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On the Eigensystems ofGraded MatricesG. W. StewartDedicated to F. L. Bauer What, then, is time?If no one asks of me, I know;If I wish to explain it to him who asks,I know not.St. AugustineI shall not attempt further to de�ne it : : :but I know it when I see it.Justice Potter Stewart (on pornography)1. IntroductionInformally a graded matrix is one whose elements show a systematic decrease or increaseas one passes across the matrix. Thus we would recognize a matrix whose elements havethe magnitudes 0BB@100 10�4 10�8 10�12100 10�4 10�8 10�12100 10�4 10�8 10�12100 10�4 10�8 10�121CCAas being graded by columns. Similarly, the matrices0BB@100 100 100 10010�4 10�4 10�4 10�410�8 10�8 10�8 10�810�12 10�12 10�12 10�121CCA and 0BB@100 10�2 10�4 10�610�2 10�4 10�6 10�810�4 10�6 10�8 10�1010�6 10�8 10�10 10�121CCAare respectively row graded and diagonally graded.It has long been recognized that the eigenvalues and eigenvectors of graded matriceshave special properties. For example, Martin, Reinsch, and Wilkinson writing in 1968about Householder tridiagonalization [8] assert that a diagonally graded matrix will havesmall eigenvalues that are insensitive to small relative perturbations in the elements ofthe matrix. They go on to assert that if the direction of the grading is consonant with1



2 Graded Eigensystemstheir implementation of the algorithm, then the small eigenvalues will be computedaccurately.Informally, then, we know what a graded matrix is| just as St. Augustine knowswhat time is and Potter Stewart knows pornography when he sees it. Unfortunately,when it comes to a formal de�nition we encounter di�culties.1. If we attempt to de�ne grading as a systematic change in the magnitude of the ele-ments, we have to take into account exceptions to the pattern. Does an occasionalzero element destroy the grading? What is a graded tridiagonal matrix?2. Alternatively we can try to base a de�nition on the properties we observe ingraded matrices| e.g., the possession of small, well determined eigenvalues. Un-fortunately, matrices that are nicely graded in the informal sense can fail to havethese properties.In this paper we will take an intermediate course. We will de�ne grading as a scalingof a base matrix B. Then we will determine the properties of B that insure that thegraded matrix has the properties we want. In particular, we will be concerned with thestructure and perturbation theory of the eigensystem of graded matrices.The paper is organized as follows. We begin with a numerical example that illustratessome of the typical properties of a graded matrix. In the same section we will also give anexample in which these properties fail. The heart of the paper is x3, where we establishthe structure of the eigensystem of a graded matrix. In x4 we will derive conditionnumbers for the eigenvectors and eigenvectors of graded matrices. In x5 we will treatpositive de�nite matrices and the singular value decomposition of general matrices. Thepaper concludes with bibliographical notes surveying previous and related work.Throughout this paper, k � k will denote the Euclidean vector norm and its subordi-nate matrix norm. The conjugate transpose of a matrix A is denoted AH. The readeris assumed to be familiar with the basic matrix decompositions, like Cholesky and theQR decompositions (see, e.g., [7, 13]). In partitioned matrices we will index each blockby the indices of the element in the southeast corner. Thus if A is of order n, a partitionof A in the form A = �Akk AknAnk Ann�implies that Akk is of order k.2. ExamplesSince the structure of the eigensystem of a graded matrix is not widely known, it isappropriate to set the stage with some examples. We begin with a matrix whose eigen-values and eigenvectors exhibit the properties of a typical graded matrix. We will than



Graded Eigensystems 3present an example in which the properties fail. The computations were performed inmatlab with rounding unit about 10�16.2.1. A typical graded matrixThe matrixA = 0BBBB@�6:5e�01 �5:0e�05 4:4e�09 4:1e�14 �9:8e�17�1:1e+00 �3:6e�06 1:3e�08 �7:6e�13 �6:9e�17�4:8e�02 �1:7e�05 �5:0e�09 �8:9e�14 1:3e�163:8e�01 �9:6e�05 �1:1e�08 �2:0e�12 �9:1e�17�3:3e�01 1:3e�04 8:1e�09 1:1e�12 �4:1e�171CCCCA (2.1)was formed from a matrix B of standard normal deviates by postmultiplying it byD = diag(1; 10�4; 10�8; 10�12; 10�16):Thus A is column graded with grading ratio of 10�4 from column to column. (Here weonly display two digits of the double precision representation of A.)The eigenvalues of A are given by�6:5e�01 7:9e�05 �4:3e�09 �3:3e�12 �3:5e�16It is seen that they share the grading of A, which is typical for such matrices.The following is the matrix of eigenvectors of A, scaled so that the diagonal elementsare one: 0BBBB@ 1:0e+00 �7:6e�05 1:2e�08 �1:4e�12 3:8e�161:7e+00 1:0e+00 �7:0e�05 1:4e�08 �3:7e�127:3e�02 �1:8e�01 1:0e+00 �5:5e�05 3:6e�08�5:8e�01 �1:6e+00 �2:5e�02 1:0e+00 9:9e�075:0e�01 2:0e+00 1:1e+00 �9:0e�01 1:0e+001CCCCA : (2.2)The behavior of these vectors is more complicated than the behavior of the eigenvalues.The subdiagonal elements are all of order one in magnitude. As we go upward from thediagonal, the components of the eigenvectors scale downward with ratios of about 10�4.Once again this is typical behavior.In the next section we will see that there is an intimate relation between the structureof the eigensystem of a graded matrix and the Schur complements of its leading principalsubmatrices. The following numbers illustrate this connection.�6:5479e�01 7:8905e�05 �4:3292e�09 �3:2932e�12 �3:5208e�16�6:5471e�01 7:8915e�05 �4:3292e�09 �3:2932e�12 �3:5208e�16



4 Graded EigensystemsThe �rst row contains the eigenvalues of A, this time displayed to �ve �gures. Below itare the diagonals from the U-factor of an unpivoted LU decomposition of A. The latterapproximate the former to four or �ve �gures. Since the U-factor is the triangular matrixcomputed by Gaussian elimination, the eigenvalues of a graded matrix can typically beapproximated by performing Gaussian elimination on the matrix.2.2. An atypical matrixThe matrix~A = 0BBBB@�6:5e�01 �5:0e�05 4:4e�09 4:1e�14 �9:8e�17�1:1e+00 �8:2e�05 1:3e�08 �7:6e�13 �6:9e�17�4:8e�02 �1:7e�05 �5:0e�09 �8:9e�14 1:3e�163:8e�01 �9:6e�05 �1:1e�08 �2:0e�12 �9:1e�17�3:3e�01 1:3e�04 8:1e�09 1:1e�12 �4:1e�171CCCCAwas obtained from A by altering its (2; 2)-element. The eigenvalues of this matrix are�6:5e�01 9:2e�07 7:8e�08 5:2e�12 �1:0e�15It is seen that the second and third eigenvalues of A no longer track the original grading.The matrix of eigenvectors for ~A is0BBBB@ 1:0e+00 �7:6e�05 4:6e�07 6:4e�12 1:1e�151:7e+00 1:0e+00 �6:0e�03 �6:9e�08 �1:1e�117:3e�02 �1:5e+01 1:0e+00 1:6e�04 4:9e�08�5:8e�01 �1:4e+02 9:5e+00 1:0e+00 4:3e�045:0e�01 1:7e+02 �1:2e+01 �1:7e+00 1:0e+001CCCCA :The grading in the �rst, fourth and �fth columns is as above. However the subdiagonalelements in the second column are considerably larger than one and the grading of thesuperdiagonal elements in the third column is more gentle than above.Finally, when we compare the the eigenvalues of ~A with the diagonals of its U-factorswe get the following table.�6:5479e�01 9:1704e�07 7:7527e�08 5:1728e�12 �1:0073e�15�6:5471e�01 1:0000e�06 7:1214e�08 5:1612e�12 �1:0080e�15The second and third eigenvalues are not well approximated by the diagonals of U .This last set of numbers has two features well worth noting. First, only the approx-imations to the second and third eigenvalues are a�ected. The diagonals of U providegood approximations to the �rst, fourth and �fth eigenvalues. Somehow the atypicalbehavior is localized.



Graded Eigensystems 5Second, the number 1:0000e�06 (already suspect because of the string of zeros)is smaller than one would expect from performing Gaussian elimination on a randommatrix scaled by D. This suggests that unusually small elements on the diagonal of Uare associated with atypical behavior. We will make the connection clear in the nextsection.3. The eigenstructure of a graded matrixIn this section we will describe the structure of the eigenvalues and eigenvectors of agraded matrix. The key idea is that when the grading is su�ciently strong, the matrixcan be reduced by a similarity transformation to a block diagonal matrix. Moreover,as the grading increases, the reducing transformation approaches a �xed limit that isindependent of the grading. By calculating the eigenvectors of the diagonal blocks ofthe block tridiagonal matrix we can compute approximations to the eigenvectors of theoriginal matrix that amount to scaling certain essentially constant vectors.We will begin this section with some de�nitions and observations. We will thenshow how to block-triangularize a graded matrix. We will then use the block triangularmatrix to compute approximations to the eigensystem of the matrix. We conclude withan example of a gently graded matrix.3.1. De�nitions and observationsAs we mentioned in the introduction, our approach to graded matrices amounts tograding a base matrix B and then determining what properties of B yield a tractablegraded matrix. This approach leads to the following de�nition.De�nition 3.1. Let B be a given base matrix of order n and letD = diag(�1; �2; : : : ; �n); �1 � �2 � � � ��n > 0:Then1. A = BD is column graded with respect to B and D,2. A = DB is row graded with respect to B and D,3. A = D 12BD 12 is diagonally graded with respect to B and D,The numbers �k are called the grading factors. The numbers�k = �k+1�kare called the grading ratios.



6 Graded EigensystemsThere are four comments to make about this de�nition.1. Because the grading factors decrease, we say the grading is downward. It is alsopossible to grade upward. Our results, derived here for downward grading, alsoapply with obvious modi�cations to upward grading.2. Although we formally regard our graded matrices as coming from a base matrix Band a diagonal grading matrix D, in practice it will be the other way around. Forexample, given a column graded matrix A one might de�ned B by normalizing thecolumns of A and de�ne D to consist of the reciprocals of the normalizing factors.3. No particular assumption is made about the structure of B, although it is naturalto think of it as being in some sense balanced. In particular, the results we aregoing to establish hold if B is a band matrix or a Hessenberg matrix.4. The grading ratios are never greater than one, but they are allowed to be equalto one. Thus our theory applies to block-graded matrices, as well as the moreconventional grading appearing in the �rst two sections.An important observation is that the three types of grading in De�nition 3.1 can beobtained from one another by diagonal similarities. For example if A = BD is columngraded, then DAD�1 = DB is row graded. This means that we are free to chose a styleof grading and stick to it through our analysis, after which the results can be transferedto the other styles. It turns out that column grading gives the cleanest derivations.Our main result will be cast in terms of partitioned matrices and certain numbersobtained from these partitions. In particular, we introduce the following notation andterminology.De�nition 3.2. Let A = BD be partitioned in the form�Akk AknAnk Ann� = �BkkDk BknDnBnkDk BnnDn� ;where Akk is of order k. Then the number�k def= kB�1kk kkBkis called the kth grading impediment. The number
k def= �k�kis called the kth grading coe�cient.



Graded Eigensystems 7The grading impediments get their name as follows. It will turn out that the behaviorof graded matrices is controled by the size of the grading coe�cients 
k |the smallerthe better. These coe�cients can be made arbitrarily small by making the gradingratios su�ciently small. But if �k (which is never less than one) is large, the gradingratios will have to be correspondingly small for the the grading coe�cients to be small.For this reason we call the numbers �k grading impediments.3.2. Block triangularizationIn this subsection we will be concerned with reducing A to block triangular form by atriangular similarity transformation. Speci�cally, we will try to �nd a matrix Pnk suchthat� I 0�Pnk I��Akk AknAnk Ann�� I 0Pnk I� = �Akk +AknPnk Akn0 Ann � PnkAkn� : (3.1)From elementary linear algebra, we know that the eigenvalues of A are, counting mul-tiplicities, the union of the eigenvalues of Akk + AknPnk and those of Ann � PnkAkn.Moreover, it is easily veri�ed that if y is an eigenvector of Akk + AknPnk then� yPnky� (3.2)is an eigenvector of A and conversely.More generally, it follows from (3.1) thatA� IPnk � = � IPnk � (Akk + AknPnk): (3.3)We say that the columns of (I PHnk)H span an eigenspace (or invariant subspace) of Aand that Akk + AknPnk is the representation of A on that subspace. In particular, ifk = 1, then (1 pHn1)H is an eigenvector ofA corresponding the the eigenvalue a11+aH1npn1.Turning now to the existence of Pnk , if we write out the (2; 1)-block of the right-handside of (3.1) and set the result to zero, we get the equationPnkAkk �AnnPnk = Ank � PnkAknPnk :Assuming that Akk is nonsingular, we can write this equation in the formPnk �AnnPnkA�1kk = AnkA�1kk � PnkAknPnkA�1kk ;or in terms of B and DPnk � BnnDnPnkD�1k B�1kk = BnkB�1kk � PnkBknDnPnkD�1k B�1kk : (3.4)



8 Graded EigensystemsThis equation already exhibits the asymptotic form of Pnk as the granding ratio �kapproaches zero. Speci�cally, we havekBnnDnPnkD�1k B�1kk k � kB�1kk kkBnnkkD�1k kkDnkkPnkk � �k�kkPnkk = 
kkPnkk:Thus the second term on the left-hand side of (3.4) vanishes as �k ! 0. Similarly,kPnkBknDnPnkD�1k B�1kk k � 
kkPk2;so that the second term on the right-hand side vanishes as �k ! 0. We are left with theequation Pnk �= BnkB�1kk :This remarkable approximation says that as the kth grading ratio approaches zero theblock diagonalizing similarity transformation in (3.1) e�ectively depends only on thebase matrix and not the grading. It also says that the norm of Pnk is asymptoticallybounded by the kth grading impediment.Regarding the existence of P , the equation (3.4) is nonlinear and cannot be solvedin closed form. Fortunately, similar equations appear in the perturbation theory ofeigenspaces, and the analyses contained in that literature can be adapted to prove thefollowing theorem.1Theorem 3.3. If 
kkBnkB�1kk k(1� 
k)2 < 14 ;then (3.4) has a unique solution satisfyingkPnkk � 2kBnkB�1kk k1� 
k � 2�k1� 
k :Moreover, kBnkB�1kk � PkkPk � 
k(1 + kPk): (3.5)Here are some observations on this theorem.1. The theorem is local, depending only on the grading from k to k + 1| i.e., 
k.1Speci�cally, in Theorem V.2.1 in [14] take T = Pnk 7! Pnk � BnnDnPnkD�1k B�1kk , g = BnkB�1kk ,and '(Pnk) = PnkBknDnPnkD�1k B�1kk .



Graded Eigensystems 92. The bound (3.5) quanti�es the fact that Pnk is approximated by BnkB�1kk . Specif-ically, the bound on the normwise relative error in Pnk is proportional to thegrading coe�cient 
k.3. The matrix Akk +AknPnk = BkkDk +BknDnPkncontains the eigenvalues ofA corresponding to the eigenspace spanned by (I PHnk)H.As 
k decreases, the second term on the right becomes insigni�cant compared tothe �rst. In other words, the eigenvalues of Akk provide approximations to thelargest k eigenvalues of A.4. The matrix Ann � PnkAkn = (Bnn � PnkBkn)Dn:contains the remaining eigenvalues of A. As 
k decreases, this matrix approaches(Bnn �BnkB�1kk Bkn)Dn = Ann �AnkA�1kk Akn:The right hand side is the Schur complement of Akk in A, which therefore containsapproximations to the n� k smallest eigenvalues of A.5. Since the subspace spanned by the columns of a matrix does not change when thematrix is postmultiplied by a nonsingular matrix, the matrix� IPnk�BkkDkspans an eigenspace of A. As 
k decreases, this matrix approaches�AkkAnk� :Thus the span of the �rst k columns of A approximates an eigenspace of A.In the special case where k = 1, and 
1 is small, it follows from the above resultsthat a11 is an approximate eigenvalue of A whose eigenvector is approximately the �rstcolumn of A. To say something about the other eigenvalues and eigenvectors we mustperform a further reduction, to which we now turn.



10 Graded Eigensystems3.3. Eigenvalues and eigenvectorsIf 
k is su�ciently small, we can compute the �rst k eigenvalues of A from the matrixCkk = Akk + AknPnkMoreover, any eigenvector y of Ckk can be converted into an eigenvector of A via the for-mula (3.2). We will be interested in the eigenvector corresponding to the kth eigenvalue�k. To calculate y we �rst note thatCkk = (Bkk + BknDnPnkD�1k )Dk (3.6)is graded by columns with respect to Bkk + BknDnPnkD�1k and Dk. PartitionCkk = �Ck�1;k�1 ck�1;kcHk;k�1 ckk � ;and let ~
k�1 be the (k � 1)th grading coe�cient of Ckk. Then if ~
k�1 is su�cientlysmall, there is a vector qHk;k�1 such that� I 0�qHk;k�1 1��Ck�1;k�1 ck�1;kcHk;k�1 ckk �� I 0qHk;k�1 1�= �Ck�1;k�1 + ck�1;kqHk;k�1 ck�1;k0 ckk � qHk;k�1ck�1;k� :The quantity �k = ckk � qHk;k�1ck�1;kis the kth eigenvalue of A. The corresponding eigenvector of Ckk isy = � (�kI � Ck�1;k�1 � ck�1;kqHk;k�1)�1ck�1;k1 + qHk;k�1(�kI � Ck�1;k�1 � ck�1;kqHk;k�1)�1ck�1;k � :Now it follows from (3.6) that as 
k ! 0, we have Ckk ! BkkDk. Hence for 
k smallwe have ~
k�1 � �
k�1 for some constant � near one. Hence as 
k�1 ! 0, we haveqHk = cHk;k�1C�1k�1;k�1 + O(
k�1)�k = ckk � cHk;k�1C�1k�1;k�1ck�1;k + �kO(
k�1):



Graded Eigensystems 11and y = ��C�1k�1;k�1ck�1;k + �kD�1k�1O(
k�1)1 + O(
k�1) � :From (3.2), the kth eigenvector of A is given byxk = 0@ �C�1k�1;k�1ck�1;k + �kD�1k�1O(
k�1)1 +O(
k�1)�Pn;k�1C�1k�1;k�1ck�1;k + pn;k + O(
k�1)1AWe now observe that as 
k ! 0, Ck�1;k�1D�1k�1 ! Bk�1;k�1, and similarly for theother components in the partition of Ckk. Hence we have the following theorem.Theorem 3.4. As 
k�1 and 
k approach zero, we have�k = �k(bkk � bHk;k�1B�1k�1;k�1bk�1;k) + �kO(maxf
k�1; 
kg) (3.7)and xk = 0@��kD�1k�1B�1k�1;k�1bk�1;k1BnkB�1kk ek 1A+0@�kD�1k�1O(maxf
k�1; 
kg)0O(maxf
k�1; 
kg): 1A ; (3.8)where ek the last column of the k�k identity matrix.The expressions in Theorem 3.4 represent a nice division of labor. The matrixB determines the unscaled structure of the eigenvalue and eigenvector; the matrix Ddetermines their scale. We will exploit this division of labor in the next section, wherewe determine condition numbers of eigenvalues and eigenvectors.The expressions con�rm the observations made in x2.1 and x2.2. Their validity de-pends only on the sizes of the local grading coe�cients 
k�1 and 
k. The approximation(3.7) to �k is �k times the Schur complement of Bk�1;k�1 in Bkk |precisely the kth di-agonal element of the U-factor in the LU decomposition of A. The approximation (3.8)to the eigenvector has the scaling shown in (2.2). In fact the approximate eigenvectorcan be quite good. For example, here is x3 from the matrix (2.1) compared with itsapproximation. x3 approximation1:2086e�08 1:2087e�08�7:0094e�05 �7:0097e�051:0000e+00 1:0000e+00�2:4855e�02 �2:4947e�021:1495e+00 1:1496e+00



12 Graded EigensystemsWith the exception of the unusually small fourth component, the vectors agree to four�gures, which is consonant with the grading ratios 
2 = 1:1�10�3 and 
3 = 1:3�10�3 forthis example.If A is real, then all the quantities in (3.7) are real, and consequently �k is real.Moreover, if we allow nonpositive scaling factors, we can change the sign of �k, oreven make it complex with any argument we wish. In particular, a general complexmatrix whose leading principal submatrices are nonsingular can be graded so that allits eigenvalues are real (Fisher and Fuller [6]).The grading coe�cients for AH are the same as for A. Consequently, the left eigen-vectors of A are as well (or ill) behaved as the right eigenvectors. However, the ap-proximation (3.8) is no longer valid, since AH is graded by rows. However, the correctapproximation can be recovered by transforming (3.8) into an approximation suitablefor a matrix graded by rows; i.e., by multiplying it by D.3.4. Gentle gradingIn the foregoing we have assumed that the local grading coe�cients were su�cientlysmall to allow the matrix to split as in Theorem 3.3. But even when the grading is gentle,the structure we have described persists, albeit in a rough way. Figure 3.1 contains amesh plot of the common logarithms of the absolute values of the components of theeigenvectors of a matrix obtained by column grading a random matrix of order 100 withgrading ratios of 0:69 (i.e., grading factors running from 1 to 10�16). As above the �rstk components tend to be constant and then the components show a decrease at a ratedetermined by the grading ratio. The behavior is not uniform: note the ridges formedgroups of the eigenvectors. But the plot never deviates far from the normative behavior.Why this should be so is an open research question.4. Condition NumbersIn this section we will derive approximate perturbation bounds for the eigenvalues andeigenvectors of a column graded matrix. The bounds themselves are certainly overes-timates. But they give us reason to believe that, baring untoward circumstances, thesmall eigenvalues and the small components of their eigenvectors are determined to highrelative accuracy.An interesting fact that will emerge from our analysis is that the condition of theeigenvalues and eigenvectors of a graded matrix depends on the grading impediments,not the grading coe�cients. Of course, the grading coe�cients must be small enough forour approximations to be valid. But once they are, further reducing the grading coe�-cients by reducing the grading ratios has little e�ect on the condition of the eigenvaluesand eigenvectors.
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Figure 3.1: Eigenvectors of a gently graded matrix



14 Graded Eigensystems4.1. GeneralitiesIn order to derive condition numbers for graded matrices, we must �rst decide what itmeans to perturb a graded matrix. It seems natural that such a perturbation shoulditself be graded, we will adopt the following de�nition.De�nition 4.1. Let A = BD be a graded matrix and let B + E be a perturbation ofB. Then BD +ED is a graded perturbation of A.Just as a graded matrix is generated by grading a base matrix, a graded perturbationis generated by grading a base perturbation of the base matrix. Our analysis will beentirely in terms of this base perturbation. Note that a graded perturbation need notrepresent a small componentwise perturbation in the elements of A since we do notexclude large relative perturbations in small elements of B.As we shall see, it is easy to plug E into the expressions in Theorem 3.4 to get�rst order perturbation expansions. Taking norms in these expansions gives �rst orderbounds from which we can derive putative condition numbers. Unfortunately, we arenot working with eigenvalues and eigenvectors of A but with approximations to them,and these approximations may be in greater error than the �rst order error bounds wederive. It is therefore uncertain what such bounds actually mean.To see what is going on, let us suppose we have a function '(
; �), where '(0; 0)represents our eigenvalue or eigenvector and '(
; 0) represents its approximation. Thequantities '(0; �) and '(
; �) represents the perturbations of the original quantity andits approximation. Now a �rst order perturbation expansion gives'(0; �) �= '(0; 0)+ '�(0; 0)�;where '� is the derivative of ' with respect to �. What we actually compute is'(
; �) �= '(
; 0)+ '�(
; 0)�:Depending on the size of � the perturbations '�(0; 0)� and '�(
; 0)� may be far smallerthan '(
; 0)� '(0; 0). Nonetheless, if '� is di�erentiable with respect to 
, '�(
; 0)�'�(0; 0) = O(
). Hence '�(
; 0)�� '�(0; 0)� = O(
�):It follows that if 
 is small enough, whether we base our perturbation theory on '(0; 0)or '(
; 0): they give essentially the same correction.



Graded Eigensystems 154.2. EigenvaluesSince the approximation (3.7) for the eigenvalue is derived by multiplying the Schurcomplement �k = bkk � bHk;k�1B�1k�1;k�1bk�1;kby �k , it is su�cient to derive a perturbation expansion for the Schur complement. IfE is partitioned conformally with B, the perturbed Schur complement becomes~�k = bkk + ekk � (bHk;k�1 + eHk;k�1)(Bk�1;k�1 +Ek�1;k�1)�1(bk�1;k + ek�1;k):Replacing (Bk�1;k�1 +Ek�1;k�1)�1 by the �rst order expansion(Bk�1;k�1 +Ek�1;k�1)�1 = B�1k�1;k�1 �B�1k�1;k�1Ek�1;k�1B�1k�1;k�1and dropping second order terms, we get~�k �= �k + ekk + bHk;k�1B�1k�1;k�1ek�1;k + eHk;k�1Bk�1;k�1� bHk;k�1B�1k�1;k�1Ek�1;k�1B�1k�1;k�1bk�1;k:Taking norms we get and bounding terms like B�1k�1;k�1bk�1;k by �k�1, we getj~�k � �k j <� (1 + �k�1)2kEk:Hence j~�k � �k jj�k j <� (1 + �k�1)2kBkj�kj kEkkBk :Multiplying the numerator and denominator of the left-hand side of this relation by �k ,we get j~�k � �kjj�kj <� (1 + �k�1)2kBkj�kj kEkkBk :This bound shows that the relative condition of �k is governed by two factors. The�rst is essentially the square of the grading impediment �k�1. The second is the ratioof kBk to the kth diagonal element of the U-factor of B. Since ��1k is the (k; k)-elementof B�1kk , this ratio is bounded by �k.The second factor has an interesting interpretation. In an ordinary ungraded eigen-value problem, a small eigenvalue, even if it is well condition in an absolute sense,will be ill-conditioned in a relative sense. An analogous phenomenon holds for eigen-values of graded matrices, but it is not the size of the eigenvalue that determines theill-conditioning but the size of the Schur complement �k with respect to the base matrix.



16 Graded Eigensystems4.3. EigenvectorsBounds for eigenvectors are complicated by the fact that the expression (3.8) has twodistinct formulas. We begin by writingxk = 0@��kD�1k�1y1z 1A ;where y = B�1k�1;k�1bk�1;k and z = BnkB�1kk ek.The perturbation of y is the same as the perturbation of the system Bk�1;k�1y =bk�1;k. We can therefore use standard perturbation theory [13, x3.3.1]to getk~y � ykkyk <� �k�1 �kEk�1;k�1kkBk�1;k�1k + kek�1;kkkbk�1;kk� :Since the ith component of xi is approximated by x(k)i �= ��k��1i yi, we havej~x(k)i � x(k)i j��1k �ikyk <� �k�1 �kEk�1;k�1kkBk�1;k�1k + kek�1;kkkbk�1;kk� :This bound has the following interpretation. The number �k is the relative conditionnumber for all components of the upper half of the eigenvector for which yi is not muchsmaller as kyk. However, as yi becomes smaller, its relative accuracy deteriorates.The perturbation expansion for z does not simplify as nicely as that of y. A straight-forward analysis yields the following bound:k~z � zkkzk <� (1 + �k)kb(�1)kk kkBkkzk kEkkBk ;where b(�1)kk denotes the kth column of B�1kk . There is no need to break this bound intocomponents, since z is not graded. The �rst factor in this bound is essentially the kthgrading impediment. The second factor, which is bounded by �k=kzk, has the followinginterpretation. Since z = Bnkb(�1)kk , we have kzk � kBnkkkb(�1)kk k, so that the factor isalways greater than one. It is much greater than one when z is atypically small; i.e.,when it does not re
ect the size of b(�1)kk . As with the bound for y, only the largercomponents of z are determined with high relative accuracy.Most bounds for eigenvectors, whether normwise or componentwise, invoke a gaphypothesis that says that the eigenvalue in question is su�ciently separated from itsneighbors. No explicit gap appears in our expressions. The reason is that we haveassumed that 
k�1 and 
k are small. This forces the eigenvalue �k to be well enoughseparated from its neighbors for our bounds to hold.



Graded Eigensystems 175. Positive de�nite matrices and the singular value decompositionIn this section we will show how our theory applies to positive de�nite matrices. Wewill then use these results to describe the behavior of the singular value decompositionof a graded matrix.5.1. Positive de�nite matricesIn treating positive de�nite matrices, it is natural to pass on the symmetry (and positive-de�niteness) of B to A by grading B by diagonals so that A = D 12BD 12 . The expression(3.8) for the eigenvectors must then be multiplied by D 12 . When the kth component ofxk is normalized to one, the result isxk = 0B@�� 12k D� 12k�1B�1k�1;k�1bk�1;k1�� 12k D 12nBnkB�1kk ek 1CA+0B@� 12k D� 12k�1O(maxf
k�1; 
kg)0�� 12k D 12nO(maxf
k�1; 
kg)1CA : (5.1)Thus, when the grading ratios are constant, each eigenvector xk exhibits constant grad-ing downward above and below its kth component.The grading impediments of a graded positive de�nite matrix are better behavedthat those of a general graded matrix. Because of the interlacing properties of theeigenvalues of symmetric matrices, we havekB�111 k � kB�122 k � � � � � kB�1nnk:Hence the grading impediments �k are nondecreasing and are bounded by �n. In par-ticular, graded positive de�nite matrices cannot exhibit the intermediate ill behaviorfound in x2.2.There is also a computational di�erence between graded positive de�nite matricesand graded general matrices. We have seen that for a general graded matrix A theeigenvalues corresponding to su�ciently small grading coe�cients are approximatedby the diagonal elements of the U-factor of A. Unfortunately, this U-factor must becomputed by Gaussian elimination without pivoting, which will be unstable if any of thegrading impediments are large. With positive de�nite matrices pivoting is unnecessaryfor a stable reduction.5.2. The singular value decompositionIn this subsection we will derive the structure of the singular value decomposition ofgraded matrices. For de�niteness we will consider an m�n (m � n) base matrix Y anda column graded matrix X = Y D 12 . (Results for row graded matrices can be obtained



18 Graded Eigensystemsby considering the transpose matrix.) We will write the singular value decompositionof X as X = U�V H;where � = diag(�1; : : : ; �n) (�1 � � � � � �n � 0) and U and V are orthonormal. Thecolumns ui of U are called the right singular vectors of X and the columns vi of V arecalled the left singular vectors of X .We will be chie
y concerned with a qualitative description of the structure of thegraded singular value decomposition; however, formulas and bounds can easily be ob-tained from our previous results. The key observation is that the squares of the singularvalues of X are the eigenvalues of A = XHX and the right singular vectors of X are theeigenvectors of A. Moreover if vk is a singular vector of X corresponding to the singularvalue �k, then uk = ��1k Xvk.Now let B = Y HY , so that A = D 12BD 12 , and let B = SHS be the Cholesky factor-ization of B. Assuming that the grading coe�cients 
k�1 and 
k of A are su�cientlysmall, we have the following results.1. The square of the kth singular value of X is approximately�ks2kk + �kO(maxf
k�1;
kg):It follows that �k = � 12k (skk + O(maxf
k�1; 
kg)):2. The left singular vector vk has the structure given in (5.1).To determine the behavior of the right singular vectors, we will exploit a connectionbetween the singular value decomposition of a graded matrix and its QR decomposition.Speci�cally, suppose that 
k ! 0. Then the columns of (I PHnk)H [see (3.3)] span theeigenspace of A corresponding to the �rst k right singular vectors. It follows that thecolumns of Xnk +XnnPnk = YnkDk + YnkDnBnkB�1kk + O(
k)span the space Uk spanned by the �rst k right singular vectors of X . Postmultiplyingby D�1k , we �nd that the columns of Ynk +O(
k)span the same subspace. Thus, in the limit Uk is the column space of Ynk or Xnk .



Graded Eigensystems 19Now suppose that 
k�1 also approaches zero. Then Uk�1 is well approximated bythe column space of Yn;k�1. Since Uk obtained by appending uk to Uk�1, up to termsof order maxf
k�1; 
kg the vector uk must be the result of orthogonalizing the kthcolumn of Y against Yn;k�1. This is just the kth vector in the orthogonal part of theQR factorization of Y or X .Recalling that the R-factor R in the QR decomposition of X is the Cholesky factorof XTX and that R = SD 12 , we have the following theorem.Theorem 5.1. Let X = QR be the QR factorization of X . If 
k�1 and 
k are su�-ciently small then �k = rkk + � 12k O(maxf
k�1; 
kg);and uk = qk +O(maxf
k�1; 
kg):We have scaled X by D 12 to retain consistency with our earlier results. However,it is the 
i, which are proportional to the �i, that control the convergence of our ap-proximations in Theorem 5.1. Thus with respect to actual gradings, approximations forthe singular value decomposition converge faster than approximations for the eigenvalueproblem.To illustrate this phenomenon consider the following matlab code.%Y = randn(6,2);err = [];for l = 1:5D = diag(logspace(0,-l,2));X = Y*D;[Q, R] = qr(X);[U,S,V] = svd(X);U(:,2) = U(:,2)/sign(U(1,2));Q(:,2) = Q(:,2)/sign(Q(1,2));err = [err;[norm(U(:,2)-Q(:,2)), abs(abs(R(2,2))-S(2,2))/S(2,2)]];endIt generates a random base matrix, successively scales the second column by 10�1through 10�5, and computes the error in the QR approximation to the second right



20 Graded Eigensystemssingular vector and the corresponding singular value. The array err is5:9262e�03 2:9763e�035:9264e�05 2:9633e�055:9264e�07 2:9632e�075:9264e�09 2:9632e�095:9264e�11 2:9631e�11We see that the approximations are converging as 100�i. The fact that the ratios ofthese errors quickly become constant suggests that the second order terms in 
 are alsoconverging.6. Bibliographical notesProblems involving scaling matrices by diagonal elements have a long history in modernmatrix computations. Early work was directed to the e�ects of scaling on the conditionof the matrix in question and the e�ects of rounding error in Gaussian elimination.Although this work does not concern us directly, it is appropriate to mention the seminalpapers by Bauer [3, 1966], van der Sluis [16, 1969], and Skeel [12, 1979].In 1958 Fisher and Fuller [6, 1958] showed that if the leading principle submatricesof a matrix B are nonsingular, there is a diagonal matrix D such that the eigenvalues ofDB are positive. Although they do not mention grading explicitly, their constructionamounts to chosing grading ratios so large that the eigenvalues of the resulting matrixare real. By allowing D to have negative elements, the eigenvalues can be made positive.Later Ballantine [1, 1970] gave a simple proof of the theorem.2The �rst reference I can �nd to graded matrices as such is by Martin, Reinsch, andWilkinson [8, 1968], who warned that their version of Householder tridiagonalizationwould destroy the accuracy of the small eigenvalues of a downward graded matrix.However, the analysis of the eigensystem of graded matrices began with Dalquist [4,1985], whose application was to sti� ordinary equations. He introduces, block gradingin terms of a base matrix, and shows that under certain conditions a graded matrixA can be written in the form A = LRL�1, where L and R are close to the (block) L-and U-factors of A. He establishes this fact using a block LR-algorithm ([17, Ch. 8])to triangularize A. By accumulating the transformations he gets error bounds on hisapproximations.The idea of grading a base matrix was rediscovered by Barlow and Demmel [2,1990] and Stewart and Zhang [15, 1991]. The latter paper, which like Dalquist's dealt2Fisher and Fuller had in mind the solution of the linear system Bx = c by an iterative method ofthe form xk+1 = (I � DB)xk + Dc. If w choose D so that the eigenvalues of the iteration matrix liein [0; 2), the iteration matrix has spectral radius less than one. However, if the grading of B is strong,I �DB will have eigenvalues very near one, and the iteration will converge very slowly.



Graded Eigensystems 21only with eigenvalues, established its result by a direct block triangularization of thekind described here. This paper also introduced (though not by name) the gradingimpediments �k. Mathias [9, 1996] gave eigenvalue and eigenvector bounds for positivede�nite matrices and at at the thirteenth Householder Symposium in Pontresina (1996)observed, without proof that similar results hold for general graded matrices.When the base matrix has special structure| e.g., when it is symmetric diagonallydominant or positive de�nite|di�erent kinds of bounds can be obtained. This line ofinvestigation was initiated by Barlow and Demmel [2, 1990] and continued by Demmeland Veseli�c [5, 1992], Mathias and Stewart [11, 1993], and Mathias [9, 1996] [10, 1997].A typical result for eigenvalues is the following [5, Theorem 2.3].Theorem 6.1. Let B be positive de�nite with unit diagonal elements, and let A =D 12BD 12 . Let kFk � �min(B). Let �i be the ith eigenvalue of A (in descending order),and let ~�i be the ith eigenvalue of A+E, where E = D 12FD 12 . Then if kFk < �min(B),j~�i � �ij�i � kEk�min(B) : (6.1)In addition to perturbation bounds for eigenvalues, this sequence of papers developscomponentwise perturbation theory for eigenvectors and for the singular value decom-position.It is evident that Theorem 6.1 has a di�erent 
avor from the expansions and boundsderived in this paper. It is global and simple in the sense that one bound serves alleigenvalues, whereas our condition numbers vary with the eigenvalue. The price to bepaid for this simplicity is that it can be quite pessimistic. Our analysis makes it clear thatthe sensitivity of an eigenvalue depends only on the local grading impediments; whereasthe reciprocal of �min(B) in the bound (6.1) represents the largest grading impediment.Thus an open problem in the perturbation theory of graded positive de�nite matricesis to derive bounds in the spirit of (6.1) that are local in nature.References[1] C. S. Ballantine. Stabilization by a diagonal matrix. Proceedings of the AmericanMathematical Society, 25:728{734, 1970.[2] J. Barlow and J. Demmel. Computing accurate eigensystems of scaled diagonallydominant matrices. SIAM Journal on Numerical Analysis, 27:762{791, 1988.[3] F. L. Bauer. Genauigkeitsfragen bei der L�osung linear Gleichungssysteme.Zeitschrift f�ur angewandte Mathematik und Mechanik, 46:409{421, 1966.
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