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Group A Streptococcus (GAS) is a fastidious microorganism that has adapted to a 

variety of niches in the human body by sensing its surroundings and modifying its 

metabolism to elicit a wide array of diseases. The Phosphoenolpyruvate 

Phosphotransferase System (PTS) is a primary mechanism by which many bacteria 

transport sugars and sense the carbon state of the cell.  The PTS uses the non-sugar 

specific ‘general’ proteins EI and Hpr, and sugar-specific membrane-spanning 

proteins (EIIs) for the PTS-mediated uptake of each sugar. The role of PTS in 



  

carbohydrate metabolism in GAS was investigated by generating a ∆ptsI mutant (EI 

deficient) in three different strains belonging to M1T1 and one of M4 GAS. All ∆ptsI 

mutant strains tested were unable to grow on multiple carbon sources (PTS and non-

PTS).  Complementation with ptsI expressed under its native promoter in single copy 

was able to rescue the growth defect of the mutant. Additional studies analyzing the 

role of PTS in pathogenesis of GAS, showed a ‘hypervirulent’ phenotype in the 

absence of ∆ptsI from M1T1 using soft tissue model of infection. The appearance of 

significantly larger and more severe ulcerative lesion observed in mice infected by 

∆ptsI was correlated with increased transcript levels of sagA and early Streptolysin S 

(SLS) activity during exponential phase growth.  The role of SLS in increased 

pathogenesis of ∆ptsI was investigated by the creation of a double mutant strain 

(∆ptsI sagB) that lacks the ability to secrete SLS. The infection of mice with a ∆ptsI 

sagB double mutant resulted in a lesion comparable to either a wild type or a sagB 

mutant alone. In addition to SLS, it was found that PTS influences the secretion of 

cysteine protease SpeB and the ability of GAS to produce capsule. This regulatory 

effect was found to be dependent on the status of sensor kinase (CovS) of the CovR/S 

two-component system.  Moreover, PTS was shown to phosphorylate PTS regulatory 

domains (PRD) of a global virulence regulator, Mga, resulting in alteration of its 

regulon in both M1T1 and M4 background, suggesting the ability of GAS to alter 

expression of Mga regulon in response to carbohydrate availability. Overall, our 

studies indicate that a functional PTS is important for utilizing PTS and non-PTS 

sugars and influences virulence during GAS infection. 
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Chapter 1: Literature Review 

 

In order to survive, bacteria (both pathogenic and non-pathogenic) need access to 

nutrients such as carbon sources. In the natural environment, the variety and the 

quality of available nutrients vary depending on the source or the niche. As a result, 

bacteria have evolved remarkably sophisticated strategies to allow them to take 

advantage of the wide range of essential nutrients, including carbon, nitrogen, sulphur 

and phosphorus. This enables them to feed the central carbon metabolic pathways- 

glycolysis, pentose phosphate pathway (PPP) and tricarboxylic acid cycle (TCA), 

which integrate the transport and oxidation of main carbon source inside the cell. 

 

Membrane transport systems play an important role in enabling the uptake of 

essential nutrients by bacteria. Since this dissertation focuses on Gram-positive 

bacteria, Bacillus subtilis will often be used as a model organism.  There are four 

kinds of transporters in B. subtilis and other Gram-positive bacteria. 

(a)  Channel proteins that generally catalyze movement of solute in an energy 

independent manner. 

(b)  Secondary active transporters that use chemiosmotic energy in the form of 

electrochemical gradients to drive transport (e.g., proton motive force or pmf). 

(c)  Primary active transporters that use chemical, electrical or solar energy to drive 

transport (e.g., Adenoside Triphosphate (ATP) hydrolysis). 

(d) Group translocating systems such as bacterial phosphoenolpyruvate 

phosphotransferase systems (PTS) 
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The overarching aim of this study is to characterize the PTS and explore its role in 

Streptococcus pyogenes. For many years, B. subtilis has been considered the model 

organism for Gram -positive bacteria for its long history of laboratory research, ease 

of cultivation and genetic manipulation. Although, it is well known that no single 

organism can be a perfect representative of all other species, for simplicity, we will 

focus on the knowledge of PTS available from B. subtilis in the following sections.  

1.1 The Phosphoenolpyruvate: Carbohydrate Phosphotransferase 

System (PTS) 

PTS is a complex carbohydrate transport system found in both Gram-positive and 

Gram-negative bacteria that was first discovered in Escherichia coli in 1964 (1). It is 

ubiquitous in bacteria and is not found in plants or animals. It is a system that senses 

the presence of metabolites and is involved in regulation of a number of metabolic 

pathways (2).  PTS is found mainly in obligate and facultative anaerobic bacteria, 

which synthesize ATP by substrate level phosphorylation under anaerobic conditions 

and thus make good use of ATP (3). It catalyzes the concomitant transfer and 

phosphorylation of the substrate using a phosphorylation cascade composed of the 

general cytoplasmic proteins enzyme I (EI) and histidine phosphocarrier (Hpr) along 

with carbohydrate specific translocation proteins called enzyme II or EIIs. 

Phosphoenol pyruvate (PEP) from glycolysis acts as a source of energy and a 

phosphate donor for the transport step and phosphorylation of carbohydrates via PTS 

pathway (4).  The first protein of the PTS phosphorelay EI, receives the phosphate 

from the conversion of PEP to pyruvate in glycolysis of the incoming sugar by its 

PTS transporter. Upon receiving the phosphate from PEP, EI transfers it to histidine-
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15 (his-15) of Hpr forming P~his-Hpr.  The phosphate is then moved to the EIIAB 

proteins forming P~EIIBs, which then transfers the phosphoryl group to the substrate 

bound to its corresponding membrane spanning EIIC and the phosphorylated sugar is 

then released into the cell (4).  Although the primary function of the PTS is to transfer 

phosphates to the carbohydrate, all the reactions up to and including the EII’s are 

reversible (Fig. 1).  

 

In Gram-positive bacteria, Hpr can also be phosphorylated at a second catalytic site 

serine-46 (ser-46). This reaction is carried out by an ATP-dependent Hpr 

kinase/phosphatase (HprK/P) that responds to the metabolite concentration in the cell. 

Phosphorylated ser-Hpr then participates in the activation of the carbon catabolite 

control (CCR) pathway (Fig. 1) of both Gram-negative and Gram-positive organisms, 

although the mechanism involved is quite different (2,5). More will be discussed on 

this later in the chapter.  
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Figure 1: PTS in Gram-positive bacteria.  The PTS couples carbohydrate transfer 
and phosphorylation. The general cytoplasmic proteins EI and Hpr and sugar-specific 
EII proteins form the phosphorelay transferring phosphate from the PEP of glycolysis 
to the incoming sugar. Carbon catabolite repression (CCR) results from HprK/P 
phosphorylation of serine 46 of Hpr which then complexes with CcpA to repress 
target promoters by binding to cre sites.  Figure adapted from (6). 
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1.1.1 EI and Hpr 

EI and Hpr are soluble, cytoplasmic proteins that are required to phosphorylate all EII 

proteins that participate in the phosphorylation of PTS carbohydrates in a given 

organism and thus have been called general PTS proteins (2,4).  Unlike the sugar-

specific EII components, EI and Hpr are common to each sugar transported by the 

PTS.  

  

EI protein comprises of 577 amino acids that is encoded by the 1734 bp ptsI gene.  

The ptsI gene has been cloned and sequenced from E. coli (7), Salmonella 

typhimurium (8), Staphylococcus aureus (9), Enterococcus faecalis and B. subtilis 

(10). Sequence analysis has revealed that EI from various Gram-positive and Gram-

negative bacteria exhibit significant identity (11).  The structure of EI has been 

studied in a number of bacteria (12,13). EI is best described in E.coli. The functional 

form of EI is a ∼128-kDa dimer of identical subunits (14) comprising two structurally 

and functionally distinct domains  (15,16). The N-terminal phosphoryl-transfer 

domain contains the site of phosphorylation (his) and the binding site for HPr (17,18). 

In the phosphorelay, EI is autophosphorylated in the presence of PEP and Mg2+ on  

the histidine residue located in N terminus of the protein.  The C-terminal domain is 

responsible for dimerization and contains the binding site for PEP (19-21). The EIN 

and EIC domains are connected to one another by a long helical linker that allows for 

the swivel mechanism to dimerize the protein.  
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Hpr protein comprises of 87 amino acids that is encoded by the 264 bp ptsH gene. 

Sequence analysis has revealed a high level of similarity around the active–site 

histidyl residue, his -15 in Hpr of most enteric bacteria and firmicutes (3). As 

mentioned before, in most low G+C Gram-positive bacteria, Hpr can also be 

phosphorylated by an ATP- dependent protein kinase (HprK) on a seryl residue at 

position 46 (ser- 46). The phosphorylation of this catalytic site has regulatory 

function and is not directly involved in phosphorylation of carbohydrates. In fact, the 

phosphorylation of the seryl residue slows the phosphoryl transfer from P~EI to Hpr 

by about 100 fold (2).  

1.1.2 EII 

The carbohydrate specificity of PTS occurs through resides in EII, and hence bacteria 

usually contain many different EIIs. Each EII complex consists of one or two 

hydrophobic integral membrane domains (domains C and D) and two hydrophilic 

domains (domains A and B), which together are responsible for the transport of 

carbohydrate across the bacterial membrane as well as the phosphorylation (4). In 

E.coli the EIIs have been classified into four families (22); (i) glucose- fructose- 

lactose family, (ii) the ascorbate-galactitol superfamily (23-26), (iii) mannose family, 

(iv) the dihydroxyacetone family (12). E.coli and B. subtilis contain about 15 

different EII complexes.  

1.2 Glycolysis (Embden, Meyerhof and Parnas Pathway)  

In most bacteria, glucose is the most readily utilized carbohydrate and its metabolism 

starts with its uptake via PTS and proceeds with several interconnected pathways 
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mainly glycolysis, gluconeogenesis, pentose phosphate and tricarboxylic acid cycle 

(TCA).  This represents the most common metabolic pathway in bacteria for sugar 

catabolism.  

 

Glycolysis does not require oxygen and takes place in the cytosol of the bacterial cell.  

A series of enzymatic processes result in conversion of sugars into pyruvate, 

generating ATP (adenosine triphosphate) and NADH (nicotinamide adenine 

dinucleotide). The most common type of glycolysis is the Embden, Meyerhof, Parnas 

(EMP) pathway, which was first discovered by Gustav Embden, Otto Meyerhof and 

Jakub Karol Parnas.  The overall reaction of glycolysis is represented as: 

 

 Glucose + 2NAD+ + 2ADP + 2Pi à 2 pyruvate + 2NADH + 2ATP + 2H2O  

 

Thus, each molecule of glucose is converted into 2 molecules of pyruvate and a net of 

2 ATP and 2 NADH. There are number of alternative fates for pyruvate; in the 

presence of oxygen (aerobic condition) pyruvate is converted to acetyl-CoA by the 

enzyme pyruvate dehydrogenase, which then enters the TCA or Krebs cycle. In the 

absence of oxygen (anaerobic conditions), fermentation occurs to regenerate NAD+ 

for continued glycolysis. This results in the formation of lactate and as well as a non-

oxidative decarboxylation of pyruvate, followed by reduction of acetaldehyde to 

ethanol.  
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1.3 TCA / Citric acid cycle 

In aerobic bacteria, pyruvate from glycolysis, is combined with oxygen to produce 

Acetyl-CoA, which then goes through the citric acid or tricarboxylic acid (TCA) 

cycle first identified by Hans Adolf Krebs in 1937.  The TCA cycle is a key 

metabolic pathway that is used by all aerobic organisms to generate energy. It is 

comprised of a series of chemical reactions by which glucose and other molecules are 

broken down in the presence of oxygen into carbon dioxide and water, resulting in the 

release of chemical energy in the form of ATP. In aerobic bacteria, a total of 36 ATP 

are produced from a single glucose molecule. In addition, the cycle provides 

precursors such as certain amino acids as well as the reducing agent NADH that is 

used in numerous biochemical reactions. The NADH generated by the TCA cycle is 

fed into the oxidative phosphorylation pathway. Eventually, through oxidative 

phosphorylation, NAD+ is regenerated from NADH and even more ATP is made 

from ADP. 

1.4 Fermentation 

Fermentation is a metabolic process that generates ATP by the process of substrate-

level phosphorylation. Fermentation is important in anaerobic conditions where there 

is no oxidative phosphorylation to maintain the production of ATP.  The energy for 

generating ATP comes from the oxidation of carbohydrates where pyruvate from 

glycolysis is used as an endogenous electron acceptor and metabolized to various 

compounds through several processes: 

• Ethanol fermentation – pyruvate is converted into ethanol and carbon dioxide. 
• Lactic acid fermentation – pyruvate produces lactic acid by two means 
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o 	
  Heterolactic fermentation is the production of lactic acid as well as 
other acids and alcohol 

o Homolactic fermentation is the production of lactic acid from 
pyruvate. 

 

As mentioned above, during the process of glycolysis NAD+ is reduced to form 

NADH. For glycolysis to continue, NADH must be oxidized to form NAD+  by an 

enzyme called lactate dehydrogenase.  This occurs when NADH donates its electrons 

to pyruvate formed in glycolysis, resulting in the formation of lactic acid. In 

heterolactic acid fermentation, one molecule of pyruvate is converted to lactate and 

the other is converted to ethanol and carbon dioxide. In homolactic acid fermentation, 

both molecules of pyruvate are converted to lactate. Importantly, the fermentation 

reaction does not directly generate ATP molecules. Instead, the NAD+  regenerated by 

lactate dehydrogenase is used in the glycolytic process to make ATP. Therefore, cells 

only get energy (2 ATP) from glycolysis and none from the TCA cycle. 

1.5 Lactic acid bacteria (LAB) 

LAB are Gram-positive, usually non-motile, non-spore-forming organisms. They lack 

the ability to synthesize cytochromes and porphyrins (components of respiratory 

chains) and therefore cannot generate ATP by creation of a proton gradient. Thus, 

LAB can only obtain ATP by fermentation, usually of sugars. LAB can be divided 

into two groups based upon the products produced from the fermentation of glucose. 

Homofermentative organisms ferment glucose to two moles of lactic acid, generating 

a net of 2 ATP per mole of glucose metabolized. Lactic acid is the major product of 

this process. Heterofermentative organisms ferment 1 mole of glucose to 1 mole of 

lactic acid, 1 mole of ethanol and 1 mole of CO2. The LABs typically have limited 
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biosynthetic ability, requiring preformed amino acids, B vitamins, purines, 

pyrimidines and often a sugar as the carbon and energy source. 

1.6 Regulation of carbon metabolism 

Carbon catabolite repression (CCR) is a global regulatory mechanism of carbon 

source utilization that all bacteria employ for selectively utilizing carbon sources 

from the environment to conserve energy.  Studies in model organisms show that the 

presence of glucose often prevents the use of other, secondary carbon sources (27). 

CCR enables the bacteria to sense the nutritional situation and adjust their catabolic 

capabilities through mechanisms such as inducer exclusion and global transcriptional 

control. The CCR mechanisms in Gram-negative and Gram-positive bacteria are quite 

different; however, the components of PTS play a major role in both (2,28).  PTS–

independent CCR mechanisms are also operative in some bacteria and will be briefly 

discussed later in the chapter. 

1.6.1 Inducer exclusion in Enterobacteriaceae 

Inducer exclusion is considered to be the major CCR mechanism in 

Enterobacteriaceae and serves as a paradigm for Gram-negative bacteria. In the 

presence of a rapidly metabolizable sugar, EII proteins of PTS become 

dephosphorylated. Dephosphorylated EII can interact with proteins of several non-

PTS sugar transport systems (e.g., lactose- H+ symport permease and glycerol 

kinase). Binding of the unphosphorylated EII to these target proteins results in the 

inhibition of their activities and thus, inhibits the uptake and utilization of lactose and 
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glycerol, respectively (29). Mechanisms of inducer exclusion have been most 

extensively studied in E. coli and S. typhimurium (4). 

1.6.2 Inducer exclusion in Firmicutes 

In Gram-positive of the phylum Firmicutes, Hpr plays the central role in CCR similar 

to EII in the Gram-negative Enterobactericiae. Inducer exclusion in Firmicutes is 

mediated via one of the phosphorylated forms of Hpr (P~ser-Hpr). The rapid 

metabolism of various sugars affects the activities of a bifunctional protein 

kinase/phosphorylase (HprK/P), which responds to changes of the ATP, Pi, PPi, and 

FBP concentrations, and of EI, which responds to alterations of the PTS 

phosphotransfer activity and the PEP-to pyruvate ratio (30). These two enzymes 

control the concentration of the various forms of HPr, which regulate carbon 

metabolism via protein-protein interactions (HPr and P~ser-HPr) or the 

phosphorylation of non-PTS proteins (P~his-HPr). In Gram-positive bacteria, HPr 

therefore functions as the “central processing unit” for carbon metabolism, as its 

phosphorylation state is determined by various signals, which in turn allow it to 

phosphorylate or to interact with numerous other proteins. P~ser-Hpr has been known 

to interact directly with specific ABC transporters and control their activity (29).  

 

In addition, in the absence of glucose, P~his-Hpr phosphorylates the glycerol kinase 

GlpK and the PTS regulatory domain (PRD) containing transcriptional regulators that 

are necessary for its expression (31).  P~his-Hpr phosphorylates and enhances the 

activity of transcriptional regulatory proteins, either antiterminators (e.g., SacT, 

SacY, LicT) or transcriptional activators (e.g., LevR, MtlR), resulting in enhanced 
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expression of operons important for utilization of less-preferred sugars. Therefore, 

this mechanism leads to CcpA-independent CCR (32). 

1.6.3 CCR mediated by global transcription regulators 

The Gram-negative Enterobactericiae contain several global transcriptional regulators 

playing a role in CCR, the best studied being cAMP receptor protein (Crp). When the 

preferred carbon source glucose is present, the EIIAglc remains unphosphorylated and 

inhibits the permeases transporting alternative carbon sources. However, in the 

absence of glucose, EIIAglc becomes phosphorylated and activates the conversion of 

ATP to cAMP via adenylate cyclase (111). The resulting cAMP can then bind Crp, 

which activates the expression of alternative catabolic operons. 

 

All of the Gram-positive Firmicutes studied (except Mycoplasma) use the same 

pathway for CCR as B. subtilis (31). Since many Gram-positive bacteria, including B. 

subtilis and its close relatives, do not possess cAMP, a different mechanism operates 

in the cell (31). Catabolite control protein A (CcpA) is a global regulator and is a 

member of the LacI/GalR transcriptional regulator family that controls the expression 

of a wide variety of genes important for metabolism in Gram-positive bacteria (32). 

Numerous operons are subjected to catabolite control by both CcpA-dependent and 

CcpA-independent mechanisms. CcpA primarily represses expression of genes that 

might be involved in alternative sugar source utilization, but also activates 

transcription of genes that may function in glucose metabolism. CcpA regulates the 

expression of genes by binding to a catabolite response element (cre) sequence when 

complexed with P~ser-Hpr (27,33,34). Importantly, CcpA in lactic acid bacteria also 
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controls the general route of metabolism, such as glycolysis and lactic acid formation 

(35-37). 

1.7 Carbon metabolism and Virulence 

In many pathogenic bacteria, elements of CCR are crucial for the expression of 

virulence genes and for their pathogenicity. It is very interesting that many genes that 

encode virulence proteins, also influence in the uptake and use of alternate nutrients 

(38). Although the above statement is true for both Gram-negative and Gram-positive 

bacteria, my focus in this dissertation will be on the Gram-positive Firmicutes. 

Components of PTS and CcpA have been shown to be very important for the 

pathogenicity of the several Gram-positive organisms.   

 

In Bacillus anthracis, the activity of the AtxA, virulence regulator of established 

virulence factors namely tripart toxin and capsule, is shown to be dependent on an 

intact PTS and the phosphorylation states of the components Hpr and EII (39). Toxin 

and capsule synthesis are both required for full virulence of B. anthracis. In addition, 

the induction of AtxA-mediated transcription was shown to be glucose-dependent and 

indirectly regulated by CcpA (40).  

 

In Listeria monocytogenes, the transcriptional activator PrfA controls the expression 

of genes required for invading host cells for and release from phagosomes into the 

cytosol. The activity of PrfA is influenced by the presence of glucose or other PTS 

substrates (41). However, CcpA, HprK, P~ser-Hpr are not involved. Instead, the PTS 

sugar transporter EIIMan contributes to regulation of virulence gene expression by 
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glucose (42). Transcriptomic analysis suggested a possible role of the mannose-PTS 

in global CCR in L. monocytogenes and a link to bacteriocin resistance (43,44). 

 

Enterococcus faecalis and Enterococcus faecium are the most prevalent enterococcal 

species cultured in humans. Interestingly, the PTS locus was found widespread in the 

isolates from hospital outbreaks of infection and clinical infection, but absent from 

human commensal isolates (45). In addition, CcpA modulates the expression of 

proteins involved in adhesion to host tissues. CcpA is important for the virulence of 

E. faecalis, where it regulates production of proteins involved in adhesion of the 

opportunistic pathogen to the host (46). 

 

In the anaerobic Clostridium perfringens, the presence of glucose leads to repression 

of several virulence factor genes such as pilT and pilD that are involved in gliding 

motility and toxin production.  Both of these functions are important for the pathogen 

to infect human tissues (47). 

 

CcpA of Staphylococcus aureus appears to control a large regulon that comprises 

metabolic genes as well as genes encoding virulence determinants that are affected in 

a glucose-dependent as well as glucose-independent manner (48). Studies on CcpA 

and CCR in S. aureus revealed that CcpA mediates the expression of factors 

important for production of the superantigenic toxic shock syndrome toxin 1 (TSST-

1) (49) and influences the enzymes involved in the proline reductase pathway (50). A 

ccpA mutant displayed reduced pathogen load in a murine model of staphylococcal 
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abscess formation (50).  In addition, expression of an agr-regulated colony spreading 

protein is activated during S. aureus infection and is also regulated by glucose (51). 

 

In pathogenic bacteria of the genus Streptococcus, CcpA and CCR are important for 

the expression of multiple virulence genes in several models of infection. In S. 

pneumoniae, CcpA is required for colonization of the nasopharynx as well as for 

survival and multiplication in the lung (52). Another study showed that the cellobiose 

PTS system is important for virulence in a murine pneumonia/sepsis model (53). S. 

intermedius secretes a human–specific cytolysin called intermedilysin (ily) that is 

required for infection and expression of ily is under CcpA control (54). 

 

The oral pathogen S. mutans relies primarily on carbohydrates for energy production 

and their ability to generate acid for colonization of the oral cavity leading to dental 

caries. CcpA controls the expression of the virulence related functions such as 

expression of fructanase, acid formation and acid tolerance. Tight control of autolysis 

by S. mutans is critical for proper virulence gene expression and biofilm formation, 

and this process responds to environmental signals such as glucose (55). CcpA of 

another oral pathogen S. suis regulates the capsular polysaccharide synthesis 

important for virulence (56,57). CcpA and components of PTS such as Hpr, EI and 

some EIIs play a pivotal role in GAS pathogenesis and will be discussed in more 

detail later in this chapter. 
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1.8  Classification 

1.8.1 General characteristics of Streptococcus pyogenes  

S. pyogenes is a Gram-positive, non–motile bacterium that grows in chains of varying 

length. The typical size of a cell ranges from 0.5 µm - 1 µm in diameter. S. pyogenes 

is a non-spore forming facultative anaerobe and has an optimal growth temperature of 

37°C. Like all streptococci, it is both catalase and oxidase negative. S. pyogenes 

typically produces large zones of β-hemolysis (the complete disruption of 

erythrocytes with the release of hemoglobin). Therefore, S. pyogenes is also called the 

Group A β-hemolytic Streptococcus (GABHS or GAS). GAS is a strict human 

pathogen. 

1.8.2 Growth Requirement of S. pyogenes 

S. pyogenes is a facultative anaerobe and is grown at 37°C in either ambient air or in 

5-10% CO2. GAS lacks the necessary enzymes for a functional TCA cycle and 

oxidative-cytochromes for electron transport; therefore, it relies completely on 

fermentation of sugars for growth and energy production. It is a member of the lactic 

acid bacteria and is homofermentative for lactic acid production from glucose 

fermentation. Specific components of a rich growth media for GAS include 

neopeptone extracts, glucose as a carbon source, and a complex mixture of nutrients 

from beef heart infusion as first described by Todd & Hewitt (58). GAS is considered 

a multiple amino acid auxotroph requiring nearly all amino acids to be present in its 

growth media. A Chemically Defined Medium (CDM) has been developed for GAS 

containing all of the necessary amino acids for GAS growth (59). 
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1.8.3 Lancefield grouping 

The Lancefield typing assay was developed by Rebecca Lancefield in 1933 to 

serologically differentiate members of the genus Streptococcus. The protocol involves 

a precipitin assay that uses hot acid to extract the surface carbohydrate followed by 

incubation of the C-antigens to allow for the interaction (60). The strains were 

classified into five groups (A-E) and strains from human isolates were largely 

classified under the Group A. 

1.8.4 M and T typing 

In addition to differentiating streptococci by its surface carbohydrate, Lancefield also 

developed a method to characterize Group A Streptococcus based on the surface 

protein known as M protein. This assay involved acid extraction of the M protein 

from a given strain followed by a capillary precipitin reaction with standardized sera 

to determine the specific M type (60,61). Currently, there are more than 200 M-

serotypes listed (62). To overcome the difficulty of antisera typing with great 

diversity of M types, a new method was developed by Beall and Facklam. In this 

method, a 5’ hypervariable region of the emm gene encoding M protein is amplified, 

sequenced, and compared to a database of previously identified emm sequences (63). 

GAS strains are also characterized according to T antigen or pilin.  A single T antigen 

may be found in strains belonging to different M types and sometimes the strains of 

the same M type may carry multiple T antigens. 
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1.8.5 Class determination 

GAS serotypes based on M protein are further subdivided into two classes based on 

the presence or absence of an epitope detected by antibody against the C repeat region 

of the M protein and the presence of serum opacity factor (SOF) activity (64). Class I 

serotypes have an M protein that has a surface exposed C repeat region and lacks 

SOF. Class II serotypes lack the C repeat region, but contains the SOF. 

1.8.6 Genetics 

The complete sequence of S. pyogenes genome of the serotype M1 strain SF370 was 

first reported in 2001 (65). Soon after, many additional isolates were sequenced (66-

71). Currently, the genome sequence of more than 13 strains, representing 10 

serotypes, are publically available (72). The GAS genome ranges in size from 1.83 to 

1.93 Mbp, and average GC content of 38.5% with the difference related to the 

number of bacteriophage present, which can vary between strains. Sequencing 

identified that the GAS contains a complete glycolytic pathway and 14 apparent PTS-

sugar transport systems, but lacks the genes necessary for a TCA cycle. In addition, it 

was found that GAS only contains the genes for synthesis of a few amino acids, 

although there is a dedicated polyamine ABC transporter. M1T1 strain MGAS5005, a 

clinical isolate from the cerebrospinal fluid of an infected patient, was sequenced in 

2005 (73) and contained the superantigen speA2 allele. MGAS5005 was later found 

to be more virulent in animal models of GAS infection and has an invasive phenotype 

due to a mutation in covS (74-77). 
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1.9 GAS Clinical Presentation 

GAS is capable of causing a wide range of diseases, ranging in severity from minor to 

life threatening. The minor and self-limiting infections include pharyngitis, impetigo 

and erysipelas. More severe and invasive infections include puerperal fever, 

streptococcal toxic shock syndrome (STSS), bacteremia and necrotizing fasciitis 

(flesh-eating disease). GAS is also associated with post immune sequelae such as 

acute rheumatic fever  (ARF) and acute post streptococcal glomerulonephritis 

(APSGN).  GAS is a cause of significant morbidity and mortality worldwide, where 

approximately seven hundred million people suffer from mild streptococcal infections 

every year (78). Globally, GAS causes an estimated 650,000 severe invasive 

infections at normally sterile sites. 

1.9.1 Superficial Infections 

1.9.1.1 Pharyngitis 

The most common infection caused by GAS is streptococcal pharyngitis commonly 

known as “strep throat”.  In 2005, a World Health Organization census found a 

minimum of 616 million cases of GAS pharyngitis worldwide. Strep throat is most 

prevalent in children between the ages of 5 and 12, although people of any age can be 

affected. The transmission of the bacteria primarily occurs by inhalation of 

aerosolized droplets or direct contact with respiratory secretions. The usual 

incubation period for streptococcal pharyngitis is 2 to 4 days. The common symptoms 

of pharyngitis include; fever, swollen cervical lymph nodes, headache, occurrence of 

petechiae on the soft palate, presence of erythema and exudates found on tonsils and 

pharynx (79). In acute cases of pharyngitis, nausea and abdominal pain can arise.   
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To confirm a pharyngeal infection, the “gold standard” practice involves swabbing 

the throat, including the pharynx and the tonsilar area, and culturing on a blood agar 

plate at 37°C with 5% CO2.  The plate is then checked for the presence of β-

haemolytic colonies after 24-48 hours.  Initial diagnosis is further confirmed by other 

methods including microscopy, resistance to bacitracin or latex agglutination (80). 

More recent systems use an optical immunoassay that detects the Lancefield group A 

carbohydrate (81). This method is called a “rapid strep test” and produces quicker 

results, although it lacks sensitivity and can sometimes lead to false negative results. 

 

 Pharyngitis is treatable by antibiotics, primarily penicillin and erythromycin.  Even in 

the absence of antibiotics, a pharyngeal infection is self-limiting and all the symptoms 

disappear in a week. The predominant virulence factors associated with the throat 

infections are streptolysin O (slo), streptokinase (ska), pyogenic exotoxin A (speA), 

fibronectin-binding protein (sfb) and cysteine protease (scp) (82) (83). 

1.9.1.2 Scarlet fever 

Although scarlet fever was once a more prevalent and serious disease, the occurrence 

of this disease is now rare and mild in nature.  It is described as pharyngitis with a 

rash or benign scarlet fever and is easily treatable (79). Benign cases can range from 

mild to moderate and usually presents with pharyngitis, a rash across the chest, fever, 

erythema of the cheeks, and strawberry tongue. More serious forms of scarlet fever 

include a high fever ranging from 107-108°F and painful swollen lymph nodes in 

addition to the above mentioned symptoms. These cases are typically mediated by a 
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toxin called streptococcal pyogenic exotoxins SpeA and SpeC, which have previously 

been associated with other outbreaks (84). 

1.9.2 Streptococcal skin infections 

1.9.2.1 Impetigo 

Streptococcal impetigo, also known as pyoderma, is a skin infection of the dermis and 

epidermis. A small lesion on the skin of the extremities, usually the legs, 

characterizes typical streptococcal impetigo disease. These lesions can become a pus-

filled, bacteria rich blister that with time, oozes and develops a thick golden crust. 

Impetigo is contagious, but is easily treated with penicillin (85,86). While impetigo, 

like pharyngitis, is a mild disease, both are linked to the streptococcal secondary 

sequelae, acute glomerulonephritis.  Common virulence factors associated with skin 

infections are Mga (mga), M protein (emm), M-like proteins (enn, mrp), C5a 

peptidase (scpA), capsule (has), cysteine protease (speB), oligopeptide permease 

(oppA – oppD), streptokinase (ska), and regulator of protein F (rof ) (87). 

1.9.2.2 Cellulitis and erysipelas 

Cellulitis is a streptococcal infection that results from a skin irritation or a puncture 

wound in the sub-cutaneous layer of the skin leading to inflammation. The typical 

symptoms include a pinkish skin color, along with swelling and pain. Cellulitis is 

frequently associated with individuals who have poor blood circulation or a weakened 

immune system. Cellulitis usually responds to penicillin treatment and is typically 

cleared in a week (79). Erysipelas is a more acute localized form of cellulitis, 

affecting the superficial layers of the skin. Typical symptoms are red, raised and well-

demarcated skin lesions accompanied with pain and fever. Although it was a common 
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disease in the 19th century, it is rare today and is mostly seen in young children and 

elderly patients (88). As with other superficial GAS infections, penicillin is the 

treatment of choice and resolves the infection within a few weeks. 

1.9.3 Invasive diseases 

Invasive disease occurs when GAS leaves the primary sites (throat and skin) of 

infection and invades normally sterile tissues. These infections can be rapid and 

aggressive, resulting from a complex interaction between GAS and the human 

immune system. 

1.9.3.1 Puerperal Fever 

Puerperal sepsis (childbed fever) was one of the most deadly diseases of the 19th 

century. Puerperal fever can be contracted during pregnancy, miscarriage, or abortion 

and is marked by infection of the genital tract and endometrial lining. This acute 

endometritis is commonly masked by abdominal pain and is thus usually not 

recognized immediately following child delivery. Following entry into the women’s 

endometrial lining, GAS can quickly spread to the surrounding structures and into the 

bloodstream (79). If left untreated, this infection can lead to death. However, with 

early diagnosis and antibiotic treatment, it is rarely fatal. 

1.9.3.2 Bacteremia 

Sometimes, GAS infection can spread from various sites to the bloodstream causing 

bacteremia. Pharyngitis-associated scarlet fever predisposes children to bacteremia, 

while in the elder, bacteremia is secondary to infection of the skin. Bloodstream 

infection is common in immune compromised patients, young children and 

intravenous (IV) drug users. Bacteremia will lead to death if not treated with 
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antibiotics intravenously (79). 

1.9.3.3 Streptococcal toxic shock syndrome 

Streptococcal toxic shock syndrome (STSS) consists of an invasive streptococcal 

infection followed by multiple organ failure. Skin infections are the most common 

portal of entry for streptococcal TSS (89) and it is often present alongside other deep-

seated systemic infections such as bacteremia or necrotizing fasciitis. STSS is 

characterized by rapid onset of fever, high blood pressure, chills, nausea, confusion 

and pain that can lead to shock and overall tissue damage. Most of these symptoms 

are caused by GAS pyogenic exotoxins (SPEs) (79,90).  Penicillin is the first-line 

antibiotic of choice for invasive disease (91). 

1.9.3.4 Necrotizing fasciitis 

Due to the severe tissue damage associated with this disease, this syndrome is also 

known as ‘flesh-eating disease’. It is an infection of the subcutaneous tissue that 

results in progressive destruction of fascia and fat. Within a matter of days, the 

infection can progress from a benign skin lesion to a lethal disease. Unless 

appropriate immediate steps is taken, the infection may quickly become gangrenous, 

with inflammation spreading along the fascia and leading to organ failure (92). 

1.9.4 Secondary Sequelae 

In certain circumstances, otherwise uncomplicated benign infections with GAS can 

sometimes slowly progress to cause post-streptococcal glomerulonephritis (PSGN) 

and acute rheumatic fever (ARF) resulting in high mortality and morbidity. These 

diseases follow a few weeks or months after the primary GAS infection and after the 

bacteria have been cleared from the body. Symptoms are often due to an autoimmune 
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reaction where antibodies against GAS antigens instead attack healthy human tissue. 

More than 15 million people worldwide suffer from PSGN and ARF that claim over 

350,000 human lives every year (78). 

1.9.4.1 Acute Rheumatic fever  

Acute rheumatic fever (ARF) is a major non-suppurative sequelae of GAS 

pharyngitis that occurs 2-3 weeks after the initial infection (85,89).  The diagnostic 

criteria for ARF are referred to as the major Jones criteria and include arthritis, 

erythema, carditis and neurological dysfunctions (chorea) (93). Most patients with 

ARF are children, adolescents and young adults, and a third of the affected population 

suffers damaged heart valves that warrant replacement surgery. Several streptococcal 

factors such as superantigens (spe), group A carbohydrate, capsule (has), and M 

protein (emm) have been suspected to trigger the autoimmunity in ARF (93). 

1.9.4.2 Poststreptococcal Glomerulonephritis (PSGN) 

PSGN can occur from 1-3 weeks following GAS skin infection, pharyngitis, or scarlet 

fever (94). This severe disease results from immune complex formation in nephritic 

tissues that can lead to kidney failure. The diseased kidneys are seen to contain 

structures in the glomerular capillary basement membrane called sub-epithelial 

“humps” or “casts” (95). Streptococcal components, host complement factors and 

immunoglobulin are found localized in these structures (96). 

1.9.5 Treatment and vaccines 

GAS has been recognized as an important human pathogen since the early days of 

modern microbiology and remains among the top ten causes of mortality from an 

infectious disease globally. Although a historical perspective indicates major 
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reductions in overall GAS infection rates in the modern era, this pathogen still 

remains a leading health concern. Currently, there is no vaccine available for GAS. 

Existing treatments for GAS infection include the administration of penicillin, 

macrolides, or intravenous immunoglobulin (Ig). Penicillin remains the most common 

drug used for treating GAS infection for both superficial infections and 

prophylactically to prevent recurring GAS infection and immune sequelae (97).  

 

Despite such treatment measures, GAS autoimmune sequelae persist at endemic 

levels in developing countries and in indigenous populations (78). Furthermore, some 

studies have measured a 20-40% failure rate of penicillin in the treatment of GAS 

pharyngitis, warranting the need for vaccine development (98). Possible factors 

contributing to the failure of penicillin treatment include co-colonization of other 

penicillin-resistant bacterial species, eradication of normal throat flora, invading the 

tissue sites, and patient compliance (98). Macrolides are utilized as an alternative to 

penicillin, particularly in cases of penicillin allergy, although there is concern that 

macrolide-resistant isolates may evolve and spread (99). In cases of invasive GAS 

disease, intravenous Ig is recommended as treatment. The timing of administration is 

critical, if administered too long after the initial diagnosis, intravenous Ig will not 

provide any benefits greater than if antibiotics alone were used for treatment. 

Furthermore, intravenous Ig only offers short-term protection, as no immunological 

memory is generated. While in most cases penicillin or alternate antibiotics remain 

effective in the treatment of superficial GAS infection, the costs of medical care and 

time off from work or school create a significant economic burden (99).  
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An effective vaccine should contain a conserved GAS epitope, be highly 

immunogenic, induce both IgG and IgA, and not provoke cross reactions with human 

tissues (100). Vaccine development has focused on the N-terminal of the M protein 

since Lancefield had shown that antibodies against this region are both protective and 

bactericidal (101). However for this strategy, even the newest 26-valent vaccine 

would be limited in the serotypes it can protect against, and some antibodies against 

M protein are cross-reactive with human tissue and could lead to ARF. Alternative 

vaccine strategies have focused on other antigens such as C5a peptidase, the group 

specific carbohydrate, and the pyrogenic exotoxins (100).  

1.10   Virulence factors 

GAS expresses a wide variety of virulence factors that have a known or predicted role 

in helping the GAS to colonize the host, evade the host immune system, or spread to 

sterile sites. Many of these molecules remain associated with the streptococcal cell, 

while others are released into the extracellular environment.  Important cell associate 

factors include: M and M-like proteins, lipoteichoic acid, MSCRAMMs, 

streptococcal collagen like protein, C5a protease, capsule, serum opacity factor, 

streptolysin S, protein G-related α2-macroglobulin-binding protein (GRAB), and S. 

pyogenes cell envelope protease (SpyCEP). Important secreted factors include: 

streptolysin O, streptococcal pyrogenic exotoxin B (SpeB), streptococcal inhibitor of 

complement, streptokinase, S. pyogenes NAD-glycohydrolase, IgG-degrading 

enzyme, the superantigens (pyrogenic exotoxins) and DNases. Listed below are the 

virulence factors relevant to this study. 
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1.10.1 M and M-like Proteins 

M protein is the major surface protein of GAS encoded by the gene emm. The genes 

encoding the structurally similar M-like proteins, including mrp, arp, emmL, fcrA, 

enn, and sph, have been categorized by their domain organization (85).  M protein 

and M–like proteins are important for adhesion to various host tissues and 

extracellular matrix (ECM) components, immune evasion of GAS, and triggering 

internalization into non-phagocytic cells (102).  Most strains of the GAS typically 

produce 1 to 3 M or M-like proteins, which in some cases leads to correlation with 

disease type (103). One of the major functions of the M protein is to protect the GAS 

cell from phagocytosis by the host. It does this by binding to the complement 

regulatory protein H to inhibit and interfere with opsonization of the cell. 

1.10.2 Hyaluronic acid capsule 

The hyaluronic acid (HA) capsule of the GAS, encoded by the has operon (hasABC), 

is composed of repeating units of glucuronic acid and N-acetylglucosamine identical 

to the HA produced in the human host. The presence of capsule leads to the mucoidy 

or glossy colony phenotype observed by Todd in 1928 (104). The has operon is 

negatively regulated by the CovR/S two-component system (105,106). The capsule of 

GAS is important in resistance to phagocytosis as acapsular mutant strains lose their 

ability to resist phagocytic killing and have 100-fold decreased virulence in mice 

(107). In a skin infection model, acapsular mutants produced no lesions or minor 

inflammation compared to the necrotic lesions with purulent inflammation seen in the 

encapsulated strain (108). 
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1.10.3 Streptococcal Opacity Factor (SOF) 

SOF is an important adhesin of GAS usually found in Class II GAS strains.  It helps 

to bind streptococcal cells to high-density lipoproteins through a fibronectin-mediated 

process (109,110). SOF appears to have two distinct activities, having roles in both 

serum opacification and fibronectin/fibrinogen binding, as mentioned previously 

(109). Although its direct role in virulence has been difficult to discern because of its 

bi-functional nature, studies have shown that inactivation of sof resulted in a 

reduction of virulence in an i.p. mouse model of infection (53). 

1.10.4 Streptolysin S (SLS) 

SLS is an oxygen-stable cytolysin/hemolysin responsible for the ß-hemolytic 

phenotype seen surrounding colonies on a blood agar plate.  The structural toxin SLS 

is encoded by sagA, a streptolysin-associated gene (sag), and is the first gene of a 9-

gene operon. This cytolysin is a potent virulence factor in vivo that lyses a variety of 

cell types including erythrocytes, lymphocytes (111), neutrophils, platelets, and even 

intracellular organelles such as mitochondria and lysozomes (112).   Studies in mice 

using the subcutaneous skin infection model show a significant reduction in virulence 

with SLS mutant strains (106,113,114). Additionally, SLS has been shown to impair 

phagocytic clearance, promote epithelial cell cytotoxicity (115) and mediate the 

cytocidal effect of GAS on neutrophils (116), demonstrating SLS as a potent 

virulence factor used by GAS for host immune evasion. 

1.10.5 Streptolysin O 

Another secreted cytolysin/hemolysin is the oxygen-labile streptolysin O (SLO), 
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which is a member of the cholesterol-dependent cytolysin (CDC) family of pore 

forming toxins (117). Despite having pore-forming ability similar to SLS, SLO does 

not contribute to the ß-hemolytic phenotype due to its sensitivity to oxygen. SLO has 

been shown to be important for invasive disease in a mouse skin infection model. 

However, the exact role of SLO is still unknown, as it does not appear to be involved 

in the formation of necrotic lesion or bacterial dissemination for GAS (118).  

1.10.6 Streptococcal pyrogenic exotoxin B (SpeB) 

SpeB is a cysteine protease encoded on a chromosomal gene speB (119), therefore 

most streptococcal strains are capable of producing it. SpeB is secreted as an inactive 

40-kDa zymogen that is converted into a mature 28-kDa active protease either by 

autocatalytic cleavage or aided by host or streptococcal proteases (120). Regulation of 

speB transcription and SpeB expression is complex and involves environmental 

factors, transcriptional and posttranscriptional regulation, and posttranslational 

regulation by an endogenous inhibitor encoded on the streptococcal chromosome 

(121). SpeB targets a large variety of both bacterial and human proteins (121). 

Although the role of SpeB in GAS infection is controversial, recent evidence has 

conclusively demonstrated that SpeB is critical for the pathogenesis of severe 

invasive disease caused by GAS (121).  

1.10.7 Streptococcal inhibitor of complement (Sic) 

Sic, encoded by sic, incorporates into the membrane attack complex of complement 

to inhibit complement-mediated lysis (122).  Sic also aids in bacterial survival at 

mucosal surfaces and has been shown to bind and alter the activities of lysozyme and 
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the secretory leukocyte proteinase inhibitor (122). Sic is a multifunctional virulence 

factor, able to interact with various host cell proteins and members of the immune 

system. 

1.11 Regulators of virulence 

GAS expresses a large number of virulence factors in a coordinated manner to 

successfully cause infection in the human host (Fig. 2). To accomplish this, GAS 

employs a number of transcriptional regulators. GAS is able to sense changes in the 

host environment and adjust the expression of virulence determinants to its 

advantage. These virulence regulators include classical two-component regulatory 

systems (TCS) and stand-alone regulators. 
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Figure 2: Interaction between virulence regulators of GAS.  Schematic shows the 
two-component system CovR/S, stand-alone regulators Mga, RivR/RivX along with 
PTS and CCR regulator CcpA. Arrowheads indicate activation and flat ends indicate 
repression.  
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1.11.1 CovR/S 

The most studied TCS of GAS is the Control Of Virulence (CovR/S) system, that 

responds to environmental stresses such as pH, temperature, and osmolarity (75). The 

predicted extracellular domain of the membrane bound sensor component of CovS is 

expected to bind an extracellular ligand or to sense the environmental conditions 

mentioned above.  This interaction is predicted to trigger autophosphorylation of the 

cytoplasmic domain of the CovS protein. The phosphate group is then transferred on 

to the receiver domain of the cognate regulator CovR. The regulator component 

CovR, when phosphorylated, shows increased binding affinity for the promoters of 

several genes proposed to be regulated by the system. CovR/S has been shown to 

directly or indirectly influence expression of approximately 15% of the GAS genome 

(76), with the majority of the genes being repressed. Numerous studies have 

demonstrated the significance of CovR to expression of virulence factors within a 

host and they suggest that spontaneous mutations in CovRS allow GAS to become 

more invasive (75,123,124). These cov mutant GAS strains appear to be most 

prevalent in causing infections worldwide. Microarray analysis comparing wild type 

and a covS mutant show significant differences in the transcription of many genes that 

are associated with virulence in vivo (125). The data from this study and others 

suggest that CovR/S has an extremely significant role in modulating gene expression 

during GAS infection. The regulation of virulence within GAS is complex, and as the 

master regulator, CovR/S directly or indirectly interacts with multiple regulators such 

as Mga, CcpA, the two-component system TrxRS, and RivR. 
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1.11.2 Mga 

Multiple virulence gene regulator of GAS (Mga) is a key stand-alone transcriptional 

regulator. The gene encoding the multiple gene regulator of GAS or Mga (mga) has 

been found in all sequenced GAS genomes and strains tested, exhibiting two 

divergent alleles (mga-1, mga-2) for M1 Mga or M4 Mga that correlate with different 

tissues sites of infection (126). Mga regulates expression of approximately 10% of the 

genome by binding to the core set of virulence gene promoters. The core regulon is 

composed of key virulence factors that Mga activates during the carbohydrate rich 

exponential phase, including genes encoding M protein (emm), M-like proteins (arp 

and mrp), C5a peptidase (scpA), and the streptococcal inhibitor of complement (sic) 

(127,128). Mga has an indirect effect on operons involved in carbohydrate 

metabolism and other metabolic processes (126). Mga is critical for multiple 

pathogenic phenotypes, including biofilm formation, growth in whole blood, 

resistance to phagocytosis and optimal virulence (126,129,130). Mga (62kDa) 

possesses two helix turn helix domains and one conserved Mga domain (CMD-1) at 

N terminus that have been shown to be involved in DNA binding (127,131). A C- 

terminal PTS Enzyme II-B (EIIB) domain has also been predicted. A recent study 

from our lab has shown that the catalytic histidine residues in the PRDs are important 

for the expression of Mga regulon (6). Based on sequence alignment, two regions 

within Mga were predicted to have strong homology to the dual system PRD in 

antiterminators (e.g., LicT) and activators (e.g., MtlR and LicR) involved in the 

regulation of sugar metabolism (126).  Thus, Mga appears to represent the paradigm 

for a newly appreciated family of PRD-containing virulence regulators (PCVR) that 
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includes the important RofA-like protein (RALP) family of virulence regulators in 

GAS (RofA, Nra, Ralp3, and RivR).  

1.11.3 RALPs 

The RofA-like protein (RALP) family of transcriptional regulators was initially 

identified in GAS and now has orthologous members in several pathogenic 

streptococci, including S. dysgalactiae (GCS, GGS), S. agalactiae (GBS), and S. 

pneumonia. RALP’s regulon comprises genes important for GAS-host cell 

interactions such as SLS and SpeB (132).  GAS strains possess at least one copy of 

either RofA or Nra.  

RofA (RALP1): RofA has been shown to negatively influence the expression of 

virulence factors such as sagA, speB and mga (132). RofA responds to changing 

atmospheric conditions and a rofA mutant leads to decrease in host cell viability along 

with reduced attachment and internalization to epithelial cells (133). 

Nra (RALP2):  Similar to RofA, Nra repressed the expression of several virulence 

genes, including speB, speA, sagA, and mga, slo.  In addition, Nra represses the 

expression of other stand-alone regulators such as Rgg, RALP3, and RivR (RALP4).  

On the other hand, Nra positively influenced the expression of metabolic genes 

involved in transport and utilization of carbohydrates again, demonstrating a link 

between virulence and metabolism for RALPs (134). 

RALP3: Serotype specific distribution of ralp3 has been observed. In an invasive 

M1T1 strain of GAS, mutations in ralp3 influenced host-cell interactions and 

antimicrobial peptide sensitivity leading to inability to survive in whole blood and 

attenuation of systemic infection in mice (134).  M1 Ralp3 was found to strongly 
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repress capsule synthesis (has) and protease (speB) expression (132). 

RALP4: Studies have shown that the expression of RivR is directly controlled by 

CovRS. DNA microarray analysis in an M1 strain determined that RivR activates 

Mga and its virulence regulon. RivR is associated with RivX and a ΔrivRX mutant 

was attenuated for invasive skin infection of mice (135,136). 

1.12 Carbon metabolism and virulence in GAS 

Regulation of virulence factor expression is critical for pathogenic microorganisms 

that must sense and adapt to a dynamic host environment. The global regulator, CcpA 

contributes to GAS virulence in various infection sites (137) and is involved in 

modulating the regulation of virulence factors. A study by Watson et al, demonstrated 

that in the absence of CcpA, lactate oxidase (lctO) levels are elevated, resulting in 

excessive generation of peroxide to self-lethal levels in a vaginal colonization model 

(138). In another study, ΔccpA and ΔcovRΔccpA isogenic mutant strains resulted in 

significant reduction in virulence in a mouse myositis model compared to the wild 

type parental strain (139). Another LacI/GalR family member, MalR also plays a role 

in GAS global gene expression. Inactivation of the maltose regulator, MalR, resulted 

in reduced GAS colonization of the mouse oropharynx by repressing a cell surface 

carbohydrate binding protein, but did not detrimentally affect invasive infection 

(140). To further the importance of the connection between carbohydrate metabolism 

and virulence in GAS, Almengor et al. suggested that CcpA regulates the expression 

of the virulence regulator Mga by binding to the cre site in the promoter region of 

Mga (141). In addition, carbohydrate utilization and metabolism genes are 

differentially regulated in the biofilm and tissue communities, suggesting that nutrient 
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acquisition is important at many steps in the disease formation (129). The presence of 

nutrients in the environment primarily sugars modulates the expression of factors 

crucial for pathogenesis (142).  

1.13 Significance of Dissertation 

The group A Streptococcus can cause a wide-range of infections. A hallmark of GAS 

is the ability to successfully colonize and adapt to many different tissue sites in the 

human host. Several studies have established that GAS exhibits transcriptomic 

changes during infection (123,129,130,143). Genes required for carbohydrate uptake 

(both PTS and ABC) along with metabolic operons and genes involved in CCR are 

induced in vivo and are required for full virulence in models of GAS infection (144-

146). Therefore, GAS appears to depend upon carbohydrate uptake systems such as 

the PTS for their ability to survive in the host and elicit disease (6).  

 

This study addresses the role of the uncharacterized PTS in both carbon metabolism 

and virulence of Streptococcus pyogenes.  This work begins with a general 

characterization of the PTS by constructing a ptsI mutant in serotype M1T1 and M4 

strains of GAS. The growth assays in Chemically Defined Media (CDM) and carbon 

metabolic assays using Biolog phenotype microarrays indicated that the PTS 

influences the uptake and metabolism of several carbohydrates.  

 

The second focus of my research assessed the role of EI (PTS) in the pathogenesis of 

GAS. Interestingly, the ∆ptsI mutant strain resulted in a hypervirulent phenotype in a 

subcutaneous model of GAS infection, which is attributed to the temporal expression 
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of the hemolysin SLS. It was also found that the PTS influences the activity of 

additional virulence factors, SpeB and Capsule.  

 

The third focus of thesis study was to investigate the regulatory role of PTS in 

influencing the activity of the PRD-containing virulence regulator Mga. 

Transcriptional studies in M1T1 and M4 suggested that PTS influences Mga regulon 

in strain specific manner. 

 

Overall, this study demonstrates that PTS in GAS is required for uptake of PTS and 

non-PTS associated carbohydrates. In addition, PTS also influences the virulence of 

Group A Streptococcus by modifying the virulence factors and global regulators. 
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Chapter 2: Materials and Methods 

 

2.1 Bacterial Strains 

2.1.1 E.coli strains, medium, and growth conditions 

E. coli strains DH5α and C41 [DE3] were used as the host for plasmid constructions 

(Table 1).  All E. coli strains were grown in Luria-Bertani LB broth (EMD 

Chemicals). E. coli was grown at 37ºC with shaking at 250 rpm under normal aerobic 

conditions. Growth was assayed by a spectrophotometer (Ultraspec 10, Amersham 

Biosciences) at OD600.  Antibiotics were used at the following concentrations: 

spectinomycin at 100 µg/ml, kanamycin at 50 µg/ml, and erythromycin at 500 µg/ml. 

2.1.2 GAS strains, media, and growth conditions 

Group A streptococcus (GAS) strains are listed in Table 1. Strain 5448 is a clonal 

M1T1 strain isolated from an invasive infection and 5448AP is an isogenic animal 

passaged covS variant (124).   MGAS5005 (covS) is also an invasive M1T1 strain 

with an available genome sequence (73). GA40634 is a clinical isolate of the GAS 

M4 serotype. GAS was cultured in complete Todd-Hewitt medium supplemented 

with 0.2% yeast extract (THY; Alpha Biosciences). A 2X Chemically Defined 

Medium (CDM) was prepared by MP Biomedical as previously described (59,147).  

Prior to use, freshly prepared sodium bicarbonate (59.51 µM) and L-cysteine (11.68 

µM) were added along with a carbohydrate source at a final concentration of either 

0.5% (D-glucose) or 1% (all other sources). C medium was prepared as mentioned in 

(148). Growth of GAS was assayed by measuring absorbance in Klett tubes using a 
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Klett-Summerson colorimeter (A filter).  Alternatively, overnight cultures of GAS (10 

ml) in CDM were adjusted to OD600 of  0.2 in saline, appropriate carbohydrate was 

added, and 50 µl aliquots were added to each well of a 24-well microplate (Corning) 

followed by sealing with plate tape. Growth was followed for 12 hours at 37ºC using 

a FLUOstar Omega microplate spectrophotometer (BMG), with measurements taken 

at 30 minutes intervals after 15 minutes shaking.  Antibiotics were used at the 

following concentrations: erythromycin at 1.0 µg/ml for GAS, spectinomycin at 100 

µg/ml and kanamycin at 300 µg/ml for GAS. 

2.2 DNA manipulations 

2.2.1 Plasmid DNA isolation 

Plasmid DNA was isolated from E. coli using the Wizard® Plus SV Miniprep system 

(Promega) following manufacturer’s instructions.  DNA fragments were gel purified 

from agarose using the Qiaquick Gel Extraction kit (Qiagen) or the Wizard® SV Gel 

and PCR Clean-Up system (Promega). 

2.2.2 Genomic DNA extraction 

GAS genomic DNA (gDNA) was isolated as previously described (149).  Briefly, 15 

ml cultures were grown overnight at 37ºC with 20mM glycine. Cells were pelleted 

and washed with 10mM Tris by centrifugation at 8000x g for 10 minutes. The washed 

pellet was resuspended in Solution I (1M Tris pH 8.0, 0.25 M EDTA pH 8 and 50% 

Sucrose) supplemented with fresh lysozyme (130 mg/ml) and incubated for 90 

minutes with rotation at 37ºC. Cells were pelleted and resuspended in Solution II (1M 

Tris pH 8.0, 0.25 M EDTA, 20% SDS) and incubated at 37ºC for 15 minutes. To this, 
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RNAse A (10mg/ml) and Proteinase K (20 mg/ml) were added and incubated at 55ºC 

for 30 minutes with frequent mixing.  The cell lysate was extracted once with an 

equal volume of TE-saturated phenol, with 1:1 phenol-chloroform until the interface 

is cleared, and once with 24:1 chloroform-isoamyl alcohol. A 2:1 volume of ethanol: 

lysate was added and DNA was precipitated overnight.  The DNA was pelleted after 

overnight incubation and the pellet was resuspended in water. DNA concentrations 

were measured by the A260. 

2.2.3 Polymerase Chain Reaction (PCR) 

PCR was performed using Phusion high-fidelity polymerase for cloning and Taq 

DNA polymerase for diagnostic assays (New England Biolabs, NEB). To use Phusion 

polymerase, annealing temperatures for primers were determined by using Tm 

calculator (https://www.neb.com/tools-and-resources/interactive-tools/tm-calculator). 

Amplification was carried out by an initial denaturation step at 98ºC for 4 minutes, 

followed by 35 cycles of denaturation at 98ºC for 10 seconds, a 30 seconds annealing 

step at a pre-determined temperature, an extension step of 72ºC for approximately 15-

30 seconds per kb of DNA. A final extension step for 4 minutes was added for the 

completion of the reaction. PCR reactions were purified according to manufacturer’s 

instructions using Wizard SV PCR clean up kit.  To use Taq polymerase, the PCR 

protocol was modified from Phusion: briefly, 30 cycles were used, denaturation was 

performed at 95ºC, and extension time used was ~1kb/min. Annealing temperatures 

for use with Taq polymerase were determined through Vector NTI software (version 

11.0). Genewiz, Inc performed DNA sequencing analysis. 



 

 41 

 

2.2.4 Enzymatic DNA modifications 

Enzymatic DNA modifications were performed using enzymes with conditions 

suggested by the manufacturer (NEB). Restriction digests were performed in the 

buffers supplied with the enzymes by the manufacturer for 2 hours. Ligation reactions 

using T4 DNA ligase were set up using 1:16 vector to insert ratio with overnight 

incubations at 16ºC. Antarctic shrimp alkaline phosphatase was used to 

dephosphorylate the vector ends for cloning with incubation at 37ºC for 1 hour. 

2.3 Bacterial transformation 

2.3.1 E. coli competent cells 

To prepare DH5α or C41 [DE3] competent cells, an overnight starter culture was 

started from a single colony streaked out on a LB agar plate.  The next morning, 500 

ml of LB broth was inoculated with 5 ml of an overnight culture and was grown to an 

OD600 of 0.5-0.7 nm. Cells were then placed on ice for 30 minutes to cool cells and 

stop growth prior to centrifugation at 7000x g for 30 minutes at 4ºC. After pelleting, 

cells were washed and resuspended in ice-cold sterile 10% glycerol (EP solution) and 

washed twice more. After the final wash, cells were resuspended in 800 µl of EP 

solution and split into 50 µl aliquots, which were stored at -80ºC for 6 months to one 

year. 

2.3.2 GAS competent cells 

To prepare competent GAS cells for transformation, 150 ml of THY broth with 20 

mM glycine was inoculated with 7.5 ml of an overnight starter culture and incubated 
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static at 37ºC until OD600 was between 0.2 and 0.4 nm. Cells were kept on ice prior to 

centrifugation at 7000 x g for 30 minutes at 4ºC. The pelleted cells were washed and 

resuspended in 20 ml of EP solution, and centrifuged again twice more. Upon 

completion of the washes, the pelleted cells were resuspended in 1 ml EP solution and 

split into 200 µl aliquots, which were stored at -80ºC for 6 months. 

2.3.3 Electroporation 

To remove excess salts prior to electroporation of DNA into either E. coli or GAS, 

the DNA was drop dialyzed against H2O using 0.025 µm membrane filters 

(Millipore) for 30 minutes for E. coli and 1 hour for GAS. Electroporation of both E. 

coli and GAS was performed using a GenePulser Xcell (Bio-Rad). The 50 µl E. coli 

competent cell aliquot was mixed with drop dialyzed DNA in a pre-chilled 2 mm 

cuvette and transformed using the electroporator settings as follows: 2.5 kV, 200 Ω, 

and 25 µF. Cells were then added to 1 ml LB broth and outgrown for 1 hour at 37ºC 

with shaking, prior to centrifugation at 6,000 x g. Pelleted cells were resuspended in 

200 µl saline and 100 µl were plated with the appropriate antibiotic for selection.  

Electroporation of GAS was carried out using the electroporator settings as follows: 

1.75 kV, 400 Ω, and 25 µF. After electroporation, GAS cells were added to 10 ml 

THY broth and outgrown for 2-4 hours, static at 37ºC. Cells were pelleted at 8,000 x 

g and resuspended in 200 µl saline and plated with the appropriate antibiotic for 

selection. 

2.3.4 Temperature-sensitive allelic exchange 

Transformation of GAS with the temperature-sensitive plasmid pCRK (Table1) 
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containing kanamycin (Kan) was used for selection for allelic exchange. Briefly, after 

electroporation, cells are outgrown at 30ºC prior to plating with Kan selection at 30ºC 

overnight to allow for plasmid replication. Isolated colonies are then inoculated into 

liquid cultures with Kan and any other applicable antibiotics for selection and 

passaged overnight at 30ºC. Cells are passaged one more time in fresh media, without 

Kan selection to allow for possible integration. 

2.4 Genetic Constructs 

2.4.1 Construction of a ∆ptsI mutant in GAS 

The plasmid to generate the ∆ptsI allele was created as previously described (6). 

Briefly, the primers ptsI-1a and ptsI-1b (Table 2) were used to amplify from 

MGAS5005 genomic DNA (gDNA) an 819 bp upstream region containing 578 bp of 

ptsI, and a BglII restriction site. Primers ptsI-2a and ptsI-2b (Table 2) were used to 

amplify an 812 bp region containing the 3′of ptsI with BglII ends and a 10 bp overlap 

with the first fragment at the 5′end. These fragments were combined as template 

DNA for PCR SOEing (150) with ptsI-3a and ptsI-3b (Table 2) to generate the ptsI 

deletion. The resulting product was blunt end ligated into pBluescript II KS- to create 

pBlueΔptsI (Table 1). The non-polar aad9 spectinomycin resistance cassette was 

amplified from pSL60-1 using primers aad9L2-bglII and aad9R2-bglII (Table 1), 

digested with BglII, and ligated into BglII-digested pBlueΔptsI. The resulting 

XbaI/XhoIΔptsI::aad9 fragment from pBlueΔptsI was ligated into XbaI/XhoI-

digested pCRK to yield pKSM645, which was used to construct the ∆ptsI mutant 

MGAS5005.∆ptsI (Table 1). Additional mutants were constructed in 5448 
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(5448.∆ptsI) and 5448AP (5448AP.∆ptsI) using the same protocol (Table 1).  GAS 

∆ptsI mutants were screened for sensitivity to kanamycin and verified by PCR on 

genomic DNA for specific junction regions. 

2.4.2 Single-copy complementation of MGAS5005.∆ptsI 

A thermo sensitive integration plasmid for single-copy complementation was 

constructed using primers ptsIcomplementL and ptsIcomplementR (Table 2) to 

amplify a 1919 bp fragment containing a promoterless wild type copy of ptsI and 

BamHI restriction site on both ends. The resulting PCR fragment was digested with 

BamHI, ligated into BamHI digested pCRK to yield pKSM456 and pKSM455 (Table 

1), and confirmed by sequence analysis. pKSM456 was electroporated into the 

mutant MGAS5005ΔptsI at the permissive temperature (30°C) and integrants were 

isolated following growth at the non-permissive temperature (37°C) to allow for 

complementation of the ΔptsI allele in single copy.  The resulting strain 

MGAS5005.∆ptsIc was verified by PCR and sequence analysis. Similarly,  GA40634. 

.∆ptsIc  was constructed using pKSM455. 

2.4.3 Construction of insertional- inactivation of sagB in 

MGAS5005.∆ptsI 

A sagB insertional inactivation vector, pKSM732 (145) was transformed in 

MGAS5005.∆ptsI using temperature sensitive inactivation strategy as described 

previously. Strains were verified by loss of hemolysis on blood agar plate and PCR. 
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2.5 Murine infections 

2.5.1 Subcutaneous route 

An overnight culture (10 ml) was used to inoculate 75 ml of THY and incubated 

static at 37°C until late logarithmic phase. Approximately 3 x 107 CFU/ml, as 

determined by microscope counts and verified by plating for viable colonies, was 

used to infect 5 to 6-week-old female CD-1 mice (Charles River Laboratories).  The 

mice were anaesthetized with ketamine and depilated for ~ 3 cm2 area of the haunch 

with Nair (Carter Products) and 100 µl of a cell suspension (3 x 108 CFU/mouse) was 

injected subcutaneously. Mice were monitored twice daily for 7 days and were 

euthanized by CO2 asphyxiation upon signs of morbidity. Lesion sizes (L x W) were 

measured at 38 hours post infection with length (L) determined at the longest point of 

the lesion and width (W) as the widest point. Lesion size data was analyzed using 

GraphPad Prism (GraphPad Software) and tested for significance using an unpaired 

two-tailed t-test with 99% confidence. 

2.6 RNA analysis 

2.6.1 RNA isolation 

GAS from an overnight culture were inoculated 1:20 into 10 ml THY supplemented 

with appropriate antibiotics and grown to the appropriate Klett unit. Cells were then 

pelleted by centrifugation at 8,000 x g for 20 minutes at 4°C. Cells were resuspended 

in 1 ml of TE buffer (10 mM Tris pH 7.4 and 1 mM EDTA) with 0.2% (v/v) Triton 

X-100 and boiled for 10 minutes. The lysate was extracted three times using 
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chloroform-isoamyl alcohol, EtOH precipitated for 20 minutes at -80°C, pelleted at 

13,000 x g for 15 minutes at 4°C, and the RNA pellet was resuspended in DEPC-

treated H2O. RNA quality was assessed on a formaldehyde gel (18% (v/v) 

formaldehyde, 1% (w/v) agarose, 72% (v/v) DEPC-treated H2O, and 10% (v/v) 10x 

MOPS buffer (0.4 M 3-[N-Morpholino] propanesulfonic acid pH 7.0, 0.1 M sodium 

acetate, 0.01 M EDTA). To quantify RNA, absorbance at 260/280 was determined 

using a spectrophotometer (Amersham BioSpec).  RNA (5 ug) was treated with 

DNase using the Turbo DNA Free kit (Ambion) per manufacturer’s protocol. Treated 

RNA was assessed for quality as mentioned above and for gDNA contamination by 

PCR analysis. 

2.6.2 Real-time RT-PCR 

25 ng of DNase-treated total RNA was added to SYBR Green Master mix (Applied 

Biosystems) along with 5 µg of each gene specific real-time primer (Table 2) using 

the 1-step protocol. The real-time RT-PCR experiments were completed using a Light 

Cycler 480 (Roche) and levels presented representing ratios of wild type/experimental 

relative to the level of gyrA transcript as the internal control. The real-time primers 

were designed using Primer 3: WWW Primer tool 

(biotools.umassmed.edu/bioapps/primer3_www.cgi). 

2.7 Protein Analysis 

2.7.1 TCA precipitation of secreted proteins 

GAS cultures were grown to stationary phase as described elsewhere and culture 

supernatants were prepared by centrifugation at 8,000 g for 15 minutes at 4ºC. Bovine 
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Serum Albumin (BSA) was added to a final concentration of 50 µg/ml and 

trichloroacetic acid (TCA) to a final concentration of 15%. The resulting solution was 

incubated on ice for 30 minutes and centrifuged for 15 minutes at 12,000 g.  The 

pellet was washed twice with 500 µl of ice-cold acetone, centrifuged for 15 minutes 

at 12,000 g, and the resulting pellet was resuspended in 50 µl of 1X β-

mercaptoethanol. 

2.7.2 Western Blot 

GAS proteins were separated on 10% SDS-PAGE, transferred to nitrocellulose 

membranes, and probed with α-SpeB antiserum at a 1:500 dilution for 2 hours at 

room temperature. After three 10 minutes washes with PBS-Tween, blots were 

incubated with goat α-rabbit horseradish peroxidase-conjugated secondary antibody 

(Sigma) at a 1:12500 dilution for 1 hour. The blots were then washed three times with 

PBS-Tween for 20 minutes. Blots were developed using the Western Lightning 

chemiluminescence system (Femto) and visualized using a Fuji LAS3000 imager (GE 

Healthcare). 

2.7.3 Biofilm formation 

Overnight cultures of GAS grown at 37ºC (5% CO2) in THY  were harvested and 

used to inoculate fresh THY. Cultures were then grown to an OD600 of 0.5 nm. Tissue 

culture treated polystyrene six-well cell culture plates (Corning) were seeded with 3 

ml of culture per well. Plates were incubated for 24 hours at 37°C, 5% CO2. Medium 

was removed without disturbing the biofilm, wells were washed three times with 

distilled H2O, and 1 ml aliquots of 0.1 % crystal violet (CV) (Sigma-Aldrich) 
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dissolved in dH2O were dispensed to each well. Surface-attached bacteria were 

allowed to stain for 15 minutes at room temperature and then washed three times with 

dH2O, after which 1 ml ethanol was added to each well to solubilize the CV. 

Absorbance was measured at 600 nm for each sample. 

2.7.4 Hyaluronic acid capsule production 

The amount of hyaluronic acid (HA) capsule produced by each GAS strain was 

determined as follows: cells from a 10 ml exponential phase culture were washed 

twice with 10 mM Tris pH 8.0, suspended in 0.5 ml 10 mM Tris pH 8.0, and capsule 

was released by extraction with 1 ml chloroform. After clarifying the sample by 

centrifugation, the HA content of the aqueous phase was determined by measuring 

absorbance at 640 nm after adding 2 ml of a solution containing 20 mg of 1-ethyl-2-

[3-(1-ethylnaphtho-[1,2-d]thiazolin-2-ylidene)-2-methylpropenyl]naptho-[1,2-

d]thiazolium bromide (Stains-all; Sigma Chemical Co., St. Louis, MO) and 60 µl of 

glacial acetic acid in 100 ml of 50% formamide. 

2.7.5 Hemolysis assay 

GAS were grown in THY supplemented with 10% heat-inactivated horse serum 

(Sigma). Samples were taken every hour for a total of 8 or 14 hours and immediately 

frozen at −80°C, bacterial cells were pelleted, and a 1:10 dilution was made of the 

supernatant. 500 µl of this dilution was added to an equal volume of 2.5% (v/v) 

difibrinated sheep red blood cells (RBC, Sigma) and washed three times with sterile 

PBS, pH 7.5. This mixture was incubated at 37°C for 1 hour and cleared by 

centrifugation at 3,000 x g. Absorbance of the supernatants were measured at 541 nm 
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by spectrophotometer (Molecular Dynamics) to determine release of hemoglobin by 

lysed RBCs. Percent hemolysis was defined as follows: [(sample A − blank A)/(100% 

lysis A)] × 100.  To assay for streptolysin O-specific hemolytic activity, the 

streptolysin S inhibitor trypan blue (151) (13 µg/µl) was added to samples prior to 

incubation. 

2.8 BIOLOG phenotype microarrays 

Carbohydrate metabolic profiles were determined using the BIOLOG Omnilog 

system (Biolog Inc.) per the manufacturers protocol. Tests were performed utilizing 

the Carbon panel 1 (PM1) and Carbon panel 2 (PM2) carbon panels, each as standard 

96-well microplates containing 95 different carbon sources and one negative control. 

Each well contained a redox dye (tetrazolium violet) for colorimetric determination of 

cells metabolizing the carbon source. Strains were first cultured on TSA 5% blood 

agar plates for 24 hours at 37°C. Cells were swabbed off the plate and resuspended in 

Inoculating Fluid (BIOLOG) to adjust to an absorbance at 600 nm of 0.14.  An 

aliquot of 100 µl of the suspension was immediately dispensed into each well of the 

PM microplate with a multichannel pipette. The plate was incubated at 37°C for 48 

hours and the data was analyzed using the Omnilog software (BIOLOG). 
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Table 1: Bacterial strains and plasmids 
Name Description Reference 

  

 E. coli strains 

  

      DH5α hsdR17 recA1 gyrA endA1 relA1 (22) 

     C41[DE3] F– ompT gal dcm hsdSB(rB
- mB

-)(DE3) (23) 

 

  S. pyogenes strains 

  

      MGAS5005 M1T1 (73) 

      5448 M1T1 (124) 

      5448AP 

      GA40634 

      MGAS5005.∆ptsI 

M1T1 

M4 

ΔptsI mutant in MGAS5005        

(124) 

(128) 

(152) 

      MGAS5005.∆ptsIc 

     MGAS5005.∆ptsIsagB                     

ΔptsI complemented with pKSM456 insertion 

ΔptsI mutant with insertional inactivation of         

sagB 

(152) 

(152) 

      5448.∆ptsI ΔptsI mutant in 5448 (152) 

      5448AP.∆ptsI  

     GA40634.∆ptsI            

     GA40634.∆ptsIc                      

ΔptsI mutant in 5448AP 

ΔptsI mutant in GA40634 

ΔptsI complemented with pKSM455 insertion        

(152) 

(6) 

This study 

 

Plasmids 

  

      pCRK Temp. sensitive conditional vector, KmR (153) 

      pBluescript II KS- ColE1 ori Ampr lacZa Stratagene 

      pSL60-1 Vector containing non-polar aad9 gene (154) 

      pKSM645 

      pBlue.∆ptsI   

∆ptsI mutagenic plasmid; non-polar aad9 

∆ptsI in pBluescriptII KS-; bla (Apr) 

(6) 

(6) 
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      pKSM455 promoterless ptsI intergration plasmid; KmR This study 

      pKSM456 

      pKSM732 

promoterless ptsI integration plasmid; KmR 

sagB insertional inactivation vector 

(152) 

(145) 
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Table 2: Primers used in this study 
Target PCR Primers Sequence (5’-3’) Reference 

aad9 

 

ptsI 

aad9L2-bglII 

aad9R2-bglII 

ptsI-1a 

ptsI-1b 

ptsI-2a 

ptsI-2b 

ptsI-3a 

ptsI-3b 

ptsl-internal sense 

ptsl-internal antisense 

ptsl-external sense 

ptsl-ext antisense 

5005.645jxn-sense 

5005.645jxn-

ptsIcomplementL 

ptsIcomplementR 

 

Real time primers 

gcgcagatctGGGTGACTAAATAGTGAGGAG 

gcgcagatctGGCATGTGATTTTCC 

agatctGCTGAGTGACTTGTACGA 

GGTATTCATGCGCGTCCA 

gcgGCCTTGTGTTGGTGGTTTAAGAGCAAC 

GTCACTCAGCagatctCGTGCGCTTACAGAATGT 

tctagaGCGGCCTTGTGTTGGTGGTTT 

ctcgagGGTATTCATGCGCGTCCA 

CAAATTGGTCTGCAAGC 

CAGATACTGCTCAACTTAACA 

GCTAGCAAAAAAGAGCTGGTTTA 

CTCTTGACTACAAAGGTAAAGCAGTAAA 

GCGGGTTATTTTTTAAATGTTTCCGAAG 

GGGCCATCTGCAAAATACAAAGCAT 

cccggatccCATCACTCTTGACTACAA 

cccggatccTTAATCTTCAGAAACGTA 

 

    (145) 

(145) 

     (152) 

(152)  

(152)  

(152) 

(152) 

(152) 

(152) 

(152) 

(152) 

(152) 

(152) 

(152) 

(152) 

(152) 

 arp 

 

emm 

 

arp M4 RT L 

arp M4 RT R 

emm M1 RT L 

emm M1 RT R 

 

TAGCTGTTTCGCCTGTTGAC 

GCTAAAGTAGCCCCACAAGC 

ACTCCAGCTGTTGCCATAACAG 

GAGACAGTTACCATCAACAGCTGAA 

 

    (155) 

   (155) 

 (128)  

 (128)  

 

gyrA gyrA M1 RT L 

gyrA M1 RT R 

CGACTTGTCTGAACGCCAAAGT 

ATCACGTTCCAAACCAGTCAAAC 

    (128) 

    (128) 
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Target PCR Primers Sequence (5’-3’) Reference 

hasA 

 

ptsI 

 

 sagA 

 

 sic 

 

sof 

 

speB 

hasA M1 RT L 

hasA M1 RT R 

ptsI M1 RT L 

ptsI M1 RT R 

sagA M1 RT L 

sagA M1 RT R 

sic M1 RT L 

 sic M1 RT R 

  sof M28 RT L2  

  sof M28 RT R2 

  speB M1 RT L 

  speB M1 RT R 

CGACTTGTCTGAACGCCAAAGT 

ATCACGTTCCAAACCAGTCAAAC 

CGGAAACCAAGGAATGGAT 

TGGCAAACCTGTTGTGGTT 

GCTACTAGTGTAGCTGAAACAACTCAA 

AGCAACAAGTAGTACAGCAGCAA 

AAGCCAGCTGAAAACCCTCTATC 

CCTCGTGTGCCAGAAAAACC 

CTCATCACTTGCCTGCATCTG 

AACCTGCAGCTCCAATAATTGTTAG 

GGTAAAGTAGGCGGACATGCC 

CACCCCAACCCCAGTTAACA 

 (128)  

  (128)  

   (152) 

   (152) 

   (145) 

   (145) 

   (156) 

   (156) 

(128) 

(128) 

(156) 

(156) 
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Chapter 3:  PTS represses SLS activity and lesion severity 

during soft tissue infection 

 

3.1 Introduction 

The ability to obtain essential nutrients during an infection is critical for bacterial 

pathogens to successfully colonize and proliferate within host tissues. One such key 

process involves the ability to import and catabolize optimal carbon sources such as 

carbohydrates. Bacteria have evolved elegant regulatory pathways to regulate their 

metabolism based on the presence of preferred carbohydrates (4,31). In fact, many 

pathogens tightly control the genes involved in carbohydrate utilization and 

regulation in response to in vivo growth and these same genes have been shown to be 

important to the disease process (6,129,157-160). Therefore, it is apparent that 

bacterial pathogens have closely linked their sugar metabolic sensing networks to 

virulence gene expression during infection. 

 

Many Gram-positive pathogens including Streptococci, transport several sugars by 

the PTS which concomitantly catalyzes the phosphorylation and translocation of 

mono- and disaccharides via a chain of enzymatic reactions that transfer a phosphate 

group from PEP to the incoming sugar.  The process was explained in details in 

Chapter 1 section 1.1. PTS-mediated signaling can also influence virulence gene 

expression in Gram-positive pathogens including the species of Streptococcus, as 

already mentioned in Chapter 1, section 1.7. The PTS is also involved in CCR via 

Hpr kinase (HprK)-mediated phosphorylation at ser-46 of Hpr in Gram-positive 
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bacteria. In the presence of glucose, P~ser-Hpr interacts with the catabolite control 

protein CcpA to mediate CCR (4,32). In addition to its central role in CCR, CcpA has 

been shown to be important for the virulence of a number of important Gram-positive 

pathogens (137,145,146,161-163). CcpA-independent pathways for CCR also exist in 

S. mutans, which is exerted through a network of PTS permeases (164). Thus, the 

sugar status of the bacterial cell can have a profound impact on virulence and 

expression of important virulence phenotypes in Gram-positive pathogens.  

 

As already stated in Chapter 1, section 1.9, GAS is an important human pathogen that 

is responsible for numerous diseases with diverse clinical outcomes. The clinical 

impact of GAS is based largely on its ability to produce a large array of surface 

exposed (e.g., M protein, capsule) and secreted (e.g., Streptolysins SLS and SLO, and 

SpeB protease) virulence factors that contribute significantly to its pathogenesis. 

Global regulatory networks such as CcpA and the two-component system CovR/S 

coordinate virulence genes regulation in response to changing host environments. 

Genes involved in carbohydrate uptake and utilization are up regulated in vivo and 

contribute to virulence in GAS models of infection (144-146,165). CcpA-mediated 

CCR regulates over 6% of the genome, including indirectly repressing transcription 

of the sag operon encoding SLS (137,145,146).  

 

Despite the increasing evidence that carbohydrate utilization influences GAS 

pathogenesis, the role of PTS transport and signaling in disease progression has not 

been investigated. In this study, we characterize the PTS pathway in multiple strains 
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of GAS by creating a deletion mutant of ptsI (EI), the first protein of the 

phosphorelay. We show that a functional PTS is not necessary for eliciting a GAS 

subcutaneous soft tissue infection. However, it does limit lesion severity at the site of 

subcutaneous infection in mice by regulating the temporal expression level of SLS. 

Thus, PTS transport and signaling contributes to GAS pathogenesis. 

3.2 Results 

3.2.1 GAS EI mutant (ΔptsI) is defective for growth in several 

carbohydrates.  

To assess the role of the PTS in GAS, an EI mutant (ΔptsI) was constructed in the 

M1T1 strain MGAS5005 (Table 1), a representative strain of the most common GAS 

serotype associated with severe invasive disease worldwide (73). The genetic 

composition of the PTS in GAS is comparable to that found in many bacterial species 

(4). The ptsHI genes are typically found in an operon and are highly conserved 

among low G+C Gram-positive bacteria, including multiple species of Streptococcus 

(Fig. 3A). We replaced wild type ptsI with an in-frame deletion (ΔptsI) containing a 

non-polar aad9 spectinomycin resistance cassette (166) in the MGAS5005 genome 

(Fig. 3A). The resulting MGAS5005.ΔptsI mutant (Table 1) was verified by PCR 

(data not shown). Although MGAS5005.ΔptsI had a slightly increased lag phase 

compared to wild type in rich THY media, the growth kinetics were comparable (data 

not shown).  
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Figure 3: Construction of ∆ptsI mutant and ∆ptsIc of MGAS5005.  (A) Schematic 
of ptsHI genomic region from GAS MGAS5005 with putative Ppts promoter (arrow) 
driving transcription of ptsH (Hpr) and ptsI (EI). The ∆ptsI region (black bar) was 
replaced with a non-polar aad9 cassette (spectinomycin-resistance). The region 
amplified for qRT-PCR analysis is shown (dashed line). (B) Single crossover 
integration of plasmid carrying 3’ptsH and full-length ptsI to complement ΔptsI 
(striped) in MGAS5005. The homology region consists of ~300bp of 3’ region of 
ptsH. The integration yields MGAS5005.ΔptsIc 
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Growth of the parental MGAS5005 and the MGAS5005.ΔptsI mutant was further 

analyzed by phenotypic microarray (BIOLOG) using the carbon panels PM1 and 

PM2, which contain a total of 95 different carbon sources. Each well was inoculated 

with either strain and the plates were incubated at 37ºC in an Omnilog plate incubator 

for 48 hours to allow generation of independent metabolic curves (Fig. 4). Each curve 

is plotted over time on a y-axis that represents random numbers called as omilog 

values (ov). For this assay, we devised a scoring scheme, where ‘+’ represents 

utilization (ov ~ 200 and over), +/- represents a weak utilization (ov ~125-200) and a 

‘-‘ for no utilization (ov ~<125). It was found that 45 carbon sources were able to 

support MGAS5005 metabolism (Table 3). Of these 45 carbon sources, the ∆ptsI 

mutant showed poor or no utilization of 19 (Table 3), including both PTS-transported 

(bold) and non-PTS-transported sugars.  
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Figure 4: Carbon phenotype microarray panels using BIOLOG.  Metabolic 
curves generated using carbon panels 1 (top) and 2 (bottom) by BIOLOG at the end 
of 48 hours. Black curves represent wild type MGAS5005 and red curves represent 
∆ptsI mutant. 

 

B. 

A. 
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Table 3: Metabolism of MGAS5005.∆ptsI in various carbon sources by BIOLOG 

Carbon Source Panel and well  MGAS5005  MGAS5005.∆ptsI 
      D-galactose PM1-A6 + - 
      D-trehalose PM1-A10 + - 
      D-fructose PM1-C7 + - 
      D-mannose   PM1-A11 + - 
      α-D-lactose PM1-D9 + - 
      sucrose PM1-D11 + - 
      maltotriose PM1-E10 + - 

 salicin PM2-D2 + - 
      β-methyl-D-glucoside PM1-E8 + - 
      L-lactic acid PM1-B9 +/- - 
      D-glucose-6-phosphate PM1-C1 +/- - 
      thymidine PM1-C12 + - 
      lactulose PM1-D10 +/- - 

D-fructose-6-phosphate PM1-E4 + - 
      N-acetyl-β-D-mannosamine PM1-G8 + - 
      α-cyclodextrin PM2-A3 + - 
      β-cyclodextrin PM2-A4 +/- - 

5-keto-D-gluconic acid PM2-E12 + - 
      glycerol PM1-B3 + - 
      L-arabinose PM1-A2 + + 
      N-actetyl-D-glucosamine PM1-A3 + + 
      D-xylose PM1-B8 + + 
      D-ribose PM1-C4 + + 
      α-D-glucose PM1-C9 + + 
      maltose PM1-C10 + + 
      uridine PM1-D12 + + 
      adenosine PM1-E12 + + 
      inosine PM1-F12 + + 
      L-lyxose PM1-H6 + + 
      pyruvic acid PM1-H8 + + 
      dextrin PM2-A6 + + 
      glycogen PM2-A8 + + 
      β-D-allose PM2-B3 + + 
      D-arabinose PM2-B5 + + 
      2-deoxy-D-ribose PM2-B9 + + 
      D-fucose PM2-B11 + + 

3-O-β-D-galactopyranosyl-  
arabinose 

PM2-B12 + + 

3-methyl-glucose PM2-C8 + + 
      palatinose PM2-C12 + + 

 L-sorbose PM2-D4 + + 
      D-tagatose PM2-D6 + + 
      turanose PM2-D7 + + 

D-glucosamine PM2-E5 + + 
oxalomalic acid PM2-F5 + + 

      dihydroxyacetone PM2-H9 + + 
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Carbohydrate-specific phenotypes observed by phenotype microarray were confirmed 

by growth assays in chemically defined medium (CDM) supplemented with 1% w/v 

of certain carbohydrate sources as the sole carbon source. MGAS5005.ΔptsI showed 

comparable growth to MGAS5005 (wild type) when grown in CDM supplemented 

with 0.5% glucose (Fig. 5A). However, MGAS5005.ΔptsI was unable to grow when 

the PTS-transported sugars sucrose and fructose (Fig. 5BC, Table 3) or lactose, 

galactose, trehalose, and mannose were tested using CDM (data not shown, Table 3).  

These results strongly support the conclusion that MGAS5005.ΔptsI lacks a 

functional PTS.  

 

The inability of the ∆ptsI mutant to metabolize some non-PTS sugars (Table 3) 

indicates the importance of a functional PTS for uptake and utilization of non-PTS 

sugars. In addition to the defined medium, C medium was also used for growth 

analysis. C medium consists of 0.5% (wt/vol) proteose peptone no. 3 (Difco), 1.5% 

(wt/vol) yeast extract (Difco), 10 mM K2HPO4, 0.4 mM MgSO4, and 17 mM NaCl 

(pH 7.5). Unlike THY medium, C medium does not contain glucose and is rich in 

peptides and poor in carbohydrates (148). The growth kinetics observed with 

MGAS5005 and MGAS5005.ΔptsI were similar, however, the ΔptsI strain did not 

reach the final absorbance value as high as the wild type (Fig. 5D).  To confirm that 

the growth defect phenotype was specific to the ΔptsI allele, we generated a 

complemented ΔptsI strain by introducing a wild type ptsI allele into the chromosome 

of MGAS5005.ΔptsI (MGAS5005.ΔptsIc, Table 1) (Fig. 3B). The MGAS5005.ΔptsIc 
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complemented strain showed a growth profile in all PTS specific sugars comparable 

to wild type MGAS5005 (Fig. 5BC, data not shown).  
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Figure 5: Growth analysis of MGAS5005, ∆ptsI in CDM.  Growth curve of wild 
type MGAS5005 (squares), ∆ptsI mutant (grey circles) and complemented ∆ptsI 
(triangles) in CDM supplemented with (A) 0.5% (w/v) glucose (B) 1% (w/v) sucrose 
or (C) 1% (w/v) fructose is shown. (D) Growth curve of wild type MGAS5005 
(squares) and ∆ptsI mutant (grey circles) in C medium. Data is representative of three 
independent experiments. 
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3.2.2 ΔptsI mutant shows increased soft tissue damage in a mouse model 

of GAS soft tissue infection.  

The role of EI (ptsI) and the PTS in GAS virulence was assessed using a murine 

model of streptococcal soft tissue infection. MGAS5005 and MGAS5005.ΔptsI were 

grown to late exponential phase and then injected subcutaneously (~3 x 108 CFU) 

into the haunches of 5-6 week old, female CD1 mice. For 7 days post infection, the 

progression of disease was monitored for both lesion size (at 38 hours post infection) 

and survival. Mice infected with wild type MGAS5005 developed purulent abscessed 

lesions with minimal ulceration after 38 hours (Fig. 6A). In contrast, mice infected 

with a comparable dose of MGAS5005.ΔptsI developed lesions at 16 hours 

equivalent in size to wild type at 38 hours, and these lesions became fully ulcerative 

by 24 hours post infection. The visual difference in both the size and severity of 

lesions between the wild type and the ΔptsI mutant at 38 hours post infection was 

quite striking (Fig. 6A). This coincided with a significant increase in the mean lesion 

size for mice infected with MGAS5005.ΔptsI compared to MGAS5005 measured at 

the same time post infection (Fig. 6B). Interestingly, a corresponding increase in 

lethality over 7 days was not observed in mice infected with MGAS5005.ΔptsI, 

suggesting there was no enhancement of dissemination from the skin or in systemic 

lethality (Fig. 6C). Thus, the ΔptsI mutant exhibits a hypervirulent phenotype at the 

site of infection compared to wild type; however, systemic progression and lethality 

are not altered.  
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Figure 6: Effect of M1T1 MGAS5005 ∆ptsI mutant in mouse model of GAS 
infection. Mice were inoculated s.c. with ~3 x 108 CFU and monitored over 7 days 
(A) Representative images of mice infected with wild type MGAS5005 (left) or the 
∆ptsI mutant (right) at 38 hours post infection. (B) Lesion sizes measured in mice 
infected with MGAS5005 (black) and ∆ptsI mutant (red) at 38 hours post infection.  
One of two independent experiments is shown (total n = 40).  Each point represents a 
single animal and bars indicate the statistical mean. Significance was determined by 
unpaired two-tailed t test. (C) Survival plot of mice infected with MGAS5005 or its 
∆ptsI mutant over the course of 7 days. Significance was determined by Kaplan-
Meier survival analysis and log rank test.  (* p≤0.05, ** p≤0.01, *** p≤.001; NS, not 
significant). 
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3.2.3 ΔptsI mutant exhibits comparable phenotype in multiple M1T1 

GAS strains.  

To explore the role of EI in different genetic backgrounds, we constructed 

independent ΔptsI mutants in two additional M1T1 strains, 5448 and 5448AP (covS), 

with the same mutagenic plasmid used for MGAS5005.ΔptsI (Table 1). Furthermore, 

these ΔptsI mutants exhibited growth defects when grown in CDM supplemented 

with PTS sugars identical to that seen for MGAS5005.ΔptsI (Fig. 7). Finally, similar 

growth phenotypes were observed in at least two independently isolated 

MGAS5005.ΔptsI, 5448.ΔptsI and 5448AP.ΔptsI mutants. Thus, biologically 

independent ΔptsI mutants exhibit comparable phenotypes in multiple M1T1 

backgrounds. We also tested the 5448.ΔptsI and 5448AP.ΔptsI mutants and their 

respective parental strains in the murine model of streptococcal soft tissue infection 

(Fig. 8). As seen with MGAS5005.ΔptsI, mice infected by either ΔptsI mutant 

exhibited a more severe (Fig. 8A) and significantly larger (Fig. 8B) ulcerative lesion 

at 38 hours post infection compared to infection with its parental strain. In contrast to 

MGAS5005.ΔptsI and 5448AP.ΔptsI (covS mutants), only mice infected with 

5448.ΔptsI (intact covS) showed a significant increase in systemic lethality compared 

to wild type (Fig. 8C). These data suggest that EI is important in controlling virulence 

at the site of localized skin infections, as well as serving a CovS-dependent role in 

limiting dissemination to sterile sites of the body.  
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Figure 7: Growth curve of additional M1T1 strains in CDM.  Wild type GAS 
(black circles) and their corresponding isogenic ∆ptsI mutant (grey circles) in M1T1 
5448 (A, B) and 5448AP (C, D).  GAS cells were grown in CDM supplemented with 
either 0.5% (w/v) glucose (left) or 1% (w/v) fructose (right). Data is representative of 
three independent experiments. 
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Figure 8: ∆ptsI mutants of additional M1T1 GAS strains.  (A) Representative 
images of mice infected s.c. with 5448 (CovS-) and its ∆ptsI mutant (left) or 5448AP 
(CovS+) and its ∆ptsI mutant (right) at 38 hours post infection. CFU used in infection 
are indicated. (B) Lesion sizes of same strains measured at 38 hours post infection 
from a representative experiment (total n = 60). Each point represents a single animal, 
with bars indicating statistical mean. Significance was determined by unpaired two-
tailed t test. (C) Survival plot of mice infected with either wild type 5448 (left) and 
5448AP (right) in black and their corresponding ∆ptsI mutants in red. Significance 
was determined by Kaplan-Meier survival analysis and log rank test. (* p≤0.05, ** 
p≤0.01, *** p≤.001, and NS, not significant). 
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3.2.4 ΔptsI mutants exhibit expression of SLS during log phase growth.  

Several virulence factors have been associated with increased lesion size and severity 

in soft tissue mouse model of GAS infection. Streptolysin S (SLS) is a secreted 

virulence factor that contributes to the formation of lesions in soft tissue models of 

mouse infection and GAS virulence in general (106,113,114). Biosynthesis and 

secretion of SLS in GAS requires the 9-gene sag operon, with sagA encoding the 

toxin precursor and the first position in the locus (167). To determine whether the 

ΔptsI mutation affects sag operon expression, qRT-PCR was performed on the 

isolated mRNA of MGAS5005, MGAS5005.ΔptsI, and the complemented 

MGAS5005.ΔptsIc to quantify sagA transcript levels. The cells were collected at late 

exponential phase as the sag operon is maximally expressed at this point in growth. 

Changes in transcript levels greater than two-fold were considered significant. A 

modest yet significant increase in sagA transcript levels was observed in the ΔptsI 

mutants compared to their corresponding wild type strains when grown in THY (Fig. 

9A-C).  

 

SLS-specific hemolytic activity was assayed using 2.5% defibrinated sheep RBCs 

incubated with culture supernatants from the wild type MGAS5005 and mutant 

MGAS5005.ΔptsI GAS taken at 1 hour intervals across growth in THY. Addition of 

the SLS inhibitor, trypan blue, blocked all RBC lysis in each experiment, indicating 

that the observed hemolytic activity was due to SLS (data not shown). SLS hemolytic 

activity in the MGAS5005.ΔptsI mutant supernatants showed a dramatic increase 

early in logarithmic phase and remained elevated during stationary phase (Fig 9D). In 
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comparison, SLS hemolytic activity from the supernatants of wild type and the 

complemented ΔptsI showed little activity during logarithmic phase and increased to 

maximum levels at the transition to stationary phase (Fig. 9D), as previously observed 

for SLS (145). Similarly, an early onset of SLS hemolytic activity was observed for 

the in 5448.ΔptsI and 5448AP.ΔptsI mutants in comparison to their respective wild 

type strains (Fig. 9EF). These data suggest that the early onset of SLS activity during 

exponential phase growth in all three M1T1 GAS strains lacking a functional PTS 

could lead to the increased severity of localized lesions observed in mice (Fig. 6 and 

8).   

 

 

 

 

 

 

 

 

 

 

 

 



 

 71 

 

 

Figure 9: Influence of ∆ptsI on Streptolysin S (SLS) production. Transcript levels 
of sagA were measured by qRT-PCR at late-log phase in THY for wild type and ∆ptsI 
of (A) MGAS5005 (B) 5448 and (C) 5448AP. 2-fold differences in expression for 
mutant compared to wild type (dashed line) were considered significant. SLS 
hemolytic activity was measured in culture supernatants throughout growth for wild 
type (closed circles), ∆ptsI (open circles), and complement (closed triangles) of (D) 
MGAS5005 (E) 5448 and (F) 5448AP. Strains were grown in THY supplemented 
with 10% heat-inactivated horse serum. Data presented as percent hemolysis (solid 
lines) for 3 biological replicates. Representative growth is shown as dashed lines. 
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3.2.5 SLS is required for the lesion severity observed in M1T1 ΔptsI 

mutants.  

The role of SLS in the hypervirulence of lesions of mice infected with ΔptsI mutants 

was investigated by creating a ΔptsI sagB double mutant in MGAS5005. Inactivation 

of sagB has been shown to block SLS production in M1T1 GAS (145,167). As 

expected, a ΔptsI sagB double mutant resulted in the absence of hemolytic activity 

both on blood agar plates (Fig. 10A) and also in RBC hemolysis assays (data not 

shown) comparable to an established MGAS5005.sagB mutant (Fig. 10) (145). To 

investigate the role of SLS in vivo, MGAS5005, MGAS5005.ΔptsI, and the 

MGAS5005.ΔptsIsagB double mutant were tested in the murine model of 

streptococcal soft tissue infection (Fig. 10BC). Despite the absence of a functional 

PTS, the ΔptsI sagB double mutant lacking expression of SLS produced purulent 

lesions of the size and severity comparable to the wild type strain and not the ΔptsI 

mutant (Fig. 10BC). These results strongly suggest that early expression of SLS 

during growth is the primary factor responsible for the increased lesion size and 

severity observed upon subcutaneous infection of mice with the ΔptsI mutant. 
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Figure 10: Role of Streptolysin S in ∆ptsI increased lesion formation. (A) Zones 
of hemolysis for WT MGAS5005, ∆ptsI single mutant, ∆sagB single mutant, and 
∆sagB ∆ptsI double mutant strains on 5% sheep blood agar plates after growth at 
37°C. (B) Representative images of mice infected s.c. with WT MGAS5005, 
MGAS5005.∆ptsI mutant, ∆sagB single mutant and ∆ptsI sagB double mutant strains. 
CFU used in infection are indicated. (C) Lesion size of same experiment measured at 
38 hours post s.c. infection of MGAS5005 (black), ∆ptsI mutant (red), ∆sagB mutant 
(blue), ∆ptsI sagB double mutant (green). Data represent two independent 
experiments and significance was determined using the unpaired two-tailed t-test (*** 
p≤ .001; NS, not significant). 
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3.3 Discussion 

Although the connections between carbon metabolism and pathogenesis in GAS have 

been recognized for many years, the contribution of the PTS pathway to GAS 

virulence had not been investigated.  In this study, we generated PTS mutants in 

multiple strains of GAS by deleting ptsI (EI) and characterized their growth profiles 

to identify the PTS-dependent carbon sources that support the growth of M1T1 GAS 

in vitro.  Importantly, a PTS mutant was still able to colonize and elicit disease in a 

murine model of disseminating soft tissue infection.  However, the PTS mutant 

resulted in a significant increase in localized lesion severity and size due to an 

increase in sag operon expression and an altered temporal expression of Streptolysin 

S (SLS).  Thus, a functional PTS appears to limit the pathogenesis of GAS during 

invasive skin infection. 

3.3.1 PTS pathway and carbon utilization in GAS 

Typically, the genes encoding general proteins, Hpr (ptsH) and EI (ptsI) are organized 

as a tightly regulated ptsHI operon (168) and this appears to be the case for GAS as 

well.  Several attempts to construct either a non-polar deletion or a polar insertion 

mutation of ptsH were unsuccessful (data not shown), suggesting that Hpr may be 

critical for GAS fitness under the conditions used here. This observation has been 

further supported by Tn-Seq essentiality studies ongoing in our lab (Le Breton and 

McIver, unpublished results). In contrast to ptsH, we were able to generate a non-

polar ptsI (EI) deletion mutant in 3 different strains of M1T1 GAS and in an M4 GAS 

strain (6), indicating that the PTS itself is not required and that Hpr appears to possess 

a separate essential function in GAS. Despite being able to make ptsI null mutations 
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in GAS, attempts to clone ptsI on a multi-copy plasmid for complementation proved 

to be difficult and we were only successful when the construct lacked a functional 

promoter.  This suggests that overexpression of ptsI can be deleterious in E.coli and 

that the ptsHI operon is likely under tight regulation.  

 

By screening with the BIOLOG phenotypic microarray platform, we established that 

45 of 190 carbon sources tested were able to support the metabolism (defined as 2-

fold over background) of the M1T1 GAS invasive throat strain MGAS5005 (Table 3). 

In contrast, Kreikemeyer et. al. identified only 21 carbon sources with BIOLOG that 

supported the metabolism (defined as >= 10% of metabolism on glucose) of the M49 

GAS "generalist" strain 591, a strain that is able to colonize both the throat and skin 

(169). Out of these 21 carbon sources, all but 5 (Tween40, Tween80, pectin, mannan, 

and gelatin) were in common with our studies in M1T1 (Table 3). An older study 

using CDM found that an M3 strain of GAS did not grow on lactose and glycerol, 

although both were found to support growth using BIOLOG (12).  The different 

metrics used to determine functional growth between the two studies could explain 

some of the disparity in carbon sources.  However, it could also indicate that 

metabolic requirements differ between strains of GAS, likely due to their varied 

tissue sites of infection.  

 

The M1T1 MGAS5005 GAS genome possesses 14 putative EII loci (170) predicted 

for the transport of specific PTS sugars, although the exact substrates transported by 

these systems has not been experimentally determined.  The isogenic ΔptsI M1T1 



 

 76 

 

MGAS5005 mutant was still able to utilize 26 of the 45 carbon sources required for 

wild type metabolism (Table 3), indicating that GAS does not need a functional PTS 

to utilize these carbon sources. However, the ΔptsI mutant did have a metabolic 

defect for 19 carbon sources (Table 3), including 8 predicted PTS-specific 

carbohydrates (galactose, trehalose, fructose, mannose, lactose, sucrose, salicin, and 

maltotriose).  

 

Growth defects in maltose and glucose were not found in our study likely due to the 

presence of non-PTS uptake systems. Transport of glucose in GAS has been shown to 

occur through both the MalE-dependent ABC transport system as well as the MalT-

specific PTS pathway (13,170). In addition to the six carbon compounds, ΔptsI 

blocked the utilization of α-glucosides (trehalose, sucrose, maltotriose), β-

galactosides (lactose, lactulose), β-glucosides (β-methyl-D-glucoside, salicin), 

cyclodextrins, lactic acid and the three-carbon compound (Table 3). The defect in the 

use of non-PTS glycerol can be explained by the fact that glycerol kinase of 

Firmicutes is phosphorylated by PEP, EI and HPr, and that this modification is 

necessary for the activation of the enzyme (171). The results suggest that the PTS 

plays a role in regulating PTS and non-PTS transport, as well as the subsequent 

utilization of these substrates in central carbon metabolism. 

3.3.2 PTS limits lesion severity during invasive skin infection in mice. 

Despite the inability to metabolize 19 PTS and non-PTS sugars (Table 3), all three 

independent M1T1 ∆ptsI mutants were able to colonize mice following subcutaneous 

inoculation and elicit both localized and systemic disease to at least the levels of their 
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parental wild type strains.  This provides strong evidence that GAS does not require a 

functional PTS or these specific sugars to infect at this tissue site and likely utilizes a 

carbon source that is not altered in the ∆ptsI mutant (Table 3).  In fact, lesion 

formation was significantly more rapid with increased necrosis and size in mice 

infected with mutant strains (Fig. 6, 8 and 10). Furthermore, mice infected by ptsI 

mutants exhibited highly ulcerative and spreading lesions that resulted in severe 

hemorrhaging and tissue damage. This is in sharp contrast to the phenotype of a ∆ptsI 

mutant in S. aureus, where virulence was attenuated compared to wild type in an 

intraperitoneal (i.p.) model of systemic infection in BALB/c mice (172). The 

difference may merely reflect the different site of infections.  Regardless, a functional 

PTS acts to limit localized tissue damage in GAS during invasive skin infection and 

this appears to be linked to the uptake and metabolism of sugars that require PTS 

transport (Table 3). 

 

Dissemination of GAS from the subcutaneous site of infection to the bloodstream and 

organs leading to lethality was not significantly altered in MGAS5005.∆ptsI and 

5448AP.∆ptsI compared to their parental strains (Fig. 6C and 8C).   Both of these 

M1T1 strains possess a mutation in the histidine kinase gene covS that is associated 

with a molecular switch to a highly invasive phenotype for GAS.  In contrast, deletion 

of ptsI in the M1T1 strain 5448 harboring a wild type covS gene exhibited a 

significant increase in systemic lethality due to dissemination (Fig. 8C) that correlated 

with the increase in lesion severity observed in all of the mutants.  Thus, there 

appears to be a potential Cov-dependent influence on the ability of a functional PTS 
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to limit systemic spread as well as localized lesion formation. At this point, we do not 

know which Cov-regulated factor(s) are involved in this dissemination phenotype.  

3.3.3 PTS represses sag expression and early SLS production 

As mentioned above, the cytolysin SLS has been shown to contribute to the severity 

of skin lesions during GAS infection in mice (106,113,114). A modest up regulation 

of sagA and increased SLS activity in the supernatants of the M1T1 ∆ptsI mutants 

early in growth correlates nicely with the rapid onset of ulcerative lesions observed in 

the mice infected with the mutants.  Importantly, inactivating sagB (an SLS-defective 

mutant) in the MGAS5005.∆ptsI background reversed this phenotype and resulted in 

localized lesions comparable to the wild type parental strain alone (Fig. 10).  These 

data strongly suggest that early expression of SLS during growth is likely the primary 

factor responsible for the increased lesion size and severity observed upon 

subcutaneous infection of mice with the MGAS5005.∆ptsI and other M1T1 strains. 

Despite the absence of SLS hemolytic activity in the ∆ptsI sagB double mutant, lesion 

formation comparable to wild type was still observed (Fig. 10).  These results suggest 

that other virulence factors besides SLS are contributing to the lesion development 

seen in the parental M1T1 MGAS5005. 

 

A similar hypervirulent lesion phenotype, albeit not as significant, was previously 

observed by our lab when a ∆ccpA mutant in MGAS5005 was tested in the murine 

skin infection model.  Importantly, this phenotype was attributed to CcpA-dependent 

overproduction of sagA and SLS (145). Other studies have actually found attenuation 

in virulence upon infection with a ∆ccpA mutant in M1T1 MGAS5005 and other 



 

 79 

 

GAS strains (137,146).  However, all studies observed an up regulation in sag operon 

transcription leading to increased SLS production in the mutants in vitro. Kietzman et 

al. showed that CcpA regulation of the sag operon in the M14 GAS strain HSC5 was 

indirect and that the repression did not appear to occur in infected skin tissue (137).  

The mechanism of indirect regulation of sag by CcpA has not been determined. 

Nevertheless, our results indicate that sag expression and SLS production are 

influenced based on carbohydrate availability. In addition to CcpA, the expression of 

sagA is under the transcriptional control of GAS global regulators such as CovRS, 

Mga, RofA, FasBCA and Nra (173). More will be discussed about this topic in later 

chapters.  

 

In conclusion, we have used PTS-defective strains of M1T1 GAS to identify the PTS 

and non-PTS carbon sources that allow these invasive throat isolates to grow in vitro.  

The ΔptsI mutants exhibited more severe and larger ulcerative lesions at the site of 

infection in a subcutaneous model of mouse infection.  This phenotype was linked to 

up regulation of sagA and early onset of Streptolysin S (SLS) activity during 

exponential phase growth in the mutant.  Infection of mice with a ∆ptsI sagB double 

mutant returned lesions to wild type levels, implicating SLS in the observed 

phenotype.  Therefore, a functional PTS is not required for subcutaneous skin 

infection in mice; however, it does limit early expression of SLS and thus the overall 

severity of lesions in vivo. 

 
 



 

 80 

 

Chapter 4: PTS influences other virulence factors associated 

with skin lesions in subcutaneous model of infection 

 

4.1 Introduction 

As already stated in chapter 1 section 1.9, group A streptococcal infections cause 

significant morbidity and mortality worldwide, making it a pathogen of global 

healthcare concern. The overall mortality rate of GAS infections is less than 0.1%, 

but the mortality rate of invasive GAS infections, which have resurged in the past 30 

years, has now increased to 25% (78). This is largely attributable to the global 

dissemination and persistence of clonal lineage of M1T1 serotype (174-177). M1T1 

clonal strains remain the most commonly isolated serotype from both invasive and 

non-invasive infections (177).  One of the many unique genomic features contributing 

to the fitness of M1T1 is the ability to switch to a hyper virulent phenotype that is 

associated with the invasive diseases. This genetic switch occurs by a spontaneous 

mutation in the covRS locus due to selection pressure by the host immune system 

(123,124). This mutation results in a non-functional CovS, however, the activity of 

the response regulator CovR is not affected (75). The covS mutation in invasive 

M1T1 shuts off cysteine protease SpeB production, while upregulating the expression 

of several known virulence factors such as hyaluronic acid (178).  CovR has been 

shown to bind to a region in the promoter region of the has operon (105,179). GAS 

strains with a functional CovR/S system produce small non-mucoid colonies, while 

CovS mutant strains produce large mucoid colonies (180). The capsule is encoded by 

the highly conserved has synthase operon consisting of hasABC, where two genes 
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(hasA and hasB) are required for biosynthesis of capsule (181). Hyaluronic acid 

capsule made by group A streptococcus is a major virulence factor and genetic 

inactivation of has genes significantly reduces virulence in multiple animal models of 

GAS infection (181-184). An important mechanism through which the capsule 

contributes to virulence is its capacity to confer resistance to complement–mediated 

phagocytic killing (185,186). Acapsular mutant strains lose their ability to resist 

phagocytic killing and have 100-fold decreased virulence in mice. In a skin infection 

model, acapsular mutants produced no lesions or minor inflammation compared to the 

necrotic lesions with purulent inflammation seen in the encapsulated strain (107,108). 

 

SpeB is a broad-spectrum cysteine protease with proteolytic activity towards ECM 

proteins (such as Kininogen, plasminogen, fibrinogen etc.), modulators of host 

immunity (such as immunoglobulins, chemokines, complement C3 etc.), and GAS 

surface and secreted proteins (such as M protein, protein H, C5a peptidase, 

streptokinase etc.)  (121). Discrepancies have been reported concerning the 

importance of cysteine proteinase for GAS disease in studies with speB mutants 

(181,187-191). Even though the role of SpeB is debated, recent evidence has 

conclusively demonstrated that SpeB is critical for the pathogenesis of severe 

invasive disease caused by GAS. Regulation of speB expression in GAS is extremely 

complicated and is governed by many factors, including environmental factors, 

growth phase, pH and salt concentration (121). SpeB expression involves multiple 

transcription factors and post-transcriptional regulation. Following translation, 

secretion and processing, the secreted protein folds into an inactive zymogen (40 
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kDa). This zymogen is enzymatically inactive and must be proteolytically cleaved to 

form an active mature form of protease (28 kDa). There has been no direct 

relationship between the presence of carbohydrates and SpeB expression, but the 

global carbon catabolite regulator CcpA positively regulates SpeB expression 

(137,139). 

 

In addition to SLS, SpeB and capsule have been reported to contribute to lesion 

severity and spread of infection in mouse models of GAS skin infection. In this study, 

we investigated the influence of the PTS on the production of the virulence factors 

SpeB and capsule during GAS infection. We show that EI alters the expression of 

both the virulence factors, but not in all M1T1 strains tested, although we do not yet 

understand that mechanism involved. Overall, our results suggest that EI, and thus the 

PTS, plays a pleiotropic role in GAS virulence. 

4.2 Results: 

4.2.1 ΔptsI reduces hasA transcription and capsule production in a CovS-

dependent manner.  

Increased expression of capsule has been associated with enhanced lesions in GAS 

skin infection models (181-184).  The small colony phenotype presented by all of the 

∆ptsI mutants on blood agar plate suggests a reduction of capsule production. The 

difference in colony size was most pronounced in the MGAS5005 background (Fig. 

11).  
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Figure 11: Streak of MGAS5005 and MGAS5005 ΔptsI.  Streak plates showing the 
small colony phenotype of MGAS5005.ptsI (right) compared to WT (left) on TSA 
blood agar plate. 
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To investigate if PTS influences hasA, the transcript levels of hasA  was quantified 

using qRT-PCR. The mRNA was extracted from wild type and the corresponding 

isogenic ΔptsI mutant from all three M1T1 grown in THY and collected at mid-log 

phase of growth as hasA gene transcripts are reported to be maximal during mid-log 

phase of growth (192). As shown in Fig. 12A, there was a significant reduction in 

hasA transcript levels in ΔptsI mutant compared to wild type MGAS5005. The same 

experiment was then repeated on RNA extracted with the cells grown in CDM + 

0.5% glucose and C media to investigate if varying the carbohydrate concentration 

has any effect on hasA transcript levels. As observed for cells grown in THY, the 

transcript levels of hasA in MGAS5005.∆ptsI were significantly reduced in both 

CDM and C media ranging from 2.5 to 4 fold (data not shown). Similarly, a 

significant reduction in the hasA transcript levels (3-4 fold) was observed in the ∆ptsI 

mutant compared to the wild type 5448AP (Fig 12C).  In contrast, a 4-fold increase in 

hasA transcript levels was observed in 5448.∆ptsI compared to 5448.  

 

In addition to the three strains of M1T1 serotype, a ∆ptsI mutant was also constructed 

in a divergent serotype M4 (GA40634). A modest but a significant reduction (2.5 

fold) was observed in hasA transcript levels (Fig. 12D).  These data suggest that a 

functional PTS is important for optimal regulation of capsule production. However, 

the phenotype appears to depend on the covS status of the cell. Capsule formation 

correlated with significant reduction in hasA transcript levels only in the ∆ptsI 

mutants of M1T1 harboring a covS mutation and M4 GAS (Fig. 12ACD).  Thus, 

reduction of capsule expression in the ∆ptsI mutants likely explains their small colony 
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size on blood agar.  

 

Hyaluronic acid capsule of GAS is a major virulence factor, contributing to 

bloodstream survival through resistance to neutrophil killing and other immune 

effectors (193). Strains deficient in capsule production are readily phagocytosed. To 

test the fitness of the ptsI mutant in human blood, Lancefield bactericidal assays were 

performed for MGAS5005, 5448, 5448AP strains. The wild type and the ptsI mutant 

strains of each were grown in freshly drawn human blood for 3 hours and measured 

for survival by calculating the multiplication factor (MF). The multiplication factor 

was calculated by dividing the CFU obtained after blood challenge by the initial CFU 

inoculated. Data are presented (Fig. 13) as percent growth in blood corresponding to 

the MF of the mutant divided by the MF of the wild type (WT) *100. The ΔptsI 

mutant strains also carrying a mutation in covS showed a ca. 30% reduction in 

survival compared with the corresponding wild type strain (Fig. 13), correlating with 

a defect in capsule formation.  
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Figure 12: Effect of ptsI mutant on hyaluronic acid capsule production.  
Transcript levels and capsule production of (A) MGAS5005, (B) 5448, (C) 5448AP, 
and (D) GA40634 compared to each respective wild type. The transcript levels (left 
column) of ptsI and hasA measured by qRT-PCR at late-logarithmic growth in THY. 
Two-fold differences in expression (dashed line) were considered significant. 
Standard error was determined from three biological replicates.  Hyaluronic acid 
production (right column) was measured using Stains-All from mid-log cells grown 
to OD600 of 0.5 and comparable cfu in THY. P values were determined using an 
unpaired two-tailed t test. **p≤0.01, ***p≤. 001; NS, not significant.  
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Figure 13: Lancefield bactericidal assay.  Lancefield bactericidal assay of wild type 
and isogenic ∆ptsI mutant following growth in whole human blood for 3 hours Data 
are represented as  relative multiplication factor.  Significance was determined using 
an unpaired two-tailed t test.  (* p≤0.05, ** p≤0.01, *** p≤.001; NS, not significant).  
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4.2.2 ∆ptsI mutant increases secretion of SpeB in a strain-specific 

manner.  

 The cysteine protease SpeB is a well-characterized secreted virulence factor that has 

been shown to be a key contributor in various models of GAS skin infection, 

including ulcerative lesion formation (113,194,195). To investigate whether the 

M1T1 ΔptsI mutants resulted in altered speB transcript levels, qRT-PCR was 

performed on mRNA isolated from wild type and the corresponding isogenic ΔptsI 

mutant from all three M1T1 strains at the transition phase of growth (maximal 

expression of speB). No significant differences (greater than 2-fold) in speB transcript 

levels were observed for any of the three ΔptsI mutants compared to their respective 

parental strain (data not shown), suggesting that transcription of speB is not altered in 

any of the mutants.  

 

Increased secretion of active mature SpeB by GAS has been shown to negatively 

effect the formation of biofilms (195-197) and can be used as an indirect reporter for 

SpeB activity.  Thus, a biofilm formation assay was performed on each M1T1 wild 

type and its respective ∆ptsI mutant.  Cells were grown in a 6-well plate and allowed 

to grow for 24 hours at 37°C and biofilm formation was quantified by crystal violet 

staining. MGAS5005.∆ptsI and 5448AP.∆ptsI, both covS mutant backgrounds, 

showed significantly less biofilm than their wild type parental strains (Fig. 14, left).  

Importantly, the reduction seen in these ∆ptsI mutants could be reversed with the 

addition of the cysteine protease inhibitor E64 (Fig. 14, left). In contrast, 5448.∆ptsI 

showed no significant difference compared to the wild type 5448.  It should be noted 
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that 5448 is reduced in its ability to form biofilm compared to MGAS5005 and 

5448AP, and an MGAS5005.∆speB control exhibited no significant difference in 

biofilm formation when compared to 5448 (Fig 14A). 

 

Secretion of SpeB into the supernatant of all three ΔptsI mutants and their wild type 

strains was assayed by western blot using a polyclonal SpeB antibody. No differences 

were observed in the amount of cell-bound SpeB of ΔptsI mutants compared with 

their corresponding wild type strain (data not shown). However, dramatically 

increased levels of secreted SpeB (both 40-kDa zymogen and 28-kDa mature forms) 

were detected in the culture supernatant of MGAS5005.∆ptsI and 5448AP.∆ptsI 

compared to their isogenic covS parental strains (Fig. 14A-C, right).  Interestingly, 

5448.∆ptsI had decreased levels of secreted SpeB compared to wild type 5448, which 

correlates with the biofilm forming ability.  Although this strongly suggests that EI 

(PTS) may reduce SpeB secretion in a CovS-dependent manner (MGAS5005.∆ptsI 

and 5448AP.∆ptsI), this does not provide a mechanism for how increased lesion 

severity occurs in 5448.∆ptsI.  
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Figure 14: Effect of ptsI mutant on SpeB.  Biofilm formation and SpeB secretion 
for MGAS5005 (A), 5448 (B), and 5448AP (C).  Quantification of biofilm formation 
(left column) was determined by crystal violet staining with and without the cysteine 
protease inhibitor E64 (333µm). P values were determined using an unpaired two-
tailed t test.  **p≤0.01, ***p≤.001; NS, not significant. SpeB secretion (right column) 
was assayed Western blot for SpeB in cell-free culture supernatants collected at early 
stationary phase. Blot was probed with anti-SpeB. The 40 kDa band is the inactive 
zymogen and the 28 kDa band is the cleaved active mature protein. 
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4.3 Discussion 

 In this chapter we explored the influence of the ptsI mutation on capsule synthesizing 

operon and the protease SpeB in multiple strains of GAS. It was found that ptsI 

mutation plays a role in the regulation of both potential Cov-dependent and strain-

specific manner. Furthermore, this work lays the groundwork for future experiments 

analyzing the influence of PTS on virulence factor regulation in GAS through 

possible interplay with the CovR/S two component system. 

4.3.1 Role of ΔptsI on capsule production:  

The appearance of a small colony phenotype on blood agar plates (Fig. 11) suggested 

a possible metabolic defect. Although, this phenotype has not been linked directly 

with a ptsI mutant so far, the appearance of small colonies on blood agar has 

previously been connected to metabolic regulators. In S. pneumoniae, for example, a 

small colony phenotype on blood agar has been previously associated with a 

carbohydrate metabolic regulator CcpA that was linked to a metabolic defect (161).  

In another study, in S. pneumoniae a small colony phenotype on blood agar plate was 

attributed to reduced transcription from the capsule locus by RegM, causing closer 

packing of bacterial cells within colonies (198). In addition, Giammarinaro et al, 

reported attenuation in mice in ΔregM background. Our results show that ptsI covS 

double mutants of MGAS5005 and 5448AP show significantly reduced transcript 

levels of hasA leading to reduced capsule production (Fig. 12AC). In addition, 

significantly reduced capsule levels were also observed in a class II M4 serotype and 

the phenotype was rescued with the ptsI complement. Taken together, this suggests 

that EI positively influences capsule production. In contrast, a modest increase in 
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hasA transcript levels and comparable capsule production are observed in the 5448 

background (Fig. 12B). However, it should be noted that due to the presence of intact 

CovS, less detectable levels of hyaluronic acid are produced (Fig. 12, right).  

 

The reduced fitness observed in blood with the ptsI mutant in MGAS5005 and 

5448AP (covS-) nicely correlates with the reduction in capsule production. Capsule 

has been previously connected to GAS resistance to killing by blood leukocytes and 

opsonization (185,199). These data suggest that a functional PTS is required for an 

optimal fitness of GAS in human blood by altering the regulation of hyaluronic acid 

production. However, this regulation seems to be dependent on the CovS status of the 

cell (Fig. 13). Aziz et al. report that the primary difference between the strains lies in 

the CovRS two- component system (200). So far, CovR is the only regulator known 

to bind directly to the promoter region of hasA. The ‘signal’ that CovS senses is still 

not known, although Mg2+ and antimicrobial peptides can induce the system 

(201,202). The CovS mutation in the invasive strains results from the selection 

pressure driven by the host immune response. Under stress conditions, CovS acts as a 

phosphatase has been reported to dephosphorylate CovR, reversing the gene regulon 

of CovR (75,203). The absence of a functional PTS results in inability to utilize a 

number of carbohydrate sources and likely acts as a stress to the cell, resulting in 

alteration of the regulation of the genes controlled by CovS. 

4.3.2 Role of PTS in SpeB secretion  

The cysteine protease SpeB is Cov-regulated and has been directly associated with 

the formation of severe lesions in skin models of GAS infection (113,194,195). Our 
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study shows that the transcription of speB is not altered in any of the ptsI mutants 

tested, but these mutations influence the secretion of SpeB in a covS-dependent 

manner. Since we did not observe a PTS-dependent effect on SpeB common to all 

three M1T1 backgrounds, does not explain the hypervirulent phenotype observed by 

the mice infected with ptsI mutant (Fig. 6,8,10). SpeB is a protease that cleaves 

surface proteins. Increased secreted SpeB levels also likely are involved in reduced 

capsule production observed. In addition to CovR/S, an array of GAS factors have 

been shown to influence speB transcription such as Srv, Rgg, RofA, and Mga (121). 

Although there is no known relation between carbon uptake and speB expression, 

expression of speB is growth-phase dependent and influenced by environmental 

factors.  In vitro, expression of speB is induced during late exponential/stationary 

phase of growth and induction corresponds with nutrient depletion (204). In our study, 

we found no alteration in the transcript levels of these regulators in the ∆ptsI mutant 

of MGAS5005 when compared to the parental wild type strain. Only RopB, CovR 

and CcpA have been shown to directly bind the speB promoter. Therefore a detailed 

study of the interplay of proteins in this region will be crucial to understand clearly 

the events that lead to speB transcription.  
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Chapter 5: Effect of PTS on the Mga virulence regulon 

 

5.1 Introduction 

In addition to classical two-component systems (TCS), GAS controls global 

regulation of virulence factors by utilizing ‘stand-alone’ regulators (132,205), 

representing transcription factors that control virulence regulons in response to the 

growth phase. Mga was the first such stand-alone regulatory network described in 

GAS and allows the pathogen to adapt and flourish in host environments favourable 

for growth (126).   The gene encoding Mga (mga) has been found in all sequenced 

GAS genomes and strains tested, exhibiting two divergent alleles (mga-1, mga-2) that 

correlate with different tissues sites of infection (206). Mga strongly activates 

transcription of a number of established virulence genes important for early 

colonization and adhesion during the exponential phase of growth (carbohydrate-rich 

conditions) and is critical for multiple pathogenic phenotypes, including biofilm 

formation, growth in whole blood, resistance to phagocytosis, and optimal virulence 

(207-210).  

 

Genes regulated directly by Mga encode mostly cell-wall attached surface molecules 

important for adherence to host tissues, internalization into non-phagocytic cells and 

evasion of the host immune responses, including M protein (emm), M-like proteins 

(arp), C5a peptidase (scpA), collagen-like proteins (scl1, sclA), fibronectin-binding 

proteins (fba, sof), and the secreted inhibitor of complement (sic) (126). Numerous 

studies using a variety of animal models of GAS disease, including mice, non-human 
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primates and zebrafish, have established that the core Mga regulon plays a critical 

role in GAS pathogenesis in vivo (85). Over 100 different serotypes of GAS have 

been identified based upon variability in the cell-surface M protein (emm gene 

product). Strains expressing class II M protein also produce serum opacity factor 

(SOF+), whereas class I GAS strain do not (SOF-) (132). Transcriptomic analyses in 

several GAS serotypes found that Mga regulates over 10% of the genome, including 

apparent indirect repression of operons encoding proteins involved in the transport 

and utilization of sugar sources (128). Thus, Mga is able to regulate genes important 

not only for virulence, but also for sugar metabolism and the catabolite control 

protein A or ccpA (211). In addition, synthesis of the Mga-regulated M protein can be 

influenced by specific sugars such as glucose (142,211). Furthermore, Mga regulon 

expression was shown to peak during the acute phase of infection in a primate model 

of GAS pharyngitis, directly correlating with carbohydrate utilization genes (210). 

Taken together, these findings suggest that Mga activity is linked to sugar 

metabolism; however, it is not clear how Mga is able to monitor the carbohydrate 

status.  

 

A recent study by Hondorp et al. demonstrated that the conserved carboxy-terminal 

region of Mga, containing a PTS EIIB-like domain, is important for oligomerization 

of Mga as well as activation of its regulon in vivo (212). In addition, an in silico 

analysis comparing Mga to proteins of known structure in the Protein Database 

(PDB) revealed two potential PTS regulatory domains (PRDs) in the central region of 

Mga with three conserved histidines; two in PRD-1 and one in PRD-2, which might 
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serve as a site of phosphorylation (Hondorp et al. 2013) (Fig.15). The resulting 

domain prediction of Mga most closely resembles that of the mannose operon 

activator MtlR from Geobacillus stearothermophilus, which is modulated via 

phosphorylation of conserved histidine residues within its PRD domains (213).   

Proteins composed of dual PRD domains include both antiterminators (e.g., LicT) and 

activators (e.g., MtlR and LicR) involved in the regulation of sugar metabolism (4). 

The predicted structure of Mga also closely resembles the B. anthracis virulence 

regulator AtxA. Activity of these PRD-containing regulators is modulated by 

phosphorylation of conserved histidine residues within their PRD domain(s) via the 

PTS phosphorelay in response to the utilization of different carbohydrate sources 

(39).   

 

In GAS and other Gram-positive pathogenic bacteria, when a favorable carbon source 

is present, carbon catabolite repression (CCR) is mediated by CcpA to prevent 

metabolism of an inferior sugar (213-215).  However, in the absence of a rapidly 

metabolizable sugar, P~his-Hpr may begin to accumulate.  Both P~his-Hpr and 

P~EIIB are also capable of phosphorylating conserved histidines within PTS 

regulatory domains (PRDs) of transcriptional antiterminators (e.g., LicT) and 

activators, (e.g., MtlR, LevR) thereby modulating their ability to regulate the 

expression of alternative sugar operons (213). Thus, the PTS provides a sophisticated 

sensory pathway for monitoring the metabolism of carbohydrates in Gram-positive 

bacterial pathogens. 
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Studies performed in our lab investigated whether the PRDs of Mga were involved in 

influencing Mga activity and, as a result, altering the Mga regulon in a the GA40634 

(M4) serotype of GAS containing the mga-2 allele. Hondorp et al. demonstrated that 

PTS phosphorylates Mga when the pathway (EI + Hpr) is reconstituted in vitro in the 

presence of radiolabelled [32 P]-PEP (Fig. 16A) (6). In addition, they showed that this 

in vitro phosphorylation by the general proteins of the GAS PTS (EI + Hpr) is 

specific to the region of Mga containing predicted PRD domains. Moreover, EI/Hpr 

mediated phosphorylation of Mga appears specific to the PRD histidines in the folded 

protein, since mutants lacking the conserved histidines or heat denatured wild type 

were not phosphorylated (6).. This phosphorylation results in inactivation of Mga as 

shown by in vitro transcription of Mga-regulated emm in the presence or absence of 

PEP  (Fig. 16B).  

 

In this study, we propose that PTS-mediated phosphorylation of Mga serves to 

modulate its activity to regulate the Mga regulon in response to the metabolic state of 

the cell. This would provide a link between the metabolic state of the cell and Mga 

regulation of virulence gene expression. 
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Figure 15: PTS pathway and alignment of Mga with PRD-containing regulators.  
(A) The phosphotransferase system (PTS) in Gram-positive bacteria couples the 
phosphorylation and import of sugars.  The general cytoplasmic enzymes (EI and 
HPr) and sugar-specific EII components form a phosphorelay to transfer phosphate 
from phosphoenol pyruvate (PEP) produced by glycolysis to the incoming sugar.  
Carbon catabolite repression (CCR) results from HPrK/P phosphorylation of serine 
46 of HPr, which then complexes with CcpA to repress target promoters via cre sites.  
HPr-His~P and EIIB~P can also phosphorylate PTS regulatory domains (PRDs) of 
sugar regulators, thereby modulating their activity.  (B) Domain alignment of GAS 
Mga with B. subtilis MtlR and B. anthracis AtxA.  EII (green), PRD (purple), DNA-
binding (red) and conserved (blue) domains are indicated with conserved histidines 
(H) and cysteines 
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Figure 16: In vitro phosphorylation and inactivation of Mga by the PTS.  
Phosphorylation was assessed by incubation of [32P]-PEP with purified His6-EI, His6-
HPr, and Mga4-His6. Reactions were then subjected to SDS-PAGE and 
phosphorimager analysis.  (A) Proteins included in each reaction are indicated; HD 
refers to heat-denatured Mga4-His6 (B) The ability of Mga to activate transcription of 
the constitutive PrpsL and Mga-regulated Pemm promoters was assessed in vitro 
immediately following phosphorylation reactions (containing or lacking PEP).  
Products of the in vitro transcription assays were then separated on a 6% sequencing 
acrylamide gel and subjected to phosphorimager analysis. Figure adapted from (6). 
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To specifically explore the role of PRD histidine residues in the PTS-mediated 

phosphorylation, a series of Mga mutants were constructed in which each histidine 

was replaced by an alanine (H204A, H270A, and H324A) to prevent phosphorylation 

or an aspartate (H204D, H270D, and H324D) to mimic the phosphorylated residue 

(Fig. 17). Double PRD1 H204/H270 mutants (A/A and D/D) and triple 

H204/H270/H324 mutants of both PRD1 and PRD2 (A/A/A and D/D/D) were also 

prepared. Plasmids expressing wild type and mutant mga4 alleles from the native 

promoter (Pmga4) were transformed into an M4 ∆mga GAS background and Mga-

regulated expression of arp and sof was assayed by qRT-PCR. None of the single 

alanine (non- phosphorylated) or aspartate (phosphomimetic) substitutions of the 

conserved histidine residues significantly altered Mga dependent arp and sof 

expression (Fig. 17) (6). The PRD1 double A/A Mga mutant exhibited a modest 

reduction in sof and arp expression; in contrast, the phosphomimetic double D/D Mga 

mutant was almost completely inactive compared to wild type (Fig. 17) (6). The 

PRD1/PRD2 triple A/A/A mutation also showed a ca. 9-fold reduction in Mga 

activity, perhaps due to structural perturbations, but not to the level of the 

PRD1/PRD2 D/D/D protein, which was similar to PRD1 D/D Mga4 (Fig. 17) (6). 

Thus, Hondorp et al. established that doubly phosphorylated PRD1 phosphomimetic 

(D/DMga4) is completely inactive in vivo, shutting down expression of the Mga 

regulon (6).  

 

Mga controls its regulon by binding to the promoters of the genes. Thus, the inactive 

D/DMga4 was thought to be unable to bind to the DNA. Interestingly, Hondorp et al., 
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also report that D/DMga4 was still able to bind DNA in vitro, but the 

homomultimerization of Mga was found to be disrupted and the protein was unable to 

activate transcription (6).  This also suggested that while all three PRD histidines of 

Mga appear to be phosphorylated, phosphoryation of PRD1 leads to inactivation of 

Mga and seems to have the most significant functional consequence for GAS as seen 

by qRT-PCR at late exponential phase of growth (Fig 17). These data suggested that 

the mutations result in changed Mga structure, thus, interfering with its activity as 

transcription factor.  Hence, it became important to understand the in vivo relevance 

of these results with a wild type Mga by PTS.   
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Figure 17: The conserved PRD1 histidines are important for M4 Mga activity in vivo.   
A) In vivo Mga activity was assessed by real-time RT-PCR analysis of arp (dark 
grey), sof (striped) and mga (light grey) mRNA.  Transcript levels that were greater 
than 2-fold different compared to wild type (dotted lines) were considered significant.  
Single mutations in Mga are indicated, along with H204A/H270A (A/A), 
H204D/H270D (D/D), H204A/H270A/H324A (A/A/A), H204D/H270D/H324D 
(D/D/D), and an empty vector (vector) in the mga4-inactivated GAS strain 
KSM547.4.  An isogenic wild type M4 strain GA40634 (WT) with vector was also 
assayed to show endogenous Mga4 (end WT) activity.   
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5.2  Results 

5.2.1 GAS EI mutant (ΔptsI) is defective for growth in several 

carbohydrates:   

To assess the role of the PTS in Mga-dependent regulation in M4, an EI mutant 

(ΔptsI) was constructed in the strain GA40634 following the same strategy as ∆ptsI 

mutants in M1T1 background mentioned in chapters 3 and 4.  Wild-type ptsI was 

replaced with an in-frame deletion (ΔptsI) containing a non-polar aad9 spectinomycin 

resistance cassette (216) in the GA40634 genome. Although wild-type GA40634 had 

a slightly increased lag phase compared to the mutant in rich THY media, growth 

kinetics of the wild type, ptsI mutant and the complemented ΔptsI strain were 

comparable (Fig. 18A).  Similar to the M1T1 ∆ptsI strains, the growth rate of 

GA40634.∆ptsI was comparable to parental GA40634 in low glucose C medium, 

except the mutant strain reached a slightly lower overall yield (data not shown). 

Carbohydrate-specific phenotypes of the wild-type GA40634 and the GA40634.∆ptsI 

mutant were analyzed by growth assays in chemically defined media (CDM) 

supplemented with various carbohydrates serving as the sole carbon source.  In CDM 

containing 0.5% glucose, GA40634.ΔptsI showed a comparable growth rate to 

GA40634, except with higher yields and no significant lag phase (Fig. 18B) The 

complemented ∆ptsI strain, exhibited similar growth rate to wild type but reached 

higher final OD (Fig 18B).  In contrast, GA40634.∆ptsI was unable to grow when the 

PTS sugars fructose, sucrose (Fig. 18CD), lactose, sucrose, galactose, trehalose, and 

mannose (data not shown) were tested. This growth defect phenotype was rescued by 

the strain containing the complemented ptsI allele as indicated by the growth profile 
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exhibited a growth profile comparable to wild type (Fig 18). This was identical to that 

found for independent ∆ptsI mutants generated in three different M1T1 GAS strains 

MGAS5005, 5448, and 5448AP (Fig 5, 7) and confirms that GA40634.∆ptsI lacks a 

functional PTS.   
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Figure 18: A ∆ptsI mutant of GAS is altered in PTS-dependent growth.  (A) 
Growth curves of wild type GA40634 (squares), GA40634∆ptsI (grey circles), 
complemented GA40634∆ptsI (triangles) in (A) THY (B) CDM supplemented with 
either 0.5% (v/v) glucose or (C) 1% (v/v) fructose or (D) 1% (v/v) sucrose. Data are 
representative of the average of three independent experiments 
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5.2.2 ΔptsI alters the Mga dependent virulence gene regulation in M4 

GAS:  

Given our hypothesis that PTS phosphorylates Mga to alter its activity, we sought to 

determine if a ∆ptsI mutant in GA40634 would exhibit Mga activity similar to the 

AAA (non-phosphorylatable) mutant strain. For this, qRT-PCR was performed on 

mRNA isolated from wild type and the ΔptsI mutant at late logarithmic phase of 

growth in both THY (rich), C media (low glucose) and CDM with 0.5% glucose, 

probing for the Mga-regulated genes arp and sof.  Relative transcript levels of 

GA40634.∆ptsI compared to wild-type GA40634 were determined, such that full 

activity gives a ratio of 1.0 and a difference of greater than 2-fold was considered 

significant (Fig. 19, dotted lines). As expected, ptsI transcript levels were reduced 2 

to 3 logs in the mutant (Fig. 19).  In addition, both arp and sof transcript levels were 

significantly reduced (3- to 10-fold) in the ∆ptsI mutant compared to wild type. 
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Figure 19: A ∆ptsI mutant of GAS alters Mga regulon in M4.  Transcript levels of 
ptsI (white) ptsIc (black), arp (striped), and sof (grey) were measured by qRT-PCR 
from late logartithmic phase cultures grown in (A) THY and (B) CDM +0.5% (v/v) 
glucose  (C) C medium for GA40634 ∆ptsI compared to GA40634. Two-fold 
differences in expression (dashed line) were considered significant. Standard error 
was determined from three biological replicates.  
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5.2.3 ΔptsI influences the Mga virulence regulon differently in M1T1 

GAS:   

We investigated the effect of a ∆ptsI mutation on Mga regulated genes by qRT-PCR 

in the mutant strains MGAS5005.ΔptsI, 5448.ΔptsI and 5448AP.ΔptsI compared to 

their respective M1T1 wild type parents. Since the strains expressing class I M 

protein do not express sof, we probed for the Mga-regulated secreted inhibitor of 

complement (sic) along with emm.  Interestingly, the effect of loss of ptsI on Mga-

regulated gene expression was more variable in the different M1T1 backgrounds.  In 

MGAS5005.ΔptsI, a significant reduction (2-3 fold) was observed for sic transcript 

levels, but not for emm transcript levels (Fig. 20A). However, no significant 

difference was seen in the transcript levels of emm or sic in 5448AP.ΔptsI when 

compared to wild type 5448AP in THY, C media and CDM (Fig 20B, data not 

shown).  

 

In contrast, 5448.ΔptsI showed a significant up regulation of emm and sic (3-60 fold) 

observed in THY along with CDM + 0.5% glucose and C media (Fig 20CDE). 

Together, these data indicate that a functional PTS influences Mga-dependent 

virulence gene expression during logarithmic phase growth in M1T1 GAS.   

However, that influence can vary considerably in different genetic backgrounds.  
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Figure 20: A ∆ptsI mutant of GAS alters Mga regulon in M1T1.  Transcript levels 
of ptsI (white) , sic (striped), and emm (grey) were measured by qRT-PCR from late 
logartithmic phase cultures grown in THY of  (A)MGAS5005∆ptsI compared to 
MGAS5005  and (B) 5448AP∆ptsI compared to 5448AP. Transcript levels of 
5448∆ptsI grown in  (C)  THY (D) CDM +0.5% (v/v) glucose  and (E) C media 
compared to 5448. Two-fold differences in expression (dashed line) were considered 
significant. Standard error was determined from three biological replicates.  
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5.3 Discussion  

There is an increasingly appreciated connection between bacterial pathogenesis and 

sugar availability during infection; however, the molecular mechanisms that might 

allow this interplay are not well understood. The finding in our lab by Hondorp et al. 

that the Mga stand-alone regulator possesses homology to PRD domains found in 

sugar-specific regulators suggested a mechanism by which Mga might link the PTS to 

global virulence regulation in GAS (209,217). Together with the Hondorp study, 

findings in this dissertation validate the hypothesis that PTS influences the Mga 

activity resulting in altered expression of its regulon. Therefore, this provides a 

mechanism whereby the pathogen could modulate expression of Mga-regulated 

virulence genes in response to environmental sugar status. 

 

While Mga regulation of target genes has been well studied, the means by which Mga 

is controlled was not understood. The predicted presence of PRD and conserved 

histidines within the domain in Mga led to the hypothesis that Mga activity could be 

regulated via PTS. For PRD-containing sugar regulators, the functional impact of 

PTS phosphorylation can be quite variable, with phosphorylation often showing 

antagonistic effects depending on which domain is targeted (213). According to 

Hondorp et al, while all three PRD histidines of Mga appear to be phosphorylated in 

vitro (data not shown), phosphorylation of PRD1 seems to have the most significant 

functional consequences for GAS in vivo.  Real-time RT-PCR analysis of a doubly 

phosphorylated PRD1 phosphomimetic protein (D/D Mga4) showed complete loss of 
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activity regardless of the phosphorylation status of PRD2 (Fig. 17), indicating that 

PRD1-mediated inactivation of Mga is dominant (6).   

 

Yet interestingly, the data also suggest that phosphorylation of PRD2 might enhance 

Mga activity.  When phosphorylation of PRD1 is prevented (in the A/A PRD1 

mutant), the detrimental effect of not being able to phosphorylate His324 in PRD2 is 

evidenced by a 2- to 3-fold loss in activity for the A/A/A mutant compared to the A/A 

background (Fig. 17) (6).  Although qRT-PCR analyses indicate that single mutations 

in PRD2 do not affect Mga activity, it is quite likely that this is an artifact of the 

multi-copy plasmid-based system employed for these experiments. Even though Mga 

levels are significantly higher than when endogenously expressed, equivalent activity 

is observed (Fig. 17), which suggests that another factor may be limiting and maximal 

activity is capped under these conditions. Therefore, even if preventing PRD2 

phosphorylation in the H324A mutant decreases Mga activity, protein concentrations 

may be high enough to compensate such that expression of the Mga regulon by the 

H324A mutant appears similar to that of the wild-type protein.  Furthermore, because 

Mga activity is already saturated in this system, the H324D phosphomimetic would 

not be expected to exhibit increased activity.  Thus enhancement of Mga activity by 

PRD2 phosphorylation may only be observed in the compromised A/A background 

(Fig. 17) or in the ∆ptsI mutant where mga is in single copy (Fig. 20). 

 

 Moreover, the results from this work show that the lack of a functional PTS in the 

GA40634.∆ptsI mutant result in decreased Mga activity (Fig. 19), suggesting that the 
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PTS can also serve a stimulatory role. In contrast to GA40634.∆ptsI, an increase in 

transcription of Mga-regulated genes was observed in 5448.ΔptsI compared to its 

parental strain 5448 (Fig. 20CDE). In addition, absence of a functional PTS did not 

seem to influence transcript levels of emm at late exponential phase in MGAS5005 

and 5448AP background. However, a modest decrease was observed in transcript 

levels of sic in MGAS5005. ΔptsI. This may suggest that Mga binds to the promoters 

of emm and sic with different affinities. 

 

In general, phosphorylation of PRD-containing sugar regulators by an inducer-

specific EIIBsugar protein inactivates the regulator while phosphorylation by EI/HPr 

enhances activity (213). Hondorp et al. found that EI/HPr phosphorylates and 

inactivates Mga in vitro (Fig. 16).  Yet, because EI/HPr is known to be able to 

phosphorylate PRDs in vitro when an EIIBsugar is the in vivo phosphodonor (213), the 

specific roles of the PTS protein(s) modulating Mga activity in vivo are uncertain.  

However, the results of the GA40634.∆ptsI from this work, combined with the known 

physiology of GAS allows for speculation.  Assuming that non-phosphorylated Mga 

is active, the PRD1-phosphorylated protein is inactive (and dominant) and the PRD2-

phosphorylated species has enhanced activity, the impacts on Mga function can be 

proposed under various growth scenarios (Fig. 21).  Based on this model, the 

observed decrease in Mga activity in the ∆ptsI mutant compared to the isogenic wild 

type (Fig. 19) would only be expected to occur in the presence of glucose and absence 

of inducer if EI/HPr inactivates Mga and an EIIBsugar enhances activity.   
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In both THYB and C media, cells are growing in the presence of glucose, which 

argues that EI/HPr inactivates Mga via phosphorylation of PRD1 and EIIBsugar 

phosphorylation of PRD2 enhances activity (Fig. 21).  Hence, EI/HPr and EIIBsugar 

may modulate Mga activity in an opposite manner to that which is common for PRD-

containing sugar regulators.  However, this mechanism of control would make sense 

given the biological role of Mga in pathogenesis.  Niches where preferred PTS sugars 

are available appear to present a desirable setting for GAS colonization such that 

expression of the Mga regulon would be highly beneficial.  Under these favorable 

growth conditions, ready phosphorylation of incoming sugars would limit the 

availability of P~his-Hpr to phosphorylate and inactivate Mga; furthermore, buildup 

of serine-phosphorylated HPr may act in concert with CcpA to increase mga 

expression (218).  In contrast, carbohydrate-poor conditions may provide a signal for 

GAS dissemination in host tissues mediated by down regulation of Mga-regulated 

adherence factors.  A lack of preferred PTS sugars would lead to the accumulation of 

P~his-Hpr, which could phosphorylate PRD1 of Mga, thereby precluding the 

formation of active multimers and shutting down expression of the Mga regulon (Fig. 

21).  Thus while these results allow us to speculate on the nuances of the mechanism 

in M4 GAS, the mechanism seems to be different in M1T1. Furthermore, the 

influence of phosphorylation by PTS on modulation of Mga activity in the strain with 

the presence of an intact CovS (5448), appears to be opposite. Nevertheless, this 

study clearly shows that the PTS plays direct role in regulation of Mga activity and 

virulence of the pathogen. 
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Figure 21: Model for PTS/Mga interactions in M4 in vivo.  (A) Predicted 
availability of phosphate for transfer to Mga by either EI/Hpr or a sugar-specific EIIB 
component when growing in the presence or absence of a preferred sugar source (i.e., 
glucose) and/or an EIIB-specific inducer sugar.  In the absence of glucose, EI/Hpr can 
phosphorylate PRD domains, whereas it cannot in its presence.  Phosphorylation of 
PRD domains by a cognate EIIB protein would only occur in the absence of inducer.  
(B) Proposed role of PTS-mediated Mga phosphorylation on activity based upon 
sugar source in (A).  In the absence of glucose, Mga would be inactivated through 
phosphorylation of PRD1.  Inactivation of PTS (∆ptsI) would be expected to increase 
Mga-regulated expression.  With both glucose and inducer present, Mga is not 
phosphorylated at either PRD and is active.  Loss of PTS (∆ptsI) would have no 
effect.  In the presence of glucose only (THY, C media, or CDM + glucose only), 
phosphorylation of Mga PRD2 by inducer-specific EIIB leads to enhancement of 
activity.  In this case, loss of PTS (∆ptsI) would result in a decrease in Mga regulon 
expression.  Figure adapted from (21). 
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Chapter 6: Conclusions and Recommendations 

 

The Group A Streptococcus (GAS) is a fastidious microorganism that has developed 

the remarkable ability to colonize a variety of niches in the human body, including 

the respiratory tract, the skin, and the bloodstream to cause a wide array of diseases. 

GAS relies heavily on carbohydrates as its energy source and to successfully elicit 

disease. While there is increasing evidence that carbohydrate utilization influences 

GAS pathogenesis, the role of the PTS pathway had not been investigated. The PTS 

represents a carbohydrate transport system that is also important for monitoring the 

metabolic status of the cell. Evidence presented in this dissertation shows that PTS 

signaling is not only important for carbon utilization, but also contributes to the 

pathogenesis of GAS by influencing virulence factor expression and global 

transcriptional regulators. Importantly, a functional PTS appears to limit the 

pathogenesis of GAS during invasive skin infection. 

6.1 Carbon utilization by the PTS of GAS 

The PTS of Gram-positive bacteria constitute a major carbohydrate transport pathway 

as evidenced by the presence of approximately 20 different PTS-associated proteins 

in the cell. The PTS has been studied in great detail in the Bacillus species and oral 

streptococci, but prior to this study, not much was known about the PTS in GAS. The 

S. pyogenes genome encodes 14 putative EII proteins whereas the cytoplasmic 

proteins Hpr and EI are common to all the carbohydrates imported via PTS EII 

transporters. EI from different bacteria are highly homologous, and most bacteria 

have only single ptsI gene encoding for EI (2) (4). 



 

 116 

 

Deletion of EI is thought to result in a non-functional PTS pathway by disrupting the 

phosphate transfer to the histidine residue of the central regulator of carbon 

metabolism, Hpr. In this dissertation, we utilized a total of 4 GAS strains, of which 

three belong to the serotype M1T1 that is most associated with both invasive and non-

invasive diseases in North America. Of these three strains, MGAS5005 and 5448 are 

clinical isolates whereas 5448AP is an animal-passaged variant of 5448. In addition, a 

strain, belonging to a divergent serotype M4 (GA40634) was also utilized. In all the 

strains tested, it was found that the PTS is required for utilization of not only 

predicted PTS-associated carbohydrate sources, but also non-PTS carbon sources; a 

phenotype that was rescued in the complemented ptsI strain. Using the carbon panels 

by BIOLOG, it was found that, in addition to PTS-associated carbon sources, 

MGAS5005.ΔptsI also exhibited a metabolic defect that prevented utilization of 11 

non-PTS-associated carbon sources, including glycerol. Beside PTS-associated EII 

proteins, P~his-Hpr phosphorylates glycerol kinase that is necessary for the activation 

of this enzyme (171). There are additional examples of P~his-Hpr influencing the 

non-PTS associated EII’s such as the activity of non-PTS lactose permease of S. 

thermophiles is also influenced by the phosphorylation reaction of P~his-Hpr (219).  

 

Interestingly, amongst the 26 sugars utilized by the MGAS5005.∆ptsI mutant is 

glucose. This suggests the presence of a non-PTS transporter for glucose. In the 

related species S. mutans and S. salivarus, the utilization of glucose and other PTS 

sugars such as fructose and sucrose, have been reported to be PTS-independent and 

utilize an ABC- type active transport system called Msm for multiple sugar 
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metabolism (220,221). The presence of such a glucose transporter system still 

remains unknown in GAS. In L. lactis, a non-PTS glucose uptake system (GlcU) has 

been reported; however, genes encoding a homologous system are not found in the 

genomes of S. pyogenes or S. pneumoniae (222). This leads to question what 

mechanism is involved in uptake of glucose in GAS. To investigate this, further 

experimentation is required. There is a putative glucokinase gene present in the 

MGAS5005 genome that could act to phosphorylate glucose after uptake via a non-

PTS transport system. For this, growth assays in the presence of glucose as a sole 

carbon source utilizing a strain carrying mutation in glucokinase encoding gene 

would be an important future experiment. Inability to take up glucose in this strain 

would not only confirm the presence of a non-PTS transporter of glucose in GAS, but 

also indicate that PTS is not required for glucose uptake. However, if we observe 

growth on glucose in the above experiment, constructing a glucokinase and a pts 

double mutant would be crucial to investigate the presence of additional transporters 

for glucose. Furthermore, a ptsI mutant from Lactobacillus casei has been reported to 

be able to metabolize glucose (223). Therefore, the uptake of glucose in the absence 

of a PTS is not uncommon; however, the identity of the non-PTS glucose transporter 

in GAS remains to be determined.  

 

The balance between different phosphorylated forms of Hpr during growth 

contributes to the regulation of carbon metabolism in the bacterial cell. PEP-

dependent phosphorylation of Hpr by EI yields P~his-Hpr, which is required for PTS-

mediated transport of carbon sources.  When PTS substrates are metabolized, the 



 

 118 

 

level of glycolytic intermediates such as fructose-1,6-bisphosphate rises and 

stimulates HprK/P to generate P~ser-Hpr, which is required for CCR. Concomitantly, 

the rate of sugar consumption by PTS is reduced, because P~ser-Hpr is not a substrate 

for EI and does not participate in uptake of carbon sources. When the level of 

glycolytic intermediates drops and the level of inorganic phosphate rises, the 

bifunctional HprK/P catalyzes dephosphorylation of P~ser-Hpr yielding Hpr, which 

then leads to increased PTS dependent transport. In addition, carbohydrate uptake 

into Gram-positive pathogens can be regulated by several distinct mechanisms, 

including: 1) competition for a common permease, 2) inhibition by intracellular 

sugar-P, 3) inhibition by proton- electrochemical gradient, 4) PTS-mediated 

regulation, 5) competition for phosphor-Hpr, 6) regulation by ATP-dependent 

phosphorylation of a regulatory seryl residue in Hpr and 7) expulsion of intracellular 

sugars (28). It still remains a question, which of these mechanisms participates in the 

regulation of non-PTS sugars in the absence of functional PTS in GAS. 

6.2 PTS and its role in virulence of GAS 

Although EI is not essential for cell growth on a rich medium in the laboratory, a 

requirement for EI in a less friendly environment, such as during infection, cannot be 

excluded. However, little is known about the role of the PTS in bacterial virulence. 

Prior to this study, there was just one study done by Kok et al. that investigated the 

role of ptsI in a mouse model of staphylococcal disease (172). Kok et al. found that a 

ptsI mutant in the Gram-positive S. aureus was attenuated in virulence via the i.p. 

route of infection in C57BL/6 mice (172). This is in sharp contrast with our data (Fig. 

6, 8, and 10). However, the differences could be attributed to the different pathogens, 
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the route of infection chosen, or the susceptibility of different inbred mouse strains.  

For GAS, the host genetic background largely determines the susceptibility of mice to 

this pathogen (224). For this dissertation, we infected the mouse via the subcutaneous 

(s.c.) route of infection in outbred CD1 mice that represented the diversity in the 

population, thus mimicking the natural infection by GAS in the human population. 

This route also allowed us to monitor progressing of infection from localized to 

systemic. All three independent M1T1 ∆ptsI mutants were able to colonize mice 

following subcutaneous inoculation and elicit both localized and systemic disease to 

at least the levels of their parental wild type strains (Fig 6, 8, and 10).  This provides 

strong evidence that GAS does not require a functional PTS or the specific sugars 

transported by the PTS to infect at this tissue site.  The mutants likely utilize a carbon 

source that is not altered in the ∆ptsI mutant (Table 3).   

 

In fact, lesion formation was significantly more rapid with increased necrosis and size 

in mice infected with mutant strains (Fig. 6, 8, and 10). While this result was initially 

unexpected, the subsequent analysis identified that there was early production of SLS 

activity in all the ∆ptsI mutant strains tested. This potent cytolysin plays a significant 

role in pathogenesis of GAS and this hypervirulent phenotype has previously been 

observed in a ccpA mutant in the M1T1 background (145). Interestingly, Kinkel et al. 

found the entire operon encoding for SLS to be highly repressed by CcpA (145). 

Since Hpr closely interacts with CcpA to carry out CCR, it would be important to 

determine if CCR is playing a role in the phenotype observed in our study (Fig. 6, 8, 

and 10). To investigate this, sagA regulation and SLS activity in ptsI ccpA double 
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mutant will be important. However, since the CCR pathway remains intact in our 

∆ptsI mutants (Hpr Kinase, Hpr, CcpA), our findings may reflect a novel pathway for 

influencing sag expression and SLS production based on carbohydrate availability. 

Also, we cannot rule out that both CcpA and the PTS are impinging indirectly on the 

same regulatory pathway and leading to repression of SLS production. 

 

Additionally, the sag operon is also under tight regulation of the two-component 

response regulator CovR (173).  Our study suggests the effect of ptsI on SLS activity 

is CovS-independent; yet, there is published evidence that CovR regulates the sag 

operon by direct binding to the PsagA promoter (225). Thus, although we think that 

CovS is not involved, we cannot rule out a role for CovR.  Other known regulators of 

the sag operon include the PTS regulatory domain (PRD)-containing virulence 

regulators (PCVR) Mga and RofA (6). We do not understand the mechanistic details 

of how PTS influences the expression of SLS and further studies would be required to 

investigate this.  

 

In addition to the sag operon, CovR/S regulates the transcription of virulence factors 

such as capsule synthesis operon (hasABC) and cysteine protease SpeB (speB). In 

response to the stress signal sensed, CovS modulates the activity of CovR by 

phosphorylating it on an aspartate residue D53, leading to a conformational change 

and allowing binding to DNA (75). Interestingly, it has been reported that CovR 

retains some activity even in the absence of wild type CovS. This suggests a 

possibility that CovR may be modulated by kinases or phosphatases other than CovS. 
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This could involve other phosphorelay systems that interact with CovR, cross talk 

with a non-cognate histidine kinase, or, in the absence of CovS, low molecular weight 

compounds such as acetyl phosphate or carbomyl phosphate might serve as 

phosphodonors (226) (75). However, it has also shown that in order to be active, 

CovR needs to be phosphorylated. Moreover, under the general stress conditions (in 

vivo), CovS can reverse the regulation of CovR leading to derepression of virulence 

genes such as hasA and activation of speB (75).  

 

Our results indicate the influence of EI on SpeB and HasA depends on the CovS 

status of the cell (Fig. 12, and 14).  In MGAS5005 and 5448AP (strains with a 

spontaneous mutation in CovS) results in diminished SpeB secretion and derepression 

of hasA, forming a mucoid colony. Interestingly, we observe that deletion of ptsI in 

5005 and 5448AP background leads to reversing the regulation of speB and hasA by 

CovR. This may potentially suggest that in the absence of CovS, EI can possibly act 

as a kinase for CovR.  In broth, CovS responds to  recognize Mg2+ as a stimulus that 

can cause a CovS- dependent repression of has transcript but only at high non-

physiological concentration (203). EI autophosphorylates in the presence of Mg2+ and 

as evidenced by Gryllos et al., Mg2+ is a specific stimulus for CovS/R mediated 

regulation of hasABC and sag operon (227).  

 

In 5448, with an intact covS, no significant change in regulation was observed. This 

may suggest that EI can donate the phosphate to CovR only in the absence of CovS. 

While these are just speculations based on the evidence presented in this dissertation, 
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further studies need to be carried out to understand the interplay between PTS and the 

two component system CovR/S. Since we know that CovR needs to be 

phosphorylated to alter its regulon, it would be important to perform an in vitro 

phosphorylation assay that determines if CovR gets phosphorylated by EI in the 

absence of CovS. Overall, the data presented in this dissertation indicate that  

signaling through PTS might influence the expression of global regulatory networks 

affecting the expression of SLS and other virulence factors in GAS.  

6.3 PTS influences Mga regulon 

PRD regulators can be phosphorylated by the PTS components, and these 

phosphorylation events modulate their activity. All known PRD-regulators possess 

two PRDs that are phosphorylated by different PTS proteins, thereby allowing an 

input of multiple signals. In all the cases studied so far, a sugar-specific permease of 

the PTS acts as a negative effector of the PRD-containing regulators: in the absence 

of the substrate, these permeases transfer a phosphate group to the PRDs. Thus, 

phosphorylation by a specific PTS permease links the activity of PRD-containing 

regulator to the presence of a specific sugar. Many but not all regulators are 

controlled by second phosphorylation event that stimulates the activity. The second 

phosphorylation is performed by P~his-Hpr, which will be available only in the case 

of a poor carbon supply. Thus, PRD regulators are active if glucose is absent and the 

inducer is present in the medium.  

 

Even though we have proposed a model of how PTS interacts with Mga in M4 (Fig. 

21), there are a lot of details that need to be explored.  For example, what is the 
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inducer sugar for GAS, is it glucose? Which EII protein participates in the transport 

of the inducer carbohydrate? Moreover, the results obtained with M1T1 strains (Fig. 

19, and 20) do not fit this model and suggest a more sophisticated mode of control of 

Mga. It is also possible that an EIIB is playing a role in modulating Mga activity in 

one strain but not in the other. The difference may possibly depend on the varied site 

of infection. M1T1 strains belong to Class I Mga and are best known to be 

responsible for causing throat infections. In contrast, M4 belongs to Class II Mga that 

comes under the category of ‘generalists’ strains and can infect both throat and skin. 

In this study, by mutating the first protein of the PTS phosphorelay, we blocked the 

uptake of several carbohydrates. It would be important to find what carbohydrate(s) 

source acts as a signal for Mga regulation. Furthermore, it is important to ask if 

specific sugars have a unique effect on Mga through their respective EII systems. To 

answer this, it would be important to create defined mutations in the EIIs and explore 

their effect on Mga regulon along with the available PRD mutants. This will certainly 

help us define the metabolic signals that regulate Mga activity and guide us to 

understand how this relates to the in vivo environment. According to Hondorp et al., 

PRD1 appears to inhibit Mga activity; however, the role of PRD2 phosphorylation 

needs to be explored further. Orthologs of Mga have been identified in several Gram-

positive pathogens (S. dysgalactiae, S. pneumoniae, S. equi, S. gordonii, S. mitis, S. 

sanguinis, S. uberis, E. faecalis, L. monocytogenes, and B. anthracis), indicating that 

it represents an important class of regulators and PTS mediated phosphorylation 

might help understand the regulation of this class of regulators.  
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Phyre analyses also indicate that GAS RofA-like proteins (RALPs) (Chapter 1, 

section 1.11.3) have predicted domain structures that are similar to Mga and therefore 

may also function as PRD-containing virulence regulators (PCVRs). The RALPs 

represent another important family of stand-alone virulence regulators in GAS and 

other pathogenic streptococci that affect host cell attachment and avoidance of host 

cell damage as the pathogen transitions from exponential to stationary phase growth 

(132). Several RALPs are known to directly impact the expression of mga in the GAS 

cell; RofA and Nra repress the transcription of mga at this point in growth, while 

Ralp-3 and Ralp-4 (RivR) appear to enhance Mga expression and Mga-dependent 

transcriptional activation, respectively. Therefore, it is distinctly possible that direct 

interaction with the PTS also impacts the activity of the RALPs. 

 

Finally, to explore the role of PTS in carbon utilization and virulence, additional 

studies in other serotypes of GAS would be informative. Evidence presented in 

previous chapters indicates that EI (PTS) has a pleiotropic effect on GAS. Although 

this study was limited to exploring the influence of EI on three virulence factors and 

one transcriptional regulator, performing a transcriptome profiling such as RNA-seq 

would be interesting to explore the effect of PTS on a global level.  

 

In conclusion, the results of this work have identified that PTS of GAS is required for 

utilization of both PTS associated and non-PTS carbohydrates.  It was also found that 

a functional PTS influences virulence factors and transcriptional regulators important 

for pathogenesis of GAS. Thus PTS plays a pleiotropic role in GAS by impacting 
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both metabolic state and ability to cause infection, helping to adapt GAS to the 

changing environment for better survival within the host.  
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