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While the Wronskian criterion for linear dependency for smooth (or holomorphic) func-
tions of one real (or complex) variable is taught in our undergraduate courses, the corre-
sponding result for functions of several variables does not seem to be so well-known. In
this note we describe necessary and sufficient conditions for the linear dependence of N en-
tire functions in C*, fy,..., fn, in terms of vanishing of several, conveniently generalized,
Wronskians. This criterion is also correct for meromorphic functions in open domains of
C" and sufficiently smooth functions in domains in R™.

Let Z+ = {0,1,2,...} and @ = (aj,...,an) € (Z4)" be a multiindex with |a| =

a; + --++ a,. We shall use the standard notations

o ol f o f
a f - aalzl . 8a"2n and f::;" —_ az:;n ,
where 1 < j <n and m € Z4. A determinant with the form
fl f2 “e fN
W = W"l"'O’N_1 t af).l:fl 00’1 f2 PN 00’1 fN
JON-1f, QON-1f, ... QON-1fy
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is called a Wronskian of functions fi,..., fy, where ax € (Z4)*, 1 < k< N-1. In

particular, when n = 1, the determinant

fi f20 N
(IJ\./.—I) (N-1) (N-1)
1 2 fN

is the standard Wronskian of fi,..., fy, which plays a special role in the theory of differ-
ential equations (see e.g. [BG], [CL}).

In our recent work ([BCL]) on Nevanlinna type uniqueness theorem for meromorphic
functions in C*, we need to know when N entire functions fi,..., fx are linearly depen-
dent. For n = 1, it is well known that f;,..., fy are linearly dependent if and only if the
Wronskian (1) is identically zero in C (see e.g. [K]). This result has been frequently used
in the theory of meromorphic functions of one complex variable (scc e.g. [Ch], [DY], [L],
and [N]). For several complex variables, it turns out that the conditions are Wy, ...ay_, =0
for ar € (Z4)", larx] <k, 1 <k < N — 1. Moreover, it is no loss of generality to assume

that for some fixed multiindices ax € (Z4)", |ax| <k, 1 <k <N -2,

h f2 fna
2) A | OMh 0% fy - 0" fNo £0.
rN-2fy N=2fy o.M fny
(Otherwise we just need to consider N — 1 functions fi,..., fn—1). Then the conditions

can be weakened to only n x (N — 1) Wronskians vanishing identically as shown in the

main theorem below.

We refer the reader to [Kr] for the basic facts about holomorphic functions of several

complex variables.

Theorem. Let f;...,fn be N entire functions in C* satisfying (2) for some fixed ay €

(Z)", lar) <k, 1<k <N -2 Then

fi fa N
aalfl aalfz aalfN
(3) =0
aaN“"’f] 0“”“2](2 aaN-sz
(anlfl)z,' (aalf2)::j (amfN)lj



for0 < ¢ < N-2 (0% f := f)and 1 < j < n, implies that f ..., fn are linearly dependent.

Proof. Since (3) holds and A # 0, we can find N — 1 functions Cj(z) : C* - C, 1 <5 <
N — 1, such that

IN=Cifi+ -+ Cnoifn—

(4) 0" fn=C10""fi+-- +Cn_10 fna

g2 fy = C10V-2 fy + - + CN-10%V 2 fy 1.

Moreover, we can solve this system to get

A
¢i= 2,
where A; is the determinant of the matrix by replacing the j-the column of A by the

column vector

fn
0 fn
aaN—sz
The function C; is holomorphic outside the set Z := {z € C* : A(z) = 0}. It is well-
known that Z is a 2n-dimensional measure zero closed set and does not disconnect C".
For that reason, it is enough to prove that (C¢)s;(z) = 0 for each j € {1,2,...,n} and
L€ {1,...,N — 1}, whenever A(z) # 0. This implies that C¢ will be a constant in C" \ Z.
In fact, we just need to check" ¢ = 1. Using the same method, we can deal with other Cy,

2 <{ < N -1. Now we have for each j € {1,2,...,n},

A1)y A — Ay(A)
(Cl)zj — ( 1) N l( )

Hence we just need to prove

Vv = (Al)sz - A](A)zj = 0.
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Indeed, -

v ==
N fe fn-1 fi fa fn—
0 fn 0% fy - O fN_y 0“t fy 0 fy o 0 fn
0N fw OWWrfy e OUWorfy ] N00N2fy QoWerfy e @ON-rfy,
fn fa e -1 fi f2 e -1
9™ fN o™ fz v e fN-l P L8} fl o f2 .. oo fN—-l
60N~2fN 60N—2f2 aaN—sz_l aaN—zfl aorN—zf2 aOIN-2fN_1 %
(fN)Zj (f2):,‘ (fN"‘l)Zj
O fn 0 fy o My "
\ (50N—2fN 80N—2f2 ale--'sz__1
fn fa vt
+ (aalfN)Z, (aalfQ)Zj te (6alfN—l)zj +oeee
aaN-'efN 30N-2f2 aOIN—sz_l
fn fa -1 fi -1
Lo O fy - 0Tfno O fy e 0™ faoa
(Q%N-2fN)z; (O%N-2fp);; o+ (8°N-2fn_1) ON=2fy .en GON-2fn_y
n f2 E N1 (f1)z (fo)z; - (IN-1)y
9™ fn 0%fa o O™MfN 0™ fy 0fy oo 0 fNoy
gon-2fy  QON-2fy, ... QON-2fy 0onN-2fy QON-2fy ... QEN-2fn_ 4
fi fn-1 fi fn-1 3
+ (80'1.f.1)zj Cee (601 fN’—l)Zj T af’"l.f] ‘e oo fN—l
60""-2]"1 - 50N—2fN_1 (aa”"fl)zj cen (aaw—sz_l)zj Y,

=(Ao+M+ +FAN2) A=A (To+ Ty +.-+Tn22),
the definitions of Ap and 'y, 0 < ¢ < N — 2, is clear from above.

It suffices to prove that each A;)A — ATy =0for 0 < ¢ < N —2. Let Agr, 1 <k <
N —1, be the algebraic complement minor of A¢ with respect to (9% fn)z;, (0% f2)z; 5ry

(0% fN—1):; and let yex, 1 < k < N — 1, be the algebraic complement minor of I’y with
respect to (9% fi),;, (amf.z):,.,...,(a“ffN_])z,.. Here 0% f; := f; for 1 < i < N. Clearly
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Ae1 = ve,1. Let us denote it by M. Hence we deduce that
AeA = AT = {(3% fn)o; Mo+ (3% fa)z; Mez + - + (0% fve1)z; den—1} A

— A (0% f1)e; Me + (8% f2) 5702 + -+ + (8% fN 1)z veN—1} -

(3)

We will show that

i fa fn-i fn
0™ fr 0% fa oo O fnoy 0" fn
AeA — AT = M,
(6) i aON—zfl 00N—2f2 aGN—sz__l aOrN-sz

(0% f1)s; (0% f2)y; -+ (9%fN-1)y (O%fN):;
= ]VI[V’: = lear“ah]—z&t

o,

where &¢ = a¢ + 65 with §; = (0,...,0,1,0...,0,... ,'0), which is zero by the hypothesis
(3). For this purpose, let 74, 1 < k < N, be the algebraic complement minor of 7¢ with

respect to
(0% f1)2;,(0% f2)z;, .., (0% )z,
respectively. Clearly, 74,1 = —A; and ¢, n = A. Therefore
Ve=(0%f1)z;(=01) + (0™ fa)z; Vez +-+ 4+ (0% fN-1)z; Ve,N-1 (0% fN):; AL
Now by (5), we have
AeA — AT
=My {07 f)5; A = D1(0% f1); } + (8% fa)z; {Ae2d = ve281} + -+
+ (0% fn-1)z {Ae,N—1A = e, N—101}
(1) =Me{Ve—(0"f2)z; Ve2 —(8"f3)z; V3 — - — (0% fn-1)z; VeN—1}
(0% f2)s; {Ae2d = ve2la} + - + (0% fv-1)s; {Aev—18 — ye,n-1A1}
=My Ve +(8% f2)z; {Ae2D — ve2 A1 — VeaMe} + -+

+ (0% fN-1)z; {Ae,N1D = Yo N—101 = Ve, N1 M} .
Let us define

Yo fs v
Y; 8011f3 6"‘1fN__1
Xe=\ g, Fuh . 0%
Ynoo 0%N-2fy ... JgON-2fpy

=YV + Y1+ + Y Ve + Y1V + -+ Yo PN g,
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~ e r——— .
where Yy, 0%¢ f5,...,8% fny_; mean that X, does not contain such entries and P;,0<;5<

N -2, j # £, is the algebraic complement minor of X, with respect to Yy, ..., f;g, cey YN 9.
Let

f1 f3 fN-1
o™ fy 0 fs -+ 9" fy_y
Ay o= | e —
! oce fy 0%tfs - 9oy,
goN-2fy QN-fy ... QON-2fy_,
= f1iW o+ 0% f¥ + .- + 011U,y + %+ f1Wesq +} s W2 fL W N g,
fa f3 fNn=—1
9% f, 0 fy v 0" fN-o
Y S _
2 oo f, 0atfy oo Qufn_y
aaN—2f2 3“N—2f3 C’)C'N—sz_l
= faWo + 0% foUy + - + 0% foly_ 1 + 0 folpy + -+ 0V-2fUN_,,
and
In f3 fn=
o fn 0°1 fs cen oot fN-1
As=1| o o
oot fn aoufs - aa[fN—l
T Y S I

= fNWo + 0% U+ 0% N + O Ty 4+ OV-2 TNy

It is not difficult to verify that

A =(=1)Fypa, A= (=1)'My, A= (1)1,

Thus,
Ae 2D = 21 — Ve My
fi f2 f3 fn- I
(8) oMfi  0Mfy  OMfy - O™MfNoy O fN
= (——l)e_H .
QUN-2fy QN-rfy QUN-fy ... QON-2fn_y QN2 fy
Ay As 0 0 Aj
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On the other hand, for 3 <k < N -1,

fr fa fna
o0 fi. 0! f3 0% fN-1
0=\ FR e e o
60(N-—2fk aCYN—2f3 . 8011\1—2fN_l

= fi¥o+ 0" fr¥r+ -+ 0 frlypg + 0% fr¥lppr + -+ OV 2 fr¥Nn_a.

Therefore the last line of the determinant (8) is a linear combination of the previous lines,
namely the i-th line, 1 < i < N — 1, 7 # £+ 1, multiplied by ¥;_;. By the property of

determinants, we have that
A2 — Y281 — Ve 2Me =0,

as we wanted. In other words, the second term of (7) is zero. Exactly same argument
will show that in (7) each i-th term is zero for 3 < ¢ < N — 1. Hence (6) holds, i.e.,
ApA — AT, = 0. We have thus proved that (C),; = 0 in C* \ Z. This implies that C1(2)
is a constant in C* \ 2. Using the same method, we can show that all C¢, 1 <£ <N -1
are constants in C" \ Z. By continuity, the relation (4) holds everywhere in C* with this
choice of constants.

The proof of the theorem is therefore complete. U

Corollary. Let fi,..., fn be N entire functions in C*. Then the necessary and sufficient
condition of linear dependence of these N functions is that all the Wronskians satisfy the
following conditions:

Wq

il
o

1"AN-1

for ay € (Z4)", |lak| <k, 1<k<N-1.

Proof. (Necessary conditon): The proof of the necessary conditon is immediate. In fact,

if f1,..., fn are linearly dependent then there are N constants Cy,...,Cn not all zero

such that

Cifi+ - +Cnfn=0.
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Now for any ar € (Z )", 1 < k < N — 1, we may differentiate the above identity to obtain

the following system:

Cifi+--+Cnfn=0
Ci0%fi+ -+ CnO* fn =0

ClaﬂN—-lfl o4 CNaaN-lfN = Q.

Since this system has nontrivial solution Cj,...,Cn, we must have Wy, ...an_, = 0.

(Sufficient conditon): Without loss of generality, we may assume that one of the Wronskian
of (N — 1) functions is not zero. Otherwise, we just need to consider N — 1 functions
fi,..., fn—1. Thus we may assume that for some ay € (Z4)", lax] <k, 1 <k <N ~1,
A # 0 (see (2)). Then the sufficiency follows from the above theorcm. U

Remarks.

(1). For n = 1, our condition is exactly |ax| = k, since if for some k, |ai| < k, then the

determinant equals to zero because a row is repeated. So, our condition is exactly the

usual one:
fl f2 M fx’V
(NZ1)  (N=1) . p(N-1D)
1 2 N

for linear dependence of fy,..., fn.

(2). We observe that when n > 2, we cannot replace the condition |ax| < k by the weaker

condition |a| = k. For instance, let fi = 1, f = 21, and f3 = 23 in C?, then
Wara, =0

for any |a;| = 1 and |a2| = 2, but

fi f2 f3 1 2y 2z
W5152 = (fl)zl (f2)2‘1 (f3)21 =10 1 0]=1 7_é0
(fl)zz (f2)22 (f3)zz 0 0 1
(3). In fact, the proof of our main theorem does not need to assume that fi,..., fy are en-
tire functions in C*. Exactly same argument shows that fi,..., fx can be N meromorphic

functions in a domain Q C C"*.



(4). We may just assume that fi,..., fy are functions in CV~1(), Q is a domain in R™
and then the theorem and corollary hold locally. Note that the main difference is that the
set Z :={z € R": A(z) = 0} could be disconnected in §2.

(5). After this note was written, we learned of Rotl’s work (see [C, pp. 112-113]) on
diophantine approximation where the same criteria as our corollary (not our theorem) was

"ound for raticua’ functions of several real variables by a completely different method.
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