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Abstract

Developing cryptographic key management protocols that have scalability in terms of the key storage as
well as key update communication is an important problem in many secure multicast applications [1], [9], [10].
Wong et al. [10] and Wallner et al. [9] independently presented the first set of key distribution models where the
key update communication grows as O(log N) for group of size N. However, the storage requirement of these
models were O(N). Recently [2], a new model based on clustering of the group members was proposed in order
to lower the key storage while maintaining the update communication growth as O(log V). For the new model,
by considering the product of the storage and the communication as the cost function, the optimal cluster size
M was conjectured to be M = O(log N). In this paper, we show that the optimal value of the cluster can be
computed without the product function due the monotonicity of the storage with respect to the cluster size. We
show that the optimal cluster size selection of the model in [2] can be formulated as a constraint optimization
problem, and then transform it to a fixed point equation of the form M — Alog, M = (82 — A)log, N, where
B2, A are model parameters. We first show that the largest root of this equation is the optimal solution, and
then compute it by two different techniques. We then show that the first order approximation of the solution
is of the form M = (82 — A\)log, N + Alog, log, N, leading to M ~ (82 — A) log, N for large values of N. We
make a case for use of the estimate M = (02 — A)log, N + Alog, log, N instead of M = log, N by showing
that even for group size up to 232, the value M = log, N + Alog, log, N provides significantly lower value of
key storage compared to the value M = log, N. We also show that the best estimate of M using the product
function in [2] does not exceed M = vlog, N for a constant v.
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I. INTRODUCTION

Use of multicast communications reduce the sender and the network overhead in applications where a set
of identical messages have to be sent to multiple receivers. A single message can be sent to the entire group
using the multicast communications mode. In the case of secure multicast, all the multicast group members
have to share a common session encryption key called the group key [1]-[10]. In order to protect the past,
present and future communications, the session key needs to be updated whenever a member leaves or joins
the group.

Since the session key is known to every valid member of the group, additional keys called Key Encrypting
Keys(KEKSs) need to be distributed [9], [10], [2], [4] among members for key updates under member dynamics.
When the session key has to be updated, KEKs that are shared among the valid members can be used for
encryption and transportation. The KEK distribution should be (a) scalable in key update communication
and/or key storage requirements of sender and receivers with respect to group size, (b) resistant to illegal
collaboration (collusion free) of present or past members and (c) able to guarantee that deletion of one or
more members does not invalidate the keys of valid members.

Wong et al. [10] and Wallner et al. [9] proposed the first tree based key update protocols with user storage
and the key update communications that scaled as O(log N), where N is the group size. The sender storage
requirements of these two models were O(N). The sender storage constraints were bottlenecks of this model.
In [2] a hybrid tree based scheme that reduced the sender storage from O(N) to (sub-linear) (’)(%) while
preserving the communication updates as O(log N) was proposed. This was achieved by forming clusters of
size M and then building a virtual tree of [9], [10]. By considering the product of the communication and the
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storage as the cost function, it was shown that for M = log IV, the storage requirements grow as sub-linear in
N. The value of M = log N, and the sub-linear storage were conjectured to be optimal for the hybrid scheme.

In this paper we formulate the sender storage minimization as a constraint optimization problem and show
that there are only two solutions to the constraint optimization problem. We then show that the solution is
obtained as the largest root of a fixed point equation. In computing the largest root, we show that for small
values of IV, our estimates will yield smaller storage values. We present a series approximation to the solution
and show that under first order approximation, asymptotic (large N) solution of our formulation shows that
the sub-linear solution is indeed optimal.

The paper is organized as follows: Section II presents the original tree based key distribution schemes [9],
[10]. Section IIT presents the model of Canetti et al. [2] and identifies the problem posed. Section IV shows
our formulation of the problem and the derivation of the optimal cluster size M, and the required proof of
optimality of the cluster size. Section V presents numerical comparisons of the estimates of M presented in
this paper and that in [2]. Section VI discusses the feasible maximum estimate of M for the product cost
function used in [2].

II. VirRTUuAL TREE BASED KEY DISTRIBUTION PROTOCOLS

The first use of rooted tree based key distribution approach for secure multicast communication was inde-
pendently proposed in [9] and [10]. A rooted binary tree was used in [9] and key graphs were used in [10].
Both these approaches construct a logical tree or key graph based on the size of the group without making any
assumption regarding the relationship among the keys. The group controller (GC) key storage requirements
of these two schemes grow as O(N) while the user key storage and the update communication requirements
grow as O(log N).

A. Distribution of Keys on the Virtual Tree

Root key
]

Kor Koz Koz Kos  Kos Kos Koz Kog < Leaf Keys
M, M, M, M, Ms Mg M. Mg =— Members

Fig. 1. The Logical or Virtual Key Tree of [9], [10].

The Figure 1 presents a rooted binary key distribution tree for a group with eight members. The logical
tree is constructed such that each group member is assigned to a unique leaf node of the tree. Every node of
the logical tree is assigned a key. The set of keys assigned to the nodes along the path from a leaf node to
the root are assigned to the member associated with that particular leaf node. For example, member M; in
Figure 1 is assigned key encrypting keys {Ko, K21, K1.1, Ko.1}. Since the root key K¢ is also shared by all
the members, if there is no change in group membership, Ko can be used to update the session key (SK) for
all the members.

The tree based structure also induces a natural hierarchical grouping among the members. By assigning
the members to appropriate nodes, the group controller can form desired hierarchical clusters of members
and selectively update, if needed, the keys of the group. For example, in Figure 1, members M5, Mg, M7, and
Mg exclusively share the key Kso. The GC can use the key K5 to selectively communicate with members
My, Mg, M7, and Mg. Such clustering of the members on the tree may be decided by the GC based on
application specific needs. In order to be able to selectively disseminate information to a subset of group
members, the GC has to ensure that the common key assigned to a subset is not assigned to any member not
belonging to that subset.
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Using the notation {m}x to denote the encryption of message m with key K, and the notation A — B :
{m} Kk to denote the secure exchange of message m from A to B, GC can selectively send a message m to
members Ms, - - - Mg by the following transmission:

GC — Ms, Mg, M7, Mg : {m}K2_2

If, however the key Ko is invalidated for any reason, GC needs to update the key Ky o before being able to
use a common key for members Ms, Mg, M7, and Mg. It can do so by first generating a new version of Ks s,
denoted KQ_Q, and then performing two encryptions, one with K; 3 and the other with K; 4. The following
two messages are nqeded to update key K5 to the relevant members of the group.

GC — Ms, Ms : {K22} K,
GC — M7,M8 : {KQ.Q}KIA

B. Member Deletion on Trees

Since the session key and the root key encrypting key Ko are common to all the members in the group,
they have to be invalidated each time a member is deleted. Apart from these two keys, all the intermediate
key encrypting keys assigned to the deleted member need to be invalidated. In the event there is bulk member
deletion, the GC has to (a) identify all the invalid keys, (b) find the minimal number of valid keys that need
to be used to transmit the updated keys, and (c) update the valid members with the new keys.

The general principle behind the member deletion is discussed below using member M; as example. Mem-
ber M; in Figure 1 is indexed by the set of four keys {Ko, K21, K1.1,Kp.1}. Deleting member M; leads to
invalidating these four keys and the session key, generating new keys, and updating these keys of the appro-
priate valid members who shared the invalidated keys with member M;. When M; is deleted, the following
updates are necessary: (a) all member need new root key K¢ and new session key SK, (b) members My — My
need to update {Ks1}, (¢) members M3 — My need to update {K;2}, and (d) member My needs to update
{K11}.

The re-keying problem is thus reduced in [1], [9], [10] to the problem of finding efficient key encrypting key
distributions.

Hence, the user storage as well as the update communications scale as O(log N) for the tree based schemes
in [9], [10]. However, these two approaches do not provide a mechanism for reducing the storage requirements
of the group controller. The group controller has to store all the keys corresponding to the nodes of the entire
tree. It can be shown that for any rooted tree, the storage requirement of the group controller is O(N)*.
Hence, the group controller key storage is a bottleneck in this model. For many applications with limited
storage, it is desirable to reduce the group controller storage requirements as well. We now analyze the model
presented in [2] and formulate the optimal cluster size estimation problem.

III. MODEL FOR KEY STORAGE REDUCTION

In order to reduce the storage requirements of the group controller, Canetti et al. [2] purposed to assign a
set of M members to each leaf node of the rooted trees of [9], [10]. Hence, each leaf node of the rooted tree
has a cluster of M members. Within each of these clusters, following key scheme, called the minimal storage
scheme, was proposed.

A. Minimal Storage Scheme

In the minimal storage scheme, every member needs to store only two keys. Every user holds the common
cluster key K that is shared by all the cluster members, and a unique key K, that it shares only with the group
controller. The controller uses a random seed r as an index into pseudo-random function [2] f, to generate the
key K, for member u as K, = f,(u). Under this model, when a member leaves, the center generates the new
common group key, encrypts it with the individual shared keys of the valid members and transmits. When a
member is deleted within the cluster, the group controller has to perform (M — 1) individual encryptions to
update the common cluster key.

dN—1

—— and scales as N.

'Exact value of the storage for a d — ary tree is




IEEE INFOCOM 2001 4

B. A Hybrid Scheme

The construction of a hybrid tree consists of (a) partitioning of group into clusters of size M and (b)
constructing a virtual rooted tree of degree a with N/M leafs. Each cluster is assigned to a unique leaf of the
a — ary tree. Hence, this construct builds an a — ary tree of depth log,(N/M) followed by a M — ary tree of
depth one.

The crucial observation is that by performing clustering, the height of the rooted tree has been expressed
as a function of the cluster size M. Hence, choosing the cluster size appropriately one can minimize the
number of keys to be stored by the group controller. Selection of the cluster size M should be such that the
update communication scales at least of the order of O(log N) while the key storage of the group controller
scales better than O(NN). Systematic construction of the hybrid trees is presented in [2] and is repeated in the
following steps:

o The users are partitioned into subsets of size M, denoted as U;;i =1, --

e An a — ary tree of depth log, % is constructed.

o Each subset U; of size m is assigned to a unique leaf in the a — ary tree.

o Each user subset U; of size M uses a minimal storage scheme for key assignment.

o Additional keys are assigned to each node of the a — ary tree of depth log,

Total number of keys stored by the group controller in the hybrid scheme consists of the keys corresponding
to the nodes of the tree as well as the seeds for % clusters. Counting the nodes of the a — ary tree of depth
log, & (which includes the & seeds), the storage is given by

SE

aN
S =~ @oDM (1)

When a member from cluster U; is revoked, the group center has to update the log, % keys on the a — ary
tree and also the (M — 1) cluster members with the common cluster key. The total number of update
communications is C = (M — 1) + (a — 1) log, 2.

C. Optimality Conjecture

The product of S and C was considered as the cost function in [2]. The resulting cost function denoted by F,
is given by

F = (%) (M—l—i—(a—l)log%) 2)
aN(M — 1) N aN log 2%
M M
aNlog%
M

alN +

&

It was noted in [2] hat if M = log, N, then

N
C = IOga N + (a — ].) loga m (3)
g — alN
(a —1)log, N

Hence, the update communication grows as O(log N) while the key storage of the center grows as O(%).
For the hybrid model that has the update communication growth as O(log N), the choice of cluster size
M =log, N and the corresponding storage S = % were conjectured to be optimal.

We now show how to reformulate the problem as a constraint optimization problem that results in an explicit
equation in variable M. We analyze this equation to find the optimal solution for cluster size.
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IV. REFORMULATION OF THE PROBLEM

Our approach is based on the observation that the optimal clustering problem can be restated as minimize S
such that C = O(log N).

Based on this observation, we claim that the following theorem characterizes the optimal cluster size selection
problem.

Theorem 1: Optimal cluster size M that Minimizes the storage function S = % while satisfying M — 1+
(a=1)

(a—1)log, % = O(log N) is obtained by the largest root of the equation M — Alog, M = p, where X\ = Tog, &
and g > A(1 — log, A).

We first study the behavior of the functions C' and S and then show how to convert the constraint into an
explicit equation in M.

Under the hybrid scheme, the storage is S = % The storage is a monotonically decreasing convex
function of the cluster size M. Hence, in the absence of any additional constraint, choosing M = N will yield
the minimum storage of Sy, = (afl). Figure 2 represents the storage as a function of M for N = 1000 and

different values of a.

Storage S as a function of cluster size M
T T

-=-.a=2
“““ a=7
— a=16
10°
@
@
&
j=2)
o
£
(%]
[
i=
©
S
(7]
100 L L L B ——
200 400 600 800 1000

Cluster Size M

Fig. 2. The graph of storage vs cluster size M

(a—1)

The update communication for the hybrid model is C = (M — 1) + (a — 1) log, 4. Setting A = log_q> the
update communication can be rewritten as ‘
C =M — Xlog, M + (Alog, N —1). (4)
Noting that A > 0 and taking the derivatives of C' with respect to M leads to
dCc A
-~ _1-=
dM M (5)
d*C A
fr 2 (6)
d?M  M?

The second derivative is positive independent of the values of M, whereas the first derivative changes sign at
M = X and there is only one root at the stationary point. Hence the function is convex and has a unique
minimum at M = A. The corresponding minimum value of the update communication for the hybrid model
is

Cmin = AM(1 + log, %) -1 (7)
(a=1)

log, a

Since A = is a small constant for a given a — ary tree, the minimum value of the update communication

grows as O(log N). However, the cluster size M = X leads to the key storage S = (a“j\l’) > Which grows as

O(N). Hence, when the cluster size M = A, the function C grows as log N with the smallest possible overheads
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while the storage grows as N. Figure 3 represents the update communication as a function of cluster size M
for N = 1000 and different values of a.

Communications C as a function of cluster size M
T T T

Communications C

. . . .
0 20 40 60 80 100
Cluster Size M

Fig. 3. The graph of communication vs. cluster size M.

Table 1 presents the values of storage and communication functions when M = N and M = A.
M | Storage | Communication
a
N
Since A is a constant, we note that when the communication is minimized the storage grows as a linear function
of N and when the storage is minimized communication grows as a linear function of N. Figure 4 presents

the graph of communication vs storage as a function of cluster size M, illustrating the tradeoff between C
and §. We now present the main rationale behind our solution to the problem.

Pareto Curve as a function of M
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Fig. 4. The graph of Communication vs Storage Tradeoff for binary tree

A. Solution Approach

The Virtual trees of Wong et al. [10] and Wallner et al. [9] have the update communication growth of O(log N).
Hence, any improvement to the tree scheme needs to maintain update communication growth at most as
O(log N) while trying to minimize the key storage of the group controller from O(N). This observation can
be stated as a constraint that minimize S with respect to M subject to the constraint C = O(log N). In
general, this constraint optimization can be made unconstraint optimization by constructing a cost function
using C' and S. We note that it is not necessary for this model since the storage is a monotonic function of M.
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Due to the monotonicity of the storage S with respect to the variable M, it is sufficient to find the values of M
that satisfy the update communication constraint. Since the storage is a monotonically decreasing function,
the largest value of M satisfying the update communication constraint will be the solution of this constraint
optimization.

In order to minimize the storage, we note that the logarithmic growth condition on update communication
implies that there is a pair of positive real numbers (i, B2 such that the update communication is lower
and upper bounded by f; log, N and (;log, N for all permitted values of M. This can be mathematically
expressed as:

/31 IOge N < C < /32 IOge Na (8)

Since Chpin = A(1 + log, /\) 1, choosing B = log””" will ensure that £ log, N < C.

If gy > Top ”“” , then the graph of the line 35 log, N will intersect the convex function C' at two different values.
Although all the values of M that lie between these two values of M satisfy the update communication
constraint, the largest value of M is the one that will yield the lowest value of the storage S. However, the
largest value of M satisfying the update communication constraint is also the largest value of M corresponding
to the intersection of the graph of C' and the line (5 log, N.
Hence, the optimal value of M is obtained by the equation solving for the largest value of M at the intersection
of the graph of C and line B2 log, N. Clearly, values of M at the intersecting points are given by C = 2 log, N
leading to the equation

M — Xlog, M + (Alog, N — 1) = (B21log, N 9)

This can be rewritten as

M —Xlog,M = 1+ (82— A)log, N (10)
=>M—-Alog, M = p

where g =1+ (2 — A)log, N.

B. Computing Cluster Size M

Since the function M — Alog, M + (Alog, N — 1) is convex with the minimum value A(1 + log, &) — 1, if

Ny
B2 % then the equation (9) has two solutions. Since M — Alog, M has the minimum at M = A

and XA > 0, the roots of the equatlon M — Alog, M = u lie below and above M = A. Moreover, if M > A, the
gradient of M — Alog, M is 1 — H > 0. Hence the fixed point equation

M — Xlog, M = p (11)

is a contraction mapping with the largest root as the fixed point solution if we start the iteration with an
initial value My > A. Since A\, > 0, M = p + Alog, M > p, if we set the initial value of M to be My = p,
after some algebra, a series approximation to M is given by

M =uf[1(1 ¥ (2)ilogeu>, (12)

Since A > 0 is fixed, and log, # < p as p — 00, if we denote the asymptotic value of M by M, the limiting
value is given by

00 %
. A
My = Jg;u[lﬂ*—(;)lwku) (13)
= p+Alog,
o (14)
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But My = p =~ (B2 — A\) log, N. Hence, the asymptotic value of the largest root of the equation M —\log, M =
pis My = (B2 — A) log, N.

We now show that the same results can be derived using the first order Taylor series approximation using
Newton’s method. Setting the first approximate solution to the equation M — Alog, M = p for M > X as
My = p, the first approximation is M; = u + Alog, p. This is indeed the asymptotic solution we obtained
using the fixed point iterations earlier. Letting N — oo leads to My, — p 4+ log, it = p. It can be shown that
even if the series is computed for higher order terms, for large values of N, the largest root M of the equation
M — Xlog, M = p converges to My, = p1 + Alog, 11 and grows as O(log N).

C. Computing Minimal Storage

We showed that the asymptotic value of the largest root of the equation M — Alog, M = (B2 — \) log, N is
M =p = (f2 — M) log, N by two different approaches. The corresponding value of the storage denoted S is

alN

m Sy = (@ — 1)Mx (15)
g — aN
0 (a—=D{p+ Alog, u}
aN

%

(@—1)(B2 — A)log, N
N

Hence, the constraint optimization leads to optimal growth of storage as (9(10g ~) when the update commu-
nication is constrained to grow as O(log N). We now formally state it as the proof of Theorem 1.

Proof of Theorem 1: The storage S = a_aill\gM is a monotonically decreasing function of M. We showed that
the minimal storage is obtained by the aargest cluster size M that satisfies the logarithmic growth constraint

of the update communications. We showed that to find the minimal value of the storage, the constraint on

Ny
the update communication C = M — 1+ (a—1) log, % < Bz log, N for B > % can be converted as

an equation of the form M — Alog, M = p involving the cluster size M. We then showed that this equation
has two roots and the asymptotic form of the largest root is My, = (82 — A) log, N. Hence the optimal storage
under communication constraint is S = =) ﬂ:iv)\)

log, N *

We note that the proof of the theorem 1 also completes the proof of the conjecture in [2] which stated that for
the hybrid tree based scheme with update communication growth of O(log N), the minimum value attained
by the storage is O(%).

V. NUMERICAL COMPARISONS

We formulated the storage minimization with communication constraint as an optimization problem. We did
this without choosing a pre specified cost function. We showed that the optimal cluster size M is given by
My, = p + Mlog, i which may be approximated to M = p when the value of p is significantly larger than
that of Alog, . We also showed that this approximation leads to results in [2]. We now show by numerical
illustration that the cluster size computed as M = log, N is a significant underestimation compared to
My, =log, N 4+ Xlog, log, N for group sizes ranging from few hundreds to several millions.

Ny
We recall that g = (B2 — A\) log, N where the parameter [, needs to satisfy F2 > %. Although S
can be chosen as large as possible, for simplicity, we set (02 — A) = 1 which leads to u = log, N. The optimal
cluster size in this case is M = p + Alog, p = log, N + Alog, log, V.

If we denote M* = log, N, the fraction of improvement in estimate of the cluster size is

My — M*  Xlog,log, N
M*  log,N

For a = 2, N = 2?° we compute A\ = 1.442, M* = log, N = 14, and M, = (log, N +Alog, log, N) = 18. Since
[2] uses M* for estimates, results in [2] under estimate the cluster size by 27%. Using M* leads to the storage

of § = % = 149796 keys whereas the use of M, leads to the storage of S = (e=T)(log, Naj»\i\ g, g, N) —

116508 keys. Using M* instead of My, leads to an additional 20% storage requirement.

(16)
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Similarly, for a = 4, N = 24, we compute A\ = 2.164, M* = 10, and M., = 15. The improvement in estimate
of cluster size is 50%. Using M* leads to storage of 2184 keys and the use of M, leads to storage of 1456 keys.
Using M* leads to an additional 33% storage requirement. Table 2 presents the improvement in estimates for
several pairs of (a, N). From the table 2, we also note that the use of the estimate My, = log, N + Alog, N

yields significantly lower values of keys to be stored even for group size up to
purposes, the first order estimate value M

. Hence, for all practical
= log, N 4+ Alog, N will yield minimal storage.

(a,N) % Improvement in %
(2,210) 0.40 40%
(2,21%) 0.32 32%
(2,220) 0.27 27%
(2,232) 0.20 20%
(3,210) 0.50 50%
(3,21°) 0.40 40%
(3,2%0) 0.34 34%
(3,2%2) 0.25 25%
(4,219) 0.59 59%
(4,21) 0.47 47%
(4,2%0) 0.40 40%
(4,232) 0.29 29%
Figure 5 presents the function % as a function of group size N for various values of a. The fraction

. . A(1-log, log, N)
of improvement monotonically decreases at the rate of “Nos. N?

100 to 3 million, the improvement is at least around 20%.

. However, for the group size values from

Fraction of improvement as a function of group size N
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Fig. 5. The graph of the improvement

Alog, log, N
e, N should

< e. However, if

We note that for the term Alog, IV to be negligible, the improvement in estimate given by
Alog, log, N
log. N
the value of € is small, say 1%, then the value of N needs to be extremely large even for a binary tree. For
example, letting a = 2, € = 1%, leads to the condition that bglgé%elv < 0.007. It can be checked that even
the value of N = 219 will yield the improvement of 8% for a binary tree. Hence, for all practical cases, the

estimate given by M* = log, N significantly underestimates the optimal cluster size.
In conclusion, we note that the since M, = log, N+ Alog, N is not only optimal but also yields a significantly

lower number of keys to be stored by the center. This can be verified by noting that My, > M* = ﬁ <
alN

(a—1)M*"

be negligible. If we denote the percentage improvement by €, then we require




IEEE INFOCOM 2001 10

A. Choice of the free Parameter (o

In the virtual tree scheme [9], [10], the update communication cast was log N [3]. Note that the amount of
additional update communications needed for the hybrid model is given by the parameter B2 in equation (10).
Ideally, the choice of (2 should be as small as possible to keep the update communications as close to the
virtual trees as possible. However, we note that Sy, = o= Bzaiv)\) indicates the choice of larger values

log. N
of B2 will lead to lower values of storage. We note that the parameter Gy > gg””]”\, is a design choice as in the
case of the degree a of the key distribution tree [9], [10].

VI. CHOOSING AN APPROPRIATE COST FUNCTION

When there is a tradeoff between the variables under consideration, often a cost function is constructed based
on the product of the variables or suitable functions of these variables. We now show that the value of
M* =log, N is indeed the best estimate for the product function considered in [2]. In order to show this we

N
repeat the equation (2) F' = aN + M%. Since the aim in [2] was to ensure that the growth of F' is O(N),

., aNlog, ¥ . . .
we have the constraint % = N for some non-negative real number y. This can be written as

N
M =vlog, Vi (17)
for some positive constant v. This equation can be further expanded as
M +vlog, N =vlog, N. (18)

Since N > M, log, N > log, M and v being a positive constant, v(log, N —log, M) = M > 0 as expected.
Moreover, since M > 1 for a meaningful solution, M = v(log, N —log, M) = M < vlog, N. Noting that this
equation is similar to the one we derived earlier with change of sign of the term vlog, M, we can write the
asymptotic solution of this equation as

M =vlog, N —vlog,log, N — vlog, v. (19)

From this expression, we note that the value of M is always over estimated by the amount of log, (v log, N)
if we set M = log, N. Hence, the estimate M = vlog, N is indeed the best possible estimate if we use the
product of the storage and communication of the hybrid model as the cost function. As noted earlier, even

this approximation falls short of the best possible cluster size for the hybrid model by the factor %.

VII. CONCLUSIONS

In this paper, we showed that optimal cluster size M that minimizes the key storage while preserving the
update communication of a hybrid model for secure multicast communication can be formulated as a constraint
optimization problem. We then showed that this constraint optimization problem can be converted to an
equation of the form M — Alog, N = p where X\ and p are model parameters. We also showed that the largest
root of this equation is the desired optimal solution and computed it as My, = log, N + Alog, N for a first
order approximation. We showed that as N — oo, M, = log, N and this value shows that the conjecture
in [2] is true for asymptotic values of N. We also showed that the estimate of M = log, N + Alog, log, N
produces significantly less storage even for group sizes of the order of 232,

We note that developing models that will lead to scalability of update communications lower than O(log N)
while requiring storage lower than 0(%) is a useful open problem. Such a model may require additional
relationship among the keys used. Development of such a scheme also needs to consider the collusion resistance

as a feature.
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