opens Cl- channels that make the postsynaptic membrane potential more 

negative. If the postsynaptic neuron receives many inputs in a short time window, 

these inputs will superimpose and if the net effect results in a suprathreshold 

depolarization, it will generate an action potential and this propagation of neuronal 

activity continues.  
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Although many of the mechanisms regarding neuronal signal propagation are 

reasonably well understood, even at the single neuron level, brain dynamics can be 

inherently complex.  For example, the elaborate arborization of dendrites allows 

inputs from different groups of neurons to be compartmentalized and active 

conductance, such as voltage gated calcium channels, introduce further degrees of 

input processing at the single neuron level.  Importantly, the complexity found at 

single neurons extends to the network. 

 

1.3   The complexity of neuronal network 
 
 
Coordinating the dynamics of thousands or millions of neurons pushes the complexity 

of brain networks to another level. At the microcircuit scale, each neuron receives 

inputs from about 104 other neurons on average and distributes its output to a similar 

large number of neurons. Excitatory neurons have local as well as distant projections, 

whereas inhibitory neurons project only locally.  Thus, thousands of neurons form 

functional groups. In addition, neurons are wired differently. For instance, in a local 

circuit with both pyramidal neurons (P) and interneurons (I), there are four types of 

chemical synaptic connections, P-P, P-I, I-I, I-P, plus gap junctions I-I, and they can 

form various loops like recurrent inhibition, mutual excitation, mutual inhibition, etc. 

Extending this complexity even further, the cortex consists of many types of 

interneurons, which process inputs differently and reveal different anatomical 

preferences in targeting postsynaptic neurons.  For example, fast spiking interneurons 

target the soma of pyramidal neurons, whereas some regular spiking interneurons 
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target the dendrites of pyramidal neurons.  So called chandelier cells play an 

important role in schizophrenia and target preferentially the axon ignition segments of 

pyramidal neurons. The signal processing in these more local groups can be 

sequential or parallel, and the dynamics arising from it is highly nonlinear. Finally, 

long-range connections between pyramidal neurons link different functional groups at 

the macroscopic scale (> 1 mm) involving many different cortical areas with different 

sensory, motor, and associative functions. The complexity in cell types and wiring at 

the mesoscopic and macroscopic scales suggest that dynamics in the cortex will be 

highly non-linear.   

 

Although nonlinear systems are usually difficult to study, I will show in my 

dissertation that simple principles still can be generalized from studies that 

characterize the complexity of signals in the brain. 

 

1.4   A healthy brain is a balanced brain 
 
 
It turns out that the brain operates with a balance of excitatory (E) and inhibitory (I) 

synaptic transmission. Intracellular recordings in vitro and in vivo have revealed that 

the temporal evolution of E and I synaptic conductance are strongly correlated and 

highly similar (Shu et al., 2003; Wehr and Zador, 2003; Haider et al., 2006; Okun and 

Lampl, 2008): as E conductance increases in a local population, I conductance also 

increases, and temporally follows the trajectory of E, resulting in a nearly complete 

cancellation. Typically the onset of I delays the onset of E for a short period of 

several milliseconds. It is during this brief imbalanced window that the membrane 
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potential rapidly depolarizes and generates spikes. However, on a longer time scale, 

the global change of E and I should be balanced. It is suggested that such balance is 

important for neuronal responsiveness and the emergence and disappearance of 

transient sub-networks (Haider and McCormick, 2009).  

 

Based on these findings, we further propose that the balance of E and I is a general 

principle in a healthy brain, and is crucial for the brain’s normal functions. Imagine 

the case when E overwhelms I, inhibition is insufficient to suppress neuron firing, a 

few active neurons can recruit more and more neurons, and recurrent excitation will 

lead the network to a locked-in synchronized state, commonly known as epileptic, i.e. 

seizure, activity. On the contrary, when I dominates E, activation can not be initiated, 

and the neuronal network is unable to transmit signals.  

 

1.5   Attempts to apply the theory of criticality to cortical dynamics 
 
 
In physics, complexity and balanced connectivity are often associated with criticality 

(Chialvo, 2010). The fact that dynamics in the brain is complex and balanced has led 

to the conjecture that criticality is an underlying dynamical principle. In the 1950s, 

Cragg and Temperley suggest a conceptual link between neuronal networks and 

magnetic systems (Cragg and Temperley, 1955). Several decades later, the hypothesis 

emerged that the brain might be balanced at criticality (Kürten, 1988; Chen et al., 

1995; Herz and Hopfield, 1995; Bienenstock and Lehmann, 1999), followed by more 

detailed computational models and simulations (van Vreeswijk and Sompolinsky, 

1996; Kinouchi and Copelli, 2006; Levina et al., 2007; Millman et al., 2010). 
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Unfortunately, the technique of high density parallel recordings is currently not 

sufficiently developed, making it difficult for these models to be confirmed 

experimentally at the mesoscopic or single neuron level.  On the other hand, large 

scale brain imaging and behavioral, cognitive experiments have consistently pushed 

forward the idea that brain dynamics is highly variable, similar to what has been 

observed in physical systems at criticality (Kelso, 1992; Friston, 1997; Kelso et al., 

1998; Linkenkaer-Hansen et al., 2001; Stam and de Bruin, 2004; Miller et al., 2009). 

  

Criticality, critical phenomenon, and second order phase transition, are used 

interchangeably and usually refer to physical systems associated with a critical point.  

A system poised at the critical point is usually associated with the properties of 1) 

power law divergence of correlation length, meaning that distant elements are 

correlated; 2) power law divergence of certain macroscopic quantities, for example, 

compressibility and susceptibility, from which a critical exponent can be derived; and 

3) scale invariance, or fractal structure, which means certain properties of the system 

stay invariant even when the system is observed at different spatial or temporal scales. 

One such physical system that can exhibit criticality is magnetic material of iron or 

cobalt. For example, iron is ferromagnetic at low temperature. Thermal fluctuations, 

however, can overcome atom-atom interactions between ‘magnetic dipoles’ by 

increasing temperature, and the ferromagnetic phase turns into a paramagnetic phase 

above a critical temperature, the Curie temperature. The critical point of the magnetic 

system is right at the Curie temperature, where the magnetic susceptibility is power 
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law divergent and the size of the magnetic clusters with same orientations is power 

law distributed.  

 

It has been hypothesized that the brain might be balanced at criticality, with the 

support of models and mostly indirect experimental studies, and it was not until 2003 

that this hypothesis has been directly and systematically examined. Pioneered by the 

laboratory of Dietmar Plenz at the National Institute of Mental Health and followed 

by others, ‘neuronal avalanches’ have been defined as spontaneous activity observed 

in superficial layers of cortex in vitro and in vivo, and provide important experimental 

evidence that cortex operates close to the critical state (Beggs and Plenz, 2003; 2004; 

Stewart and Plenz, 2006; Mazzoni et al., 2007; Plenz and Thiagarajan, 2007; Stewart 

and Plenz, 2008; Gireesh and Plenz, 2008; Pasquale et al., 2008; Petermann et al., 

2009; Hahn et al., 2010). Neuronal avalanches describe a statistical property of 

spontaneous cortical dynamics that emerges when the network is in a state of 

balanced excitation and inhibition. 

 

But why is spontaneous activity interesting? 

 

1.6   Spontaneous vs. sensory-evoked neuronal activity 
 
 
The fact that neurons are spontaneously active even in the absence of external sensory 

input has been known for many decades, but it was generally regarded as noise and 

functionally unimportant. Only recently the importance of spontaneous neuronal 

activity has been gradually realized (for a review, see Ringach 2009).  
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Spontaneous activity is crucial in shaping the neuronal structure during early stages of 

development, and is correlated over space and time (Katz and Shatz, 1996; Cang et 

al., 2005; Kanold, 2009). For example, in the visual cortex, several features of 

cortical functional architecture, such as ocular dominance columns, orientation tuning 

and orientation columns, are already established by spontaneously generated waves of 

action potentials before eye opening, therefore in the absence of any visual 

experience. Visual experience can only modify the existing structure instead of 

establishing it. Further, disrupting spontaneous activity in mouse retina during the 

first week postnatal will result in defective anatomical mapping from lateral 

geniculate nucleus to visual cortex. 

 

The spontaneous firing of a single neuron is related to the activity pattern of its 

neighbors (Tsodyks et al., 1999), the spatial-temporal firing patterns of neuronal 

groups are repeatable (Ikegaya et al., 2004; Ji and Wilson, 2007), and they reflect and 

resemble sensory-evoked activity patterns (Kenet et al., 2003; Han et al., 2008). It is 

thought that ongoing activity reflects the intrinsic network connectivity, which in turn 

is constantly shaped by external stimuli. Recent experiments showed that the 

similarity between spontaneous and sensory evoked activity increases during 

development, suggesting progressive internal adaptations to external environment 

(Berkes et al., 2011). It is also found that the realm of sensory-evoked activity 

patterns is confined by that of spontaneous activity (Luczak et al., 2009).  
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Correlation in spontaneous activity is comparable to that of sensory-evoked activity 

and contributes considerably to the trial-to-trial variability observed in animal 

experiments in vivo.  More precisely, about half of the variability found in the optimal 

response to the same visual point or bar stimulus can be well explained by the 

variability of spontaneous activity just before the onset of stimulus (Arieli et al., 

1996). In line with these early results, natural stimuli only moderately modulate 

ongoing activity, instead of completely erasing its existence (Chiu and Weliky, 2004). 

 

Given the evidence of such close interplay between spontaneous and sensory-evoked 

activity, and that ongoing activity outlines the ensembles of evoked activity, the study 

of ongoing neuronal activity will not only shed light on the internal structure and 

constraints of neuronal network, but also provide insights into how neurons respond 

to external stimuli. 

 

1.7   Neuronal avalanches 
 
 
Neuronal avalanches consist of bursts of elevated population activity, correlated in 

space and time, which are distinguished by a particular statistical character: active 

clusters of size s occur with probability P(s) ~ sα, i.e., a power law with exponent α = 

-1.5. Neuronal avalanches have several key properties: (1) they arise during 

development when superficial layers form in vitro and in vivo (Gireesh and Plenz, 

2008). More specifically, during the second week postnatal in superficial layers of 

somatosensory cortex in rats, the significant increase in the power of nested θ and 

β/γ oscillations coincides with the emergence of neuronal avalanche dynamics, both 
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reflecting the establishment of long range correlations in the network, (2) they are 

homeostatically maintained (Homeostasis: a system regulates its internal environment 

and tends to maintain a stable and constant condition) for weeks in isolated cortex 

(Stewart and Plenz, 2008). During the first two weeks of development in vitro, size 

distribution of cortical dynamics can be quantified as a power law with exponent 

larger than -1.5, which gradually reaches -1.5 toward the end of second week, and 

maintain this value for several more weeks. (3) they constitute the dominant form of 

ongoing cortical activity in awake monkeys (Petermann et al., 2009), and (4) they 

require balanced synaptic transmissions and can be abolished by disrupting either E 

or I (Stewart and Plenz, 2006; Gireesh and Plenz, 2008), (5) their pharmacological 

regulation is characterized by an inverted-U profile of NMDA/Dopamine D1 receptor 

interaction and intact fast inhibitory transmission, suggesting that the dynamics is an 

intrinsic property of the cortex (Stewart and Plenz, 2006), (6) they are scale invariant. 

Generally speaking, given synchronized activity bursts of sizes s and k * s (where k is 

a constant), there will always be a fixed ratio k−1.5 between the corresponding 

probabilities of occurrence. Such properties of neuronal avalanches resemble the 

dynamics observed in other systems poised at the boundary between ordered and 

disordered, the dynamics in critical state. 

 

The ubiquitous observation of neuronal avalanche dynamics in many different 

preparations, i.e. in vitro cultures, acute slices, in vivo anesthetized cats, rats and 

awake monkeys, indicate that neuronal avalanches, and the underlying mechanism of 

criticality, are potential dynamic principles of cortical network.  
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The robust -1.5 exponent observed in neuronal avalanches further suggests that it may 

be in the same universality class with a group of interesting physical models called 

directed percolation, which study the problem of liquid percolating through rock 

layers. Typical percolation models are constructed on an N * N lattice and the 

parameter is probability P by which the current site could occupy its neighbor. It is 

found that when P is below a critical value PC, no giant clusters exist that could span 

the dimension of the system, while when P is above PC, such a giant cluster always 

exists. It is when P = PC that the giant clusters begin to emerge and the distribution of 

the cluster sizes follows a power law with exponent -1.5, which is the same as in 

neuronal avalanches (Aon et al., 2004; Plenz and Thiagarajan, 2007; Beggs, 2008; 

Buice and Cowan, 2009).  

 

A more intuitive model, which is descended from percolation theory, is the branching 

process model (Beggs and Plenz, 2003; Haldeman and Beggs, 2005; Poil et al., 2008; 

Tagliazucchi and Chialvo, 2011). This model is originally used to study the 

population growth in species (Jagers, 1975). The process is taken place over time or 

generations, and each entity in a previous generation (ancestors) is connected to N 

other entities in the following generation (descendents), with probability P of 

successfully giving birth to each of them and the probability of 1 – P to fail. An 

important parameter to describe this process is the branching parameter σ, the 

average ratio of the number of descendents to the number of ancestors. σ describes 

the tendency of population growth. If σ is 1, equivalent to P = 1/N in the model, it 
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means on average the number of ancestors and that of descendents are the same, thus 

the propagation is stable, and the distribution of the size of blood-bonded generations 

is a – 1.5 power law. If σ > 1 or P > 1/N, the population always expand, for instance 

σ = 2, at each generation, the number of alive entities doubles; if σ < 1 or P < 1/N, the 

propagation is not sustainable, in the case of σ = 0.5, every following generation will 

be halved in numbers, and eventually no descendents will be generated. σ = 1 or P = 

1/N is the critical point. It has been demonstrated that in normal, unperturbed cortical 

networks σ is very close to 1 (Beggs and Plenz, 2003). 

 

The branching model and the neuronal network resemble each other in many aspects. 

Similar to the dynamics in branching process, the neural signal propagation can be 

viewed as a chain reaction, with one group of upstream neurons activating one group 

of downstream neurons. In addition, in the percolation and branching process models, 

a parameter has to be finely tuned to reach the critical state, the activation probability 

P or the branching parameter σ. As discussed, the occurrence of neuronal avalanches 

depends on an optimal concentration of neuromodulators and the balance of 

excitatory and inhibitory synaptic transmission. In other words, the neuronal network 

also needs tuning. 

 

Therefore, neuronal networks and avalanche dynamics can be characterized by 

models derived from criticality, but why should the cortex operate at criticality? 
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1.8   Advantages of being critical 
 
 
The hypothesis that the brain operates near the critical point attracts much attention 

because it not only provides a general framework to the neural network and supported 

by experiments and models, but also the success of predictions of optimal 

computational power of neuronal network in many aspects.  

 

In theory, divergence of correlation length is a signature of criticality. It also is a 

desirable feature in cortical dynamics. It serves as a balanced ability to form both 

short and long range correlations while avoiding the extremes: Too strong and 

widespread correlations would cause the network to operate in a locked-in state; too 

weak and local correlations make long-range information transmission impossible. It 

is thought a balance between the two extremes will lead to diverse, non-stereotyped 

and non-isolated neural activity, and is advantageous to large computational powers 

in information processing tasks. As mentioned in previous sections, even the 

completion of a simple task, such as a saccadic eye movement, requires the 

coordination among local and distant neuronal groups. Criticality enables neuronal 

groups to maintain local correlation structure as well as communicate with distant and 

separate cortical regions. 

 

Studies of several different physical models showed optimization of computation or 

information processing at criticality. For example, cellular automata showed maximal 

computational power when operating close to criticality (Crutchfield and Young, 

1989; Langton, 1990). Later, it was suggested that neural networks might operate 
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near criticality (Bornholdt and Röhl, 2003; de Arcangelis et al., 2006; Meisel and 

Gross, 2009), and the optimization of information processing of critical neural 

network models have been studied (Bertschinger and Natschläger, 2004; Haldeman 

and Beggs, 2005; Kinouchi and Copelli, 2006; Tanaka et al., 2009). Intuitively, 

systems poised close to criticality are variable, transiently stationary and susceptible 

to fluctuations. Such metastability can be beneficial to the brain in many aspects: it is 

a state where local segregation and global integration can coexist, where the measure 

of complexity is maximized (Kelso, 2008), and maximal diversity could serve as a 

solution to the combinatory binding problem. This transient nature is also consistent 

with the current idea of synchrony coding, where transient synchrony is required for 

handling multiple functions (Rodriguez et al., 1999). 

 

1.9   Questions remained for the critical brain hypothesis 
 
 
The critical brain hypothesis is very tempting in that it is a general framework to 

understand the brain, a universal mechanism and principle to describe cortical 

dynamics and potential advantages for brain functions. However, most of the 

supporting evidence from experiments so far is the power law distribution in active 

cluster size that is robustly found in different experimental settings, ranging from the 

isolated cortex preparation in vitro to the intact brain in awake animals.  A main focus 

of my dissertation is to experimentally demonstrate the optimal information 

processing functions in cortical networks exhibiting critical dynamics, i.e. neuronal 

avalanches, and to understand the underlying interaction structure that give rise to 

cortical dynamics. 
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1.10   Dissertation outline 
 
 
In this dissertation, I present the studies of several information processing functions 

in cortical networks while E/I balance is changed, and I find that all of these functions 

are optimized when cortical network exhibits avalanche dynamics, i.e. the network is 

in the E/I balanced state.. 

 

In Chapter 2, the common experimental procedures, analysis methods and 

computational models are introduced. Methods that are specific to a particular topic 

will be described separately in the corresponding chapter. 

 

In Chapter 3, we study the diversity of the repertoire of neuronal activity patterns, 

which constrains the ability of the network to store, transfer and process information. 

We measured activity patterns obtained from multisite local field potential recordings 

in cortex cultures, urethane anesthetized rats, and awake macaque monkeys. First, we 

quantified the information capacity of the pattern repertoire of ongoing and stimulus-

evoked activity using Shannon entropy. Next, we quantified the efficacy of 

information transmission between stimulus and response using mutual information. 

By systematically changing the ratio of excitation/inhibition (E/I) in vitro and in a 

network model, we discovered that both information capacity and information 

transmission are maximized at a particular intermediate E/I, at which ongoing activity 

emerges as neuronal avalanches. Next, we used our in vitro and model results to 
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correctly predict in vivo information capacity and interactions between neuronal 

groups during ongoing activity. Close agreement between our experiments and model 

suggest that neuronal avalanches and peak information capacity arise because of 

criticality and are general properties of cortical networks with balanced E/I (Shew et 

al., 2011). 

 

In Chapter 4, we continue the study of optimization principles in ongoing neuronal 

activity by examining the synchronization among different groups of neurons and the 

repertoire of synchronized neuronal assemblies. Neural synchrony are often 

manifested in fundamental brain functions such as perception of sensory stimuli, 

motor control, attention, and working memory, which require coordinated interactions 

among large networks of neurons in the cerebral cortex.  Theory predicts that 

variability of synchrony dynamics is maximized when coupling between neurons is 

tuned precisely to a critical level, but this remains untested in experiments with brain 

tissue.  Such variability is important, because a diverse and variable repertoire of 

brain functions is thought to require a diverse and variable repertoire of synchronized 

neural groups.  Here we studied various neural networks by tuning synaptic 

‘coupling’ through a wide range and measuring the resulting neural synchrony.  We 

discovered that three phenomena occur near a critical coupling level: 1) maximized 

variability of synchronous neural groups, 2) onset of synchrony, and 3) neuronal 

avalanches.  Our findings suggest that the cortex benefits from optimized properties 

of neural synchrony by operating near criticality. This chapter not only complements 

the findings in Chapter 3, but also extends the results to the continuous regime. 
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In Chapter 5, the study is focused on the optimization of neuronal response to 

external stimuli, which could be inferred from the optimization principles discovered 

in ongoing activity, given the close relationship between ongoing and stimulus-

evoked activity, and has also been predicted by criticality models in physics. We 

demonstrate that cortical networks that generate neuronal avalanches benefit from a 

maximized dynamic range, i.e., the ability to respond to the greatest range of stimuli. 

By changing the ratio of excitation and inhibition in the cultures, we derive a network 

tuning curve for stimulus processing as a function of distance from criticality, in 

agreement with predictions from our simulations. Our findings suggest that in the 

cortex, 1) balanced excitation and inhibition establishes criticality, which maximizes 

the range of inputs that can be processed, and 2) spontaneous activity and input 

processing are unified in the context of critical phenomena (Shew et al., 2009). 

 

In Chapter 6, the interaction structures of neuronal avalanches, as well as population 

spiking activity are investigated. The dynamics built on intricate cortical networks 

reflect complex interactions among many neurons during ongoing activity and 

stimulus processing. Recently, a pair-wise interaction model (Ising model) has been 

suggested to be sufficient to reconstruct most of the observed neuronal dynamics.  

Here we show that this Ising model approach fails to capture essential features in 

ongoing neuronal avalanche dynamics of awake monkeys as well as evoked activities 

in cat visual cortex.  Instead, these dynamics are accurately predicted by a pair-wise 

Gaussian interaction model, in which high-order interactions are introduced through a 
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simple non-linear, i.e. thresholding, operation.  Our results hold for different scales of 

neuronal dynamics, reflected by LFPs and spike activities. We suggest that cortical 

dynamics naturally contain high-order interactions that arise from intrinsic non-linear 

processes, such as local field potential and spike generation, which crucially 

contribute to cortical information processing.   

 

Chapter 7 contains concluding remarks and suggests directions for future 

investigations. 
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Chapter 2: Experimental design, data analysis methods and 
computational models 

 

2.1   MEA recordings in organotypic cortex cultures 
 
 
Coronal slices from rat somatosensory cortex (350 µm thick) and midbrain (ventral 

tegmental area, VTA; 500 µm thick) were taken from newborn rats (postnatal day 0–

2; Sprague–Dawley) and cultured on a poly-D-lysine-coated 8x8 multi-electrode 

array (MEA, Multi Channel Systems; 30 µm electrode diameter; 200 µm inter-

electrode distance). This co-culture system (Fig. 2.1A) captures many aspects of the 

development of superficial cortical layers observed in vivo (Stewart and Plenz, 2008 

and Gireesh and Plenz, 2008). The slice cultures were grown inside a sterile, 

closeable chamber attached to the MEA.  Individual MEAs were attached to a 

recording head stage inside an incubator (MEA1060 w/ blanking circuit; x1200 gain; 

bandwidth 1 – 3000 Hz; 12 bit A/D in range 0 – 4096 mV; Multi Channel Systems, 

Inc.).  The recording setup allowed for repeated measurements under stable, sterile 

conditions from single cultures for weeks. After plasma/thrombin-based adhesion of 

the tissue to the MEA, standard culture medium was added (600 µl, 50% basal 

medium, 25% Hank’s Buffered Salt Solution, HBSS, 25% horse serum; Sigma-

Aldrich). MEAs were then affixed to a slowly rocking tray inside a custom built 

incubator (± 65° angle, 0.005 Hz frequency, 35.5 ± 0.5°C). Spontaneous local field 

potential (LFP; 1 – 200 Hz; 4 kHz sampling rate; measured against common 

reference electrode inside the bath, Fig. 2.1B) was obtained from 1 hr of continuous  
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Figure 2.1: Preparation of culture and example population event.  A,  Light-microscopic 

image of a somatosensory cortex and dopaminergic midbrain region (VTA) coronal slice 

cultured on a 60 channel microelectrode array. Yellow dot: stimulation site. Black dots: 

recording sites. B. Shown is an example of a population event revealed by widespread 

fluctuations in the local field potential (LFP) recorded by the micro-electrode array.  Each 

trace is 600 ms of recorded LFP from one electrode in the array.   

 

recordings of extracellular activity, and low-pass filtered off-line with a cutoff at 100 

or 50 Hz (phase neutral, 4th order Butterworth).   

 

Local field potential (LFP) measures the combined electrical signals of synchronized 

activity from a population of neurons. It has been employed in many studies to 

investigate cortical functions, and is thought most correlated to fMRI signals. Its 

origin is currently not well understood, but it is generally considered as synchronized 

synaptic inputs to the observed area. A recently study suggested that LFP signal is 

originated within 250 µM of the recording electrode (Katzner et al., 2009). However, 

we found a monotonic relationship between the amplitude of LFP and multi-unit 

activity, suggesting that LFP could also reflect output in the cortical tissue. 
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Figure 2.2: Positive correlation between LFP amplitude and unit activity. Number of 

extracellular spikes correlates with the size of simultaneously recorded nLFP burst (R = 0.84 

± 0.13; n = 5).  Each point represents total number of spikes versus the corresponding 

spontaneous nLFP burst size. 

 

To establish a correlation between LFP and neuronal spiking activity, in n = 5 

cultures, extracellular activity was recorded for 15 min at 25 kHz. In addition to 

extracting LFP, the extracellular signal was filtered in the frequency band 300–3000 

Hz and ~ 78 single units were identified per culture using threshold detection and 

PCA-based spike sorting (Offline Sorter; Plexon). Fig. 2.2 demonstrates that the LFP 

amplitudes are positively correlated with the intensity of population spiking activity. 

 

2.2   Stimulus-evoked activity in vitro 
 
 
Immediately following each 1 h recording of spontaneous activity, stimulus-evoked 

activity was measured. Stimuli were applied at 5 s intervals at one electrode located 

approximately at the center of the culture, in superficial cortical layers (yellow dot in 

Fig. 2.1A). Stimuli were current-controlled, single shocks with bipolar square 
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waveform: 50 µs with amplitude -S followed by 100 µs with amplitude +S/2, where 6 

< S < 200 µA. We tested one set of stimulus amplitudes with fine resolution (S = 10 –

200 µA in steps of 10µA), and another with coarser resolution (S = 6, 12, 24, 50, 65, 

80, 100, 150, 200 µA). Each stimulus level was repeated 40 times in pseudo 

randomized order resulting in a total recording duration of 2000 (coarse) or 4000 

(fine) seconds. Each stimulus-evoked response was recorded using all electrodes 

except the stimulation electrode during 500 ms following stimulation. A blanking 

circuit disconnected the recording amplifiers during stimulation, thus significantly 

reduced stimulus artifacts (Multi Channel Systems). Sample rate and filtering was 

identical to that used for spontaneous activity recordings. 

 

2.3   Pharmacology in vitro  
 
 
Bath-application of antagonists for fast glutamatergic or GABAergic (GABA: 

gamma-Aminobutyric acid) synaptic transmission was used to change the ratios of 

excitation to inhibition (E/I) in cortical network.  The normal condition (no-drug) 

followed by a drug condition for each culture was typically studied within a short 

time (~ 3 hrs) to minimize potential non-stationarities during development.  Stock 

solutions were prepared for the GABAA receptor antagonist picrotoxin (PTX), the N-

methyl-D-aspartic acid (NMDA) receptor antagonist DL-2-Amino-5-

phosphonopentanoic acid (AP5), and the α-amino-3-hydroxyl-5-methyl-4-isoxazole-

propionate (AMPA) receptor antagonist 6,7-Dinitroquinoxaline-2,3-dione (DNQX).  

Working solutions were obtained by adding 6 µl of these stock solutions to 600 µl of 

culture medium in the MEA chamber to reach the following final drug 
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concentrations: (in µM) 5 PTX, 20 AP5, 10 AP5 + 0.5 DNQX, 20 AP5 + 1 DNQX.  

After measurement under each drug condition, the culture was washed by replacing 

the culture medium with 300 µl of conditioned medium mixed with 300 µl of fresh, 

unconditioned medium. Conditioned medium was collected from the same culture the 

day before drug application.  Most cultures recovered to their pre-drug condition 

within about 24 hrs following wash.   

 

2.4   MEA recordings in monkeys 
 
 
All procedures were in accordance with National Institutes of Health guidelines and 

were approved by the National Institute of Mental Health Animal Care and Use 

Committee. 96-channel MEA (10 * 10 grid with no corner electrodes, 400 µm 

separation, and 1.0 mm electrode length) (BlackRock Microsystem) were chronically 

implanted in the left arm representation region of premotor cortex of two monkeys 

(Macaca mulatta, adults, one male and one female). Ongoing activity was recorded 

for 30 minutes. Monkeys were awake but not engaged by any task or controlled 

sensory stimulation. Extracellular signals were sampled at 30 kHz and filtered offline 

(1–100 Hz; phase neutral, fourth-order Butterworth). Negative peaks in LPF (nLFPs) 

were related to the activity of local neuronal populations (Fig. 2.3).  

 

Spike sorting was performed with Plexon offline spike sorter (V2.8.8).  56 and 40 

well isolated units were found for monkey 1 and monkey 2 respectively.  Three 

principal components (PCA), peak-trough amplitude, and nonlinear energy were used 

as the sorting features.  We defined ‘well isolated’ as follows:  in a 2-D projection of  
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Figure 2.3: Negative LFP peaks (nLFPs) correspond to the times of spiking during 

ongoing activity. A, Local units increase their firing rates around the occurrence of nLFPs. 

Average peri-event time histogram (PETH) of spike firing rate relative to the occurrence of 

nLFPs recorded by the same electrode (ongoing activity; pre-motor cortex; bin width = 2 ms; 

53 single units; monkey A). Time zero (nLFP time) is marked by the blue vertical line. B, 

Average LFP waveforms turn negative around the time of unit firing. Spike triggered average 

(STA) in LFP waveform averaged over 53 single units (the same data set as in A). The time 

of spikes (time zero) is marked by the blue vertical line. Three neurons with extremely high 

firing rates (>30 spikes/s) were not included to avoid the masking of other neurons, though 

they showed very similar results. The artifacts due to the residue of spike waveforms left in 

LFPs was removed in both A and B.  

 

at least 2 of the sorting features the unit must have a mean which is strongly different 

from the mean of noise waveforms (p ≤ 0.001, multivariate ANOVA).  If more than 

one unit was recorded from the same electrode, the difference between means of each 

unit was also required to be significant at this strict level (p ≤ 0.001, multivariate 

ANOVA). 
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There experiments were performed by Drs. S. Yu, A. Mitz and R. Saunders.  

 

2.5   MEA recordings in rats 
 
 
Rats aged 15–25 days were anesthetized with urethane (1.25–1.75 g/kg body weight, 

i.p.). The MEA (NeuroNexus Technologies) was inserted in the coronal plane into the 

somatosensory cortex (~ 3 mm lateral, 1 mm caudal to bregma). The animal was 

hydrated frequently (Ringer’s lactate solution; 0.5–1 ml/h, i.p.) and was monitored for 

respiratory rate (80–120/min), tail color, and tail pinch reflex. Anesthesia was 

maintained with supplemental doses of urethane (~ 0.25 g/kg). After the recordings, 

the brains were fixed in paraformaldehyde, sectioned, and Nissl-stained to reconstruct 

the electrode locations. See details in Gireesh and Plenz, 2008. 

 

2.6   Unit recordings in cat  
 
 
Visually evoked activities were recorded from cortical area 17 in two adult, 

anesthetized cats. The animals were artificially ventilated and the anesthesia was 

maintained with a mixture of 70% N2O and 30% O2, supplemented with 0.5 – 0.6% 

halothane.  Extracellular spike activities were recorded by one or two silicon-based 

MEAs (4×4 electrode array; 200 µm inter-electrode distance; NeuroNexus). The 

probes were inserted roughly perpendicular to the surface of cortex at depths of 

approximately 1 mm.  The visual stimuli (presented by ActiveStim, 

http://activestim.com/) consisted of full-contrast, drifting sinusoidal gratings that 
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spatially covered the receptive fields of all recorded neurons.  Each trial was 

completed with 3 – 4 s long presentations of a drifting grating with orientations 

randomly chosen from a set of 12 directions (0° to 360° range; steps of 30°). About 

30 minutes of visually evoked responses were recorded for each cat.  Single units 

were identified offline using a customized, PCA-based program. For more details, see 

previous publication with the same data sets (Yu et al., 2008). There experiments 

were performed by Drs. S. Yu and D. Nikolić.  

 

2.7   Definitions of bursts and neuronal avalanches 
 
 
For each electrode, we identified negative peaks in the LFP (nLFP) that fell below a 

certain threshold (-4 SD in vitro and -2.5, -3 SD in vivo) of the electrode noise.  An 

example of the raw LFP recording from which we extract an nLFP cluster is shown in 

Fig. 2.1B. Each negative peak in LFP fluctuation will be designated an nLFP with a 

time stamp and amplitude. We then defined bursts as spatiotemporal clusters of 

nLFPs, within which consecutive nLFPs were separated by less than a time τ.  The 

threshold τ was chosen to be greater than the short timescale of inter-nLFP intervals 

within a burst, but less than the longer timescale of inter-burst quiescent periods (τ = 

86 ± 71 ms for all cultures).  Fig. 2.4 shows a typical histogram of time intervals 

between nLFPs on the array (single experiment). Red line: choice of τ. Results were 

robust for a large range in the choice of τ.  

 

The size s of a burst was quantified as the absolute sum of all nLFP amplitudes within 

the burst.  The area of a burst was defined as the number of electrodes that  
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Figure 2.4: Time threshold τ in burst definition. Shown is an example of an inter-peak 

interval distribution of nLFPs on the array from one experiment.  Two time scales are 

prominent: (1) short time intervals between peaks within periods of activity and (2) long time 

intervals reflecting periods with no activity (identified by the hump in this example). Red 

line: choice of τ.  

 

participated.  The duration of a burst was defined as the interval between the first and 

last nLFP within the burst (Beggs and Plenz, 2003; 2004).  

 

2.8   Definition of κ   
 
 
Neuronal avalanches entail a probability density function (PDF) of burst size s which 

follows a power-law with exponent α = –3/2 (Beggs and Plenz, 2003; Gireesh and 

Plenz, 2008; Petermann et al., 2009).  Thus, the corresponding cumulative density 

function (CDF) for avalanche sizes )(βNAF , which specifies the fraction of measured 

cluster sizes β<s , is a –1/2 power law function, ( ) ( )ββ /1/1)(
1

lLlF NA −−=
−

 for 

minimum size l and maximum size L.  Here we define a novel nonparametric  
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Figure 2.5: Definition of κκκκ. Left: Probability distribution functions (PDFs) of spontaneous 

cluster sizes for a normal (no-drug, black), disinhibited (PTX, red), and hypo-excitable 

(AP5/DNQX, blue) cultures. Broken line: -3/2 power-law.  Cluster size s is the sum of nLFP 

peak amplitudes within the cluster; P(s) is the probability of observing a cluster of size s.  

Right: Corresponding cumulative distribution functions (CDFs) and quantification of the 

network state using κ, which measures deviation from a -1/2 power-law CDF (broken line).  

Vertical gray lines: The 10 distances summed to compute κ, shown for one example PTX 

condition (red). 

 

measure, κ, to quantify the difference between a measured burst size CDF, )(βF , and 

the reference CDF, )(βNAF , 

( ),)()(
1

1
1
∑

=

−+=
m

k
kk

NA FF
m

ββκ                          (2.1) 

where the kβ  are m = 10 discrete burst sizes logarithmically spaced between the 

minimum and maximum burst sizes observed in the experiments (Fig. 2.5).  Our use 

of cumulative distributions rather than the PDFs to calculate κ avoids sensitivity to 

binning choices, which are necessary for constructing a PDF.   
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In previous work by our lab, we used a different measure than κ for characterizing the 

spontaneous activity of the system (Beggs and Plenz, 2003). Here we discuss our 

motivations for this change. In previous work, an estimate of the parameter σ was 

computed from experimental data with a method based on counting the number of 

electrodes which recorded negative LFP peaks within successive time periods. The 

ratio of the active electrode count in the second time period to the count in the first 

time period was taken as the σ estimate. This method yielded σ � 1 during neuronal 

avalanches as expected from theory. Later, this measure was found to give 

unexpected results for apparently supercritical states (Haldeman and Beggs, 2005; 

Plenz, 2005). To better understand these observations, we tested the method for 

estimating σ using our model (described in detail in the following section), where the 

true σ is known and exact counting of numbers of active sites is feasible. Using time 

periods with various durations and starting times within a cluster, we found that the 

previously used method for estimating σ was very accurate when the network was 

critical. However, away from the critical state, this method was highly sensitive to the 

temporal resolution (Fig. 2.6A). This may explain why the previous method robustly 

and correctly estimated σ � 1 for neuronal avalanches, but was unreliable for 

supercritical states.  

 

As a measure of the system state, κ avoids the above difficulties primarily because it 

does not depend on precise temporal resolution. The comparison of κ with σ 

demonstrates its superiority over previous methods of estimating σ. We tried several 

alternative definitions for κ, which all outperformed the previous method of  
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Figure 2.6: Estimating σ using κ.  A, Using our model, we compared the true value of σ to 

an estimate based on activity clusters. The black dashed line has slope 1, representing a 

perfect estimate. The new measure κ (red) accurately estimated the underlying branching 

parameter over a wide range of subcritical to supercritical states.  In contrast, an estimate of 

the branching parameter σ based on calculating ratios of descendants to ancestors, i.e. active 

sites during period t+1 divided by active sites during period t, varied significantly in its 

precision depending on network state and time periods used. A reliable estimate was achieved 

when the correct temporal resolution for each network state was available and when 

comparing the first two consecutive time steps of a cluster (light blue; )1(/)2( AAest =σ ; 

A(t1) and A(t2) are the number of active neurons during time t1 and t2 respectively). 

Importantly, when the exact temporal resolution was not known, estimates tended to stray 

widely from the real value for subcritical and supercritical dynamics. For 

)10:1(/)20:11( AAest =σ  (black) and subcritical dynamics, clusters tended to die during t1 

= 1:10, leading to an underestimate of σ.  Conversely, clusters tended to expand supralinearly 

for t2 = 11:20 in supercritical dynamics, leading to an overestimate of  σ.  For comparison, 

other variations of sampling situations were also plotted (green: 

)28:26(/)31:29( AAest =σ ; dark blue: )8:6(/)11:9( AAest =σ ).  
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B, Comparison in the accuracy of estimating true σ using various metrics to quantify 

differences between CDF (network model).  Red: κ with 10 logarithmically spaced kβ  values 

provides the most reliable and linear estimate of σ. Blue: modified κ with linear spacing of 

kβ  values reveals increased mismatch for extreme sub-critical and supercritical dynamics. 

Green: Kolmogorov-Smirnov statistic using the maximal distance between two CDF 

performed worst. 

 

estimating σ and are compared to each other. Our choice of definition was guided by 

the aim to make the match between κ and σ as close as possible using the model data. 

Our use of cumulative distributions rather than the PDFs to calculate κ avoids 

sensitivity to binning choices, which are necessary for constructing a PDF. κ is in the 

same family of nonparametric comparisons of cumulative distributions as the 

Kolmogorov-Smirnov (KS) test and the Kuiper's test. The KS statistic is the single 

maximum difference between two cumulative distributions and Kuiper's test is the 

sum of the absolute values of the maximum positive difference and the maximum 

negative difference. Compared to Kuiper's test, κ simply takes the sum of more than 

two differences without the absolute value. We note that the Kolmogorov-Smirnov 

statistic does a rather poor job for our purposes. Furthermore, our choice of 

logarithmic spacing of the βk values provides a more linear relationship between κ 

and σ compared to a linear spacing of βk (Fig. 2.6B).  

 

Finally, we point out that several aspects of the definition are very robust. For 

example, if we alter the upper end of the range of burst sizes used to generate the 

reference CDF, from 103 to 105 µV, the measured κ values change only slightly (data 
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not shown). We note that the typical maximum burst size measured from a given 

culture also ranged from 103 to 105 µV. Furthermore, κ is nearly unchanged with 

respect to the number of differences computed between the two CDFs for all m > 5 

(m as defined above; data not shown). However, since it is a statistical measure, κ is 

naturally more prone to error when sample sizes are low. To account for this, we only 

included experiments in our analysis in which we observed at least 200 spontaneous 

nLFP clusters. 

 

2.9   Model 
 
 
The model consisted of N all-to-all coupled, binary-state neurons and the following 

dynamical rules:  If neuron j spiked at time t (i.e. 1)( =ts j ), then postsynaptic neuron 

i will spike at time 1+t  with probability pij.  As such, the pij are N2 numbers 

representing the synaptic coupling strengths between each pair of neurons.  The pij are 

asymmetric, jiij pp ≠ , positive, time-independent, uniformly-distributed random 

numbers with mean and standard deviation of order 1−N .  If a set of neurons J(t) 

spikes at time t, then the probability that neuron i fires at time t+1 is exactly 

( )∏
∈

−−=
)(

11)(
tJj

ijiJ ptp .  To implement the probabilistic nature and variability of 

unitary synaptic efficacy, neuron i actually fires at time t+1 only if )()( ttpiJ ζ> , 

where ζ(t) is a random number from a uniform distribution on [0,1]. Population 

events were modeled by activating a single initial site (like an electrical shock applied 

at a single electrode or a spontaneous activation in the experiments) and recording the 
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resulting activations that propagated through the network.  These dynamics were 

defined by 

[ ] ( ) 







−−−=−=+ ∏

∈

)(11)()()1(
)(

tpttpts
tJj

ijiJi ζθζθ ,               (2.2) 

where [ ]xθ  is the unit step function.  As in our experiments, we explored a range of 

network excitability by tuning the mean value of pij from 0.75/N to 1.25/N in steps of 

0.05/N by scaling all pij by a constant.  For such small mean pij, the model reduces to 

probabilistic integrate-and-fire, i.e. ∑
∈

≈
)(tJj

ijiJ pp  to order N-2 accuracy. If the mean pij 

is exactly 1−N , then, n spikes at time t will, on average, excite n postsynaptic spikes 

time 1+t , which constitutes criticality in our model (Beggs and Plenz, 2003; 

Kinouchi and Copelli, 2006).  When mean pij is larger than or less than 1−N , the 

system is supercritical or subcritical, respectively.  We define the control parameter of 

the model ∑∑−≡
i i ijpN 1σ .  In the context of dynamics, σ reflects the average ratio 

of spiking descendants to spiking ancestors in consecutive time steps.  At criticality, 

1=σ ; the coupling strengths are balanced such that, on average, the number of active 

sites neither grows nor decays with time (note that the instantaneous activity level 

fluctuates greatly).   

 

To obtain response as a function of stimulus in the model, we simulated increasing 

stimulus amplitude S by increasing the number of initially activated neurons (S = 1, 2, 

4, 16, 32, 64, 128 initially active neurons for system size of 500).   Finally, we note 

that our model is very similar to 1−N  dimensional directed percolation (Buice and 
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Cowan, 2007). Therefore, at high dimension (N > 5) and weak coupling it is expected 

that the model behaves as a branching process, where σ is the branching parameter 

and the –3/2 power-law is predicted at criticality. 
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Chapter 3: Information capacity and transmission are 
maximized in balanced cortical networks with neuronal 
avalanches1 

 

3.1   Introduction 
 
 
In the cortex, populations of neurons continuously receive input from upstream 

neurons, integrate it with their own ongoing activity, and generate output destined for 

downstream neurons. Such cortical information processing and transmission is 

limited by the repertoire of different activated configurations available to the 

population.  The extent of this repertoire may be quantified by its entropy H; in the 

context of information theory, entropy characterizes the information capacity of the 

population (Shannon, 1948; Rieke et al., 1997; Dayan and Abbott, 2001).  

Information capacity is important because, as the name suggests, it defines upper 

limits on aspects of information processing.  For example, consider the information 

transmitted from input to output by a population that only has two states in its 

repertoire (H ≤ 1 bit).  No matter how much information the input contains, the 

information content of its output cannot exceed 1 bit.  A network with low entropy 

presents a bottleneck for information transmission in the cortex.  Thus, it is important 

to understand the mechanisms that modulate the entropy of cortical networks.  

 
Cortical activity depends on the ratio of fast excitatory (E) to inhibitory (I) synaptic 

inputs to neurons in the network.  This E/I ratio remains fixed on average even during 

                                                 
1 This chapter is published in Journal of Neuroscience 31:55-63, 2011. I contributed to in vitro and 
anesthetized rat recordings, all data analysis, interpretation of the data and manuscript preparation. 
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highly fluctuating activity levels (Shu et al., 2003; Okun and Lampl, 2008).  

However, it is currently not known whether a particular E/I ratio is advantageous for 

certain aspects of information processing.  The existence of such an optimal ratio is 

suggested by two competing effects of E/I on entropy.  First, a large E/I ratio, i.e. if 

excitation is insufficiently restrained by inhibition, can cause very high correlations 

between neurons (Dichter and Ayala, 1987).  Since increased correlations decrease 

entropy (Rieke et al., 1997; Dayan and Abbot, 2001), we anticipate that a sufficiently 

large E/I ratio limits information transmission.  This is consistent with findings that 

moderate levels of correlation can play an important role in population coding (Pola 

et al., 2003; Jacobs et al., 2009).  At the other extreme, i.e. a small E/I ratio, weak 

excitatory drive is expected to reduce correlations as well as the overall level of 

neural activity.  Although reduced correlations can lead to higher entropy, this 

increase may be counteracted by a concurrent drop in activity.  Sufficiently 

suppressed activity also reduces entropy (Rieke et al., 1997; Dayan and Abbot, 2001).  

Accordingly, we hypothesize that cortical entropy and information transmission are 

maximized for an intermediate E/I ratio.     

 
Here we tested our hypothesis experimentally in cortex cultures, anesthetized rats, 

and awake monkeys and compared our results with predictions from a computational 

model.  We discovered an optimal intermediate E/I ratio distinguished by 1) maximal 

entropy and 2) maximal information transmission between input and network output.  

This finding was based on analysis of both ongoing and stimulus-evoked population 

activity.  Moreover, at this optimal E/I ratio, ongoing activity emerges in the form of 
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neuronal avalanches (Beggs and Plenz, 2003) and interactions within the network are 

moderate.  Agreement with our model suggests that by maintaining this particular E/I 

ratio the cortex operates near criticality and optimizes information processing. 

 

3.2   Methods  

 

3.2.1   Cross correlation in unit activity in awake monkey 
 
 
To compute spike count cross correlations between each pair of units recorded during 

ongoing activity we followed established methods (Renart et al., 2010). First, to 

obtain spike count vectors, the spike time stamps of each unit were 1) binned with 1 

ms temporal resolution, 2) convolved with a Gaussian window with 50 ms width.  

The cross correlation coefficient was computed between all pairs (2145 pairs for 

monkey 1, 780 pairs for monkey 2) of spike count vectors.   

 

3.2.2   A brief review of information theory 
 
 
Information theory is originally developed to solve problems in data processing 

operations, and the two main concerned issues are data compression and error 

correction, which are represented by two quantities, entropy and mutual information. 

 

Entropy quantifies the amount of information contained in a message, in unit of bit. It 

measures the uncertainty associated in predicting a random variable. The bigger the 

uncertainty, the more information the message can convey. When the variable is 
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discrete, for example, random discrete variable X with possible values {x1, x2, 

x3…xn}. The probability of observing xi is p(xi), then the entropy of X is defined as: 

∑
=

−=
n

i
ii xpxpXH

1
2 )(log)()( . The lower bound of H is 0, in condition of p(xj) = 1, 

and the upper bound is log2(n), with equal probability p(xi) = 1/n.  

 
Mutual information quantifies the inter-dependence between two variables, X and Y. 

It measures how much uncertainty about one variable can be reduced by knowing the 

other: ∑∑=
x y ypxp

yxp
yxpYXMI )

)()(
),(

(log),(),( 2 . p(x,y) is the joint probability of X 

and Y. If X and Y are independent, p(x,y) = p(x) * p(y), mutual information is zero, 

no information is gained for one by knowing the other. If X and Y are identical, 

MI(x,y) = H (X) = H(Y). 

3.2.3   Binary patterns and entropy H 
 
 
Each population event is represented by an 8x8 binary pattern with one bit per 

recording electrode.  A bit is set to 1 if the corresponding electrode is active during 

the event; otherwise it is set to 0.  The entropy of this set of patterns is defined as 

∑
=

−=
n

i
ii ppH

1
2log ,                                        (3.1) 

where n is the number of unique binary patterns and pi is the probability that pattern i 

occurs.  In Fig. 3.3D, the black curve is based on the 8x8 binary patterns which 

represent the 60 electrodes of the MEA.  We also studied entropy at different spatial 
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resolutions by coarse-binning and for different spatial extents by using sub-regions of 

the MEA.  The green curves in Figs 3.3D, 3.5, and 3.6A were obtained by reducing 

spatial resolution through coarse-binning of 8x8 patterns into square 4x4 patterns.  

Each bit in the 4x4 pattern was dependent on the state of 4 neighbouring 2x2 

electrode sets; if at least one electrode was active the bit was set to 1.  Reduced spatial 

extent was tested with 16-bit patterns based on only 16 electrodes arranged in a 4x4 

square (Fig. 3.3D).  As pointed out in the results, these 4x4 patterns also reduce 

potential undersampling bias when compared to 8x8 patterns. 

 

For stimulus-evoked activity, binary patterns were defined based on LFP activity 

measured during 500 ms following the stimulus.  If the measured response at an 

electrode exceeded -8SD of the noise, then the corresponding bit was set to 1, 

otherwise it was set to 0.  The stimulation electrode was always set to 0. 

 

Note that the lack of corner electrodes on the MEA means that the corner bits of 8x8 

patterns are always zero.  This implies that the maximum entropy we could possibly 

record for 8x8 patterns is 260 rather than 264.  For coarse-binned 4x4 patterns, the 

likelihood that the corner bits are active is slightly lower (about 25% lower).  These 

effects are present for all E/I ratios examined. Therefore, they may affect the absolute 

values of entropy measurements, but they are not important for our conclusions, 

which are primarily based on changes in entropy.  This is further confirmed by the 

robustness of our results to selecting 4x4 subregions from the center of the MEA for 

which corner electrodes are not missing (Fig. 3.3D). 
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The calculation of entropy entails estimating the occurrence probability for each 

pattern.  Therefore, H generally will depend on number N of observed patterns unless 

N is so large that the probability of each pattern is well represented by the samples 

recorded.  H will be underestimated for sufficiently small N but becomes independent 

of N for sufficiently large N.  To estimate potential ‘undersampling bias’ we 

computed corrected values following the quadratic extrapolation method (e.g. Magri 

et al., 2009).   First, we randomly selected a fraction f of samples from the full set of 

N patterns.  We recomputed the entropy for fractions f = 0.1 to 1 in steps of 0.1.  We 

repeated this 10 times for each f.  Next, we fit the average H versus f data with the 

following function: 

( )20)(
fN

b
fN
a

HfH −−=                                       (3.2) 

The fit parameter H0 is the estimated corrected value reported in the results section. 

 

3.2.4   Mutual information MI  
 
 
From a set of N binary patterns, we defined a participation vector qi (length N) for 

each recording site i.  qi(j) =1 or 0 indicated that site i was active or inactive during 

event j.  The interaction between site i and site j was quantified by the mutual 

information (Rieke et al., 1997; Dayan and Abbott, 2001) of qi and qj defined as 
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where p(x) is the probability of x, p(x,y) is the joint probability x and y.  MI quantifies 

(in bits) the information shared by the two sites and provides similar information as a 

cross correlation (CC, Fig. 3.1), which is a more traditional approach to measure pair-

wise interaction. Our reason for working with mutual information is two-fold.  First, 

MI is less sensitive to noise when interactions are very weak.  Second, MI arises from 

information theory and, thus, is a more natural fit with the study of entropy.  

Nonetheless, MI and CC are closely related.  In Fig 3.1 we compare both quantities 

for the in vitro data.  Also marked in Fig 3.1 are estimated theoretical bounds on the 

relationship between MI and CC.  The lower bound is reached for L = 0.5, while the 

upper bound corresponds to the extreme values of L = 0 and L = 1.  

 

The MI values reported in Results were averages over all pairs of sites,  
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For the in vitro experiments, we also used mutual information in a different way to 

quantify the efficacy of information transmission between stimulus and response. 

Here we computed MI(S;R) = H(R) - H(R|S).  H(R) is the entropy of the full set of 

response patterns for all stimuli.  H(R|S) is the conditional entropy, i.e. the response 

entropy for single stimuli, averaged across the different stimuli (Rieke et al., 1997; 

Dayan and Abbott, 2001).   
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Figure 3.1: Relationship between mutual information (MI) and correlation coefficient 

(CC).  The black points compare MI and CC for all in vitro experiments.  The dashed line is 

an estimated lower bound, which is reached for L = 0.5.  The upper line is an estimated upper 

bound, which is reached for very low or very high L.  The estimated bounds were obtained 

numerically for a single pair of binary vectors (10,000 events), each with the same L (0.1 to 

0.9) and CC (0.1 to 0.9).  These bounds are only approximate, because in the experiments, L 

is not the same from one electrode to another. 

 

3.2.5   Likelihood of participation L    
 
 
Likelihood of participation Li for site i was defined as the fraction of patterns in 

which the site participated:  
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The average likelihood of participation L for all M sites is defined as  
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3.2.6   Data shuffling to destroy interactions 
 
 
For the purpose of understanding how the entropy changes due to interactions 

between sites, we created surrogate data sets by shuffling the events in which sites 

participated.  The 1s and 0s were randomly reordered in each participation vector qi 

such that interactions between sites were destroyed, but Li and N remained fixed.   

 

3.2.7   Model 
 
 
Very similar to the model described in the chapter of experimental design, this model 

consisted of M = 16 binary sites (1 = active, 0 = inactive).  Each site was intended to 

model the activity of a large group of neurons like the nLFP recorded at an electrode 

in the experiments. Each population event in the model was represented with a 16 bit 

binary pattern (1 = the site was active at least once during the response to the 

stimulus, otherwise 0).  By simulating 1000 population events (always initiated at the 

same site), we generated a set of patterns for which the entropy was computed.  From 

the event size distribution of network events we computed κ.  The event size was 

defined as the sum of all activations from all sites during the population event.  The 

range of average pij values studied with the model resulted in a range of κ = 0.6 to 1.6.   

 

3.2.8   Statistical Analysis 
 
 



 

 54 
 

For determining the statistical significance of differences in entropy for different drug 

conditions and in κ for different drug conditions, we first used a one-way ANOVA to 

establish that at least one drug category was different from at least one other.  Next 

we performed a post-hoc test of significant pairwise differences between the drug 

categories using a t-test with the Bonferroni correction for multiple comparisons.  The 

same procedure was used to assess significance of differences in H and MI for 

different categories of κ. 

 

3.3   Results 
 
 
In all of our experiments, multi-electrode array (MEA) recordings of the local field 

potential (LFP, Fig. 3.2A) were used to obtain patterns of cortical population activity.  

We defined a recording site as ‘active’ if it presented a large, negative deflection in 

the LFP (Fig. 3.2A, green).  We have demonstrated that such negative LFP 

deflections correlate with increased firing rates of the local neuronal population for 

each of the experimental preparations studied here: superficial layers of organotypic 

cultures (Shew et al., 2009), urethane anesthetized rat (Gireesh and Plenz, 2008) and 

awake monkeys (Petermann et al., 2009).  We define a ‘population event’ as a set of 

electrodes which were active together within a short time.  In our analysis, each 

population event was represented by a binary spatial pattern with one bit per 

recording site and 1 or 0 indicating an active or inactive site respectively (Fig. 3.2B; 

top).  For each one hour recording in vitro (n = 47) or 30 min recording in vivo (n = 4 

monkey, n = 6 rat), we typically observed 103 to 104 population events. 
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First, we systematically explored a range of E/I conditions in cortex slice cultures.  A 

reduced E/I ratio was obtained by bath-application of antagonists of AMPA- and 

NMDA-glutamate receptor mediated synaptic transmission (DNQX, 0.5-1 µM; AP5, 

10-20 µM).  This resulted in population events that were typically small in spatial 

extent (Figs. 3.2B and C, left).  Conversely, an increased E/I ratio was obtained with 

an antagonist of fast GABAA-receptor mediated synaptic inhibition (Picrotoxin; PTX, 

5 µM), which led to stereotyped, spatially extended population events (Figs. 3.2B and 

C, right). The drug concentrations used here are well below the level for complete ion 

channel blockade. In contrast, unperturbed E/I (Figs. 3.2B and C, middle) typically 

yielded a diverse pattern repertoire.  The raster plots in Fig. 3.2B (bottom) display 

examples of 100 consecutive population events recorded under the three different E/I 

conditions.  Fig. 3.2C displays example probability distributions of population event 

sizes for the three E/I conditions.  We performed 11 recordings with reduced 

AP5/DNQX, 27 with no drug, and 9 with PTX.  For each recording, we measured 

both ongoing activity and stimulus-evoked activity.  For all recordings, we assessed 

the information capacity by computing the Shannon entropy of the full set of recorded 

binary patterns (Shannon, 1948); Rieke et al., 1997; Dayan and Abbott, 2001; see 

also Methods). 
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Figure 3.2:  Measuring the neural activation pattern repertoire for a range of E/I 

conditions.  A, Example LFP recordings under conditions of reduced E (left), unperturbed 

E/I (middle), and reduced I (right).  Scale bars: 250 ms x 10 µV (left, middle) and 250 ms x 

100 µV (right). Population events were defined based on large negative deflections (< -4SD, 

green).  B, (top) Single examples of population events represented as binary patterns: 1 = 

active site, 0 = inactive.  (bottom) Rasters including 100 consecutive population events 

represented as binary patterns; each row represents one event, each column represents one 

recording site.  Left: reduced E. Middle: unperturbed. Right: reduced I. C, Shape of event size 

distributions reveal changes in E/I, which are quantified with κ (see Methods; broken line: 

power law with exponent of -1.5).   
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3.3.1   Peak information capacity of ongoing activity for intermediate E/I and 
neuronal avalanches 
 
 
Our first finding was that the entropy H for ongoing activity peaks at an intermediate 

E/I ratio.  This was demonstrated with two different approaches.  First, we compared 

entropy to the three pharmacological categories: AP5/DNQX, no drug, and PTX.  We 

found that under the unperturbed E/I condition the average H was significantly higher 

than either the reduced E/I condition of the AP5/DNQX or the increased E/I condition 

of PTX (Fig. 3.3A, ANOVA, p < 0.05).  Second, we compared entropy to a 

previously developed statistical measure called κ, which characterizes E/I based on 

population dynamics of the network (Shew et al., 2009). An advantage over the three 

pharmacology categories is that κ is a graded measure, thus providing a continuous 

function of entropy H versus E/I.  κ quantifies the shape of the population event size 

distribution, which is sensitive to changes in E/I (Fig. 3.2C):  κ < 1 indicated reduced 

E/I and κ >1 indicated increased E/I (Fig. 3.3B).  Indeed, κ was significantly different 

for the two pharmacological manipulations compared to the no-drug condition (Fig. 

3.3B; p < 0.05).  When we plotted entropy versus κ (Fig. 3.3C), we discovered a 

peaked function with maximum entropy occurring for κ ≈ 1.  This confirms our 

finding of peak entropy for the no drug condition (Fig. 3.3A) and provides a more 

refined view of the data; the peak occurred at κ* = 1.16±0.12 (mean±SD, uncertainty 

determined by rebinning the experimental data, see Fig. 3.4).  The statistical 

significance of the peak in H was confirmed by comparing H for the ten experiments 

with κ closest to 1 with the ten experiments with smallest κ and ten with largest κ (p < 

0.05). 
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Figure 3.3: Ongoing activity - peak information capacity at intermediate E/I ratio 

specified by κ ≈ 1.  A, Information capacity (entropy H) of the pattern repertoire is 

maximized when no drugs perturb the E/I ratio.  Significant differences marked with * (p < 

0.05).  Box plot lines indicate lower quartile, median, upper quartile; whiskers indicate range 

of data, excluding outliers (+, >1.5 times the interquartile range).  B, The statistic κ, provides 

a graded measure of E/I condition based on network dynamics (Methods).  C, Entropy H 

peaks near κ ≈ 1. Each point represents one recording of ongoing activity (n = 47, 8x8 MEA, 

1 hr, color indicates drug condition; red = PTX, blue = AP5/DNQX, black = no drug).  Line 

is the binned average of points.  D, The peak in entropy H is robust to changes in spatial 

resolution (green, 4x4 coarse-binned, 1 hr), spatial extent (orange, 4x4 subregion, 1 hr) and 

duration (purple, 4x4 coarse-binned, 12 min) of recording.  (black, same data as in A).  Error 

bars indicate mean ± s.e.m.  

 
In addition to providing a graded measure of E/I, κ assesses the statistical character of 

ongoing cortical population dynamics.  Specifically, κ ≈ 1 is the signature of neuronal 

avalanches (Shew et al., 2009), a type of population dynamics defined by a power-

law population event size distribution with a power-law exponent near -1.5 (Beggs 

and Plenz, 2003; 2004; Gireesh and Plenz, 2008; Petermann et al., 2009; Shew et al., 
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2009). The computation of κ entails first computing the difference between a 

measured event size distribution and a theoretical reference distribution defined as a 

power-law with exponent -1.5 (Fig. 3.2C, green dashed).  Next, this difference is 

added to 1 to make it comparable to the branching parameter, resulting in κ = 1 for an 

exact match with a -1.5 power law, i.e. neuronal avalanches.  In this context, our 

findings indicate that entropy is maximized under conditions which result in neuronal 

avalanches. 

 

Next we tested the robustness of the peak in H with respect to changes in spatial and 

temporal scales of recordings.  First, as shown in Fig. 3.3D (green), we found that the 

peak in H remained close to κ = 1 (κ* = 1.01±0.02),  even when the original 8x8 

patterns were coarse-grained to obtain 4x4 patterns at half the spatial resolution (see 

Methods).  Second, the peak was also maintained when the spatial extent of the 

recorded area was reduced by 75% (4x4 electrodes near center of the MEA; Fig. 

3.3D).  Thirdly, we confirmed that the peak persisted for a restricted recording 

duration of 12 minutes rather than one hour (Fig. 3.3D, purple).  The robustness of 

our finding to shorter recording durations is important since estimations of entropy 

depend on the number of samples recorded.  Finally, the peak is robust to different 

choices of the bins used to produce the average curve (Fig. 3.4). The variability of the 

peaks of these curves was used to estimate the uncertainty in the conclusion that peak 

entropy occurs at κ* = 1.16±0.12.  
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Figure 3.4: Results robust to bin choices.  The results shown in Fig. 3.3C, D (black, green) 

for H vs. κ for 8x8 patterns (top) and coarse-binned 4x4 patterns (bottom) were recomputed 

with different averaging bins. The different bin partitions are shown below the curves with 

corresponding colors.   

 

3.3.2   Peak information transmission between stimulus and response for 
intermediate E/I and neuronal avalanches 
 
 
We now present measurements of stimulus-evoked activation patterns.  A priori, one 

can expect a different distribution of stimulus-evoked patterns compared to ongoing 

activity and thus different entropy.  Indeed studies suggest that ongoing activity is 

more diverse than typical stimulus-evoked activity (Fiser et al., 2004; Luczak et al., 

2009; Churchland et al., 2010).  However, if the entropy of evoked patterns changes 

with E/I in the same way that we found for ongoing activity, then evoked entropy 

may also peak near κ = 1.  This possibility is in line with significant evidence that 

ongoing activity in the cortex is intimately related to stimulus-evoked activity (Kenet 

et al., 2003; Ji and Wilson, 2007; Han et al., 2008; Luczak et al., 2009).  For instance, 
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stimulus-evoked activity patterns recur during ongoing activity, both at the population 

level (Kenet et al., 2003; Han et al., 2008) and the level of spike sequences (Ji and 

Wilson, 2007).  Therefore, our next aim was to test whether our finding of peak 

entropy near κ = 1 also holds for stimulus-evoked activity.   

 
Stimuli consisted of 10 different amplitude single bipolar shocks each applied 40 

times in randomized order though a single electrode of the MEA within cortical 

layers II/III (Methods). A binary pattern was constructed to represent each response 

during the 20 – 500 ms after the stimulus.  The evoked entropy H was calculated for 

the set of 400 stimulus-evoked activation patterns for each E/I.  As found for ongoing 

activity, the evoked entropy was highest near κ ≈ 1 for both fine and coarse spatial 

resolution (Fig. 3.5A; black - 8x8, green - coarse-grained 4x4, p < 0.05).   

 
In the introduction, we gave a simple example in which information transmission 

from input to output was limited due to low entropy.  With our measurements of 

network responses (i.e. output) to stimuli (i.e. input), we can directly test whether 

efficacy of information transmission is optimized when entropy is maximized.  This 

idea is concisely summarized in the following equation: MI(S;R) = H(R) - H(R|S).  

Here, MI(S;R) is the mutual information of stimulus and response which quantifies 

the information transmission (Rieke et al., 1997; Dayan and Abbott, 2001).  H(R) is 
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Figure 3.5: Stimulus-evoked activity - peak information transmission at intermediate 

E/I ratio specified by κ ≈ 1.  A, Single shock stimuli with 10 different amplitudes (10-200 

µA) were applied 40 times each using a single electrode.  The pattern repertoire of stimulus-

evoked activity has maximum entropy near κ ≈ 1.  This holds for 8x8 response patterns (black 

line) as well as coarse resolution 4x4 patterns (green line).  Points correspond to 8x8 patterns: 

light blue – AP5/DNQX, gray – no drug, pink – PTX.  B, The efficacy of information 

transfer, i.e. mutual information of stimulus and response, also peaks near κ ≈ 1.  The dashed 

line indicates the highest possible mutual information given 10 stimulus levels.  (black - 8x8; 

green – 4x4).  Error bars indicate s.e.m. 

 
the entropy of the full set of response patterns for all stimuli, while H(R|S) is the 

conditional entropy, i.e. the average entropy per stimulus.  As shown above, H(R) is 

maximized near κ ≈ 1.  Since, H(R|S) is always positive, MI(S;R) is bounded by 

H(R), and thus potentially also peaks near κ = 1.  Indeed, we measured MI(S;R) under 

different E/I conditions and found that stimulus-response mutual information was 

maximized near κ ≈ 1 (Fig. 3.5B; black - 8x8, green - coarse-grained 4x4, p < 0.05).   
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3.3.3   Competition between activity rates and interactions explains peak in 
entropy 
 
 
To identify and quantify the mechanisms leading to the peak in entropy near κ = 1, 

we analyzed in more detail the coarse-grained 4x4 patterns measured during ongoing 

activity (Fig. 3.3D, green).  A priori, the total number of unique patterns that are 

possible is 216, implying a maximum H ≤ log2(216) = 16 bits.  This maximum would 

be reached if all 216 patterns occurred with equal probability.  However, during a 1 hr 

recording, the network did not generate all possible patterns, nor were different 

patterns equally likely, resulting in H that was always below 16 bits.  The peak in H 

was explained by three main factors that changed with the E/I ratio:  i) the number N 

of patterns observed during the recording, ii) the likelihood L that sites participate in 

patterns, and iii) the strength of interactions between sites.  The first two effects are 

related to the rates of observed activity and impose upper bounds on H:  effect i 

requires H ≤ log2(N) (dash-dot line in Fig. 3.6A) and effect ii limits H in a way that 

depends on L (dashed line Fig. 3.6A).  Specifically, the highest possible entropy for a 

given L can be computed by assuming that sites are independent, 

( )∑
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22 )1(log)1(log ,                                   (3.7) 

where M is the number of recording sites and Li is the likelihood of participation for 

site i.  This formula is based on the fact that the entropy of two independent systems 

combined is the sum of their individual entropies.  Since a single site i is either active 
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(with probability Li) or inactive (with probability 1-Li), its entropy is 

)1(log)1(log 22 iiii LLLL −−−− .  Thus, adding the entropy of all sites, we obtain the 

formula above.  When L < 1/2, increasing L increases the upper bound on H.  When 

L>1/2, increasing L decreases the upper bound on H.  We found that L increased over 

the range of E/I conditions we studied (Fig. 3.6C), while the number of patterns N did 

not show a systematic trend.   

 
We turn now to effect iii. Increased interactions between sites always reduce H due to 

the increased redundancy of the information at different sites (Schneidman et al., 

2003).  We found that site-to-site interactions during ongoing activity increased with 

E/I (Fig. 3.6E), and quantified this trend in two ways.  First we computed mutual 

information (MI) between the activity recorded from different pairs of sites (Fig. 

3.6E; red).  Note that above we used mutual information in a different way, computed 

between stimulus and response MI(R;S) to assess information transmission.  Second, 

we estimated the effect of interactions by computing the drop in entropy resulting 

from shuffling the data. The shuffling procedure destroyed interactions by 

randomizing the set of population events in which each site participated, while 

keeping L and N fixed (Methods).  The entropy of the shuffled data for the 

corresponding original κ value is shown in Fig. 3.6A (black) and, as expected, nearly 

reached the bounds set by the combined effects i and ii.  The difference in entropy ∆H 

between the measured and shuffled data is due to interactions (Fig. 3.6E, blue).  ∆H 

has previously been used to quantify redundancy (Dayan and Abbott, 2001).   
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Figure 3.6: Peak information capacity explained. A detailed analysis of in vitro 

experimental results (top, Fig. 3.3D, green) and model results.  A, B Upper bounds on entropy 

are set by 1) the average likelihood that sites participate in patterns (dashed) and 2) the 

number of patterns observed (dash-dot).  When the effects of interactions are removed by 

shuffling (Methods), the entropy reaches these bounds (black), but the measured entropy 

(green) is always lower due to interactions.  C, D Rise in participation likelihood L as E/I 

ratio is increased.  This rise accounts for the bounds (dashed) shown in A,B. E, F Rise in 

interactions between sites (mutual information, red) is proportional to the loss in information 

capacity ∆H (blue).  All error bars indicate s.e.m. 

 
In summary, at low E/I, effects ii and iii compete and effect ii wins, i.e. activity rates 

drop sufficiently low to cause low entropy even though interactions are also low.  At 

high E/I, effects ii and iii cooperate, i.e. both high activity rates and strong 

interactions cause low entropy.  Entropy peaked at an intermediate E/I ratio at which 



 

 66 
 

interactions between sites were not too low or too high (specified by MI ≈ 0.2) and 

activity was not too depressed (L ≈ 0.25).  

 
We remark that, if N were large enough (e.g. for longer recording duration), the upper 

bound due to effect i would become irrelevant, in which case, we still expect H to 

peak near κ = 1 due to the combined effects of interactions (∆H) and L.  Nonetheless, 

the persistence of the peak in H for shorter duration recordings may be more relevant 

for cortex operations which occur on shorter time scales.  We also tested the extent to 

which our measurements are impacted by sample size following the methods 

developed by Magri et al. 2009.  The difference between our measured H and 

‘corrected’ H was 0.06±0.06 (mean ± SD) bits for 4x4 in vitro ongoing activity 

patterns and 0.22±0.18 bits for the 8x8 patterns.  Thus, sample size effects are small 

compared to the variability from one experiment to another (see error bars in Fig. 3.3)  

We also point out that N, L, and MI are not the only factors that could potentially 

influence H.  For example, not every site was equally likely to be active.  Such spatial 

structure is expected to decrease entropy compared to a spatially homogeneous 

system with all other properties held fixed.  This was not a major influence in our 

results. 

 

3.3.4   Experimental results confirmed in a computational network-level model 
 
 
To gain further insight on our experiments, we compared our results to a network-

level simulation, which has been used previously to model neuronal avalanches 
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(Haldeman and Beggs, 2005; Kinouchi and Copelli, 2006; Shew et al., 2009). The 

model consisted of 16 binary sites.  The state (1 = active, 0 = inactive) of each site 

was intended to represent a population of neurons in the vicinity of a recording 

electrode (Methods).  The propagation of activity from one site to another was treated 

probabilistically; a connection matrix p with entries pij specified the probability that 

site i would become activated due to site j having been activated in the previous time 

step.  Increases (decreases) in E/I were modeled by increasing (decreasing) the 

average pij value through the range 0.006 to 0.1.  For each ‘E/I condition’, 1000 

population events were simulated, beginning with a single initially active site and the 

resulting patterns of activity were recorded.  To facilitate comparison with our 

experimental results we also parameterized each E/I condition of the model using κ, 

based on population event size distributions.   

 
In good agreement with our experiments, we found that entropy reached a peak for κ 

≈ 1 (Fig. 3.6B; green).  Moreover, the explanation of peak entropy in terms of the 

competition between activity rates and site-to-site interactions also held for the 

model.  Just as in the experiments, when the model data was shuffled to remove 

effects due to interactions, H  (Fig. 3.6B; black) approached the upper bounds set by 

the number of events  (Fig. 3.6B; dash-dot) and the likelihoods of participation  (Fig. 

3.6B; dashed).  The model H results matched the experimental values, because the 

underlying changes in L versus κ (Fig. 3.6D) and the changes in site-to-site MI versus 

κ (Fig. 3.6F, red) were very similar to those measured experimentally.  This 

agreement is not trivial; the same values of entropy could in principle be reached with 
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different combinations of the underlying L and MI versus κ.  For example, a peak in 

H could result if L remained fixed at 0.5 and interactions were minimized at κ = 1. 

Site-to-site mutual information in the model reached slightly lower levels for high κ 

when compared to experiments (Fig. 3.6F, red), which could be due to the lack of 

significant structure in the model connectivity matrix p. 

3.3.5   In vivo entropy matches in vitro prediction 
 
 
Finally, we analyzed recordings of ongoing activity from superficial cortical layers in 

two awake monkeys (premotor cortex) not engaged in any particular task and in 

urethane-anesthetized rats (n = 6, barrel cortex) with no whisker stimulation.  In 

agreement with previous studies (Gireesh and Plenz, 2008; Petermann et al., 2009), 

we found that the ongoing activity was organized as neuronal avalanches (Fig. 3.7A).  

More precisely, we found that κ = 1.02±0.02 for the monkeys and κ = 1.08±0.02 for 

the rats.  Based on our in vitro findings, these κ values suggest that the in vivo 

networks are operating under E/I conditions that maximize entropy and information 

transmission.  Although we cannot fully test this idea without a full range of κ in vivo, 

we can test whether the in vivo values of H, L, and MI match with those predicted 

from the in vitro results.  As shown in Fig. 3.7B and summarized in Table 3.1, we 

found good agreement with these predictions.  We found no statistically significant 

difference between the in vivo results and the prediction from in vitro experiments 

with the same range of κ (1.0 < κ < 1.1, p < 0.05).  Nonetheless, the fact that entropy 

values in vivo were slightly higher than the in vitro results, may be due to the 

corresponding slightly lower MI values.   
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Figure 3.7: In vivo properties predicted from in vitro results. A, Population event size 

distributions from ongoing activity in two awake monkeys (blue) and an example rat (green) 

are near a power-law with exponent -1.5 (dashed line), i.e. they exhibit neuronal avalanches 

and κ ≈ 1.  B,  In line with in vitro and model predictions for κ ≈ 1, in vivo entropy was high 

and mutual information between recording sites was moderate.  (stars - two recordings on 

different days from each monkey; squares - anesthetized rats, n = 6).  The spatial extent of 

recorded area was approximately matched.   

 

 

 

 
 

Table 3.1: In vivo results match in vitro predictions.  Given the range of κ found in the in 

vivo recordings (1 < κ < 1.1), our in vitro results provide the predictions of H, L, and MI 

shown in the first row.  The corresponding measurements from the awake monkeys (second 

 Entropy, H 

(bits) 

Participation 

likelihood, L 

Site-to-site mutual 

information, MI 
In vitro 

predictions for 

5.7 ± 1.6 0.3 ± 0.1 0.2 ± 0.2 

Awake monkeys 

κ = 1.02±0.02 

7.5±0.5 0.3±0.03 0.1±0.01 

Anesthetized rats 

κ = 1.08±0.02 

7.1±1.2 0.4±0.1 0.2±0.1 
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row) and anesthetized rats (third row) match the in vitro predictions, i.e. they are not 

significantly different (p < 0.05).  Corresponding data are shown in Fig. 3.7B.  All numbers 

are mean ± SD. 

 
We also measured the spike count cross correlation values between unit activities 

recorded simultaneously with the monkey LFP recordings. The average correlation 

between unit signals is significantly lower than that between the population signals 

provided by the LFP.   As shown in Fig 3.8, the mean, s.e.m., and distributions of 

correlation coefficients were in good agreement with recent reports from awake 

monkeys (Ecker et al., 2010) and anesthetized rats (Renart et al., 2010). We note that 

the in vivo values of MI, which are based on LFP measurements, coexist with low 

values of pair-wise correlation r between spiking activity of units (mean ± s.e.m. r = 

0.03 ± 0.01, Fig. 3.8), in line with recent reports for awake monkeys and anesthetized 

rats.  The success of our prediction requires matching the number of recording sites 

(16 here), but is robust to large changes in spatial extent and resolution of recordings 

(data not shown).  The prediction is also robust to changes in the threshold used for 

generating binary activity patterns from continuous LFP data. For thresholds -2.5, -3 

and -3.5 SD we found no significant changes as shown in Table 3.2 below (mean ± 

s.e.m.).  
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Figure 3.8: Histograms of pairwise correlation coefficients of unit activity in the awake 

monkeys.  As reported previously (Ecker et al., 2010; Renart et al., 2010) the average across 

all pairs is near zero and positive.  The histogram of all pairwise CC values for monkey 1 

(left) and monkey 2 (right) are shown.  The mean ± sem CC values were 0.050 ± 0.002 and 

0.015 ± 0.001 for monkey 1 and monkey 2 respectively.   

 

 

 

 

 

 

 

Table 3.2: In line with previous studies, our in vivo monkey results were robust to changes in 

the detection threshold for nLFPs. For thresholds -2.5, -3 and -3.5 SD we found no significant 

changes as shown here (mean ± s.e.m.).  

 

 κ  H MI 

Monkey 1 

Day 1 1.02±0.02 7.96±0.35 0.11±0.01 

Day 2 1.07±0.03 7.58±0.32 0.14±0.02 

Monkey 2 

Day1  0.99±0.02 6.99±0.10 0.13±0.01 

Day 2 1.00±0.02 7.51±0.08 0.11±0.02 
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3.4   Discussion   
 
 
We employed in vitro and in vivo experiments as well as a computational model to 

study the effects of the E/I ratio on entropy and information transmission in cortical 

networks.  We analyzed multisite measurements of LFP recorded during ongoing as 

well as stimulus-evoked activity.  We found that entropy and information 

transmission are maximized for the particular E/I ratio specified by κ = 1, which is the 

same E/I condition under which neuronal avalanches emerge.   

 
We emphasize that the relative changes in H as we altered E/I are the meaningful 

results of our in vitro study; the absolute entropy values in bits depend upon arbitrary 

aspects of the analysis and measurements, e.g. the number of electrodes in the MEA.  

Thus, we are not suggesting that there is an absolute cap on the information that a 

cortical circuit can represent at ~ 10 bits and it is not appropriate to compare our H 

values to those found in other studies of population entropy measures (e.g. Quian 

Quiroga and Panzeri, 2009).  The important feature of our result is the peak in H near 

κ ≈ 1.  We expect that any measure of population entropy would also peak for the 

same intermediate E/I, specified by κ ≈ 1.   

 

Previous studies have separately addressed the topics of entropy maximization 

(Laughlin, 1981; Dong and Atick, 1995; Dan et al., 1996; Li, 1996; Rieke et al., 

1997; Dayan and Abbott, 2001; Garrigan et al., 2010), neuronal avalanches (Beggs 

and Plenz, 2003; Haldeman and Beggs, 2005; Stewart and Plenz, 2006; Ramo et al., 

2007; Gireesh and Plenz, 2008; Tanaka et al., 2009; Petermann et al., 2009; Shew et 
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al., 2009), and the balance of E/I (van Vreeswijk and Sompolinsky, 1996; Shadlen 

and Newsome, 1998; Shu et al., 2003; Okun and Lampl, 2008; Susillo and Abbott, 

2009; Roudi and Latham, 2007), but our work is the first to show how these ideas 

converge in cortical dynamics.   

 
Significant evidence suggests that maximization of entropy is an organizing principle 

of neural information processing systems.  For example, single neurons in the blowfly 

visual system have been shown to exhibit spike trains with maximized entropy, 

considering the stimuli the fly encounters naturally (Laughlin, 1981).  Applied at the 

level of neural populations, the principle of maximized entropy has provided 

successful predictions of receptive field properties in mammalian retina (Garrigan et 

al., 2010), lateral geniculate nucleus (Dong and Atick, 1995; Dan et al., 1996), and 

visual cortex (Li, 1996).  Our work shows that the potential ability of a neural 

population in the cortex to achieve maximum entropy and maximum information 

transmission depends on the E/I ratio.  Thus, if such properties are optimal for the 

organism, then the particular E/I ratio specified by κ = 1 may best facilitate this goal. 

 
We note that our investigation is not directly related to ‘maximum entropy’ models 

(e.g. Schneidman et al., 2006).  In those studies, the aim was to use the maximum 

entropy principle (Jaynes, 1957) to find the simplest model to describe an 

experimental data set; entropy served as a modeling constraint.  In contrast, here we 

compare the entropy across different experiments, searching for conditions which 

result in maximum entropy; entropy measurements are the results. 
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Several theory and modeling studies (including our own model) offer a deeper 

explanation of why κ = 1 and neuronal avalanches occurs under E/I conditions which 

maximize entropy and information transmission (Beggs and Plenz, 2003; Haldeman 

and Beggs, 2005; Ramo et al., 2007; Tanaka et al., 2009).  Recall that neuronal 

avalanches and κ = 1, by definition, indicate a power-law event size distribution with 

exponent -3/2.  This same property is found in many dynamical systems that operate 

near ‘criticality’.  Criticality refers to a particular mode of operation balanced at the 

boundary between order and disorder (e.g. Stanley, 1971; Jensen, 1998), akin to the 

balance of excitation and inhibition that we explore in our experiments.  In our model, 

criticality occurs when the average pij equals 1/M (M is the number of sites).  When pc 

> 1/M, activity propagation is widespread and highly synchronous, like a seizure, 

while pc < 1/M results in weakly interacting, mostly independent neurons (Beggs and 

Plenz, 2003; Haldeman and Beggs, 2005; Kinouchi and Copelli, 2006).  The balanced 

propagation that occurs at criticality might be attributed to interactions between 

excitatory and inhibitory neurons in the cortex.  Using theory of Boolean networks, 

Ramo et al. (2007) showed theoretically that entropy of the event size distribution is 

maximized at criticality.  Similarly, simulations of a model similar to our own 

showed that the number of activation patterns that repeat is maximized at criticality 

(Haldeman and Beggs, 2005).  Tanaka et al. (2009) found that recurrent network 

models in which information transmission is optimized also exhibit neuronal 

avalanches and repeating activation patterns.  Likewise, it has been shown that mutual 

information of input and output in feed-forward network models is maximized near 

criticality (Beggs and Plenz, 2003).  In line with these theory and model predictions, 
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our results are the first experimental demonstration of peak entropy and information 

transmission in relation to criticality in the cortex.   

 
Finally, a separate line of research has focused on the E/I ratio in cortical networks.  

Models emphasize the importance of balanced E/I for explaining the variability 

observed in spike trains (van Vreeswijk and Sompolinsky, 1996; Shadlen and 

Newsome, 1998), low correlations between spiking units (Renart et al., 2010), and 

generating diverse population activity patterns (Susillo and Abbott, 2009), which may 

play a role in memory (Roudi and Latham, 2007).  Moreover, in vivo experiments 

have shown that synaptic input received by cortical neurons exhibits a fixed ratio of 

excitatory to inhibitory current amplitudes (Shu et al., 2003; Okun and Lampl, 2008).  

Since we measure κ ≈ 1 in vivo, it follows that the ‘balanced E/I’ discussed in these 

previous studies may also correspond to the optimal E/I that we identify here.   

 
In summary, our results suggest that by operating at the E/I ratio specified by κ ≈ 1, 

the cortex maintains a moderate level of network-level activity and interactions which 

maximizes information capacity and transmission.  This finding supports the 

hypotheses that balanced E/I and criticality optimize information processing in the 

cortex. 

 
 
 
 
 
 



 

 76 
 

Bibliography 
 
Beggs JM, Plenz D (2003) Neuronal avalanches in neocortical circuits. The Journal of 
Neuroscience 23:11167-11177. 
 
Churchland MM et al. (2010) Stimulus onset quenches neural variability: a 
widespread cortical phenomenon. Nature Neuroscience 13, 369-378. 
 
Dan Y, Atick JJ, Reid RC (1996) Efficient coding of natural scenes in the lateral 
geniculate nucleus: experimental test of a computational theory. The Journal of 
Neuroscience 10:3351-3362. 
 
Dayan P, Abbott LF (2001) Theoretical neuroscience (MIT Press, Cambridge, 
Massachussetts, USA). 
 
Dichter M, Ayala G (1987) Cellular mechanisms of epilepsy: a status report. Science 
237:157-164.  
 
Dong DW, Atick JJ (1995) Temporal decorrelation: a theory of lagged and nonlagged 
responses in the lateral geniculate nucleus. Network: Computation in Neural Systems 
6:159-178.  
 
Ecker AS et al. (2010) Decorrelated neuronal firing in cortical microcircuits. Science 
327:584-587. 
 
Fiser J, Chiu C, Weliky M (2004) Small modulation of ongoing cortical dynamics by 
sensory input during natural vision. Nature 431, 573-578. 
 
Garrigan P et al. (2010) Design of a trichromatic cone array. PLoS Computational 
Biology 6:e1000677. 
 
Gireesh ED, Plenz D (2008) Neuronal avalanches organize as nested theta- and 
beta/gamma-oscillations during development of cortical layer 2/3. Proceedings of the 
National Academy of Sciences of the United States of America 105:7576-7581. 
 
Haldeman C, Beggs JM (2005) Critical branching captures activity in living neural 
networks and maximizes the number of metastable states. Physical Review Letter 
94:058101. 
 
Han F, Caporale N, Dan Y (2008) Reverberation of recent visual experience in 
spontaneous cortical waves. Neuron 60:321-327. 
 
Ji D, Wilson MA (2007) Coordinated memory replay in the visual cortex and 
hippocampus during sleep. Nature Neuroscience 10:100-107. 
 



 

 77 
 

Jacobs et al. (2009) Ruling out and ruling in neural codes. Proceedings of the 
National Academy of Sciences of the United States of America 106:5936-5941. 
 
Jaynes ET (1957) Information theory and statistical mechanics. Physical Review 
106:62–79. 
 
Jensen HJ (1998) Self-organized criticality: emergent complex behavior in physical 
and biological systems. (Cambridge University Press, Cambridge, UK).  
 
Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A (2003) Spontaneously 
emerging cortical representations of visual attributes.  Nature 425:954–956. 
 
Laughlin S (1981) A simple coding procedure enhances a neuron’s information 
capacity. Zeitschrift fur Naturforschung 36:910-912. 
 
Li Z (1996) A theory of the visual motion coding in the primary visual cortex. Neural 
Comput 8:705-730. 
 
Luczak A, Barthó P, Harris KD (2009) Spontaneous events outline the realm of 
possible sensory responses in neocortical populations. Neuron 62:413-425. 
 
Magri C, Whittingstall K, Singh V, Logothetis NK, Panzeri S (2009) A toolbox for 
the fast information analysis of multiple-site LFP, EEG and spike train recordings. 
BMC Neurosci. 10:81. 
 
Nauhaus I, Busse L, Carandini M, Ringach DL (2009) Stimulus contrast modulates 
functional connectivity in visual cortex. Nature Neuroscience 12:70-76. 
 
Okun M, Lampl I (2008) Instantaneous correlation of excitation and inhibition during 
ongoing and sensory-evoked activities. Nature Neuroscience 11:535-537. 
 
Petermann T et al. (2009) Spontaneous cortical activity in awake monkeys composed 
of neuronal avalanches. Proceedings of the National Academy of Sciences of the 
United States of America 106:15921-15926. 
 
Pola G, Thiele A, Hoffmann K-P, Panzeri S (2003) An exact method to quantify the 
information transmitted by different mechanisms of correlational coding.  Network: 
Comput. Neur. Syst. 14:35-60. 
 
Quian Quiroga R, Panzeri S (2009) Extracting information from neuronal 
populations: information theory and decoding approaches. Nat Rev Neurosci 10:173-
185. 
 
Ramo P, Kauffman S, Kesselia J, Yli-Harja O (2007) Measures for information 
propagation in Boolean networks. Physica D 227:100-104. 
 



 

 78 
 

Renart A et al. (2010) The asynchronous state in cortical circuits. Science 327:587-
590. 
 
Rieke F, Warland D, de Ruyter van Stevenick R, & Bialek W (1997) Spikes (MIT 
Press, Cambridge, Massachussetts, USA). 
 
Roudi Y, Latham PE (2007) A balanced memory network. PLoS Comp Biol 3:1679-
1700. 
 
Schneidman E, Berry II MJ, Segev R, Bialek W (2006) Weak pairwise correlations 
imply strongly correlated network states in a neural population. Nature 440:1007-
1012. 
 
Schneidman E, Bialek W, Berry II MJ (2003) Synergy, redundancy, and 
independence in population codes.  The Journal of Neuroscience 23:11539 –11553. 
 
Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: 
implications for connectivity, computation, and information coding. The Journal of 
Neuroscience 18:3870-96. 
 
Shannon CE (1948) A mathematical theory of communication. Bell System Technical 
J 27:379-423, 623–656. 
 
Shew WL, Yang H, Petermann T, Roy R, Plenz D (2009) Neuronal avalanches imply 
maximum dynamic range in cortical networks at criticality. The Journal of 
Neuroscience 29:15595-15600. 
 
Shu Y, Hasenstaub A, McCormick DA (2003) Turning on and off recurrent balanced 
cortical activity. Nature 423:288-293. 
 
Stanley HE (1971) Introduction to Phase Transitions and Critical Phenomena (Oxford 
University Press, New York, USA). 
 
Stewart C, Plenz D (2006) Inverted-U profile of dopamine-NMDA-mediated 
spontaneous avalanche recurrence in superficial layers of rat prefrontal cortex. The 
Journal of Neuroscience 26:8148-8159. 
 
Sussillo D, Abbott LF (2009) Generating coherent patterns of activity from chaotic 
neural networks. Neuron 27:544-557. 
 
Tanaka T, Kaneko T, Aoyagi T (2009) Recurrent infomax generates cell assemblies, 
neuronal avalanches, and simple cell-like selectivity. Neural Comput 21:1038-1067. 
 
van Vreeswijk C, Sompolinsky H (1996) Chaos in neuronal networks with balanced 
excitatory and inhibitory activity. Science 274:1724-1726. 



 

 79 
 

Chapter 4: Maximal variability of phase synchrony in 
cortical networks with neuronal avalanches 

 

4.1   Introduction 

 
Neurons whose dynamics are synchronized are thought to play an important role in 

brain function, because their combined influence on other neurons is greater than that 

of asynchronous neurons (Bressler and Kelso, 2001; Varela et al., 2001; von der 

Malsburg et al., 2010; Kopell et al., 2010).  Synchrony is modulated during many 

tasks including perception (Bressler et al., 1993; Rodriguez et al., 1999; Palva et al., 

2005; Melloni et al., 2007; Senkowski et al., 2008; Hipp et al., 2011), motor control 

(Roelfsema et al., 1997; Kelso et al., 1998), attention (Fries et al., 2001), and working 

memory (Tallon-Baudry et al., 2004; Sakurai and Takahashi, 2006).  Conversely, 

weak synchrony is associated with brain disorders such as schizophrenia (Spencer et 

al., 2003; Uhlhaas and Singer, 2010) and autism (Wilson et al., 2007), whereas 

excessive synchrony is a hallmark of sleep and anesthesia (Destexhe and Contreras, 

2006), Parkinson’s disease (Boraud et al., 2005) and epilepsy (Steriade, 2003; Garcia 

Dominguez et al., 2005).  In short, too much or too little synchrony is detrimental to 

information processing, while moderate synchrony is typical for the awake state in 

normal cortex. 

 
Synchrony is thought to be important because it facilitates binding of neuronal 

groups.  However, synchrony must be transient to allow the cortex to dynamically 

switch between different bound groups (Friston, 1997; Varela et al., 2001; Bressler 
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and Kelso, 2001; von der Malsburg et al., 2010).  Thus, an important property of 

synchrony is its dynamic variability.  Indeed, variability of neuronal population 

activity positively correlates with task performance (McIntosh etl., 2008; Garrett et 

al., 2011).  At the behavioral level, state changes in human motor coordination are 

marked by high variability in movement synchrony (Kelso et al., 1986; Schoner and 

Kelso, 1988).  Neuronal network simulations (Destexhe, 1994) and in vitro 

experiments (Shew et al., 2011) demonstrate neural variability to increase cortical 

information transfer.   

 
To identify experimental conditions under which cortical synchrony emerges with 

moderate mean and maximum variability, we were guided by two lines of research.  

First, theoretical studies of interacting oscillators (Haken et al., 1985; Daido, 1990; 

Kopell and Somers, 1995; Ermentrout and Kleinfeld, 2001; Strogatz, 2001; Arenas et 

al., 2008; Kitzbichler et al., 2009) reveal that, as the coupling between oscillators 

gradually strengthens, there is a sudden increase of synchrony, when the coupling 

surpasses a threshold level, called ‘criticality’.  At criticality, synchrony is moderate 

on average and maximally variable (Daido, 1990).  A second line of research suggests 

that criticality in the cortex manifests as neuronal avalanches (Beggs and Plenz, 2003; 

Plenz and Thiagarajan, 2007), defined by Pr(s)~s-1.5, where Pr(s) is the probability 

that a spatio-temporal cluster of neural activity of size s occurs.  Theory (Otter, 1949; 

Hinrichsen, 2006) and biologically detailed models of cortical networks (Levina et 

al., 2007; Meisel and Gross, 2009; Millman et al., 2010) predict this form of power-

law to occur at criticality.  In vivo and in vitro experiments have shown that neuronal 

avalanches co-exist with coherent oscillations among intricately nested frequencies 



 

 81 
 

θ and β/γ (Gireesh and Plenz, 2008).  Here we show experimentally that neuronal 

avalanches identify a state of synchrony with moderate average and maximal 

variability, in line with predictions from theory of criticality and coupled oscillators. 

 

4.2   Methods 

 

4.2.1   Phase synchrony 

 
We first obtained a phase trace from each LFP trace.  This approach treats the LFP 

signal f(t) as the real part of a complex signal, called the analytic signal z(t).  The 

imaginary part of z(t) is the Hilbert transform of f(t), and ( ) ( ) [ ( )]z t f t iH f t= + .  We 

implemented this approach using the Matlab function ‘hilbert’.  The phase trace is 

calculated as: 

Im( ( )) [ ( )]
( ) arctan arctan

Re( ( )) ( )
z t H f t

t
z t f t

θ = = .              (4.1) 

In this way, we extracted the instantaneous phase of every electrode over the entire 

duration of the recording.  For pure periodic signals, e.g. f(t)=cos(ωt + θ0), this 

approach yields the phase θ(t) = ωt + θ0, where θ0 is a constant defined such that 

θ=0,π/2,π,… when cos(ωt + θ0)=1,0,-1,….  The phase is insensitive to amplitude, e.g. 

the phase traces are identical for Acos(ωt) and Bcos(ωt), where A≠B. Note that in our 

analysis we ‘wrapped’ the phase so that it was always between –π and π.  Similarly, 

for aperiodic signals like our LFP measurements, the instantaneous phase θ(t) is 
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related to zero crossings and peaks/troughs of the LFP signal, while the time 

derivative dθ(t)/dt gives an estimate of the instantaneous frequency of the LFP. 

 

4.2.2   Phase and phase difference histogram 
 
 
To display the dynamics of phase and phase synchrony in a way that is amenable to 

visual examination, we used two analysis techniques.  First, the dynamic phase 

histogram displays phase dynamics for all 59 electrodes simultaneously.  At each 

time point, a histogram of the 59 phases from –π to π (resolution 0.05π) is computed 

and displayed as one vertical strip.  A color code indicates the number of electrodes 

with a given phase bin.  For example, red pixels indicate the times when many 

electrodes have similar phase, i.e. are phase synchronized.  A second method to 

visualize phase synchrony is the dynamic phase difference histogram.  We first 

compute the difference in phase for every pair of electrodes (n = 59x(59-1)/2 = 1711 

pairs).  A histogram of the phase differences is computed and displayed as one 

vertical strip at every time point (resolution 0.05π) and color coded.  Phase synchrony 

is apparent as times when many pairs have near-zero phase difference.  This 

visualization approach is particularly suited to identify anti-phase locking, i.e. near-π 

phase differences. 

 

4.2.3   Anti-phase locking 

 
To quantify the degree of anti-phase locking, we selected 8 experiments for each of 

the three conditions κ < 1, κ ~ 1, and κ > 1.  From each experiment, we computed the 
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time-average of the dynamic phase difference histogram for 100 randomly chosen 

bursts.  In this calculation, we included a 5 ms window preceding and following each 

burst, which is necessary to capture residual synchrony around burst occurrence.  We 

averaged histograms across bursts and computed the difference between the count of 

electrode pairs with phase difference near π, i.e. within π ± 0.05π, and the minimum 

of the histogram.  This value which quantifies the degree in anti-phase locking is 

reported in the variable APL in Results. In addition, we studied whether anti-phase 

locking tended to occur between electrode pairs that spanned superficial and deep 

cortical layers.  The midline of the MEA approximately divides superficial layers 

from deeper layers in the cortex cultures (Gireesh and Plenz, 2008) and we computed 

the fraction of anti-phase locked pairs which spanned the midline.  For randomly 

evolving phases, this number would be 0.508, which is the fraction of all possible 

electrode pairs that span the MEA midline.  

 

4.2.4   Network synchrony and burst synchrony. 

 
A simple way to quantify the network-level phase synchrony as a function of time is 

provided by the Kuramoto order parameter, r(t), defined as  

  ∑
=

=
n

j

ti je
n

tr
1

)(1
)( θ ,                (4.2) 

where n = 59 is the number of recording electrodes over which synchrony is 

estimated (Strogatz, 2001; Arenas et al., 2008).  We were particularly interested in 

the synchrony during burst activity, which we quantified using the following three 

measures.  First, the network synchrony of the k-th burst, k
NS , was defined as 
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dt

tt
i

k
N trS )( ,                 (4.3) 

where tk is the burst start time and dk is the burst duration.  Second, we calculated the 

instantaneous network synchrony for the k-th burst, k
INS , by normalizing k

NS  by burst 

duration dk,  

k
k
N

k
IN dSS = .                    (4.4) 

 

We note that k
INS is now bounded between 0 and 1.  Third, we computed the 

instantaneous burst synchrony, k
IBS , by applying equations (4.2) – (4.4) only to those 

electrodes that were active during the k-th burst.  More precisely, r(t) was replaced 

by )(trm computed only among the set of m sites, kE ,which were active, i.e. displayed 

an nLFP, during the k-th burst  

)(||
1

)( )( mRCe
m

tr
k

j

Ej

ti
m −= ∑

∈

θ .                  (4.5) 

 

Note that rm(t) represents a measure of within burst synchrony normalized by the area 

of the burst, i.e. number of electrodes that participate.  RC(m) is a correction to 

account for the expected level of noise for m sites with randomly evolving phases.  

RC(m) was estimated by direct numerical simulation (104 time steps) of rm(t) for m 

random phases.  By subtracting RC(m), the actual values of rm(t) are comparable even 

if m is different for different bursts.  Accordingly, k
IBS is bounded between -1 and 1. 
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The averages NS , INS , and IBS , were obtained by averaging over bursts.  For 

example  

 ∑
=

=
M

k

k
NN S

M
S

1

1
,                             (4.6) 

where M is the total number of bursts recorded in an experiment. 

 

4.2.5   Entropy measurements 

 
 In our results, we present entropy measurements of burst spatial extent, burst 

duration, and the three types of synchrony defined above.  First, we computed the 

quantity in question, say x (which can be burst area, burst duration, k
NS , k

INS or k
IBS ), 

for all M measured bursts.  Then, a probability distribution of x was estimated; the 

probability pi that x fell within the range bi < x < bi+1 was estimated as the number of 

x values in that range divided by M.  The entropy of the x distribution was computed 

as 

∑
=

−=
N

i
ii ppxH

1
2log)( ,                  (4.7) 

where N is the number of bins used to make the distribution.  Since entropy is 

sensitive to the choice of bins, the bin divisions were fixed for comparisons across 

experiments, i.e. for different κ.  Importantly, we found that the peak in entropy 

persisted for a very wide range of numbers of bins, from N = 4 to 4000 bins.  

However, the numerical values of entropy in terms of bits are not meaningful, except 

perhaps in reference to log2(N), which is the maximum possible entropy computed 

from any distribution with N bins.   
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Burst area is a discrete variable ranging from 1 to 59, thus, we used one bin for each 

possible burst area.  In contrast, at a temporal resolution of 0.25 ms, burst duration 

was treated as a continuous variable and we constructed distributions using 100 

logarithmically spaced bins ranging from the shortest to the longest duration observed 

from all experiments (~ 10 ms to several s).  Likewise, the distribution used to 

compute the entropy of NS was created with 100 logarithmically spaced bins 

spanning the range of observed NS values.  For the bounded quantities, INS  and IBS , 

100 linearly spaced bins between 0 and 1, -1 and 1 were used respectively.  We note 

that negative values can result for IBS due to the RC(m) correction.   

 
Finally, entropy can be biased toward low values if a small number of samples are 

used to estimate the probability distribution.  To account for this bias, we estimated 

sub-sampling corrections to entropy following an established strategy (Magri et al., 

2009) and found that in all cases, the entropy corrections were small compared to the 

variation from experiment to experiment.  Thus, sub-sampling bias does not 

significantly impact our conclusions. 

 

4.2.6   Power spectra 

 
Power spectra were computed via Welch’s method using the Matlab function pwelch.  

First a power spectrum was computed for each burst.  To allow a spectral range from 

4 – 50 Hz, 250 ms preceding and following each burst were included in the 

calculation and only bursts of duration greater than 10 ms were included.  Each 
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spectrum was averaged from FFT computations over 375 ms windows with 187.5 ms 

overlap and then normalized by its maximal power to facilitate comparison across 

experimental conditions. 

 

4.2.7   Statistical analysis 

 
For determining the statistical significance of differences in anti-phase locking for 

different drug conditions, we first used a one-way ANOVA to establish that at least 

one κ category was different from at least one other. Next we performed a post hoc 

test of significant pair-wise differences between the κ categories using a t-test with 

the Bonferroni correction for multiple comparisons.  

 

4.3   Results 

 

4.3.1   Neuronal burst area and duration have moderate mean and maximum entropy 

at κ ~ 1   

 
We studied ongoing network activity recorded in organotypic tissue cultures grown 

on planar integrated multi-electrode arrays (MEAs).  Following established 

techniques (Gireesh and Plenz, 2008; Shew et al., 2009; Shew et al., 2011), each 

culture (n = 15) was comprised of a coronal slice of somatosensory rat cortex 

combined with a slice from the ventral tegmental area, which provides dopaminergic 

inputs to the cortex for proper network development (Gireesh and Plenz, 2008).  The 

tissue was cultivated directly on the surface of an 8x8 grid of electrodes (Fig. 4.1A, 
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200 µm inter-electrode distance, 30 µm electrode diameter, no corner electrodes, 4 

kHz sampling).  Recordings were taken between 10 – 20 days in culture allowing 

several 1 hr recordings from each network (47 recordings in total; Plenz and Stewart, 

2008).  The recorded voltages were low-pass filtered at 50 Hz to obtain the local field 

potential (LFP), which was shown to correlate with the spiking activity of the local 

neuronal population near each electrode (Shew et al., 2009). 

 

Observed dynamics consisted of bursts of activity like the example shown in Fig. 

4.1B, which often spanned many recording sites.  We determined the start and end of 

each burst as well as which sites participated using a threshold to identify times and 

electrodes with large amplitude negative LFP deflections (Methods). 

 

We applied pharmacological agents to change the network excitability, which we 

consider analogous to tuning the coupling strength in models.  Neural synchrony is 

expected to be sensitive to such changes in excitatory and inhibitory interactions 

(Bartos et al., 2007; Kopell et al., 2010).  Excitatory synaptic transmission was 

reduced with combined application of the NMDA and AMPA glutamate receptor 

antagonists AP5 and DNQX.  Inhibitory synaptic transmission was reduced with 

GABAA receptor antagonist picrotoxin (PTX).  Empirically, we found that the 

employed concentrations of DNQX/AP5 resulted in disfacilitation, i.e. decreased 

network activity, while the partial disinhibition with PTX increased network activity.   

As shown in Fig. 4.1C (blue, black), we found that the frequency content of the LFP  
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Figure 4.1: Spontaneous neuronal burst activity in cortex organotypic cultures grown 

on integrated planar microelectrode arrays (MEA). A, Light-microscopic image of a 

neural culture including somatosensory cortex and ventral tegmental area (VTA) grown on a 

60 channel MEA.  Black dots indicate the location of the n = 59 recording electrodes.  The 

ground electrode is outside the imaged region.  B, Examples of local field potential (LFP) 
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traces simultaneously recorded during a burst of neural activity (no drugs applied).  The 

spatial arrangement of LFP traces matches that of the electrodes from which they were 

recorded.  Inset: magnified view of three LFP traces.  C, Average normalized power spectra 

for normal (black, no drug, n = 8), disfacilitated (blue, DNQX/AP5, n = 8), and disinhibited 

conditions (red, PTX, n = 8).  The spectra were typically broadband without strong peaks 

under normal and disfacilitated conditions, while prominent β-oscillations (10 – 20  Hz) 

emerged under disinhibited conditions.  Error bars indicate ± SEM. 

 

signals did not show any strong peaks at particular frequencies for the no-drug and 

DNQX/AP5 conditions.  In contrast, β-oscillations became more prominent in 

disinhibited cultures as reported previously (Fig. 4.1C, red; Gireesh and Plenz, 2008).   

 

To parameterize these drug effects on spontaneous network dynamics, we employed 

the statistical measure κ, which is based on measured distributions of burst sizes, as 

developed previously (Shew et al., 2009; Shew et al., 2011).  This method takes 

advantage of the fact that the unperturbed condition typically results in a burst size 

distribution of the form Pr(s) ~ s-1.5, i.e. neuronal avalanches, while the disfacilitated 

and disinhibited conditions result in exponential and bimodal distributions 

respectively.  Practically, κ ≈ 1 for unperturbed networks (κ = 1.14 ± 0.01; no drug; n 

= 28), κ < 1 for disfacilitated networks (κ = 0.81 ± 0.01; DNQX/AP5; n = 10) and κ > 

1 for disinhibited networks (κ = 1.51 ± 0.01; PTX; n = 9).  This relationship is 

apparent in Fig. 4.2A, where each point represents the average burst area and κ value 

from a single recording and color represents drug condition.  The average of the burst 

area, a, increased gradually for small κ and rose more quickly near κ = 1 and beyond  
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Figure 4.2: Burst area and duration have moderate mean and maximum entropy near κ 

= 1.  A, Network dynamics were parameterized using κ. Low κ, κ ≈ 1, and high κ indicate 

disfacilitated, neuronal avalanche, and disinhibited dynamics respectively.  As network 

activity increased with an increase in κ, the average spatial extent of spontaneous bursts rose 

slowly for small κ, and more steeply near κ = 1.  Each point is the averaged burst area from a 

1 hr recording.  B, The diversity, i.e. Shannon entropy, of burst area was highest near κ = 1.  

C, The average duration of bursts also rose strongly near κ = 1 and saturated for high κ.  D, 

Entropy of burst duration peaked near κ = 1.  Error bars indicate ± SEM. 

 

(Fig. 4.2A; gray line).  We next quantified the diversity of burst area a by computing 

the Shannon entropy of the burst area distribution, H(a).  In line with similar previous 

work (Shew et al., 2011), the entropy peaked near κ = 1, demonstrating that the 

diversity of burst area was highest under conditions which favor neuronal avalanches 
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(Fig. 4.2B).  Similar to spatial area, the mean burst duration d increased most sharply 

near κ = 1 and the entropy of burst duration, H(d) peaked near κ = 1 (Fig. 4.2C, D). 

 

4.3.2   Neuronal synchrony has moderate mean and maximum entropy at κ ~ 1   

 
During a burst, the LFP recorded from different electrodes were often, but not always 

synchronized (Fig. 4.1B, inset).  We hypothesize that experimental conditions which 

result in neuronal avalanches also result in moderate average synchrony and 

maximally variable synchrony.  To assess synchrony, we first obtained a phase trace 

for each LFP trace using the Hilbert transform (Fig. 4.3; Methods).  To visualize the 

phases of all 59 electrodes versus time, we used dynamic phase histograms in which 

periods of elevated phase synchrony appear as yellow/red ‘bundles’ of phase 

trajectories (Fig. 4.4A, top panel).  This is further clarified in the dynamic phase 

difference histogram, in which yellow/red pixels near a zero phase difference indicate 

that many pairs of electrodes have the same phase, i.e. are phase synchronized (Fig. 

4.4A, middle panel).  The temporal changes in phase synchrony in the network were 

quantified using Kuramoto’s order parameter, r, (Fig. 4.3C; Strogatz, 2001; Arenas et 

al., 2008), which is based on all 59 phases.  Periods of high phase synchrony, i.e. low 

phase difference, corresponded to high values of r (Fig. 4.4A, bottom panel).  As 

shown in the examples in Fig. 4.4, the duration of phase-synchrony changed with κ 

from relatively short periods for κ < 1 (Fig. 4.4B), to moderate and prolonged phase-

synchrony periods for κ ≈ 1 and κ > 1 (Fig. 4.4A,C). 
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Figure 4.3: Assessing phase synchrony from multi-site LFP recordings.  A, Example LFP 

amplitude trace recorded from a single electrode under disinhibited condition.  A 100 ms 

period (red box) is expanded (lower trace).  B, Using the Hilbert transform, the LFP 

amplitude trace is converted to a corresponding phase trace. Top: Expanded phase period.  

Note that phase near ±π corresponds to negative LFP peaks, while phase near zero coincides 

with positive LFP peaks (arrows).  Lower trace shows corresponding phase for the full time 

period in A.  C, Examples for lack of phase-locking (left), in-phase locking (middle) and 

combined in-phase and anti-phase locking (right) taken from four sites (colors).  Top row: 

LFP traces.  Middle row: phase traces.  High phase synchrony appears as times when many 
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sites display a similar phase trace simultaneously (middle), while dispersed phases indicate 

lack of synchrony (left).  Anti-phase locking appears as ‘bundles’ of in-phase traces separated 

by π (right; double headed arrow).  Note low LFP amplitudes during lack of synchrony.  

Bottom row:  The phases at the time indicated by the black arrow are visualized on a unit 

circle. The phase synchrony measure, r, is the distance (length of red arrow) between the 

origin and the center of mass of the phases.  Note that anti-phase locking tends to reduce r.  

 

In order to quantify these changes in synchrony with κ, we first calculated the average 

network synchrony per burst, NS .  This was done by integrating r for the duration of 

each burst and averaging over all bursts for each experiment.  We found that, as 

neuronal activity changed from disfacilitated to disinhibited, NS  increased slowly at 

first, more sharply near κ = 1, and reached a plateau for large κ (Fig. 4.5A).  

Confirming the first part of our hypothesis, average network synchrony was 

moderate, i.e. 13.5% of its maximum value, near κ = 1.  Next we quantified the 

diversity of network synchrony, ( )NSH .  Our main finding is that ( )NSH  is 

maximized when κ ≈ 1 (Fig. 4.5B) indicating that networks with neuronal avalanches 

achieve the most diverse repertoire of network synchronization during bursts, thus 

completing the confirmation of our hypothesis.   
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Figure 4.4: Phase synchrony dynamics for example bursts under different conditions of 

network excitability.  A, Moderate levels of phase synchrony under normal condition.  Time 

of the burst indicated by the black bar.  Top: Dynamic phase histogram.  Color indicates the 

number of electrodes with a given phase (vertical axis) at a given time (horizontal axis).  
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Phase ‘bundles’ marked by yellow/red pixels over time indicate many sites with the same 

phase, i.e. in-phase locking.  Middle: Dynamic phase difference histogram. Color indicates 

the number of electrode pairs with a given phase difference (vertical axis) at a given time 

(horizontal axis).  Phase differences near 0 indicate in-phase locking.  The gray histogram to 

the right is the time average of the dynamic phase difference histogram.  Note dominance of 

in-phase locking.  Bottom: Phase synchrony r.  Dashed line indicates r = 0. Phase synchrony 

r is high during periods of in-phase locking.  B, Disfacilitated activity is characterized by 

brief and weakly synchronized bursts.  Same as A, but during an example burst in the 

presence of DNQX/AP5.  C, Disinhibited activity is characterized by strongly synchronized 

long-lasting bursts, anti-phase locking (phase differences near π), and an underlying 

prominent ~ 20 Hz β-oscillation. Same as A, but in the presence of PTX.  Burst duration 

extends beyond period shown.  Quantification of anti-phase locking, APL, is illustrated in 

time-averaged dynamic phase difference histogram (right).   

 

These results on network synchrony, a priori, could depend on both the burst duration 

and spatial burst area.  We therefore explored the degree to which these changes in 

network synchrony could be explained by κ-dependent changes in the spatiotemporal 

boundaries of the bursts.  First, for each burst, we normalized network synchrony by 

burst duration in order to obtain the average instantaneous network synchrony, 

INS (Fig. 4.5C, D) and the corresponding entropy, ( )INSH .  We found that both the 

rising trend in synchrony and the peak in entropy at κ ≈ 1 persisted, indicating that 

burst duration alone is insufficient to explain the trends shown in Fig. 4.5A, B.  Next, 

to determine the influence of burst area, we recomputed the instantaneous network 

synchrony for each burst, but included only those electrodes that participated in the 
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burst, which we call instantaneous burst synchrony, IBS  (Fig. 4.5E, F).  We note that 

IBS was also corrected to account for the different expected noise levels for different 

numbers of electrodes, so that bursts covering different areas were fairly compared.  

For comparison, the instantaneous local synchrony among those electrodes outside 

the burst was significantly lower (Fig. 4.5E, gray line).  Because IBS  did not change 

significantly with κ, we conclude that the trend in Fig. 4.5A is primarily determined 

by a combination of κ-dependent changes in burst area and duration.  This result 

indicates that mean synchrony within the spatiotemporal boundaries of bursts does 

not significantly change with network excitability.  However, the entropy in 

instantaneous burst synchrony, ( )IBSH  continued to show a peak.  This indicates that 

entropy of synchrony arises not only from variability of the spatiotemporal 

boundaries of the bursts, but also from intrinsic, within-burst variability that is 

maximum near κ = 1.   

 

Importantly, the findings in Fig. 4.5 were insensitive to changes in the spatial extent 

of the recorded region and inter-electrode distance of the MEA.  This was 

demonstrated by repeating the analysis using subsets of electrodes from the original 

recordings.  To test for robustness to changes in spatial extent, we used a 4x4 set of 

electrodes near the center of the MEA (Fig. 4.6; red).  The spatial area of this subset 

is reduced by a factor of 4.  To test for robustness to changes in spatial resolution, i.e. 

inter-electrode distance, we used a 4x4 set of electrodes with 400 µm inter-site 

spacing (Fig. 4.6, blue).  Thus, the spatial resolution is halved, compared to the 

original recording.  In both cases, the trends presented in Fig. 4.5 were largely  
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Figure 4.5: Neural synchrony attains moderate mean and maximum entropy near κ = 1.  

A, Mean network synchrony showing a slow rise low κ, a sharp increase near κ = 1 (gray 

area), and saturation for high κ.  B, The entropy of network synchrony showing a peak close 

to κ = 1.  C, Mean instantaneous network synchrony showing a gradual rise with κ indicating 

that the increase in burst duration does not fully explain the rising trend in A. Gray line: 

control, computed during duration-matched non-burst periods.  D, Entropy of instantaneous 

network synchrony is maximal near κ = 1.  E, Mean instantaneous burst synchrony does not 
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change with κ.  Thus, burst area and duration are sufficient to explain rising trend in mean 

synchrony.  Gray line: control, computed for electrodes which do not participate in bursts.  F, 

The peak in entropy persists for instantaneous burst synchrony. 

 

unchanged. This suggests that our study should be repeatable with other MEA 

systems and our findings reflect cortical dynamics which span a range of spatial 

scales.  

 

4.3.3   Anti-phase locking in disinhibited cortical networks with κ > 1 
 
 
At high κ, anti-phase locking (Fig. 4.3C) was found for some bursts, which was 

visible as a tendency for π phase differences (e.g. Fig. 4.4C).  We found that anti-

phase locking was approximately 10 times more likely in high κ experiments 

compared to those with low or near κ = 1 (ANOVA, p < 0.01).  For the 8 experiments 

with highest κ, we found APL = 6.3 ± 1.8 (mean ± SEM), where APL quantifies the 

degree of anti-phase locking, whereas APL = 0.9 ± 0.3 and APL = 0.4 ± 0.1 for the 8 

experiments near κ = 1 and low κ respectively (Fig. 4.4C; Methods).  The fraction 

fAPL of anti-phase locked sites, which extended from deep to superficial layers, was 

fAPL  = 0.64 ± 0.02 for the high κ experiments, which is 25% higher than expected by 

chance and significantly higher for experiments with low κ (fAPL = 0.51 ± 0.001) and κ 

near 1 respectively ( fAPL = 0.52 ± 0.01; ANOVA, p < 0.01) .  Although such anti-

phase locking in general will reduce the magnitude of r, the high κ conditions still 

resulted in the highest average r due to the fact that anti-phase locked groups were 

always small compared to the phase-locked groups.    
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Figure 4.6: The relation of average synchrony and entropy of synchrony with respect to 

κ is independent of spatial extent and spatial resolution of MEA recordings.  The data 

shown and described in Fig. 4.5 were recomputed using two different arrangements of MEA 
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electrodes.  A, 4x4 compact group of electrodes covering a 800 µm x 800 µm recording area 

near the center of the array (red).  B, 4x4 sparse group of electrodes covering the full 1600 

µm x 1600 µm area, but with half the spatial resolution (blue).  C – H,  Same figure legend as 

in Fig. 4.5A – F. 

 

4.4   Discussion 
 
 
While it is well known that either too much or too little synchrony is detrimental to 

cortex function, it has been challenging to quantitatively identify the specific 

intermediate level of synchrony which is optimal.  Based on our finding of peak 

variability of phase synchrony, we propose that κ = 1 is such a specific optimal point.  

This allows us to quantitatively identify the corresponding optimal level of synchrony 

occurring near κ = 1, which is about 13.5 % of the maximal synchrony networks can 

exhibit even under moderate disinhibition.  Below we first relate our findings to 

epilepsy models which are similar to our high κ experiments.  Next we highlight 

agreement between our work and theoretical predictions from coupled oscillators and 

critical phenomena, which suggests that the optimal point marked by κ ≈ 1 

corresponds to the critical point of a phase transition.  Finally, we discuss our findings 

of anti-phase locking and the relevance of our work for in vivo studies. 

 

4.4.1   κ > 1 identifies a pathological state of synchrony typical for epilepsy. 
 
 
Cortical disinhibition is a well established model for epilepsy (Luhmann et al., 1995; 

Prince et al., 2009) and GABAA antagonists readily induce epileptic seizures in 
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isolated cortex preparations (Gutnick et al., 1982) that initiate in and involve deep 

layer pyramidal neurons (Connors, 1984; Pinto et al., 2005).  Provided layers 5/6 are 

intact (Telfeian and Connors, 1998), about 10 – 20 % reduction in GABAA receptor 

function suffices to induce seizure activity (Chagnac-Amitai and Connors, 1989), in 

line with the relatively low dose of 5 µM PTX concentration used in the current 

study, which is far from > 50 µM required to block the GABAA receptor.  Our 

observation that bursts are spatially extended and include deep layers for large κ is in 

accordance with these studies.  Moreover, for high κ, we observed increased β-

oscillations (Fig. 4.1; Gireesh and Plenz, 2008), which are known to involve layer 5/6 

pyramidal neurons (Yamawaki et al., 2008).  Importantly, the involvement and 

emergence of β-oscillations in epilepsy has been well documented.  10 – 15 Hz 

oscillations emerge spontaneously in isolated cortex preparations using the epilepsy 

model of low extracellular magnesium (Flint and Connors, 1996) and epileptic 

seizures recorded in animals during slow-wave sleep have elevated β-power 

(Timofeev and Steriade, 2004).  In epileptic patients, long-range temporal 

correlations are enhanced in the β-band of intracranial EEG recorded during seizure 

free epochs (Monto et al., 2007), and entrainment of photosensitive seizures is 

particularly effective with flashes between 15–20 Hz (Parra et al., 2005).  We 

conclude that the regime of κ > 1 identifies a pathological state of relatively large-

scale and robust phase-synchrony across cortical layers with dominant oscillation 

frequencies similar to those found in epilepsy.  

 

4.4.2   κ ~ 1 identifies a critical phase transition  
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Next, we turn to the theory of critical phenomena, which originates from the 

statistical physics of phase transitions (Hinrichsen, 2005) and has also been applied to 

understand network-level neural dynamics (Levina et al., 2007; Buice and Cowan, 

2009; Meisel and Gross, 2009; Millman et al., 2010).  A prominent similarity of our 

findings and predicted critical phenomena is the power-law probability distribution of 

burst sizes, which we observed when no drugs were applied.  We found a power-law 

exponent near -1.5, which suggests that cortical networks belong to the class of non-

equilibrium systems called ‘directed percolation’ (Hinrichsen, 2005; Buice and 

Cowan, 2009).  Originally devised for the study of a fluid percolating through a 

porous material, this model may also be interpreted as neural activation propagating 

through a network.  Models of this type have successfully been used to explain 

measurements of cortical dynamic range (Kinouchi and Copelli, 2006; Shew et al., 

2009; Larremore et al., 2011) and information transfer (Beggs and Plenz, 2003; Shew 

et al., 2011).  In this context, the drug-induced changes in dynamics we observed may 

be interpreted as changes in the probability of activity propagation through the 

network.  Reduction of excitatory synaptic transmission decreases this probability, 

typically resulting in brief bursts that die out quickly.  Conversely, reduction of fast 

inhibition increases the probabity, resulting in relatively large bursts of runaway 

excitation.  The -1.5 power-law observed in drug-free networks corresponds to a 

balanced propagation in line with a critical branching process (Beggs and Plenz, 

2003), where, in theory, propagation neither decays nor grows, on average.  

Importantly, this theory also predicts that variability in the spatiotemporal extent of 

bursts is highest at criticality, which matches our findings of peak entropy of burst 
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spatial area and duration for κ ≈ 1.  Although directed percolation models are known 

to produce highly fluctuating neural activity at criticality, there are no predictions 

from this theory regarding phase synchrony. 

 

Thus, for perspective on our synchrony measurements, we turn to the theory of 

coupled oscillators, where much has been predicted about how the onset and 

dynamics of synchrony depends on the strength of coupling between oscillators 

(Haken et al., 1985; Daido, 1990; Ermentrout and Kleinfeld, 2001; Strogatz, 2001; 

Arenas et al., 2008; Kitzbichler et al., 2009).  Since we typically observe aperiodic 

LFP fluctuations, we note that the theory applies to aperiodic dynamics as well, such 

as synchronized chaos (Arenas et al., 2008).  Interpreting our experiments in this 

context, we consider the local population of excitatory pyramidal neurons and 

inhibitory interneurons that generate the LFP at each electrode as one ‘oscillatory 

unit’.  The control parameter in the models is the coupling strength between 

oscillators; when coupling exceeds a critical threshold strength, synchrony emerges.  

The drugs used in our experiments certainly change coupling between distant 

neuronal groups, as well as in the local recurrent networks of excitatory and 

inhibitory neurons, which makes it difficult to predict the net effect of a global 

reduction in excitatory or inhibitory transmission (Kopell et al., 2000).  Nevertheless, 

comparing our empirical observations of synchrony to predictions from coupled 

oscillators suggests that PTX results in stronger coupling, while DNQX/AP5 results 

in weaker coupling.  We note that although we used κ to parameterize these drug-

induced changes, κ is not equivalent to a control parameter – it is based on measuring 
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network dynamics.  The rapid rise, i.e. onset, of synchrony occurs near the coupling 

strength found in cortical networks which are unperturbed by drugs, i.e. κ ≈ 1.  

Importantly, the theory of coupled oscillators predicts that variability of synchrony is 

highest near the onset of synchrony, i.e. our observation of peak entropy of synchrony 

near κ ≈ 1 was predicted by this theory (Daido, 1990).  

 

Interestingly, the observed peak entropy of synchrony persisted after the variability in 

burst duration and area were accounted for (Figs. 4.5F, 4.6H).  Thus, the optimization 

of entropy results in part from intrinsic single-site variability.  More precisely, each 

electrode samples a sub-network consisting of tens to hundreds of neurons. It is likely 

that the variability of synchronized activity within such sub-network neuronal groups 

contributes significantly to the peak in entropy of synchrony. 

 

4.4.3   Anti-phase synchrony for κ > 1 
 
 
One aspect of our experiments which is not explained by coupled oscillator models in 

their most basic form is the anti-phase locking found at high κ.  Anti-phase LFP 

oscillations could arise from several possible mechanisms.  First, in-phase 

synchronized spiking in a population of cortical pyramidal neurons with aligned long 

apical dendrites can produce such LFP signals (Chrobak and Buzsáki, 1998).   

Accordingly, the incidence of anti-phase locking is expected to increase with the 

involvement of deep layer neuron in generating β-oscillations at high κ.  Second, 2-

oscillator models reveal anti-phase locking to arise from excitatory coupling (Kopell 

and Somers, 1995; Neltner and Hansel, 2001) such as mutual layer-V pyramidal 
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neuron interactions.  Third, in line with our findings at high κ, network simulations 

demonstrate a suppressing effect of inhibition on anti-phase synchrony (Kanamaru, 

2006).  The concurrence of slow β-oscillations and anti-phase locking in our 

experiments is in line with anti-phase locking in human motor coordination at lower 

frequencies as predicted by the HKB-model (Haken et al., 1985; Schőner et al., 

1986). 

 

4.4.4   Comparison to the cortex dynamics in vivo 
 
 
Since our measurements were of in vitro spontaneous activity, two natural questions 

arise.  First, is a large variability of spontaneous synchrony relevant when it comes to 

stimulus-evoked synchrony?  Second, to what extent are our findings expected to 

hold in vivo?  Growing evidence that spontaneous activity is intimately related to 

stimulus-evoked activity suggests the answer to the former question is, yes (Tsodyks 

et al., 1999; Ohl et al., 2001; Ji and Wilson, 2007; Han et al., 2008; Luczak et al., 

2009; Berkes et al., 2011; Shew et al., 2011).  Most importantly, we previously 

showed this in exactly the same experimental system studied here.  Considering the 

same drug conditions, it was found that 1) mutual information between stimulus and 

response, i.e. information transmission, was highest at κ ≈ 1 (Shew et al., 2011) and 

that 2) the range of stimulus amplitudes that are distinguishable based on response, 

i.e. dynamic range, was highest at κ ≈ 1 (Shew et al., 2009).  Regarding the second 

question, there are several lines of evidence suggesting our findings might hold in 

vivo.  One is that the organotypic cortex slice cultures that we study preserve many 

aspects of in vivo cortical development, including laminar structure and the 
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emergence of neuronal avalanche dynamics during the second week postnatal 

(Gireesh and Plenz, 2008).  In addition, neuronal avalanches were observed in two 

previous studies of ongoing cortical activity in awake monkeys, and in one case, 

analysis confirmed that κ ≈ 1 (Petermann et al., 2009; Shew et al., 2011).   

 

In summary, our experiments are in agreement with predictions from theory, 

suggesting that when the cortex operates at a critical intermediate excitability, near 

the onset of synchrony, it can benefit from moderate average synchrony and a 

maximal repertoire of different synchronized groups.  Importantly, this critical 

excitability typically was found under experimental conditions in which no drug was 

applied, suggesting that the cortex may tune itself to this optimal condition.   
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Chapter 5:  Neuronal avalanches imply maximal dynamic 
range in cortical networks at criticality2 

 

5.1   Introduction 
 

As shown in Chapters 3 and 4, the cortex is spontaneously active even in the absence 

of any obvious stimulus or motor output.  Increasing evidence shows that such 

ongoing activity is intricately linked to stimulus-evoked activity. For example, 

orientation maps constructed from ongoing neuronal activity in the anesthetized cat 

match those based on visual responses (Tsodyks et al., 1999; Kenet et al., 2003).  

Spatiotemporal correlations of spikes in the visual cortex are similar when the awake 

animal is simply sitting in darkness or observing natural scenes (Fiser et al., 2004).  

Likewise, population responses to auditory and somatosensory stimuli fall within the 

repertoire of observed spontaneous events (Luczak et al., 2009).  Moment to moment, 

ongoing activity contributes to the large variability observed in stimulus responses 

(Arieli et al., 1996; Kisley and Gerstein, 1999; Azouz and Gray, 1999), while being 

only weakly modulated by stimulus presentation (Fiser et al., 2004).  On longer 

timescales, the organization of spontaneous activity is thought to reflect past inputs 

and influence future network responses (Ohl et al., 2001;Yao et al., 2007).  Given 

such interplay between spontaneous and stimulus-evoked activity, and the 

maximization principles that we have found mainly during ongoing activity, we raise 

                                                 
2 This chapter is published in Journal of Neuroscience 29:15595-600, 2009. I contributed to in vitro 
recordings, all data analysis, interpretation of the data and manuscript preparation. 
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the question whether the cortical state that optimizes its internal representational 

ability could maintain optimized stimulus processing in the network. 

 

The cortical state we refer to is neuronal avalanches state, a type of spontaneous 

activity observed in superficial layers of cortex in vivo and in vitro (Beggs and Plenz, 

2003; Plenz and Thiagarajan, 2007; Gireesh and Plenz, 2008; Petermann et al., 2009). 

Neuronal avalanches consist of bursts of elevated population activity, correlated in 

space and time, that are distinguished by a particular statistical character:  activity 

clusters of size s occur with probability 
αssP ~)( , i.e. a power law with exponent α = 

-1.5.  Neuronal avalanches are similar to the dynamics of other systems poised at the 

boundary of order and disorder; more precisely, we refer to systems operating at 

criticality (Bak and Paczuski, 1995; Jensen, 1998; Stanley, 1971).  Importantly, 

simulations predict that at criticality, neuronal networks optimize several aspects of 

information processing including (1) the range of stimulus intensities that can be 

processed, i.e. dynamic range (Kinouchi and Copelli, 2006) and (2) the amount of 

information that can be transferred (Beggs and Plenz, 2003; Tanaka et al., 2009).  

Until now, no experiments supported these predictions.  Here, we demonstrate that in 

vitro cortical networks have maximum dynamic range when spontaneous activity 

takes the form of neuronal avalanches.  By systematically changing excitation and 

inhibition, we obtain a tuning curve for stimulus processing in cortical networks, with 

peak performance found under balanced conditions which generate neuronal 

avalanche activity.   
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5.2   Methods 
 

5.2.1   Dynamic range  
 

After measuring responses to a range of stimulus amplitudes, we used the response 

curve, )(SR , to compute dynamic range,  

( )minmax10 /log10 SS=∆ ,                                     (5.1) 

where maxS , minS are the stimulation values leading to 90%, 10% of the range of R 

respectively.  

 

5.2.2   Model 
 

The model is the same as described in Chapter 3, except consisted of N = 250, 500, 

1000 all-to-all coupled, binary-state neurons. To obtain response as a function of 

stimulus in the model, we simulated increasing stimulus amplitude S by increasing 

the number of initially activated neurons (S = 1, 2, 4, 16, 32, 64, 128 initially active 

neurons).   Finally, we note that our model is very similar to 1−N  dimensional 

directed percolation (Buice and Cowan, 2007). Therefore, at high dimension (N > 5) 

and weak coupling it is expected that the model behaves as a branching process, 

where σ is the branching parameter and the –3/2 power-law is predicted at criticality. 

To test for statistical differences between groups, a one-way ANOVA followed by a 

Tukey post hoc test was used. 

 

5.3   Results 
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Cortex-VTA co-cultures from rat (n = 16), which closely parallel in vivo 

differentiation and maturation of cortical superficial layers (Gireesh and Plenz, 2008), 

were grown on 8x8 integrated planar micro-electrode arrays (Fig. 5.1A).  Local field 

potentials (LFP) were recorded after superficial layer differentiation (> 10 DIV) and 

analyzed to extract spatiotemporal clusters of negative LFP deflections (nLFPs; n = 

47 experiments).  Extracellular unit activity recorded simultaneously with the LFP 

revealed that sizes of nLFP clusters correlated with the level of suprathreshold 

neuronal activity in the network (Fig. 5.1B; R = 0.84 ± 0.13, mean ± SD; n = 5 

cultures).  For each experimental condition, we first measured spontaneous activity 

(Fig. 5.1C) and quantified the deviation of the observed spontaneous network 

dynamics from neuronal avalanche dynamics by calculating κ (Fig. 5.2A).  In a 

second step, we measured the input/output dynamic range ∆ of the cultured network 

based on its response to a range of stimulus amplitudes (Figs. 5.1D, 5.4A).  These 

measurements were carried out under normal conditions and repeated after changing 

the ratio of excitation and inhibition through bath application of the antagonists PTX 

or AP5/DNQX.   

 

5.3.1   Quantifiying the cortical network state based on κ 
 

Fig. 5.2A (top) shows experimental cluster size PDFs obtained from three cultures 

under normal, unperturbed conditions and in the presence of PTX or AP5/DNQX 

respectively.  Under normal conditions, cultures revealed a PDF close to –3/2 power-

law, as predicted for neuronal avalanches (Fig. 5.2A, black). In the presence of PTX,  
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Figure 5.1: Measuring spontaneous and stimulus-evoked activity from cortical 

networks.  A,  Light-microscopic image of a somatosensory cortex and dopaminergic 

midbrain region (VTA) coronal slice cultured on a 60 channel microelectrode array. Yellow 

dot: stimulation site. Black dots: recording sites. B, Number of extracellular spikes correlates 

with the size of simultaneously recorded nLFP burst (R = 0.84 ± 0.13; n = 5).  Each point 

represents total number of spikes versus the corresponding spontaneous nLFP burst size.  C, 

Example recordings of spontaneous LFP fluctuations (left) and nLFP rasters (right) for three 

drug conditions (top–AP5/DNQX, middle–no drug, bottom–PTX.)  D, Examples of LFP 

evoked by 70 µA stimulus (left) and rasters recorded during the application of four stimuli of 

amplitudes 50, 40, 90, 150 µA (yellow line: stimulus time) (right) for three drug conditions.  

For both spontaneous (C) and stimulus-evoked (D) activity AP5/DNQX (PTX) typically 

results in reduced (increased) amplitude LFP events with lesser (greater) spatial extent.  In 

(C), (D), black dots on the LFP traces indicate nLFP events, raster point color indicates nLFP 

amplitude, and all scale bars (left) represent 50 µV, 100 ms. 
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however, the PDF is bi-modal, revealing a high likelihood for small and large activity 

clusters, but a decreased probability of medium-sized clusters (Fig. 5.2A; red). In 

contrast, bath-application of AP5/DNQX reduces large clusters, resulting in mostly 

small clusters (Fig. 5.2A; blue). These differences in PDFs are robustly assessed 

using the corresponding CDFs (Fig. 5.2A, bottom).  Reducing excitation results in a 

steep early rise of the CDF, while reducing inhibition results in a delayed rise of the 

CDF. κ robustly quantifies these observations using the difference between a 

measured CDF of cluster sizes and the theoretically expected reference CDF for 

neuronal avalanches (Fig. 5.2A, bottom, gray lines).  As summarized in Fig. 5.2C, κ ~ 

1 under normal conditions (κ = 1.14 ± 0.01, ±SE; n = 28), κ < 1 when excitation is 

reduced (κ = 0.81 ± 0.01; n = 10) and κ > 1 when inhibition is reduced (κ = 1.51 ± 

0.01; n = 9; F(2,44) = 82.7; p < 0.05 for PTX and AP5/DNQX from normal).   

 

This experimental strategy was paralleled using a network-level computational model 

of binary, integrate-and-fire neurons, in which changes in the excitation/inhibition 

ratio (E/I) were mimicked by tuning the parameter σ (Methods).  For σ < 1, on 

average a neuron triggers activity in less than one neuron, resulting in a hypo-

excitable state.  Conversely, for σ > 1, one neuron excites on average more than one 

neuron in the near future, resulting in a hyper-excitable condition. Accordingly, for σ 

= 1, propagation of activity is balanced as was found experimentally for neuronal 

avalanches (Beggs and Plenz, 2003; Stewart and Plenz, 2007).  We simulated 

“spontaneous” activity clusters by activating a single randomly chosen neuron and 

monitoring the propagation until activity ceased or 500 time steps were executed.   
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Figure 5.2: Change in the ratio of excitation/inhibition moves cortical networks away 

from criticality.  A,  Top: Probability distribution functions (PDFs) of spontaneous cluster 

sizes for a normal (no-drug, black), disinhibited (PTX, red), and hypo-excitable 

(AP5/DNQX, blue) cultures. Broken line: -3/2 power-law.  Cluster size s is the sum of nLFP 

peak amplitudes within the cluster; P(s) is the probability of observing a cluster of size s.  

Bottom: Corresponding cumulative distribution functions (CDFs) and quantification of the 

network state using κ, which measures deviation from a -1/2 power-law CDF (broken line).  

Vertical gray lines: The 10 distances summed to compute κ, shown for one example PTX 

condition (red).   B, Simulated cluster size PDFs (top) and corresponding CDFs (bottom) for 

different values of the model control parameter σ.  C,  Summary statistics of average κ values 

for normal, hypo-excitable, and disinhibited conditions (* p < 0.05 from normal).  D, In 

simulations, κ accurately estimates σ.  Broken line: κ = σ. Colored dots: examples shown 

in B.  

 

The total number of spikes in a cluster was taken as the cluster size.  1000 clusters 

were simulated at each of 11 levels of σ.  In agreement with established theory, model 
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cluster size PDFs near criticality (σ = 1) fit a -3/2 power-law very closely (Fig. 5.2B, 

top; black; (Harris, 1989;Zapperi et al., 1995).  Just as in the experiment, we 

computed κ based on CDFs of simulated spontaneous activity for different values of 

σ (Fig. 5.2B bottom).  We found that κ and σ were almost linearly related (Fig. 5.2D), 

which supports the following interpretation:  In the experiments, κ ~ 1 is close to 

criticality, κ < 1 identifies the subcritical regime, and κ > 1 is analog to the 

supercritical regime of the model.   

 

5.3.2   Stimulus-evoked activity and dynamic range 
 

After obtaining κ for a given experimental condition, we recorded the response R as a 

function of stimulus amplitude S. Evoked responses often exhibited complex 

temporal evolution.  Shown in Fig. 5.3 are typical peri-stimulus time histograms 

(PSTHs) of evoked activity for stimulus levels and three different drug conditions.  

The vertical axis represents average nLFP amplitude, normalized by the maximum 

observed nLFP.  In the results, a response to a given stimulus level was quantified as 

the integral of the PSTH associated with that stimulus level.  The three examples 

shown here were computed from the same data as the R(S) curves shown in Fig. 5.4A.   

 

In the AP5/DNQX example, the PSTHs were mainly flat until a stimulus level of 

about 60 µA, demonstrating the insensitivity of the network when excitation is 

suppressed.  At the other extreme, in the PTX example, the largest stimulus levels 

have similar PSTHs, demonstrating the saturation of the R(S) for large S when 

inhibition is suppressed.  
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Figure 5.3: Peri-stimulus time histograms (PSTHs) of evoked activity.  nLFP versus time 

averaged over 40 stimuli at each stimulus level (color coded) are compared for three drug 

conditions (left – PTX, middle – no drug, right – AP5/DNQX).  In the AP5/DNQX condition 

the system is relatively insensitive due to suppressed excitation, i.e. the PSTH is flat until a 

stimulus level of about 60 µA is reached.  In the PTX condition, the largest stimulus levels 

result in very similar PSTHs, demonstrating the tendency for response to saturate when 

inhibition is suppressed.   Note that the response to a given stimulus level, R, in the main text 

was defined as the integral of the PSTH. 

 

Typical response curves from experiments and simulations are shown in Fig. 5.4A 

and 5.4B respectively.  We found that the shape of the response curves in the model 

closely matched the experimental findings.  When excitatory synaptic transmission 

was reduced (κ < 1), the system was relatively insensitive (required a larger stimulus 

to evoke a given response).  When inhibitory synaptic transmission was reduced (κ > 

1) the system was hyper-excitable, with responses that saturate for relatively small 

stimuli.  In the balanced E/I condition with κ≅1, the range of stimuli resulting in non-

zero and non-saturated response was largest.   
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Figure 5.4: Stimulus-response curves and dynamic range ∆.  A, Experimental response R 

evoked by current stimulation of amplitude S for three example cultures with different κ 

values.  Orange arrows: range from Smin to Smax; length is proportional to ∆.  Note that ∆ is 

largest for 1≅κ .  B, Model response evoked by different numbers of initially activated sites; 

∆ is largest for 1≅σ . Like the experiment, each point is calculated from 40 stimuli.   Error 

bars: 1 S.E. C,  Experimental summary statistics for ∆ under different pharmacological 

conditions (* p < 0.05 from normal).  D, Simulation summary statistics for ∆ comparing 

different ranges of κ (* p < 0.05 from 1≅σ ). 
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5.3.3   Maximal Dynamic range at criticality, κ ≅ 1   
 

For each response curve, we quantified the range of stimuli the network can process, 

i.e. the dynamic range ∆ (Methods).  We found experimentally that ∆ = 5.0 ± 0.1 

(mean ± S.E) under normal conditions, ∆ = 2.4 ± 0.1 in the presence of PTX, and ∆ = 

3.4 ± 0.3 for AP5/DNQX (Fig. 5.4C, F(2,44) = 11.3; p < 0.05 PTX and AP5/DNQX 

from normal).  Similar overall changes in ∆ were also found in our simulations (Fig. 

5.4D; F(2,195) = 820; p < 0.05).Importantly, the dynamic range was largest in 

unperturbed networks, in which neuronal avalanches are most likely to occur.  

 

We then derived a tuning curve of ∆ versus κ by combining all experimental 

conditions into one scatter plot (Fig. 5.5A).  These data demonstrate that ∆ is 

maximized and its variability is largest near κ≅1.  These findings agree well with our 

model including changes in ∆ as the system is pushed away from κ≅1, ~ 10dB drop 

(10 fold reduction in minmax / SS ) for a 30% change in κ (Fig. 5.5B).  The tuning curve 

demonstrates that the change in the dynamic range of a network due to a shift in E/I 

depends on both the original, unperturbed state and the resulting change in κ. 

 

Finally we tested the robustness of this peak function. These results were robust for 

different maximal stimulus amplitudes. The maximum stimulus amplitude, 200 µA, 

in the experiments was chosen to maximize the stimulus range without damaging the 

tissue. With this range of stimuli, the response curves did not always saturate.  To test  
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Figure 5.5: Network tuning curve for dynamic range ∆ near criticality.  A, In 

experiments, ∆ peaks close to 1≅κ  and drops rapidly with distance from criticality.  Paired 

measurements share the same symbol shape; normal (no-drug) condition was measured just 

before the drug condition.  Circles: unpaired measurement. B, In simulations, ∆ is also 

maximum for 1≅κ .  Symbol indicates network size (circles: N = 250; squares: N = 500; 

triangles: N = 1000).  Lines represent binned averages. 

 

whether this limitation impacts our hypothesis, that is ∆ is maximized for κ = 1, we 

recalculated the ∆ vs. κ curve with deliberately truncated stimulus ranges in both the 

model and the experiment. In Fig. 5.6A we demonstrate that our data support our 

hypothesis even for the limited stimulus size range available to us experimentally.  

Only for an extremely shortened stimulus range does the hypothesis become non-

testable, as shown in the corresponding model simulations (Fig. 5.6B).  
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Figure 5.6:  Effect of limited stimulus range on ∆.  A, The black line is a re-plot of binned 

and averaged data from Fig. 5.5A of the main text.  The blue and red lines represent the same 

experiments, but reprocessed using only < 150 and < 100 µA respectively.  The peak of ∆ 

near κ = 1 is attenuated, but still exists. B, In the model, we verify that we should expect 

attenuation of the ∆(κ) curve, when the stimulation range is decreased. The strong peak 

vanishes only for a severely truncated range (Smax = 16). 

 

Then we tested the effects of changing the number of neurons in the model.  We 

found that for a fixed range of stimulus intensities, i.e. number of initially active sites, 

the ∆(σ) curve was largely unchanged.  For σ < 1, there was a tendency for larger 

systems to have decreased ∆.  Each point on the curves in Fig. 5.7 is an average over 

6 different simulations (same data as shown in Fig. 5.5B) 

 

 

 



 

 127 
 

 

Figure 5.7: Effect of network size on ∆. Increasing the system size from N = 250 to N = 

1000 model neurons causes only slight shifts in ∆.  For σ < 1 there is a tendency for slightly 

lower ∆ at higher N.  

 

5.4   Discussion 
 

We experimentally derived a tuning curve that linked the state of a cortical network 

with its ability to process inputs. When the network was closest to criticality, as 

indicated by neuronal avalanches, κ was close to one and dynamic range was 

maximized. This is among the first experimental work to confirm theoretical 

predictions on the computational advantage of operating at criticality.  Dynamic range 

has been predicted in simulations to peak at criticality (Kinouchi and Copelli, 2006).  

Our simulations advance previous studies by linking the dynamic range of a network 

with the spontaneous activity it generates.  Because the dynamic range increases with 

the ability of a network to map input differences into distinguishable network outputs, 

our result is also closely related to network-mediated separation, which has been 

predicted to peak at criticality, at the transition from ordered to chaotic dynamics 

(Bertschinger and Natschlager, 2004; Legenstein and Maass, 2007).  In contrast, our 
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results show that variability of response to a given stimulus is highest at criticality.  

Further investigation of reliability versus variability in cortical networks is warranted.  

 

Considering the simplicity of our model with all-to-all connectivity, absence of 

refractory period, and approximating inhibition by reducing σ, the overall agreement 

in the ∆−κ relationship between experiment and simulation is remarkable.  The 

increase of variability in ∆ as well as the drop in ∆ due to deviation from κ = 1 was 

well matched between experiment and simulations.  Such similarity supports the 

notion that universal principles, independent of system details, are found at criticality 

(Bak and Paczuski, 1995; Jensen, 1998; Stanley, 1971).  The main quantitative 

difference was the lower ∆ values for experiments compared to the model.  

Experimental noise, which is absent in the model, effectively adds a constant value to 

Smin and Smax, which systematically reduces ∆. 

 

Further neurophysiological insight into our results can be gained from Fig. 5.4. There 

it is shown that networks poorly discriminate small inputs in the hypo-excitable state, 

whereas they tend to saturate, failing to discriminate larger inputs in the hyper-

excitable state.  Both these reductions in performance result in reduced dynamic 

range compared to balanced networks.  In line with these findings, dissociated 

cultures respond to inputs with a ‘network spike’ if σ > 1 (Eytan and Marom, 2006) 

and display a ‘giant component’ in a hyperexcitable regime, which reduces the ability 

to discriminate inputs (Breskin et al., 2006).  The balance of excitation and inhibition 

has been shown to be crucial for proper development of sensory cortical (Hensch, 
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2005).  Our results suggest that, functionally, the balance of excitation and inhibition 

is achieved when the dynamic range is maximized and cortical networks operate at 

criticality. 
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Chapter 6:  Higher-order Interactions characterized in 
cortical activity  

 

6.1   Introduction 
 
 
The mammalian cortex forms a complex network with more than 1010 neurons, which 

interact at many different scales ranging from microcircuits in cortical columns to 

cortical areas across the whole brain.  Consequently, during perceptive, cognitive, and 

motor functions, cortical dynamics is characterized by spatially distributed coherent 

activity patterns that reflect these neuronal interactions (Gray et al., 1989; Abeles et 

al., 1993; Bressler et al., 1993; Vaadia et al., 1995; Riehle et al., 1997; Rodriguez et 

al., 1999).  During the past two decades, the simplest form of interaction—pair-wise 

correlations—have been studied intensively (for review see Singer, 1999).   However, 

the understanding of higher-order interactions, i.e., the ones that are manifested only 

in triplets, quadruplets, etc., has been lacking. The fundamental problem is that the 

number of potential higher-order interactions grows exponentially with the system 

size, i.e., the number of neurons considered, which makes the interaction structure 

quickly intractable. So far it is not clear how to generally overcome this curse of 

dimensionality and, consequently, the structure of higher-order interactions in cortical 

activity and the mechanisms underlying its generation remained largely unexplored.  

Previous work suggests that pair-wise interactions alone provide a rather complete 

picture of neuronal activity, potentially circumventing the necessity of identifying 

higher-order interactions.  By decomposing population activities into different order 
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of interactions, Schneidman et al (2006) and Shlens et al (2006) showed that pair-

wise interactions explain most of the activity in randomly subsampled (≤ 10 neurons)  

retina networks, a finding that was soon extended to include larger system (Shlens et 

al., 2009; Cocco et al., 2009; Ganmor et al., 2011b), in vivo cortical networks (Yu et 

al., 2008;Ohiorhenuan et al., 2010) and correlation among population activities 

measured with the local field potential (LFP) (Tang et al., 2008; Santos et al., 2010).  

In contrast, a number of more recent studies (Montani et al., 2009; Ohiorhenuan et 

al., 2010; Santos et al., 2010; Ohiorhenuan and Victor, 2011; Ganmor et al., 2011a) 

have identified significant higher-order interactions in neuronal dynamics, for 

example, the 3rd -order interactions between closely neighboured (< 300 µm) cortical 

neurons  (Ohiorhenuan et al., 2010; Ohiorhenuan and Victor, 2011) and interactions 

up to 8th order in retina (Ganmor et al., 2011a).  Clearly, the structure of higher-order 

interactions and their contribution to cortical dynamics are still open to debate.   Here 

we show that pair-wise interactions alone are insufficient to identify neuronal 

avalanche dynamics (Beggs and Plenz, 2003) for even small system (10 elements), 

measured as ongoing cortical activity in the awake monkey based on the LFP.   We 

then demonstrate that the incorporation of a specific structure of higher-order 

interactions that results from thresholding (Amari et al., 2003; Macke et al., 2011) 

improves the accuracy of reconstructing neuronal avalanche dynamics by up to two 

orders of magnitude.  By using the same method, significant improvements were also 

obtained for the approximation of ongoing spiking activities in awake monkeys as 

well as visually evoked spiking responses from anesthetized cats.  These results 

demonstrate an efficient way to characterize the higher-order interactions in different 
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scales of cortical dynamics and, at the same time, suggest the mechanisms underlying 

its generation.  

 

6.2   Methods  

 

6.2.1   Electrophysiological recordings 
 
 
All experiments were carried out in accordance with NIH guidelines for animal use 

and care. Ongoing activities were recorded from two adult monkeys (Macaca 

mulatta).  Multi-electrode arrays (MEA; 96 channels; 10×10 without four corners; 

inter-electrode distance: 400 µm; electrode length: 1 mm; BlackRock Microsystems) 

were chronically implanted in the arm representative region of the left pre-motor 

cortex (cf. Fig. 6.1A). About thirty minutes of ongoing LFP (1 – 100 Hz) and 

extracellularly recorded spike activities (300 – 3000 Hz) were obtained while the 

animals were alertly sitting in a primate chair with their heads fixed, but not engaged 

in a behavioural task.  Spike sorting was carried out offline (Offline Sorter, Plexon). 

Single units were identified with clear separations in PCA or waveform feature 

spaces.  Results for monkey A are shown.  Qualitative similar results for monkey B 

are summarized in Tables 6.1 and 6.2.  

Visually evoked activities were recorded from cortical area 17 in two adult, 

anesthetized cats. The animals were artificially ventilated and the anesthesia was 

maintained with a mixture of 70% N2O and 30% O2, supplemented with 0.5 – 0.6% 

halothane.  Extracellular spike activities were recorded by one or two silicon-based 
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MEAs (4×4 electrode array; 200 µm inter-electrode distance; Neural Nexus). The 

probes were inserted roughly perpendicular to the surface of cortex at depths of 

approximately 1 mm.  The visual stimuli (presented by ActiveStim, 

http://activestim.com/) consisted of full-contrast, drifting sinusoidal gratings that 

spatially covered the receptive fields of all recorded neurons.  Each trial was 

completed with 3 – 4 s long presentations of a drifting grating with orientations 

randomly chosen from a set of 12 directions (0° to 360° range; steps of 30°). About 

30 minutes of visually evoked responses were recorded for each cat.  Single units 

were identified offline using a customized, PCA-based program. For more details, see 

previous publication with the same data sets (Yu et al., 2008).  Three data sets were 

analyzed (two probes for cat A and one probe for cat B). As the results are similar, in 

the figures we only show the detailed results for cat A, probe one. Results for the 

other two data sets are summarized in Table 6.2.  

 

6.2.2   LFP analysis 
 

Negative deflections in the LFP (nLFPs) were detected by applying a threshold at -2.5 

standard deviations of the LFP fluctuations estimated for each electrode separately 

(cf. Fig. 6.1B).  The time stamps of nLFPs were then binned with a small time 

window, ∆t, to generate corresponding binary time series (1 for nLFP and 0 for the 

lack of it).  Results were based on ∆t = 2 ms.  Similar results were obtained with other 

∆ts, ranging from 4 ms to 64ms (data not shown).  Spatiotemporal cluster of nLFPs, 

i.e., avalanches, were defined by consecutive bins that contained at least one nLFP at 
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any of the recording sites (Beggs and Plenz, 2003).  The size of a cluster was defined 

as the number of nLFPs in a cluster. For simplification of the analysis, the 

spatiotemporal clusters were degenerated to spatial patterns only, x = (x1, x2, x3,… xn), 

where n is the number of recording sites included in the analysis (n = 91 and 78 for 

monkey A and B, respectively). xi = 1 if at least one nLFP occurred at channel i and  

xi = 0 otherwise. (cf. Fig. 6.1C).  Qualitative similar results for single bin, non-

degenerated nLFP patterns can be found in Table 6.1 and Fig. 6.8, demonstrating that 

our findings on higher-order interactions in the original LFP dynamics did not rely on 

this specific method of extracting spatial-temporal patterns. See result section for 

more details on this issue. For sub-groups with 10 electrodes, the results for spatially 

compact ones are shown in the figures. Qualitatively similar results for randomly 

chosen sub-groups can be found in Table 6.1. 

  

6.2.3   Spike analysis 
 

In order to obtain activity patterns for spikes, spike trains were binned at ∆t = 20 ms 

(ongoing activity) and 4 ms (evoked activity).  The smaller ∆t for evoked activities 

was chosen because of the relative high firing rate during evoked activity (Yu et al., 

2008).  The range of ∆t used here is consistent with previous studies (Schneidman et 

al., 2006;Yu et al., 2008;Ohiorhenuan et al., 2010) and similar results were obtained 

by varying the ∆t by at least two folds (e.g., 10 ms for ongoing activity and 8 ms for 

evoked activity). Spatial patterns were taken as the spatial distribution of spikes 

within one time bin without further temporal concatenation.  This allows our results 
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to be more generally comparable with common approaches in spike train analysis. 

Additional analysis was performed on neuronal groups with strong pair-wise 

correlations (cf. Fig. 6.6). For 3-neuron groups, we calculated the average pair-wise 

correlation for all possible 3-neuron combinations and chose those 100 – 250 groups 

with the highest average correlation.  For 10-neuron groups, we calculated the 

average pair-wise correlation for all possible 10-neuron combinations (or randomly 

chosen 106 of them if the total number of combinations was more than 106) out of the 

existing data sets. Among those we analyzed 15 – 30 groups with the highest average 

correlation value. We note that most neurons (> 60%, see Table 6.2 for detail) 

participated in the analysis of strongly coupled groups.  In order to test whether units 

with high firing rates (up to > 30 spikes/s), which tend to be highly correlated with 

each other, bias our results, the analysis for monkey A in Fig. 6.6  was based on sub-

groups chosen out of 45 neurons with the top 20% neurons with highest firing rates 

excluded. However, results were similar even when including those units with high 

firing rates, except for the inclusion of fewer total units in the strongly couples groups 

(data not shown).  High firing units were not excluded for all other data sets and 

analysis.     

 

6.2.4   Ising Model 

 

The Ising Model (Schneidman et al., 2006) is expressed as P(σ) = Z-1 exp (Σi hiσi + Σij 

Jijσiσj), where P(σ)  is the probability of the pattern σ = (σ1, σ2, …, σn). σi equals 1 or –

1, representing the state of the ith element (1 for active and -1 for inactive). The 
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normalization factor Z, intrinsic property hi, and interaction Jij were determined 

according to the experimentally observed averages <σi> and < σiσj >. For 3 and 10-

element systems, the Ising model was numerically resolved by using the customized 

Matlab code, utilizing the optimization toolbox (function fsolve). For systems with up 

to 10 elements, the Ising model can be resolved exactly with an error in fitting the 

rates and pair-wise correlations < 10-9. This resulted in almost identical lower-order 

statistics (e.g., event rates and pair-wise correlation) for the Ising model and the data. 

For example, for the 10-electrode group shown in Fig. 6.1E, the approximation error 

for the Ising model, defined as | vmodel – vdata | / vdata, was < 10-10, where vdata is the 

value of the rates or pair-wise correlations calculated from the data, and vmodel is the 

corresponding value calculated from the pattern probabilities of the model.        

 

6.2.5   DG model 

 

The DG model (Amari et al., 2003; Macke et al., 2009; Macke et al., 2011) has a 

threshold operation based on multi-dimensional Gaussian variables: yi = 1when ui > 0 

and yi = 0 otherwise, where u = (u1, u2, …, un) ~ N ( γ, Λ).  In order to match the 

observed rate (r) and covariance (Σ) for binary variables, the mean (γ) and covariance 

(Λ) of the Gaussian variables need to be adjusted according to γi = Φ -1 (ri) and Λij as 

the solution for Σij = Φ2 (γi, γj, Λij) - Φ (γi) Φ (γj), where Φ and Φ-1 are cumulative 

probability function of standard Gaussian distribution (Φ for 1D and Φ2 for 2D) and 

its inverse function. Implementation of the model with Matlab can be found in 

(Macke et al., 2009).  The pattern probabilities for the DG model were calculated 
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using the cumulative distribution of multivariate Gaussians (Matlab function mvncdf) 

or running simulations (for large systems). In terms of event rates and pair-wise 

correlation, the fitting precision of DG model was usually 10-3, which reaches or 

exceeds the criteria used in related studies (e.g., Ganmor et al., 2011a; Ganmor et al., 

2011b) but was inferior compared with the of the Ising model.  This limit is mainly 

due to the noise introduced in calculating the cumulative probability distributions of 

the multi-dimensional Gaussian, for which the tolerant error was set to be < 10-4.  

Therefore, the performance differences between the two models in approximating 

higher-order statistics, i.e., pattern probability and cluster size/neuronal synchrony 

(see result), are not reflecting the precision with which the event rates and pair-wise 

correlations are fitted but represent the degree to which the model captures the 

internal structural of the data. 

 

6.2.6   Model performance measures 
 

To quantify the total interdependence in the data that can be explained by the pair-

wise correlations only, the entropy-based approach (Schneidman et al., 2006) was 

used.  The entropy H was calculated as H = Σ-P(x) logP(x), where x = (x1, x2, …, xn).  

xi = 0 (-1) or 1 indicates the status of element i to be active or inactive, respectively. 

Then the proportion of correlation that can be explained by pair-wise interactions is 

represented by the ratio (H1-H2)/(H1-H), where H, H1, and H2 are the entropy of the 

data, independent model and Ising model, respectively.   
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The Jensen-Shannon (JS) divergence was used to quantify the performance of 

different models in approximating the data.  The JS divergence is a symmetric, 

bounded measure of the distance between two distributions and has been used in 

related studies (Schneidman et al., 2006; Ganmor et al., 2011b). The JS divergence 

between probability distribution p and q is noted as DJS (p||q) and calculated as DJS 

(p||q) = 0.5 DKL (p||m) + 0.5 DKL (q||m), where m = (p+q)/2 and DKL is the Kullback–

Leibler divergence, calculated as DKL (p||q) = Σ pi log (pi/qi).  The 2-fold cross-

validation (Santos et al., 2010) was used for model comparison.  That is, time bins of 

the original data set were randomly assigned to one of two sets.  Model parameters 

were determined from one set only and predictions were made for the second set. 

Besides the DG and Ising model, the independent model, which matches the event 

rates of the data but assumes no correlation among elements and the “half-data” 

model, which uses the results (e.g., pattern probabilities and cluster sizes) measured 

in one half of the data set to predict the corresponding behavior of the other half were 

also included in model comparison.  

 

To eliminate the systematic bias in assessing models’ performances in predicting the 

probability for non-observed patterns (Nemenman et al., 2002), only the patterns with 

non-zero probability (i.e., patterns that are actually observed during the recordings) in 

both the data and all models (including the “half-data” model) were taken into 

account in calculating DJS.  Three controls were conducted to ensure that the 

conclusions of model performance are not affected by the exclusion of non-observed 

patterns. Firstly, we analyzed the DG model’s predictions about non-observed 
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patterns. One can expect from a good model to estimate probabilities of non-observed 

patterns to be considerably smaller than 1/N. Accordingly, we found that this was the 

case for the DG model. For example, for the thirty 10-electrode groups analyzed in 

Fig. 6.4C, the average prediction of the DG model for the probability for non-

observed patterns is (0.46 ± 0.04) /N (mean ± SD, across 30 groups).  In the second 

control, we empirically tested how the number of non-observed patterns affects our 

model comparison. We systematically changed the sample size from 10% to 100% of 

the recording length of the original data set and computed the ratio 

DJS(pdata||pIsing)/DJS(pdata||pDG). The ratio was consistently above 1 already for small 

sample sizes (e.g., with 10% recording length, the ratio is ~ 4 for nLFP patterns and ~ 

1.4 for spike patterns) and increased further or remained relatively stable with the 

increase of sample size (e.g., with 100% recording length, the ratio is >10 for nLFP 

patterns and ~ 1.6 for spike patterns). This demonstrates the superiority of the DG 

model over the Ising model across varying proportions of non-observed patterns. It 

further suggests that our findings are likely to hold even if sample size would be 

sufficiently increased to estimate reliably the probabilities of all potential patterns in a 

system.  In our final control, we assigned the zero probability to non-observed 

patterns, which allowed us to include all patterns in the computation of DJS for the DG 

and Ising model. Unlike in the case for KL divergence, the additional zero-probability 

patterns increase the magnitude of the JS divergence, given that the corresponding 

probabilities are non-zero in the model. However, we found that this approach did not 

change the conclusions (data not shown).  

 



 

 142 
 

To assess the statistical significance of performance differences, we used the 

Kolmogorov–Smirnov (KS) test, Mann–Whitney U test and paired-sample Wilcoxon 

signed rank test. The level for statistical significance was set to be p < 0.05.  

 

6.2.7   Calculating interactions of different orders 
 
 
Calculation of interactions in the 3-element groups were based on full log-linear 

expansion (Nakahara and Amari, 2002; Amari et al., 2003): log P(x) = Σθixi + Σθi j xix 

j + Σθijk xixixi − ψ, where P(x) is the probability of the pattern x = (x1, x2, x3). xi equals 

0 or 1, representing the state of the ith element. ψ is a normalization factor. θi, θij, θijk 

and ψ were determined according to the P(x), which is either experimentally observed 

(for the data) or directly calculated (for both the DG and Ising models). In principle, 

the calculations can be done for arbitrarily high orders, i.e., up to the system size.  

However, the amount of data needed for accurate calculation increases exponentially 

with higher order. Therefore, although interactions of higher orders larger than 3 exist 

in the DG model (Amari et al., 2003), and maybe also in the data, we restricted our 

analysis to maximal 3rd order interactions given the limited length of our data sets.  

 

6.3   Results 
 

6.3.1   Higher-order interactions are essential for ongoing cortical dynamics  
 
 
We first examined if the pair-wise interactions alone can sufficiently explain a well-

characterized mode of cortical dynamics — the neuronal avalanches.   Neuronal 
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avalanches describe the spatiotemporal organization of synchronized activity in 

superficial layers of cortex.  They have been demonstrated in the spontaneous activity 

in vitro (Beggs and Plenz, 2003; Stewart and Plenz, 2006; Stewart and Plenz, 2008) 

and ongoing activity in vivo (Gireesh and Plenz, 2008; Petermann et al., 2009; Hahn 

et al., 2010; Ribeiro et al., 2010). Avalanche sizes, s, distribute according to a power 

law, i.e., P(s) ~ sα, with exponent α close to -1.5 — a hallmark of critical state 

dynamics (Plenz and Thiagarajan, 2007; Klaus et al., 2011).  Both theoretical 

(Kinouchi and Copelli, 2006) and empirical studies (Shew et al., 2009; Shew et al., 

2011) suggest that avalanches optimize various aspects of information processing in 

cortical networks.  To investigate if pair-wise interactions are sufficient to explain 

avalanche dynamics, we first constructed a maximum entropy model (Schneidman et 

al., 2006) based on the neural activity, a widely used approach  (also known in 

physics as the Ising model) that only utilizes the observed 1st order (event rate) and 

2nd order (pair-wise correlation).  It ensures that no higher-order interactions are taken 

into consideration for reconstruction of the observed activities.   

Using implanted 10×10 microelectrode arrays, we measured ~ 30 min of the ongoing 

LFP in pre-motor cortex of two alert macaque monkeys (Fig. 6.1A).  We identified 

negative LFP deflections (nLFPs, Fig. 6.1B), which correlated in our recordings with 

neuronal firing (data not shown; see also Petermann et al., 2009).  Importantly, the 

sizes (s) of nLFP clusters distributed according to a power law with exponent of -1.5 

and the distribution showed finite-size scaling, i.e., the cut-off changed systematically 

with array size (Fig. 6.1C, D; see also Klaus et al., 2011).  The power law in cluster 

sizes indicates the presence of correlations between cortical sites and is destroyed  
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Figure 6.1: Power law organization of neuronal avalanches identifies interactions 

between locally synchronized neuronal groups and the insufficiency of pair-wise model 

in explaining it. A, Lateral view of the macaque brain showing the position of the multi-

electrode array in pre-motor cortex (red square; not to scale). PS, Principal Sulcus. CS, 

Central Sulcus.  B, Example period of continuous LFP at a single electrode. Asterisks 

indicate the peak negative deflections in the LFP (nLFPs) detected by thresholding (broken 

line; -2.5SD). C, Identification of nLFP clusters and patterns. Top: nLPFs that occur in the 

same time bin or consecutive bins (∆t = 2 ms) define a spatiotemporal cluster, whose size was 

measured by its number of nLFPs (two clusters of size 4 and 5 shown; gray areas).  Bottom: 

Patterns represent the spatial information of clusters only.  D, Neuronal avalanche dynamics 

are identified when the sizes of all clusters distribute according to a power law with slope 

close of -1.5.  The cut-off of the power law reflects the finite size of the microelectrode array 

and changes with the area of the array used for analysis.  Four distributions from the same 

original data set (solid lines, Monkey A) using different areas (inset), i.e., number of 

electrodes (n), are superimposed. The power law reflects interactions between neuronal 

groups from different sites and vanishes for shuffled data (broken lines). A theoretical power 
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law with slope of -1.5 is provided for reference (dotted line). E and F, the Ising model (red) 

fails to reconstruct the power law distribution of the 10-eletrode group as showing in D 

(orange) (E) and other thirty randomly chosen, spatially compact 10-eletrode groups (F). For 

comparison, the prediction when no interactions are assumed is also given (Independent 

model; Ind., grey) 

 
when nLFPs are shuffled randomly (Fig. 6.1D, broken lines).  To solve the Ising 

model exactly is computationally feasible for neuronal groups with n ≤ 10, limiting 

our reconstruction of avalanche dynamics to array sizes of 10. In line with previous 

studies (Tang et al., 2008;Santos et al., 2010), the Ising model captured > 80% of 

interdependence for 10-electrode groups (85% for the example shown in Fig. 6.1E, 

and 83 ± 2% for 30 randomly chosen, spatially compact 10-electrode groups shown in 

Fig. 6.1F; see method for calculation of this quantity). However, the model failed to 

reconstruct the power law distribution of nLFP cluster sizes thereby significantly 

underestimating the probability of medium-sized clusters and overestimating the 

probability of both the small and large clusters (Fig. 6.1E, F). We conclude that pair-

wise interactions are insufficient to reconstruct essential cortical dynamics.  

 

6.3.2   Avalanche dynamics contain internal thresholding for spatial coupling  
 
 
To identify the higher-order interactions required to reconstruct neuronal avalanches, 

we analysed in detail how the nLFP patterns were generated by interplays among 

spatially distributed channels in light of the coherence potentials.  Coherence 

potentials have been previously identified in ongoing neuronal avalanche activity as 
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dynamics with an intrinsic threshold at the neuronal population level (Thiagarajan et 

al., 2010). We repeated the coherence potential analysis for simultaneously occurring 

nLFPs in the current recordings. A coherence potential was identified if the nLFP 

waveforms (baseline to baseline excursion) at different electrodes show a similarity 

larger than Rmin = 0.8 (Fig. 6.2A and B). It was shown previously (Thiagarajan et al., 

2010) that the probability of coherence potentials, which are spatially distributed but 

broadband coherent nLFP waveforms, follows a highly non-linear, threshold function 

and depends on the amplitude of the participating nLFPs. Fig. 6.2C demonstrates this 

threshold in our recordings for ongoing activity in monkey A. The non-linear relation 

between the nLFP amplitude and spatial coherence is robust against different degrees 

of minimal similarity requirements, i.e., choices of Rmin (Fig. 6.2D). Collapse of the 

function by calculating the expected occurrence of coherence potentials minus the a 

priori random occurrence as a function of threshold also identifies a non-linear regime 

that begins at about -2.5 SD (Fig. 6.2E). These results justified the identification of 

nLFP clusters by applying a threshold of -2.5 SD for nLFP amplitude, which is 

sufficiently high to capture nLFPs in the coherence potential regime, yet, it is low 

enough to yield sufficiently high numbers of nLFPs for robust statistical analysis. 

Importantly, these results suggest a non-linear operation (i.e., the thresholding) that is 

intrinsic to the generation of nLFP patterns, while previous theoretical studies have 

identified such operation as potential origin for higher-order interactions (Amari et 

al., 2003; Macke et al., 2011).     
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Figure 6.2: Coherence potentials indicate the presence of intrinsic threshold in the nLFP 

cluster formation. A, Coherence potential analysis utilizes the full baseline excursion of the 

nLFP waveform (red). B, The nLFP waveform at a target electrode is compared with the 

simultaneously recorded LFP at other electrodes (black rectangle). Similarities for each pair-

wise comparison are quantified by the Pearson correlation coefficient r. Comparisons for 

randomly chosen, length-matched LFP segments from the source electrode serve as control 

(random; green rectangle). C, Similarity in nLFP waveforms at distant sites increases non-

linearly with the increase in nLFP amplitude. Plotted are the fraction of electrodes on the 

array with high similarity (r >0.8) with the source electrode nLFP as a function of nLFP 

amplitude (Note that it is different from the minimal nLFP amplitude used in Thiagarajan et 

al., 2010). Black: average increase in nLFP waveform similarity over all target channels (n = 

91). Green: Expectation in similarity for random comparisons. Arrows mark threshold (-2.5 

SD) used for nLFP detection in the current neuronal avalanche analysis. D, The non-linear 

coherence potential function is revealed for high-similarity requirements. Coherence potential 
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probability plotted as a function of minimal similarity r > Rmin. Note the increase in non-

linearity with higher similarity requirement. E, Difference between functions in (D) and 

expectation from random controls. 

 

6.3.3   Accurate approximation of nLFP activity by a simple parametric model 
 
 
To investigate if the higher-order interactions in neuronal avalanches can be 

explained by a mechanism of thresholding, we used the dichotomized Gaussian (DG) 

model (Amari et al., 2003;Macke et al., 2009;Macke et al., 2011) to fit the data. The 

DG model, like the Ising model, is a stochastic model without “free” parameters—all 

parameters are determined by the observed nLFP rates at each electrode and pair-wise 

correlations between nLFP sites. The model is based on multi-dimensional Gaussian 

variables followed by a thresholding operation, which converts the continuous, 

Gaussian variables to binary ones. The DG model is fit to the data by adjusting i) the 

threshold level for each dimension in order to match the observed event (nLFP or 

spike) rate and ii) the covariance for individual pairs of dimension to ensure that the 

resulting binary time series will have the same pair-wise correlation as observed in 

nLFP or spike trains [see Fig. 6.3, methods and Macke et al. (2009) for details].  In 

contrast to the Ising model, which contains only pair-wise interactions, the DG model 

contains only pair-wise interactions among the continuous, Gaussian variables, and in 

addition introduces higher-order interactions through thresholding. We found that the 

power law of avalanche sizes was correctly reconstructed when utilizing the DG 

model [Fig. 6.4A; Jensen–Shannon (JS) divergence between the predicted distribution 
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Figure 6.3: Dichotomized Gaussian (DG) model. A, The distribution of a 3-dimensional 

Gaussian and its projections at individual 2-dimensional subspaces. Marginal distributions at 

a 2-dimensional space are represented by probability density contours. Λ: pair-wise 

covariance.   B, Converting continuous variables to binary variables (events) by thresholding. 

Three continuous Gaussian variables with pair-wise covariance as specified in (A) and 

without high-order interactions. Red line: threshold applied to each variable. To fit the DG 

model to the data, the pair-wise covariance (Λ) of the multi-dimensional Gaussian and the 

level of each threshold need to be adjusted in such a way that the resulting binary variables 

have the identical event rates and pair-wise correlations as the data.  

 
 
and the true distribution was reduced by ~ 98%; 0.002 for the DG model vs. 0.085 for 

the Ising model].   

 
Moreover, the DG model predicted avalanche (cluster) patterns much more accurately 

than the Ising model (10 sites; Fig. 6.4B, JS divergence is 1.3×10-4 for DG model; 

1.8×10-3 for Ising model). When applying the two models to 30 randomly chosen, 

spatially compact 10-eletrode groups, we found that the DG model consistently 
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outperformed the Ising model (on average 68× better for size distribution and 11× 

better for pattern probability; Fig. 6.4C. See Table 6.1 for more details). With respect 

to pattern probability, the accuracy of the DG model was even significantly better 

than the prediction based on the data directly (Fig. 6.4C right, see method for details).  

This is possible because the DG model requires relatively few parameters to be 

determined thereby reducing estimate errors originating from finite sampling (see 

below section for more analysis regarding this property).  In Fig. 6.4D, we directly 

calculated the 3rd order interactions in the original data set and corresponding 

predictions from the DG and the Ising models demonstrating that, indeed, the DG 

model accurately predicted higher-order interactions in neuronal avalanches. This 

analysis not only confirmed that the Ising model failed to predict any 3rd order 

interactions as expected, but, in addition, it demonstrated that the Ising model was 

also much less accurate in characterising the true pair-wise interactions when 

compared to the DG model (Fig. 6.4D, upper right, arrow). Correspondingly, 

avalanche pattern probabilities predicted by the Ising model exhibited significant 

deviations from the observed values even in such small systems with only three 

electrodes (Fig. 6.4E).  Importantly, the DG model can be easily applied to larger 

systems (>> 10 elements), for which the Ising model is computationally difficult 

(Cocco et al., 2009; Ganmor et al., 2011a; Ganmor et al., 2011b).  In Fig. 6.4F, we 

show accurate predictions of the DG model for neuronal avalanche dynamics (size 

distribution) that engage up to ~ 100 sites and cover ~ 16 mm2 of cortex. We note that 

some of the results for large systems are well above the “perturbation regime” (Roudi 

et al., 2009), which is characterized as Nr << 1, where N is the number of elements 
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and r is the average probability of event.  The DG model accurately captures the 

cluster size distributions for 91-electrode group with larger ∆t (data not shown) and in 

those cases Nr can increase to larger than 1 (e.g., Nr =1.8 and 3.5 for ∆t = 32 and 64 

ms, respectively).  This suggests that our findings may generalize to even larger 

systems in which correlations become the dominant force in shaping the neuronal 

dynamics (Schneidman et al., 2006).  Qualitatively similar results for monkey B are 

summarized in Table 6.1.  
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Table 6.1: Comparison of the performance of the DG and the Ising model in 
approximating the nLFP patterns. 
 

 Degenerated patterns Non-degenerated patterns 
10-elec. group 3-elec. group 10-elec. Group 3-elec. group 

 Compact Gr. Random Gr. Compact Gr. Random Gr. 
Monkey A 
Pattern probability 

      

N 30 30 98 30 30 98 
D_DG  (×10-4) 1.52 ± 0.16 1.48 ± 0.14 0.026 ± 0. 016 1.28 ± 0.19 1.01 ± 0.10 0.036 ± 0. 023 
D_Ising (×10-4) 16.9 ± 1.1 14.7 ± 1.0 0.98 ± 0.20 15.2 ± 2.6 9.95 ± 0.86 0.20 ± 0. 12 
 DG < Ising 100% 100% 100% 100% 100% 92% 
       
Size distribution       
N 30 30 98 30 30 98 
D_DG  (×10-4) 14.3 ± 6.6 19.7 ± 6.9 3.3 ± 3.0 11.1 ± 3.3 13.1 ± 2.2 4.0 ± 3.5 
D_Ising (×10-4) 945 ± 123 624 ± 72 175 ± 55 668 ± 139 379 ± 49 29 ± 17 
 DG < Ising 100% 100% 100% 100% 100% 93% 
       
Monkey B 
Pattern probability 

      

N 30` 30 97 30 30 98 
D_DG  (×10-4) 1.97 ± 0.25 1.85 ± 0.23 0.032 ± 0. 019 1.65 ± 0.34 1.51 ± 0.26 0.020 ± 0. 013 
D_Ising (×10-4) 16.9 ± 2.5 17.1 ± 1.9 0.59 ± 0.36 12.8 ± 3.2 11.4 ± 2.0 0.17 ± 0. 14 
 DG < Ising 100% 100% 99% 100% 100% 86% 
       
Size distribution       
N 30 30 97 30 30 98 
D_DG  (×10-4) 10.2 ± 4.6 8.6 ± 4.5 3.6 ± 3.0 9.6 ± 8.6 8.4 ± 5.3 1.39 ± 1.59 
D_Ising (×10-4) 681 ± 175 627 ± 116 84 ± 65 460 ± 147 389 ± 93 20.5 ± 18.9 
 DG < Ising 100% 100% 97% 100% 100% 93% 

 
 

Compact Gr. and Random Gr. represent the results for spatially compact (cf. inset of Fig. 

6.1D, main text) groups and randomly chosen groups, respectively. Note that all 3-electrode 

groups were randomly chosen. N is the number of groups analyzed. D is the JS divergence, 

i.e., DJS (Pdata||Pmodel). “DG < Ising” is the percentage of groups for which the JS divergence 

of the DG model is smaller than that of the Ising model. Results are presented as mean ± SD. 

P-values for KS test and Mann-Whitney U test were < 10-9 in all cases, demonstrating that the 

JS divergence for the two models came from different distributions. 
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Figure 6.4: The DG model predicts 2nd as well as higher-order interactions in neuronal 

avalanches significantly better than the Ising model. A, The DG model (blue) reconstructs 

the power law in avalanche size probability (dots) more accurately than the Ising model (red). 

The results for data, the Ising and Ind model are replotted from Fig. 6.1E (top panel).  B, The 

DG model is also superior in predicting the probabilities of individual patterns 

(corresponding data from a). Observed pattern probability P is plotted against model 

predictions. Solid line indicates equality. Most common pattern (all zeros; inactive) not 

shown for visual clarity.  C, Quantification of model prediction demonstrates 1–2 orders of 
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magnitude of improvement when using the DG model as compared to the Ising model. Left: 

Cumulative distribution of JS divergence between the observed and predicted cluster size 

distribution for n = 30 randomly chosen, spatially compact 10-electrode groups out of n = 91 

electrodes (monkey A; cf. Fig. 6.1F). Right: Corresponding analysis for pattern probability 

distributions. Time bins of the original data set were randomly assigned to one of two sets.  

Model parameters were determined from one set only and predictions were made for the 

second set. Half-data: to use the results measured in one half to predict the corresponding 

behavior of the other half. D, The DG model accurately predicts 2nd (θij) and 3rd order (θijk) 

interactions. In comparison, the Ising model is less accurate for 2nd order interactions (arrow) 

and fails completely to predict 3rd order interactions (ellipsoid, arrow).  Measured interactions 

of 1st to 3rd order (θi, θij, and θijk, respectively) are plotted against model predictions for n = 98 

randomly chosen 3-electrode groups from 91-electrode activity (monkey A).  E, 

Corresponding measured pattern probability plotted against model predictions (over all 3-

electrode groups).  Solid line indicates equality. F, The DG model accurately predicts the 

power law in avalanche sizes also for systems much larger than 10 sites. Prediction for n = 

24, 47, 91 electrode sites are shown (cf. Fig. 6.1D).  

 

6.3.4   The nature of higher-order interactions generated by thresholding 
 
 
To better understand the nature of the higher-order interactions in the DG model that 

are introduced by thresholding, we systematically varied the mean and covariance of 

a 3-dimentional Gaussian, which served as the layer of continuous variables in the 

DG model, before applying a fixed threshold (> 0) and investigated how these 

changes affected the 3rd order interactions in the resulting binary variables. As shown 

in Fig. 6.5A, thresholding of continuous variables indeed introduced 3rd order  
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Figure 6.5: The magnitude of higher-order interactions introduced by thresholding 

depends on event rate and strength of pair-wise correlations. A, 3rd order interactions in 

the binary variables cannot be neglected if, for the Gaussian variable, the covariance is strong 

and the mean is far below or above 0. Change in the magnitude of 3rd order interaction (θijk) is 

shown as a function of the mean (γ) and the covariance (Λ) of an underlying 3-dimensional 

Gaussian, u ~ N (γ, Λ).  θijk was calculated for binary variables obtained by applying the 

threshold ui > 0. The white dot marks the average mean and covariance of the hidden 

Gaussians estimated in the DG model for nLFPs (cf. Fig. 6.4D). B, Differences in pattern 

probabilities between the Ising and the DG model, here quantified as entropy difference, are 

most pronounced when, for the binary variables, the rate deviates far away from 0.5 and pair-

wise correlations are strong, as is the case for avalanche nLFPs (high-rate regime produces a 

symmetric plot; not shown).  Entropy difference is plotted as a function of average rate and 

pair-wise correlation. Dot (red) marks the average rate and pair-wise correlation for nLFP 

(average of 91 channels and all pairs). For both (A) and (B), simulations assume homogenous 

rate and pair-wise correlations for simplicity. 
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interactions that were absent in the pre-thresholded Gaussian, especially when event 

probabilities were far above or below 0.5 and pair-wise correlations are strong.  We 

point out that an event probability (r) equal to 0.5 corresponds to a Gaussian mean (γ) 

equal to 0.  We then varied the event probability and pair-wise correlations for 10-

element systems (binary variables) and constructed both the DG and the Ising model 

using identical constraints. The difference between the two models indicates the total 

amount of higher-order interactions introduced by thresholding and was expressed as 

entropy difference (Fig. 6.5B). Consistent with our results shown in Fig. 6.5A and 

previous findings (Macke et al., 2009; Macke et al., 2011), this difference is more 

pronounced when rates are low and pair-wise correlations are strong, which is 

typically the case for nLFPs in ongoing activity (Petermann et al., 2009).  

 

6.3.5   Accurate approximation of the ongoing and evoked spiking activity 
 
 
We then extended our analysis to spiking activity of both ongoing and evoked cortical 

dynamics. We firstly analyzed extracellularly recorded spiking activity of up to 56 

neurons during ongoing avalanche activity in the two awake monkeys.  Similar with 

our nLFP analysis, the DG model significantly outperformed the Ising model in 

predicting both firing patterns and concurrent spikes, i.e., neuronal synchrony (see 

Table 6.2 for details).  In line with the analysis shown in Fig. 6.5, the improvement by 

the DG model over the Ising model was less pronounced compared to the LFP 

analysis, given the higher rates (0.075 vs. 0.002, monkey A) and weaker pair-wise 

correlations (0.04 vs. 0.35) of that spiking activity compared to nLFPs. Accordingly,  
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Table 6.2: Comparison of the performance of the DG and the Ising model in 
approximating the spike patterns. 
 

 Strongly coupled groups Randomly  chosen groups 
10-neuron 3-neuron 10-neuron 3-neuron 
pp sync pp sync pp sync pp sync 

Monkey A 
N_group 30 240 30 197 
N_neuron 35/56 40/56 55/56 56/56 
D_DG (×10-4) 19.4 ± 2.1 2.5 ± 1.5 0.13 ± 0.17 0.82 ± 1.39 11.8 ± 3.7 1.3 ± 0.7 0.06 ± 0.16 0.22 ± 0.40 
D_Ising (×10-4) 27.8 ± 3.0 16.5 ± 5.9 0.40 ± 0.50 2.9 ± 4.6 12.5 ± 4.0 2.1 ± 1.2 0.07 ± 0.19 0.29 ± 0.59 
DG < Ising 100% 97% 77% 78% 83% 93% 58% 58% 
PKS <10-11 <10-12 <10-12 <10-10 0.936 0.011 0.771 0.601 
PU <10-10 <10-10 <10-14 <10-12 0.549 0.002 0.489 0.464 
PS <10-5 <10-5 <10-20 <10-20 0.001 <10-5 <10-3 <10-3 
         
Monkey B 
N_group 16 198 15 163 
N_neuron 35/42 41/42 38/42 42/42 
D_DG (×10-4) 9.3 ± 1.7 1.1 ± 0.8 0.046 ± 0.094 0.22 ± 0.52 5.9 ± 1.6 0.64 ± 0.59 0.0078 ± 0.017 0.10 ± 0.25 
D_Ising (×10-4) 11.8 ± 1.8 7.2 ± 2.7 0.07 ± 0.14 0.32 ± 0.56 6.1 ± 1.9 1.3 ± 1.2 0.0081 ± 0.017 0.10 ± 0.23 
DG < Ising 100% 100% 64% 64% 73% 100% 54% 53% 
PKS 0.002 <10-6 0.046 0.060 0.998 0.308 1.000 1.000 
PU 0.003 <10-5 0.027 0.041 0.836 0.106 0.935 0.951 
PS <10-3 <10-3 <10-6 <10-6 0.083 <10-4 0.024 0.017 
         
Cat A, Probe 1 
N_group 30 98 30 99 
N_neuron 19/24 22/24 24/24 24/24 
D_DG (×10-4) 4.1 ± 0.4 0.34 ± 0.27 0.026 ± 0.035 0.35 ± 0.61 2.4 ± 0.5 0.22 ± 0.23 0.010 ± 0.017 0.11 ± 0.27 
D_Ising (×10-4) 7.0 ± 0.5 7.8 ± 2.4 0.10 ± 0.14 1.4 ± 2.6 2.9 ± 0.8 1.1 ± 1.3 0.026 ± 0.066 0.35 ± 0.94 
DG < Ising 100% 100% 80% 80% 100% 97% 66% 66% 
PKS <10-13 <10-13 <10-6 <10-5 0.055 <10-6 0.549 0.437 
PU <10-10 <10-10 <10-8 <10-7 0.004 <10-6 0.372 0.525 
PS <10-5 <10-5 <10-9 <10-9 <10-5 <10-5 <10-4 <10-4 
         
Cat A, Probe 2  
N_group 15 100 30 100 
N_neuron 15/18 18/18 15/18 18/18 
D_DG (×10-4) 3.6 ± 0.3 0.088 ± 0.04 0.012 ± 0.026 0.07 ± 0.14 2.4 ± 0.5 0.12 ± 0.07 0.0056 ± 0.010 0.040 ± 0.071 
D_Ising (×10-4) 4.0 ± 0.3 0.72 ± 0.24 0.023 ± 0.051 0.13 ± 0.27 2.5 ± 0.5 0.23 ± 0.18 0.0065 ± 0.013 0.046 ± 0.091 
DG < Ising 100% 100% 65% 65% 90% 83% 59% 59% 
PKS 0.017 <10-6 0.140 0.069 0.936 0.011 0.961 0.961 
PU 0.002 <10-5 0.174 0.182 0.464 0.002 0.791 0.744 
PS <10-4 <10-4 <10-4 <10-5 <10-4 <10-4 0.115 0.074 
         
Cat B  
N_group 30 98 30 99 
N_neuron 15/22 16/22 22/22 22/22 
D_DG (×10-4) 2.7 ± 0.2 0.28 ± 0.19 0.0072 ± 0.009 0.09 ± 0.11 1.8 ± 0.3 0.41 ± 0.31 0.0042 ± 0.007 0.05 ± 0.10 
D_Ising (×10-4) 4.1 ± 0.2 6.3 ± 2.7 0.032 ± 0.027 0.40 ± 0.36 2.0 ± 0.4 1.3 ± 1.6 0.0061 ± 0.010 0.08 ± 0.16 
DG < Ising 100% 100% 85% 85% 87% 77% 58% 58% 
PKS <10-13 <10-13 <10-12 <10-12 0.200 0.011 0.338 0.338 
PU <10-10 <10-10 <10-13 <10-12 0.070 0.003 0.151 0.155 
PS <10-5 <10-5 <10-14 <10-14 <10-4 <10-4 0.038 0.026 

 
 

pp and sync stand for pattern probability and number of concurrent spikes (neuronal 

synchrony), respectively. N_group is the number of groups analyzed. N_neuron is the number 

of neurons that included. D is the JS divergence, i.e., DJS (Pdata||Pmodel). “DG < Ising” is the 

percentage of groups for which the JS divergence of the DG model is smaller than that of the 
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Ising model. Results are presented as mean ± SD. PKS, PU and PS are p-values for KS test, 

Mann-Whitney U test and paired-sample Wilcoxon signed rank test, respectively. The paired 

test is appropriate here as the two models are fitted to the same individual neuronal groups.   

 
when analyzing separately neuronal groups with relatively strong pair-wise 

correlations (see method for more details), predictions of the DG model for spike 

patterns, synchrony, and 3rd order interactions further improved over the Ising model 

(Fig. 6.6A-C, Table 6.2).  We note that these groups included the majority of 

recorded neurons (> 60%).  Again, the DG model was readily extended to accurately 

predict the probability in spike synchrony for large number of neurons (56 neurons, 

Fig. 6.6D).  These results were not limited to ongoing activity only.  We obtained 

similar results when analyzing spiking activity recorded from area 17 in anesthetized 

cats in response to grating stimuli (Fig. 6.6E-H).   

6.3.6   Efficient characterization of population activity 

 
 
The approximation of higher-order interactions by a simple threshold operation 

allows for an efficient characterization of neuronal activity with relatively little data 

sampling, which is desirable in studies of e.g. neural coding or brain-machine 

interfaces that require higher-order statistics of the population activity (e.g., the 

pattern probabilities). Such statistics could be directly measured from the data (e.g., 

see Fig. 6.4B). However, as outlined in the introduction this approach becomes 

readily unfeasible for larger system sizes. In contrast, the DG model only requires 

event rates and pair-wise correlations to approximate those pattern probabilities,  
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Figure 6.6: For strongly coupled sub-groups, the DG model predicts spike patterns in 

ongoing and stimulus-evoked activities significantly better than the Ising model. A-C, 

Ongoing spiking activity during avalanche dynamics in monkey A.  A, DG and Ising model 

prediction in pattern probability (thirty 10-neuron groups with strongest pair-wise 

correlation). Inset: zoomed-in view, showing that the DG model more accurately predicted 

high probability patterns. B, Cumulative distributions of JS divergence for the groups shown 

in (A).  C, Measured and predicted interactions for more than 200 3-neuron groups with 

strongest pair-wise correlation. Inset, measured (x-axis) and predicted (y-axis) pattern 

probabilities (pp) for the same 3-neuron groups.  For more details, see legend of Fig. 6.4B–D. 

D-F, Corresponding results for spiking activity evoked by drifting gratings recorded in area 

17 of an anesthetized cat (Cat A, probe 1).  

 
which can be obtained within relatively short durations (< 30 min in our analysis), 

and importantly, those durations are independent of system size.  The DG model is 

also simple enough to be treated analytically (Amari et al., 2003; Burak et al., 2009; 

Tchumatchenko et al., 2010; Macke et al., 2011), which allows for direct calculation 

of pattern probabilities. This advantage holds even for small systems (N = 10 

elements) as shown in Fig. 6.7A. As typically done in brain machine interface studies, 

here a training data set is used to make inference about future data (testing set). We 

randomly separated our 30-min recordings of nLFPs into two 15-min sets, which 

represented the testing and the training set respectively. We then systematically 

shortened the length of the training set and compared the performance in predicting 

the pattern probability for testing set between the DG model and the direct sampling. 

We found that the DG model increasingly outperformed direct sampling for shorter  
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Figure 6.7: The DG model requires less data to characterize pattern probabilities 

compared to direct estimates. A, The DG model outperformed the direct sampling method 

in predicting pattern probabilities for nLFPs. Variably sized samples were drawn from 15-

min of recording (training set) to predict pattern probability in another 15 min data set 

(testing set). Performance quantified by average JS divergence per pattern in the testing set 

and plotted against the sample size taken from the training set. B, The DG model needs much 

less amount of data to reach the same accuracy compared with direct sampling.  Two 

reference recordings were chosen for the direct sampling method, with 6-min and 15-min in 

lengths respectively (arrows in A). Then various proportions of the reference recording were 

used for the DG model. The difference in performance of these two methods, measure by the 

ratio of JS divergence, was plotted against the amount of samples used by the DG model. The 

ratio of one, which indicates the equal performance, was marked by the dotted line and the 

sample sizes to reach equal performance were marked by arrows. C, The ratio of JS 

divergence was plotted against the sample size taken from the training set for both the nLFP 

and spiking activities. Almost all data points were significantly larger than 1 (sign rank test, p 

< 0.05), except for the leftmost two points for ongoing spikes, which correspond to smallest 

sample sizes and, therefore, largest measurement errors.  The total sample sizes were 9×105, 
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9×104 and 4.5×105 for nLFP, ongoing and evoked spikes, respectively. In all panels, data is 

represented as mean ± SD. Twenty randomly chosen 10-element groups for nLFP (monkey 

A), ongoing spikes (monkey A) and evoked spikes (cat 1, probe 1) were analyzed. 

 
and shorter training set (Fig. 6.7A and C).  To achieve the same prediction accuracy, 

the DG model required much shorter recording length (< 1/3) compared to direct 

sampling (Fig. 6.7B).  Similar advantages of using the DG model in characterizing 

the pattern probabilities were also found for both ongoing and evoked spiking 

activities (Fig. 6.7C). 

 

6.3.7   Control analysis 
 
 
In this section, we demonstrate that the conclusion we obtained regarding the 

structure of higher-order interactions is not reply on any specific method that we used 

in extracting the activities patterns. For spiking activities, this fact is readily visible as 

1) we only applied a simply binning to the raw data and 2) the conclusions do not rely 

on specific choice of bin-width (see method for details). Therefore, here we focus on 

the extraction of neuronal avalanche, i.e., the nLFP, patterns.  

Neuronal avalanches represent spatiotemporal clusters of nLFPs, and thus reflect 

spatiotemporal correlations among neuronal activities at different sites. The 

contribution of these correlations in establishing avalanche dynamics is readily 

illustrated by the fact that the power law distribution in avalanche sizes is destroyed 

in shuffled datasets where all correlations are removed (cf. Fig. 6.1D). To 
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demonstrate the specific contribution of temporal correlations longer than ∆t, we 

applied “bin-shuffling” to the data. More specifically, after binning the original time 

stamps of nLFPs with ∆t, the spatial pattern of individual bins were kept unchanged 

while the order of bins was randomized. This maintains the original spatial 

correlation structure at resolution ∆t. As demonstrated in Fig. 6.8A and B, bin-

shuffling destroys the power law in avalanche sizes, demonstrating the presence of 

temporal correlations beyond ∆t in neuronal avalanche dynamics. On the other hand, 

both the DG and the Ising model intrinsically lack temporal structure. In fact, 

interactions for both models are assumed to be instantaneous and activities at 

different times are completely independent. In order to use these models to study 

neuronal interactions, we took the strategy of mapping the spatiotemporal 

organization of clusters into a spatial structure only, thus degenerating adjacent bins 

of nLFPs to a single bin (cf. Fig. 6.1C).  This approach is supported by the well 

established finding that repetitive participations of a single site, i.e., activation of the 

same electrode, are rare for individual spatial-temporal clusters when ∆t is not too 

large. This is readily suggested by finite-size scaling of avalanche dynamics where 

the cut-off of the power law size distribution is simply determined by the maximal 

number of sites analyzed (cf. Fig. 6.1D and Beggs and Plenz, 2003; Petermann et al., 

2009).  Accordingly, our temporal-spatial mapping resulted in size distributions of 

degenerated spatial clusters that matched well the power law distributions found in 

the original spatial-temporal clusters (e.g., compare Fig. 6.1D with 1E and 4F).   

We then devised two controls to demonstrate that our findings on higher-order 

interactions in the original LFP dynamics did not rely on this specific method of 
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extracting spatial-temporal patterns. First, we repeated the same analysis for non-

degenerated spatial patterns obtained after binning nLFPs into windows of ∆t, but 

without concatenating successive bins with active sites. As shown in Fig. 6.8C-G, the 

performance of the two models and the demonstration of higher-order interactions 

were highly similar to our results obtained with degenerated patterns. Because 

temporal correlations beyond ∆t were neglected in this analysis, the power law 

distribution of cluster sizes was missed. Furthermore, the magnitude of higher-order 

interactions is less for single bin patterns (cf. Fig. 6.4D and Fig. 6.8F), demonstrating 

that the higher-order interactions calculated for degenerated patterns have spatial as 

well as temporal origin.  

 
In the second control, we quantified the amount of 3rd order interactions related to 

temporal correlations. Specifically, we demonstrate that 3rd order interactions are not 

introduced spuriously by the degenerating method itself. Conceptually, this statement 

implies that the following relation holds: 

                  |θijk
d| > |θijk

s_d| ≈ |θijk
nd| ,                                                                         (6.1) 

where the three θ terms are 3rd order interactions obtained from degenerated patterns 

based on original data, degenerate patterns based on bin-shuffled data, and non-

degenerate patterns, respectively. |θijk
d| > |θijk

nd| implies that the degeneration 

procedure introduces a sizeable amount of 3rd order interactions, which reflects i) the 

mapping of true temporal correlations into a spatial pattern, and ii) an unknown 

contribution from the concatenation of active bins that just happened to be successive. 

|θijk
s_d| ≈ |θijk

nd| implies that the second component, i.e., the amount of spurious 3rd  
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Figure 6.8: Temporal correlation in avalanche dynamics and the performances of 

different models in predicting the single-bin (un-degenerated) nLFP activities. A-B, The 

power law distribution of nLFP cluster sizes indicates a unique spatiotemporal correlation 

structure and is not found for bin-shuffled data, in which the spatial correlation within 

individual time bins were reserved but the temporal correlation among different time bins 

were removed. A, 10-electrode sub-group. B, 91-electrode group.  Insets: the areas used for 

analysis. C-G, The DG model accurately predicts the single-bin (un-degenerated) nLFP 

activities. The data set used in C-G is the same as in Fig. 6.4A-F and all the analyses were 

preformed in a corresponding way, except that the activity patterns were un-degenerated. For 

more details, see legend of Fig. 6.4A-F.  

 
order interactions due to the concatenation, is relatively small. In order to measure the 

degree to which relation (1) holds, we computed the quantity  

β = (θijk
d
 – θijk

s_d)/( θijk
d

 – θijk
nd).                                      (6.2) 

 
Intuitively, β measures the distance between θijk

d and θijk
s_d relative to the distance 

between θijk
d and θijk

nd. Assuming all the θ terms have the same sign, the better the 

relation (1) holds, the closer to 1 will β be. We found that β = 0.9 and 0.8 for monkey 

A and B, respectively, which demonstrates that our results on 3rd order interactions 

reflect mainly spatiotemporal correlations in the original dynamics.   

 

6.4   Discussion 
 
 
In the present study, we demonstrated that higher-order interactions are essential to 

understand neuronal interdependence in the cortex, both at the population level of 
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neuronal avalanches, and at the level of individual neurons, especially when pairs of 

neurons are coupled strongly. This is consistent with recent findings that the inclusion 

of higher-order interactions yields better approximation of LFP patterns (Santos et al., 

2010) as well as neuronal synchrony (Montani et al., 2009) and the shortcomings of 

the Ising model to predict correlated activity of nearby neurons (Ohiorhenuan et al., 

2010;Ohiorhenuan and Victor, 2011) or large network activity (~ 100 retina ganglion 

cells) in response to natural stimuli (Ganmor et al., 2011a).  The current results shed 

new light to understand these recent findings. For example, the insufficiency of the 

Ising model to account for population activities of nearby neurons (Ohiorhenuan et 

al., 2010;Ohiorhenuan and Victor, 2011) has been interpreted as an indication that 

higher-order interactions are scale dependent. Our results provided direct evidence 

that the more pronounced 3rd order interactions are simply due to stronger pair-wise 

correlations (see also Macke et al., 2011).  Moreover, the same mechanism may 

provide a coherent explanation for the failure of Ising model specific to responses for 

natural stimuli (Ganmor et al., 2011a), as such responses are often characterized by 

sparse firing and strong pair-wise correlations (Stuttgen and Schwarz, 2008;Jadhav et 

al., 2009). In a more general scope, our results also provide a satisfactory account for 

the lacking of higher-order interactions in many previous reports (e.g., Schneidman et 

al., 2006; Shlens et al., 2006; Tang et al., 2008; Yu et al., 2008), as those interactions 

are most pronounced in the regime of low-rates and high pair-wise correlation, which 

previous studies often did not discriminate.  

The significance of the current study also lies in the demonstration that higher-order 

interactions in cortical dynamics can be well approximated by a simple non-linear 
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operation, which has been parallelly proposed in a recent theoretical study (Macke et 

al., 2011). In the DG model, higher-order interactions are solely determined by the 

rates and pair-wise correlations, so they do not serve as free parameters of the system 

and, therefore, do not add extra complexity to the model.  Importantly, the DG and 

Ising models have the same number of parameters. Thus, our results suggest an easy 

way to tame the daunting complexity of higher-order interactions in the cortex. The 

current results imply that higher-order interactions in the cortex are, at least partly, 

due to non-linear operations, e.g., thresholding, in neuronal processing.  The intrinsic 

nature of such thresholding is readily visible for the case of action potential 

generation.  With respect to the LFP, our analysis confirms the recent finding that the 

correlation among spatially distributed sites increase non-linearly as a function of 

nLFP amplitude (Thiagarajan et al., 2010), identifying a threshold operation at the 

population dynamic level that is analogous to action potential formation. Unlike the 

threshold for generating action potential, the neural mechanisms underlying this 

threshold at the population level has not been revealed yet. However, it was 

demonstrated that this threshold can not be simply explained by i) enhanced signal to 

noise ratio with high LFP amplitudes; ii) stronger volume conduction or iii) stronger 

common inputs. Instead, it reflects the intrinsic non-linear dynamics in both recruiting 

local synchronized neuronal groups and exciting other, spatially separated groups 

(Thiagarajan et al., 2010).  

Regarding the origin of higher-order interactions in neuronal system, it is interesting 

to compare the current results with the recent finding that an accurate approximation 

of population activity can be achieved by incorporating the observed higher-order 
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interactions (Ganmor et al., 2011a). Ganmor et al. developed an effective method to 

directly measure higher-order interactions by exploiting the sparseness of neuronal 

responses. However, as those parameters are measured from the data, although this 

method provides a good fit for population activity, it can not give mechanical 

understanding about the nature of this interaction structure and does not provide clue 

for the origin of those higher-order interactions. In contrast, the current results 

demonstrated that the higher-order interactions are introduced by thrsholding and 

therefore, they can be predicted without direct measurement. This yields important 

insight into the structure of neuronal interaction. For example, a number of key 

findings reported by Ganmor et al. can be naturally explained in light of the current 

results, including the stimulus specific failure of the Ising model (see above), the 

tendency of higher-order interactions to be negative (cf. our Figs. 6.3, 6.4) and the 

absence of interactions with very high order (the strength of interactions that are 

introduce by thresholding are expected to decrease rapidly with the increase of order. 

See Amari et al., 2003). More fundamentally, the sparseness of the neuronal 

population responses, which makes the method of Ganmor et al. applicable in the first 

place, is likely to be a result of this threshold-based structure of neuronal interactions 

(Macke et al., 2011) 

In the DG model, the multi-dimensional Gaussian structure ensures no higher-order 

interaction existing before the thresholding. It may also capture some essential 

features of the neuronal system. As a neuron usually receive large number of synaptic 

inputs, if the correlation among those inputs is not too strong, central limit theorem 

indicates that the distribution of the membrane potential (Vm) will be approximately 
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Gaussian. Actually, this is a commonly used assumption in theoretical studies (Burak 

et al., 2009;Tchumatchenko et al., 2010) and also consistent with empirical findings 

(Rudolph et al., 2004;Okun et al., 2010;Constantinople and Bruno, 2011) [but see 

DeWeese and Zador, (2006) for non-Gaussian distribution of Vm found under 

anesthesia]. We suggest that to understand the joint distribution of Vm may be crucial 

to reveal fundamental constraints for neuronal operation. Specifically, if the 

distribution deviates from multi-dimensional Gaussian, it is likely that higher-order 

interactions will be present even before the thresholding. The Gaussian assumption is 

simple enough to allow for a thorough analysis, which we demonstrate in the current 

study is reasonably accurate. The insight obtained from it can serve as useful 

reference to study how and when the neuronal system may deviate from this structure 

and what its functional implication will be.  However, we note that some assumptions 

in the DG model, e.g., lacking of temporal structure, stationarity and equal variance 

for every dimension are, almost certainly, oversimplified and await future studies to 

improve.  

The existence of higher-order interactions in neural systems has direct implications 

for studies of functional networks in the brain (Bullmore and Sporns, 2009). Those 

studies, by far, were based exclusively on pair-wise relations. Our findings show that 

taking into account of potential higher-order interactions is necessary to reveal the 

true pair-wise relations (e.g., Jij estimated by the Ising model, see Yu et al., 2008; 

Ganmor et al., 2011b). More generally, the existence of higher-order interactions 

highlights the limitation of using conventional graph theoretical network analysis to 

study interactions among complex systems, as graph theory is usually confined to the 
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study of pair-wise relations among elements. The current results suggest that to fully 

understand the functional network of neural systems, conceptual and methodological 

advances will be required for the representation and analysis of higher-order 

interactions.   
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Chapter 7: Conclusion and discussion 

 

Understanding how the brain works has always been the central topic in 

neuroscience. Great advances have been made in the past century, for example, we 

know a lot about the wiring diagram in the brain, the functions of different brain 

regions, the biophysical properties of ion channels, the dynamics of single neurons, 

the roles of different cell types, the effects of neural modulators, and even the genes 

that are responsible for certain mental diseases. However, as physicists are diligently 

searching for a unified theory that can explain almost every phenomenon, 

neuroscientists also need such a ‘grand unified theory’ to form an coherent image of 

how the brain works, i.e. the computational algorithms the brain uses, and the rules 

that determine the dynamical processes in the brain, if there are any. We are still far 

from that achievement.  

 

7.1   Conclusion 
 

In this dissertation, we experimentally examined a hypothesis that a healthy cortical 

network operates near the critical point (Beggs and Plenz, 2003; 2004; Gireesh and 

Plenz, 2008; Pasquale et al., 2008; Petermann et al., 2009; Hahn et al., 2010). By 

using various in vitro and in vivo preparations, we not only provided further evidence 

that the cortex may work close to the critical state, but also experimentally 

demonstrated the advantages of information processing when the cortical network is 
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in such a state. Therefore, we suggest criticality as a potential principle of information 

processing in the cortex. 

 

In Chapter 3, we study the diversity of the patterns repertoire of neuronal activity and 

the efficiency of communication between different neuronal groups (Shew et al., 

2011). These factors would inherently constrain the network to store, transfer and 

process information. We measured activity patterns obtained from multisite local 

field potential recordings in cortex cultures, urethane anesthetized rats, and awake 

macaque monkeys and quantified the information capacity of the pattern repertoire of 

ongoing and stimulus-evoked activity using Shannon entropy. We also quantified the 

efficacy of information transmission between stimulus and response using mutual 

information. By systematically changing the ratio of excitation/inhibition (E/I) in 

vitro and in a network model, we discovered that both information capacity and 

information transmission are maximized at a particular intermediate E/I, at which 

ongoing activity emerges as neuronal avalanches.  

 

In Chapter 4, another aspect of the optimization principles in ongoing neuronal 

activity is studied by examining how different groups of neurons can be synchronized 

and the repertoire of synchronized neuronal assemblies. This study also links our 

hypothesis to the existing theory of neuronal synchronization. If synchrony is 

important, so is the variability of synchrony, because a diverse and variable repertoire 

of brain functions is thought to require a diverse and variable repertoire of 

synchronized neural groups. We found that when E/I is balanced, where ongoing 
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activity organizes as neuronal avalanches, maximized variability of synchronous 

neural groups coincides with the onset of synchrony.  

 

In Chapter 5, the study is focused on the sensitivity of neuronal response to external 

stimuli, i.e. the dynamic range (Shew et al., 2009). We demonstrated that cortical 

networks that generate neuronal avalanches benefit from a maximized dynamic range, 

i.e., the ability to respond to the greatest range of stimuli.  

 

In Chapter 6, we study the underlying interaction structures that give rise to 

population neuronal activity, in terms of neuronal avalanches and population spikes. 

We showed that only including up to 2nd order interactions (the Ising model) fails to 

capture essential features in ongoing neuronal avalanche dynamics of awake monkeys 

as well as evoked activities in the cat visual cortex.  Instead, these dynamics are 

accurately predicted by a pair-wise Gaussian interaction model, in which high-order 

interactions are introduced through a simple non-linear, i.e. thresholding, operation.  

These findings suggest that cortical dynamics naturally contain high-order 

interactions that arise from intrinsic non-linear processes, such as local field potential 

and spike generation. This would apply inherent constraints on information 

processing in neural network. 

 

7.2   Discussion 
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7.2.1   Converging the views of criticality, balanced E/I and optimal brain 
functions 
 
 
Our results strongly suggest that the cortex operates close to the critical point, and our 

findings put the following phenomena and models into the same general framework: 

1) neuronal avalanches, 2) the balance of excitation and inhibition, 3) criticality, 4) 

the optimization of information processing functions, i.e. ongoing pattern repertoire, 

the efficacy of information transmission between neuronal groups, ongoing 

synchronized neuronal assemblies, and discrimination to external stimuli. 

 

The excitation and inhibition in a neural network is usually balanced (Shu et al., 

2003; Wehr and Zador, 2003; Haider et al., 2006; Okun and Lampl, 2008), where 

neuronal avalanches are observed (Shew et al., 2009; 2011). Unbalanced E/I will lead 

to abnormal, pathological states (Uhlhaas and Singer, 2006; 2010), and the signature 

of neuronal avalanches, i.e. the power law size distribution, will turn into either 

exponential decay or bimodality. In theories of criticality, the balance of successful 

propagation and failure is required to reach the critical state as well. Departure from 

such balance will also lead to abnormal dynamical properties observed in unbalanced 

neural networks (Beggs and Plenz, 2003; Haldeman and Beggs, 2005).  

 

These findings suggest that cortical dynamics can be studied and understood within a 

general and coherent framework and principle, that is criticality or E/I balance. By 

adjusting the excitatory and inhibitory signaling during development, the matured 

cortical network is poised around the E/I balance state, where the network dynamics 
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are organized as neuronal avalanches, and cortical functions of information 

processing are optimized. 

 

7.2.2   Criticality might be a preferred state for the brain 
 
 
The brain is able to execute a variety of diverse functions, which is thought to be 

effected by transient assemblies of neuronal activity (Haken et al., 1985; Rodriguez et 

al., 1999). The variety of brain functions requires a variety of transient neuronal 

assemblies (Friston, 1997; McIntosh et al., 2008; Garrett et al., 2011), manifested 

either by binary patterns or transient synchronization. As predicted by criticality 

models in physics and more biologically relevant neural network models, and 

subsequently confirmed by experiments, the variety of transiently co-activated 

neuronal assemblies is maximized in the E/I balanced state, i.e. the critical state 

(Bertschinger and Natschläger, 2004; Haldeman and Beggs, 2005; Tanaka et al., 

2009; de Arcangelis and Herrmann, 2010; Shew et al., 2011). The optimization of 

internal representational capability will lead to the optimal representation of external 

stimuli, which is also predicted by theory and verified in experiments (Kinouchi and 

Copelli, 2006; Shew et al., 2009). Achieving such functional advantages in order to 

survive in the natural selection process (e.g. be able to spot the enemy in a dark 

environment or sense the slightest vibration when predator is approaching) might be a 

reason that the neural network chooses to evolve toward the critical state.  
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7.2.3   Pharmacological manipulation of E/I is a complicated process 
 
 
Regardless of the great similarities found between experiments and models, the exact 

mapping from drug effects to changing connection strength is difficult (Bartos et al., 

2007). For example, by applying GABAA antagonists, mutual inhibition in 

interneurons is reduced, and interneuron activation is known to support certain types 

of neuronal synchronization. At the same time, reduced inhibition could enhance 

mutual excitation in pyramidal neurons, which could lead to increased synchrony. As 

can be seen, the reduction of inhibition has two competing effects, and just increasing 

overall connection strength in models can be an oversimplified approach. The net 

effect of the change of global synchronized activity is difficult to predict and require 

more sophisticated models to incorporate such detailed aspects. The availability of 

light-gated ion channels provides experimentalists with new tools to suppress or 

enhance the activity of specific cell types (Boyden et al., 2005), such that different 

effects of changing E/I can be studied separately. 

 

The model is also oversimplified in some other aspects. For example, it is a purely 

probabilistic model, and it lacks the structures in the degree of connectivity and the 

strength of connection.  

 

7.2.4   Questions that remain 
 
 
Diverging correlation length is a fundamental property of criticality. Linking distant 

brain regions is obviously favored because the execution of many functions requires 
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coordinating different brain areas, and neuronal firing patterns are sparse (Jadhav et 

al., 2009; Poo and Isaacson, 2009; Ohiorhenuan et al., 2010), where long distance 

correlation is also a necessity. However, experimental evidence of diverging 

correlation length is still lacking, mainly due to the constraints of experimental 

apparatus. In addition, the idea that cortical network at criticality is endowed with 

maximal capacity to represent and transmit information also brings a problem: how 

could the brain readout/decode information if the responses to the same stimulus are 

maximally variable? In the critical state, system is also very sensitive to external 

perturbation, i.e. the divergence of susceptibility. By enhancing the ability to 

represent a larger range of stimuli, would it pay the price of responding to the same 

stimulus with less accuracy? Is there a solution to such a dilemma? 

 

7.3   Future directions 
 

7.3.1   Implications from the DG model 
 
 
The study in Chapter 6 may have profound influence on understanding how the brain 

processes information. The DG model can precisely predict the occurrence of 

population activity patterns, indicating that the mechanism in the model, i.e. 

thresholding multivariate Gaussian distribution, provides insights into the neuronal 

network. Indeed, a neuron receives thousands of weakly correlated inputs, which can 

be approximated as Gaussian (Okun et al., 2010), and that spike generation is a 

thresholding process. Importantly, this mechanism indicates that the higher order 

interactions are not free parameters, and they are determined by the underlying 
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covariance of membrane potentials, firing rates and 2nd order interactions. It also 

suggests that higher order interactions convey no additional information. This might 

greatly impact our understanding of how information is processed.  

 

Another interesting feature inferred from this study is that when the underlying 

covariance of Gaussian distribution is fixed, firing rates and pair-wise correlation 

have a destined relation (Macke et al., 2011), which means under such condition, 

pair-wise correlation is not a free parameter either. To examine such relations, we can 

perform dual patch experiments. 

  

7.3.2   Imaging  
 
 
So far, most of the studies of neuronal avalanches are focused on local field potentials 

measurements. If critical branching is the dynamical rule, size distribution with the 

same statistical properties should be observed at the scale of spike propagation. 

However, other studies on population spiking activity did not find a robust -1.5 power 

law (Pasquale et al., 2008; Takahashi et al., 2010). It is very likely that due to severe 

sub-sampling problem, the complete correlation structure of neuronal network can not 

be easily captured by sparsely constructed electrode arrays. New techniques need to 

be employed, such as calcium imaging of neuronal tissue in vitro and in vivo 

(Bonifazi et al., 2009), possibly combined with genetically encoded calcium 

indicators (Tian et al., 2009), which provides the ability to image more neurons in a 

local circuit. Under such conditions, it may be possible to study the propagation of 

spiking activity with improved results. In addition, two photon calcium imaging can 
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be combined with parallel multi-electrode array recording in the same cortical area, 

and the statistical properties of calcium signals can be correlated to the emergence or 

disappearance of avalanche dynamics. 

 

7.3.3   Optimal functions in vivo 
 

Most of the optimization functions we have identified are from in vitro studies, and 

big differences exist between in vitro and in vivo experiments. Questions like how the 

animal responds to varying levels of natural stimuli and what is the relation between 

the behavior performance and the underlying neuronal activity are currently unknown, 

and only can be investigated with in vivo setups. Animal can be head-fixed under two 

photon microscope, and calcium imaging is performed in a specific cortical area 

while the animal is trained to perform a behavior task. Optogenetic tools can be used 

in the same cortical region to finely tune E/I balance. The relations among E/I balance, 

circuit level dynamics and behavior performance can be studied. 
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