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LIST OF SYMBOLS

a distance between thin beanms

wi

~magnetic flux density vector
1

c = fifzf the velocity of light in free space
o
E th; electric field vector
E, the component of E normal to the z axis
E , E;, E, cylindrical components of E
E_, Ey, E, Cartesian components of E
E;, E;, the first and second derivatives of E_ with respect to r or x
e the electronic charge = 1.6 x 10°!? coulombs

£'(v,) the derivative of the density function of o’

H the magnetic field vector

I beam current

J =1

k a coupling coefficient, dimensionless

m the electronic mass = 9.1 x 10°3! kg,

p the plasma frequency reduction factor

Q, the integral of »? with respect to x in a bean

r, 6, 2z cylindrical coordinates

R, = :? dimensionless beam parameter

t  time

u = ifi%izﬁfl a derived variable

u,. ug :alues of u at x = x,, Xg

vAl, VA2, etc. anode voltage with respect to cathode

V.,11 Collector voltage with respect to cathode

Vor. cabe drift tube voltage with respect to cathode

AV difference in voltages in a double stream

v the electron velocity vector, expressing velocity as a function
X, y. z, torr, 8, z, t.

Vo, Vgr V, cylindrical components of v

of



V., V,, v_ Cartesian components of v

Yy 13
v, time average of v,
v! derivative of v_ with respect to x

Voo velocity at center of bean
v (D), v _(x) vV, as function of position

\'f potential at center of beanm

v, AC part of v,
v value of v_ for the n*} peanm

X, ¥, z Cartesian coordinates

X,, Xg Vvalues of x at the beam edges
0% propagation constant of waves
] fractional separation of beam velocities
1
€ ermittivity of free space = 7 (MKS
° P y v 367 x 10 ¢ )

€, phase constants for waves 1 and 2

e
A = eVo dimensionless spacing parameter
A

electron wavelength, distance electron travels in one cycle of the
operating frequency

KP plasma wavelength = é%.&e, or more generally 5o, Aot

. permeability of free space = 47 X 10~ 7 (MKS)
p space charge density as function of x, y, z, torr, 6, z, t

. time average of po

1 AC part of p

transit time through R.F.’ gap in resonant cavity

w operating angular frequency
w, = mze plasma angular frequency

on va;ue of w, for the n*® beanm
\Y% the vector operator
A* complex conjugate of A
Vf the Laplacian operator applying to the transverse component of E
€ =1 + IV, dimensionless quantity related to propagation constant

w
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CHAPTER 1

INTRODUCTION

This study was initiated because of interest in the work reported

by A.- V. Haeff (2), in which amplification was discovered in a single beanm
of moving electrons. In the same paper, results of experiments on a mixed
pair of electron beams of different velocities were reported, and a

simple theory of amplification in such a mixed beam was presented. The
single beam amplification was explained on the basis of the space charge
depression of potential in the beam (see Appendix 3). Experimental data
indicated gains of 60 db were possible in this device, in fact the gains

were as good as those of the double beam tubes tested:

The theory which was used to explain the double stream gain, as is
shown later, gives results which indicate that no gain may be obtained
in an electron sStream unless two groups of electrons of finitely dif-
ferent velocities dominate the situation. The existence of gain due to
depression of potential, where a more or less continuous velocity range
of electrons exists, is controversial. The basic difference in the two
cases is that the space charge depressed beam has a spatial distribution
of electrons, in contrast to the assumed homogeneous mixture of the

theory.

Shortly after the publication of this paper, the writer visited
Dr. Haeff.- At that time Dr. Haeff expressed interest in determining the
actual electron velocities in the single stream tube, but this was never
done. Some time later it was decided by the author to attack theoreti-
cally the problem of wave propagation in the space charge depressed beanm,
and to attempt to repeat Haeff’s experiment, with conditions more closely

related to those which can be treated theoretically.



CHAPTER II

THEORETICAL CONSIDERATIONS

The basic methods used in solving problems of wave propagation in
electron streams were established by Hahn (3) and Ramo (12). This pro-
cedure, originally applied to the klystron, involves certain limiting

assumptions:

1. All time-varying quantities in the beam are assumed to be much
smaller than the corresponding static values, except for the electric and
magnetic fields, which may not exist except in the presence of disturb-

ances.

2. Wave functions are assumed to be harmonic and of the form
f(x,y)el® =Yz  «w jis the angular frequency of the disturbance, t is
time, Zz the distance in the direction of wave propagation, and 7y is the
propagation constant, which indicates the velocity of propagation and/or

rate of amplification or attenuation.

Other assumptions may be necessary for a particular problem. The
general Hahn-Ramo method solves the problem by proceeding directly from
Maxwell’s equations and the equations of continuity of charge and of
motion of a charged body. A characteristic equation is usually found,
the solutions of which give characteristic values of . In some cases,
in particular those of continuous velocity distributions, no character-
- istic equation exists, for the solutions are dependent on the impressed
boundary conditions of a differential equation. This differential equa-

tion is derived in Appendix 1, and is discussed subsequently.

Macfarlane and Hay have published a theoretical paper entitled
“The Slipping Stream Amplifier” (6). They obtain results in which ampli-
fication is obtained in a beam in which there is a velocity gradient in

a direction transverse to the motion of the electrons. A close examina-



tion reveals that the solution is quite dependent on the presence of a
transverse magnetic field and transverse electron motion. The tube
described operates in many ways like a magnetron. In such a tube the
crossed electric and magnetic fields allow the electrons to move into
positions in which they may interact with fields of the proper phase to
cause energy to be given up to the fields by the electrons. The type of
tube described by Haeff could not possible have operated in such a mode,

since no transverse DC electric and magnetic fields were present.

Several writers (9) (11) have publisnhed theoretical papers on the
amplification characteristics of two thin laminar electron beams in cy-
lindrical coordinates, These results illustrate the decrease in gain
produced when the two groups of electrons are physically separated. They

do not, however, shed light on the continuous type of velocity distribution

Birdsall (1) and Haus (4) have attacked the problem of a homogeneous
electron beam with arbitrary velocity distribution, extended to finite
beams. They reach the general conclusion that in order for a beam to
have gain modes, the electrons must have a velocity distribution having
two peaks, separated by a region of velocity in which there are relative-
ly few electrons. It is interesting to note that in neither case did the
author succeed in obtaining an analytical criterion for gain. This is,

unfortunately, the usual result.

The Differential Equation. The equation which must be solved in the

analysis of a ““slipping’ stream, derived in Appendix 1, is written below
for a two-dimensional Cartesian beam and a & independent cylindrical beanm.

d2E w? w?

z 2 o o
ax? O+ cz)(1 * [joomyv (x)]72

)E, = 0 (1)

a’E, 1 dE (2 (‘)2)(1 w? VE
—_— z 4 o— + Q
ar? " tar TV c? [Je-v _(r)l2 %

=0 (2)

The special choice of velocity functions v (x) and v_ (r) is taken up in

Appendix 3. The choice of boundary conditions is not limited. Those



conditions which seem most natural are ones in which the beam is located
in free space or is surrounded by perfectly conducting metal walls. The
problems are much simplified if these walls are .just at the edge of the
beam itself. Other, more complicated boundary walls may be imagined, but
do not bear on the present problem.

If a cylindrical beam is considered, one boundary condition is

dE

¥
E, = drz =0 at r = 0. This is necessitated by the physical requirement

that the fields be finite everywhere for the cylindrical equation (2) has

two independent solutions, one of which is finite at the origin, the other
infinite. The finite solution has a zero derivative at the origin. A
second boundary condition is that E_is zero at the conducting wall out-
side the beam. If the beam is in free space, the solution must approach
zero at infinity. A Cartesian beam has E, = 0 at conducting walls; if it

is in free space, the solution at infinity must vanish.

If two boundary conditions be placed on solutions of (1) or (2), as
is the case, only certain values of oy will satisfy both. These are to be
determined. A priori it might seem logical to attempt to apply the W.B.K.
(Wentzel, Brillouin, Kramers)method (5) to this problem, but the limita-
tions of this method prohibit its use. Our approach will be first by
means of analysis of laminar beams with discrete velocities and then by

an almost exact solution of the Cartesian case.

Thin coupled beams at a distance. Our first approach to the problen

of a space charge depressed electron beam is the analysis of electron
beams which are decoupled from one another by moving them apart. Common
sense predicts that two beams which give a certain amount of gain when
well mixed, will give less as they are moved apart so that their coup-
ling fields interact less. An interesting problem is that of adding a

third beam of intermediate position and velocity to a set of two beams.

This will be treated using as the model a thin beam (thin in the X
direction) which extends to infinity in the y direction and travels

parallel to the z axis in which direction it is very long. Because the



beam is taken infinitesimally thin (for mathematical convenience), it
does not suffice to make the space charge density finite. It must be

infinite, in such a way that | o _dx= const. The beam may then be con-

Across

Bea
sidered the limit of a physical‘Bgam as the width is decreased to zero.

The equation to be solved now is (1).  Consider three  beams side by
side, as in Fig. 1. The spacing is a, and space charge in the two outer
beams i8 the same, while that in the center beam may be varied independ-
ently. The three beams have velocities v°(1=8), v ., and v°(1+8). 5 is
a measure of the fractional velocity difference of the beams. They are

in free space.

Values of v sought are always near Jw/v_, for reasons made apparent
in Appendix I. It is convenient to use this as an approximation to

for the solution outside the beams; in this region, the equation becomes

2
n 9 w =0 (3)
Ez + (’)/ +?,-)Ez = 2

A further approximation concerns the relative values of v and c, the
velocity of light. We assume v<<c, and leage out the w/c term, obtaining
EZ + yzEz = 0, or approximately (32a) E:-§%IQ= 0. This equation has the
elementary solutions e£%* . The only dif%erence, physically, between
this solution and the exact one, is a small change in the way in which
the fields decay away from the beams. There are four regions in which

the solutions of (3a) are found. They shall be denoted as follows:

@Wx
— v
X < - a Ez = Ale °
Lx e Wx
-a<x<0 E = A,e"° + B,e Yo
z 2 2
Wx - Ux
—_— v v
0<x<a E, = Aje’° + B3e o
- WX
—_ v
a<x Ez = B,e "o

The conditions under which the A and B may pe eliminated are the re-
quirements of continuity of the solutions of E_ and of its first deriva-
tive. The use of infinitesimally thin beams results in a slightly
different condition, for if equation (1) be integrated across one of the

L



beams (from X - € to X + €), the equation becomes

x+€ a)2

2 Ct)z
E; (x+¢) - E! (x-€¢) + E, (v*+—) —22 . dx = 0. (4
) z ’)’ cz fx-e (Jw-’}’Vn)z

V, represents the velocity of the particular bean, w_ , the plasma frequency.

-x te 9 . 9 w? i

If Q be made to denote jl . w, dx and letting (¥ +€;) be approximated by
2 X«

w

-;33 (4) becomes

’ @’ QE,

—n_z 4a)
v (Ja-yv )? (42

E!(x+e)+E!(x-€)¥

The relations which the four solutions and their derivatives with re-

spect to X must satisfy are collected below,.

s@Wa =@a Da
at x = -a: Aje "o = A,e "o 4+ B,e’o (5)
-Wa o =(a Ja -Wa
v v Vol
Aje Vo (v B ) =.V_[A26 Yo - Bye’e - Aje
o 1 o
at x = 0: A2+B2=A3+33
(A, +B. ) ( © ) © {A,-B,-A, +B,]
+ = — -B.,-A_+
2FB 37 P37 82Ty
v0P2 v,
Wa -a -(Wa
at X = +a: A3eV° + Bje ¥ = B,e v
= (da @ w =CJa wWa -a
B,e 7 ¢ )y =—[-B,e ¥ - A,e" + B,e "
4 VP, v, 4 3 3 ]

v(jawmyv ) ?

c:.>Qll

be consistent, the determinant of the coefficients of An and B must be
Wa

The Pn quantities represent In order that these six equations

zero. Let us define a demensionless beam spacing parameter A = e'°

The determinantal equation after quite a bit of reduction is found to be

8A%P,P,P, + 4\*(P,P,+P,P,+P,P,) (6)

+ 200%-DP, + 222(A2-1) (P, Py) + (1-AH) 2 = 0

This relation is of the sixth degree in 7, but if Q = Qg (space
charge in outer beams equal), it reduces to a cublc. Since the relation
would have entirely real coefficients for a variable jy, the solutions

must pbe satisfied for both jy¥ and (jy)*, which means that if one solution



has a real part a, another has the same imaginary part but real part -a.

A new variable is now defined, which measures the difference of 7y

from a non-growing wave with phase velocity v_. Thus we let

jow

4 =°;— (1-¢), and e=1--Z— . It is necessary in reducing (6) to make the
o Jo
v

o

approximation ')/8vo = jwd, but the quantity appears in a position of

secondary importance. Final reduction of (6) gives

R
€® + e‘(-zsz-nl-zl) + €2[8%-R 824R,8°2 (1)
R.R 1 R? 1
1M 1
+ ——= (l-—=) + — (1l-—
2 ( >\2) 2 ( A4)]
SR 82 1 R2R 1
- 2 —_— - 12 L—y21 =
+ [ + R,R, (1-5) - == (1-33) =0
w w?dx
The new quantity R is given by Rn =-;— i—ﬂi—- =-9% , wWhere the in-
w (3]

tegral is taken from one side to the other of the n®" pean.

Figures 2, 3, 4 show the effect of varying each of the parameters
R, 8, A, by plotting the loci which the six characteristic values of ¢

take as one parameter at a time is changed.

In each case R, A, or & is varied, and the locus of the values €
plotted as the parameter is varied. In all cases there are six modes.
They appear in two sets of three which are negatives. This is pecause
of the equation’s being a function of €?. Two of eacn of these three
are complex conjugates for certain ranges of the parameters, indicating
modes with gain and attenuation. Two of the six modes are always purely
propagational, and have large real €.

2

In the Figures, liberty has been taken to multiply 82, R and €* by

a factor which makes their magnitudes of the order of unity. Practical

values of 82 would be .01 or less and would result in values of € of the
order of .1 with R in the neighborhood of .01. The physical significance
Q

Q)z ’

[#3]
of A, €, and & has been explained; R = — and can be calculated for
v

[}



L. w w? W 2mW w? ) )
a finite peam of width W : R =— - 3 = c—2- A 1s the distance
w A w? €
o e

traveled by an electron at velocity v  during one cycle of the operating

frequency. For beams narrow compared to A_,

2 e
w
Zﬁ-is commonly .01 or less, making R of the order of .01.

may be of the order of 1;

The curve of Figure 2 shows the decrease of gain occasioned by addi-
tion of current to the center beam. Gain vanishes completely when the
current in the center beam equals 65% of that in each of the others.
Oddly, the current in the center beam affects very little the two propa-

gational modes.

Figure 3 indicates the effects of increasing beam spacing. The gain
decreases while the phase velocity of the modes remains constant until,
for A = 1.31, gain disappears. Again, the two purely propagational modes,
being functions of the two outer beams, vary but little,

The final curve, Figure 4, shows what happens as &, the velocity
separation, is varied. For small velocity difference, interaction is in-
surfficient to produce gain, as is also true for excessively high velocity

difference.

For the special case of zero current in the center peam, it is
simple to invoke a limiting condition for gain (the zero discriminant of
the resulting quadratic). This gives as a criterion for the presence of
gain
R? 1
§4 - R, 8% +—L (1- <0 . (8)
1 4 ,)\_4)

When the third beam is present, it is still possipble to set up a condition

of this type, but it is much less simple.

The same method may be employed to solve the problem of four or more
thin peams in free space, but it is easy to imagine tne greater diffi-
culty as the number of equations increases. When the method is applied
to a thin cylindrical beam, as is formulgted by Parzen (9), the coeffi-

cients in each equation are not simply e , but zero and first order

Bessel functions. Criteria for gain are correspondingly difficult to



Obtain and there is nothing to indicate that the results would pe vitally

different from those of the Cartesian problenm.

The point to be made by the foregoing is that the physical separa-
tion of beams with discrete velocity differences does not introduce any
new effects but merely decreases tendency toward amplification. The
addition of conducting walls near the beam will have some effect on the
gain, in general to decrease it, since the Ez will pe less everywhere,
going to zero at the conductor instead of at infinity. Less longitudi-

nal field will produce less beam interaction, and give less gain.

Cartesian case, continuous velocity distribution. Equation (1) may

be solved almost exactly, for arbitrary boundary conditions, oy use of a

transformation of variables!. The equation must be simplified py elimi-
2

@
nation of the velocity of light term—; . The equation which can pe
c
solved is
L Y ) E, =0 (9)
+ + = 2
dx? 4 [Joryv (x)]%° 72

The velocity v, (x) 1s assumed linear in X, which is sufficiently general
w+] YV (X)

dv
to be of interest. The supstitution u = is made, and if 2

av ax
—lD.
dx
be denoted by v/ , the equation (9) reduces to the form
d2E w?
Z o
- (1- )y E. =0 , ( 10)
2 12,2 =
du v:‘u z
which is free of explicit dependence on v . The boundary conditions are

considerably altered. If the beam is enclosed at each edge by conducting
planes, the conditions there are still E, = 0; if the beam is in free

space, the solution of E’ + »2E_ = 0, outside the peam must be e’”* on

h 1ti id ! dE j i 1 do ! dEz 1 On
the positive x side, so — I = 4 is replace — = ~1.
P E, dx I P YE

z

the negative X side, the condition is the negative of this.

The unknown quantity is the mapping of the range of X across the
peam into the complex u plane. Hereln lies the most important step.

Certainly, (10) contains no reference to beam width, and conducting plates

'First used by Macfarlane and Hay (6), on a different problem
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in the physical model certainly have no similar representation in the u
plane. As it happens, the problem must be solved in a backhanded (per-
haps even underhanded) way. Two values of u (u, and up) must be found
at which the boundary conditions at the beam edges (x, and Xg) are
satisfied. It will be shown that there are infinitely many sets of such
values of u. u, and u, also must satisfy other conditions, in that for
some complex vy and for given v(X,) and V(Xg) they must transform into
real values of x. For given v(xA) and v(xB) there are a countable set

of such u

\

A and Ug.

Figure 7 shows two points, marked A and B, in the complex u plane.
In Appendix 3 it is shown that for linear velocity variation, v, = w, -
This is the case that will be discussed. The additional requirements on
u, and u, are illustrated. Since u is linear in x and, more directly, in

v, (x), note that the line joining u, and ug must pass through

[#3] w w
U= ——— = — = . (For practical tubes is of the order of 10 or
dvo/@x v/ W, w,
w
greater.) u, and u, must also be the proper distances from u = S0
w

o

that the ratio of these distances equals the ratio of v, to vp. A further
requirement may be placed upon gain modes, namely that u, and up fall in
the first and second quadrants of the u plane, or, alternately, in the
fourth and third quadrants. This is necessary for reasons given in
Appendix 5. The meaning of such a requirement, physically, is that the
phase velocity of the growing wave cannot be greater than the velocity

0of the fastest electrons or less than that of the slowest.

Now that it has been established how the values u,, up must lie, we
shall investigate what properties E,(u), the solution to (10) must have
at these points; The simplest boundary conditions; those of conducting

walls at x, and x

A p» require Ez(xA) = E,(x5) = 0 = Ez(uA) = E,(up). The

solution E, (u) must, then, have zeros at u, and up, in which case, 1f

the u, and u, satisfy the other stated conditions, Ez(u) along the line

B
joining u, and u, gives the solution along the corresponding segment of
the x-axis. No other part of the u plane affects this particular

solution.
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In order to find u, and u, satisfying the requirements, E, (u) must

B
be determined over a large part of the complex u plane. Even more than
this, since (1l0) is of the second order, E,(u) may be any of a wide range
of functions. This wide range of functions are all linear combinations
of two independent solutions of (10). Let a particular pair be called
f,(u) and f,(u). The general solution is f,(u) - ¢f,(u), in which ¢ is

an arbitrary complex number. All we are really interested in about the

solutions is their zeros, since u, and u, must be picked from them. A
T
zero of f, - ¢f, makes ¢ =-?i . All zeros of all linear combinations can
R | 2
be found by plottlng.fi . 1f we choose a point in the u plane at ran-

dom, and ¢ = @, there, %@ search for other points where-;i-= ¢o, These
points are all zZeros of some particular solution of (;g),? Usually, curves
can be drawn in the u plane along which ;l varies periodically through the
same set of values. These we shall call %he loci of zeros of the solutions,

and on these the next arguments will be based.

Let us consider the equation

2
dEz 1E — 0. (11)

For u sufficiently less than unity in absolute value, (1Q) reduces
to (11). Similarly, the solutions of (10) will become asymptotic to

those of (1l1) in the same region.

The solutions of (11) are relatively simple. Two of them are

3 i3 , _
Ju Sin (—5 1n u) and Ju Cos G—E 1n u). The zeros of these functions lie
on the positive real u axis, since values of u on the positive real axils
map onto both sides of the real 1ln u axis, on which all the zeros of
Sin Z and Cos Z are located. The zeros of these two functions are shown
plotted vs. 1n u in Figure 5. They are equally spaced in the ln u plane,
but crowd together at u = 0 in the u plane. The function which is the

3

ratio of these, Tan (—- In u), has its zeros where the zeros of

73 2 3
Sin (—E—ln u) are, and poles where the zeros of Cos 6_5 in u) are. The
loci of zeros of arbitrary solutions of (11) in the ln u plane are hori-

zontal lines. In the u plane these become radial lines.
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The next step is to determine in what way the loci of zeros of solu-

tions of (10) differ from these radial lines.

If ju is substituted for u in (10), the equation becomes

d2E, 1 (12)
j;(}a;ﬁ + (1+(EE;3) E, = 0.

For real ju, that is, imaginary u, the solutions of (12) will be oscilla-
tory, with zeros lying on the Im u axis as shown on the left side of
Figure 6. The accumulation of zeros toward the origin indicates a branch
point and essential singularity there as in the asymptotic functions.

The loci of zeros of arbitrary solutions of (12), which also qualify as
zeros of solutions of (10), lie as illustrated in the other part of
Figure 6. Since f(-u) and f(u) are both functions satisfying (10), all

loci have negative counterparts.

The search for points which satisfy all requirements on u, and ug,
is fruitless, for none of the loci illustrated in Figure 6 could pass
through two such points as are shown in Figure 7. We conclude that no

gain modes are possible.

This having been established, we turn to the modes which do not
give gain., Their u, and uy; are not limited by requirements of falling
into certain quadrants, as they lie on the real u axis. They must, how-
ever, be spaced appropriately with respect to the-ji point. Within the

w

1]
limitations of u, and u, for a particular set of v, and v,, two sets of

A B

appropriate points u, and uy can be found, one set of which lies on the
positive real axis, one on the negative real axis. These give rise to
two sets of characteristic values of %, one of which gives waves with
phase velocity >v, and the other with phase velocity <vg, so no possible
waves have the velocity of any of the electrons. The lowest modes, with
velocity most different from electron velocities, have E_ of uniform sign
from X, to Xg: the next modes, with velocities closer to electron veloci-
ties, have E positive for some part of the beam, negative for the rest.
Such a mode is hard to detect, for most detectors indicate an integrated

value of the field over the beam. The other modes are of successively
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higher order, and their only importance in practice is the power which
they make unavailable for output. The modes of the Cartesian coordinate

beam have velocities very similar to those calculated for a cylindrical

beam in Figure 8.

It is possible to find modes with very large gain when w = @. These
may be interpreted as oscillations of the plasma. They are not practical
for use in a tube, for in addition to the inherent instability, the prob-
lem of attaining plasma frequencies of the order of 3000 mc. is difficult.
An additional complication is the large difference in velocity across the

beam required to satisfy these modes.

We return to the solutions of equation (10) when the velocity gradi-
ent v; is greater than or less than »_,. The form of the solutions will
be similar to those discussed above for smaller velocity gradients, ex-
cept the characteristic values of the propagation constant 7y will be more
tightly grouped. If the gradient v equals or exceeds 2w_, the mathe-
matical solutions show only two possible values of 7y, which give veloci-
ties corresponding to the beam velocity at the two edges. For velocity
gradients of this size, the assumption of a plane wave solution 1s some-
what questionable, anyhow. Particularly simple solutions are derived
when v; = Z_, being reducible to Bessel functions. These solutions were

examined in detail and found to produce no gain modes.

When the beam is in free space, with no conducting walls, the bound-

dE
ary conditions at the beam edges are dx‘/Ez = ijyvé . In terms of u these

dE ]
3 z/Ez = F1. Let us again consider an arbitrary solution of
u dE

(10), characterized by its locus of zeros. Its derivative function duz

are simnply

also has zeros along approximately the same line, for the approximate

symmetry of the function about the locus requires it. The matching

dE
function 3 z/Ez has alternating zeros and poles along the locus.
u

dE
*/F_ has
du / z

Intuition shows that the points at which the function
values of +1 lie along a line which is very near, but not necessarily
coincident with the first. Again, it seems necessary to draw the con-

clusion that the type of modes which propagate do not include small gain
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with small ratio of plasma frequency to operating frequency.

When the beam is enclosed by conducting walls at a distance, the
transformation of boundary conditions is complicated. The nature of the
free beam solutions for thin laminar beams indicates that moving the con-

ducting walls away from the beam does not introduce new results.

The case of an electron beam in which the velocity distribution has
even symmetry about the center is easily investigated, for the symmetry
of velocity requires even or odd symmetry in the solution. For odd sym-
metry, the solution must be zero in the center, which puts it in the
class with beams confined by conducting plates. For the solutions with
even symmetry, the first derivative must be zerc at the center. This
gives a boundary condition which may be discussed in the same terms as

before. The same conclusion is reached regarding gain.

The changes of importance in the mode pattern are those which occur
when the velocity difference or the space charge density is increased.
In the former instance, the mode velocities are crowded together, the
difference of velocity of the two fundamental modes is increased, and the
effect seems the same as an increase in the plasma frequency. When space
charge density is increased, the mode velocities are spread farther

apart, and again, of course, the plasma frequency is increased.

Changes in plasma wavelength, being determined from the difference
in velocity of the two fundamental modes, are probably the only external
evidences of slipping of electrons, for plasma wavelength can be measured
directly as twice the distance between minima of RF current in the beam.
The effect of slipping is probably deleterious to the operation of high
current tubes, where bandwidth is already limited by high space charge
dens ity, and the increase of effective plasma frequency will cause addi-

tional narrowing.

Computed solutions for cylindrical beams. Because of the analytic

difficulties in the solution of the general slipping cylindrical beam,

it was considered an excellent opportunity when the use of the Institute
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for Advanced Study Electronic Digital Computer was made available for
wWork on this problem. It was decided that the writer should prepare the
code for the machine, in order that experience in this be available at

RCA Laboratories.

The method chosen for preliminary analysis was that of solving (2)
for chosen values of 7y and attempting to determine whether any < not
purely imaginary could result in solutions which would satisfy the bound-
ary conditions. A complete survey of the -y plane would require excessive
time, while a method of iteration and successive approximations might not
converge readily when handled by the computer. An attractive method was
forward integration of equation (2), satisfying the boundary conditions
E! = 0 at r = 0, to the final value of r, at the boundary. The value
E (v, rfinﬂ) might be called f (). It will be zero for -y satisfying the
boundary conditions, and since the coefficients of the equation (2) are
regular except at » = jw/v, the function f () will be analytic every-
where in the finite oy plane except on portions of the imaginary axis!.
This leads to the method of counting zeros of a complex function inside

a closed contour by counting encirclements of the origin of f(y) as vy

traverses a chosen contour, as in a Nyquist plot.

The net number of encirclements of the origin will, in the absence
of singularities of the function within the contour, equal the number of
zeros in the contour. The application of this to the determination of
the presence of gain modes is simple and direct: contours of -y are
chosen which do not c¢ross the imaginary axis, and which are of such size
and position that all modes of interest would lie inside. <y is traversed
point by point, with a sufficiently fine mesh so that any f () does not
proceed more than 900 petween points. Record is made when f () crosses
the coordinate axes, with due regard to direction. When the contour 1is

closed, four quantities are obtained, being the net number of times each

'This quality of the solution results from a theorem of Fuchs, see, for example.
Copson, Theory of Functions of a Complex Variable, pp. 233-34.
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0f the four major axes was crossed. Theseshould be all equal to the num-

ber of zeros in the contour. This provides a valuable check of the

method.

The IAS computer is a 40 digit, parallel, binary high speed general
purpose computer, with an internal high speed memory of 1024 words of 40
digits, and at the present time the only external memory is provided by
IBM punched cards. Iterative integration procedures, while practical in-
sofar as computation time is concerned, are not desirable because the re-
quired memory is too great. The other alternatives to the solution of
the differential equation are the forward integration methods. Mainly
because of the writer’s unfamiliarity with Runge-Kutta and allied methods,
a method devised by Milne (7) was employed for integration. This is a
simple device., utilizing stored values previously calculated to determine
results accurate to fifth differences. It was felt that use of such a
method, with the simple means for changing size of increments of r and 7y
and for handling the complex variables, would be fruitful. The code
prepared for the machine solution allowed any values of the constants of
the beam to be chosen, with shifting routines to allow increase of the
variables outside the limits of the machine, which are *1. A set of
checks was included to stop calculation if the increments proved too

large for accuracy.

The final code was prepared in two editions. The first of these
covered a rectangular contour of v, making counts of axis crossings as
outlined above, and would stop only on completion of the contour. The
physical constants such as beam diameter, frequency, etc. could be given
any chosen values, and grovision was made for considering a beam with
conducting boundary at the beam edge, or any finite distance away; this
was done by making w_ a step function falling to zero at the beam edge.
The resulting solution has a discontinuity in the second derivative, which
is smoothed out in the function itself. The second edition of the code
recorded values of f () for »» on a line parallel to the imaginary 7y axis,

as many as 70 complex values on a single run.
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The actual preparation of the code occupied the greater part of a
month, and error finding took about three weeks. The statistical chance
of error in preparation of punched cards is low, but nonetheless 3 such
errors had'to be detected by preliminary runs on trigonometric and Bessel

functions. Priority of machine time accounted for a delay of several

months.

At the time of the initiation of the computing problem, the work on
the work on the Cartesian case had not been completed, and the experimen-
tal work had not been begun. The results of these indicated that extreme
concentration on determination of presence of gain was not necessary.

The root-counting code was used only in broad sweeps of the - plane, and
for a practical set of constants this coverage showed that no roots were
counted. Smaller segments of the plane were covered, and in no case were
any roots discovered. Some indication of the amount of calculation in-
volved is indicated by the amount of time required for a typical contour
traverse, 32 minutes. During this time, the machine performed no less

than 10° elementary operations.

Because of the large amount of time required for the contour trav-
erses, and the small amount of usable data (4 numbers) obtained at the
end of each run, it was decided to concentrate on obtaining sets of values
of £ (), and this was done. In Figure 8 are shown some mode velocities
calculated for a slipping cylindrical stream, as compared with mode
velocities of an equivalent univelocity beam. The beam used in this cal-
culation-was .080 inches in diameter, inside an .080 inch tube. Bean
center voltage was 100 v. and beam current 6 ma. It may be thought de-
sirable to obtain data for all possible physical cases, but the estimated
machine operating cost of $400 per hour and the desperate need of its
services by high priority government agencies prevented even considera-
tion of this. The writer is highly indebted to the staff at IAS for the

chance to use this excellent machine.



CHAPTER III

EXPERIMENTAL INVESTIGATION

Equipment. 1In order to attempt to repeat the experiment of Haeff,
and also to produce experimental conditions more nearly free of compli-
cation, a demountable tube was constructed. This necessitated the build-
ing of a vacuum system. The main features of this tube, which is illus-
trated in plates 1 and 2, are shown graphically in these and in Figure 9.
The tube consists of an evacuated brass envelope, enclosed by a glass
sleeve. The brass part acts as an aligning jig for the electron gun,
the two resonant cavities, the collector, and any other cylindrical
electrodes. The electron gun used throughout the investigation has an
.050" diameter oxide cathode, and produces a beam which can be readily
confined to an ,060" diameter through the length of the tube, which is
about 15 inches in length from gun to collector. In most of the experi-
ments, the electron beam was confined by a set of molybdenum tapes, which
form a drift space .125" on a side. The tapes are only .001" thick, and
hence may be made to roll on rollers around the cavities. 1In this way
cavity movement is possible without varying the position of anything else
in the tube. The large electromagnet illustrated produces large longi-
tudinal magnetic fields which reduce transverse beam expansion to a very
small value. The power supply visible in plate 1 was constructed to
enable quick changes to be made in the electrode voltages and to make

observation of electrode currents rapid and convenient.

Among the refinements in this demountable tube assembly are:
cavities which may be tuned and decoupled from outside the vacuum, tupe
sides cut away for observation of conditions within the tupe, interchange-
able collector assembly, and a diaphragm with apertures of graded diameter
by which beam size can be approximated by measuring interception of cur-

rent on the diaphragm. Tuning and adjustment of the beam aperture 1is
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done by means of a rod having a hal f-gear attached. This can be made to
mesh with other gears in the tube to perform these functions. The vacuum
System, to which the tube is connected rigidly, can maintain a pressure
of 5x10-8% nmn, Hg absolute at the gage, which for accuracy is mounted in

a position of symmetry with respect to the electron gun., The system is
completely demountable, being assembled with the use of neoprene O-rings.
The high speed of the vacuum pump, 300 liters per second, together with
the large size of the liquid nitrogen trap, both contribute toward ob-

taining the very low pressure in the system.

The radio frequency system is sketched in Figure 10. The signal
generator feeds the tube through a tuner. The output is fed through a
superheterodyne receiver and observed on either a meter or an oscillo-
scope tube. The loop in each resonant cavity is fed from the coaxial
line through a non-matched hermetic seal. The coaxial line is rigid,
and emerges through an O-ring gland seal. Cavities are moved longitudi-
nally by pushing and pulling on this coaxial line; coupling is adjusted
by rotating it, which rotates the loop inside the cavity. This has
proven to be a satisfactory type of coupling for this type of work, in

which little signal power is involved, and large losses are tolerable.

Experiments performed. The initial experiments were designed to

determine if increasing waves could be set up in a slipping stream of
electrons. In order to insure that positive ion neutralization of the
beam would not destroy the velocity difference, experiments with a con-
tinuous beam were compared with experiments in which the beam current was
pulsed by application of pulsed voltage to a gun electrode. In poth these
cases the measurement consisted of applying input to the input cavity and
observing the output voltage while one of the electrodes was swept in
voltage. The voltage of the entire cavity system was swept with respect
to the gun electrodes. Typical of the observed wave forms are those shown
in Figure 11, for similar conditions, pulsed and continuous. The decrease
of output at low voltage is due to decreased cavityzcoupling caused by

Sin r/2

long transit times; this factor should be [——j;a——ﬂ ,where r is the

L
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transit time through the RF gap of the cavity. In these terms.  the ob-
Served behavior of the cavities indicated that the effective gap length
was .060", as compared with the physical gap length of .040". The maxima
and minima of the traces are due to the fundamental wave of the electron
Steam; velocity modulation of the beam at the input requires that the RF
cavity current have such minima. An interesting observation not recorded
by any previous experimenter was the non-zero minima of cavity current
visible in most of the oscilloscope traces. This must be due to the fact
that the finite gap does not excite entirely velocity modulation on the
beam, but some current modulation as well. The residual current modula-
tion is of the wrong phase to produce the total cancellation of RF current
at the minima. Another reason for this effect is the fact that in a
finite beam, the "slow" and "fast" waves do not have the same plasma
frequency reduction factor p (See Appendix I). This will give rise to

unequal excitation of the two waves.

To overcome the difficulties introduced by the transit time factor,
the cavities were moved so as to make the drift space length increase.
If exponential gain occurred in the tube, the output vs. drift space
voltage curve should not be similar for different tube lengths, but should
increase considerably at the low voltage end, where the beam has highest
space charge density and greatest slip. In a number of different experi-
ments, using different voltages and currents, no such effect was noticed.’
Some of the curves are shown in Figure 12.° The difference in the pattern
of the maxima and minima is due to the difference in the number of elec-
tron plasma wave lengths between the cavities, but the envelope of the

curves 1is the same for different tube lengths, indicating no gain.’

By observation of the drift tube vcltage for each minimum of the
output voltage, the plasma frequency can be calculated. This is done in
Figure 13. The plasma frequency produced in this exercise is as great as
267.5 megacycles. In some tests, 1t was 375 mc., and no gain existed.
From the known beam diameter and velocity, the amount of the slip can be

determined. The amount of gain produced by an equivalent double stream
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amplifier with half its electrons having the velocity of the beam center
and the other half at the edge velocity would be, for a tube of the length
used here, about 30 db. We conclude that it has been illustrated that

gain in the electron beams observed due to slipping is non-existent.

There yet remained, following this, to attempt to show the origin
of the gain obtained by Dr. Haeff. It was thought, before data on the
exact tube constants he used was made available, that tﬁe reported phe-
nomena might be due to the velocity change between cavities and drift
tube, according to the theory of Tien and Field (13), which postdated
Haeff’s work. When calculations were applied to these constants, the
possibility of explanation on the basis of the velocity jumps was ruled
out. The demountable tube was altered to represent the Haeff tube inso-
far as the drift region is concerned (See Figure 14). The same class of
experiments as before was performed, with almost the same results. The
only difference was that the drift tube voltage could be operated lower
and output still observed, because the relatively high and constant
voltage placed on the cavities caused the transit time effect to disap-
pear. These experiments proved to be a good check on the previous con-
clusion that regardless of the amount of slip (within practical limits

of beam stability), gain does not occur.

More through accident than for any other reason, it was discovered
that gain could be obtained in this modified tube if the collector volt-
age were lowered to the range 50-150 volts. The output curves vs. drift
tube voltage (See Figure 15) so nearly resembled those of Haeff that it
was thought that the effect might be the same one. It was later learned
that this could not have been the case, for Haeff’s collector potential
was much too high, as examination of his data showed. The effect was
traced to secondary electrons at low velocity from the collector. These
electrons were focussed pack through the cavities and drift tube, re-
flected from the region in front of the cathode, and refocussed through
the tube. These secondary electrons, having energy approximately equal

to that of the primary beam less the collector potential, could not for
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eénergy reasons return to the cathode. While this sort of multiple focus-
Sing might seem to be a matter of low probability, with carefully adjusted
gun voltages and collector voltage, the primary and secondary beamsS in-
teracted as a double stream to produce a gain of about 30 db greater than
the magnitude of the space charge waves or fundamental mode. The net

gain of the device was never positive, but since the space charge wave
gain (klystron gain) of a tube may be made many db, the mechanism could
produce net gain if used in a tube with more efficient and well-matched

cavities.

Analysis was carried out to determine if the collector voltage,
drift tube voltage, and beam current were consistent with double stream

operation. Double stream theory gives as the condition for maximum gain

- w \
the condition —=2 Zﬁzz a constant near unity. The AV here is approximately
w

the collector voltage. The condition, written in terms of current and
voltages, may be expressed at constant frequency as Ivgéz.rube/viollector
= const. Data was taken by maximizing gain, and is presented in Figure

16. The curves, which should be a family of parabolas, are reasonable

approximations thereto. For maximum gain, the constant :zz can not be
much less than unity. The values found experimentally are in quite good
agreement with this. Anomalies in the data were due to multiple peaks
in the gain maximum, which in turn were due to improper focussing at
certain voltages. To obtain really maximized gain, it was necessary to
use a magnetic collector assembly, carefully adjusted voltages. and a

large magnetic field.

The large drift tube was replaced once more by the tapes. and
measurements proved that while some double stream interaction was present
at the same voltages as before, the smaller drift tube did not allow
secondaries to return as readily and gain was reduced to the order of one

or two db.

In the process of attempting to determine the origin of the gain,
one idea which came forth was that electrons reflected elastically from

the collector and at an angle to the axis were picked up by the magnetlic
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field and refocussed at lowered longitudinal velocity down the tube.
Electrons which have transverse energy of 20 volts or more, at magnetic
field Strength of 500 gauss, describe transverse spiral motion in a
radius of a small fraction of a millimeter. Such electrons would have
little difficulty passing through the system, and would behave in much

the same way as those observed. The expected number of elastically re-
flected electrons is only a few percent of the primary electrons, so there
is a problem of magnitudes here, In tubes built by Haeff, grids at the
gun end could produée secondaries and transversely focussed electrons

which could explain the gains obtained. This is taken up in Appendix 4.

J. A, Reutz, of the RCA Laboratories, has made tests on a helix type
traveling wave tube which show effect of low velocity secondaries from
the collector. This is done by measuring the interaction of the beanm
with a helix wave traveling in the "backward" direction, from collector
toward gun. For a particular tube with 130 microamperes primary beam
current. the reverse current produced interaction equivalent to 8 micro-
amperes current in the reverse direction; undoubtedly in the measurement
on the demountable tube the secondary current was much higher. Ignorance
of the surface cmdition of the collector, which is subject to contamina-
tion from several sources, makes it difficult to correlate the data with

that of the two-cavity tubes.
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APPENDIX 1

DERIVATION OF THE WAVE EQUATION. SIMPLE SOLUTIONS

The problem of wave propagation in an electron beam which has vary-
ing velocity across its cross section can be set up in general coordinates

by use of Maxwell’s equations.

VXH v oE (A1)
= pv € —
PV T S5t
_ OoH
VXE=z=-p—
Moat (A2)
V-E=L (A3)
€0
Ve:H=0 (A4)
plus the continuity equation
- dp
v o V) = -— A
o (pv) n (A3)
and the force equation
d o (E + 7 x B) d 3 3  9x 3 9y o 2z (A6)
— (m = =g + X . _ = — —_ _ — —_———
dt Podt dt * Jdx ot * dy at+az dt

These equations are well known. The total derivative of v in (A8B)
indicates the Lagrangian form of this equation, in which the observer

moves With a particular electron.

The physical situation we wish to solve is described as follows: an
electron beam is collimated so that it drifts in the z direction. An
infinite (or nearly so) maghetic field prevents the electrons from having
transverse velocity (directions perpendicular to the z axis will be
called transverse). The electron beam must flow so that the disturbances

in the beam caused by signal are single valued functions. This condition
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i1s thought to be met in most small-signal tubes. Another condition to

be required is that the disturbances are much smaller than the static
values of space charge density o and velocity v, so that products of dis-
turbance terms are small compared to products of static and disturbance
terms. Space charge density and velocity are assumed to be of the form

P, + £, and v, + Vv,, where subscript 1 indicates the AC or disturbance

part, and 0 the static part.

It is assumed that if the excitation on the beam is sinusoidal, the
output will be sinusoidal; all product terms of AC parts must be dropped.
The type of solution assumed is a wave propagating as ei®*-Y%,  Deriva-

tives with respect to z and t are respectively -y and jow.

If the curl of equation (A2) is taken and (Al) substituted, making
use of the identity V x V x A = V(V - A) - VZA, there obtains

8( — A%E (AT
o‘at 'DV) /'Loeoatz -

V(V «+ E) - V2E = -u
The infinite collimating field requires all but the z component of v to
vanish, and eliminates the v x B term in (A8). The vector Laplacian can
be broken up into z-directed and transverse components, a V*E _ + VZE,.
It will be understood that ei®®-Yz jis omitted from all quantities E, p,
v in the equations, and will be understood to be a common, factor of all.
In Cartesian coordinates the transverse terms are vector components in
transverse directions, and dependent on transverse electric field com-
ponents. The mode of interest is what has been called the transverse
magnetic (TM) mode in electromagnetic wave guiding structures. To obtain
the propagation constant of this type of wave, the z component of (AT)

alone is needed. This is

P yo) 9 3%E
2B g = o-u Zovy - : (A8)
37 (e) 2 #oat(P ) M°E°8t2 40

Using the linearizing approximations, (A3) becomes

— — — dp
vg(povl-'-'olva-*’povo)=ma_t—
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The perturbed part is

P, 2V %, _ %,

+

— = - - - = i (A9)
3z * Vody TGO SRALTE T

It can be reduced to give the relation between AC velocity and charge

density.
e,
O, = —"2 vy 10
173 V. 1 (A10)

Since the velocity is z-directed, (AB8) becomes

Bvl Bvl e ) e
+ —V_ = -EE” Jov, = yv v, = -EE

3t 2z (ALl1)

z

It gives the relation between AC field and velocity. The two equations
(Al10) and (All) may be combined to give the relation between charge
density and field.

£
L E (A12)

P1=- Gaoyv )2 ° E,

Now, we have (A8), which tells the field which will be produced by
a certain charge density and velocity. (All) and (Al12) tell the charge
density and velocity set up by a given electric field. The combination
may be used to eliminate p;, and v,. There results the equation
2 2 e

2 e . =
ZEp 4 LPem © _Ffome g _ g . (Al3)

-V2E_ - +—
z C2 z (J-w_,yvo)2 z c2 (jw"’)’Vo)z z

The Laplacian V2 may be broken up into Z and transverse components. The
Z component is a second derivative with respect to z and the transverse

part depends on the coordinate system. For Cartesian coordinates,
32(}5 ’a2¢ qu)
3x? ¥ Jdy 2 3z?
PRI IO N S B

T r 3r Br) Y12 %02 Tz

coordinate systems, is

Vip = and for cylindrical coordinates

The final wave equation, in these two

82 'aZE 2 (:J2
E; + 2z + (,),2 +a)_2)(1 4 —2——3YE =0 (Al%)

9x? X c (Jomyv )2 "
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_1_ a(raEl) 1 azEz ) w? a)f
rorer ) T rE ggr t TR Gy 3t =0 (A1)

[+]

o »

e
Here —puEZ has been replaced by «?, the square of the plasma angular

frequency.

For tubes with circular cylindrical beams and no variation of exci-
tation in the @ direction, the & derivative disappears. 1In Cartesian
systems in which the beam is infinite in the y direction, the y deriva-

tive disappears. These two cases are the ones discussed in the text.

There is nothing in the above derivation which prohibits the use of
more than one velocity group of electrons in the beam at the same position.
2
: - O') -
If this is the case, the —2-——— term is replaced by a sum of such terms,
(Jomyv )
for the total space charge density is a sum of the partial ones, and the

AC electric field is common to all.

Simple solutions. About the simplest type of solution which can be

imagined is one obtained by making E_ independent of transverse coordinates.
a)-2
= 0. v

2]

The propagation equation reduces to the criterion 1 4+ —%——
. (Jwﬂ’yvo)
must of course be independent of coordinates. The resulting values of 7y

(wtw )
are j——= . The two values indicate two waves, one traveling faster,
v

the other slower than the electrons, Only when there is coupling and the

waves grow is it possible to isolate these two waves. The solutions are

wbn% z ii‘f-ﬂz) (&Jt“%i z)Sin @,

j {
thus of the form eJ ° o , and may be combined as e ° & -—22).
oS Vv

Al]l quantities vary in this fashion, so that if at one point along the

beam the AC charge density was zZero, it would have successive zeros at

v
positions corresponding to Az = ° . This is approximately the case in

“o . (wtpw )

a non-infinite beam, for the solutions for ¥ can be written j———>2_, in

which p is a reduction factor less than unity. 1In finite beams, the term
w

1 3 must be some negative quantity, in order that the solution

P S
(Jaw=yv,
for E decay outside the beam limits, and the result is a smaller effec -
tive w_ . Physically, this effective reduction of w_ can be explained
py the diverging of the electric flux lines. The smaller the diameter

of the beam compared to the distance between bunches, the more R.F,



29

electric field is external to the beam, and less internal.

When the beam is a mixture of electrons of different velocities, but
1s still of infinite cross-section, the simple criterion becomes

1 4% -—-=0 -0, This is taken up in Appendix 2.

The significance of the term ““plasma frequency® which is applied to
w_ may be appreciated if the conditions in a beam not in uniform motion
are studied. Let us assume a collection of electrons infinite in the
X, ¥y plane electron group is excited by a field in the z direction at

frequency w. The equations are now:

E,_ A N2ty 2N
dz e ' "°%z 9t ''m, 3t
They have the solution w = «, . This indicates that an electron plasma

will, if disturbed, oscillate at undiminishing amplitude at the frequency
w_; this is one way of explaining what happens in a modulated beam. The

minima observed are points where the oscillation is instantaneously zero.



APPENDIX 2
MIXED BEAMS

A problem very similar to that of the slipping stream is that of the
modes of propagation of a mixture of electrons of different velocity,
such that in every part of the cross section the distribution bf veloci-
ties among the electrons is the same. The general criterion for this,
set up by Haeff, is obtainable from the equations of Appendix 1 and is

o £'(v,) av_

o Gamyvy? -~ b (418)

where f’(vo) is defined by 5% dp = f‘(vo)dvo, and is the distribution -
function of velocity. If only discrete velocities are present, the in-
tegral becomes a sum. The problem of two discrete velocity classes was
discussed by Haeff in a manner which left in question the results of

adding a third class. In order to illustrate the general problem of a
continuous velocity distribution, the writer has used several graphical

representations. In the first of these, we plot the locus of the function
1

(Ja=yv )2

in the development of this locus, which is cardioidal. A value of Arg vy

for a particular argument of . In Figure 17 are shown steps

which is in the gain region has been chosen. The satisfaction of the

criterion is brought about by adding vectors drawn from the origin to the
2

o

locus; the length of each vector is weighted by the »° for the group of
electrons at that velocity. Two vectors are indicated which can be summed
to equal -1. The weighting factor of each vector depends on the charge

at the particular velocity it represents. The regions A, A’ of the

figure are regions where a small amount of charge will help the most 1n
the summation. The region B is one where charge contributions will de-
teriorate the sum. It stands to reason that charge velocities in the B

region cannot help to produce gain, and need to be offset by even greater

charge in the A and A' regions. The B region, referring back to the locus
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Of jw-yv, corresponds to electron velocities and wave velocity almost
equal. It follows from this that the addition of a beam of intermediate
velocity to a set of two beams will always deteriorate the gain. This
method of presentation does not indicate how much the gain is deteriorated,

but only shows how much more charge must be added to return it to status

quo.

A presentation which does indicate the effect of the addition of

other beams may be set up. Consider the left hand side of (Al6), in its
2

summation form, X ——2% . .. = 35 a function in the complex lane., This
T (Jomyv )2 P 7P
function is completely defined if the charge density of each velocity

= s s CL)
class is given. The function has double poles at v = j—, corresponding
v

to each beam velocity whose magnitudes are proportionai to the charge
density at each velocity. The characteristic values of ¥ are defined as
the -1°s of the function., It is observed that for imaginary 7y the func-
tion is always negative. A plot showing lines of constant magnitude and
phase of this function for a system of two velocity classes is shown in
Figure 17. If the magnitudes of the poles are small, all -1's fall on
the imaginary 7y axis (no gain). If the poles are large, and equal, the
-1’s fall on their perpendicular bisector. If they are unequal, the
-1’s fall nearer the lesser pole. Figure 18 also shows the results of
adding a third velocity class of intermediate velocity. The result is
much the same as for each of the two outer pairs of poles singly. The
gain modes of a group of velocity classes in a mixed beam are similar to
those due to the interaction between adjacent velocity classes. This is
believed to be an important result, a fundamental reason why there is no

amplification in a slipping stream.

Finite mixed beams. Birdsall (1) and Haus (4) analyzed the effect

of finite size of a mixed beam, and the effect of continuous velocity
classes. The conclusions are much the same as above. The method of
analysis of a finite Cartesian or cylindrical beam is relatively simple,
since the form of the equations (Al4) and (Al5) and zero boundary condi-

o (v _)dv
tions calls for 1 - [ ——=—2

¢ = k? and k? may be obtained from function
o (JCJ)"')/VO)
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nw 2 ) .

tables. 1In the Cartesian case, k2 = (—) , where a is the beam width,
a

and n is an integer. The resulting solutions are infinite in number,

but because detecting systems can only detect readily the first mode

(n = 1) this is the only solution of practical interest.

The solutions of Haus in a continuous velocity distribution involve
taking a partial integral, which reduces the order of the singularity at
j;; to unity. This can be represented by an analogue consisting of a
twéldimensional electric charge distribution, whose distribution function
is the derivative of the velocity distribution function f'(%) of the

original problen,



APPENDIX 3

VELOCITY DISTRIBUTIONS

Cylindrical beam. A cylindrical beam in a infinitely strong mag-

netic field will travel in a straight line, and the electron velocity at
any point in its cross section will have a velocity dependent on the
electric potential there. Because of the negative sign of the space
charge, the potential at the center of the beam will be reduced over that

at the edge.

Consider a beam of circular cross section, traveling down a circu-
lar tube of equal or greater diameter and of infinite length. The space
charge density 1s assumed uniform over the entire cross section. Under

these conditions, Poisson’s law (equation (A3) becomes

1 d dv Jeol dav
— — (=) =-= ; - — =E,
r dr dr €, dr
av or?
[— = -— + C.
dr 260
av ek c,
— L — +_
dr 2e T
o
pr?
V = -T + Cllnr + Cz (w_)
€

¢, and c,are constants of integration.

1

Since no line charge exists at the origin, the solution within the
beam has ¢, = 0. Outside the beam, po is zero, and ¢, is required to make
the solution match at the boundary. Within the beam, the voltage may be

expressed as

2
r
e 4e

If the velocity corresponding to this potential is calculated,
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2e oe 2e wir? w?r?
2 2 _ o 2 o
° m ° 2me moe T2 %o ¢ +2gf) ’

and, making the assumptlon that the velocity difference is small compared

to the absolute velocity, there is obtained

w?r?
vo"\: ‘z)o + - (A—_.lg)
4v
00

V, 1s the velocity at the center of the beam and w, the usual plasma
(angular) frequency. This is the velocity distribution which was used in

the computational code.

If the beam does not completely fill the tube in which it is en-
closed, there results a voltage at the beam center which is even less
than that when the beam fills the tube. This means that there must be
a longitudinal field at the point where the beam enters this tube. If
the tube is too large, the beam may be unstable by virtue of the large
potential difference. Therefore, it pays to make the tube as small as
possible in practical experiments when 1t is desired to obtain the high-

est beam currents.

Cartesian beam. The type of beam discussed here is one which extends

to infinity in the y direction, but 1is of finite width in the X direction.

It travels in the z direction, as usual, and so the Poisson equation is

simply
d2v o
ax? = e
px?
V = "2—60 + Clx + 02 (520)

The beam here may be enclosed by conductors of any potential at both
sides of the beam. Both the linear and the squared term in the voltage
may be present. If ¢, and c, are made such values that the voltage
across the beam is a perfect square of a linear function of x, the veloci-
ty will be linear in x. The voltage will then vary as (x - a)?, and the

velocity as (X - a). All that is necessary to produce this condition 1is



35

to apply correct voltages to the side plates.

In the parabolic voltage distribution,

2
yopx)” 1w o,
2¢e 2 °
‘ dv
V°= c"’o(x-a') ; __;o= @, (6.3.1).

The velocity gradient is seen to be exactly equal to @, , a result
which is highly useful.



APPENDIX 4
ANALYSIS COF HAEFF’'S DATA

Through the generosity of the Naval Research Laboratory, the author
obtained permission to review the data taken on the single streanm ampli-
fying tubes. The tubes were built and operated by Mr. R. S. Ware, who
was working with Dr. Haeff at that time, but has since left the Labora-
tory. At the time this review was made, the work described in this

dissertation was 95% complete,

The main object was to determine whether the gain found by Haeff
could have been due to the same phenomenon as discovered by us, that of
sec mdary electrons forming a double stream. The possibility of these
being collector secondaries was quickly discounted when it was discovered
that throughout the work at NRL, the c¢ollectors were maintained at a
voltage 300v. greater than that of the output cavity, which was in turn

always about 450v. or more above the cathode potential.

The types of tubes used by Haeff had nothing out of the ordinary in
their construction through the cavities and drift region. The cavities
had been removed from 707 type klystron tubes, and the drift tube was a
Y% inch diameter by 12 inch long non-magnetic tube. The collector was of

tantalum, formed into a long cone into which the electrons penetrated.

The first single stream tube was actually a double stream amplifier
with only a single cathode operative. The cathode was a directly heated,
thoria coated tungsten zig-zag of maximum dimensions arocund % inch. This
was followed by a grid, maintained at positive voltage, with wires per-
pendicular to those of the cathode. This tube gave many decibels of galp,
more gain at times than when used as a double stream amplifier. The
data shows that it was necessary to carefully adjust the grid voltage,

the magnetic field, and even the cathode current(!). Grid voltage for
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best gain was near 40 volts, which leads us to believe that it was
Secondaries from the grid which caused double stream interaction. In

this tube the intercepted current on this and a following grid was as

high as 53 out of 60 milliamperes, with an additional 3 ma. caught by

the cavity grids. The number of secondary electrons released under these
conditions would certainly be of the same order of magnitude as the primary

current,

Another tube on which data was taken and amplification discovered
had an accelerating grid with somewhat higher voltage. Another tube had
a grid with voltages as high as 500. This latter tube could not possibly
be explained on the basis of secondary electrons, for none of the elec-
trodes had appropriate voltages. It 1ls necessary to devise some new ex-

planation, and the following is thought to be a credible one.

All electrons in an electron beam formed by a gridless (or gridded)
gun designed for parallel electron flow and confined by a very high mag-
netic field have essentially the same longitudinal velocity. As the mag-
netic field is weakened, the electron paths can no longer be straight if
transverse velocities have been introduced by the gun structure. The
electrons will follow a spiral path, and the longitudinal component of
velocity will be smaller than before. In a gun with very close cathode-
grid spacing (positive grid) many of the electrons have appreciable
transverse velocity especially if, as in the tube used by Haeff, the gun
is temperature limited. The electrons with transverse velocities should
have continuously distributed longitudinal velocities, but if the magnetic
field is low, the spiral paths of some of the electrons may carry them
into the side of an aperture plate, rather than through the aperture.
Those of a group of electrons of greater transverse velocity may come to
a focus on the aperture and pass through to the drift region, thus form-
ing, along with the straight-line-path electrons a double stream of two
different ranges of longitudinal velocity. It will be remarked that the
limiting aperture of the gun used was much smaller than the cavity and

drift tube diameter. The above described phenomenon may occur as shown

in Figure 18.
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The question has been raised as to whether the source of Haeff’s
gain might have been the veopbcity jump occurring between the cavities and
the drift tube. This may be disposed of by calculating the gain, which
for voltage ratios of 3 to 1 would be about 7 db. Since all observed
gains were much higher, even at voltage ratios less than this, it is im-
possible to account for the gain in this way. Dr. Rudolph Kompfner, now
of Bell Telephone Laboratories, has communicated to the writer that, fol-
lowing receipt of a NRL report, he built a single stream tube and obtained
large gains, but maximum gain was obtained at the lowest drift tube volt-

age manageable, 25 volts, with a voltage ratio of 80.

The Haeff data is further questionable in that, in much of the ex-
perimentation, difficulty was encountered with ion or electron oscilla-
tions in the gun. This might have caused some trouble, since it was not
indicated wvhether the output signal with zero input was indeed Zzero.’
At another point in the data, a graph showed gain vs., system pressure.
This curve showed pressures definitely in the range where ions could
change focussing. The gain decreased greatly as pressure went up, proba-
bly indicating that the sensitive focussing conditions were destroyed in

the presence of ions.

The source of the gain in Haeff's tubes may yet be questioned, but
we believe that only the source of the second (low-velocity) part of the
beam is in question. The facts have been given as fairly and objectively
as possible; since the tubes reported on no longer exist, it would be
difficult to find out more about them. In the light of our experience,

we feel that it is not necessary longer to assume the gain a mystery.



APPENDIX 5

WAVES IN TWO LINEARLY COUPLED SYSTEMS
WITH DIFFERENT PHASE VELOCITIES

Here it will be illustrated that the coupled waves formed when two
waves of different phase velocity interact linearly can grow with dis-
tance. This growing wave must have phase velocity intermediate to those

of the original ‘'sources.

Let us consider two uncoupled waves traveling with different velocity
and in the same direction. Let us consider two planes A and B perpen-
dicular to the wave motion such that the two waves, assumed to be har-
monic functions (sealar or vector) progress ¢, and 6, in phase, respec-
tively, between the two planes; in other words the distance A-B 1s.§$

6
wavelengths for wave 1 and-Ei wavelength for wave 2,
7

A formoflinear coupling which is suitably general is a discrete
coupling constant k and discrete distance between points of coupling.
If with zero coupling, the 1st wave is described by a quantity E, at A
and Elejel at B, then likewise E,, E23592 describes the 2nd wave at A and
B. With coupling, the first wave is E, at A and [E,+kKE,Jei®1l at B, like-
wise, with coupling, the second wave becomes E,, [E2+I<E]_]'e592 .  The
coupling coefficient is assumed symmetrical for simplicity, but this is
not necessary to prove existence of a growing wave. It stands to reasam
that bilateral coupling is necessary to a certain extent, for if one wave
could perturb the other without the reverse, the second wave would just

become like the first.

If the wave described by the coupled relations [E1+kE2}e591 and
[E?+kE,}ejg2 at B is a true coupled wave, the ratio of the wave function

at B to that at A must be the same for both sources.

E\+kEy 5, _ Ep+kE, 4 (A22)

E E

1 2
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. E
This relation can be solved for_Ei . Two values are found, given below
i6,-6,) [ 3e,-6.,) 2
E, e 17273 ij[e 1 r2hg] 5017020 aag
E, 2K 4k 2 ve 423)

Now, the ratio given, using e3¢ ¥ 1 + j&, for small &, is

E,+kE, . (6,-6,] J(e ~6,)%-k? )

2 1 2if2 ~ {1 ; 1 ~2 ; 1 ~2 ;
—_——c e s _—

E, ( + ] 5 J 2 (1 +j6,) (A24)

. . (6,-65) ,
If this be simplified and the ternm -Qr—_a——— neglected, it becomes
6,+0, | 6,-6,)2
1+ j2 2iJk2-.Lizﬁl (A25)

Let us observe that the first two terms are the limit as 91, é,-0,
J30:76y)

of The phase velocity of the coupled wave is intermediate to

J K? - (0,-6,)°

The term under the radical is the source of

those of the uncoupled waves if
(6,-6,)*

is real, for which the
condition is k >
gain and attentuation waves, both of which are produced for sufficiently

large k.

The above does not perfectly represent any actual amplifier where k
may be a function of &,-60,. A helix-type traveling wave tube has maximum
gain, under certain conditions, when the beam and helix wave travel at
the same speed, as given in (A23). The coupling of two beams in a double
stream amplifier is non-amplifying when the difference in velocities is
zero, but gain vanishes for sufficiently high difference. The most im-
portant feature of the analysis is the fact that phase velocity of the

growing wave 1s between those of the original waves.
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Figure 1. Cross section of model for analysis of three thin beams side
by side.’
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COMPARISON OF SPACE CHARGE WAVES IN PULSED AND DC
BEAMS. PULSE LENGTH | »SECOND; 5000 CYCLE RATE;CAVITY
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MARKED “"A*"

BEAM CURRENT .68 MA

Figure 11. Output voltage vs, drift tube voltage, for pulsed and continuous
single beam.’
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Figure 14. Basic parts of tube of the type used by Haeff.
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parabolic.-
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Plate
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COMPLETE TEST SETUP

Photograph of complete apparatus. Power supplies in rack at
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right.
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in center,

and RF equipment on bench at
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CAVITY

; GUN CAVITY REGION

jut 0

ADJUSTING ROD
FOR TUNING AND

BEAM APERTURE

DEMOUNTABLE TUBE WITH GLASS ENVELOPE REMOVED

Plate 2. Closeup of demountable tube, illustrating construction and basic parts.
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