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ABSTRACT
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On the Eigensystems of

Graded Matrices
G. W. Stewart

Dedicated to F. L.. Bauer

What, then, is time?

If no one asks of me, I know;
If I wish to explain it to him who asks,

I know not.

St. Augustine

I shall not attempt further to define it ...
but I know it when I see it.

Justice Potter Stewart (on pornography)

1. Introduction

Informally a graded matrix is one whose elements show a systematic decrease or increase
as one passes across the matrix. Thus we would recognize a matrix whose elements have

the magnitudes

10° 10=* 107% 107'2
109 10~* 10=% 1071'2
10° 10=* 107% 107'2
109 10~* 10=% 1071'2

as being graded by columns. Similarly, the matrices

10° 10° 10° 109 109

0% 10=* 10~* 10~¢ 102
1078 10~ 10~% 10~ and -4
1072 10-12 10-12 1012 106

are respectively row graded and diagonally graded.

107* 107°
10-% 10°8
1078 10710
10—10 10—12

It has long been recognized that the eigenvalues and eigenvectors of graded matrices
have special properties. For example, Martin, Reinsch, and Wilkinson writing in 1968
about Householder tridiagonalization [8] assert that a diagonally graded matrix will have
small eigenvalues that are insensitive to small relative perturbations in the elements of
the matrix. They go on to assert that if the direction of the grading is consonant with
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their implementation of the algorithm, then the small eigenvalues will be computed
accurately.

Informally, then, we know what a graded matrix is— just as St. Augustine knows
what time is and Potter Stewart knows pornography when he sees it. Unfortunately,
when it comes to a formal definition we encounter difficulties.

1. If we attempt to define grading as a systematic change in the magnitude of the ele-
ments, we have to take into account exceptions to the pattern. Does an occasional
zero element destroy the grading? What is a graded tridiagonal matrix?

2. Alternatively we can try to base a definition on the properties we observe in
graded matrices—e.g., the possession of small, well determined eigenvalues. Un-
fortunately, matrices that are nicely graded in the informal sense can fail to have
these properties.

In this paper we will take an intermediate course. We will define grading as a scaling
of a base matrix B. Then we will determine the properties of B that insure that the
graded matrix has the properties we want. In particular, we will be concerned with the
structure and perturbation theory of the eigensystem of graded matrices.

The paper is organized as follows. We begin with a numerical example that illustrates
some of the typical properties of a graded matrix. In the same section we will also give an
example in which these properties fail. The heart of the paper is §3, where we establish
the structure of the eigensystem of a graded matrix. In §4 we will derive condition
numbers for the eigenvectors and eigenvectors of graded matrices. In §5 we will treat
positive definite matrices and the singular value decomposition of general matrices. The
paper concludes with bibliographical notes surveying previous and related work.

Throughout this paper, || - || will denote the Euclidean vector norm and its subordi-
nate matrix norm. The conjugate transpose of a matrix A is denoted AH. The reader
is assumed to be familiar with the basic matrix decompositions, like Cholesky and the
QR decompositions (see, e.g., [7, 13]). In partitioned matrices we will index each block
by the indices of the element in the southeast corner. Thus if A is of order n, a partition

of A in the form
(A Aps

implies that Ay is of order k.

2. Examples

Since the structure of the eigensystem of a graded matrix is not widely known, it is
appropriate to set the stage with some examples. We begin with a matrix whose eigen-
values and eigenvectors exhibit the properties of a typical graded matrix. We will than
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present an example in which the properties fail. The computations were performed in
MATLAB with rounding unit about 10716,

2.1. A typical graded matrix
The matrix

—6.5e—01 —5.0e—-05 4.4e—09 4.le—14 —-9.8e—17
—1.1e4+00 —3.6e—06 1.3e—08 —7.6e—13 —6.9e—17
A=|-48e—02 —1.7e—05 —5.0e—=09 —8.9e—14 1.3e—16 (2.1)
3.8e—01 —9.6e—05 —1.1e—08 —2.0e—12 —9.1e—17
—3.3e—01 1.3e—04  8.1e—09 1.1e—12 —4.1e—17

was formed from a matrix B of standard normal deviates by postmultiplying it by
D = diag(1,107%107%, 10712, 1071).

Thus A is column graded with grading ratio of 10™* from column to column. (Here we
only display two digits of the double precision representation of A.)
The eigenvalues of A are given by

—6.5e—01 7.9e—05 —4.3e—09 —3.3e—12 —3.5e—16

It is seen that they share the grading of A, which is typical for such matrices.
The following is the matrix of eigenvectors of A, scaled so that the diagonal elements
are one:

1.0e+00 —7.6e—05 1.2e—08 —1.4e—12  3.8e—16
1.7e+00  1.0e4+00 —7.0e—05 1.4e—08 —3.7e—12
7.3e—02 —1.8¢—01  1.0e+00 —5.5¢—05  3.6e—08 | . (2.2)
—5.8e—01 —1.6e+00 —2.5e—02  1.0e4+00  9.9e—07
5.0e—01  2.0e400  1.1e+00 —9.0e—01  1.0e+00

The behavior of these vectors is more complicated than the behavior of the eigenvalues.
The subdiagonal elements are all of order one in magnitude. As we go upward from the
diagonal, the components of the eigenvectors scale downward with ratios of about 107,
Once again this is typical behavior.

In the next section we will see that there is an intimate relation between the structure
of the eigensystem of a graded matrix and the Schur complements of its leading principal
submatrices. The following numbers illustrate this connection.

—6.547%e—01 7.8905e—05 —4.3292e—09 —3.2932e—12 —3.5208e—16
—6.5471e—01 7.8915e—05 —4.3292e—09 —3.2932e—12 —3.5208e—16
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The first row contains the eigenvalues of A, this time displayed to five figures. Below it
are the diagonals from the U-factor of an unpivoted LU decomposition of A. The latter
approximate the former to four or five figures. Since the U-factor is the triangular matrix
computed by Gaussian elimination, the eigenvalues of a graded matrix can typically be
approximated by performing Gaussian elimination on the matrix.

2.2. An atypical matrix
The matrix

—6.5e—01 —5.0e—-05 4.4e—09 4.le—14 —-9.8e—17
—1.1e4+00 —8.2e—05 1.3e—08 —7.6e—13 —6.9e—17
A=]-48-02 —1.7e—05 —5.0e—09 —8.9e—14 1.3e—16
3.8e—01 —9.6e—05 —-1.1e—08 —2.0e—12 —-9.le—17
—3.3e—01 1.3e—04  8.1le—09 1.1e—12 —4.1e—17

was obtained from A by altering its (2,2)-element. The eigenvalues of this matrix are
—6.5e—01 9.2e—07 7.8e—08 5.2e—12 —1.0e—15

It is seen that the second and third eigenvalues of A no longer track the original grading.
The matrix of eigenvectors for A is

1.0e4-00 —7.6e—05 4.6e—07 6.4e—12 1.1e—-15
1.7e+00 1.0e4+00 —6.0e—03 —6.9e—08 —1.1le—11
7.3e—02 —1.5e+01 1.0e+00 1.6e—04  4.9e—08
—5.8e—01 —1.4e4-02 9.5e4-00 1.0e+00 4.3e—04
5.0e—01 1.7e4+02 —-1.2e401 —1.7e400 1.0e+00

The grading in the first, fourth and fifth columns is as above. However the subdiagonal
elements in the second column are considerably larger than one and the grading of the
superdiagonal elements in the third column is more gentle than above.

Finally, when we compare the the eigenvalues of A with the diagonals of its U-factors
we get the following table.

—6.547%e—01 9.1704e—07 7.7527e—08 5.1728e—12 —1.0073e—15
—6.5471e—01 1.0000e—06 7.1214e—08 5.1612e—12 —1.0080e—15

The second and third eigenvalues are not well approximated by the diagonals of U.

This last set of numbers has two features well worth noting. First, only the approx-
imations to the second and third eigenvalues are affected. The diagonals of U provide
good approximations to the first, fourth and fifth eigenvalues. Somehow the atypical
behavior is localized.



Graded Eigensystems 5

Second, the number 1.0000e—06 (already suspect because of the string of zeros)
is smaller than one would expect from performing (Gaussian elimination on a random
matrix scaled by . This suggests that unusually small elements on the diagonal of U
are associated with atypical behavior. We will make the connection clear in the next
section.

3. The eigenstructure of a graded matrix

In this section we will describe the structure of the eigenvalues and eigenvectors of a
graded matrix. The key idea is that when the grading is sufficiently strong, the matrix
can be reduced by a similarity transformation to a block diagonal matrix. Moreover,
as the grading increases, the reducing transformation approaches a fixed limit that is
independent of the grading. By calculating the eigenvectors of the diagonal blocks of
the block tridiagonal matrix we can compute approximations to the eigenvectors of the
original matrix that amount to scaling certain essentially constant vectors.

We will begin this section with some definitions and observations. We will then
show how to block-triangularize a graded matrix. We will then use the block triangular
matrix to compute approximations to the eigensystem of the matrix. We conclude with
an example of a gently graded matrix.

3.1. Definitions and observations

As we mentioned in the introduction, our approach to graded matrices amounts to
grading a base matrix B and then determining what properties of B yield a tractable
graded matrix. This approach leads to the following definition.

Definition 3.1. Let B be a given base matrix of order n and let
D = diag(61,02,...,0,), 0 >8> -0, >0.
Then
1. A= BD is column graded with respect to B and D,
2. A = DB is row graded with respect to B and D,
3. A= D:BD% is diagonally graded with respect to B and D,
The numbers 6y are called the grading factors. The numbers

Oyt

PE = 8

are called the grading ratios.
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There are four comments to make about this definition.

1. Because the grading factors decrease, we say the grading is downward. It is also
possible to grade upward. Our results, derived here for downward grading, also
apply with obvious modifications to upward grading.

2. Although we formally regard our graded matrices as coming from a base matrix B
and a diagonal grading matrix D, in practice it will be the other way around. For
example, given a column graded matrix A one might defined B by normalizing the
columns of A and define D to consist of the reciprocals of the normalizing factors.

3. No particular assumption is made about the structure of B, although it is natural
to think of it as being in some sense balanced. In particular, the results we are
going to establish hold if B is a band matrix or a Hessenberg matrix.

4. The grading ratios are never greater than one, but they are allowed to be equal
to one. Thus our theory applies to block-graded matrices, as well as the more
conventional grading appearing in the first two sections.

An important observation is that the three types of grading in Definition 3.1 can be
obtained from one another by diagonal similarities. For example if A = BD is column
graded, then DAD~! = DB is row graded. This means that we are free to chose a style
of grading and stick to it through our analysis, after which the results can be transfered
to the other styles. It turns out that column grading gives the cleanest derivations.

Our main result will be cast in terms of partitioned matrices and certain numbers
obtained from these partitions. In particular, we introduce the following notation and
terminology.

Definition 3.2. Let A = BD be partitioned in the form
A Arn\ _ (BrDyr BpoD,
where Ay is of order k. Then the number

def (| p—
re = || Bi 1Bl

is called the kth grading impediment. The number

def
Y& = KEPk

is called the kth grading coefficient.
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The grading impediments get their name as follows. It will turn out that the behavior
of graded matrices is controled by the size of the grading coefficients v, — the smaller
the better. These coefficients can be made arbitrarily small by making the grading
ratios sufficiently small. But if k5 (which is never less than one) is large, the grading
ratios will have to be correspondingly small for the the grading coefficients to be small.
For this reason we call the numbers k; grading impediments.

3.2. Block triangularization

In this subsection we will be concerned with reducing A to block triangular form by a
triangular similarity transformation. Specifically, we will try to find a matrix P, such

that
I 0\ (Arp Ay I 0\ (A + Ap P App, (3.1)

From elementary linear algebra, we know that the eigenvalues of A are, counting mul-
tiplicities, the union of the eigenvalues of Agr + Ag, P and those of A, — P Agn.
Moreover, it is easily verified that if y is an eigenvector of Apx + Agy Pnx then

Y
3.2
is an eigenvector of A and conversely.
More generally, it follows from (3.1) that

A (Pik ) _ (Pik )(AkkJrA;mPnk). (3.3)

We say that the columns of (1 ngk)H span an eigenspace (or invariant subspace) of A
and that Apr + A, P, is the representation of A on that subspace. In particular, if

k=1, then (1 pgl)H is an eigenvector of A corresponding the the eigenvalue aj;+atl p,.;.
Turning now to the existence of P, if we write out the (2, 1)-block of the right-hand
side of (3.1) and set the result to zero, we get the equation

PoiAry — Apn Pk = Apk — Pok A Pk
Assuming that Agg is nonsingular, we can write this equation in the form
Pop — Apn Par ALl = Ak AL — Pog A P AL
or in terms of B and D

Pok — Bpn Dy Poux D' B! = Bug Byl — Puk Bin Dy Pox D}V By (3.4)
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This equation already exhibits the asymptotic form of P, as the granding ratio py
approaches zero. Specifically, we have

1Brn D Pt D3 Biog | < B M Brn D5 I Dl 1Pl < #xpell Prsl] = vl P
Thus the second term on the left-hand side of (3.4) vanishes as py — 0. Similarly,
1Pk Bin D Pt D Bi! || < el I,

so that the second term on the right-hand side vanishes as py — 0. We are left with the
equation

Pur & B Byl

This remarkable approximation says that as the kth grading ratio approaches zero the
block diagonalizing similarity transformation in (3.1) effectively depends only on the
base matrix and not the grading. It also says that the norm of P, is asymptotically
bounded by the kth grading impediment.

Regarding the existence of P, the equation (3.4) is nonlinear and cannot be solved
in closed form. Fortunately, similar equations appear in the perturbation theory of
eigenspaces, and the analyses contained in that literature can be adapted to prove the
following theorem.!

Theorem 3.3. If

Wl BB _ 1
(L= 4
then (3.4) has a unique solution satisfying
2|| B B! 2k
L= L=
Moreover,
BByl — P
Wil =I <o+ g, (35)

Here are some observations on this theorem.

1. The theorem is local, depending only on the grading from &k to k + 1 —i.e., .

!Specifically, in Theorem V.2.1 in [14] take T = Ppp +— Ppp — BnnDnPnkDng;kl, g = BnkBk_kl,
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2. The bound (3.5) quantifies the fact that P, is approximated by BnkBk_kl. Specif-
ically, the bound on the normwise relative error in P,; is proportional to the
grading coefficient 7.

3. The matrix

Ak + Agn Prk = Bk Di + Bin Dy Prr,
contains the eigenvalues of A corresponding to the eigenspace spanned by (/ Pﬁg )H
As v decreases, the second term on the right becomes insignificant compared to
the first. In other words, the eigenvalues of Ayp provide approximations to the

largest k eigenvalues of A.
4. The matrix
Apn — Pk Ak = (Bun — Pk Bin ) Do
contains the remaining eigenvalues of A. As 7 decreases, this matrix approaches
(Bun — Buk B! Brn ) D = App — Apk A Ap.

The right hand side is the Schur complement of Ag in A, which therefore contains
approximations to the n — k smallest eigenvalues of A.

5. Since the subspace spanned by the columns of a matrix does not change when the
matrix is postmultiplied by a nonsingular matrix, the matrix

I
(Pnk) B Dy,

spans an eigenspace of A. As 7 decreases, this matrix approaches

Ak
Ank ‘
Thus the span of the first & columns of A approximates an eigenspace of A.

In the special case where k = 1, and 7, is small, it follows from the above results
that @y is an approximate eigenvalue of A whose eigenvector is approximately the first
column of A. To say something about the other eigenvalues and eigenvectors we must
perform a further reduction, to which we now turn.
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3.3. Eigenvalues and eigenvectors

If v is sufficiently small, we can compute the first k£ eigenvalues of A from the matrix
Crk = Agk + Apn P

Moreover, any eigenvector y of C'yr can be converted into an eigenvector of A via the for-
mula (3.2). We will be interested in the eigenvector corresponding to the kth eigenvalue
Ak

To calculate y we first note that

Cik = (Bik + Bin Dy P D V) Dy, (3.6)

is graded by columns with respect to B + B;mDnPnkD,;l and Dy. Partition

Co = Cr—1k—1 Ch=1k
kk — H )
Crk—1 Ckk

and let 45_1 be the (k — 1)th grading coefficient of Cyx. Then if 441 is sufficiently
small, there is a vector q,lik_l such that

( 1 0) (Ck—l,k—l Ck—l,k)( 1 0)
_‘lej,k—1 1 CII;I,k—l Ckk qllc_l,k—l 1

H

A Cr=1k=1 F Cho1 k) oy Ch—1,k

— i .
0 Ckk = G j—1Ck—1k

The quantity
Ak = Cpp — f]ilj,k—ﬁk—l,k
is the kth eigenvalue of A. The corresponding eigenvector of Cyy is

_ ( (Al — Choq 1 — Ck—l,k(];lik_l)_lck—l,k )
1+ f];I;I,k_l(Akf — Cr_1 k-1 — Ck—l,k(];lik_l)_lck—l,k '

Now it follows from (3.6) that as v — 0, we have C — By Dy. Hence for v small
we have Y51 < a7y,_1 for some constant a near one. Hence as y,_1 — 0, we have

H_ H -
G = Ck,k—lck—ll,k—l + O(7Vk-1)

H -1
Ak = ek = 1Oy 1 Ch—16 + 060 (Vh-1).
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and

y = (_01;_117k_1ck—1,k + 6kD];_110(7k—1))
1+ 0(7k-1) '

From (3.2), the kth eigenvector of A is given by

—Ck__ll’k_lck—m + 6D O(-1)
Ty = 14+ O(vk-1)
—Pn,k—10k__117k_10k—1,k + ok + O(Yi-1)

We now observe that as v, — 0, Ck_Lk_lD;_ll — Bj_1 -1, and similarly for the
other components in the partition of Ck;. Hence we have the following theorem.

Theorem 3.4. As vi_1 and 7y approach zero, we have

Ak = Op(brr — blx;l,k_lB;_l17k_1bk—1,k) + 6,O(max{ye—1, Vr}) (3.7)
and
_5kD1;—11Bk_—11,k—1bk—17k 5kD1;—11O(maX{7k—1a’Vk})
e = 1 n 0 . (38)
B Biler O(max{yk—1,7k})-

where ey the last column of the kxk identity matrix.

The expressions in Theorem 3.4 represent a nice division of labor. The matrix
B determines the unscaled structure of the eigenvalue and eigenvector; the matrix D
determines their scale. We will exploit this division of labor in the next section, where
we determine condition numbers of eigenvalues and eigenvectors.

The expressions confirm the observations made in §2.1 and §2.2. Their validity de-
pends only on the sizes of the local grading coeflicients y;_1 and +;. The approximation
(3.7) to A is 6y times the Schur complement of By_q ;_1 in By, — precisely the kth di-
agonal element of the U-factor in the LU decomposition of A. The approximation (3.8)
to the eigenvector has the scaling shown in (2.2). In fact the approximate eigenvector
can be quite good. For example, here is z3 from the matrix (2.1) compared with its
approximation.

X3 approximation
1.2086e—08 1.2087e—08
—7.0094e—05 —7.0097e—05
1.0000e+00 1.0000e+00
—2.4855e—02  —2.4947e—02
1.1495e+00 1.1496e+00
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With the exception of the unusually small fourth component, the vectors agree to four
figures, which is consonant with the grading ratios v = 1.1-10™% and 3 = 1.3-1072 for
this example.

If A is real, then all the quantities in (3.7) are real, and consequently Ay is real.
Moreover, if we allow nonpositive scaling factors, we can change the sign of A, or
even make it complex with any argument we wish. In particular, a general complex
matrix whose leading principal submatrices are nonsingular can be graded so that all
its eigenvalues are real (Fisher and Fuller [6]).

The grading coefficients for A" are the same as for A. Consequently, the left eigen-
vectors of A are as well (or ill) behaved as the right eigenvectors. However, the ap-
proximation (3.8) is no longer valid, since A" is graded by rows. However, the correct
approximation can be recovered by transforming (3.8) into an approximation suitable
for a matrix graded by rows; i.e., by multiplying it by D.

3.4. Gentle grading

In the foregoing we have assumed that the local grading coefficients were sufficiently
small to allow the matrix to split as in Theorem 3.3. But even when the grading is gentle,
the structure we have described persists, albeit in a rough way. Figure 3.1 contains a
mesh plot of the common logarithms of the absolute values of the components of the
eigenvectors of a matrix obtained by column grading a random matrix of order 100 with
grading ratios of 0.69 (i.e., grading factors running from 1 to 1071%). As above the first
k components tend to be constant and then the components show a decrease at a rate
determined by the grading ratio. The behavior is not uniform: note the ridges formed
groups of the eigenvectors. But the plot never deviates far from the normative behavior.
Why this should be so is an open research question.

4. Condition Numbers

In this section we will derive approximate perturbation bounds for the eigenvalues and
eigenvectors of a column graded matrix. The bounds themselves are certainly overes-
timates. But they give us reason to believe that, baring untoward circumstances, the
small eigenvalues and the small components of their eigenvectors are determined to high
relative accuracy.

An interesting fact that will emerge from our analysis is that the condition of the
eigenvalues and eigenvectors of a graded matrix depends on the grading impediments,
not the grading coefficients. Of course, the grading coefficients must be small enough for
our approximations to be valid. But once they are, further reducing the grading coeffi-
cients by reducing the grading ratios has little effect on the condition of the eigenvalues
and eigenvectors.



Graded Eigensystems 13

5
Vit ) .I/I[/f e )
”""'l“' wa‘ ‘J /"/I'/// R R
0 ‘,‘llml»q,, "Z,‘ :;;I'.‘:Il,”'ll ”i"i ‘4/// é‘/‘ﬂl '// ” 0 SRR

"t'”l’ll

\ " R
'Il Nl ’15";“0/[/)';/" AP !{I l'" ""Q‘

N hilipiaab 4//;,‘ i
3 !;A "A ’M/“” /'('l‘o“‘ll 'I )
N .‘ N \“) Y \‘v"*‘\\“
Y ""//' W \“‘I[ 2K “\!‘I /)\‘3“3
-10 O '\Ip“ ‘, \ A ’/I \/5Q
v‘;&‘\ r 'Il'?«'«‘/‘“\;l;“ !l ‘\
15 WA '/[7\ ::‘,;,9:1

‘;"

100

Figure 3.1: Eigenvectors of a gently graded matrix
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4.1. Generalities

In order to derive condition numbers for graded matrices, we must first decide what it
means to perturb a graded matrix. It seems natural that such a perturbation should
itself be graded, we will adopt the following definition.

Definition 4.1. Let A = BD be a graded matrix and let B + F be a perturbation of
B. Then BD + ED is a graded perturbation of A.

Just as a graded matrix is generated by grading a base matrix, a graded perturbation
is generated by grading a base perturbation of the base matrix. Our analysis will be
entirely in terms of this base perturbation. Note that a graded perturbation need not
represent a small componentwise perturbation in the elements of A since we do not
exclude large relative perturbations in small elements of B.

As we shall see, it is easy to plug F into the expressions in Theorem 3.4 to get
first order perturbation expansions. Taking norms in these expansions gives first order
bounds from which we can derive putative condition numbers. Unfortunately, we are
not working with eigenvalues and eigenvectors of A but with approximations to them,
and these approximations may be in greater error than the first order error bounds we
derive. It is therefore uncertain what such bounds actually mean.

To see what is going on, let us suppose we have a function ¢(v,¢€), where ¢(0,0)
represents our eigenvalue or eigenvector and (v, 0) represents its approximation. The
quantities ¢(0,€) and (7, €) represents the perturbations of the original quantity and
its approximation. Now a first order perturbation expansion gives

#(0,€) = ¢(0,0) + ¢c(0,0)e,
where ¢, is the derivative of ¢ with respect to e. What we actually compute is
?(7,6) = ¢(7,0) + (7, 0)e.
Depending on the size of € the perturbations ¢.(0,0)e and ¢.(v,0)e may be far smaller

than ¢(v,0) — ¢(0,0). Nonetheless, if ¢, is differentiable with respect to v, ¢(7,0) —
©c(0,0) = O(). Hence

©e(7,0)e = ©(0,0)e = O(ve).

It follows that if 7 is small enough, whether we base our perturbation theory on ¢(0,0)
or ¢(7,0): they give essentially the same correction.
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4.2. Eigenvalues

Since the approximation (3.7) for the eigenvalue is derived by multiplying the Schur
complement

H 1
e = ke = b1 By 1 0k—1.k

by 6y, it is suflicient to derive a perturbation expansion for the Schur complement. If
F is partitioned conformally with B, the perturbed Schur complement becomes

fir = bk + ek — (O gy + € o) (Brot ko1 + Ere1h-1) " (bro1s + €x—1,8)-
Replacing (Bk—1k-1 + Fr—14-1)"" by the first order expansion
(Br—1,k-1 + Ek—l,k—l)_l = Bk_—ll,k—l - Blz—ll,k—lEk—17k—lBlz—11,k—1
and dropping second order terms, we get

~ 5 -1 H
fik = p t+ €rk + bp 1 Br Ty €k—1k + €1 Bro1k—1
H -1 -1
- bk,k—1Bk—1,k—1Ek—Lk—lBk—1,k—1bk—1,k-
Taking norms we get and bounding terms like Bk_—ll,k—lbk—Lk by Kr_1, we get

e = el S (1 + k1) [ 1.

Hence
i — il 2 [[BI £
e =] < (1 4 g 2LIELL
|k x| || Bl
Multiplying the numerator and denominator of the left-hand side of this relation by éy,
we get
Ak = Asl o o[BI £
e S (LR T
| Ak el (1Bl

This bound shows that the relative condition of Ay is governed by two factors. The
first is essentially the square of the grading impediment k;_;. The second is the ratio
of || B|| to the kth diagonal element of the U-factor of B. Since g ' is the (k, k)-element
of Bk_kl, this ratio is bounded by k.

The second factor has an interesting interpretation. In an ordinary ungraded eigen-
value problem, a small eigenvalue, even if it is well condition in an absolute sense,
will be ill-conditioned in a relative sense. An analogous phenomenon holds for eigen-
values of graded matrices, but it is not the size of the eigenvalue that determines the
ill-conditioning but the size of the Schur complement p; with respect to the base matrix.
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4.3. Eigenvectors

Bounds for eigenvectors are complicated by the fact that the expression (3.8) has two
distinct formulas. We begin by writing

_6kD];_11y
T = 1 ’
z

where y = Bk__l1 p_1br—1k and z = BnkBk_klek.
The perturbation of y is the same as the perturbation of the system Bjp_; 1y =
br—1,k. We can therefore use standard perturbation theory [13, §3.3.1]to get

lg=-vll o (HEk—Lk—lH . H@k—LkH)
Iyl ~ [1Br—1 k=1l [[o5-14]

(k) o
~(k k

7 =P (Ictial il
ooyl ™ 1Br—1e=1ll  [|br—1kl]

Since the ¢th component of z; is approximated by z —6;452»_13/2', we have

This bound has the following interpretation. The number &y, is the relative condition
number for all components of the upper half of the eigenvector for which y; is not much
smaller as ||y||. However, as y; becomes smaller, its relative accuracy deteriorates.

The perturbation expansion for z does not simplify as nicely as that of y. A straight-
forward analysis yields the following bound:

-1
S NIBIE
ERREIR

12 -2l <
121l

where b;ﬂ;l) denotes the kth column of Bk_kl. There is no need to break this bound into
components, since z is not graded. The first factor in this bound is essentially the kth
grading impediment. The second factor, which is bounded by xy/||#]|, has the following

interpretation. Since z = Bnkbﬁl), we have ||z < HBnkHHbﬁl)H, so that the factor is
always greater than one. It is much greater than one when z is atypically small; i.e.,
when it does not reflect the size of b;ﬂ;l). As with the bound for y, only the larger
components of z are determined with high relative accuracy.

Most bounds for eigenvectors, whether normwise or componentwise, invoke a gap
hypothesis that says that the eigenvalue in question is sufficiently separated from its
neighbors. No explicit gap appears in our expressions. The reason is that we have
assumed that y,_; and < are small. This forces the eigenvalue Ay to be well enough

separated from its neighbors for our bounds to hold.
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5. Positive definite matrices and the singular value decomposition

In this section we will show how our theory applies to positive definite matrices. We
will then use these results to describe the behavior of the singular value decomposition
of a graded matrix.

5.1. Positive definite matrices

In treating positive definite matrices, it is natural to pass on the symmetry (and positive-
definiteness) of B to A by grading B by diagonals so that A = D2BD%. The expression
(3.8) for the eigenvectors must then be multiplied by Dz. When the kth component of
x} is normalized to one, the result is

i _1 i 1
—05 Dk—21Bk_—11,k—1bk—17k o; DkflO(maX{’yk_l,’yk})
2p = 1 + 0 . (5.1)
1 1 1 1
8, D2 B, Brley 8y > D7 O(max{vk_1,7k})

Thus, when the grading ratios are constant, each eigenvector zj exhibits constant grad-
ing downward above and below its kth component.

The grading impediments of a graded positive definite matrix are better behaved
that those of a general graded matrix. Because of the interlacing properties of the
eigenvalues of symmetric matrices, we have

IB N < 11BR < - < 1Batll-

Hence the grading impediments kj are nondecreasing and are bounded by x,. In par-
ticular, graded positive definite matrices cannot exhibit the intermediate ill behavior
found in §2.2.

There is also a computational difference between graded positive definite matrices
and graded general matrices. We have seen that for a general graded matrix A the
eigenvalues corresponding to sufficiently small grading coefficients are approximated
by the diagonal elements of the U-factor of A. Unfortunately, this U-factor must be
computed by Gaussian elimination without pivoting, which will be unstable if any of the
grading impediments are large. With positive definite matrices pivoting is unnecessary
for a stable reduction.

5.2. The singular value decomposition

In this subsection we will derive the structure of the singular value decomposition of
graded matrices. For definiteness we will consider an mxn (m > n) base matrix ¥ and

a column graded matrix X = VD3, (Results for row graded matrices can be obtained
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by considering the transpose matrix.) We will write the singular value decomposition
of X as

X =UxvH,

where ¥ = diag(oy,...,0,) (01 > -+ > 0, > 0) and U and V are orthonormal. The
columns wu; of U are called the right singular vectors of X and the columns »; of V are
called the left singular vectors of X.

We will be chiefly concerned with a qualitative description of the structure of the
graded singular value decomposition; however, formulas and bounds can easily be ob-
tained from our previous results. The key observation is that the squares of the singular
values of X are the eigenvalues of A = XHX and the right singular vectors of X are the
eigenvectors of A. Moreover if vy is a singular vector of X corresponding to the singular
value o, then u; = O'k_lX?Jk.

Now let B = YHY so that A = D%BD%, and let B = SHS be the Cholesky factor-
ization of B. Assuming that the grading coeflicients yx_1 and i of A are sufficiently
small, we have the following results.

1. The square of the kth singular value of X is approximately

S5ty + 8k0(max{ye—1.7})-

It follows that
1
oy = & (spr + O(max{ys—1,7x})).
2. The left singular vector v, has the structure given in (5.1).

To determine the behavior of the right singular vectors, we will exploit a connection
between the singular value decomposition of a graded matrix and its QR decomposition.
Specifically, suppose that 45, — 0. Then the columns of (/ ngk)H [see (3.3)] span the
eigenspace of A corresponding to the first k right singular vectors. It follows that the
columns of

Xk + XonPok = Yo Dy + Yo Dy Bue Byl + O(7)

span the space Uy spanned by the first k right singular vectors of X. Postmultiplying
by D;l, we find that the columns of

span the same subspace. Thus, in the limit i} is the column space of Y, or X,x.
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Now suppose that v,_1 also approaches zero. Then Uy_y is well approximated by
the column space of Y, ;. Since i), obtained by appending uy to Ui_y, up to terms
of order max{yr_1,7r} the vector u; must be the result of orthogonalizing the kth
column of Y against Y, ,_;. This is just the kth vector in the orthogonal part of the
QR factorization of ¥ or X.

Recalling that the R-factor R in the QR decomposition of X is the Cholesky factor
of XTX and that R = SD%, we have the following theorem.

Theorem 5.1. Let X = QR be the QR factorization of X. If y,_1 and =}, are suffi-
ciently small then

1
o ::Tkk4_5§()(n1ax{7k—177k}%

and
ug = qr + O(max{yr—_1,7k})-

We have scaled X by D3 to retain consistency with our earlier results. However,
it is the v;, which are proportional to the é;, that control the convergence of our ap-
proximations in Theorem 5.1. Thus with respect to actual gradings, approximations for
the singular value decomposition converge faster than approximations for the eigenvalue
problem.

To illustrate this phenomenon consider the following matlab code.

%Y = randn(6,2);

err = [];

for 1 = 1:5
D = diag(logspace(0,-1,2));
X = YxD;

(Q, Rl = qr(X);
[U,s,V] = svd(X);
U(:,2) = U(:,2)/sign(U(1,2));
Q(:,2) = Q(:,2)/sign(Q(1,2));
err = [err;
[norm(U(:,2)-Q(:,2)), abs(abs(R(2,2))-5(2,2))/5(2,2)1];
end

It generates a random base matrix, successively scales the second column by 107!
through 107>, and computes the error in the QR approximation to the second right
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singular vector and the corresponding singular value. The array err is

5.9262e—03 2.9763e—03
5.9264e—05 2.9633e—05
5.9264e—07 2.9632e—07
5.9264e—09 2.9632e—-09
5.9264e—11 2.9631e—11

We see that the approximations are converging as 1007". The fact that the ratios of
these errors quickly become constant suggests that the second order terms in y are also
converging.

6. Bibliographical notes

Problems involving scaling matrices by diagonal elements have a long history in modern
matrix computations. Farly work was directed to the effects of scaling on the condition
of the matrix in question and the effects of rounding error in Gaussian elimination.
Although this work does not concern us directly, it is appropriate to mention the seminal
papers by Bauer [3, 1966], van der Sluis [16, 1969], and Skeel [12, 1979].

In 1958 Fisher and Fuller [6, 1958] showed that if the leading principle submatrices
of a matrix B are nonsingular, there is a diagonal matrix D such that the eigenvalues of
DB are positive. Although they do not mention grading explicitly, their construction
amounts to chosing grading ratios so large that the eigenvalues of the resulting matrix
are real. By allowing D to have negative elements, the eigenvalues can be made positive.
Later Ballantine [1, 1970] gave a simple proof of the theorem.?

The first reference I can find to graded matrices as such is by Martin, Reinsch, and
Wilkinson [8, 1968], who warned that their version of Householder tridiagonalization
would destroy the accuracy of the small eigenvalues of a downward graded matrix.
However, the analysis of the eigensystem of graded matrices began with Dalquist [4,
1985], whose application was to stiff ordinary equations. He introduces, block grading
in terms of a base matrix, and shows that under certain conditions a graded matrix
A can be written in the form A = LRL™!, where L and R are close to the (block) L-
and U-factors of A. He establishes this fact using a block LR-algorithm ([17, Ch.8])
to triangularize A. By accumulating the transformations he gets error bounds on his
approximations.

The idea of grading a base matrix was rediscovered by Barlow and Demmel [2,
1990] and Stewart and Zhang [15, 1991]. The latter paper, which like Dalquist’s dealt

2Fisher and Fuller had in mind the solution of the linear system Bz = ¢ by an iterative method of
the form zxy1 = (I — DB)xk + Dec. If w choose D so that the eigenvalues of the iteration matrix lie
in [0,2), the iteration matrix has spectral radius less than one. However, if the grading of B is strong,
I — DB will have eigenvalues very near one, and the iteration will converge very slowly.
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only with eigenvalues, established its result by a direct block triangularization of the
kind described here. This paper also introduced (though not by name) the grading
impediments k;. Mathias [9, 1996] gave eigenvalue and eigenvector bounds for positive
definite matrices and at at the thirteenth Householder Symposium in Pontresina (1996)
observed, without proof that similar results hold for general graded matrices.

When the base matrix has special structure—e.g., when it is symmetric diagonally
dominant or positive definite — different kinds of bounds can be obtained. This line of
investigation was initiated by Barlow and Demmel [2, 1990] and continued by Demmel
and Veseli¢ [5, 1992], Mathias and Stewart [11, 1993], and Mathias [9, 1996] [10, 1997].
A typical result for eigenvalues is the following [5, Theorem 2.3].

Tllleore{m 6.1. Let B be positive definite with unit diagonal elements, and let A =
D2BDz. Let ||F|| < Amin(B). Let \; be the ith eigenvalue of A (in descending order),

and let \; be the ith eigenvalue of A+ E, where E = D2 FD%. Then it ||[F|] < Amin(B),

A = Al < =]
Ai - Amln(B)

(6.1)

In addition to perturbation bounds for eigenvalues, this sequence of papers develops
componentwise perturbation theory for eigenvectors and for the singular value decom-
position.

It is evident that Theorem 6.1 has a different flavor from the expansions and bounds
derived in this paper. It is global and simple in the sense that one bound serves all
eigenvalues, whereas our condition numbers vary with the eigenvalue. The price to be
paid for this simplicity is that it can be quite pessimistic. Qur analysis makes it clear that
the sensitivity of an eigenvalue depends only on the local grading impediments; whereas
the reciprocal of Apin(B) in the bound (6.1) represents the largest grading impediment.
Thus an open problem in the perturbation theory of graded positive definite matrices
is to derive bounds in the spirit of (6.1) that are local in nature.
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