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Passing maneuver is a complex driving maneuver and it becomes more challenging in 

oncoming traffic. In this study, a passing scenario with three vehicles is considered 

where car 1, an Autonomous Vehicle (AV), is moving behind car 2 in the same lane. 

The third vehicle is part of the oncoming traffic in the adjacent lane. The primary goal 

is to model and evaluate a measurement-based decision-making strategy for the AV 

satisfying driving safety constraints. This strategy is based on the optimal control with 

the objective to performing the passing maneuver safely. To evaluate the efficiency of 

the decision-making strategy – probability of safely completing passing maneuver, a 

model of the system was developed considering all three cars as point-masses. Two 

binary variables, each representing the collaborative nature of the cars 2 and 3, were 

defined. These variables show if the two vehicles will collaborate with the AV when 

they find out about its intention to overtake. Lastly, a sensitivity study and trade-off 

study are done to determine optimal design parameters for AV’s measurement system 

and decision-making strategy. 
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Chapter 1: Overview 

1.1.  Introduction 

Today, autonomous vehicles are the next big thing in the automotive industry. 

Principal reason to push forward the autonomous vehicles technology is to address the 

human element of dynamic driving conditions, like drunken driving and distracted 

driving as well as solve the problem of traffic congestion. One of the key maneuvers 

required to solve the problem of traffic congestion is allowing autonomous vehicles to 

pass other vehicles in traffic. The passing maneuver is especially challenging if other 

vehicles are driven by humans making the decision to pass prone to elements of human 

behavior (whether other vehicles collaborate or not), clearance distance between 

vehicles while turning and accuracy of autonomous vehicle’s measurement of the 

relative dynamics of the other vehicles. All these factors affect AVs decision to pass 

and thus, traffic flow on the road. For this thesis, passing maneuver refers to a car 1, 

the autonomous vehicle, trying to pass a vehicle, car 2, in front of it in presence of 

oncoming traffic, car 3. Clearance distance is the distance of the car 1 with other 

vehicles when it is changing lane after passing the other vehicle.  

The thesis discusses the effects of behavior of drivers of other cars, error in 

measurement of relative dynamics of other vehicles, by autonomous car, and clearance 

distance used to make the decision to pass on the trajectory of the autonomous car. The 

scenario being addressed in the thesis is shown in Figure 1. 
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Figure 1: Problem Scenario 

1.2. Relevant Work 

Studies on the passing behavior are focused on a broad variety of objectives like 

understanding human decision making in passing maneuver, classification of driver 

behavior, effects of human perception on various aspects of passing, effects of highway 

design and traffic flow rate on passing maneuver and designing driver assistance 

systems to aid passing maneuver. From human factors point of view, models have been 

built to study microscopic gap acceptance models as a function of each driver’s 

perception of the expected time-to-collision (TTC) [1] and Passing maneuver for two-

way two-lane rural highways that incorporated the effect of factors such as available 

sight distance, delay and remaining travel time until the end of the highway segment 

[2]. Online-capable model-based interaction-aware intention estimation with 

maneuver-based motion prediction based on supervised learning for dynamic 

environments has been done [3]. From point of view of highway design and effects of 

traffic flow on passing maneuver, extensive models have been developed to design and 

mark criteria for minimum Overtaking zone lengths, with traffic operational efficiency 

and safety taken into consideration. Work has been done on predicting the over-taking 

rate/zone in the opposite direction at overtaking zones using traffic and geometric 

factors [4]. Further, passing maneuver has been extensively studied, which involves 

regression models to predict the probability to end the passing maneuver with time-to-
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collision (TTC) less than 2 or 3 s gap from initiation of the maneuver to arrival of the 

opposite vehicle, and the passing duration as explanatory variables. Highway 

overtaking scenario with two units have been modelled and simulated using the vehicle 

simulator ‘vehicleSim’ which calculated the necessary brake and throttle inputs to 

match the reference signals [5]. These studies have been used to design a driver 

assistance system for an overtake maneuver on a highway [6]. Algorithms have been 

developed that would aid in improving the overall effectiveness of forward collision 

warning (FCW) systems by providing active safety system designers with further 

understanding of driver action in overtaking maneuvers [7]. These works have also 

been incorporated in the upcoming concepts of connected smart cars like evaluation of 

the effectiveness of a dedicated short-range communication (DSRC)-based wireless 

vehicle-to- vehicle (V2V) communication system, called the overtaking assistant, 

devised for improving safety during overtaking (also referred to as passing) maneuvers 

on two lane rural highways [8].  

 The work presented here draws inspiration from these works to build a 

functional architecture that can be used to evaluate the various solutions used to aid the 

car passing maneuver. 

1.3. Problem Statement 

The primary objective for car 1 is to safely pass car 2 in oncoming traffic while 

avoiding creating traffic congestion. Safety of cars means that distance between a car 

and its adjacent cars in the same lane at any time should be greater than the safe distance 

‘sd’. To achieve this objective, car 1 must first decide to pass and then, execute the 
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decision. The decision to pass means finding a feasible trajectory that car 1 can follow 

to safely execute the passing maneuver. This decision primarily depends on standard 

deviation of error in relative distance, velocity and acceleration measurements for car 

1 and predicted clearance distance of car 1 w.r.t. cars 2 and 3 while executing the 

passing maneuver.  

Based on these parameters, car 1 may or may not decide to execute the passing 

maneuver. If the decision is to execute the passing maneuver, the correctness of the 

decision is evaluated by checking the safety of the car 1 while executing the passing 

maneuver. If the car 1 safely executes the passing maneuver, the decision to pass was 

correct. From this discussion, the three metrics of interest that can be used to evaluate 

the performance of the system regarding the primary objective stated in the beginning 

of this section are – ‘probability of deciding to pass given that it is feasible to safely 

pass’ or P(A), ‘probability of deciding not to pass given that it is infeasible to safely 

pass’ or P(B) and ‘probability of safely executing the passing maneuver given that car 

1 decides to pass’ or P(C). Based on the objective stated at the beginning of this section, 

all three probabilities must be minimized.  

P(A) is the experimental probability calculated as the ratio of the count of 

instances when car 1 decided to execute the passing maneuver when it is actually safe 

to pass versus the count of instances when it is actually safe to pass. P(B) is the 

experimental probability calculated as the ratio of the count of instances when car 1 

decided not to execute the passing maneuver when it is actually unsafe to pass versus 

the count of instances when it is actually unsafe to pass. P(C) is the experimental 
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probability calculated as the ratio of the count of instances when car 1 safely executes 

the passing maneuver after deciding to pass versus the count of instances when car 1 

decides to pass.  

1.4. Contribution of Thesis 

The main contribution of the thesis is the development of a functional 

architecture of the car passing problem in SysML using Cameo Systems Modeler and 

using that architecture to structure the problem and build an integrated model to analyze 

the problem mathematically. Mathematical models of all the components of the 

problem were coded in MATLAB by the author. The architecture is modular in the 

sense that the different components can be replaced by higher fidelity models of 

different design options for that component to analyze system performance because of 

clearly defined interfaces and abstraction of allocated behaviors.  

One of the major contribution of the thesis is that car passing problem has been 

successfully addressed by showing its dependence on accuracy of measurement system 

of the vehicle and clearance distance used by the autonomous vehicle to make the 

decision to pass. To demonstrate this, a mathematical model of different components, 

including controller for autonomous vehicle, was developed in MATLAB, and 

performance of the system in terms of making the correct decision whether to pass and 

safety of the passing maneuver if it is executed, was evaluated.  

The use of model of car passing problem to identify best design options for the 

sensor systems has been demonstrated. The work also shows how MBSE approach can 

be used in context of car passing problem to facilitate managing complexity, making 

system modular while allowing design space exploration and evaluation.  
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1.5. Document Overview 

This section provides an outline of the thesis. Chapter 1 starts why the car passing 

problem should be solved, relevant work and problem statement. This is followed by 

contribution of the thesis, identification of factors and metrics. Chapter 2 goes into 

more detail about the problem scenario that is being addressed and relevant 

assumptions. Chapter 3 the provides details on the model development lifecycle 

approach and analysis approach. Chapter 4 gives the context-level architecture of the 

model used to address the car passing problem using structure and behavior diagrams. 

This is followed by description of structure, behavior, mathematical model and control 

strategy for different elements of the model – car 1, car 2 and car 3, in chapters 5, 6 and 

7. Chapter 8 describes how the model was executed, model parameters, simulation 

parameters, what data was collected and how. Chapter 9 presents the data collected, 

results, analysis and recommendation based on the results. Chapter 10 completes the 

discussion by providing conclusions and possible future work.  
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Chapter 2: Car Passing Problem 

This chapter gives details of the problem and explains associated terminologies. 

2.1. Problem Background 

Safety of the trajectory of autonomous vehicle depends on - the initial position 

and orientation of all vehicles, dynamics of the autonomous vehicle, dynamics of other 

vehicles, environmental constraints, collaboration amongst the vehicles to support the 

autonomous vehicle’s passing maneuver, clearance distance used by the autonomous 

vehicle for trajectory planning and errors in information acquired by the vehicles about 

their dynamics and dynamics of other vehicles. Aim of the experiment is to model the 

car passing scenario including a controller for the autonomous vehicle that addresses 

all these factors and demonstrate the model by performing a sensitivity study and trade-

off analyses to maximize safety for the autonomous vehicle in the passing maneuver. 

As such, Model-based Systems Engineering (MBSE) approach has been used to 

develop the functional architecture for the problem and analyze its various aspects.  

Based on the available information about the dynamics and length of all cars 

including itself and predicted clearance distance with other cars while turning, 

controller of car 1 must check the feasibility of the passing maneuver and if the 

maneuver is feasible, it generates a reference trajectory for the vehicle to follow and 

safely pass the vehicle in front of it. The reference trajectory is characterized by the 

acceleration and angular velocity of car 1 during different phases of the passing 

maneuver, time when car 1 should start to turn to move to the adjacent lane (lane in 

which car 3 is moving as shown in Figure 2) - referred to as ‘T1’ in the thesis, and 
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orientation of car 1 while turning. To execute passing behavior after determining it is 

safe to pass other cars, car 1 follows the generic trajectory shown in the Figure 2. For 

analysis, trajectory of car 1 passing other cars has been divided into six-time intervals 

or phases, also indicated in Figure 2. 

1. T0: Car 1 controller starts checking whether it is safe for car 1 to execute passing 

maneuver. 

 

Figure 2: System at t = 0 seconds with reference trajectory. 

2. T1: Car 1 controller determines it is safe to execute passing maneuver (based on 

values of measured variables at T1), followed by execution of passing behavior, i.e., 

car 1 starts turning. 

3. T2: Car 1 reaches the end of the lane (white line) and starts entering the other lane. 

4. T3: Car 1 finishes turning and starts moving straight in the lane to pass car 2. 

5. T4: Car 1 is at same position along x-axis as car 2. If car 1 has already crossed car 2 

along x-axis by the time T3, T4 is 0. 
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6. T5: Car 1 reaches the end of the lane (white line) and starts entering the right lane. 

7. T6: Car 1 finishes turning and has safely passed car 2. 

T0 to T1 is phase 1 with time spent in phase being dT1, T1 to T2 is phase 2 

with time spent in phase being dT2, T2 to T3 is phase 3 with time spent in phase being 

dT3, T3 to T4 is phase 4 with time spent in phase being dT4, T4 to T5 is phase 5 with 

time spent in phase being dT5 and T5 to T6 is phase 6 with time spent in phase being 

dT6. The model incorporated collaboration of other cars to support the passing 

maneuver on T1. The collaboration of the cars is defined in terms of cooperative driver 

and a neutral driver. A cooperative driver will slow down to support the passing 

maneuver while a neutral driver will continue at its current velocity.  Further, 

collaboration also depends on at what time do the other cars determine that car 1 is 

trying to perform passing maneuver and decide to take some action in response. 

The objective for car 1 is to safely pass car 2 in oncoming traffic while avoiding 

creating traffic congestion. To achieve this objective, car 1 must first decide to pass 

and then, execute the decision. The decision to pass means finding a feasible trajectory 

that car 1 can follow to safely execute the passing maneuver. This decision primarily 

depends on the actual initial dynamics and positions of all cars, standard deviation of 

error in relative distance, velocity and acceleration measurements for car 1, predicted 

clearance distance of car 1 w.r.t. cars 2 and 3 at T5, length of cars which is reflected 

in safety distance, maximum allowed speed on road, lane width, assumed angular 

orientation of car 1’s trajectory at T2 (θ1) and T5 (θ2), and maximum acceleration of 

car 1.  
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Based on these parameters, car 1 may or may not decide to execute the passing 

maneuver. If car 1 decides against executing passing maneuver, it can slow down traffic 

flow. The execution of the passing maneuver is characterized by acceleration and 

angular velocity of car 1 during different phases of the trajectory, angular orientation 

of car 1 at T2 (θ1) and T5 (θ2), and time spent in each phase of the trajectory. These 

are the control actions of the car 1. If the car 1 safely executes the passing maneuver, 

the decision to pass was correct. The response model diagram for the problem is shown 

in Figure 3. 

 

Figure 3: Response Model Diagram for output metrics showing factors of interest. 

2.2. Assumptions 

For the problem defined in previous section there are many assumptions. They 

are stated below. 

• All the cars have been modelled as point masses. The length of the cars is accounted 

for while considering the safety distance values.  

• There is no delay associated with calculation of control action and actuation of 

control action for car 1. 



 

 

11 
 

• Once car 1 starts executing the passing maneuver, i.e. after time instance T1, it must 

complete the maneuver. It cannot go back. 

• There is no direct communication amongst cars. The information exchange 

between cars is asynchronous and through sensing. 

• All cars must strictly follow the maximum allowed speed limit on road. 

• Cars 2 and 3 will start collaborating with car 1 at T3. They may act as cooperative 

or neutral, as defined towards the end of section 2.1. 

• At T0, it is assumed that car 1 is at the beginning of the road section, car 2 is moving 

in front of car 1 (both moving towards right and in the same lane) and car 3 is at an 

x-position near the end of the road section (moving towards left in the adjacent 

lane). 

• At T0, it is assumed that the y-position of car 1 and car 2 is in the middle of the 

lane they are in and the y-position of car 3 is the middle of the adjacent lane. The 

y-positions of cars 2 and 3 do not change throughout the simulation. 

• From T0 to T3, acceleration of cars 2 and 3 is 0 m/s2 as cars generally move at 

relatively constant velocities on a road in absence of any disturbance from the 

environment. Also, the behavior of interest for cars 2 and 3 is when they start 

collaborating with car 1. So, it is a reasonable assumption. 

• For car 2 and 3, angular position and angular velocities are assumed to be zero for 

all the phases of the trajectory.  

• From T1 to T3, angular orientation of car 1 is positive and from T4 to T5, angular 

orientation of car 1 is negative.  
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• For phases 2 and 6 of the trajectory, angular velocity of car 1 is positive. For phases 

3 and 5 of the trajectory, angular velocity of car 1 is negative.  

• At context-level, information exchange between 3 cars is asynchronous. So, 

simulation is a discrete-event simulation consisting of three parallel simulations of 

car 1, car 2 and 3 with each simulation being a discrete-time simulation with 

different sampling frequency. 

• Control flow among different components of a car is sequential. 

• At the beginning of each simulation run, speed of car 2 must be less than the speed 

of car 1 so that passing behavior sounds reasonable. 
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Chapter 3: Model Development and Analysis Approach 

This chapter gives outlines the systems engineering approach including the 

development life cycle used to solve the car passing problem. Model development and 

analysis approach are also discussed in this chapter. 

3.1. Systems Engineering Approach 

Systems Engineering is an interdisciplinary holistic approach to deal with 

complex systems throughout their lifecycle [9], by establishing the right processes to 

handle risk and allow the development of a system on time, and on budget while 

meeting the stakeholders’ needs. These processes start from the conceptual phase of 

the system and continue until its disposal. The car passing problem is critical to road 

safety, so, a formal system engineering approach – Model-Based Systems Engineering 

(MBSE) and technical activities have been used.  

“Model-Based Systems Engineering (MBSE) is the formalized application of 

modeling to support system requirements, design, analysis, verification and validation 

activities beginning with the conceptual design phase and continuing throughout 

development and later life cycle phases” [10]. MBSE ensures consistency across the 

multiple views of the model. Building complex models requires considerable resources. 

As such, models are developed carefully with right amount of fidelity, depending upon 

project scope, to meet their purpose. In Figure 4, the core steps of the MBSE process, 

used to develop a model for the car passing problem, are illustrated. The starting point 

is the available information. This involved literature survey, assessing the existing 

models of vehicles for reuse and available data about the car passing problem. 
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Afterwards, the initial system requirements were identified and defined together with 

the desired measures of effectiveness (‘MOE’). After the requirements phase, the 

models of behavior and structure were developed using SysML in Cameo Systems 

Modeler, followed by mapping the specified behavior to the structure. This was 

followed by developing mathematical models of the system in MATLAB. This is an 

iterative process, resulting in generation of derivative requirements which prompt 

changes to the system specification. After a model with sufficient fidelity was ready, 

tradeoff analysis phase was used to explore feasible design space and choose the best 

feasible solution based on the specified measures of effectiveness. The chosen design 

option is then verified and validated ensuring that all the requirements are satisfied, and 

that the system meets its goals. 

 
Figure 4: Model-Based Systems Engineering Process [11] 
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The greatest advantage of MBSE is the use of models of the system to make 

decisions and deal with emergent behavior. It ensures fewer errors due to use of formal 

semantics, consistency across interfaces, drives down costs and reduces time to market 

while facilitating faster and more rigorous communication between engaged teams and 

stakeholders, thus, improving overall quality of the system. 

The development of model for the car passing problem followed V 

Development Life Cycle Model (LCM). The V-model incorporates abstraction and 

decomposition, the two key concepts in Systems Engineering. At the beginning of the 

development the user requirements were identified, followed by defining concept of 

operations for the model, described in Chapter 2. This was followed by iterations of 

development of model with increasing fidelity and simulation as described in Figure 5. 

The levels of architecture and requirements will iterate during development life cycle. 

The level of formality will deepen until a system architecture and requirements 

definition agrees with the purpose of solving the car passing problem. For this study, 

model has gone through two complete iterations. At each level of model and simulation 

development, test plans for verification and validation of the model at that level of 

model decomposition are developed and updated after each iteration. After this step the 

right-hand side of the V-model starts. In all those stages mainly, the products of each 

level are integrated together, while simultaneously the result is checked against the 

specified requirements. The result is an operational, verified and validated system. In 

this study, focus is on the left side of the V Development LCM and no test plans have 

been developed. 
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Figure 5: V Development Life Cycle Model (LCM) 

3.2. Model Development Approach 

System has been modelled as a Finite State Machine, defined as a tuple, TS = (S, Act, 

F, I, AP, Lab) [12] [13]. Cars are point masses. Here,  

• ‘S’ is the finite state space characterized by x1, y1, x2, y2, x3, y3 and θ. 

• ‘Act’ is the set of actions, i.e., acceleration of cars 1, 2 and 3, and angular velocity 

of car 1. These actions act on the present state and determine the next state of the 

system.  

Act = {a1, a2, a3, w1}                                                       (2-1)                         

• ‘F’ is the transition relation or function that calculates the next state based on 

present state. It uses actions and present state of the system to determine the next 

state of the system.  

       F∶S × Act →S                                                                 (2-2)   
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• ‘I’ is the initial state of the system characterized by v1, v2 and v3 in addition to x1, 

y1, x2, y2, x3, y3, and θ. 

• ‘AP’ is the set of atomic propositions (constraints) that characterize each state of 

the system. 

• ‘Lab’ is the labeling function the state. 

        Lab(S) = {x1, y1, x2, y2, x3, y3, θ}                                   (2-3)               

 Using the Finite State Machine defined above, all possible states of the car 

passing problem have been identified in Figure 11. Using these states, a state machine 

diagram for car 1 with safe final state is drawn, Figure 16 and further used to define the 

control logic so that car 1 goes from initial state to safe final state.  Safe state refers to 

when car 1 safely completes the passing maneuver or determines not to execute the 

passing maneuver. Similarly, state machine diagrams for cars 2 and 3 have been drawn, 

Figure 21 and Figure 26 respectively and used to develop control logic for the cars. The 

control logic for all 3 cars was implemented in MATLAB and then, each module was 

integrated using a ‘main’ module based on the architecture developed in SysML using 

the approach defined in section 3.1. This ‘CarPassingProblem’ module in addition to 

integrating the car passing model, also collects the data regarding states of the three 

cars and checks if car 1 is safe or not. The integrated model is simulated using Monte-

Carlo method to find safe traces of the finite transition system. Safe traces are the traces 

in which crash does not occur or passing maneuver is not executed. Different 

trajectories or sequence of states are generated using Monte Carlo method [14] and 

safety is then checked at each time step of ‘dtM1’ seconds. 
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3.3. Analysis Approach 

To be able to evaluate the problem a functional architecture of the car passing 

problem was developed in SysML. This involved development of structure and 

behavior diagrams, especially state machine diagrams to capture the behaviors of all 

three cars. The system has been modelled as a Finite State Machine and different traces 

or trajectories of car 1 have been generated using Monte Carlo method.  

For modelling cooperativeness of drivers of cars, a Boolean variable has been 

defined, where 0 refers to neutral driver and 1 refers to fully cooperative driver. This 

variable is chosen randomly. Further, car 3 is moving in opposite direction to car 1, V3 

is negative while V1 and V2 are always positive. The opposite signs of acceleration and 

velocity of a car indicate deacceleration while same sign indicate acceleration.  The 

mathematical model takes this sign convention into consideration.  

Two initial states, one with a feasible reference trajectory and one with 

infeasible reference trajectory, have been considered. The feasible trajectory is 

determined by executing the model with 0% standard deviation of error in measurement 

for all three cars and keeping clearance distance at nominal values. If the passing 

maneuver is safely completed by the car 1, that initial state is recorded for further 

analysis of the Probability of deciding to pass given that it is feasible to safely pass, 

P(A). If the passing maneuver results in crash, that initial state is recorded for further 

analysis of the Probability deciding to not pass given that it is infeasible to safely pass, 

P(B). Data recorded for both initial states is used for analysis of the Probability of safely 

executing the passing maneuver given that car 1 decides to pass, P(C).  
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The first step before proceeding with any analysis was to determine the number 

of iterations needed for the three probabilities to converge. For each of the two initial 

states, model is executed several times for different discretized values of clearance 

distance of car 1 w.r.t. car 2 and car 3 at T5 while keeping standard deviation of error 

in measurement of distance, velocity and acceleration for car 1 at a fixed reference 

value. Similarly, then standard deviation of error in measurement of distance is varied, 

while keeping clearance distance and standard deviation of error in measurement of 

velocity and acceleration for car 1 at a fixed reference value. Next, standard deviation 

of error in measurement of velocity is varied, while keeping clearance distance and 

standard deviation of error in measurement of distance and acceleration for car 1 at a 

fixed reference value. Lastly standard deviation of error in measurement of acceleration 

is varied, while keeping clearance distance and standard deviation of error in 

measurement of velocity and distance for car 1 at a fixed reference value. For each 

iteration of all the cases, T1, T2, T3, T4, T5, T6, θ1, θ2, decision of car 1 to execute the 

passing maneuver and whether maneuver was safely completed or not are recorded. 

P(A), P(B) and P(C) are calculated.  

P(A), P(B) and P(C) are calculated for each combination of all the five factors, 

also called a design point. Pareto analysis is used to define the pareto front and 

determine the dominating design options. From these reduced set of design options, 

design option with highest probability of safely executing the passing maneuver given 

that car 1 decides to pass is chosen.  
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Chapter 4: System Description 

This chapter describes the context-level architecture of the car passing problem. 

4.1. System Overview 

The goal of modelling the system is to solve the car passing problem, i.e., car 1 

should safely pass car 2 in oncoming traffic. This is the use case, ‘UC1’, for the system 

as shown in Figure 6. The safety of the car 1 in passing maneuver depends on many 

environment factors. The focus in this thesis is primarily on dynamics of cars 2 and 3, 

and road parameters like maximum allowed speed and lane width amongst the 

environment factors. As such, the primary use case has associations with car 2 (human-

driven), car 3 (human-driven) and road. Car passenger uses the car 1 and is the primary 

user of the use case.   

 
Figure 6: Context-level Use Case Diagram for the Car Passing Problem 

 Performance of the car 1 regarding the primary use case – UC1 – based on car 

1’s decision to pass - whether the decision is to execute the passing maneuver or not. I 

this decision is to execute the passing maneuver, then is the car 1 able to complete the 

maneuver safely. Thus, the two outputs of interest for the car passing problem are the 

decision to pass and has the passing maneuver been executed safely. This is shown in 
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the ‘CarPassingProblem’ block in the domain block definition diagram shown in Figure 

7. Based in the use case diagram in Figure 6, domain of car passing problem consists of 

car 1 - the system of interest, passenger in car 1 - primary user of the system of interest 

and environment which interacts with car 1. In environment, car 1 interacts with car 2, 

car 3 and road, so, these are contained in the environment block.  

The problem itself is characterized by decision of car 1 to pass 

(‘decisionToPass’), whether car 1 completes the passing maneuver safely 

(‘passingCompletedSafely’) and the safe distance between the cars that if violated 

means collision between cars (‘sd’). Car 1 is characterized by maximum acceleration 

(a1max) and maximum deacceleration (d1max). Cars 2 and 3 are characterized by 

maximum acceleration (a2max, a3max) and maximum deacceleration (d2max, d3max). As 

cars 2 and 3 do not turn during execution of the passing maneuver, maximum angular 

velocity for the two cars is not of concern. Further, it is assumed that maximum design 

speed of all 3 cars exceeds maximum allowed speed on road. This along with the 

restriction that none of the cars can speed up more than the maximum allowed speed 

on road, makes information on maximum design speed of cars irrelevant to the 

problem. The road is characterized by the lane width, minimum allowed speed and 

maximum allowed speed. The diagram in Figure 7 also shows the parts, behaviors and 

communication ports for information exchange for all the entities of interest. 

The flow of information amongst all 3 cars and road is shown in Figure 8. The 

parameters from the road are available to all the cars. This shown via the ports on the 

road block. Information about dynamics of car 1 is available to car 2 and car 3. 

Similarly, information about dynamics of car 2 are available to car 1 and car 3, and 
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information about dynamics of car 3 are available to car 1 and car 2. The information 

across interfaces is susceptible to measurement noise. All the information flow with 

their types and units across different interfaces at the context-level is defined in the 

interface flow block definition diagram in Figure 9. Interface ‘Car1Parameters’ carries 

information from car 1 to other cars. Interface ‘Car2Parameters’ carries information 

from car 2 to other cars. Interface ‘Car3Parameters’ carries information from car 3 to 

other cars. 

 
Figure 7: Car Passing Problem Domain Block Definition Diagram. 
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Figure 8: Context-level Internal Block Diagram for Car Passing Problem. 
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Figure 9: Definition of different interfaces shown in context-level IBD 

4.2. Behavior and Behavior Allocation 

This section defines the interactions among different components of the car 

passing problems in terms of behavior and how they have been modelled to 

successfully perform the use case – UC1, using the context-level activity diagram 

shown in Figure 10. Car 1, car 2, car 3 and road execute the behaviors allocated to them 

parallelly with information flow between them being asynchronous.  As such, there is 

no starting node on the activity diagram, rather, there are 3 timers with no starting 

control flow to them. These timers generate a control signal to their respective target 

behaviors after a fixed time – ‘dtM1’ for car 1, ‘dtM2’ for car 2 and ‘dtM3’ for car 3. 

There is no synchronization amongst the timers. Road is continuously executing the 
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allocated behavior – ‘Send Road Parameters’. Solid lines represent flow of data and 

dashed lines represent flow of control from one behavior to another. 

For car 1, after every dtM1 seconds, control flows to the allocated behavior - 

‘Execute passing maneuver’. As soon as control flows to the behavior, it takes the latest 

information, measurements of cars 1, 2 and 3 as well as road parameters, available at 

all the input ports and executes the behavior. These ports correspond to the ports on the 

internal block diagram of car passing problem in Figure 8. Multiplicity of all the input 

ports is 1 and it is assumed that the latest measurement is available at the input ports. 

It is assumed that all behaviors are executed instantaneously. After the execution of the 

behavior, the outputs of the behavior are available at the input ports downstream. Thus, 

the behaviors are executed sequentially, starting with when control flows to the 

‘Execute passing maneuver’ behavior. Further decomposition of this behavior is 

provided in chapter 5. If the passing maneuver is feasible, indicated by the Boolean 

variable - ‘isPassingNotPossible’, and not complete, indicated by the Boolean variable 

– ‘isPassingComplete’, then the control again goes to the ‘Execute passing maneuver’ 

behavior. ‘isPassingNotPossible’ represent the decision of the car 1 whether to execute 

the passing maneuver from T0 to T1 and it represents whether car 1 crashed from T1 

to T6. It is true if the decision is to not pass. i.e., passing maneuver is not feasible or 

car 1 has crashed. Car 1 has crashed if it satisfies the conditions (4-1) and (4-2) 

associated with car 1 crashing with car 2 or if it satisfies the conditions (4-3) associated 

with car 1 crashing with car 3. The logical ‘and’ operator between the two conditions 

is represented using ‘join node’ in the diagram. If the passing maneuver is not feasible 

or passing is complete, the control goes to activity final node which marks the end of 
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the use case, UC1 and an execution of one instance of the model.  The logical ‘or’ 

operator between the two conditions is represented using ‘decision node’ in the 

diagram. 

x2(t) − x1(t) < sd  for t ∈ (T1, T2]               (4-1) 

x1(t) − x2(t) < sd  for t ∈ [T5, T6]               (4-2) 

x3(t) − x1(t) < sd  for t ∈ [T2, T5] iff x3(T2) ≥ x1(T2)             (4-3) 

For car 2, after every dtM2 seconds, control flows to the allocated behavior - 

‘Collaborate with car 1 considering car 2 parameters’. Here, dtM2 represents the 

reaction time of the driver of car 2. As soon as control flows to the behavior, it takes 

the latest information, measurements of cars 1, 2 and 3 as well as road parameters, 

available at all the input ports and executes the behavior. The behaviors are executed 

sequentially, starting with when control flows to the ‘Collaborate with car 1 considering 

car 2 parameters’ behavior.  The behavior uses the available information to decide 

when to start collaborating and how to collaborate with car 1 in response to the passing 

maneuver. It is assumed that collaboration starts at T3. Further decomposition of this 

behavior is provided in chapter 6. Interaction of car 2 with car 1 ends when it 

determines from the measured information that car 1 is back in the same lane as it and 

is safely ahead of it, as indicated in the diagram using the condition stated in (4-4) and 

(4-5). If this condition is satisfied, control goes to flow final node, which marks the end 

of execution of one instance of car 2’s model. 

y1M ≤ 0.5 ∗ LaneWidth                            (4-4) 

x2M < x1M                   (4-5) 
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For car 3, after every dtM3 seconds, control flows to the allocated behavior - 

‘Collaborate with car 1 considering car 3 parameters’. Here, dtM3 represents the 

reaction time of the driver of car 3. As soon as control flows to the behavior, it takes 

the latest information, measurements of cars 1, 2 and 3 as well as road parameters, 

available at all the input ports and executes the behavior. The behaviors are executed 

sequentially, starting with when control flows to the ‘Collaborate with car 1 considering 

car 3 parameters’ behavior.  The behavior uses the available information to decide 

when to start collaborating and how to collaborate with car 1 in response to the passing 

maneuver. It is assumed that collaboration starts at T3. Further decomposition of this 

behavior is provided in chapter 7. Interaction of car 3 with car 1 ends when it 

determines from the measured information that car 1 is not in the same lane as it and is 

safely ahead of car 2, as indicated in the diagram using the condition stated in (4-6) and 

(4-7). If this condition is satisfied, control goes to flow final node, which marks the end 

of execution of one instance of car 3’s model. 

y1M ≤ LaneWidth                                      (4-6) 

x2M < x1M                   (4-7) 

 From the perspective of car 1, system has 6 states or phases indicated to in 

Figure 2 with guard conditions for entry to and exit from a state defined in the state 

machine diagram in Figure 11. The system goes to initial state at T0. The final state has 

3 meaning. First, car 1 determines passing is not possible and does not execute the 

passing maneuver. Second, car 1 successfully completes the maneuver. Third, car 1 

crashes. 
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Figure 10: Context-level Activity Diagram for Car Passing Problem. 
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Figure 11: State Machine diagram for the Car Passing Problem 



 

 

30 
 

4.3. System’s MOEs and MOPs 

This section defines the Measures of Effectiveness (MOE) and Measures of 

Performance (MOP) for the car passing problem. From the discussion in section 1.3 

and section 4.1, the parameters of interest are – whether the car 1 makes correct 

decision to pass and if it makes the decision to pass, can it safely complete the passing 

maneuver. These are used to evaluate the performance of the car 1’s model redefining 

them as probabilities. Car 1’s decision to pass is evaluated using Probability of deciding 

to pass given that it is feasible to safely pass, P(A) and Probability of deciding to not 

pass given that it is infeasible to safely pass, P(B). If car 1 makes the decision to pass, 

can it safely complete the passing maneuver is evaluated using the Probability of safely 

executing the passing maneuver given that car 1 decides to pass, P(B). P(A), P(B) and 

P(C) are the MOEs for the system with higher value being indicator of better system 

performance. Both are calculated over multiple runs of the car passing model, by 

recording the variables ‘decisionToPass’ and ‘passingCompletedSafely’, as defined in 

Figure 7. These MOEs are directly dependent on standard deviation of error in 

measurement of relative distance, speed and measurement associated with 

measurement system of car 1 and clearance distance w.r.t. cars 2 and 3 used to make 

the passing decision by car 1, which are the five MOPs of the system.  
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Chapter 5: Car 1 

This chapter describes the system-level architecture of the car 1. 

5.1. Car 1 Concept 

Car 1 is the ego vehicle or autonomous vehicle of interest which passes the 

other car. As outlined in section 4.2 of the thesis, functionality of car 1 is to execute the 

passing behavior. For execution of the passing behavior, car 1 needs measurements of 

parameters of all cars and road to determine the control action and then uses the actuator 

to actuate control action. Thus, car 1 has 3 functional components – ‘Measurement 

System 1’, ‘Model Predictive Controller 1’ and ‘Actuator 1’, as shown in Figure 12.  

 
Figure 12: Car 1 Block Definition Diagram 
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Measurement system is characterized by standard deviation of error in 

measurement of car1’s position, velocity, acceleration, angular orientation and angular 

velocity as well as measurements of the relative dynamics of the environment. Standard 

deviation of error in measurement of dynamics is different for measurements regarding 

the environment and measurements about car 1 itself. The sampling frequency, denoted 

by ‘dtM1’, is also characteristics of measurement system. Model Predictive controller, 

also referred to as controller, of car 1 is characterized by the clearance distance w.r.t. 

car 2 at T5 (sd125) and car 3 at T5 (sd135) used to make the decision to execute the 

passing behavior, safety distance used to plan the reference trajectory (sd1), assumed 

orientation of car 1 at T2 and T5, decision to pass, variable indicating whether passing 

is complete and control action, i.e., acceleration and angular velocity of car 1. The 

actuator is characterized by the current dynamics of the car 1 and dynamics of car 1 at 

previous time instant. 

 
Figure 13: Car 1 Internal Block Diagram 

The flow of information amongst different functional components of car 1 is 

shown the internal block diagram of car 1 in Figure 13. The measurement system 

collects all the information from the environment and sends it to the controller via 
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‘MeasuredParameters1’ interface. The controller uses that information to generate the 

control signal and sends it to the actuator via ‘ControlAction1’ interface. Measurement 

system measures car 1’s parameters. This flow of information occurs via 

‘Car1Parameters’ interface. The data types and values carried in these interfaces is 

defined in Figure 14 along with the units of each data type.  

 
Figure 14: Car 1 Interface Block Definition Diagram 

 The three functional components of car 1 perform different behaviors. The 

behaviors allocated to each are shown in Figure 15. This activity diagram is the 

decomposition of ‘Execute passing maneuver’ behavior allocated to car 1. The activity 

parameters for the ‘Execute passing maneuver’ behavior, are shown on the diagram 

frame. Measurement system is allocated behavior – ‘Measure car 1, car 2, car 3, road 

parameters - 1’. Controller executes the behavior – ‘Determine control action for car 

1’. This behavior outputs the Boolean variables ‘isPassingComplete’ and 

‘isPassingNotPossible’ to the activity parameters on the diagram’s frame. Actuator 

actuates the control action. The execution of each behavior is determined by the data 
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flow. As soon as data is available at all the input ports of a behavior, behavior is 

executed. This means that multiplicity of all the input ports is 1. These ports correspond 

to the ports on the internal block diagram of car 1 in Figure 13. It is assumed that all 

behaviors are executed instantaneously. After the execution of the behavior, the outputs 

of the behavior are available at the input ports downstream. Thus, the behaviors are 

executed sequentially, starting with when data is available to the ‘Execute passing 

maneuver’ behavior, i.e., activity parameters on the diagram frame. 

 
Figure 15: Car 1 Activity Diagram 
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5.2. Measurement System 

 The measurement system of car 1 takes measurements of all 3 cars and the road. 

These measurements are susceptible to measurement noise. As measurement system is 

a functional element, it represents the overall performance of the measurement system 

deployed in the car which includes both hardware like different types of sensors, and 

the software used to decrease the uncertainty in measurement. In the model, this 

uncertainty in measurements has been modelled as white gaussian noise with zero mean 

and some standard deviation which is representative of the overall performance of the 

measurement system. This standard deviation of error in measurement is expressed as 

percentage of the relative dynamics of other cars and percentage of the absolute 

dynamics for car 1, denoted by ‘_self’ in the ‘Measurement System 1’ block in Figure 

12. It is assumed to be 0% for measurements made by car 1 about dynamics of car 1.  

The measurement system measures car 1’s position with reference as car 1’s 

position at T0, absolute velocity, absolute acceleration, absolute angular orientation 

w.r.t. x-axis and absolute angular velocity. It measures relative position, velocity and 

acceleration of car 2 and car 3 which are then used to calculate their absolute values. It 

is assumed that measurement information is taken after every dtM1 seconds, sampling 

rate of car 1, with no lag in information transfer at interfaces associated with the 

measurement system.  

5.3. Controller 

The function of controller is to determine control action by calculating reference 

trajectory for car 1 based on measurement data from measurement system of car 1. The 
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objective of controller has been divided in two parts. First part is determining the 

feasibility of the passing maneuver to decide whether to execute the passing maneuver 

or not. Feasibility is checked by incorporating clearance distance of car 1 w.r.t. cars 2 

and 3 at T5 as constraints. Feasibility of the passing maneuver is first checked at T0. If 

the maneuver is feasible, controller starts executing the passing maneuver and again 

checks the feasibility after every dtM1 second till T1. If the maneuver is determined to 

be unfeasible at more than 2 consecutive time instances from T0 to T1, excluding T1, 

the passing maneuver is deemed unsafe. If the maneuver is feasible at T1, controller 

goes on with executing the passing maneuver. Second part is determining the reference 

trajectory if the passing maneuver is feasible and update it at the beginning of each 

phase of the trajectory. This control logic of the controller for different parts of the 

passing maneuver is shown in the state machine diagram in Figure 16.  

The controller has 6 states for 6 phases of passing maneuver trajectory. Each 

phase of the trajectory has different set of constraints used to determine the reference 

trajectory. The guard conditions for entry to and exit from a state have been defined in 

the state machine diagram. The system goes to initial state at T0 and reaches final state 

on either successfully completing the passing maneuver or it determines passing 

maneuver is not feasible. This diagram is based on the context-level state machine 

diagram presented earlier in section 4.2, Figure 11. It identifies the behavior of the 

controller in different states as well as the paths to go from initial state to a safe final 

state, i.e. either passing maneuver is not executed or it is completed safely. But this 

state control logic susceptible to measurement noise among other factors. The control 

logic based on this state machine diagram is explained further in this section. 
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Figure 16: State Machine Diagram for Controller of Car 1 
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To safely execute passing maneuver, reference trajectory must satisfy four 

types of constraints - car safety constraints w.r.t. cars 2 and 3, car 1 specification 

constraints, road safety constraints and car 1 dynamics constraints. The first 3 types of 

constraints are inequality constraints and car 1 dynamics constraints are equality 

constraints. Car safety constraints ensure that car 1 maintains a safe distance of ‘sd1’ 

w.r.t. cars in the same lane as car 1 always, as stated below. Safety constraints of car 1 

w.r.t. car 2 are: 

x2(T1) − x1(T1) ≥ sd1 (4-1) 

x2(T2) − x1(T2) ≥ sd1 (4-2) 

x1(T5) − x2(T5) ≥ sd1               (4-3) 

x1(T5) − x2(T5) ≥ sd125            (4-3.1) 

x1(T6) − x2(T6) ≥ sd1                 (4-4) 

Safety constraints of car 1 w.r.t. car 3 are: 

x3(T3) − x1(T3) ≥ sd1                 (4-5) 

x3(T4) − x1(T4) ≥ sd1                 (4-6) 

x3(T5) − x1(T5) ≥ sd1                 (4-7) 

x3(T5) − x1(T5) ≥ sd135              (4-7.1) 

In the above constraints, if constraint (4-7) is satisfied, it means constraints (4-

5) and (4-6) are satisfied, and are thus, redundant if constraint (4-7) is satisfied. 

Similarly, if constraint (4-6) is satisfied, constraint (4-5) is redundant. This is because 

if car 3 is at a safe distance from car 1 at T5 along x-axis, it means it is at a safe distance 
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from car 1, always preceding T5. This holds true for car at T4 as well. Thus, if car 3 is 

at a safe distance from car 1 at T4 along x-axis, it is at a safe distance from car 1, always 

preceding T4. Road safety constraints ensure that car 1 dynamics are within the speed 

limits for the road. As such the constraints are stated below. 

vmin ≤  v1(t) ≤ vmax,      where t ∈ [T0, T6]              (4-8) 

Car 1 specification constraints ensure that car 1 dynamics – acceleration and 

angular velocity - are within the specifications of car 1. The constraints are stated 

below. 

0 ≤  a1(t) ≤ amax,      where t ∈ [T0, T6]                   (4-9) 

 Constraints (4-1) to (4-9) are all inequality constraints. The car 1 dynamics 

constraints are based on the definitions of the time instances T2, T3, T4, T5 and T6. 

They are equality constraints and are stated below. 

y1(T2) = lw                  (4-10) 

y1(T3) = 1.5 ∗ lw                 (4-11) 

x1(T4) = x2(T4)                 (4-12) 

y1(T4) = 1.5 ∗ lw                 (4-13) 

y1(T5) = lw                 (4-14) 

y1(T6) = 0.5 ∗ lw                  (4-15) 

At T0, Constraints (4-1), (4-2), (4-3.1), (4-4), (4-7.1) and (4-8) to (4-15) are 

used to determine the feasibility of the passing maneuver by checking for feasible 

reference trajectory solutions. The reference trajectory at T0 refers to the time spent by 
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the car 1 in each phase of the trajectory – dT1, dT2, dT3, dT4, dT5, dT6 and the 

acceleration of car 1 in phase 1 (a11) and phase 4 (a14) of the passing maneuver. It is 

assumed car 1 does not accelerate in phases 2, 3, 5 and 6. Angular orientation of car 1 

at T2 (θ1) is fixed to 30 degrees and at T5 (θ2) to -30 degrees. For predicting trajectories 

of cars 2 and 3, car 1 uses measured position, velocity and acceleration of both cars to 

predict their future trajectories with the assumption that both cars continue with the 

same acceleration till T3 or till they reach vmax (maximum allowed speed on the road) 

before T3, after which acceleration of both cars, a2 & a3, is 0m/s2 and that they keep 

moving in straight line. Under these constraints and conditions, there may be no 

solutions, one solution or multiple solutions. If there are no solutions, passing maneuver 

is deemed unsafe and is not executed. Car 1 follows car 2. If there is one solution or 

multiple solutions, it means there is at least one feasible reference trajectory that car 1 

can follow to safely execute passing maneuver. Next step is to determine the reference 

trajectory that best meets the objectives of the car 1 – safely executing passing 

maneuver. This is done by defining an objective function to express the goal of the 

passing maneuver mathematically. The objective can be stated in multiple forms like 

reducing the overall time to execute the passing maneuver - minimize [T6]. Another 

way to state the objective is to maximize the clearance distance between cars 1 and 2 

at T5. This objective is mathematically stated in (4-16). 

max.  [x1(T5) − x2(T5)]2                         (4-16) 

The objective stated in (4-16) is used to determine the optimal reference 

trajectory at T0. The objective ensures that maximum distance is maintained between 
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cars 2 and 1 at T5 which further means that car 1 maintains as much distance as possible 

from car 2 throughout the trajectory while executing the passing maneuver. This also 

ensures car 1 maintains as much distance as possible from car 2 from T5 to T6 while 

executing the passing maneuver. Car 1’s controller continuously determines the 

feasibility of passing maneuver, updates and applies the control action, a11, from T0 to 

T1 in steps of dtM1 second, where T1 = T0 + dT1 and dT1 is one of the solutions of 

the optimization problem. To make the algorithm more robust, if T1 is determined to 

be dtM1 seconds or less in the future, controller considers that time instance as T1. 

At T1, the controller again checks for the feasibility of the passing maneuver. 

Constraints (4-2), (4-3.1), (4-4), (4-7.1) and (4-8) to (4-15) are used to determine the 

feasibility of the passing maneuver by checking for feasible reference trajectory 

solutions. The reference trajectory at T1 refers to the time spent by the car 1 in 

remaining phases of the trajectory – dT2, dT3, dT4, dT5, dT6, orientation of car 1 at 

T2 (θ1) and the acceleration of car 1 in phase 2 (a12) and phase 4 (a14) of the passing 

maneuver. It is assumed car 1 does not accelerate in phases 3, 5 and 6. Angular 

orientation of car 1 at T5 (θ2) is fixed to -30 degrees. For predicting trajectories of cars 

2 and 3, car 1 uses measured position, velocity and acceleration of both cars at T1 to 

predict their future trajectories with the assumption that both cars continue with the 

same acceleration till T3, after which acceleration of both cars, a2 & a3, is 0m/s2 and 

that they keep moving in straight line. Under these constraints and conditions, there 

may be no solutions, one solution or multiple solutions. If there are no solutions, 

passing maneuver is deemed unsafe and is not executed. Car 1 follows car 2. If there is 

one solution or multiple solutions, it means there is at least one feasible reference 
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trajectory that car 1 can follow to safely execute passing maneuver. Next step is to 

determine the reference trajectory. The objective stated in (4-16) is used to determine 

the optimal reference trajectory at T1. ‘w1’ for car 1 from T1 to T2 is determined by 

dividing θ1 by dT2, both are the solutions of the optimization problem. Car 1’s 

controller updates the reference trajectory once at T1 and then continuously applies the 

control action, w1 and a12, from T1 to T2 in steps of dtM1 second. 

At T2, the controller updates the reference trajectory. Constraints (4-3) to (4-

4), (4-7) to (4-9) and (4-11) to (4-15) are used to determine the feasible reference 

trajectory solutions. The reference trajectory at T2 refers to the time spent by the car 1 

in remaining phases of the trajectory – dT3, dT4, dT5, dT6, and the acceleration of car 

1 in phase 3 (a13) and phase 4 (a14) of the passing maneuver. It is assumed car 1 does 

not accelerate in phases 5 and 6. Angular orientation of car 1 at T5 (θ2) is fixed to -30 

degrees. For predicting trajectories of cars 2 and 3, car 1 uses measured position, 

velocity and acceleration of both cars at T2 to predict their future trajectories with the 

assumption that both cars continue with the same acceleration till T3, after which 

acceleration of both cars, a2 & a3, is 0m/s2 and that they keep moving in straight line. 

Under these constraints and conditions, controller uses the objective stated in (4-16) to 

determine the optimal reference trajectory at T2. There may be no solutions, one 

solution or multiple solutions. If no solutions can be determined, a13 = 0 m/s2 and dT3 

is determined by using y1(T3) = 1.5*LaneWidth. In this case, w1 is θ1 divided by dT3. 

Car 1’s controller updates the reference trajectory once at T2 and then continuously 

applies the control action, w1 and a13, from T2 to T3 in steps of dtM1 second, where 

T3 is the time instance when y1m(T3) = 1.5*LaneWidth. 
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At T3, the controller updates the reference trajectory. Constraints (4-3), (4-4), 

(4-7), (4-8) to (4-9) and (4-12) to (4-15) are used to determine the feasible reference 

trajectory solutions. The reference trajectory at T3 refers to the time spent by the car 1 

in remaining phases of the trajectory – dT4, dT5, dT6, and the acceleration of car 1 in 

phase 4 (a14) of the passing maneuver. It is assumed car 1 does not accelerate in phases 

5 and 6. Angular orientation of car 1 at T5 (θ2) is fixed to -30 degrees. For predicting 

trajectories of cars 2 and 3, car 1 uses measured position, velocity and acceleration of 

both cars at T3 to predict their future trajectories with the assumption that both cars 

continue with the same acceleration till T4, after which acceleration of both cars, a2 & 

a3, is 0m/s2 and that they keep moving in straight line. Under these constraints and 

conditions, controller uses the objective stated in (4-16) to determine the optimal 

reference trajectory at T2. There may be no solutions, one solution or multiple 

solutions. If no solutions can be determined, a14 = a1max if v1 is less than vmax. Car 1’s 

controller continuously updates the reference trajectory and applies the control action, 

a14, from T3 to T4 in steps of dtM1 second. 

At T4, the controller updates the reference trajectory. Constraints (4-3), (4-4), 

(4-7), (4-8), (4-9) and (4-14) to (4-15) are used to determine the feasible reference 

trajectory solutions. The reference trajectory at T4 refers to the time spent by the car 1 

in remaining phases of the trajectory – dT5, dT6, angular orientation of car 1 at T5 (θ2) 

and the acceleration of car 1 in phase 5 (a15) of the passing maneuver. It is assumed car 

1 does not accelerate in phase 6. For predicting trajectories of cars 2 and 3, car 1 uses 

measured position and velocity of both cars at T4 to predict their future trajectories 

with the assumption that a2 & a3 is 0m/s2 and that they keep moving in straight line. 
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Under these constraints and conditions, controller uses the objective stated in (4-16) to 

determine the optimal reference trajectory at T4. There may be no solutions, one 

solution or multiple solutions. If no solutions can be determined, a15 = 0 m/s2, θ2 = 30 

degrees and dT5 is determined by using y1(T5) = LaneWidth. In this case, w1 is θ2 

divided by dT5. Car 1’s controller updates the reference trajectory once at T4 and then 

continuously applies the control action, w1 and a15, from T4 to T5 in steps of dtM1 

second. 

At T5, the controller updates the reference trajectory. Constraints (4-4), (4-8) 

to (4-9) and (4-15) are used to determine the feasible reference trajectory solutions. The 

reference trajectory at T5 refers to the time spent by the car 1 in remaining phase of the 

trajectory – dT6 and the acceleration of car 1 in phase 6 (a16) of the passing maneuver. 

For predicting trajectories of cars 2 and 3, car 1 uses measured position and velocity of 

both cars at T5 to predict their future trajectories with the assumption that a2 & a3 is 

0m/s2 and that they keep moving in straight line. Under these constraints and 

conditions, controller uses the objective stated in (4-17) to determine the optimal 

reference trajectory at T5. The objective stated in (4-16) cannot be used to find the 

optimal reference trajectory as car 1 does not interact with car 3 after T5. So, only 

objective is to maximize distance between cars 1 and 2 at T6, as stated below.  

max. [x1(T6) − x2(T6)]                                         (4-17) 

There may be no solutions, one solution or multiple solutions. If no solutions 

can be determined, a16 = 0 m/s2 and dT6 is determined by using y1(T6) = 

0.5*LaneWidth. In this case, w1 is θ2 divided by dT6.  Car 1’s controller updates the 
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reference trajectory once at T5 and then continuously applies the control action, w1 and 

a16, from T5 to T6 in steps of dtM1 second, where T6 is the time instance when y1m(T6) 

= 0.5*LaneWidth. At T6, car 1 has safely completed the passing maneuver. 

 

5.4. Actuator 

 The actuator functionally represents the actuator of the car 1 with the 

assumption that the execution of control signal is instantaneous. The actuator updates 

the dynamics of car 1 based on the control action received from the controller at 

periodic intervals of dtM1 second. The control action consists of desired acceleration 

and angular velocity of car 1. The actuator uses the current dynamics of the car 1, 

control action and equations (4-18) to (4-23) to update the dynamics of the car 1. 

theta(t + 1)  =  theta(t)  +  w1 ∗ dtM1             (4-18) 

v1(t + 1)  =  v1(t)  + a1 ∗ dtM1              (4-19) 

v1x(t + 1)  =  v1(t + 1) ∗ cos (theta(t + 1) )            (4-20) 

v1y(t + 1)  =  v1(t + 1) ∗ sin (theta(t + 1) )            (4-21) 

x1(t + 1) =  x1(t) + v1(t) ∗ sin�theta(t+1)�
w1

 −  v1(t) ∗ sin�theta(t)�
w1

 −  (a1 ∗

cos�theta(t)�
w1
2  +  a1 ∗

w1∗dtM1∗sin�theta(t+1)� + cos�theta(t+1)�
w1
2            (4-22) 

y1(t + 1) = y1(t) − v1(t) ∗ cos�theta(t+1)�
w1

+  v1(t) ∗ cos�theta(t)�
w1

 −  (a1 ∗

sin�theta(t)�
w1
2  +  a1 ∗

−w1∗dtM1∗cos�theta(t+1)� + sin�theta(t+1)�
w1
2           (4-23) 
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Chapter 6: Car 2 

This chapter describes the system-level architecture of the car 2. 

6.1. Car 2 Concept 

Car 2 is the human-driven vehicle that car 1 is trying to pass. As outlined in 

section 4.2 of the thesis, functionality of car 2 is to collaborate with car 1 to support the 

passing maneuver. Car 2 does not interact with car 1 till T3. At T3, car 2 starts 

collaborating with car 1 to support the passing maneuver. This collaborative nature of 

car 2 is indicated by the Boolean variable ‘Collaborative2’ in the ‘Car2’ block in Figure 

17. If it is ‘true’, it indicates a cooperative driver, while ‘false’ indicates a neutral driver. 

For supporting the passing maneuver, car 2 needs measurements of parameters of cars 

1 and 2, and road to determine the control action and then uses the actuator to actuate 

control action. Thus, car 2 has 3 functional components – ‘Measurement System 2’, 

‘Model Predictive Controller 2’ and ‘Actuator 2’, as shown in Figure 17.  

Measurement system is characterized by standard deviation of error in 

measurement of relative dynamics of other cars and dynamics of car 2. It is different 

for measurements of other cars and measurements about car 2. The reaction time of 

driver, denoted by ‘dtM2’, is also characteristics of measurement system. Model 

Predictive controller, referred to as controller, of car 2 is characterized by safety 

distance used to plan the trajectory for car 2, assumed orientation of car 1 at T5, and 

control action, i.e., acceleration of car 2. The actuator is characterized by the current 

dynamics of the car 2 and dynamics of car 2 at previous time instant. 
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The flow of information amongst different functional components of car 2 is 

shown the internal block diagram of car 2 in Figure 19. The measurement system 

collects all the information from the environment and sends it to the controller via 

‘MeasuredParameters2’ interface. The controller uses that information to generate the 

control signal and sends it to the actuator via ‘ControlAction2’ interface. Measurement 

system measures car 2’s parameters. This flow of information occurs via 

‘Car2Parameters’ interface. The data types and values carried in these interfaces is 

defined in Figure 18 along with the units of each data type. 

 
Figure 17: Car 2 Block Definition Diagram 
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Figure 18: Car 2 Interface Block Definition Diagram 

 
Figure 19: Car 2 Internal Block Diagram 

The three functional components of car 2 perform different behaviors – 

perceive, process information and react to it. The behaviors allocated to each are shown 

in Figure 20. This activity diagram is the decomposition of ‘Collaborate with car 1 

considering car 2 parameters’ behavior allocated to car 2. The activity parameters for 

the ‘Collaborate with car 1 considering car 2 parameters’ behavior, are shown on the 

diagram frame. Measurement system is allocated behavior – ‘Measure car 1, car 2, car 

3, road parameters - 2’. Controller executes the behavior – ‘Determine control action 

for car 2’. This behavior outputs the control action. Actuator actuates the control action. 

The execution of each behavior is determined by the data flow. As soon as data is 
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available at all the input ports of a behavior, behavior is executed. This means that 

multiplicity of all the input ports is 1. These ports correspond to the ports on the internal 

block diagram of car 2 in Figure 19. All behaviors are executed instantaneously. After 

the execution of the behavior, the outputs of the behavior are available at the input ports 

downstream. Thus, the behaviors are executed sequentially, starting with when data is 

available to the ‘Collaborate with car 1 considering car 2 parameters’ behavior, i.e., 

activity input parameters on the diagram frame. 

 
Figure 20: Car 2 Activity Diagram 
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6.2. Measurement System 

The measurement system of car 2 represents perception of the human driver. It 

takes measurements of all 3 cars and the road. These measurements are susceptible to 

measurement noise. In the model, this uncertainty in measurements has been modelled 

as white gaussian noise with zero mean and some standard deviation. This standard 

deviation of error in relative dynamics measurement is expressed as percentage of the 

relative dynamics of other cars and percentage of the absolute dynamics for car 2, 

denoted by ‘_self’ in the ‘Measurement System 2’ block in Figure 17. It is assumed to 

be 0% for measurements made by car 2 about dynamics of car 2.  

The measurement system measures car 2’s position with reference as car 1’s 

position at T0, absolute velocity and absolute acceleration. It measures relative 

position, relative velocity, relative acceleration, absolute angular orientation w.r.t. x-

axis and absolute angular velocity of car 1 as well as dynamics of car 3 which are then 

used to calculate their absolute values. But only measurements of car 1 are sent to 

controller as only those are used to determine control action for car 2. It is assumed that 

measurement information is taken after every ‘dtM2’ second with no lag in information 

transfer at interfaces associated with the measurement system shown in Figure 19.  

6.3. Controller 

The function of controller is to determine control action for actuator of car 2 by 

calculating reference trajectory for car 2 based on measurement data from measurement 

system of car 2. The controller updates the reference trajectory and the control action 

every dtM2 seconds. It has 2 states - one state associated with time from T0 to T3 and 
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T3 to T6 if it is neutral driver, referred to as state 1, and other state associated with time 

from T3 to T6 if it is a cooperative driver, referred to as state 2. In state 1, control action 

or acceleration is 0 m/s2. As per the assumptions stated in section 2.2, acceleration of 

car 2 is 0 m/s2 from T0 to T3. From T0 to T6, if it a neutral driver, the acceleration is 

again 0 m/s2. This control logic of the controller for different parts of the passing 

maneuver is shown in the state machine diagram in Figure 21. In state 2, 

‘State2/Phase4’, ‘State2/Phase5’ and ‘State2/Phase6’ are associated with estimation of 

car 1’s trajectory. 

 

Figure 21: State Machine Diagram for Controller of Car 2 

Each state of the trajectory has different set of constraints used to determine the 

control action for car 2. The guard conditions for entry to and exit from a state have 

been defined in the state machine diagram. The system goes to initial state at T0 and 

reaches final state when it determines from the measured data that car 1 has completed 



 

 

52 
 

the passing maneuver. The state machine diagram for the controller identifies the 

behavior of the controller in different states as well as the paths to go from initial state 

to a final state. But this state control logic is susceptible to measurement noise among 

other factors. The control logic based on this state machine diagram is explained further 

in this section. 

When car 1 has finished turning, i.e. at T3, controller determines that car 1 is 

trying to execute the passing maneuver. In that case, if car 2 is going to cooperate with 

car 1 to support the passing maneuver, controller of car 2 enters state 2 at T3. In this 

state, objective of car 2 is to support the passing maneuver. To support the passing 

maneuver, car 2’s reference trajectory must satisfy three types of constraints - car safety 

constraints w.r.t. car 1, car 2 specification constraints and road safety constraints. All 

of these are inequality constraints. Car safety constraints ensure that car 2 maintains a 

safe distance of ‘sd2’ w.r.t. car 1 when it is in the same lane as car 2 after time instance 

T3, as stated below.  

x1(T5) − x2(T5) ≥ sd2                            (5-1) 

x1(T6) − x2(T6) ≥ sd2                                                   (5-2) 

v1x(T5) ≥ v2(T5)                                                                  (5-3) 

Car 2 collaborates with car 1 after T3, so, there are no safety constraints on car 

2 before T3. Satisfying constraints (5-1) and (5-2) ensures safety at T5 and T6 but does 

not ensure the safety in between the time interval T5 to T6. Thus, constraint (5-3) is 

required to ensure the safety of the car 2 w.r.t. car 1 throughout the time interval - [T5, 

T6]. Constraint (5-3) combined with no positive acceleration of car 2 after T3 and 
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increase in velocity of car 1 along x-axis from T5 to T6 as it turns, ensures that car 2 at 

the least maintains the clearance distance it had at T5 w.r.t. car 1 from T5 through T6. 

Further, car 1 has minimum velocity along x-axis at T5 in the time interval - [T5, T6] 

which means the clearance distance of car 2 w.r.t. car 1 will increase after T5 and will 

be greater than sd2 at T6, if it was greater than sd2 at T5. This makes constraint (5-2) 

redundant. Road safety constraints ensure that car 2 dynamics are within the speed 

limits for the road. As such the constraints are stated below. 

vmin ≤  v2(t) ≤ vmax,      where t ∈ [T3, T6]                              (5-4) 

At T5, velocity of car 1 along x-axis may be less than vmin, so minimum velocity 

constraint on car 2 is 0 m/s, i.e., it can be less than vmin. Car 2 specification constraints 

ensure that deacceleration of car 2 is within the specifications. As car 2 never 

accelerates from T3 to T6, there are no constraints on positive acceleration. The 

constraints are stated below. 

0 ≥  a2(t) ≥ −d2max,      where t ∈ [T3, T6]                  (5-5) 

 In state 2 from T3 to T5, constraints (5-1) and (5-3) to (5-5) are used to 

determine the feasible reference trajectory. The reference trajectory refers to 

deacceleration of car 2 (a2) from T3 to T6 to support the passing maneuver. Under these 

constraints and conditions, there may be no solutions, one solution or multiple 

solutions. If there are no solutions, a2 = -d2max. If there is one solution or multiple 

solutions, solution with minimum magnitude of deacceleration is chosen. Thus, the 

objective function is as stated in (5-6). 
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minimize (a2)2                  (5-6) 

The objective stated in (5-6) is used to determine the optimal reference 

trajectory. It reflects that the driver slows down only as much as required. Controller 

continuously updates the reference trajectory and applies the control action, a2, from 

T3 to T5 in steps of dtM2 second, where T5 is the time instance when y1m(T5) ≤ 

LaneWidth and x1m > x2m. In state 2 from T5 to T6, constraints (5-2) to (5-5) are used 

to determine the feasible reference trajectory. The reference trajectory refers to 

deacceleration of car 2 (a2) from T5 to T6 to support the passing maneuver. Under these 

constraints and conditions, there may be no solutions, one solution or multiple 

solutions. If there are no solutions, a2 = -d2max. If there is one solution or multiple 

solutions, solution with minimum magnitude of deacceleration is chosen using the 

objective function (5-6). Controller continuously updates the reference trajectory and 

applies the control action, a2, from T5 to T6 in steps of dtM2 second. 

From this discussion, it’s clear that the controller needs the information on car 

1’s trajectory to support the passing maneuver. State 2 of the controller incorporates a 

predictor model of car 1’s passing maneuver which takes in measurements of car 1 

dynamics from measurement system of car 2 and uses that to predict car 1’s trajectory 

every dtM2 seconds. The model uses the measurements of car 1 dynamics to 

determines which phase of the passing maneuver car 1 is in. If y1m ≥ 1.5*LaneWidth 

or θ1m = 0 and x1m < x2m, car 1 is in phase 4 of the passing maneuver. The predictor 

model uses the current position, velocity and acceleration of cars 1 and 2 to determine 

dT4 using the constraint (5-7) and road safety constraint that v1(t) ≤ vmax for all t ϵ [T3, 
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T4]. Then, it calculates velocity of car 1 at T4. This velocity, constraint (5-8), constraint 

(5-9), assumptions that orientation of car 1 at T5 is -30 degrees and a1 is 0m/s2 after 

T4, are used to calculate dT5 and dT6. These are used to determine x1(T5), x1(T6), 

x2(T5), x2(T6), v1x(T5) and v2(T5) which are used to calculate the control action. 

x1(T4) = x2(T4)                             (5-7) 

y1(T5) = lw                   (5-8) 

y1(T6) = 0.5 ∗ lw                    (5-9) 

If y1m ≥ LaneWidth and x1m ≥ x2m, car 1 is in phase 5 of the passing maneuver. 

The predictor model uses the current position, velocity and acceleration of car 1 to 

determine dT5 using the constraint (5-8) and road safety constraint that v1m(t) ≤ vmax 

for all t ϵ [T4, T5]. Then, it calculates velocity and orientation of car 1 at T5. This 

velocity, orientation of car 1 at T5, constraint (5-9) and assumption that a1 is 0m/s2 after 

T5, are used to calculate dT6. These are used to determine x1(T5), x1(T6), x2(T5), 

x2(T6), v1x(T5) and v2(T5) which are used to calculate the control action. 

If y1m < LaneWidth and x1m ≥ x2m, car 1 is in phase 6 of the passing maneuver. 

The predictor model uses the current position, velocity and acceleration of car 1 to 

determine dT6 using the constraint (5-9) and road safety constraint that v1m(t) ≤ vmax 

for all t ϵ [T5, T6]. These are used to determine x1(T6) and x2(T6) which are used to 

calculate the control action.  

6.4. Actuator 

The actuator functionally represents the actuator of the car 2 with the 

assumption that the execution of control signal is instantaneous. The actuator updates 
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the dynamics of car 2 based on the control action received from the controller at 

periodic intervals of dtM2 second. The control action consists of desired acceleration 

of car 2. The actuator uses the current dynamics of the car 2, control action and 

equations (5-10) to (5-11) to update the dynamics of the car 2. 

v2(t + 1) = v2(t) + a2 ∗ dtM2              (5-10) 

x2(t + 1) = x2(t) +  v2(t) ∗ dtM2 + a2 ∗
dtM22

2
              (5-11) 
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Chapter 7: Car 3 

This chapter describes the system-level architecture of the car 3. 

7.1. Car 3 Concept 

Car 3 is part of human-driven oncoming traffic that car 1 must avoid crashing 

with while trying to pass. As outlined in section 4.2 of the thesis, functionality of car 3 

is to collaborate with car 1 to support the passing maneuver. Car 3 does not interact 

with car 1 till T3. At T3, car 3 starts collaborating with car 1 to support the passing 

maneuver. This collaborative nature of car 3 is indicated by the Boolean variable 

‘Collaborative3’ in the ‘Car3’ block in Figure 22. If it is ‘true’, it indicates a cooperative 

driver, while ‘false’ indicates a neutral driver. For supporting the passing maneuver, 

car 3 needs measurements of parameters of all three cars and road to determine the 

control action and then uses the actuator to actuate control action. Thus, car 3 has 3 

functional components – ‘Measurement System 3’, ‘Model Predictive Controller 3’ and 

‘Actuator 3’, as shown in Figure 22.  

Measurement system is characterized by standard deviation of error in 

measurement of dynamics of other cars and dynamics of car 3. Standard deviation of 

error in measurement of relative dynamics is different for measurements of other cars 

and measurements about car 3. The reaction time of driver, denoted by ‘dtM3’, is also 

characteristics of measurement system. Model Predictive controller, referred to as 

controller, of car 3 is characterized by safety distance used to plan the trajectory for car 

3, assumed orientation of car 1 at T5, and control action, i.e., acceleration of car 3. The 
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actuator is characterized by the current dynamics of the car 3 and dynamics of car 3 at 

previous time instant. 

The flow of information amongst different functional components of car 3 is 

shown the internal block diagram of car 3 in Figure 24. The measurement system 

collects all the information from the environment and sends it to the controller via 

‘MeasuredParameters3’ interface. The controller uses that information to generate the 

control signal and sends it to the actuator via ‘ControlAction3’ interface. Measurement 

system measures car 3’s parameters. This flow of information occurs via 

‘Car3Parameters’ interface. The data types and values carried in these interfaces is 

defined in Figure 23 along with the units of each data type.  

 
Figure 22: Car 3 Block Definition Diagram 
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Figure 23: Car 3 Interface Block Definition Diagram 

 
Figure 24: Car 3 Internal Block Diagram 

The three functional components of car 3 perform different behaviors – 

perceive, process information and react to it. The behaviors allocated to each are shown 

in Figure 25. This activity diagram is the decomposition of ‘Collaborate with car 1 

considering car 3 parameters’ behavior allocated to car 3. The activity parameters for 

the behavior, are shown on the diagram frame. Measurement system is allocated 

behavior – ‘Measure car 1, car 2, car 3, road parameters - 3’. Controller executes the 

behavior – ‘Determine control action for car 3’. This behavior outputs the control 
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action. Actuator actuates the control action. The execution of each behavior is 

determined by the data flow. As soon as data is available at all the input ports of a 

behavior, behavior is executed, i.e., multiplicity of all the input ports is 1. These ports 

correspond to the ports on the internal block diagram of car 3. It is assumed that all 

behaviors are executed instantaneously. After the execution of the behavior, the outputs 

of the behavior are available at the input ports downstream. Thus, the behaviors are 

executed sequentially, starting with when data is available to the ‘Collaborate with car 

1 considering car 3 parameters’ behavior. 

 
Figure 25: Car 3 Activity Diagram 
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7.2. Measurement System 

The measurement system of car 3 represents perception of the human driver. It 

takes measurements of all 3 cars and the road. These measurements are susceptible to 

measurement noise. In the model, this uncertainty in measurements has been modelled 

as white gaussian noise with zero mean and some standard deviation. This standard 

deviation is assumed to be 0% for measurements made by car 3 about dynamics of car 

3.  The measurement system measures car 3’s position with reference as car 1’s position 

at T0, absolute velocity and absolute acceleration. It measures relative position, relative 

velocity, relative acceleration, absolute angular orientation w.r.t. x-axis and absolute 

angular velocity of car 1 as well as dynamics of car 3 which are then used to calculate 

their absolute values. All these measurements are sent to the controller. It is assumed 

that measurement information is taken after every ‘dtM3’ second with no lag in 

information transfer at interfaces associated with the measurement system shown in 

Figure 24.  

7.3. Controller 

 
The function of controller is to determine control action for actuator of car 3 by 

calculating reference trajectory for car 3 based on measurement data from measurement 

system of car 3. The controller updates the reference trajectory and the control action 

every dtM3 seconds. It has 2 states - one state associated with time from T0 to T3 and 

T3 to T5 if it is neutral driver, referred to as state 1, and other state associated with time 

from T3 to T5 if it is a cooperative driver, referred to as state 2. In state 1, control action 

or acceleration is 0 m/s2. As per the assumptions stated in section 2.2, acceleration of 
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car 3 is 0 m/s2 from T0 to T3. From T0 to T5, if it a neutral driver, the acceleration is 

again 0 m/s2. This control logic of the controller for different parts of the passing 

maneuver is shown in the state machine diagram in Figure 25. In state 2, ‘State2/Phase4’ 

and ‘State2/Phase5’ are associated with estimation of trajectories of cars 1 and 2. 

 

Figure 26: State Machine Diagram for Controller of Car 3 

Each state of the trajectory has different set of constraints used to determine the 

control action for car 3. The guard conditions for entry to and exit from a state have 

been defined in the state machine diagram. The system goes to initial state at T0 and 

reaches final state when it determines from the measured data that car 1 has changed 

lanes after passing car 2, i.e., at T5. The state machine diagram for the controller 

identifies the behavior of the controller in different states as well as the paths to go 

from initial state to a final state. But this state control logic is susceptible to 

measurement noise among other factors. The control logic based on this state machine 

diagram is explained further in this section. 
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When car 1 has finished turning, i.e. at T3, controller determines that car 1 is 

trying to execute the passing maneuver. In that case, if car 3 is going to cooperate with 

car 1 to support the passing maneuver, controller of car 3 enters state 2 at T3. In this 

state, objective of car 3 is to support the passing maneuver. To support the passing 

maneuver, car 3’s reference trajectory must satisfy three types of constraints - car safety 

constraints w.r.t. car 1, car 3 specification constraints and road safety constraints. All 

of these are inequality constraints. Car safety constraints ensure that car 3 maintains a 

safe distance of ‘sd3’ w.r.t. car 1 when it is in the same lane as car 3 after time instance 

T3, as stated below.  

x3(T5) − x1(T5) ≥ sd3                            (6-1) 

Car 3 collaborates with car 1 after T3, so, there are no safety constraints on car 

3 before T3. Road safety constraints ensure that car 3 dynamics are within the speed 

limits for the road, as stated below. 

−vmax ≤  v3(t) ≤ −vmin,      where t ∈ [T3, T5]              (6-2) 

Car 3 specification constraints ensure that deacceleration of car 3 is within the 

specifications. As car 3 never accelerates from T3 to T5, there are no constraints on 

acceleration, as stated below. 

0 ≤  a3(t) ≤ d3max,      where t ∈ [T3, T5]                   (6-3) 

 In state 2, constraints (6-1) to (6-3) are used to determine the feasible reference 

trajectory. The reference trajectory refers to deacceleration of car 3 (a3) from T3 to T5 

to support the passing maneuver. Under these constraints and conditions, there may be 
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no solutions, one solution or multiple solutions. If there are no solutions, a3 = d3max. If 

there is one solution or multiple solutions, solution with minimum magnitude of 

deacceleration is chosen. Thus, the objective function is as stated in (6-4). 

minimize (a3)2                  (6-4) 

The objective stated in (6-4) is used to determine the optimal reference 

trajectory. It reflects that the driver slows down only as much as required. Controller 

continuously updates the reference trajectory and applies the control action, a3, from 

T3 to T5 in steps of dtM3 second, where T5 is the first time instance when y1m(T5) = 

LaneWidth. From this discussion, it’s clear that the controller needs the information on 

car 1’s trajectory to support the passing maneuver. State 2 of the controller incorporates 

a predictor model of car 1’s passing maneuver which takes in measurements of car 1 

and car 2 dynamics from measurement system of car 3 and uses that to predict car 1’s 

trajectory at every dtM3 seconds.  

The model uses the measurements of car 1 and car 2 dynamics to determines 

which phase of the passing maneuver car 1 is in. If y1m ≥ 1.5*LaneWidth or θ1m = 0 

and x1m < x2m, car 1 is in phase 4 of the passing maneuver. The predictor model uses 

the current position, velocity and acceleration of cars 1 and 2 to determine dT4 using 

the constraint (6-5) and road safety constraint that v1 (t) ≤ vmax for all t ϵ [T3, T4]. Then, 

it calculates velocity of car 1 at T4. This velocity, constraint (6-6), assumptions that 

orientation of car 1 at T5 is -30 degrees and a1 is 0m/s2 after T4, are used to calculate 

dT5. These are used to determine x1(T5) and x3(T5) which are used to calculate the 

control action. 
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x1(T4) = x2(T4)                             (6-5) 

y1(T5) = lw                   (6-6) 

If y1m ≥ LaneWidth and x1m ≥ x2m, car 1 is in phase 5 of the passing maneuver. 

The predictor model uses the current position, velocity and acceleration of car 1 to 

determine dT5 using the constraint (6-6) and road safety constraint that v1 (t) ≤ vmax for 

all t ϵ [T4, T5]. These are used to determine x1(T5) and x3(T5) which are used to 

calculate the control action.  

7.4. Actuator 

The actuator functionally represents the actuator of the car 3 with the 

assumption that the execution of control signal is instantaneous. The actuator updates 

the dynamics of car 3 based on the control action received from the controller at 

periodic intervals of dtM3 second. The control action consists of desired acceleration 

of car 3. The actuator uses the current dynamics of the car 3, control action and 

equations (6-7) to (6-8) to update the dynamics of the car 3. 

v3(t + 1) = v3(t) + a3 ∗ dtM3                (6-7) 

x3(t + 1) = x3(t) +  v3(t) ∗ dtM3 + a3 ∗
dtM32

2
                (6-8) 
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Chapter 8: Simulation 

This chapter describes the values assigned to different characteristics of the 

elements of the car passing problem as well as various iterations in the development of 

the executable model for car passing problem. 

8.1. Simulation Overview 

 
 The mathematical model of the car passing problem described so far was built 

in MATLAB with the same structure as the structure and behavior as described in 

chapters 4 through 7. For executing the model to do analysis, following values are 

assigned to different parameters.  

• ‘Collaborative2’ and ‘Collaborative3’ are chosen randomly for each run of the 

simulation. 

• All cars have same dimensions. So, safety distance between cars in same lane is 

considered same, i.e., sd = 5m and safe distance used by the cars for trajectory 

planning is considered same, i.e., sdi = 10m for car ‘i’. 

• All cars have same dynamics, i.e., a1max =a2max = a3max = 2.77m/s2 and d1max = d2max 

= d3max = 10m/s2. It’s based on assuming cars as ‘Toyota Camry CE’ [15]. 

• Assumed angular orientation of car 1 at T2 (θ1) is fixed at 30 degrees in phase 1 of 

the trajectory. Assumed angular orientation of car 1 at T5 (θ2) is fixed at -30 degrees 

from phase 1 to 4 of the trajectory.  

• Sampling time interval of the measurement system of car 1, to get measurements 

of the dynamics of other cars and itself, is 0.1 second. This is based on the sampling 

rate of LIDAR sensors [16]. 
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• Cars 2 and 3 are human driven cars with a reaction time, dtM2 and dtM3, of 0.9 

seconds [17]. 

• Maximum allowed speed on road, vmax, is 115km/hr and minimum allowed speed 

on road, vmin, is 70km/hr. This is based on the Maryland state highway speed limits 

[18]. 

• All lanes have same width, i.e., LaneWidth = 3m. This is based on the Maryland 

state highway designs [18]. 

• Velocities of car 1 and 2 are considered positive and velocity of car 3 is considered 

negative. 

• Standard deviation of error in measurement of dynamics of a car by itself is 0%.  

• Standard deviation of error in measurement of position by cars 2 and 3 is assumed 

to be 8.6% [19]. 

• Standard deviation of error in measurement of velocity by cars 2 and 3 is assumed 

to be 10% [20]. 

• Standard deviation of error in measurement of acceleration by cars 2 and 3 is 

assumed to be 5%. 

• Standard deviation of error in measurement of angular orientation and angular 

velocity by cars 2 and 3 is 0%. 

All these values remain constant throughout the simulation. The design factors 

identified in section 3.3, standard deviation of error in position, velocity and 

acceleration measurement and clearance distance of car 1 w.r.t. cars 2 and 3 at T5, vary 

as discussed below. 
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• Standard deviation of error in measurement of position by car 1 is 5% for 

monocular visual odometry [21] and 2.5% for Universal Medium Range Radar 

sensor (nominal value) [22]. 

• Standard deviation of error in measurement of velocity by car 1 is 6% for vision-

based constraint optical flow [23] and 2.91% for Ultrasonic sensor system based on 

two-dimensional state method (nominal value) [24]. 

• Standard deviation of error in measurement of acceleration by car 1 is assumed to 

be either 5% or 2.5% (nominal value). 

• Clearance distance of car 1 w.r.t. car 2 and 3 at T5 can take three values – 20m, 

35m (nominal value) and 50m. These are assumptions.  

All these 72 cases are executed for 2 initial states- unsafe and safe – as discussed in 

section 3.3. The initial state of the system when it is safe to pass under the assumption 

that car 1 always has accurate measurements is described below, Table 1. 

Table 1: Initial State of the System when it is safe to pass 

x1 0 m y1 1.85 m 

x2 200 m y2 1.85 m 

x3 1300 m y3 5.55 m 

v1 100 km/hr a1 1 m/s2 

v2 76 km/hr a2 0 m/s2 

v3 -75 km/hr a3 0 m/s2 

θ 0 rad w1 0 rad/s 
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 The initial state of the system when it is not safe to pass under the assumption 

that car 1 always has accurate measurements is described below, Table 2. 

Table 2: Initial State of the System when it is unsafe to pass 

x1 0 m y1 1.85 m 

x2 200 m y2 1.85 m 

x3 1100 m y3 5.55 m 

v1 100 km/hr a1 1 m/s2 

v2 76 km/hr a2 0 m/s2 

v3 -75 km/hr a3 0 m/s2 

θ 0 rad w1 0 rad/s 

8.2. Simulation Optimization 

The model described in the thesis is the final version of the model used for analysis. 

There were many iterations to get the model working right and fast. No formal 

verification and validation of the model was carried out, but model was informally 

checked and verified exhaustively by running it for different scenarios. As such there 

were many iterations of the model to reduce the errors in model execution and time for 

execution. The highlights of these iterations are documented below.  

• In version 1 of the model, state 1 on the controller of car 1 had θ1 and θ2, in addition 

to dT1, dT2, dT3, dT4, dT5, dT6, a11 and a14 as variables. This lead to long 

execution times for the nonlinear programming solver, ‘fmincon’, in MATLAB and 

most of the time the simulation crashed. To resolve this, the state variables for 
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different states of the controller of car 1 were reduced and necessary assumptions 

were made. As such the controller of car 1 starts with an assumed orientation of the 

trajectory as well as assumed behavior for the future phases of the trajectory. This 

ensured that model executed every time, but execution time was still around 10 

minutes for a safe initial state. 

• Version 2 - To reduce the execution time further, bounds were defined for all the 

variables based on the results of one successful execution. θ1 and θ2 were bound 

between 15 degrees to 80 degrees and -15 degrees to -80 degrees, respectively. dT1 

and dT4 have lower bound of 0 seconds and upper bound of 100 seconds. dT2, dT3, 

dT5 and dT6 have lower bound of 0 seconds and upper bound of 20 seconds. Rest 

of the variables were bounded by the design parameters of cars and their expected 

behavior -  cars 2 and 3 are assumed to not accelerate. This brought down the 

average execution time to 4 minutes for a safe initial state. 

• Version 3 – In version 2 of the model, controller of car 1 was updating the control 

action at every 0.1 seconds in phase 4. On analysis of the control action, it was 

observed that control action remained almost constant throughout the phase 4 of 

the trajectory, as such control algorithm was modified to check the update the 

control action only once at the beginning of the phase. This reduced the average 

execution time to 1 minute for a safe initial state. 

• Version 4 - Next major problem was that in many cases when it was safe to pass, 

controller determined the passing maneuver was not feasible due to measurement 

error. This was solved to some extent by putting in a condition that if the controller 
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determines trajectory is infeasible for 2 consecutive points till T1, only then 

decision to not pass will be made. 

• Version 5 –  To reduce the execution time further, unnecessary execution of linear 

programming solver for cars 2 and 3 were reduced. Control actions for both cars 

are automatically assigned a value of ‘0’ m/s2 if it was determined the velocity of 

the car 1 was lower than or equal to minimum allowed velocity on road. This 

reduced the average execution time to 21 seconds for a safe initial state. 

• Version 6 – Now the problem was that the controller moved to wrong states due to 

measurement noise, asynchronous information exchange among cars and 

measurement delay due to measurement system sampling rate. This was improved 

by updating the guard conditions for controller 1 from one shown in Figure 27 to 

one shown in Figure 16. 

• Version 7 – Further robustness of the simulation was improved by ensuring that 

simulation doesn’t stop unless two consecutive errors are encountered by any 

controller. In case of one error, control action from previous time instant is 

repeated. 

This sums up the process of model and simulation optimization and troubleshooting 

for supporting the analysis. 
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Figure 27: Earlier State Machine Diagram of Car 1 
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Chapter 9: Analysis, Results and Recommendations 

This chapter demonstrates that the executable model built by the author can be 

used for sensitivity analysis and trade-off analysis. It also presents various results 

collected regarding the problem form the executable model. 

9.1. Safe Trajectory analysis 

 This section presents values of different parameters of the trajectory generated 

for the initial safe state. Standard deviation of error in position is 0%, standard deviation 

of error in velocity is 0%, standard deviation of error in acceleration is 0% and 

clearance distance of car 1 w.r.t. both cars 2 and 3 is 35m. The trajectory taken by three 

cars is shown in Figure 28. Car 1 spent 1.3 seconds in phase 1 of the trajectory. It took 

on average 18.1 seconds in completing the maneuver, i.e. dT2 + dT3 + dT4 + dT5 + 

dT6, with an average of 16.6 seconds spent in phase 4 of the trajectory. Controller 

determined the orientation of car 1 at T1 and T5 to be 20 degrees and – 20 degrees 

respectively. Further it was observed that, car 1 accelerated to reach the maximum 

allowed velocity on road as early as possible. 

 
Figure 28: Car 1 successfully passing Car 2 without crashing with Car 3 
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9.2. Simulation Convergence Analysis 

 Simulation data is to be collected for 144 cases including safe and unsafe initial 

state. It is critical to determine the minimum number of iterations for each case so that 

the output measurers, P(A), P(B) and P(C) converge. Initially, 500 iterations of the 

model for safe initial state and 400 iterations for unsafe initial states were executed 

separately and their standard error was recorded for nominal values of all parameters. 

For the nominal values of parameters, no case was found in which car1 crashed after 

deciding to pass (in 400 cases that were recorded) which complements the performance 

of the controller of car 1. The corresponding graphs for P(A) and P(B) are shown in 

Figure 29 and Figure 30. Standard error for P(A), after 500, iterations is 0.0006 and 

0.0007 after 400 iterations. Standard error for P(B), after 400 iterations, is 0.0014. 

 
Figure 29: Convergence of P(A) with increase in iterations 

 
Figure 30: Convergence of P(B) with increase in iterations 
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9.3. Effect of Collaboration 

This section presents results on effects of collaboration amongst the drivers on 

safety of the passing maneuver given that car 1 decides to pass. To study the effects of 

collaboration, an initial state of the system was chosen for which passing is not possible 

when there is no collaboration by both cars 2 and 3. Further, the passing maneuver was 

executed till either there was a crash, or the passing maneuver was safely completed by 

car 1. This initial state is shown in Table 3. The trajectory corresponding to this initial 

state is shown in Figure 31 with car 1 crashing with car 3 in phase 4 of the trajectory. 

As car 2 collaborates with car 1 and slows down after T3, car 1 spends less time in 

phase 4 of the trajectory and can safely complete the passing maneuver as shown in 

Figure 32. When car 3 collaborates with car 1 and slows down after T3, car 1 has more 

clearance distance at T5 w.r.t. car 3 and can safely complete the passing maneuver, as 

shown in Figure 33. When both cars 2 and 3 collaborate, car 1 safely completes the 

passing maneuver by travelling less distance, as shown in Figure 34. 

Table 3: Initial State of the System 

x1 0 m y1 1.85 m 

x2 200 m y2 1.85 m 

x3 1000 m y3 5.55 m 

v1 100 km/hr a1 1 m/s2 

v2 78 km/hr a2 0 m/s2 

v3 -80 km/hr a3 0 m/s2 

θ 0 rad w1 0 rad/s 
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Figure 31: Car 1 crashing with Car 3 

 

 
Figure 32: Car 1 passing Car 2 without crashing due to collaboration with Car 2 
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Figure 33: Car 1 successfully passing Car 2 due to collaboration with Car 3 

 
 

 
Figure 34: Car 1 passing due to collaboration from Car 2 and Car 3 
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To study the effects of collaboration on five design factors, one design factor 

was varied at a time while keeping others fixed at nominal values. 1000 iterations were 

done. For the cases where car 1 decided to pass, they were segregated into 2 classes - 

where both cars 2 and 3 collaborated, and the case where either 1 of the cars 

collaborated or none of the cars collaborated. For each class, count of crashes was 

counted and divided by total count of instances in that class to get the ratio of crashed 

versus total count of attempts to pass. This ratio is used to study the effects of 

collaboration. As shown in Figure 35, collaboration significantly decreases the count of 

crashes for high uncertainty is position measurement. Similarly, as shown in Figure 36 

and Figure 37, collaboration significantly decreases the count of crashes for high 

uncertainty is velocity and acceleration measurement too. This shows, collaboration 

among the three cars, can help to mitigate the uncertainty in measurements. 

 

 

Figure 35: Effect of collaboration and Standard Deviation of Error in Relative Position 
measurement (%) on Safety 
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Figure 36: Effect of collaboration and Standard Deviation of Error in Relative Velocity 
measurement (%) on Safety 

 

 

Figure 37: Effect of collaboration and Standard Deviation of Error in Relative Acceleration 
measurement (%) on Safety 
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Effect of collaboration on safety with respect to clearance distance is shown in 

Figure 38 and Figure 39. With increase in clearance distance and collaboration among 

the cars, there is no crash. 

 

Figure 38: Effect of collaboration and Clearance distance of car 1 w.r.t. car 2 at T5 on 
Safety 

 

 

Figure 39: Effect of collaboration and Clearance distance of car 1 w.r.t. car 3 at T5 on 
Safety 
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9.4. Sensitivity Analysis 

To observe sensitivity of ‘SDposn’, ‘SDvel’, ‘SDaccln’, ‘sd125’ and ‘sd135’ with 

respect to P(A), P(B) and P(C), all the three probabilities are calculated for each 

combination of maximum, minimum and nominal values of these design parameters by 

varying one parameter at a time, irrespective of collaborating amongst the cars. 

Collaboration factor is chosen randomly. Minimum value for ‘SDposn’, ‘SDvel’ and 

‘SDaccln’ is assumed to be 0%. Nominal value for ‘SDposn’, ‘SDvel’ and ‘SDaccln’ is 2.5%, 

2.91% and 2.5% respectively. Maximum value for ‘SDposn’, ‘SDvel’ and ‘SDaccln’ is 5%, 

6% and 5% respectively. Minimum value for ‘sd125’ and ‘sd135’ is assumed to be 20m. 

Nominal value for ‘sd125’ and ‘sd135’ is assumed to be 35m. Maximum value for ‘sd125’ 

and ‘sd135’ is assumed to be 50m. This gives rise to 11 cases as shown in Table 4. For 

each case 400 iterations of safe and unsafe initial state were executed to calculate P(A), 

P(B) and P(C).  Change in each design factors with respect to probabilities is shown in 

the graphs in this section followed by a tornado diagram for P(A). 

Table 4: Cases for Sensitivity Analysis 

S. No. SD_posn (%) SD_vel (%) SD_accln (%) sd_125 (m) sd_135 (m) 

1 0 2.91 2.5 35 35 

2 5 2.91 2.5 35 35 

3 2.5 0 2.5 35 35 

4 2.5 6 2.5 35 35 

5 2.5 2.91 0 35 35 

6 2.5 2.91 5 35 35 

7 2.5 2.91 2.5 20 35 

8 2.5 2.91 2.5 50 35 

9 2.5 2.91 2.5 35 20 

10 2.5 2.91 2.5 35 50 

11 2.5 2.91 2.5 35 35 
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Figure 40: Probability of deciding to pass when it is safe to pass vs Standard deviation of 
error in Relative Position measurement 

  Figure 40 shows that increase in uncertainty in position measurement decreases 

probability of deciding to pass given that it is safe to pass. Figure 41 shows that increase 

in uncertainty in velocity measurement decreases probability of deciding to pass given 

that it is safe to pass. 

 

Figure 41: Probability of deciding to pass when it is safe to pass vs Standard deviation of 
error in Relative Velocity measurement 
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Figure 42: Probability of deciding to pass when it is safe to pass vs Standard deviation of 
error in Relative Acceleration measurement 

Figure 42 shows that probability of deciding to pass given that it is safe to pass 

is minimum at the nominal value and increases if uncertainty increases or decreases 

from the nominal value. This observation needs further investigation. Figure 43 shows 

that increase in clearance distance of car 1 w.r.t. to car 2 at T5 used to make decision 

whether to execute the passing maneuver, decreases probability of deciding to pass 

given that it is safe to pass. 

 

Figure 43: Probability of deciding to pass when it is safe to pass vs clearance distance of car 
1 w.r.t. car 2 at T5 
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Figure 44: Probability of deciding to pass when it is safe to pass vs clearance distance of car 
1 w.r.t. car 3 at T5 

Figure 44 shows that increase in clearance distance of car 1 w.r.t. to car 3 at T5 

used to make decision whether to execute the passing maneuver, decreases probability 

of deciding to pass given that it is safe to pass. Figure 45 shows that increase in 

uncertainty in position measurement decreases probability of not deciding to pass given 

that it is unsafe to pass. 

 

Figure 45: Probability of deciding not to pass when it is unsafe to pass vs Standard Deviation 
of error in Relative Position Measurement 
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Figure 46: Probability of safely passing after deciding to pass vs Standard deviation of error 

in Relative Position measurement 

Figure 46 shows that increase in uncertainty in position measurement, decreases 

probability of safely completing the passing maneuver after deciding to pass. Figure 47 

shows that increase in clearance distance of car 1 w.r.t. car 2 at T5 used to make the 

decision whether to pass, increases the probability of not deciding to pass given that it 

is unsafe to pass, till the nominal value of clearance distance and any further increase 

in clearance distance decreases the probability P(B). This is an interesting observation 

as an increase in clearance distance should indicate higher chances of car 1 deciding to 

not pass. Thus, this requires further investigation. 

 
Figure 47: Probability of deciding not to pass when it is unsafe to pass vs clearance distance 

of car 1 w.r.t. car 2 at T5 
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Figure 48: Sensitivity Analysis of P(A) 

From the tornado diagram, Figure 48, P(A) is most sensitive to ‘sd125’, ‘SDposn’ 

and ‘SDvel’ with decrease in any of these increases P(A). For P(B) and P(C), change in 

the value of the probabilities was of the order of 10-3 and 10-4 respectively, which are 

less than the standard error for associated experiments.  

 

9.5. Trade-off Analysis 

For conducting trade-off analysis, 2 designs options for each position measurement 

system, velocity measurement system and acceleration measurement system were 

selected as described below. For position measurement, standard deviation of error is 

5% for monocular visual odometry and 2.5% for Universal Medium Range Radar 

sensor. Standard deviation of error in measurement of velocity is 6% for vision-based 

constraint optical flow and 2.91% for Ultrasonic sensor system based on two-
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dimensional state method. Standard deviation of error in measurement of acceleration 

is assumed to be either 5% or 2.5%. Further, clearance distance of car 1 w.r.t. car 2 and 

3 at T5 can take three values – 20m, 35m and 50m. This gives rise to 72 test cases. For 

each case, 400 iterations of the model were executed separately for safe and unsafe 

initial state, followed by calculation of P(A), P(B) and P(C) as shown in Table 5. 

Table 5: Different Design options for Car Passing Maneuver 

S. 
No. 

SD_posn 
(%) 

SD_vel 
(%) 

SD_accln 
(%) 

sd_125 
(m) 

sd_135 
(m) P(A) P(B) P(C) 

1 2.5 2.91 2.5 20 20 1.000 0.96 0.98 
2 2.5 2.91 2.5 20 35 0.990 0.96 1.00 
3 2.5 2.91 2.5 20 50 0.990 0.99 1.00 
4 2.5 2.91 2.5 35 20 0.980 0.99 1.00 
5 2.5 2.91 2.5 35 35 0.920 0.99 1.00 
6 2.5 2.91 2.5 35 50 0.930 0.99 1.00 
7 2.5 2.91 2.5 50 20 0.590 0.99 1.00 
8 2.5 2.91 2.5 50 35 0.460 0.99 1.00 
9 2.5 2.91 2.5 50 50 0.240 1.00 1.00 

10 2.5 2.91 5 20 20 0.980 0.97 1.00 
11 2.5 2.91 5 20 35 1.000 0.99 1.00 
12 2.5 2.91 5 20 50 0.960 0.98 1.00 
13 2.5 2.91 5 35 20 0.920 1.00 1.00 
14 2.5 2.91 5 35 35 0.950 1.00 1.00 
15 2.5 2.91 5 35 50 0.920 1.00 1.00 
16 2.5 2.91 5 50 20 0.490 1.00 1.00 
17 2.5 2.91 5 50 35 0.290 1.00 1.00 
18 2.5 2.91 5 50 50 0.170 1.00 1.00 
19 2.5 6 2.5 20 20 0.980 0.90 1.00 
20 2.5 6 2.5 20 35 0.980 0.97 1.00 
21 2.5 6 2.5 20 50 0.970 0.99 1.00 
22 2.5 6 2.5 35 20 0.910 0.99 1.00 
23 2.5 6 2.5 35 35 0.860 1.00 1.00 
24 2.5 6 2.5 35 50 0.810 0.99 1.00 
25 2.5 6 2.5 50 20 0.500 0.99 1.00 
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S. 
No. 

SD_posn 
(%) 

SD_vel 
(%) 

SD_accln 
(%) 

sd_125 
(m) 

sd_135 
(m) P(A) P(B) P(C) 

26 2.5 6 2.5 50 35 0.360 1.00 1.00 
27 2.5 6 2.5 50 50 0.200 1.00 1.00 
28 2.5 6 5 20 20 1.000 0.93 1.00 
29 2.5 6 5 20 35 0.990 0.95 1.00 
30 2.5 6 5 20 50 0.960 0.98 0.99 
31 2.5 6 5 35 20 0.930 0.99 1.00 
32 2.5 6 5 35 35 0.830 1.00 1.00 
33 2.5 6 5 35 50 0.770 1.00 1.00 
34 2.5 6 5 50 20 0.430 1.00 1.00 
35 2.5 6 5 50 35 0.350 0.99 1.00 
36 2.5 6 5 50 50 0.270 1.00 1.00 
37 5 2.91 2.5 20 20 0.960 0.93 1.00 
38 5 2.91 2.5 20 35 0.990 0.95 1.00 
39 5 2.91 2.5 20 50 0.950 0.97 1.00 
40 5 2.91 2.5 35 20 0.880 0.995 1.00 
41 5 2.91 2.5 35 35 0.840 0.985 1.00 
42 5 2.91 2.5 35 50 0.850 1.000 1.00 
43 5 2.91 2.5 50 20 0.370 1.000 1.00 
44 5 2.91 2.5 50 35 0.280 1.000 1.00 
45 5 2.91 2.5 50 50 0.170 1.000 1.00 
46 5 2.91 5 20 20 0.970 0.94 1.00 
47 5 2.91 5 20 35 0.970 0.93 0.99 
48 5 2.91 5 20 50 0.990 0.98 1.00 
49 5 2.91 5 35 20 0.910 1.00 1.00 
50 5 2.91 5 35 35 0.890 1.00 1.00 
51 5 2.91 5 35 50 0.750 0.99 1.00 
52 5 2.91 5 50 20 0.410 1.00 1.00 
53 5 2.91 5 50 35 0.240 0.99 1.00 
54 5 2.91 5 50 50 0.250 1.00 1.00 
55 5 6 2.5 20 20 0.990 0.88 0.98 
56 5 6 2.5 20 35 0.950 0.94 1.00 
57 5 6 2.5 20 50 0.920 0.99 1.00 
58 5 6 2.5 35 20 0.800 0.99 1.00 
59 5 6 2.5 35 35 0.780 0.99 1.00 
60 5 6 2.5 35 50 0.770 0.99 1.00 
61 5 6 2.5 50 20 0.490 0.99 1.00 
62 5 6 2.5 50 35 0.320 0.99 1.00 
63 5 6 2.5 50 50 0.270 0.99 1.00 
64 5 6 5 20 20 0.980 0.90 1.00 
65 5 6 5 20 35 0.960 0.94 1.00 
66 5 6 5 20 50 0.950 0.97 1.00 
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S. 
No. 

SD_posn 
(%) 

SD_vel 
(%) 

SD_accln 
(%) 

sd_125 
(m) 

sd_135 
(m) P(A) P(B) P(C) 

67 5 6 5 35 20 0.870 0.99 0.99 
68 5 6 5 35 35 0.770 1.00 1.00 
69 5 6 5 35 50 0.620 1.00 0.98 
70 5 6 5 50 20 0.450 1.00 1.00 
71 5 6 5 50 35 0.300 1.00 1.00 
72 5 6 5 50 50 0.230 1.00 1.00 
 

From the 72 test cases, solutions were filtered by identifying the Pareto 

dominating solutions. This reduced the number of solutions to 2 solutions shown in 

Table 6. For position measurement, standard deviation of error is 2.5%, i.e., Universal 

Medium Range Radar sensor. Standard deviation of error in measurement of velocity 

is 2.91%, i.e., Ultrasonic sensor system based on two-dimensional state method. 

Standard deviation of error in measurement of acceleration is 5%. Further, clearance 

distance of car 1 w.r.t. car 3 at T5 is 35m. Clearance distance of car 1 w.r.t. car 2 at T5 

can be 20m or 35m, depending on choice of design and importance of the three metrics. 

Table 6: Pareto Dominant Design options for Car Overtaking Maneuver 

S. No. SD_posn 
(%) 

SD_vel 
(%) 

SD_accln 
(%) 

sd_125 
(m) 

sd_135 
(m) P(A) P(B) P(C) 

11 2.5 2.91 5 20 35 1.00 0.99 1.00 
14 2.5 2.91 5 35 35 0.95 1.00 1.00 

 

9.6. Results 

From the analysis of the data collected using simulations, it is observed that: 

• To safely pass car 2, autonomous car should reach maximum allowed velocity 

as soon as possible. 
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• Angular orientation of car 1 at T2 and T5 is observed to be 20 degrees and – 

20 degrees, as determined by the controller. It can be deduced that car 1 should 

have smaller angle with respect to x-axis while turning. 

• Total mean turning time for the maneuver is 16.6 seconds which is comparable 

real life Passing maneuver execution. The trajectory taken by the controller 

corresponds to flying Passing. 

• For cases with unsafe initial state, it was observed that if both car 2 and car 3 

do not cooperate, it always results in crash. 

• P(A) is most sensitive to ‘sd125’, ‘SDposn’ and ‘SDvel’. 

• 2 dominant solutions were found with Universal Medium Range Radar sensor, 

Ultrasonic sensor system based on two-dimensional state method, standard 

deviation of error in measurement of acceleration is 5%, clearance distance of 

car 1 w.r.t. car 3 at T5 is 35m and clearance distance of car 1 w.r.t. car 2 at T5 

can be 20m or 35m. 
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Chapter 10: Conclusions and Future Work 

In this work, a functional architecture of the car passing problem has been 

modelled using rigorous Model-based Systems Engineering to analyze the complex 

problem. Based on the architecture of the problem, especially behavior identified 

through state machines, controller for the three cars were modelled. As each component 

of the car passing problem has clearly defined interfaces and functionality in the model, 

it can be replaced by models of different design options for that component to analyze 

system performance. To demonstrate this, a mathematical model of different 

components, including controller for car 1, was developed in MATLAB, and 

performance of the system in terms of making the correct decision whether to pass and 

safety of the passing maneuver if it is executed, was evaluated. Further, some design 

variables were identified from the model, and different design options were chosen for 

those design variables. This was followed by a sensitivity analysis and tradeoff analysis 

based on the performance of the system for different combination of the design options. 

Different courses of action were narrowed down to two choices using Pareto analysis. 

The work demonstrates how MBSE approach facilitates managing complexity, making 

system modular while allowing design space exploration and evaluation.  

The results presented are based on analysis of two initial states and one scenario 

from amongst many scenarios that an autonomous vehicle may face on the road, like 

moving back after deciding to execute the passing maneuver. Trends obtained from the 

analysis should hold true in general, but many more factors need to be considered to 

generate data that will accurately and precisely represent the real-life scenarios. The 
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human behavior modelling done in the model is just an approximation of the human 

behaviors of interest to the analysis and doesn’t account for all the quirks of human 

behavior. Analysis depends highly on the type of distribution of measurement error and 

its mean and standard deviation. Better results can be obtained by conducting human 

factors studies to relate cooperativeness of the drivers towards other vehicles passing 

them and how they react to the situation. 

  Next step will be to formally verify and validate the simulation. Higher fidelity 

models for different component like measurement systems and car actuator models can 

be used to consider factors like actuation delay, measurement delay and processing 

speed of the controller. These higher fidelity models can be used to evaluate 

performance of different design combinations using simulations and derive 

requirements for the components. One must always consider that the car passing 

problem is critical to human safety and MBSE approach will help towards developing 

safer and reliable systems. 
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