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Secure computation involves multiple parties computing a common function

while keeping their inputs private, and is a growing field of cryptography due to its

potential for maintaining privacy guarantees in real-world applications. However,

current secure computation protocols are not yet efficient enough to be used in

practice. We argue that this is due to much of the research effort being focused

on generality rather than specificity. Namely, current research tends to focus on

constructing and improving protocols for the strongest notions of security or for

an arbitrary number of parties. However, in real-world deployments, these security

notions are often too strong, or the number of parties running a protocol would be

smaller. In this thesis we make several steps towards bridging the efficiency gap

of secure computation by focusing on constructing efficient protocols for specific

real-world settings and security models. In particular, we make the following four

contributions:

1. We show an efficient (when amortized over multiple runs) maliciously secure



two-party secure computation (2PC) protocol in the multiple-execution set-

ting, where the same function is computed multiple times by the same pair of

parties.

2. We improve the efficiency of 2PC protocols in the publicly verifiable covert

security model, where a party can cheat with some probability but if it gets

caught then the honest party obtains a certificate proving that the given party

cheated.

3. We show how to optimize existing 2PC protocols when the function to be

computed includes predicate checks on its inputs.

4. We demonstrate an efficient maliciously secure protocol in the three-party

setting.
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Chapter 1: Introduction

Secure computation describes the problem of multiple parties P1, . . . , Pn wishing to

compute some common function f on their private inputs x1, . . . , xn; each party

would like to learn f(x1, . . . , xn) while preventing the other parties from learning

anything about its input (besides what can be learned from the output of f). First

proposed by Yao [1], many of the initial results were mostly of theoretical inter-

est [2, 3, etc]. However, since the work of Fairplay [4], which demonstrated the

first implementation of secure computation, this area of cryptography has seen the

research focus shift towards practical efficiency. Although much progress has been

made over these last few years, there are still many hurdles before secure compu-

tation can be useful in practice. In this thesis, we investigate various approaches

towards improving this efficiency gap by focusing on realistic use cases and secu-

rity models. In particular, our improvements result from focusing on those settings

where one could potentially see secure computation being used in practice, versus

focusing on improving general constructions which may not be applicable to real-

world settings. Namely, we focus on models and security settings which we argue are

more realistic in a practical setting, and devise efficient protocols for these particular

use cases.
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Before discussing our contributions, we begin with a brief overview of secure

computation and its security models. We mostly focus on the two-party case, al-

though we briefly discuss the three-party case.

Two-party secure computation. We begin with a discussion of two-party secure

computation (2PC), and how protocols in this setting work. One common solution

to the 2PC problem is to use garbled circuits [5]. Suppose we have two parties, P1

with input x1 and P2 with input x2, and they would like to compute some function

f(·, ·) on their inputs. We treat f as a Boolean circuit C (e.g., a circuit with AND

and XOR gates). One of the parties, say P1, acts as a garbler (also called the

generator), constructing a “garbled” version of C which hides all of the internal

details of the computation of C. Namely, each wire value is represented by an

opaque label and there is a method (known only to the garbler) of mapping labels

to their actual bit values. P1 can send this garbled circuit, denoted by Ĉ, to party

P2, known as the evaluator. Now, the evaluator can evaluate Ĉ given labels for each

of the input wires to C. P1 can directly send the labels corresponding to its input

x1 (recalling that these labels are opaque, this reveals no information to P2 about

what input the labels represent). The last difficulty is for P2 to get the wire labels

for its input x2. This is accomplished through an oblivious transfer (OT) protocol,

where a sender inputs two messages m0 and m1, and a receiver inputs a choice bit b;

the sender receives no output and the receiver receives mb. Thus, P1 can input the

two labels for each of P2’s input bits into the OT protocol, and P2 can input as its

choice bits the appropriate bits in x2, allowing P2 to learn the appropriate labels
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without P1 learning anything about P2’s input. Now, P2 can take all of the wire

labels and evaluate Ĉ to learn the output.

Two-party secure computation from garbled circuits is very efficient. Garbling

and evaluating require only symmetric key operations and can utilize hardware AES

support [6]. The main bottleneck of the described protocol, then, is the OTs required

for P2’s inputs, as OT protocols require costly public-key operations. However,

Ishai et al. [7] showed how, given a fixed number of base OTs, one can construct

any polynomial number of OTs using only symmetric-key operations. This process,

known as OT extension, has had a huge impact on the efficiency of the garbled circuit

approach to 2PC and is necessary for any practical instantiation of the garbled circuit

protocol.

The malicious security model. While the above described protocol is secure in

the semi-honest security setting, where parties are assumed to follow the protocol

but can try to learn additional information by looking at the protocol transcript,

it is not secure in the malicious setting, where an adversarial party can deviate

arbitrarily from the protocol. As an example of what can go wrong, a malicious P1

can input an invalid wire label for the 0-bit for one of P2’s inputs. If P2 aborts the

protocol (due to having an invalid wire label), P1 learns that that bit of P2’s input

was 0. If P2 does not abort, then P1 learns that that bit was 1. This attack, known

as the selective failure attack, is just one example of the many things that can go

wrong when the parties can deviate from the protocol description.

The garbled circuit approach can be adapted to the malicious setting using
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the cut-and-choose paradigm [8, 9]. Instead of garbling one circuit, the generator

garbles O(ρ) circuits, where ρ is a statistical security parameter (i.e., a malicious

party can successfully cheat with probability 2−ρ). The garbler sends these garbled

circuits to the evaluator, who asks for, say, half to be opened. If any of the opened

circuits are invalid garblings, the evaluator detects cheating and aborts. Otherwise,

it takes the leftover (unopened) circuits and evaluates them, outputting the majority

output as the output of the protocol. Although this basic approach has several issues

that must be addressed (e.g., how to force the generator to use the same input in

each of the evaluated circuits, avoiding the selective failure attack, etc.), this basic

paradigm is a common way to construct maliciously secure 2PC protocols using

garbled circuits. However, the best existing protocol based on the cut-and-choose

paradigm has a garbled circuit replication factor equal to the statistical security

parameter [10] (i.e., to securely compute a circuit, it must be garbled ρ times for

security 2−ρ). Thus, for ρ = 40 we still get a 40× overhead over the semi-honest

setting, which is often still prohibitive for real-world use.

The multiple-execution setting. In practice, however, the same function can

potentially be executed many times on different inputs. For example, consider the

following use cases for 2PC: a bank customer performing financial transactions

(e.g., payments or transfers), a cell phone customer performing private location-

based queries, two businesses or government agencies querying their joint databases

of customers, etc. In all of these scenarios, many of the securely evaluated functions

are the same, only differing on their inputs. In fact, it seems plausible that single-
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execution functions may be less likely to be used in commercial settings. This is

because, as a rule-of-thumb of security, externally-accessible interfaces need to be

clean and standardized. Allowing a small number of predetermined customer actions

allows for more manageable overall security.

Additionally, many complex protocols from the research literature include mul-

tiple executions of the same function evaluated on different inputs. For example,

Gordon et al. [11] propose sublinear 2PC based on oblivious RAM (ORAM). In

their protocol, each ORAM step is executed by evaluating the same function using

2PC. Another frequently used subroutine is an oblivious pseudorandom function,

used, e.g., in the previously mentioned sublinear 2PC work [11] as well as in pri-

vate database searches [12, 13]. Likewise, work by Pappas et al. [14] traverses the

database search tree by evaluating the same match function at each tree node.

Say two parties run the same function t times. Can we construct a

protocol that requires fewer than ρt garbled circuits while still retaining

the malicious security guarantee with 2−ρ security?

We consider malicious 2PC in what we call the multiple-execution setting, where

two parties wish to securely evaluate the same circuit multiple times. As mentioned

above, recent works by Lindell [10] and Huang et al. [15] have obtained optimal

complexity for cut-and-choose performed over garbled circuits in the single execution

setting. We show that it is possible to obtain much lower amortized overhead for

cut-and-choose in the multiple-execution setting.

Our efficiency improvements result from a novel way to combine the “fast
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cut-and-choose” technique of Lindell [10] with LEGO-based cut-and-choose tech-

niques [16, 17]. In concrete terms, for 40-bit statistical security we obtain a 2×

improvement (per execution) in communication and computation for as few as 7 ex-

ecutions, and require only 8 garbled circuits (i.e., a 5× improvement) per execution

for as low as 3500 executions. Our results suggest the possibility that 2PC in the

malicious setting can be less than an order of magnitude more expensive than in

the semi-honest setting.

This work is based on work published at Crypto 2014 [18]. See Chapter 3 for

details.

The covert security model. A third security model (besides semi-honest and

malicious) is that of covert security [19]. In this setting an adversarial party can

successfully cheat with some probability 1 − ε. However, with probability ε it gets

caught and does not learn anything about the other party’s input. A recent extension

of this model provides public verifiability [20]: if a party gets caught cheating, the

honest party can produce a certificate which provides proof of this cheating to any

third party. This model is very compelling, as the ability to demonstrate proof

of cheating is a powerful incentive not to cheat. Unfortunately, the only existing

protocol in this setting [20] is not that efficient due to the need to (at a high level)

use OT for each of P2’s inputs; that is, the protocol cannot take advantage of OT

extension to improve its running time.

Can we construct a more efficient protocol in the publicly verifiable

covert (PVC) security model based on OT extension?
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We improve the performance in the PVC model by constructing a PVC-compatible

OT extension protocol as well as making several practical improvements to the

existing protocol. As compared to the state-of-the-art OT extension-based two-

party covert protocol, our PVC protocol adds relatively little: four signatures and

a roughly 67% increase in running the OT extension protocol. This is a significant

improvement over the existing protocol, which requires public-key-based OTs per

input bit. We present detailed estimates showing (up to orders of magnitude) con-

crete performance improvements over the existing PVC protocol [20] and the best

known malicious protocol [21].

This work is based on work published at Asiacrypt 2015 [22]. See Chapter 4

for details.

Predicate checks on inputs. When using cut-and-choose to construct covert or

malicious protocols, the same circuit needs to be garbled multiple times. Suppose,

now, that we are interested in computing functions where each party’s input must

satisfy some predicate. As an example, consider a setting where one party’s input

must contain a valid signature; that is, the party inputs its input along with a

signature on that input that is checked for validity before the actual function of

interest can be computed. Clearly, we can include this check within the garbled

circuit; however, this means that when using cut-and-choose protocols, this check is

repeated in each garbled circuit. For predicate checks such as the above signature

example, this can be very costly, especially when the underlying function to be

computed over the inputs is relatively simple.
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For circuits where we want to check a predicate on either party’s input,

can we construct a protocol more efficient than the naive solution of

including the check in each garbled circuit?

Here we show a protocol in which only the underlying function is garbled ρ times,

and the predicate checks are each garbled only once. For certain natural examples

(e.g., signature verification followed by evaluation of a million-gate circuit), this can

lead to huge savings in communication (up to 80×) and computation (up to 56×).

We provide detailed estimates using realistic examples to validate our claims.

This work is based on a preprint [23]. See Chapter 5 for details.

Secure three-party computation. The setting of secure computation for three

or more parties, where we assume all but one of the parties may be malicious and

colluding, has been much less studied, at least from a practical performance perspec-

tive. Although secure multi-party computation protocols exist, they either require a

complicated (and extremely costly) setup phase [24] or are not known to be practi-

cally efficient [25]. However, in real-world settings, it seems unlikely that one would

run secure computation among, say, one hundred parties. Most likely one would

run secure computation among a small number of parties, say three or four. While

existing multi-party protocols are designed to handle an arbitrary number of parties,

it seems possible that one could design a more efficient protocol for a small fixed

number of parties.

Can we construct more practically efficient secure computation proto-

cols when restricting the number of parties to some fixed n > 2? In
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particular, can we construct an efficient secure computation protocol for

three parties?

In this work we explore the possibility of using cut-and-choose for practical secure

three-party computation. We propose a constant-round protocol for three-party

computation tolerating any number of malicious parties, whose computational cost

is essentially only a small constant worse than that of state-of-the-art two-party

protocols.

This work is based on work published at Crypto 2014 [26]. See Chapter 6 for

details.

Summary. In this thesis we present four constructions which improve the state-of-

the-art of secure computation, with a focus on realistic settings and security models.

While there is still a lot of work to be done before secure computation can be made

truly practical, this thesis presents a further step on this path towards practicality.
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Chapter 2: Preliminaries

Notation

We let κ denote the computational security parameter and let ρ denote the statistical

security parameter; namely, a (computationally bounded) adversary can succeed in

cheating with probability ≤ 2−ρ + negl(ρ). We use ppt to denote “probabilistic

polynomial time” and let negl(·) denote a negligible function in its input.

When considering two-party protocols between parties P1 and P2, when we

use subscript i ∈ {1, 2} to denote a party we let subscript -i = 3− i denote the other

party. We use i∗ ∈ {1, 2} to denote a malicious party and -i∗ = 3− i∗ to denote the

associated honest party.

We use [n] to denote {1, . . . , n} and ‖ to denote concatenation. Let “a :=

f(x1, x2, . . . )” denote setting a to be the deterministic output of f on inputs x1, x2, . . . ;

the notation “a← f(x1, x2, . . . )” is the same except that f here is randomized. We

use a ∈R S to denote selecting a uniformly at random from set S. For bitstring x,

we let x[i] denote the ith bit of x.

10



Defining Security

We use the standard definition of security for two-party computation in the pres-

ence of malicious adversaries [27, Chapter 7], and we repeat the definition here for

completeness and to fix notation.

We let A be an adversary that can corrupt one or more parties. Here we

consider the malicious setting, which means that when A corrupts a party, it learns

the entire internal state of said party and can deviate from the protocol arbitrarily.

Security is defined by comparing the execution of the protocol with an “ideal-

ized” world, where we have access to an ideal functionality which exactly captures

the expected correct behavior of said protocol. If an adversary A is unable to tell

whether it is interacting in the ideal world or the real world, then we say the protocol

is a secure realization of the ideal functionality. By “unable to tell,” we mean that

the distributions of the two worlds are computationally indistinguishable from the

point of view of the adversary, which we denote by
c≈.

Below, we give a formal treatment for the case of two-party secure computation;

however, it is easy to adapt this treatment to handle three or more parties.

Ideal model execution. In the ideal model, we have parties P1 and P2, and an

adversary A with auxiliary information aux who can corrupt one of the two parties.

An ideal execution for the computation of a function f(·, ·) proceeds as follows.

We let F define the idealized execution of f(·, ·), where we assume without loss of

generality [8] that only P2 receives output.

• Party P1 obtains input x, and party P2 obtains input y.
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• An honest party sends its given input to the ideal functionality F, whereas a

malicious party can send an arbitrary input. Denote the inputs given to F as

x′ and y′.

• The functionality F computes z ← f(x′, y′) and sends z to P2.

• An honest party outputs the given output from F, whereas a malicious party

outputs an arbitrary function of its view of the protocol execution.

We let IdealF,A(aux)(x, y, 1
κ) denote the joint output of the adversary A and

the honest party with inputs x and y when interacting with ideal functionality F.

Real model execution. In the real model, we again have parties P1 and P2 and an

adversary A with auxiliary information aux who can corrupt one of the two parties.

In this setting, the parties execute some two-party protocol Πf computing function

f(·, ·). We let RealΠf ,A(aux)(x, y, 1
κ) denote the joint output of the adversary A

and the honest party with inputs x and y when interacting with protocol Πf .

Definition 2.1. Protocol Πf securely computes F if for every ppt adversary A in

the real model, there exists a ppt simulator S in the ideal model such that for all x,

y, and aux, it holds that

{IdealF,S(aux)(x, y, 1
κ)} c≈ {RealΠf ,A(aux)(x, y, 1

κ)}.

Remarks. One way to prove that a protocol securely computes some ideal func-

tionality is to construct a simulator with black-box access to an adversary A such
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that the view of the simulator in the ideal world is computationally indistinguish-

able from the view of the adversary in the real world. This implies that the view

of the adversary in the real world “looks the same” as the view of the simulator

when interacting with an idealized version of the protocol, thus implying that the

adversary gains no additional information in the real world than what is leaked by

the ideal functionality in the ideal world.

Note that we can define ideal functionality F using a “functionality box” as

follows.

Functionality F
P1 inputs input x, and P2 inputs input y.

F sends f(x, y) to P2. P1 receives no output.

This box exactly captures the ideal model behavior of F as explained above.

Throughout this thesis we use both methods of defining a functionality interchange-

ably.

Garbled Circuits

For completeness, we give a description of a garbling scheme constructing garbled

circuits. Let f(·, ·) be some function. A garbling scheme is a tuple of two functions

(Gb,Ev). We define a garbling scheme producing garbled circuits as follows.

The garbling procedure Gb works as follows. We begin by treating f as a

Boolean circuit C. We associate two random labels Xw,0, Xw,1 with each wire w

in the circuit; label Xw,0 corresponds to the value ‘0’ and Xw,1 corresponds to the

value ‘1’. In addition, for each wire w we choose a random permutation (or mask)

bit λw. Each label has an associated tag, derived from the permutation bit, which
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acts as a blinding of the true value the label represents. Now, consider gate Gγ in

the circuit with input wires α and β. The garbled gate of Gγ consists of an array of

four encryptions: for each (bα, bβ) ∈ {0, 1} × {0, 1}, the row (bα, bβ) consists of an

encryption of Xγ,Gγ(bα⊕λα,bβ⊕λβ)⊕λγ and its corresponding tag Gγ(bα⊕λα, bβ⊕λβ)⊕λγ

under labels Xα,bα and Xβ,bβ . Let P denote a table that stores all the garbled gates;

in particular, the entry P [γ, bα, bβ] contains an encryption corresponding to row

(bα, bβ) of the garbled gate for Gγ.

The evaluation procedure Ev is as follows. Let α and β be input wires con-

nected to gate G with index γ. The evaluator is given (Xα,bα⊕λα , bα ⊕ λα) and

(Xβ,bβ⊕λβ , bβ⊕λβ), along with P . It takes the row P [γ, bα⊕λα, bβ⊕λβ] and decrypts

it using the labels Xα,bα⊕λα and Xβ,bβ⊕λβ , resulting in (Xγ,G(bα,bβ)⊕λγ , G(bα, bβ)⊕λγ).

It is straightforward to verify that by continuing this evaluation, the output of each

gate will be revealed masked by its corresponding mask. By picking masks of the

output wires to be ‘0’ we ensure that the evaluator receives the (unmasked) output

of the circuit.

Security. For a garbling scheme to be secure, it should satisfy some notion of

privacy. Namely, given some output z of f , there should exist a simulator that

can produce a garbling of a circuit that outputs z that is indistinguishable from a

correctly garbled circuit.

Definition 2.2. Garbling scheme (Gb,Ev) satisfies privacy if there exists a ppt

simulator S such that for every ppt adversary A, for all polynomial size functions
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f and inputs x and y it holds that

Pr
[
A(Ĉ, {Xw,x[i]}, {Yw,y[i]) = 1 : (Ĉ, {Xw,b}, {Yw,b})← Gb(1κ, f)

]
c≈

Pr
[
A(Ĉ, {Xi}, {Yi) = 1 : (Ĉ, {Xi}, {Yi})← S(1κ, f(x, y))

]
.

It is well known that the above described garbling scheme satisfies privacy [28].

Using garbled circuits in secure computation. As mentioned in the Introduc-

tion, garbled circuits can be used to achieve two-party secure computation using

a primitive called oblivious transfer (OT), where a sender inputs two messages m0

and m1 and a receiver receives message mb for some choice bit b. Party P1 with

input x and acting as the garbler constructs a garbled circuit and sends it to party

P2 with input y and acting as the evaluator. In addition, P1 and P2 run an OT pro-

tocol for each of P2’s input bits, with P1 inputting as the sender the two wire labels

Xw,0, Xw,1, and P2 receiving Xw,y[i]. P1 then sends the input-wire labels {Xw,x[i]}

corresponding to its own inputs, allowing P2 to evaluate the garbled circuit and

learn the output.

The free-XOR technique. We note one optimization technique that we reference

throughout the thesis. This technique, called the “free-XOR” technique [29], allows

one to construct a garbled circuit such that when evaluating the garbled circuits,

XOR gates can be evaluated “for free”; namely, evaluating an XOR gates only

requires an XOR operation by the evaluator.1 This is done as follows. The garbler

1In order to prove security of the “free-XOR” technique in the standard model, one needs to
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selects some global random value ∆, and for each input wire w chooses Xw,0 at

random at sets Xw,1 := Xw,0 ⊕ ∆. Now, for each XOR gate in the circuit, the

garbler sets the output 0-label to be the XOR of the two input 0-labels, and sets

the output 1-label to be the output 0-label XORed with ∆. AND gates are handled

as before.

Because the evaluator only learns a single label, it cannot learn ∆ and thus

security is preserved. However, note that now, when processing an XOR gate, the

evaluator only needs to XOR the two wire labels together to learn the output-wire

label of that gate. Namely, given Xα := Xα,0 ⊕ b∆ and Xβ := Xβ,0 ⊕ b′∆, it holds

that Xγ,b⊕b′ = Xα ⊕Xβ.

Achieving Malicious Security

The basic garbled circuit protocol described above is only secure against semi-honest

adversaries, that is, adversaries that are assumed to follow the protocol but may try

to deduce the other party’s input from the protocol transcript. As described in

the Introduction, the cut-and-choose paradigm is a common way to lift the garbled

circuit approach to handle malicious adversaries. Cut-and-choose protocols for gar-

bled circuits work by letting P1 generate and send a number of garbled circuits to

P2, who then chooses a subset of circuits to open and check for correctness. If the

checks pass, P2 evaluates the remaining circuits and obtains the final output by tak-

ing majority over the individual outputs. However, using cut-and-choose introduces

two possible avenues of attack: a selective failure attack on P2’s input and input

make additional assumptions about the encryption used in garbled circuits [30, 31, 29].

16



inconsistency on P2’s input. We discuss each in turn, as well as known approaches

to solve each problem.

Selective failure: This attack proceeds as follows. Recall that P1 sends the input-

wire labels of P2’s inputs through oblivious transfer. However, a malicious

P1 could set, say, the 0-bit label of the ith input-wire among all the garbled

circuits to garbage. Now, if P2 receives these garbage labels (because its ith

input bit was 0) it cannot evaluate the garbled circuits, and thus must abort,

allowing P1 to learn P2’s ith input bit.

There are two main ways to circumvent this attack. Lindell and Pinkas in-

troduced the “XOR-tree” approach [8], where the parties modify the circuit

such that instead of P2 having input y, it has ρ inputs {y1, . . . , yρ}. P2 chooses

these values randomly such that y =
⊕

i yi. Now, if P1 launches a selective

failure attack on a single input bit it only learns a random share of P2’s real

input bit y[i]. Of course, P1 can launch a selective failure attack on multiple

bits, but can only learn one of P2’s input bits with probability 2−ρ. Note that

the approach as described blows up P2’s input from n to ρn, where n is the

length of P2’s input. However, Lindell and Pinkas [8] showed how to reduce

this to max{4n, 8ρ}.

Another approach for dealing with the selective failure attack is cut-and-choose

oblivious transfer [9]. This protocol is similar to oblivious transfer, except now

P2 also inputs a “check set” J , and learns both of P1’s inputs for those indices

in J . Thus, P2 can execute cut-and-choose on P1’s inputs to the oblivious
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transfer itself, aborting on any inconsistency.

Input inconsistency: Another issue with using cut-and-choose is that one needs to

enforce that P1 uses the same input x in all the evaluation circuits. Otherwise,

P1 could get P2 to evaluate, for example, f(x1, y) and f(x2, y), potentially

allowing P1 to learn some information about y based on choices of x1 and x2.

While there are several approaches to solving this issue, we focus on the ap-

proach introduced by Lindell and Pinkas [9], which we make use of throughout

this thesis. For each of its n input bits, P1 chooses values {gai,b}b∈{0,1} for ran-

dom ai,b. Likewise, for each of the s garbled circuits in the cut-and-choose, P1

chooses values {grj}j∈[s] for random rj. Now, the input-wire label for input

bit b for the ith input of the jth circuit is set to gai,b·rj . Using this specific

structure of the labels allows P1 to efficiently prove in zero-knowledge that

its choices of its ith bit are consistent across all evaluation circuits. Namely,

suppose P2 has labels X and X ′ and knows the values {gai,b} and {grj}. Then

P1 can efficiently prove that for input {gai,0·rj , gai,1·rj , gai,0·rj′ , gai,1·rj′} and bit σ

it holds that X = gai,σ ·rj and X ′ = gai,σ ·rj′ ; namely, that the labels P2 has for

P1’s ith input bit across all evaluation circuits are consistent with P1’s input

σ := x[i].

Fast cut-and-choose using cheating punishment [10]. Prior cut-and-choose

works [8, 32] required P1 to send at least 125 circuits to guarantee security 2−40.

Lindell’s improved technique [10] achieves 2−ρ security while requiring P1 to send

only ρ circuits (i.e., 40 circuits for 2−40 security).
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Lindell’s protocol (which we call the “fast cut-and-choose” protocol) has two

phases. In the first phase, P1 with input x and P2 with input y run a modified

cut-and-choose which ensures that P2 obtains a proof of cheating φ if it receives

two inconsistent output values in any two evaluation circuits. Now, if all evaluation

circuits produce the same output z, P2 locally stores z as its output. Both parties

always continue to the second cheating-punishment phase. In it, P1 and P2 securely

evaluate (using some existing secure computation protocol) a smaller circuit C ′,

which takes as inputs P1’s input x and P2’s proof φ. (P2 inputs random values if it

does not have φ.) P1 proves in zero-knowledge the consistency of its input x between

the two phases. C ′ outputs x to P2 if φ is a valid proof of cheating; otherwise P2

receives nothing. The efficiency improvement is due to the fact that cheating is

punished by revealing P1’s input x to P2 if there is any inconsistency in outputs,

and thus P2 can simply compute f(x, y) itself.
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Chapter 3: The Multiple-execution Setting

As mentioned in Chapter 1, the classical technique for lifting the garbled circuit

approach to work in the malicious setting is cut-and-choose, formalized and proven

secure by Lindell and Pinkas [8]. Until recently, this approach required significant

overhead: to guarantee probability of cheating ≤ 2−ρ, approximately 3ρ garbled

circuits needed to be generated and sent. However, in 2013 two works reduced the

number of garbled circuits required in cut-and-choose to ρ+O(log ρ) per party [15]

and to ρ [10].

In this chapter we present a way to further significantly reduce the replication

factor for cut-and-choose-based protocols in the multiple-execution setting, where

the same function (possibly with different inputs) is evaluated multiple times either

in parallel or sequentially. To achieve this, we combine in a novel way the “fast

cut-and-choose” technique of Lindell [10] (cf. Chapter 2) with the “LEGO cut-and-

choose” technique [16, 17] (see below).

Notation. Besides the notation introduced in Chapter 2, we let t denote the total

number of times the parties wish to evaluate a given circuit, and let ν = ν(ρ, t)

represent the number of circuits, per evaluation, that need to be generated to achieve

an error probability of ≤ 2−ρ.
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LEGO cut-and-choose [16, 17]. These works take a different approach than

standard cut-and-choose protocols by implementing a two-stage cut-and-choose at

the gate level. The evaluation circuit C is then constructed from the unopened

garbled gates. In the first stage, P1 sends multiple garbled gates and P2 performs

a standard cut-and-choose with replication factor ν(ρ) = O(ρ/ log |C|). P2 aborts if

any opened gate is garbled incorrectly. In the next stage, P2 partitions the ν(ρ)|C|

garbled gates into buckets such that each bucket contains O(ν(ρ)) garbled gates.

This two-stage cut-and-choose ensures that, except with probability ≤ 2−ρ, each

bucket contains a majority of correctly constructed garbled gates.

To connect gates with one another, Nielsen and Orlandi [17] use homomorphic

Pedersen commitments. The resulting computational efficiency is relatively poor as

they perform several expensive public-key operations per gate. This is addressed in

the miniLEGO work [16], where the authors (among other things) construct homo-

morphic commitments from oblivious transfer (OT), whose cost can be amortized by

OT extension [7]. However, the overall efficiency of this construction is still lacking

in concrete terms due to large constants inside the big-O notation. In particu-

lar, the communication efficiency is adversely affected by the use of asymptotically

constant-rate codes that are concretely inefficient.

Naive approaches to combining fast cut-and-choose with LEGO. We now

discuss two natural approaches for combining Lindell’s fast cut-and-choose tech-

nique with LEGO-based cut-and-choose to achieve protocols secure in the multiple-

execution setting, which yield baseline benchmarks.
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The obvious and uninteresting approach is to simply run a maliciously-secure

protocol multiple times. More interestingly, the following LEGO trick, implicit in the

work of Nordholt et al. [33], can help. Consider a circuit C̃ which consists of t copies

of the original circuit C. We perform gate-level LEGO cut-and-choose directly on C̃.1

Doing this requires a replication factor of ν = O(ρ/ log |C̃|) = O(ρ/(log |C|+ log t)).

However, while this is a good asymptotic improvement, the concrete efficiency of

LEGO protocols is weak due to both heavy public-key machinery per gate [17] and

expensive communication [16]. Furthermore, LEGO requires a majority of gates in

each bucket to be good.

This leads to the second natural approach: use fast cut-and-choose in LEGO

and require that as long as each bucket contains at least one (as opposed to a

majority) correctly constructed garbled gate, the protocol succeeds. Unfortunately,

the circuit C′ used in the corresponding cheating-punishment phase is no longer

small. Indeed, C′ has to deliver P1’s input x to P2 if P2 supplies a valid cheating

proof φ. However, the number of possible proofs are now proportional to |C|, since

such a proof could be generated from any of the |C| buckets. This implies that C′ is

of size at least |C|.2 Therefore, this approach cannot perform better than evaluating

C from scratch using fast cut-and-choose.

1A similar approach (i.e., of directly securely evaluating C̃) can be used to run Lindell’s proto-
col [10] t times in parallel without having to increase the replication factor.

2The size of C′ is also proportional to the computational security parameter κ, as the proofs
are of length at least 2κ.
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3.1 Our Contribution

Our main idea for the multiple-execution setting is to run two-stage LEGO-style cut-

and-choose at the circuit level, and then use fast cut-and-choose in the second stage

(thereby requiring only a single correctly constructed circuit from each bucket). In

particular, now the size of C′ used in each execution depends only on the input and

output lengths of C, and is no longer proportional to |C|. In this section, we focus

only on the cut-and-choose aspect of the protocol; namely, on preventing P1’s cheat-

ing by submitting incorrect garbled circuits. More detailed protocol descriptions for

both the parallel and sequential settings can be found in Sections 3.3 and 3.4.

In the first-stage cut-and-choose, P1 constructs and sends to P2 a total of νt

garbled circuits. Next, P2 requests that P1 open a random νt/2-sized subset of

the garbled circuits. If P2 discovers that any opened garbled circuit is incorrectly

constructed, it aborts. Otherwise, P2 proceeds to the second stage cut-and-choose,

where it randomly assigns unopened circuits to t buckets such that each bucket

contains ν/2 circuits. Now, as in the fast cut-and-choose protocol [10], each of the

t evaluations are executed in two phases. In the first phase of the kth execution,

P2 evaluates the ν/2 evaluation circuits contained in the kth bucket. The circuits

are designed such that if P2 obtains different outputs from evaluating circuits in the

kth bucket, then it obtains a proof of cheating φk. Next, both parties continue to

the cheating-punishment phase, where P1 and P2 securely evaluate a smaller circuit

that outputs P1’s input xk if P2 provides a valid proof φk.

Clearly, P1 succeeds in cheating only if (1) it constructed m ≥ ν/2 bad circuits,
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(2) none of these m bad circuits were caught in the first cut-and-choose stage (in

particular, m ≤ νt/2), and (3) in the second stage, there exists a bucket that contains

all bad circuits. It is easy to see that the probability with which m bad circuits

escape detection in the first stage cut-and-choose is
(
νt−m
νt/2

)
/
(
νt
νt/2

)
. Conditioned

on this event happening, the probability that a particular bucket contains all bad

circuits is
(
m
ν/2

)
/
(
νt/2
ν/2

)
. Applying the union bound, we conclude that the probability

that P1 succeeds in cheating is bounded by

t

(
νt−m
νt/2

)(
m

ν/2

)/(
νt

νt/2

)(
νt/2

ν/2

)
.

For any given t and ρ, the smallest ν, hinging on the maximal probability of P1’s

successful attack, can be determined by enumerating over all possible values of m

(in particular, {ν/2, ν/2 + 1, . . . , νt/2}).

As an example, for t = 20 with ρ = 40, using our protocol the circuit generator

needs to construct 16 · t = 320 garbled circuits, whereas using a naive application

of Lindell’s protocol [10] requires 40 · t = 800 garbled circuits. See Figure 3.1 for a

comparison of our approach and the prior work for various settings of t.

Parallel versus sequential executions. As will be evident, it is important to

distinguish between the settings where the parties carry out multiple evaluations in

parallel (e.g., when all inputs are available at the start of the protocol) and where

these evaluations are carried out sequentially (e.g., when not all inputs are available

as they, for example, depend on the outputs of previous executions). Below, we

provide an overview of the main challenges of each setting, and an outline of our
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Figure 3.1: Graph depicting the number of garbled circuits required per execution
for statistical security 2−40 for our approach and the naive approach which uses the
fast cut-and-choose protocol [10] for each setting of t.

solutions.

Parallel executions. We apply our cut-and-choose technique in the parallel execution

setting by modifying the fast cut-and-choose protocol [10] as follows. Lindell

uses a primitive called cut-and-choose oblivious transfer (C&C OT) to prevent

a malicious P1 from learning a bit of P2’s input using the so called “selective

failure attack” (discussed in more detail in Section 3.3). In this work, we

construct a generalized C&C OT functionality that supports multi-stage cut-

and-choose. We call this functionality Fmcot, and show an efficient realization

that is only a factor νt2/ρ less efficient (per execution) than the C&C OT

realization of Lindell [10]. We elaborate more on this, and other important

details, in Section 3.3.

Sequential executions. To prevent a malicious evaluator from choosing its inputs
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based on the garbled circuit (which is required in order to prove security),

garbled circuit-based 2PC protocols perform oblivious transfer before the gar-

bler sends its garbled circuits to the evaluator (i.e., before the cut-and-choose

phase). This forces the parties, and in particular the evaluator, to “commit”

to their inputs before performing the cut-and-choose. This, however, does

not work in the sequential setting, where the parties may not know all their

inputs at the beginning of the protocol. Standard solutions used in previous

works [34, 35, 36] include assuming the garbled circuit is adaptively secure or

using adaptively-secure garbling [37] explicitly, assuming the programmable

random-oracle model. Another issue is that since now we perform OTs for

each execution separately, we can no longer use C&C OT or its variants; in-

stead we rely on the “XOR-tree” approach of Lindell and Pinkas [8] to avoid

selective failure attacks. We elaborate more on this, and other details, in

Section 3.4.

Our solution for the sequential setting readily carries over to the parallel setting.

In particular, adapting our protocol from the sequential to the parallel setting may

address situations where the cost incurred by the use of Fmcot outweighs the cost

of using both the XOR-tree approach and adaptively-secure garbled circuits.

Related work. Lindell and Pinkas [8] gave the first3 rigorous 2PC protocol based

on cut-and-choose. For ρ = 40, their protocol required at least 17ρ = 680 garbled

circuits. Subsequent work by the same authors [9] reduced the number of circuits

3Cut-and-choose mechanisms were previously employed in works by Pinkas [38] and Malkhi et
al. [4] but these approaches were later shown to be flawed [39, 40].
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to 128. This was later improved by shelat and Shen [32] to 125 using a more

precise analysis of the cut-and-choose approach. In Crypto 2013, two works [15, 10]

proposed (among other things) improvements to the number of garbled circuits that

need to be sent. For achieving statistical security 2−ρ, Huang et al.’s protocol [15]

requires 2ρ+O(log ρ) circuits, where each party generates half of them, and Lindell’s

protocol [10] requires exactly ρ circuits, plus an additional (but inexpensive) recovery

phase.

While all of the above works perform cut-and-choose over circuits, applying

cut-and-choose at the gate-level has also been considered [41, 16, 33, 17]. As dis-

cussed above, this approach naturally extends to the multiple-execution setting, and

furthermore is not inherently limited to considering settings where the same func-

tion is evaluated multiple times. Nielsen et al. [33] indeed show concrete efficiency

improvements using gate-level cut-and-choose techniques. However, the number of

rounds grows linearly with the depth of the evaluated circuit.

Finally, in independent and concurrent work, Lindell and Riva [42] also inves-

tigate the multiple-execution setting, and obtain performance improvements similar

to ours. An interesting difference between our works is that while we always let the

evaluator pick half the circuits to check, they show that varying the number of check

circuits can lead to an additional performance improvement. In subsequent work,

Lindell and Riva [43] introduced a new efficient input consistency mechanism and

implemented their construction, showing that AES can be securely evaluated online

in only 7 ms per execution, thus demonstrating the practicality of this approach.
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3.2 Preliminaries

We consider the setting where a function is executed t times over different inputs. We

assume that only one party (the evaluator) receives output. Known techniques [8]

can be used to lift this setting to one in which both parties receive output.

Our constructions make use of three (standard) two-party ideal functionalities

for oblivious transfer, zero-knowledge proof-of-knowledge of an exponent, and coin

tossing; see below. All three functionalities have efficient and standard instantia-

tions [9, 44, 45].

Fot On sender input (x0, x1) and receiver input σ, send xσ to the receiver.

Fzk On prover input ({ga0·rj , ga1·,rj , ga0·rj′ , ga1·rj′}, σ) and receiver input (Xj , Xj′ , Y0,

Y1, Zj , Zj′), send 1 to the receiver if it holds that Y0 = ga0 , Y1 = ga1 , Zj = grj ,

Zj′ = grj′ , Xj = gaσ ·rj , and Xj′ = gaσ ·rj′ , and 0 otherwise.

Fct Output random string r to both parties.

We also make use of adaptively secure garbled circuits [37], which we now de-

fine. These are similar to the garbled circuit notion (cf. Chapter 2) used throughout

this work, except that the evaluator may decide on its choice of input after receiv-

ing the garbled circuit, and can thus base its input on a function of the received

garbled circuit. We consider the fine-grained variant of adaptively secure garbled

circuits, where the adversary can choose its input bit-by-bit (namely, it receives the

input-wire label for bit i before choosing its value for bit i+ 1).

We augment the standard privacy notion for garbling schemes (cf. Defini-
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tion 2.2) as follows. In the adaptive case, the simulator S does not have access

to the output f(x, y) of the computation until the adversary A has specified its

entire input. Thus, it must construct a fake garbled circuit “blindly.” Only once

A specifies all the input bits does the simulator learn f(x, y), and at this point it

must “fix” the garbled circuit to produce this as the output. Namely, A is given

oracle access to an Input(w, b) function which returns the b-label of the wth input

wire. This oracle can only be called once per input wire w. In the real world, A

receives the actual input-wire label generated by Gb; that is, Xw,b := Input(w, b). In

the ideal world, we have S “simulate” the output of Input, given only the wire index;

only once labels are output for all input-wire labels does S learn the output f(x, y).

More concretely, we split S into two simulators, S1 and S2. S1 is only given as input

the security parameter and must generate a garbled circuit Ĉ. S2 is called on each

call A makes to Input, and receives as input the wire index w, the number of calls

Q made to Input, and f(x, y) if Q equals the length of the input and ⊥ otherwise,

and must output a label in such a way that A cannot distinguish between the two

worlds.

Definition 3.1. Garbling scheme (Gb,Ev) satisfies adaptive privacy if for every ppt

adversary A, there exists a ppt simulator S such that for all polynomial size func-
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tions f and inputs x and y it holds that

Pr

AInput(·,·)(Ĉ) = 1 :
(Ĉ, {Xw,b})← Gb(1κ, f)

Xw,b := Input(w, b)


c≈

Pr

AInput(·,·)(Ĉ) = 1 :
Ĉ ← S1(1κ)

Xw,b ← S2(f(x, y) or ⊥, w,Q)

 .

Relatively efficient constructions of adaptively secure garbled circuits can be

constructed in the random oracle model [37]. The basic idea is to mask the garbled

circuit by some random string that is only revealed once the adversary receives all

of its input-wire labels.

3.2.1 Security Definitions

Our security definitions allow one of the two participating parties to be corrupted

by an adversary A. We assume that there is an environment Z which interacts with

A and the honest party in the way specified below. At the end of the execution, Z

needs to distinguish between the case where A runs a protocol with the real honest

party, and the case where A and the honest party invoke an ideal functionality

that computes the function f , where the protocol is secure if Z’s advantage in

distinguishing the two cases is negligible.
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The Parallel Execution Setting

Ideal model execution. In the ideal model, we have parties P1 and P2, and an

adversary A who can corrupt one of the two parties. An ideal execution for the

computation of the function f multiple times in parallel, where the parties have

access to an ideal functionality Fpar, proceeds as follows.

Auxiliary Input: P1 and P2 hold 1κ, and Z holds auxiliary input aux. In

addition, Z provides P1 and P2 a parameter t which denotes the number of times

the function f is executed.

• P1 and P2 obtain inputs (x1, . . . , xt) and (y1, . . . , yt), respectively, from Z,

where each xi and yi is of length {0, 1}n.

• The honest party sends its input vector to Fpar. The corrupted party may

send any input vector of its choice.

• If an input is invalid, Fpar outputs ⊥ to both parties and halts. Otherwise,

Fpar sends f(x1, y1), . . . , f(xt, yt) to P2.

• P1 has no output, and P2 has output f(x1, y1), . . . , f(xt, yt). The honest party

gives whatever it was sent by Fpar to Z, and the corrupted party gives an

arbitrary function of its view to Z. In the end, Z outputs a bit. We let

Idealf,A,Z(aux)(1
κ) denote the output of Z.

Real model execution. In the real model, we have parties P1 and P2 who execute

a two-party protocol Πf . The protocol Πf has a parameter t initialized by Z which
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specifies the number of times f is evaluated in parallel. P1 and P2 obtain their inputs

(x1, . . . , xt) and (y1, . . . , yt), respectively, from Z, and obtain output (z1, . . . , zt) by

executing Πf using their respective inputs. The honest party sends its output to

Z and the adversary A sends its view to Z. Throughout the protocol execution,

A obtains the inputs of the corrupted party and sends all messages on its behalf,

whereas the honest party follows the instructions of Πf . In the end, Z outputs a

bit. We let RealΠf ,A,Z(aux)(1
κ) denote the output of Z.

Definition 3.2. Protocol Πf is said to securely compute Fpar if for every ppt ad-

versary A in the real model, there exists a ppt adversary S in the ideal model such

that for every aux ∈ {0, 1}∗, κ, ρ ∈ N, and non-uniform ppt environment Z that

specifies the number of executions as t ∈ poly(κ), it holds that

{Idealf,S,Z(aux)(1
κ)} c≈ {RealΠf ,A,Z(aux)(1

κ)}+ 2−ρ.

Remarks. The definition above is somewhat similar to security definitions in the

Universal Composability (UC) framework [46] in the way we define security as the

success probability of an environment Z that attempts to distinguish between the

ideal world and the real world. In spite of this we stress that our definition is not

as strong as the UC definition, as the latter allows Z to interact arbitrarily with A

during the protocol execution.
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The Sequential Execution Setting

Ideal model execution. In the ideal model, we have parties P1 and P2, and an

adversary A who can corrupt one of the two parties. An ideal execution for the

computation of the function f multiple times sequentially, where the parties have

access to an ideal functionality Fseq, proceeds as follows.

Auxiliary Input: P1 and P2 hold 1κ and are stateful, and Z holds auxiliary

input aux. In addition, Z provides P1 and P2 a parameter t which denotes the

number of times the function f is executed.

For k ∈ [t]:

• P1 and P2 obtain inputs xk ∈ {0, 1}n and yk ∈ {0, 1}n, respectively, from Z.

• The honest party sends its input to Fseq. The corrupted party may send any

input of its choice.

• If an input is invalid, Fseq outputs ⊥ to both parties and halts. Otherwise,

Fseq sends f(xk, yk) to P2.

• P1 has no output, and P2 has output f(xk, yk). The honest party gives what-

ever it was sent by Fseq to Z, and the corrupted party gives an arbitrary

function of its view to Z.

At the end of t iterations, Z outputs a bit. We let Idealf,A,Z(aux)(1
κ) denote the

output of Z.
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Real model execution. In the real model, we have parties P1 and P2 who execute

a two-party protocol Πf . The protocol Πf has a parameter t, initialized by Z,

which specifies the number of times f is evaluated. Protocol Πf is stateful across

its execution spanning t stages. In each stage, P1 and P2 obtain their inputs xk

respectively yk from Z, and obtain their output zk by executing Πf using their

respective inputs. At the end of each stage, the honest party sends its output to

Z and the adversary sends its view to Z. Throughout the protocol execution, A

obtains the inputs of the corrupted party and sends all messages on its behalf,

whereas the honest party follows the instructions of Πf . At the end of t stages of

Πf , Z outputs a bit. We let RealΠf ,A,Z(aux)(1
κ) denote the output of Z.

Definition 3.3. Protocol Πf is said to securely compute Fseq if for every ppt ad-

versary A in the real model, there exists a ppt adversary S in the ideal model such

that for every aux ∈ {0, 1}∗, κ, ρ ∈ N, and non-uniform ppt environment Z that

specifies the number of executions as t ∈ poly(κ), it holds that

{Idealf,S,Z(aux)(1
κ)} c≈ {RealΠf ,A,Z(aux)(1

κ)}+ 2−ρ.

Remarks. As in the parallel execution case, this definition differs from the defini-

tion in the Universal Composability (UC) framework [46], since in our setting we

restrict Z to interact with A only between stages of the protocol Πf , but never

within a stage.
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3.3 The Parallel Execution Setting

Consider a setting where two parties wish to securely evaluate the same function

multiple times in parallel. Let f denote the function of interest, let t denote the

number of times the parties wish to evaluate f , and let P1’s and P2’s input in the

kth execution be xk and yk, respectively.

We adapt Lindell’s protocol [10] to support our cut-and-choose technique in

the parallel execution setting. The main difficulty is the design and construction of

a generalization of cut-and-choose oblivious transfer [9] which we use to avoid the

“selective failure attack” where a malicious P1 constructs invalid labels for some of

P2’s input wires to try to deduce P2’s inputs based on whether P2 aborts execution

or not.

Generalizing Cut-and-Choose Oblivious Transfer

Cut-and-choose oblivious transfer (C&C OT) [9] is an extension of standard one-out-

of-two oblivious transfer (OT). The sender inputs n pairs of strings, and the receiver

inputs n selection bits to select one string out of each pair of sender strings. The

receiver also inputs a set C of size n/2 that consists of indices where it wants both the

sender’s inputs to be revealed. We denote this set as the check set, and let E := [ρ]\C

denote the evaluation set. Note that for indices in E , only those sender inputs that

correspond to the receiver’s selection bits are revealed. In applications to secure

computation, and in particular when transferring input-wire labels corresponding

to a particular input wire across all evaluation circuits, one needs single-choice cut-
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Functionality Fccot

P1 inputs n vectors {X0
i,1, X

1
i,1, . . . , X

0
i,ρ, X

1
i,ρ}i∈[n] and ρ “check values” χ1, . . . , χρ, where

each string is in {0, 1}ρ. P2 inputs bits σ1, . . . , σn ∈ {0, 1} and a set C ⊆ [ρ].

P1 receives no output. P2 receives the following:

• For i ∈ [n] and j ∈ C, P2 receives (X0
i,j , X

1
i,j).

• For i ∈ [n], P2 receives (Xσi
i,1, . . . , X

σi
i,ρ), and for j 6∈ C, P2 receives χj .

Figure 3.2: Modified batch single-choice cut-and-choose oblivious transfer function-
ality Fccot [10].

and-choose oblivious transfer, where the receiver is restricted to inputting the same

selection bit in all the n/2 instances where it receives exactly one of the sender’s

strings. Furthermore, when transferring labels for multiple input wires, it is crucial

that the check set C input by the receiver is the same across each instance of single-

choice C&C OT to enforce that the receiver receives only one input-wire label in

each evaluation circuit and both input-wire labels in each check circuit across all

input wires. This variant, called batch single-choice C&C OT, can be realized from

the decisional Diffie-Hellman assumption [9].

Lindell [10] presented a variant of batch single-choice C&C OT [9] in order

to address settings where the check set C input by the receiver may be of arbitrary

size. We denote this variant by Fccot; see Figure 3.2 for the formal description. In

this variant, in addition to obtaining one of the two sender inputs for pairs whose

indices are not in C, the receiver also obtains a “check value” for each index in E .

These check values are used to confirm that a circuit is indeed an evaluation circuit.

For our purposes, we introduce a new variant of C&C OT, which we call batch

single-choice multi-stage C&C OT. We denote this primitive by Fmcot and present

its formal description in Figure 3.3. As we use Fmcot to realize our parallel execution
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Functionality Fmcot

P1 inputs n vectors {X0
i,1, X

1
i,1, . . . , X

0
i,νt, X

1
i,νt}i∈[n], and νt2 “check values” {χk1 , . . . , χkνt}k∈[t],

where each string is in {0, 1}ρ. P2 inputs t n-bit vectors {σ1,i, . . . , σn,i}i∈[t] and sets E1, . . . , Et
that are disjoint subsets of [νt].

P1 receives no output. P2 receives the following:

• If E1, . . . , Et are disjoint subsets of [νt], then for k ∈ [t], j ∈ Ek, P2 receives χkj . For all

k, k′ such that j ∈ Ek∩Ek′ , P2 receives random strings in {0, 1}κ instead of χkj and χk
′

j .

• Let C := [νt] \ ∪k∈[t]Ek. For i ∈ [n], j ∈ [νt]:

– If j ∈ C, then P2 receives (X0
i,j , X

1
i,j).

– If j ∈ Ek, then P2 receives X
σi,k
i,j .

Figure 3.3: Batch single-choice multi-stage cut-and-choose OT functionality Fmcot.

protocol, we use the same notation in our definition of Fmcot; namely, we let the

universal set be of size νt rather than ρ.

At a high level, Fmcot differs from Fccot in that the receiver now inputs multiple

evaluation sets E1, . . . , Et (where the check set C is now implicitly defined as C :=

[νt] \∪k∈[t]Ek) and makes independent selections for each E1, . . . , Et. As in the Fccot

functionality, Fmcot (1) does not require sets E1, . . . , Et to be of a particular size,

and (2) delivers “check values” for indices contained in each of E1, . . . , Et. These

check values are used to confirm whether a circuit is an evaluation circuit in the kth

bucket for some k ∈ [t]. Note that we need νt2 check values, rather than just νt,

in order to prove security of our functionality and its use in our protocol. Namely,

we need to enforce that the evaluation sets are disjoint, and we do this by enforcing

that a malicious P2 who inputs intersecting sets is unable to recover an appropriate

check value. To do this, we need νt check values for each k ∈ [t], rather than just

νt total check values.

The Fmcot functionality. As in Fccot, the sender P1 inputs n vectors {X0
i,1, X

1
i,1,
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. . . , X0
i,νt, X

1
i,νt}i∈[n], where each value in the vector corresponds to the wire labels for

P2’s ith input in our secure computation protocol. In addition, P1 inputs νt2 “check

values”. The receiver P2 inputs t vectors ~σ1, . . . , ~σt each of length n, corresponding

to its input in each of the t runs, and disjoint sets E1, . . . , Et, corresponding to the t

evaluation buckets. Upon receiving these inputs from P1 and P2, the functionality

computes check set C := [νt]\∪k∈[t]Ek and delivers the following to P2: (1) for j ∈ C,

both values in the jth pair in each of the n vectors, and (2) for k ∈ [t] and j ∈ Ek,

the σi,k value in the jth pair of each of the n vectors along with the check value

χkj . If P2’s evaluation sets are not disjoint, then it receives no check values for those

circuits corresponding to values in the intersection of two of the evaluation sets.

Realizing Fmcot in the Fccot-hybrid model. We now proceed to construct a

protocol for Fmcot. Our goal is to provide an information-theoretic reduction from

Fmcot to Fccot. We first consider a naive approach which serves as a warm-up to

our final construction.

The naive approach. We propose the following natural approach to realizing Fmcot

from Fccot. P1 first performs a t-out-of-t additive secret sharing of its input vec-

tors. Next, P1 and P2 interact with the Fccot functionality t times. In the kth

interaction, P1 provides the kth additive share of its input vectors plus νt check

values χk1, . . . , χ
k
νt, while P2 provides (σ1,k, . . . , σn,k) along with a set [νt] \ Ek. Let

C := [νt]\∪k∈[t]Ek. At the end of the interaction, P2 obtains (1) all t additive shares

of P1’s inputs for j ∈ C, and (2) all t additive shares of P1’s inputs corresponding to

P2’s selection bit, along with the check values, for j 6∈ C.
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In the context of using Fmcot for our setting, note that for the check circuits

(which correspond to the set C), P2 does not obtain the check values, and for the

evaluation circuits (which correspond to the sets Ek), P2 does not obtain both input

labels. Thus, the above protocol seems to successfully fulfill our requirements from

the Fmcot functionality. However, note that there is no mechanism in place to

enforce that P2 supplies disjoint sets Ek. We show that this prevents the above

protocol from realizing Fmcot.

Let t := 2. A malicious P2 may input overlapping sets E1, E2 to Fccot. The

consequence of this is that P2 now possesses check values χ1
j and χ2

j for j ∈ E1 ∩ E2.

Clearly, the functionality Fmcot does not allow this. However, one may wonder why

this need be the case. Recall that P1’s inputs (i.e., the labels corresponding to P2’s

inputs when used in our protocol) are all secret shared, and as a result P2 does not

possess valid labels corresponding to its input in garbled circuit Ĉj unless its input

in both executions is identical. At the surface, there does not seem to be any attack

due to this malicious strategy. While P2 can equivocate on assigning Ĉj to either

the first or second evaluation bucket, it either has no corresponding labels, or it has

to evaluate both circuits on the same input, say y (in which case it seems immaterial

whether j is revealed as part of E1 or E2).

Unfortunately, the above malicious strategy is not simulatable when used in

our secure computation protocol. In particular, at the end of the interaction with

Fccot, the simulator successfully extracts P2’s input in the first and second execution,

but is now unable to decide on how to fake the garbled circuit Ĉj. On the one hand,

if j ∈ E1, then the fake garbled circuit has to output z1 := f(x1, y). On the other
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hand, if j ∈ E2, then the fake garbled circuit has to output z2 := f(x2, y). Therefore,

the simulator has to choose on how to fake Ĉj “in the dark,” which does not extend

well to the case where t is large.

The discussion above motivates our definition of Fmcot; in particular, it rein-

forces why we need disjoint evaluation sets and why Fmcot must deliver at most one

check value per circuit.

Our approach. The high level idea behind our protocol is to let P1 perform inde-

pendent additive sharings of both the input values and the check values. Then P1

and P2 query the Fccot functionality t times to transfer the values as required by

Fmcot. We detail this below, explaining it in the context of our secure computation

protocol.

Let (X0
i,j, X

1
i,j) be the input labels corresponding to P2’s ith input wire in gar-

bled circuit Ĉj. First, P1 performs a t-out-of-t additive secret sharing of these labels;

that is, for i ∈ [n] and j ∈ [νt], P1 secret shares X0
i,j and X1

i,j into {X0
i,j,k}k∈[t] and

{X1
i,j,k}k∈[t], respectively. P1 also chooses νt2 check values {χk1, . . . , χkνt}k∈[t] and per-

forms a (2n(t−1)+1)-out-of-(2n(t−1)+1) additive sharing of each value χkj to obtain

shares χ̃kj , {χ0,k
i,j,k′ , χ

1,k
i,j,k′}k′∈[t]\{k},i∈[n]. Then, instead of creating inputs to Fccot us-

ing the Xb
i,j,k shares alone, P1 creates a share-block Xb

i,j,k := (Xb
i,j,k, χ

b,1
i,j,k, . . . , χ

b,t
i,j,k).

That is, a share-block Xb
i,j,k contains, in addition to a share of the input label, a

share of all check values corresponding to garbled circuit Ĉj.

Next, P1 and P2 run t instances of Fccot. In the kth interaction, in addition

to the νt check value shares χ̃k1, . . . , χ̃
k
νt, P1 provides its kth share-block while P2
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provides its inputs for the kth execution along with a set [νt] \ Ek. Let C := [νt] \

∪k∈[t]Ek. At the end of the interaction, P2 obtains (1) for j ∈ C, all t share-blocks of

input-wire labels, and therefore all input-wire labels, for garbled circuit Ĉj, and (2)

for j ∈ Ek, all t share-blocks of input-wire labels that correspond to its actual input

in the kth execution, and therefore its input-wire labels, along with a check value

χ̃kj for garbled circuit Ĉj.

Note, in particular, that for each check circuit Ĉj, P2 does not obtain the

check value χkj for any k, because it always misses the check value share χ̃kj . For

each evaluation circuit Ĉj with j ∈ Ek, P2 does not obtain both input labels, and

more importantly can obtain at most one check value (which is χkj ). This is because

share-blocks contain shares of input labels as well as shares of check values. For

an evaluation circuit, P2 always misses a share block, and consequently shares of

all values χk
′
j with k′ 6= k. Furthermore, if P2 wants to ensure it receives χkj , then

it should never input Ek′′ such that k′′ 6= k and yet j ∈ Ek′′ . This is because for

j ∈ Ek′′ , P2 is guaranteed to miss a share block that contains an additive share of

χkj . Note that the above observations suffice to deal with a malicious P2 that inputs

overlapping sets since in this case P2 fails to obtain any check values corresponding

to indices in the intersection.

As an example, consider the case where n := 1 and t := 2. Then we secret-

share χ1
j as (χ̃1

j , χ
0,1
1,j,2, χ

1,1
1,j,2) and χ2

j as (χ̃2
j , χ

0,2
1,j,1, χ

1,2
1,j,1). Likewise, share-block Xb

1,j,1

equals (Xb
1,j,1, χ

b,2
1,j,1) and share-block Xb

1,j,2 equals (Xb
1,j,2, χ

b,1
1,j,2). Now, if P2 inputs

evaluation sets such that j ∈ E1∩E2, then it recovers, say, X0
1,j,1 := (X0

1,j,1, χ
0,2
1,j,1) and

X0
1,j,2 := (X0

1,j,2, χ
0,1
1,j,2) for input bit 0. Note that it does not have enough shares of
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either χ1
j or χ2

j to recover either, and thus does not learn the check value. However,

if E1 and E2 are disjoint, then it would also learn, say, X1
1,j,2 := (X1

1,j,2, χ
1,1
1,j,2), and

thus be able to recover χ1
j .

See below for the formal description.

Inputs:

• P1 inputs n vectors { ~Xi := (X0
i,1, X

1
i,1, . . . , X

0
i,νt, X

1
i,νt)}i∈[n] and νt2 “check val-

ues” {χk1, . . . , χkνt}k∈[t], where each string is in {0, 1}κ.

• P2 inputs t n-bit vectors {σ1,i, . . . , σn,i}i∈[t] and sets E1, . . . , Et that are disjoint
subsets of [νt].

Protocol:

• For i ∈ [n], P1 performs a t-out-of-t additive secret sharing of ~Xi to obtain
shares ~Xi,1, . . . , ~Xi,t. For k ∈ [t], let ~Xi,k = (X0

i,1,k, X
1
i,1,k), . . . , (X

0
i,νt,k, X

1
i,νt,k),

let X0
i,j,k = (X0

i,j,k, χ
0,1
i,j,k, . . . , χ

0,t
i,j,k), and let X1

i,j,k = (X1
i,j,k, χ

1,1
i,j,k, . . . , χ

1,t
i,j,k),

where χ0,1
i,j,k, . . . , χ

0,t
i,j,k and χ1,1

i,j,k, . . . , χ
1,t
i,j,k are random independent values in

{0, 1}κ. Let ~Xi,k = (X0
i,1,k,X

1
i,1,k), . . . , (X

0
i,νt,k,X

1
i,νt,k).

• For k ∈ [t], j ∈ [νt], P1 sets χ̃kj = χkj ⊕
⊕

k′∈[t]\{k},i∈[n](χ
0,k
i,j,k′ ⊕ χ

1,k
i,j,k′).

• P1 and P2 run t instances of Fccot as follows. In the kth instance:

– P1 inputs n vectors {~Xi,k}i∈[n] and νt “check values” χ̃k1, . . . , χ̃
k
νt. P2 inputs

σi,k, . . . , σn,k and the set [νt] \ Ek.
– P2 receives {χ̃kj }j∈Ek and {{Xσi,k

i,j,k}j∈Ek ∪ {(X0
i,j,k,X

1
i,j,k)}j∈[νt]\Ek}i∈[n].

• For k ∈ [t], j ∈ Ek, P2 reconstructs χkj := χ̃kj ⊕
⊕

k′∈[t]\{k},i∈[n](χ
0,k
i,j,k′ ⊕ χ

1,k
i,j,k′).

• Let C = [νt] \ ∪k∈[t]Ek. For i ∈ [n], j ∈ [νt], P2 does the following:

– If j ∈ C: set X0
i,j :=

⊕
k∈[t]X

0
i,j,k, and X1

i,j :=
⊕

k∈[t]X
1
i,j,k.

– If there exists (unique) k ∈ [t] such that j ∈ Ek: set X
σi,k
i,j :=

⊕
k∈[t]X

σi,k
i,j,k.

• P2 outputs sets {χ1
j}j∈E1 , . . . , {χtj}j∈Et and {{X0

i,j , X
1
i,j}j∈C , {X

σi,1
i,j }j∈E1 , . . . ,

{Xσi,t
i,j }j∈Et}i∈[n].

Theorem 3.1. The above protocol perfectly realizes Fmcot in the Fccot-hybrid model.

Proof. We split the analysis into two cases depending on whether P1 or P2 is cor-
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rupted.

P1 is corrupted. The simulation is straightforward since P1 does not receive any

output. We describe it below. Let S be the simulator running an adversary A

corrupting P1.

• S initializes A.

• For k ∈ [t], S obtains the following from A:

1. vectors ~Xi,k := (X0
i,1,k,X

1
i,1,k), . . . , (X

0
i,νt,k,X

1
i,νt,k) for i ∈ [n]; and

2. “check values” χ̃k1, . . . , χ̃
k
νt.

For b ∈ {0, 1}, i ∈ [n], j ∈ [νt], and k ∈ [t], S parses Xb
i,j,k as (Xb

i,j,k, χ
b,1
i,j,k, . . . ,

χb,ti,j,k).

• For i ∈ [n], S constructs ~Xi := (X0
i,1, X

1
i,1, . . . , X

0
i,νt, X

1
i,νt), where for b ∈ {0, 1}

and j ∈ [νt], Xb
i,j :=

⊕
k∈[t] X

b
i,j,k.

• For j ∈ [νt] and k ∈ [t], S computes χkj := χ̃kj ⊕
⊕

k′∈[t]\{k},i∈[n](χ
0,k
i,j,k′ ⊕ χ1,k

i,j,k′).

• S sends { ~Xi}i∈[n] and (χ1
1, . . . , χ

1
νt), . . . , (χ

t
1, . . . , χ

t
νt) to Fmcot and halts, out-

putting whatever A outputs.

S clearly perfectly simulates A, as the view of A and output of an honest P2 is

exactly the same as in both the real and ideal worlds.

P2 is corrupted. This simulation is slightly tricky, since an adversary A corrupting

P2 may input to Fccot sets E1, . . . , Et that are intersecting. For clarity, we denote the
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sets input by A as E ′1, . . . , E ′t. The key observation is that none of the input values

or check values are determined until P2 completes its final query to Fccot. Due to

symmetry and hence without loss of generality, in the following we assume P2’s last

query to Fccot is its tth query. We describe the simulation below.

• S initializes A.

• For k ∈ [t− 1], S acts as Fccot and interacts with P2 in the following way:

– S obtains the following from A: (1) ~σk := σ1,k, . . . , σn,k and (2) the set

[νt] \ E ′k.

– S chooses uniformly random and independent values X0
i,j,k := (X0

i,j,k, χ
0,1
i,j,k,

. . . , χ0,t
i,j,k) and X1

i,j,k := (X1
i,j,k, χ

1,1
i,j,k, . . . , χ

1,t
i,j,k) for i ∈ [n] and j ∈ [νt]. In

addition, S chooses uniformly random and independent values χ̃k1, . . . , χ̃
k
νt.

– S sends {χ̃kj}j∈E ′k , {{X
σi,k
i,j,k}j∈E ′k ∪ {(X0

i,j,k,X
1
i,j,k)}j∈[νt]\E ′k}i∈[n] to A.

• Acting as Fccot, S obtains the tth query from A as (1) ~σt := σt,1, . . . , σt,n, and

(2) the set [νt] \ E ′t.

• For k ∈ [t], set Ek := E ′k \ ∪k′ 6=kE ′k′ . Define C = [νt] \ ∪k∈[t]Ek.

S sends ~σ1, . . . , ~σt and sets E1, . . . , Et to Fmcot, and receives back {χ1
j}j∈E1 , . . . , {χtj}j∈Et

and {{(X0
i,j, X

1
i,j)}j∈C, {X

σi,1
i,j }j∈E1 , . . . , {X

σi,t
i,j }j∈Et}i∈[n].

• S chooses values {χ̃tj}j∈[νt] as follows:

– If j ∈ Et, then set χ̃tj := χtj ⊕
⊕

k∈[t−1],i∈[n](χ
0,t
i,j,k ⊕ χ1,t

i,j,k).

– Else, choose χ̃tj uniformly at random.
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• S chooses values {X0
i,j,t, X

1
i,j,t}i∈[n],j∈[νt] as follows:

– If j ∈ C, then for i ∈ [n] set X0
i,j,t := X0

i,j ⊕
⊕

k∈[t−1]X
0
i,j,k and X1

i,j,t :=

X1
i,j ⊕

⊕
k∈[t−1] X

1
i,j,k.

– Else (i.e., j ∈ Ek for some unique k ∈ [t]), for all i ∈ [n] set X
σi,k
i,j,t :=

X
σi,k
i,j ⊕

⊕
k′∈[t−1]X

σi,k
i,j,k′ , and set X

1−σi,k
i,j,t to a random value.

• S chooses values {χ0,k
i,j,t, χ

1,k
i,j,t}i∈[n],j∈[νt],k∈[t] as follows:

– If j ∈ Ek for some (unique) k ∈ [t], then for all i ∈ [n] pick χ0,k
i,j,t, χ

1,k
i,j,t uni-

formly at random subject to
⊕

i∈[n](χ
0,k
i,j,t⊕χ1,k

i,j,t) = χ̃kj⊕χkj⊕
⊕

k′∈[t−1],i∈[n](χ
0,k
i,j,k′⊕

χ1,k
i,j,k′).

– Else, for i ∈ [n] and k ∈ [t], pick χ0,k
i,j,t, χ

1,k
i,j,t uniformly at random.

• For i ∈ [n] and j ∈ [νt], let X0
i,j,t := (X0

i,j,t, χ
0,1
i,j,t, . . . , χ

0,t
i,j,t) and X1

i,j,t :=

(X1
i,j,t, χ

1,1
i,j,t, . . . , χ

1,t
i,j,t). Then, acting as Fccot, S sends {χ̃tj}j∈E ′t , {{X

σi,t
i,j,t}j∈E ′t ∪

{(X0
i,j,t,X

1
i,j,t)}j∈[νt]\E ′t}i∈[n] to A and halts, outputting whatever A outputs.

First we show that if A inputs E ′1, . . . , E ′t such that these sets are pairwise non-

intersecting, then its view in the above simulation is identically distributed to its

view in the real execution. In this case, it is easy to see that for all k ∈ [t] the

extracted sets Ek in the simulation are identical to E ′k input by A. Further, C =

[νt] \ ∪k∈[t]E ′k also holds. Observe that for j 6= j′ the randomness used by an honest

P1 in the real execution to create values {X0
i,j,k,X

1
i,j,k}i,k and the randomness used

to create {X0
i,j′,k,X

1
i,j′,k}i,k are independent of each other. Clearly, this is also the
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case in the simulated execution. This allows us to split the analysis depending on

the value of j.

• For j ∈ Ek, the values {Xσi,k
i,j,k′}k′∈[t] are identically distributed in both exe-

cutions (i.e., uniformly random and independent subject to
⊕

k′∈[t] X
σi,k
i,j,k′ =

X
σi,k
i,j ). Furthermore, the view of A is independent of the values X

1−σi,k
i,j since

these are information-theoretically hidden from the real execution (as is the

case in the ideal execution). This is because in the kth query to Fccot, A does

not receive one of the additive shares of X
1−σi,k
i,j , namely, the share X

1−σi,k
i,j,k .

Next, it is easy to verify that the check values χkj and their additive shares χ̃kj ,

{χ0,k
i,j,k′ , χ

1,k
i,j,k′}k′∈[t]\{k},i∈[n] are also identically distributed in both executions.

Finally, we claim that the view of A in the real execution is independent of

the values {χk′j }k′ 6=k. This is because in the kth query to Fccot, A did not

receive, for every k′ 6= k, at least one of the additive shares of χk
′
j , namely, the

share χ0,k′

1,j,k.

• For j ∈ C, the values {X0
i,j,k′ , X

1
i,j,k′}i∈[n],k′∈[t] are identically distributed in both

executions (i.e., uniformly random and independent subject to
⊕

k′∈[t] X
0
i,j,k′ =

X0
i,j and

⊕
k′∈[t] X

1
i,j,k′ = X1

i,j). Furthermore, we claim that the view of A in

the real execution is independent of the values {χkj}k∈[t]. This is because in

the kth query to Fccot, A does not receive, for every k ∈ [t], exactly one of

the additive shares of χkj , namely, share χ̃kj .

Given the above, it follows that the view of A in the simulated execution is identi-

cally distributed to its view in the real execution.
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Now we need to consider the case where A inputs sets E ′1, . . . , E ′t that are not

pairwise non-intersecting. We define sets Ek = E ′k \ ∪k′ 6=kE ′k′ for each k ∈ [t]. Also,

define E0 = [νt] \ ∪k∈[t]E ′k, and C = [νt] \ ∪k∈[t]Ek. As in the case where E ′1, . . . , E ′k

were pairwise non-intersecting, we split the analysis depending on the value of j.

It is easy to verify that the analysis in the case where j ∈ Ek is identical to its

counterpart in the case where E ′1, . . . , E ′k were pairwise non-intersecting. Likewise

the analysis in the cases where j ∈ E0 is identical to the analysis in the j ∈ C cases

where E ′1, . . . , E ′k were pairwise non-intersecting.

Thus, we only need to analyze the case where j ∈ E0 \ C. Such a j would

exist only when there exist distinct k, k′ ∈ [t] such that j ∈ E ′k and j ∈ E ′k′ . In this

case, note that by construction, the simulated values for {X0
i,j,k′′ , X

1
i,j,k′′}i∈[n],k′′∈[t] are

consistent with the actual input values {X0
i,j, X

1
i,j}i∈[n], and thus the shares obtained

by A corresponding to the X0
i,j, X

1
i,j values are identically distributed.

It remains to show that as in the simulated execution, the view of A in the

real execution is independent of the values {χk′′j }k′′∈[t]. Indeed, we claim that when

j ∈ E ′k, the value χkj is independent of its view if there exists k′ 6= k such that j ∈ E ′k′ .

This is because for j ∈ E ′k, the value χkj can be reconstructed only if all its additive

shares χ̃kj , {χ0,k
i,j,k′′ , χ

1,k
i,j,k′′}k′′∈[t]\{k},i∈[n] are obtained. However, if j ∈ E ′k′ , then in the

k′th query to Fccot, A loses its chance to receive at least one of the additive shares

of χkj , namely, the share χ0,k
1,j,k′ . Thus, the claim holds.

Cost of realizing Fmcot. As described, the cost of realizing Fmcot is t times the

cost of realizing Fccot for n vectors of pairs of length νt with each element of size
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(t+1)κ. Thus if we use Lindell’s Fccot construction [10] in order to implement Fmcot,

then for each of the t executions we need to use 9nνt fixed-base exponentiations and

1.5nνt regular exponentiations, and need to send a total of 5nνt group elements.

Alternative approaches to realizing Fmcot. As discussed before, Fmcot can

be realized using general secure computation, but this results in extremely poor

efficiency. In particular, the circuit computing Fmcot is of size at least κρnt, and

realization by state-of-the-art secure protocols would further include a multiplicative

κρ overhead. We leave a more efficient realization of Fmcot from either Fccot or

directly from some standard assumption as an open question.

In settings where the νt2/ρ multiplicative overhead of realizing Fmcot through

our protocol is expensive relative to the size of the circuit, one may wonder whether

it is possible to use an XOR-tree approach [8] to obtain better efficiency. Unfortu-

nately, we do not know if this approach can be made to work with standard garbled

circuits in the parallel setting. Specifically, it is no longer clear how P1, without any

knowledge of the evaluation sets, can batch P2’s input labels together in a way that

lets P2 learn different sets of input labels corresponding to different evaluation cir-

cuits and yet within each evaluation bucket guarantee that P2 can learn only input

labels corresponding to the same set of inputs.

However, if we assume that the garbling scheme is adaptively secure (cf. Sec-

tion 3.2), then this lets us perform the oblivious transfer step after P1 commits to

its garbled circuits. Now P2 can reveal its evaluation buckets one-by-one, thereby

letting P1 successfully batch P2’s input labels in the right manner. (See our protocol

48



for sequential executions in Section 3.4 for a full description of how to do this.)

Full Protocol

We use the Fmcot construction as follows. The input vectors { ~Xi}i∈[`] contain the

labels associated with the ith input wire for P2 in each of the νt circuits. The vector

~σk corresponds to the inputs used by P2 in the kth execution. An honest P2 chooses

sets E1, . . . , Et such that they are disjoint and each set is of size exactly ν/2. These

sets correspond to “evaluation buckets,” namely the set of circuits that will be used

for a given iteration.

The main observation is that in the kth execution P2 obtains check values χkj

from Fmcot only for j ∈ Ek. Therefore, once the parties complete the interaction

with Fmcot and P1 sends all the garbled circuits, we let P1 determine the evaluation

circuits based on whether P2 sends the corresponding check values.

Applying the cheating-punishment technique. Inspired by Lindell’s proto-

col [10], we use the knowledge of two different garbled values for a single output

wire as a “proof” that P2 received inconsistent outputs in a given execution. P2 can

use this proof to obtain P1’s input in a cheating-punishment phase. This cheating-

punishment phase is implemented via a secure computation protocol, and thus it

is important that the second phase functionality has a small circuit. We employ

several optimizations proposed by Lindell [10] to keep the size of this circuit small.

One important difference in our setting is that, unlike in Lindell’s protocol [10],

we cannot have, for a given output wire w, the same output-wire labels Z0
w, Z

1
w across

all garbled circuits. This is because in our setting garbled circuits are assigned
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to different evaluation buckets, and the circuits in each bucket can be evaluated

with different input values, and thus can produce different outputs. Thus even in

an honest execution P2 could potentially learn, say, output-wire label Z0
w in one

execution and output-wire label Z1
w in another.

We address this by simply removing the requirement that the set of output-

wire labels across different garbled circuits are the same. Thus, the circuit for the

cheating-punishment phase for the kth execution must now take as input from P1

all of the output-wire labels in all of the evaluation circuits in the kth bucket, and

from P2 a pair of output-wire labels that serve as proof of cheating. Somewhat

surprisingly, we show that the size of the circuit (measured as the number of non-

XOR gates) for the cheating-punishment phase is essentially the same as the circuit

in Lindell’s protocol [10].

Other details. We now describe other important details of our protocol.

• Input consistency across multiple executions. It is important to guarantee

that P1 provides consistent inputs across all circuits in the kth execution.

Fortunately, existing mechanisms [10, 9] for ensuring input consistency in the

single execution setting can be readily extended to the multiple execution

setting as well.

• Encoded translation tables for garbled circuits. As in Lindell’s protocol [10],

we modify the output translation tables used in the garbled circuits. Specifi-

cally, for labels Z0
w, Z

1
w on output wire w, we create an encoded output table

[H(Z0
w), H(Z1

w)], where H is some collision-resistant hash function. We re-
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quire that the output labels (or more precisely, the output of H applied to the

output labels) corresponding to 0 and 1 are distinct. This encoding gives us

the following two properties: (1) P2 after evaluating a garbled circuit can use

the encoded translation tables to determine whether the output is 0 or 1, and

(2) the encoded translation table does not reveal the other output label (since

this is equivalent to inverting the hash function) to P2.

• Optimizing the cheating-punishment circuit. We can apply similar techniques

as shown by Lindell [10] to optimize the size of the cheating-punishment circuit

to contain only n non-XOR gates; see below.

Formal description. We proceed to the formal description of our protocol.

Inputs: P1 has input (x1, . . . , xt), where xk ∈ {0, 1}n, and P2 has input (y1, . . . , yt),
where yk ∈ {0, 1}n.

Auxiliary Inputs: Statistical security parameter ρ, computational security pa-
rameter κ, the description of a circuit C where C(x, y) = f(x, y) for some f :

{0, 1}n×{0, 1}n → {0, 1}n′ , the number of evaluations t of the function f , and (G, q, g)
where G is a cyclic group with generator g and prime order q, where q is of length
κ. Let Ext : G → {0, 1}κ be a function mapping group elements to bitstrings and
let H : {0, 1}κ → {0, 1}κ be a preimage-resistant hash function. Let ν, which we
call the replication factor, be defined as being the smallest u ∈ N such that for all
m ∈ {u/2, . . . , ut/2} it holds that t ·

(
ut−m
ut/2

)(
m
u/2

)
/
(
ut
ut/2

)(ut/2
u/2

)
≤ 2−ρ. Finally, we also

assume access to ideal functionalities Fmcot and Fzk.

Protocol:

1. Input/output labels and circuit preparation:

• P1 chooses random values a0
1, a

1
1, . . . , a

0
n, a

1
n ∈R Zq, r1, . . . , rνt ∈R Zq and

(Z0
1,1, Z

1
1,1, . . . , Z

0
n′,1, Z

1
n′,1), . . . , (Z0

1,νt, Z
1
1,νt, . . . , Z

0
n′,νt, Z

1
n′,νt) ∈R {0, 1}κ.

• Let Xb
i,j denote the label associated with bit b for P1’s ith input bit in the

jth garbled circuit. P1 sets Xb
i,j as follows:

X0
i,j := Ext(ga

0
i ·rj ) and X1

i,j := Ext(ga
1
i ·rj ).
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• Let Zbi,j denote the label associated with bit b on the ith output wire in
the jth garbled circuit.

• P1 constructs νt garblings, Ĉ1, . . . , Ĉνt, of circuit C, using random labels
except for its own input-wire labels and the output-wire labels, where the
labels are set as above.

2. Oblivious transfer: P1 and P2 run Fmcot as follows:

• For i ∈ [n], let ~Yi denote a vector containing the νt pairs of labels associated
with P2’s ith input bit in all the garbled circuits. P1 inputs ~Y1, . . . , ~Yn, as
well as random values χ1

1, . . . , χ
1
νt, . . . , χ

t
1, . . . , χ

t
νt.

• P2 inputs random sets E1, . . . , Et which are pairwise non-intersecting sub-
sets of [νt] such that for all k ∈ [t] it holds that |Ek| = ν/2. Let
C := [νt]\∪k∈[t]Ek. P2 also inputs bits (σ1,1, . . . , σn,1), . . . , (σ1,t, . . . , σn,t) ∈
{0, 1}n, where σi,k := yk[i] for i ∈ [n] and k ∈ [t].

• For j ∈ C, P2 receives both input keys associated with its input wires
in garbled circuit Ĉj , and for k ∈ [t] and j ∈ Ek, P2 receives the keys

associated with its input yk on its input wires in garbled circuit Ĉj . Also,
for k ∈ [t] and j ∈ Ek, P2 receives χkj .

3. Send circuits and commitments: P1 sends P2 the garbled circuits
Ĉ1, . . . , Ĉνt, the following commitment to the labels associated with P1’s input
wires:

{(i, 0, ga0i ), (i, 1, ga1i )}i∈[n] and {(j, grj )}j∈[νt]

and the encoded output translation tables:

{[(H(Z0
1,j), H(Z1

1,j)), . . . , (H(Z0
n′,j), H(Z1

n′,j))]}j∈[νt].

If H(Z0
i,j) = H(Z1

i,j) for any i ∈ [n′], j ∈ [νt], then P2 aborts.

4. Cut-and-choose challenge: P2 sends P1 the sets E1, . . . , Et along with values
{χ1

j}j∈E1 , . . . , {χtj}j∈Et .
If either (1) the check values are not valid (2) the sets E1, . . . , Et are not disjoint,
or (4) there exists some k ∈ [t] such that |Ek| 6= ν/2, then P1 outputs ⊥ and
aborts. Garbled circuits Ĉj for j ∈ C are called check circuits and garbled

circuits Ĉj for j ∈ Ek are called evaluation circuits in the kth bucket.

5. Send labels: For k ∈ [t], P1 sends the labels associated with input xk for the
evaluation circuits in the kth bucket. That is, for j ∈ Ek and i ∈ [n], P1 sends

the value X ′i,j := ga
xk[i]

i ·rj and P2 sets Xi,j := Ext(X ′i,j).

6. Circuit evaluation: For k ∈ [t], P2 does the following:

For j ∈ Ek, i ∈ [n′], P2 learns Z ′i,j by evaluating Ĉj . We call an output-wire label
Z ′i,j valid if it exists in the encoded output translation table sent in Step 3 (note
that if Z ′i,j is valid then P2 can map it to its associated bit using the translation
table). If P2 receives exactly one bit per output wire, then let zk denote the
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output. In this case, P2 chooses random values Z0
k , Z

1
k ∈R {0, 1}κ. If P2 receives

two valid outputs on any output wire then it sets Z0
k := Z ′i,j1 and Z1

k := Z ′i,j2 ,
where j1, j2 ∈ Ek denote the conflicting circuit indices. If P2 receives no valid
output values on any output wire, then P2 aborts.

7. Cheating detection: For k ∈ [t], P1 and P2 do the following:

P1 defines a circuit Csc with the values {Z0
1,j , Z

1
1,j , . . . , Z

0
n′,j , Z

1
n′,j}j∈Ek hard-

coded. The circuit computes the following function:

• P1 inputs xk ∈ {0, 1}n and has no output.

• P2 inputs a pair of values Z0
k , Z

1
k .

• If there exist values i ∈ [n′] and j1, j2 ∈ Ek such that Z0
k = Z0

i,j1
and

Z1
k = Z1

i,j2
, then P2’s output is xk; otherwise it receives no output.

P1 and P2 run the protocol of Lindell and Pinkas [9] on Csc as follows:

• P1 inputs xk; P2 inputs Z0
k and Z1

k as computed in Step 6.

• The garbled circuits constructed by P1 use the same a0
i , a

1
i values as were

chosen in Step 1, and the parties use 3ρ copies of the circuit for the cut-
and-choose.

If this computation results in an abort, then both parties halt.

8. Check circuits for computing Fpar:

• For j ∈ C, P1 sends rj to P2, and P2 checks that these values are consistent
with the pairs {(j, grj )}j∈C received in Step 3. If not, P2 aborts.

• For j ∈ C, P2 uses the ga
0
i , ga

1
i values received in Step 3 and the rj val-

ues received above to compute the keys for P1’s input wires as X0
i,j :=

Ext(ga
0
i ·rj ), X1

i,j := Ext(ga
1
i ·rj ). In addition, P2 uses the keys obtained from

Fmcot in Step 2 for its own input wires. P2 verifies that Ĉj is a correct
garbling of C. If there exists a circuit for which this does not hold, then
P2 aborts.

9. Verify consistency of P1’s input: For k ∈ [t], let Êk be the set of evaluation
circuits used in the 2PC computation in Step 7, let r̂j,k be the analogous value

of rj used in that computation, and let X̂i,j be the analogous value of X ′i,j used
in that computation. For k ∈ [t], P1 and P2 do the following:

• For i ∈ [n], P1 uses Fzk to proves that there exists some σi,k such that for

j ∈ Ek and j′ ∈ Êk, it holds that X ′i,j = ga
σi,k
i ·rj and X̂i,j = ga

σi,k
i ·r̂j′,k .

If any of the t proofs fail, then P2 aborts.
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10. Output evaluation: For k ∈ [t], P2 does the following:

If P2 received no inconsistent outputs in Step 6, then it uses the encoded trans-
lation tables to decode the outputs it received, and sets zk to that value. If P2

received inconsistent output, then let xk be the output that P2 received from
the circuit in Step 7. Let zk := f(xk, yk) be the output in this case.

P2 outputs (z1, . . . , zt).

Theorem 3.2. Let ρ (resp., κ) be the statistical (resp., computational) security

parameter. If the decisional Diffie-Hellman assumption holds in (G, g, q), H is

a collision-resistant function, and the underlying circuit garbling procedure is pri-

vate, then for all t ∈ poly(κ), the protocol described above securely computes Fpar

in the presence of a malicious adversary with error at most 2−ρ + negl(κ) in the

(Fmcot,Fzk)-hybrid model.

Proof. We prove security in a hybrid model where we have access to Fmcot and the

zero-knowledge proof-of-knowledge functionality Fzk in Step 9. We split the analysis

into two cases depending on whether P1 or P2 is corrupted.

P1 is corrupted. The intuition is that P1 can cheat only if it can construct incor-

rect circuits. To do this, P1 needs to construct a small enough number of incorrect

circuits such that it will not get caught in the first cut-and-choose stage; however, it

need also construct a large enough number such that one of the buckets contains all

incorrect circuits. This is due to the fact that P2 aborts if it finds an invalid check

circuit, and learns P1’s input (and thus the correct output) if a given bucket contains

at least one correctly constructed circuit. This implies that the number of corrupt

circuits m constructed by a malicious P1 must be such that ν/2 ≤ m ≤ νt/2. We
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stress that m is fixed once P1 sends the circuits in Step 3; that is, P1 cannot further

“corrupt” circuits after this step. Now observe that the probability with which m

bad circuits escape detection in the first stage cut-and-choose is
(
νt−m
νt/2

)
/
(
νt
νt/2

)
. Con-

ditioned on this event happening, the probability that a particular bucket contains

all bad circuits is
(
m
ρ/2

)
/
(
ρt/2
ρ/2

)
. Applying the union bound, we conclude that the

probability that P1 succeeds in cheating is bounded by

t

(
ρt−m
ρt/2

)(
m

ρ/2

)/(
ρt

ρt/2

)(
ρt/2

ρ/2

)
.

Since it is given that the maximum value of this expression is less than 2−ρ for

parameter ν chosen in the protocol, we have that the probability of cheating is at

most 2−ρ. We now proceed to the formal proof.

Let A be an adversary controlling P1 with input (x1, . . . , xt). Since A receives

no output, we need only show that the difference in probability that P2 aborts in

the real world versus the ideal world is negligible. We construct a simulator S with

access to functionality Fpar as follows:

1. S acts as an honest P2 would for the entire protocol execution, using input

(0n, . . . , 0n) throughout.

2. For k ∈ [t], let xk = σ1,k, . . . , σn,k be P1’s witness to the zero-knowledge proof-

of-knowledge in Step 9. S extracts these values through the ideal functionality

interface.

3. If P2 would abort at any point in the protocol, then S sends ⊥ to Fpar and
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halts, outputting whateverA outputs. Otherwise, it sends (x1, . . . , xt) to Fpar.

4. S halts and outputs whatever A outputs.

We now claim that the distributions from A interacting with P2 in the hybrid world

versus A interacting with S in the ideal world are indistinguishable. We show this

by a series of hybrids.

H1. The hybrid-world execution.

H2. We extract A’s input (x1, . . . , xt) from its query to Fzk in Step 9. Instead

of outputting P2’s output from the execution of the protocol, we instead pass

(x1, . . . , xt) to Fpar and output whatever Fpar outputs.

These two hybrids differ if the output of P2 differs from the output computed

by Fpar. Note that whether a garbled circuit is “correct” or not is fixed after

Step 2. That is, P1 cannot change the correctness of a garbled circuit after

Step 3. We now argue that the only case in which these two hybrids differ is

if one of the evaluation buckets contains all maliciously constructed circuits.

Suppose a bucket, say the kth, has at least one correct garbled circuit. In

this case, P2 evaluated this garbled circuit to f(xk, yk) as intended. If there

exists another incorrect garbled circuit within this bucket producing a differ-

ent output, then P2 receives two different output-wire labels and can use the

cheating recovery to learn xk and thus compute f(xk, yk) itself. (Note that by

the security of the second stage 2PC protocol in Step 7, P2 either learns xk

or aborts.) Alternatively, the incorrect garbled circuit can produce garbage
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output-wire labels, in which case P2 ignores this circuit. Thus, for P2 to not

learn f(xk, yk), it must be the case that all garbled circuits in a bucket are

incorrect. As was shown above, this happens with probability ≤ 2−ρ, and thus

we conclude that these hybrids are statistically indistinguishable.

H3. P2 uses input (0n, . . . , 0n) throughout.

As P2 only uses its input as input to the Fmcot functionality in Step 2, we

conclude that these two hybrids are perfectly indistinguishable.

As H3 is the same as the simulator S given above, we conclude that the protocol is

statistically indistinguishable.

P2 is corrupted. The intuition for security in the case that P2 is corrupt is standard:

for the evaluation circuits, P2 learns nothing, and in each bucket, P2 learns the

correct output. We utilize a simulator for the garbled circuit generation to “fix” the

output of the evaluation circuits to be the expected output for the given bucket.

Let A be an adversary controlling P2 with input (y1, . . . , yt). We assume the

existence of a simulator Sgc which constructs garbled circuits with fixed outputs

which are indistinguishable from correctly garbled circuits. Such a simulator is

known to exist [28, 8]. Also, we use the simulator for the maliciously secure 2PC

protocol of Lindell and Pinkas [9], which we denote as SLP11.

We construct a simulator S with access to functionality Fpar. S runs the

protocol as an honest P1 would, except as follows:

1. S extracts A’s input (y1, . . . , yt) and evaluation sets E1, . . . , Et from its call to

Fmcot. S sets C := [νt] \ ∪kEk.
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2. S sends (y1, . . . , yt) to Fpar, receiving back either (z1, . . . , zt) or ⊥.

3. For every j ∈ C, S constructs a valid garbled circuit. For k ∈ [t] and j ∈ Ek,

S uses Sgc to construct a garbled circuit that outputs the fixed string zk

irrespective of the input.

4. S uses SLP11 to simulate the 2PC protocol in Step 7.

5. Upon protocol termination, S outputs whatever A outputs and halts.

We now claim that the distributions from A interacting with P1 in the hybrid world

versus A interacting with S in the ideal world are indistinguishable. To do so, we

again construct a series of hybrids.

H1. The hybrid-world execution.

H2. We extract A’s input (y1, . . . , yt) and the sets E1, . . . , Et from the call to Fmcot

in Step 2. Let (z1, . . . , zt) be the output of Fpar, and let C = [νt] \ ∪kEk. For

j ∈ C, we construct correctly garbled circuits, and for j ∈ Ek for all k, we use

Sgc to construct a circuit which always outputs zk.

We claim that these two hybrids are computationally indistinguishable. Note

that A can distinguish if either it can open one of the simulated garbled

circuits, or it can evaluate a simulated garbled circuit in bucket k on something

other than yk. The only way for one of the above situations to occur is if (1)

A can guess either the check values or the input-wire labels for the garbled

circuits in Step 4, or (2) A can distinguish the use of Sgc. In the former case,
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as these values are random, this happens with probability ≤ 2−κ, and in the

latter case, by the security of Sgc this happens with negligible probability.

H3. We replace the real 2PC execution in Step 7 with a simulated execution using

SLP11.

Due to the security of SLP11 [9], we conclude that these two hybrids are indis-

tinguishable.

H4. We use (0n, . . . , 0n) as P1’s input throughout.

Note that this affects Step 5, where A receives P1’s inputs ga
xk[i]

i ·rj ; however,

by the decisional Diffie-Hellman assumption, A cannot extract a
xk[i]
i from this

expression, and thus cannot deduce that P1’s input is as defined above. Thus,

the two hybrids are computationally indistinguishable.

As H4 is the same as the simulator S given above, we conclude that the protocol is

computationally indistinguishable.

Optimizing the Circuit in Step 7

We use an optimization inspired by Lindell [10] to construct an alternate circuit

that minimizes the number of non-XOR gates. Specifically, Lindell [10] shows how

to efficiently construct a garbled circuit that checks if a given κ-bit string is contained

in a set S of size |S|. The garbled circuit has the property that it only requires n

non-XOR gates, and thus can be essentially computed for free using the free-XOR

technique [29] (cf. Chapter 2). This optimization relies on the fact that to take a
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κ-wise AND of two κ-bit strings, it suffices to encrypt the output 1-label with the

1-labels on the input wires. Therefore, to compare two κ-bit strings, we first XOR

the two strings bit-by-bit, take the NOT of these bits, and finally output the κ-wise

AND of the resulting bits using the trick described above. Next, to check that a

κ-bit string equals any of the strings in S, we need to evaluate the |S|-wise OR of

each of these comparisons. Instead of using |S| − 1 OR gates, we can set the 1-label

on all of the output wires from the κ-wise ANDs above to be the 1-label on the

output wire of the OR. Since XOR and NOT gates can be evaluated for free [29],

it follows that the above circuit can essentially be securely evaluated for free.

We now adapt these optimizations to our setting, while still minimizing the

number of non-XOR gates. For string b and set S, we use the notation b ∈? S to

denote a boolean expression that evaluates to 1 if and only if b ∈ S. In our protocol

we require a circuit that takes, in addition to an n-bit string x (representing P1’s

actual input), a pair of κ-bit strings, say b0, b1, and two sets S0, S1 of κ-bit strings,

each set of size νn′/2, and outputs x if and only if ((b0 ∈? S0)∧ (b1 ∈? S1))∨ ((b0 ∈?

S1)∧ (b1 ∈? S0)) = 1, an additional cost of 3 non-XOR gates. Alternatively, we may

instead evaluate the expression b0 ⊕ b1 ∈? S, where S = {b⊕ b′ : b ∈ S0, b
′ ∈ S1}.

(Note that a cheating P2 can guess a value in S only with negligible probability.)

This has the additional advantage of reducing P2’s input length from 2κ to κ (and

the resulting gains from performing a lesser number of cut-and-choose oblivious

transfers). In summary, it is possible to design the circuit in Step 7 using exactly

n non-XOR gates (i.e., n AND gates to select P1’s input depending on whether the

relevant conditions are satisfied). It follows from the protocol description that the
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total number of garbled gates sent in Step 7 is 3nρ in each of the t executions.

3.4 The Sequential Execution Setting

We now consider the setting where the parties securely evaluate the same function f

multiple times sequentially. Again, we let t denote the number of times the parties

wish to evaluate f and let P1’s and P2’s input in the kth execution be denoted by xk

and yk, respectively. We let Fseq denote the functionality that computes f a total

of t times sequentially.

The main difference between this setting and the parallel setting discussed in

Section 3.3 is that in the sequential setting the parties may not know their inputs

to all executions at the start of the protocol. In particular, inputs may depend on

outputs from previous executions. Thus, the parallel execution protocol does not

immediately carry over to the sequential setting. To see why, observe for instance

that Fmcot requires P2 to submit all its inputs at once. This is not possible since in

the sequential setting we cannot assume that P2 has all its inputs at the beginning

of the protocol.

Instead, we take a different approach. Namely, we use the “XOR-tree” [8] to

protect against the so-called “selective failure attack” [39, 40, 32]. (In the parallel

execution setting, this attack was implicitly avoided due to the use of Fmcot.) In

this approach, the circuit C to be evaluated is first modified into an equivalent

circuit CXT, where each of P2’s input bits is now secret-shared into ρ shares, thus

expanding P2’s input length from n to ρn (although this expansion factor can be

61



reduced using known techniques [8, 47]). Then, P1 sends commitments to the input

labels corresponding to P2’s input wires in CXT. The corresponding decommitments

are revealed to P2 via a standard one-out-of-two oblivious transfer4. In order to

prevent P2 from using different inputs across evaluation circuits within the same

bucket, P1 batches together the decommitments corresponding to a particular input

wire across all evaluation circuits in a given bucket.

Note that herein lies an opportunity for a malicious P1 to force P2 to abort

the protocol depending on its input. (This can be done for instance by sending

incorrect decommitments for say only the 0-label on a particular wire.) However,

the modified circuit CXT is such that the success of any such “selective failure attack”

is statistically independent of P2’s actual input value. Therefore, if an honest P2

receives an invalid decommitment and is unable to decrypt the evaluation circuit,

then it simply aborts knowing that its privacy is not compromised.

We stress that the oblivious transfer step happens after P1 sends all the garbled

circuits to P2. This is because P2’s inputs to all t executions are not available

at the beginning of the protocol. Further, P2’s inputs may depend on previous

outputs, which can be obtained only by decrypting evaluation circuits, i.e., after the

evaluation bucket for the current execution is fully determined. Note that our cut-

and-choose technique guarantees that there is at least one good evaluation circuit

in every bucket under the assumption that P1 has already committed to all its

(good and bad) garbled circuits before the check sets and the evaluation sets are

4We note that since we use one-out-of-two oblivious transfer (as opposed to Fmcot), we can
leverage oblivious transfer extension techniques [7, 25, 33] to obtain better efficiency.
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determined.

Unfortunately, the above ordering of the oblivious transfer step and the garbled

circuit sending step now allows a malicious P2 to choose its input as a function of

the garbled circuits it receives, which is not simulatable. To counter this, we need

to use adaptively secure garbling schemes [37] (cf. Section 3.2) instead of standard

garbled circuits; adaptively secure garbling schemes can be constructed efficiently

in the programmable random oracle model [37]. Note that we do not need the use

of adaptively secure garbling schemes for implementing the cheating-punishment

phase. Indeed, all the inputs for that subprotocol are known before the phase

begins, and therefore, the oblivious transfer step can be carried out before P1 sends

its garbled circuits for that phase.

Formal description. We now proceed to the formal description of the protocol.

Auxiliary Input: Statistical security parameter ρ, computational security parameter
κ, the description of a circuit C where C(x, y) = f(x, y) for some f : {0, 1}n×{0, 1}n →
{0, 1}n′ , the number of evaluations t of the function f , and (G, q, g) where G is a cyclic
group with generator g and prime order q, where q is of length κ. Let Ext : G→ {0, 1}κ
be a function mapping group elements to bitstrings and let H : {0, 1}κ → {0, 1}κ be
a preimage-resistant hash function. Let ν, which we call the replication factor, be
defined as being the smallest u ∈ N such that for all m ∈ {u/2, . . . , ut/2} it holds that

t·
(
ut−m
ut/2

)(
m
u/2

)
/
(
ut
ut/2

)(ut/2
u/2

)
≤ 2−ρ. Finally, we also assume access to ideal functionalities

Fct, Fot, and Fzk.

Additional Notation: Let CXT denote the circuit C enhanced with the XOR-tree,
and let n, nXT, and n′ denote the length of P1’s input, P2’s (XOR-tree expanded)
input, and the output, respectively, of CXT(x, y).

Offline Phase:

1. Input/output labels and circuit preparation:

• P1 chooses random values a0
1, a

1
1, . . . , a

0
n, a

1
n, r1, . . . , rνt ∈R Zq and

(Z0
1,1, Z

1
1,1, . . . , Z

0
n′,1, Z

1
n′,1), . . . , (Z0

1,νt, Z
1
1,νt, . . . , Z

0
n′,νt, Z

1
n′,νt) ∈R {0, 1}κ.
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• Let Xb
i,j denote the label associated with bit b for P1’s ith input bit in the

jth circuit. P1 sets Xb
i,j as follows:

X0
i,j := Ext(ga

0
i ·rj ) and X1

i,j := Ext(ga
1
i ·rj ).

• Let Y b
i,j denote the label associated with bit b for P2’s ith input bit in the

jth circuit. P1 picks the labels for P2’s input wires uniformly at random,
and computes (standard) commitments

e0
i,j ← com(Y 0

i,j) and e1
i,j ← com(Y 1

i,j).

Let d0
i,j and d1

i,j denote the corresponding decommitments.

• Let Zbi,j denote the label associated with bit b on the ith output bit in the
jth circuit.

• P1 constructs νt independent adaptively secure garblings of circuit CXT,
denoted Ĉ1, . . . , Ĉνt, using random labels except the input wires, where
the labels are set as above.

2. Send circuits and commitments: P1 sends P2 the garbled circuits, the com-
mitments to the garbled values associated with P1’s input wires:

{(i, 0, ga0i ), (i, 1, ga1i )}i∈[n] and {(j, grj )}j∈[νt],

the encoded output translation tables:

{[(H(Z0
1,j), H(Z1

1,j)), . . . , (H(Z0
n′,j), H(Z1

n′,j))]}j∈[νt],

and the commitments to the garbled values associated with P2’s input wires:

{e0
i,j , e

1
i,j}i∈[nXT],j∈[νt].

If H(Z0
i,j) = H(Z1

i,j) for any i ∈ [n′], j ∈ [νt], then P2 aborts.

3. Cut-and-choose challenge: P1 and P2 run Fct to compute a set C ⊂ [νt]
such that |C| = νt/2. Garbled circuits Ĉj for j ∈ C are called check circuits.

4. Check circuits for computing Fseq:

• Send labels: For every check circuit Ĉj , P1 sends the value rj to P2, and
P2 checks that these are consistent with the pairs {(j, grj )}j∈C received in
Step 2. If not, P2 aborts.

• Send decommitments: For every check circuit Ĉj , P1 sends the de-
commitments {d0

i,j , d
1
i,j}i∈[nXT] for commitments {e0

i,j , e
1
i,j}i∈[nXT], and P2

checks that these are valid decommitments, and computes the correspond-
ing labels {Y 0

i,j , Y
1
i,j}i∈[nXT]. If not, P2 aborts.
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• Check correctness: For j ∈ C, P2 uses the ga
0
i , ga

1
i values received in

Step 2 and the rj values received above to compute the labels X0
i,j :=

Ext(ga
0
i ·rj ) and X1

i,j := Ext(ga
1
i ·rj ) associated with P1’s input.

Given labels for all input wires in Ĉj , P2 verifies that the circuit is a
garbling of CXT, using the encoded translation tables for the output values.
If there exists a circuit for which this does not hold, then P2 aborts.

Online Phase: For k ∈ [t], execute the following sequentially:

5. Receive inputs: P1 and P2 obtain inputs xk and yk, respectively. P2 trans-
forms its input yk for circuit C into an equivalent “secret-shared” input ỹk for
circuit CXT.

6. Second-stage cut-and-choose: P2 picks Ek ⊆ [νt] \ C of size ν/2 such that
E1, . . . , Ek are disjoint. P2 sends Ek to P1, who aborts the protocol if |Ek| 6= ν/2
or Ek intersects with a previously sent subset. We call Ek the kth evaluation
bucket.

7. Oblivious transfer: For i ∈ [nXT], letD0
i,k := {d0

i,j}j∈Ek andD1
i,k := {d1

i,j}j∈Ek .
P1 and P2 engage in nXT invocations of Fot where in the ith invocation:

• Acting as the sender, P1 inputs (D0
i,k, D

1
i,k).

• Acting as the receiver, P2 inputs ỹk[i], and receives D
ỹk[i]
i,k .

If there exists j ∈ Ek and i ∈ [nXT] such that d
ỹk[i]
i,j is not a valid decommitment

to e
ỹk[i]
i,j , then P2 aborts and outputs ⊥. Otherwise, P2 computes the labels

{Y ỹk[i]
i,j }i∈[nXT],j∈Ek corresponding to the decommitments it received. Let Yi,j :=

Y
ỹk[i]
i,j

8. Send labels: P1 sends the input labels associated with its input xk for the
evaluation circuits in the kth bucket. That is, for j ∈ Ek and i ∈ [n], P1 sends

X ′i,j := ga
xk[i]

i ·rj and P2 sets Xi,j := Ext(X ′i,j).

9. Circuit evaluation: For j ∈ Ek, i ∈ [n′], P2 learns Z ′i,j by evaluating Ĉj . We
call an output-wire label Z ′i,j valid if it exists in the encoded output translation
table sent in Step 2. If P2 receives exactly one valid output-wire label per
output wire, then let zk denote the output. In this case, P2 chooses random
values Z0

k , Z
1
k ∈R {0, 1}κ. If P2 receives two valid outputs on any output wire

then it sets Z0
k := Z ′i,j1 and Z1

k := Z ′i,j2 , where j1, j2 ∈ Ek denote the conflicting
circuit indices. If P2 receives no valid output values on any output wire, then
P2 aborts.

10. Cheating detection: P1 defines a circuit Csc with the values
{Z0

1,j , Z
1
1,j , . . . , Z

0
n′,j , Z

1
n′,j}j∈Ek hardcoded. The circuit computes the following

function:
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• P1 inputs xk ∈ {0, 1}n and has no output.

• P2 inputs a pair of values Z0
k , Z

1
k .

• If there exist values i ∈ [n′] and j1, j2 ∈ Ek such that Z0
k = Z0

i,j1
and

Z1
k = Z1

i,j2
, then P2’s output is xk; otherwise it receives no output.

P1 and P2 run the protocol of Lindell and Pinkas [9] on Csc as follows:

• P1 inputs xk; P2 inputs Z0
k and Z1

k as computed in Step 9.

• The garbled circuits constructed by P1 use the same a0
i , a

1
i values as were

chosen in Step 1, and the parties use 3ρ copies of the circuit for the cut-
and-choose.

If this computation results in an abort, then both parties halt.

11. Verify consistency of P1’s input: Let Êk be the set of evaluation circuits
used in the 2PC computation in Step 10, let r̂j,k be the analogous value of rj
used in that computation, and let X̂i,j be the analogous value of X ′i,j used in
that computation. P1 and P2 do the following:

• For i ∈ [n′], P1 uses Fzk to proves that there exists some σi,k such that for

j ∈ Ek and j′ ∈ Êk, it holds that X ′i,j = ga
σi,k
i ·rj and X̂i,j = ga

σi,k
i ·r̂j′,k .

If any of the proofs fail, then P2 aborts.

12. Output evaluation: If P2 received no inconsistent outputs in Step 10, then it
outputs zk. If P2 did receive inconsistent output, then let xk be the output that
P2 received from the 2PC computation in Step 10; P2 outputs zk := f(xk, yk).

Theorem 3.3. Let ρ (resp., κ) be the statistical (resp., computational) security

parameter. If the decisional Diffie-Hellman assumption holds in (G, g, q), H is

a preimage-resistant hash function, and the circuit is garbled using an adaptively

secure garbling scheme, then for all t ∈ poly(κ), the protocol described above se-

curely computes Fseq in the presence of a malicious adversary with error at most

2−ρ + negl(κ) in the (Fct,Fot,Fzk)-hybrid model.

Proof. The proof is very similar to the parallel case. The two major changes are the

use of the XOR-tree to avoid the selective failure attack (in place of Fmcot), and the
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use of adaptively secure garbling.

Malicious P1. The intuition here is the same as for the parallel execution setting,

and thus we jump straight to the simulator. Let A be an adversary controlling P1.

We construct a simulator S as follows:

1. S acts as an honest P2 would for the entire offline phase of the protocol.

2. S acts as an honest P2 would for each of the t executions of the online phase,

using yk := 0` as its input for each iteration, except that S extracts A’s input

xk from its query to Fzk in Step 11 and sends it to Fseq.

3. S halts and outputs whatever A outputs.

We now claim that the probability that A aborts when interacting with P2 is neg-

ligibly different from the probability that A aborts when interacting with S. We

show this by a series of hybrids.

H1. The hybrid-world execution.

H2. S extracts A’s input xk from its query to Fzk in Step 11 and sends it to Fseq.

These two hybrids differ if the output of Fseq differs from what P2 receives in

H1. The argument is very similar to the one made in the parallel case. Note

that after Step 2, whether a garbled circuit is “correct” or not is fixed. We now

need to argue that for P2’s outputs to differ in these two hybrids it must be

the case that all of the circuits in a given bucket are incorrect, which happens

with probability ≤ 2−ρ. This follows directly as is done in the parallel case,

and thus we do not repeat the details here.
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H3. S uses input yk := 0`.

These two hybrids differ if the probability of S aborting based on its real input

yk and its fake input 0` differs. This happens if A is able to “guess” the secret-

sharing of one of S’s input bits in the XOR-tree construction. However, by

the security of the XOR-tree, this happens with probability ≤ 2−ρ.

As H3 is the same as the simulator S given above, we conclude that the two worlds

are statistically indistinguishable.

Malicious P2. Let A be an adversary controlling P2. Again, the intuition here is

similar to the parallel execution setting. However, we cannot use the standard sim-

ulator for garbled circuits anymore, as we need adaptively secure garbled circuits.

Instead, we make use of an adaptively secure garbling simulator [37]. In particu-

lar, we need to use a simulator for the all2 definition of security, which provides

fine-grained adaptive security in terms of privacy, obliviousness, and authenticity.

Bellare, Hoang, and Rogaway [37] show the existence of such a simulator, which

we denote by Sgc = (Sgc1 ,Sgc2), in the random oracle model. This simulator has

two “stages”: Sgc1 constructs a simulated garbled circuit, and Sgc2 , given input y,

constructs simulated input labels for y. We also utilize the simulator for the ma-

liciously secure 2PC protocol of Lindell and Pinkas [9], which we denote by SLP11.

We construct our simulator S as follows:

1. S acts exactly as an honest P1 would for the entire offline phase of the protocol,

except for the following:

• Prior to Step 1, S chooses a random string r ∈ {0, 1}νt such that half of
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the bits in r are set to one. For i ∈ [νt], if r[i] = 1 then S constructs a cor-

rectly garbled circuit and otherwise S uses Sgc1 to construct a simulated

adaptively-secure garbled circuit. Now, for those circuits with r[i] = 1, S

uses the input-wire labels generated by Sgc1 , and otherwise S constructs

the input-wire labels as specified in the protocol.

• In Step 3, S sets the output of Fct to r.

2. In the online phase, S runs exactly as an honest P1 would except as follows:

• S uses xk := 0` as its input for each iteration.

• In Step 7, S receives P2’s input ỹk in its call to Fot, computes yk from ỹk,

and sends yk to Fseq, receiving back zk. It then runs Sgc2 on zk, receiving

back encoded values (D0
i,k, D

1
i,k), and sends D

ỹk[i]
i,k to P2 as the response

from Fot.

• In Step 10, S uses SLP11 to simulate the execution of Csc.

We now claim that the distributions from A interacting with P2 in the hybrid world

versus A interacting with S in the ideal world are indistinguishable. We do so by

constructing a series of hybrids.

H1. The hybrid-world protocol.

H2. S fixes the output of Fct to be some random string r ∈ {0, 1}νt as described

above, and uses Sgc1 to construct simulated adaptively-secure garbled circuits

for those cases where r[i] = 1. It then extracts A’s input yk from the call to
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Fot in Step 7 and sends yk to Fseq, receiving back zk. It then runs Sgc2 as

specified in the simulator description.

These two hybrids are computationally indistinguishable by the security of the

adaptively-secure garbled circuit simulator [37].

H3. S replaces the real 2PC execution in Step 10 with a simulated execution using

SLP11.

These two hybrids are indistinguishable by the security of SLP11 [9].

H4. S uses xk = 0` throughout.

As in the parallel case, computational indistinguishability holds by the deci-

sional Diffie-Hellman assumption.

As H4 is the same as the simulator S given above, we conclude that the protocol is

computationally indistinguishable.
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Chapter 4: The Publicly Verifiable Covert Setting

As mentioned in Chapter 1, Aumann and Lindell [19] introduced a very practical

compromise between the semi-honest and malicious security models, that of covert

security. In the covert security model, a party can deviate arbitrarily from the

protocol description but is caught with a fixed probability ε, called the deterrence

factor. In many practical scenarios, this guaranteed risk of being caught (likely

resulting in loss of business and/or embarrassment) is sufficient to deter would-be

cheaters. Importantly, covert protocols are much more efficient and simpler than

their malicious counterparts.

At the same time, the cheating deterrent introduced by the covert model is rel-

atively weak. Indeed, a party catching a cheater certainly knows what happened and

can respond accordingly, for example by taking their business elsewhere. However,

the impact is largely limited to this, since the honest player cannot credibly accuse

the cheater publicly. If, however, credible public accusation were possible, the de-

terrent for the cheater would be immeasurably greater: suddenly, all the cheater’s

customers would be aware of the cheating and thus any cheating may affect the

cheater’s global customer base.

The addition of credible accusation greatly improves the covert model even in
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scenarios with a small number of players, such as those involving the government.

Consider, for example, the setting where two agencies are engaged in secure compu-

tation on their respective classified data. The covert model may often be insufficient

here. Indeed, consider the case where one of the two players deviates from the pro-

tocol, perhaps due to an insider attack. The honest player detects this, but we are

now faced with the problem of identifying the culprit across two domains, where the

communication is greatly restricted due to trust, policy, data privacy legislation, or

all of the above. On the other hand, credible accusation immediately provides the

ability to exclude the honest player from the suspect list, and focus on tracking the

problem within one organization/trust domain, which is dramatically simpler.

PVC definition and protocol. Asharov and Orlandi [20] proposed a security

model, covert with public verifiability, and an associated protocol, addressing these

concerns. At a high level, they proposed that when cheating is detected, the honest

player is able to publish a “certificate of cheating” which can be checked by any third

party. In this work, we abbreviate their model as PVC: publicly verifiable covert.

Their proposed protocol (which we call the “AO protocol”) has performance similar

to the original covert protocol of Aumann and Lindell [19], with the exception of

requiring signed-OT, a special form of oblivious transfer (OT). Their signed-OT

construction is based on the OT of Peikert et al. [48], and thus requires several

expensive public-key operations.

In this work, we propose several critical performance improvements to the AO

protocol. Our most technically involved contribution is a novel signed-OT extension
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protocol which eliminates per-instance public-key operations. Before discussing our

contributions and technical approach in Section 4.1, we review the AO protocol.

The Asharov-Orlandi (AO) PVC protocol [20]. The AO protocol is based on

the covert construction of Aumann and Lindell [19]. Let P1 be the circuit generator,

P2 be the evaluator, and C(·, ·) be the circuit to be computed. Recall the standard

garbled circuit construction in the semi-honest model: P1 constructs a garbling of C

and sends it to P2 along with the wire labels associated with its input. The parties

then run OT, with P1 acting as the sender and inputting the wire labels associated

with P2’s input, and P2 acting as the receiver and inputting as its choice bits the

associated bits of its input.

We now adapt this protocol to the PVC setting. Recall the “selective failure”

attack on P2’s input wires, where P1 can send P2 via OT an invalid wire label for one

P2’s two inputs and learn one of P2’s input bits based on whether P2 aborts. To pro-

tect against this attack, the parties construct C′(x1, x
1
2, . . . , x

ν
2) = C(x1,

⊕
i∈[ν] x

i
2),

where ν is the XOR-tree replication factor, and compute C′ instead of C. P1 then

constructs λ (the garbled circuit replication factor) garblings of C′ and P2 checks

that λ− 1 of the garbled circuits are correctly constructed, evaluating the remain-

ing garbled circuit to derive the output. The main difficulty of satisfying the PVC

model is ensuring that neither party can improve its odds by aborting (e.g., based

on the other party’s challenge). For example, if P1 could abort whenever P2’s chal-

lenge would reveal P1’s cheating, this would enable P1 to cheat without the risk of

generating a proof of cheating. Thus, P1 sends the garbled circuits to P2 through
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a 1-out-of-λ OT; namely, in the ith input to the OT P1 provides openings for all

the garbled circuits but the ith, as well as the input-wire labels needed to evaluate

Ĉi. Party P2 inputs a random γ, checks that all garbled circuits besides Ĉγ are

constructed correctly, and if so, evaluates Ĉγ.

Finally, it is necessary for P1 to operate in a verifiable manner, so that an

honest P2 has proof if P1 tries to cheat and gets caught. (Note that garbled circuits

guarantee that P2 cannot cheat in the evaluation step at all, so we only worry about

catching P1.) The AO protocol addresses this by having P1 sign all its messages

and the parties using signed -OT in place of all standard OTs (including wire label

transfers and garbled circuit openings). Informally, the signed-OT functionality

proceeds as follows: rather than the receiver P2 getting message mb from the sender

P1 for choice bit b, P2 receives ((b,mb), σ), where σ is P1’s signature of (b,mb).

This guarantees that if P2 detects any cheating by P1, it has P1’s signature on an

inconsistent set of messages, which can be used as proof of this cheating. Asharov

and Orlandi show that this construction is ε-PVC-secure for ε = (1−1/λ)(1−2−ν+1).

4.1 Our Contribution

Our main contribution is a signed-OT extension protocol built on the recent mali-

cious OT extension of Asharov et al. [49]. Informally, signed-OT extension ensures

that (1) a cheating sender P1 is held accountable in the form of a “certificate of

cheating” that the honest receiver P2 can generate, and (2) a malicious P2 cannot

defame an honest P1 by presenting a false “certificate of cheating”. Achieving the
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first goal is fairly straightforward by having P1 simply sign all its messages. The

challenge is in simultaneously protecting against a malicious P2. In particular, we

need to commit P2 to its particular choices throughout the OT extension protocol to

prevent it from defaming an honest P1, while maintaining that those commitments

do not leak any information about P2’s choices.

In the standard OT extension protocol of Ishai et al. [7] (cf. Figure 4.3), P2

constructs a random matrix M , and P1 obtains a matrix M ′ derived from M , P1’s

random string s and P2’s vector of OT inputs r. The key challenge of adapting this

protocol to the signed variant is to efficiently prevent P2 from submitting a malleated

M as part of the proof without it ever explicitly revealing M to P1 (as this would

leak P2’s choice bits). We achieve this by observing that P1 does in fact learn some

of M , as in the OT extension construction some of the columns of M and M ′ are

the same (i.e., those corresponding to zero bits of P1’s string s). We prevent P2 from

cheating by having P1 include in its signature carefully selected information from

the columns in M which P1 sees. Finally, we require that P2 generates each row of

M from a seed, and that P2’s proof of cheating includes this seed such that the row

rebuilt from the seed is consistent with the columns included in P1’s signature. We

show that this makes it infeasible for P2 to successfully present an invalid row in the

proof of cheating. We describe this approach in greater detail in Section 4.3.1

As another contribution, we present a more communication efficient PVC pro-

tocol, building off the AO protocol; see Section 4.4. Our main (simple) trick there

1Our construction is also interesting from a theoretical perspective in that we construct signed-
OT from any maliciously secure OT protocol, whereas Asharov and Orlandi [20] build a specific
construction based on the decisional Diffie-Hellman assumption.
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is a careful amendment allowing us to send garbled circuit hashes instead of the

garbled circuits themselves; this is based on an idea from Goyal et al. [50].

All of our results are in the random oracle model, a slight strengthening of the

assumptions needed for standard OT extension and free-XOR, two standard secure

computation tools.

Comparison with existing approaches. The cost of our protocol is almost the

same as that of the covert protocol of Goyal et al. [50]; the only extra cost is essen-

tially a ≈ 67% wider OT extension matrix and four signatures. This often negligible

additional overhead (versus covert protocols) provides us with dramatically stronger

(than covert) deterrent. We believe that our PVC protocol could be used in many

applications where covert security is insufficient at the order-of-magnitude cost ad-

vantage over previously-needed malicious protocols or the PVC protocol of Asharov

and Orlandi [20]. See Section 4.5 for more details.

4.2 Preliminaries

Let τ denote the field size. When considering concrete costs, we utilize the security

parameter and field size settings for key lengths recommended by NIST [51]; see

Figure 4.1.

Our constructions are in the FPKI model, where each party Pi can register a

verification key, and other parties can retrieve Pi’s verification key by querying FPKI

on idi. We use the notation SignPi(·) to denote a signature signed by Pi’s secret key,

and we assume that this signature can be verified by any third party. We often leave
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Security κ FCC ECC

Short 80 1024 160
Long 128 3072 256

Figure 4.1: Settings for (computational) security parameter κ and field size τ for
various security settings as recommended by NIST [51]. FCC denotes the setting of
τ when using finite field cryptography and ECC denotes the setting of τ when using
elliptic curve cryptography.

off the subscript if the identity of the signing party is clear.

4.2.1 Covert Security

We review the definition of covert security by Aumann and Lindell [19], and in

particular, their “strong explicit cheat” formulation. The main idea with covert

security is that a malicious party is allowed to cheat with some probability 1 − ε,

but gets caught with probability ε. In the following, we give the definition for the

specific case of two-parties, although the definition can be easily generalized to the

multi-party setting.

Ideal model execution. In the ideal model, we have parties P1 and P2, and an

adversary A with auxiliary input aux who can corrupt one of the two parties. Let

F define the ideal functionality implementing f(·, ·).

• P1 obtains input x and P2 obtains input y.

• An honest party sends its given input to the ideal functionality F, whereas a

corrupted party can send an arbitrary input. Denote the inputs send to F as

x′ and y′.

• A corrupted party may send one of the following messages to F:
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– abort: In this case, F sends abort to the honest party and halts.

– corrupted: In this case, F sends corrupted to the honest party and halts.

– cheat: In this case, there are two possibilities:

∗ With probability ε, F sends corrupted to both parties and halts;

∗ With probability 1 − ε, F sends undetected and the honest party’s

input to the corrupted party, waits for an output value z from the

corrupted party, and sends z to the honest party.

– continue: In this case, F continues.

• F computes z := f(x′, y′) and sends z to the corrupted party.

• The corrupted party sends either abort or continue to F. If F receives continue

it sends z to the honest party, and if F receives abort it sends abort to the

honest party and halts.

• The honest party outputs the given output from F, whereas the corrupted

party outputs an arbitrary function of its view of the protocol execution.

Let IdealCε
F,A(aux)(x, y, 1

κ) denote the joint output of the adversary A and the

honest party with inputs x and y when interacting with ideal functionality F.

Real model execution. This is the same as the real model execution as described

in Chapter 2 for malicious security.

Definition 4.1. Protocol Πf secure computes F in the presence of covert adversaries

with ε-deterrent if for every ppt adversary A in the real model, there exists a ppt
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simulator S in the ideal model such that for all x and y it holds that

{IdealCε
F,S(aux)(x, y, 1

κ)} c≈ {RealΠf ,A(aux)(x, y, 1
κ)}.

4.2.2 Publicly Verifiable Covert Security

We now review the publicly verifiable covert (PVC) security model of Asharov and

Orlandi [20]. When we say a protocol is “secure in the covert model” we assume it

is secure under Definition 4.1.

Let π be a two-party protocol between parties P1 and P2 implementing function

f . Following Aumann and Lindell [19], we call π non-halting if for honest Pi and fail-

stop adversary2 P-i, the probability that Pi outputs corrupted is negligible. Consider

the triple of algorithms (π′,Blame, Judgment) defined as follows:

• Protocol π′ is the same as π except that if an honest party P-i∗ outputs

corrupted when executing π, it computes Cert← Blame(idi∗ , key,View-i∗), where

key denotes the type of cheating detected, and sends Cert to Pi∗ .

• Algorithm Blame is a deterministic algorithm which takes as input a cheating

identity id, a cheating type key, and a view View of a protocol execution, and

outputs a certificate Cert.

• Algorithm Judgment is a deterministic algorithm which takes as input a cer-

tificate Cert and outputs either an identity id or ⊥.

2A fail-stop adversary is one which acts semi-honestly but may halt at any time.
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Before proceeding to the definition, we first introduce some notation. Let

Execπ,A(z)(x1, x2; 1κ) denote the transcript (i.e., messages and output) produced by

P1 with input x1 and P2 with input x2 running protocol π, where adversary A with

auxiliary input z can corrupt parties before execution begins. Let OutputPi(Execπ,A(z)(x1, x2; 1κ))

denote the output of Pi on the input transcript.

Definition 4.2. We say that (π′,Blame, Judgment) securely computes f in the pres-

ence of a publicly verifiable covert adversary with ε-deterrent (or, is ε-PVC-secure) if

the following conditions hold:

1. The protocol π′ is a non-halting and secure realization of f in the covert model

with ε-deterrent.

2. (Accountability) For every ppt adversary A corrupting party Pi∗, there exists

a negligible function negl(·) such that if OutputP-i∗
(Execπ,A(z)(x1, x2; 1κ)) =

corrupted then

Pr [Judgment(Cert) = idi∗ ] > 1− negl(κ),

where Cert ← Blame(idi∗ , key,View-i∗) and the probability is over the random-

ness used in the protocol execution.

3. (Defamation-free) For every ppt adversary A corrupting party Pi∗ and out-

putting a certificate Cert, there exists a negligible function negl(·) such that

Pr [Judgment(Cert) = id-i∗ ] < negl(κ), where the probability is over the ran-

domness used by A.
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Note that, in particular, the PVC definition implicitly disallows Blame to reveal

P-i∗ ’s input. This is because π′ specifies that Cert is sent to Pi∗ .

4.2.3 Signed Oblivious Transfer

A central functionality for constructing PVC protocols is signed oblivious transfer

(signed-OT), introduced by Asharov and Orlandi [20]. We can define the basic

signed-OT functionality F as

(⊥, (mb, Signsk(b,mb)))←$F((m0,m1, sk), (b, vk)),

where the signature scheme is assumed to be existentially unforgeable under adaptive

chosen message attack (EU-CMA). Namely, the sender P1 inputs two messages m0

and m1 along with a signing key sk; the receiver P2 inputs a choice bit b and

a verification key vk; P1 receives no output whereas P2 receives mb alongside a

signature on (b,mb).

However, as in prior work [20], this definition is too strong for our signed-

OT extension construction to satisfy. We introduce a relaxed signed-OT variant

(slightly different from Asharov and Orlandi’s variant [20]) which is tailored for

OT extension and is sufficient for obtaining PVC-security. Essentially, we need a

signature scheme that satisfies a weaker notion than EU-CMA in which the signing

algorithm takes randomness, a portion of which can be controlled by the adversary.3

3Our notion is similar to the ρ-EU-CMRA notion introduced by Asharov and Orlandi [20]. It
differs in that we allow different portions of the randomness to be corrupted, but not both portions
at once. Looking forward, this is needed because the sender in our signed-OT functionality is only
allowed to control some of the randomness.
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This is because in our signed-OT extension construction, a malicious party can

influence the randomness used in the signing algorithm. In addition, we introduce

an associated data parameter to the signing algorithm which allows the signer to

specify some additional information unrelated to the message being signed but used

in the signature. In our construction, we use the associated data to tie the signature

to a specific counter (such as a session ID or message ID), preventing a malicious

receiver from “mixing” properly signed values to defame an honest sender.

Let Π = (Gen, Sign,Verify) be a tuple of ppt algorithms over message space

M, associated data space D, and randomness spaces R1 and R2, defined as follows:

1. Gen(1κ): On input security parameter 1κ, output key pair (vk, sk).

2. Signsk(m, a; (r1, r2)): On input secret key sk, message m ∈M, associated data

a ∈ D, and randomness r1 ∈ R1 and r2 ∈ R2, output signature σ = (a, σ′).

3. Verifyvk(m,σ): On input verification key vk, message m ∈ M, and signature

σ, output 1 if σ is a valid signature for m and 0 otherwise.

For security, we need the condition that unforgeability remains even if the adversary

inputs some arbitrary r1 or r2. However, the adversary is prevented from inputting

values for both r1 and r2. This reflects the fact that in our signed-OT extension

construction, a malicious sender can control only r1 and a malicious receiver can

control only r2. We place a further restriction that the choice of r1 must be consis-

tent ; namely, all queries to Sign must use the same value for r1. Looking ahead, this

property exactly captures the condition we need (r1 corresponds to the zero bits in
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the sender’s column selection string in the OT extension), where the choice of r1 is

made once and then fixed throughout the protocol execution.

Towards our definition, we define an oracle Osk(·, ·, ·, ·) as follows. Let ⊥ be a

special symbol. On input (m, a, r1, r2), proceed as follows. If neither r1 nor r2 equal

⊥, output ⊥. Otherwise, proceed as follows. If r1 = ⊥ and r′1 has not been set, set

r′1 uniformly at random; if r1 6= ⊥ and r′1 has not been set, set r′1 = r1; if r2 = ⊥, set

r′2 uniformly at random; otherwise, set r′2 = r2. Finally, output Signsk(m, a; (r′1, r
′
2)).

Now, consider the following game Sig-forgeCMPRA
A,Π (κ) for signature scheme Π

between ppt adversary A and ppt challenger C.

1. C runs (vk, sk)←$Gen(1κ) and sends vk to A.

2. A, who has oracle access to Osk(·, ·, ·, ·), outputs a tuple (m, (a, σ′)). Let Q be

the set of messages and associated data pairs input to Osk(·, ·, ·, ·).

3. A succeeds if and only if (1) Verifyvk(m, (a, σ
′)) = 1 and (2) (m, a) 6∈ Q.

Definition 4.3. Signature scheme Π = (Gen, Sign,Verify) is existentially unforgeable

under adaptive chosen message and partial randomness attack (EU-CMPRA) if for all

ppt adversaries A there exists a negligible function negl(·) such that Pr[Sig-forgeCMPRA
A,Π (κ)] <

negl(κ).

Signed-OT functionality. We are now ready to introduce our relaxed signed-OT

functionality. As is our EU-CMPRA signature, it is tailored for OT extension, and is

sufficient for building PVC protocols. This functionality, denoted by FΠ
signedOT, is

parameterized by an EU-CMPRA signature scheme Π and is defined in Figure 4.2. As
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Functionality FΠ
signedOT

The functionality is parameterized by an EU-CMPRA signature scheme Π = (Gen,Sign,Verify).

Input: The sender inputs messagesm0 andm1 such that |m0| = |m1|, secret key sk, associated
data a, randomness r∗1 , and signatures σ∗0 and σ∗1 . The receiver inputs choice bit b, verification
key vk, and randomness r∗2 . If the sender (resp., the receiver) is honest, then r∗1 = σ∗0 = σ∗1 = ⊥
(resp., r∗2 = ⊥).

Output: The functionality computes σb = Signsk((b,mb), a; (r∗1 , r
∗
2)) for b ∈ {0, 1}. The

sender receives no output. The receiver receives the following output based on if the sender
is corrupt or not:

• If σ∗0 6= ⊥ or σ∗1 6= ⊥, the functionality outputs ((b,mb), σ
∗
b ) if and only if

Verifyvk((0,m0), σ∗0) = Verifyvk((1,m1), σ∗1) = 1, where σ∗b ← σb if σ∗b = ⊥; otherwise it
outputs abort.

• If σ∗0 = σ∗1 = ⊥, the functionality outputs ((b,mb), σb).

Figure 4.2: Signed oblivious transfer functionality.

in standard OT, the sender inputs two messages (of equal length) and the receiver

inputs a choice bit. However, in this formulation we allow a malicious sender to

specify some random value r∗1 as well as signatures σ∗0 and σ∗1. Likewise, a malicious

receiver can specify some random value r∗2. (Honest players input⊥ for these values.)

If both players are honest, the functionality computes σ ← Sign((b,mb); (r1, r2)) with

uniformly random values r1 and r2 and outputs ((b,mb), σ) to the receiver. However,

if either party is malicious and specifies some random value, this is fed into the Sign

algorithm. Likewise, if the sender is malicious and specifies some signature σ∗b 6= ⊥,

this value is used as the signature sent to the receiver.

Note that FΠ
signedOT is nearly identical to the signed-OT functionality pre-

sented by Asharov and Orlandi [20, Functionality 2]; it differs in the use of EU-

CMPRA signature schemes instead of ρ-EU-CMRA schemes. We also note that it is

straightforward to adapt FΠ
signedOT to realize OTs with more than two inputs from

the sender. We let
(
λ
1

)
-FΠ

signedOT denote a 1-out-of-λ variant of FΠ
signedOT.

A compatible commitment scheme. Our construction of an EU-CMPRA signa-
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ture scheme uses a non-interactive commitment scheme, which we define here. Our

definition follows the standard commitment definition, except we tweak the Com

algorithm to take an additional associated data value.

Let ΠCom = (ComGen,Com) be a tuple of ppt algorithms over message space

M and associated data space D, defined as follows:

1. ComGen(1κ): On input security parameter 1κ, compute parameters params.

2. Com(m, a; r): On input message m ∈M, associated data a ∈ D, and random-

ness r, output commitment com.

A commitment can be opened by revealing the randomness r used to construct that

commitment.

We now define security for our commitment scheme. We only consider the

binding property; namely, the inability for a ppt adversary to open a commitment

to some other value than that committed to. Security is the same as for standard

commitment schemes, except we allow the adversary to control the randomness used

in ComGen.

Consider the game Com-bindA,ΠCom
(κ) for commitment scheme ΠCom between

a ppt adversary A and a ppt challenger C, defined as follows.

1. A sends randomness r to C.

2. C computes params← ComGen(1κ; r) and sends params to A.

3. A outputs (com,m1, a1, r1,m2, a2, r2) and wins if and only if (1) m1 6= m2, and

(2) com = Com(params,m1, a1; r1) = Com(params,m2, a2; r2).
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Definition 4.4. A commitment scheme ΠCom = (ComGen,Com) is (computation-

ally) binding if for all ppt adversaries A, there exists a negligible function negl(·)

such that Pr[Com-bindA,ΠCom
(κ)] < negl(κ).

4.3 Signed Oblivious Transfer Extension

We now present our main contribution: an efficient instantiation of signed oblivious

transfer (signed-OT) extension. We begin by describing in detail the logic of the

construction, iteratively building it up from the passively secure protocol of Ishai et

al. [7]. We then motivate the need for EU-CMPRA signature schemes and present a

compatible such scheme.

Intuition for the Construction

Consider the OT extension protocol of Ishai et al. [7] in Figure 4.3, run between

sender P1 and receiver P2. This protocol is secure against a semi-honest P2 and

malicious P1. We show how to convert this protocol into one which satisfies the

FΠ
signedOT functionality defined in Figure 4.2. For clarity of presentation, we build

on the protocol of Figure 4.3 and later discuss how to support a malicious P2 as

well, based on the malicious OT extension protocol of Asharov et al. [49].

As a first attempt, suppose P1 simply signs all its messages in Step 3. Recall

that we will use this construction to have P1 send the appropriate input wire labels

to P2; namely, P1 acts as P1 in the OT extension and inputs the wire labels for

P2’s input wires whereas P2 acts as P2 and inputs its input bits. Thus, our first
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P1’s inputs: Message pairs {(X0
j , X

1
j )}

j∈[m]
, where each X0

j , X
1
j ∈ {0, 1}n.

P2’s inputs: Selection bit vector r ∈ {0, 1}m.
Common inputs: Security parameter κ; number of base OTs ` (= κ); hash function H :

N× {0, 1}` → {0, 1}n; ideal functionality Fot.

1. Initial OT Phase:

• P1 computes s ∈R {0, 1}`.
• P2 generates a random m × ` matrix T , where the jth row is tj and the ith

column is ti. Likewise, P2 generates a random m × ` matrix V , where the jth
row is vj and the ith column is vi.

• P1 and P2 run Fot ` times in parallel, where P1 acts as the receiver with input
si in the ith OT and P2 acts as the sender with input (ti, vi) in the ith OT.

2. OT Extension Phase (Part I):

• For i ∈ [m], P2 sets ui := ti ⊕ vi ⊕ r, and sends ui to P1.

3. OT Extension Phase (Part II):

• Let Q be the m× ` matrix where each column qi = (si · (ui⊕ vi))⊕ ((1− si) · ti).
Note that qi = (si · r)⊕ ti and qj = (r[j] · s)⊕ tj .

• For j ∈ [m], P1 computes X̂0
j := X0

j ⊕H(j, qj) and X̂i
j := Xi

j ⊕H(j, qj ⊕ s), and

sends X̂0
j and X̂1

j to P2.

• For j ∈ [m], P2 computes Xj := X̂
r[j]
j ⊕H(j, tj).

4. Output:

• P1 outputs ⊥ and P2 outputs {Xj}j∈[m].

Figure 4.3: Protocol implementing passively secure OT extension [52, 7].

step is to enhance the protocol in Figure 4.3 to have P1 send σ′ ← Sign(j, X̂0
j ) and

σ′′ ← Sign(j, X̂1
j ) in Step 3.

Now, if P2 gets an invalid (with respect to a signed garbled circuit sent in the

PVC protocol of Section 4.4) wire label Xj, it can easily construct a certificate Cert

which demonstrates P1’s cheating. Namely, it outputs as its certificate the tuple(
b, j, X̂0

j , X̂
1
j , σ

′, σ′′, tj

)
along with the (signed by P1 and opened) garbled circuit

containing the invalid wire label. A third party can (1) check that σ′ and σ′′ are

valid signatures and (2) compute Xb
j := H(j, tj) ⊕ X̂b

j and check that Xb
j is indeed
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an invalid wire label for the given garbled circuit.

This works for protecting against a malicious P1; however, note that P2 can

easily defame an honest P1 by outputting t∗j 6= tj as part of its certificate (in which

case Xb
j := H(j, t∗j) ⊕ X̂b

j will very likely be an invalid wire label). Thus, the main

difficulty in constructing signed-OT extension is tying P2 to its choice of the matrix

T generated in Step 1 of the protocol so it cannot blame an honest P1 by using

invalid rows t∗j in its certificate.

Towards this end, consider the following modification. In Step 1, P2 now

additionally sends commitments to each tj to P1, and P1 signs these and sends them

as part of its messages in Step 3. This prevents P2 from later changing tj to blame

P1. This does not quite work, however, as P2 could simply commit to an incorrect t∗j

in the first place! Clearly, P2 cannot send T to P1, as this would leak P2’s selection

bits, yet we still need P2 to somehow be committed to its choice of the matrix T .

The key insight is noting that P1 does in fact know some of the bits of T ; namely,

it knows those columns at which si = 0 (as it learns ti in the base OT). We can use

this information to tie P2 to its choice of T such that it cannot later construct some

matrix T ∗ 6= T to defame P1.

We do this by enhancing Step 3 as follows. Let I0 be the set of indices i such

that si = 0 (recall that s is the random selection bits of P1 input to the base OTs

in Step 1). Let tj,i denote the ith bit in row tj. Note that P1 knows the values of tj,i

for i ∈ I0, and could thus compute {(i, tj,i)}i∈I0 as a “binding” of P2’s choice of tj.

By including this information in its signature, P1 enforces that any t∗j that P2 tries

to use to blame P1 must match in the given positions. This brings us closer to our
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goal; however, there are still two issues that we need to resolve:

1. Sending {(i, tj,i)}i∈I to P2 leaks s, which allows P2 to learn both of P1’s inputs.

We address this by increasing the number of base OTs in Step 1 and having

P1 only send some subset I ⊆ I0 such that |I| = κ. Thus, while P2 learns that

si = 0 for i ∈ I, by increasing the number of base OTs enough, P2 does not

have enough information to recover s.

2. P2 can still flip one bit in tj and pass the check with high probability. We

fix this by having each tj be generated by a seed kj. Namely, P2 computes

tj ← G(kj) in Step 1, where G is a random oracle4. Then, when blaming P1,

P2 must reveal kj instead of tj. Thus, with high probability a malicious P2

cannot find some k∗j 6= kj such that the Hamming distance between G(k∗j ) and

G(kj) is small enough that the above check succeeds.

Finally, note that we have thus far considered the passively secure OT ex-

tension protocol, which is insecure against a malicious P2. We thus utilize the

maliciously secure OT extension protocol of Asharov et al. [49]. The only way P2

can cheat in passively secure OT extension is by using different r values in Step 2.

Asharov et al. add a “consistency check” phase between Steps 2 and 3 to enforce

that r is consistent. This does not affect our construction, and thus we can include

this step to complete the protocol.5 We refer the reader to Asharov et al. [49] for

4Note that G cannot be a pseudorandom generator because the input to G is not necessarily
uniform as the inputs may be adversarially chosen by P2.

5The reason this does not affect our construction is because the consistency check phase only
involves P2 sending messages to P1. A malicious P2 cannot defame P1 because we are only enforcing
that P2’s value r is consistent.
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the justification and intuition of this step; as far as this work is concerned we can

treat this consistency check as a “black box”.

We make two key observations regarding our construction:

1. OT extension matrix size: We set `, the number of base OTs, so that

leaking κ bits to P2 does not allow it to recover s and thus both messages.

We do this as follows. Let `′ be the number of base OTs required in malicious

OT extension [49]. We set ` = `′ + κ and require that when P1 chooses s, it

first fixes κ randomly selected bits to zero before randomly setting the rest of

the bits. Now, when P1 reveals I to P2, the number of unknown bits in s is

equal to `′ and thus the security of the Asharov et al. scheme carries over to

our setting. Asharov et al. set `′ ≈ 1.6κ, and thus us using κ extra columns

results in an ≈ 67% matrix size increase.

2. Batching signatures: The main computational cost of our protocol is the

signatures sent by P1 in Step 4. This cost can easily be brought to negligible,

as follows. Recall that when using our protocol for transferring the input wire

labels of a garbled circuit using free-XOR we can optimize the communication

slightly by setting X0
j := H(j, qj) and X̂1

j := X0
j ⊕∆⊕H(j, qj ⊕ s), where ∆

is the free-XOR global offset. Thus, P1 only needs to send (and sign) X̂1
j .

The most important idea, however, is to batch messages across OT executions

and have P1 sign (and send) only one signature which includes all the neces-

sary information across many OTs. Namely, using the free-XOR optimization

above, P1 signs and sends the tuple (I, {X̂1
j , {tj,i}i∈I}j∈[m]) to P2. We note that
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the j values need not be sent as they are implied by the protocol execution.

Figure 4.4 gives the full protocol for signed-OT extension. For clarity of presentation,

this description, and the following proof of security, does not take into account the

batching signatures optimization described above.

Towards a Proof of Security

Before presenting the security proof, we first motivate the need for EU-CMPRA

signature schemes. Ideally we could just have P1 sign everything using an EU-CMA

signature scheme; however, this presents opportunities for P2 to defame P1. Thus,

we need to enforce that P2 cannot output an xbj value different from the one sent by

P1. We do so by using a binding commitment scheme ΠCom = (ComGen,Com), and

show that the messages sent by P1 in Step 4 are essentially binding commitments

to the underlying Xb
j values.

We define ΠCom as follows, where G : {0, 1}κ → {0, 1}` and H : N× {0, 1}` →

{0, 1}κ are random oracles, and ` ≥ κ.

1. ComGen(1κ): choose set I ⊆ [`] uniformly at random subject to |I| = κ; output

params := I.

2. Com(params,m, j; r): On input parameters I := params, message m, counter

j, and randomness r ∈ {0, 1}κ, proceed as follows. Compute t := G(r), set

com := (j,m⊕H(j, t), I, {ti}i∈I), and output com.

We make the assumption that given I, one can derive the randomness input

to ComGen. (We use this when defining our EU-CMPRA signature scheme below,
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which uses a generic binding commitment scheme). We can satisfy this by simply

letting the randomness input to ComGen be the set I.

In our signed-OT extension protocol, the set I chosen by P1 is used as params

and the kj values chosen by P2 are used as the randomness to Com. The commitment

value com is exactly the message signed and sent by P1 in Step 4. Thus, ignoring

the signatures for now, we have an OT extension protocol that binds P1 to its Xb
j

values, and thus prevents a malicious P2 from defaming an honest P1. Adding in

the signatures gives us an EU-CMPRA signature scheme. Namely, P1 is tied to its

messages due to the signatures and P2 is prevented from “changing” the messages

to defame P1 due to the binding property of the commitment scheme.

We now prove that the commitment scheme described above is binding. We

actually prove something stronger than what is required in our protocol. Namely,

we prove that an adversary who can control both random values still cannot win,

whereas when we use this commitment scheme in our signed-OT extension protocol,

only one of the two random values can be controlled by any one party.

Theorem 4.1. Protocol ΠCom is binding according to Definition 4.4.

Proof. Adversary A needs to come up with choices of I, m, m′, j, j′, r, and r′ such

that (j,m⊕H(j, t), I, {ti}i∈I) = (j′,m′ ⊕H(j′, t′), I, {t′i}i∈I′), where t := G(r) and

t′ := G(r′). Clearly, j = j′. Thus, A must find t and t′ such that ti = t′i for all

i ∈ I. However, by the property that G is a random oracle, the values t and t′ are

distributed uniformly at random in {0, 1}`. Thus, the probability that A finds two

bitstrings t and t′ that match in κ bits is negligible, regardless of the choice of I.
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An EU-CMPRA Signature Scheme

We now show that the messages sent by P1 in Step 4 form an EU-CMPRA signature

scheme. Let Π′ = (Gen′, Sign′,Verify′) be an EU-CMA signature scheme and ΠCom =

(ComGen,Com) be a commitment scheme satisfying Definition 4.4. Consider the

scheme Π = (Gen, Sign,Verify) defined as follows.

1. Gen(1κ): On input 1κ, run (vk, sk)← Gen′(1κ) and output (vk, sk).

2. Signsk(m, j; (r∗1, r
∗
2)): On input message m ∈ {0, 1}κ, counter j ∈ N, and ran-

domness r∗1 and r∗2, proceed as follows. Compute params := ComGen(1κ; r∗1)

and com := Com(params,m, j; r∗2). Next, choose m′ ∈R {0, 1}κ and com-

pute com′ := Com(params,m′, j; r∗2).6 Output σ := (j, params, r∗2, com, com
′,

Sign′sk((params, com)), Sign′sk((params, com′))).

3. Verifypk(m,σ): On input message m and signature σ, parse σ as (j, params, r,

com′, com′′, σ′, σ′′), and output 1 if and only if (1) Com(params,m; r) = com′,

(2) Verify′vk((params, com′), σ′) = 1, and (3) Verify′vk((params, com′′), σ′′) = 1;

otherwise output 0.

As will be clear later, this signature scheme exactly captures the behavior of P1 in

our signed-OT extension protocol. We now prove that this is indeed an EU-CMPRA

signature scheme.

Theorem 4.2. Given an EU-CMA signature scheme Π′ = (Gen′, Sign′,Verify′) and

a commitment scheme ΠCom = (ComGen,Com) secure according to Definition 4.4,

6This extra commitment on a random message is needed for our signed-OT extension proof.
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then Π = (Gen, Sign,Verify) described above is an EU-CMPRA signature scheme.

Proof. Let A be a ppt adversary attacking Π. We construct an adversary B at-

tacking Π′. Adversary B receives vk from the challenger and initializes A with vk as

input. Let (m, j, r∗1, r
∗
2) be the input of A to its signing oracle. Adversary B emulates

the execution of A’s signing oracle as follows: it computes params := ComGen(1κ; r∗1)

and com := Com(params,m, j; r∗2), chooses m′ uniformly at random and computes

com′ := Com(params,m′, j; r∗2), constructs σ := (j, params, r∗2, com, com
′, Sign′sk((params, com)),

Sign′sk((params, com′))), and sends σ to A. After each of A’s queries, B stores (m, j)

in set QA and stores all the messages it sent to its signing oracle in set QB.

Eventually, A outputs (m, (j, σ′)) as its forgery. Adversary B checks that

Verifyvk(m, (j, σ
′)) = 1 and that (m, j) 6∈ QA . If not, B outputs 0. Otherwise,

B parses σ′ as (params, r, com′, com′′, σ′, σ′′) and checks that com′ 6∈ QB. If so, it

outputs (com′, σ′); otherwise it outputs 0.

Note that Sig-forgeCMPRA
A,Π (κ) = 1 and Sig-forgeCMA

B,Π′ (κ) = 0 if and only if

Verifyvk(m, (j, params, r, com′, com′′, σ′, σ′′)) = 1 and (m, j) 6∈ QA but com′ ∈ QB.

Fix some (m, (j, params, r, com1, com1′ , σ1, σ1′)) such that this is the case. Thus it

holds that com1 ∈ QB. This implies that B queried Sign′ on com1, which means that

A queried its signing oracle on some (m′, j′, r∗1, r
∗
2), where m′ 6= m, and received back

(j′, params, r′, com1, com2′ , σ1′′ , σ2′). However, this implies that Com(params, com1;

r) = m and Com(params, com1; r′) = m′. Thus, Pr[Sig-forgeCMPRA
A,Π (κ)] = Pr[Sig-forgeCMA

B,Π (κ)]+

Pr[Com-bindB′,ΠCom
(κ)] for some ppt adversary B′. We now bound Pr[Com-bindB′,ΠCom

(κ)].

Adversary B′ runs almost exactly like B. On the first query (m, j, r∗1, r2) by A,
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it sets r = r∗1 if r∗1 6= ⊥ and otherwise it sets r uniformly at random; B′ then sends

r to C, receiving back params.

Let (m1, j1, r
∗
1, r
∗
2) and (m2, j2, r

∗
1, r
∗′
2 ) be the two queries made by A result-

ing in a common commitment value, and let (j1, params, r1, com1, com
′
1, σ1, σ1′) and

(j2, params, r2, com1, com
′
2, σ1′′ , σ2′) be the respective signatures resulting from A’s

queries. Then B′ sends (com1,m1, j1, r
∗
2,m2, j2, r

∗′
2 ) to its challenger and wins with

probability one, contradicting the security of the commitment scheme. Thus, we

have that Pr[Com-bindB′,ΠCom
(κ)] < negl(κ), completing the proof.

Proof of Security

We are now ready to prove the security of our signed-OT extension protocol. Most

of the proof complexity is hidden in the proofs of the associated EU-CMPRA signa-

ture scheme and commitment scheme. Thus, the signed-OT extension simulator is

relatively straightforward, and mostly involves parsing the output of FΠ
signedOT and

passing the correct values to the adversary. The analysis follows almost exactly that

of Asharov et al. [49] and thus we elide most of the details.

Theorem 4.3. Let Π = (Gen, Sign,Verify) be the EU-CMPRA signature scheme pre-

sented above. Then the protocol in Figure 4.4 is a secure realization of FΠ
signedOT in

the Fot-hybrid model.

Proof. We separately consider the case where P1 is malicious and P2 is malicious.

The case where the parties are either both honest or both malicious is straightfor-

ward.
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Malicious P1. Let A be a ppt adversary corrupting P1. We construct a simulator

S as follows.

1. The simulator S acts as an honest P2 would in Step 1, extracting s from A’s

input to Fot.

2. The simulator S acts as an honest P2 would in Steps 2 and 3, using a random

choice for r.

3. Let I and
(
j, X̂0

j , X̂
1
j , {tj,i}i∈I , σ′j,0, σ′j,1

)
, for j ∈ [m], be the messages sent by

A in Step 4. If any of these form invalid signatures, S sends abort to FΠ
signedOT

and simulates P2 aborting, outputting whatever A outputs.

4. For j ∈ [m], proceed as follows. The simulator S extracts X0
j := X̂0

j ⊕H(j, qj)

and X1
j := X̂1

j ⊕H(j, qj⊕ s), constructs σ∗j,b := (j, I, kj, (I, (j, X̂
b
j , I, {tj,i}i∈I)),

(I, (j, X̂1−b
j , I, {tj,i}i∈I)), σ′j,b, σ′j,1−b) for b ∈ {0, 1}, and sends X0

j , X1
j , σ∗j,0, and

σ∗j,1 to FΠ
signedOT.

5. For j ∈ [m], S parses σj,b as (j, I, kj, (I, (j, X̂
b
j , I, {tj,i}i∈I)), (I, (j, X̂1−b

j , I,

{tj,i}i∈I)), σ′j,b, σ′j,1−b), constructs message σj := (j, X̂0
j , y

1
j , {tj,i}i∈I , σ′j,0, σ′j,1),

and acts as an honest P2 would when receiving messages I and {σj}j∈[m].

6. The simulator S outputs whatever A outputs.

It is easy to see that this protocol perfectly simulates a malicious sender since S

acts exactly as an honest P2 would (beyond feeding the appropriate messages to

FΠ
signedOT).
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Malicious P2. Let A be a ppt adversary corrupting P2. We construct a simulator

S as follows.

1. The simulator S acts as an honest P1 would in Step 1, extracting matrices T

and V through P1’s Fot inputs, and thus the values {kj}j∈[m] through the calls

to the random oracle.

2. The simulator S uses the values extracted above to extract selection bits r

after receiving the ui values from A in Step 2.

3. The simulator S acts as an honest P1 would in Step 3.

4. Let I0 be the indices at which s (generated in Step 1) is zero, and let I ⊆ I0

be a set of size κ. For j ∈ [m], S sends r[j], vk, and I to FΠ
signedOT, receiv-

ing back ((r[j], X
r[j]
j ), σj,r[j]); S parses σj,r[j] as (j, I, r, (I, (j, cr[j], I, {tj,i}i∈I)),

(I, (j, c1−r[j], I, {tj,i}i∈I)), σ′j,r[j], σ′j,1−r[j]).

5. In Step 4, S sends I and (j, c0, c1, {tj,i′}i′∈I′ , σ′j,0, σ′j,1), for j ∈ [m], to A.

6. The simulator S outputs whatever A outputs.

The analysis is almost exactly that of the malicious receiver proof in the construction

of Asharov et al. [49]; we thus give an informal security argument here and refer the

reader to the aforementioned work for the full details.

A malicious P2 has two main attacks: using inconsistent choices of its selection

bits r and trying to cheat in the signature creation in Step 4. This latter attack

is prevented by the security of our EU-CMPRA signature scheme. The former is

prevented by the consistency check in Step 3. Namely, Asharov et al. show that the
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consistency check guarantees that: (1) most inputs are consistent with some string

r, and (2) the number of inconsistent inputs is small and thus allow P2 to only learn

a small number of bits of s. Thus, for specific choices of ` and µ, the probability

of a malicious P2 cheating is negligible. Asharov et al. provide concrete parameters

for various settings of the security parameter [49, §3.2]; let `′ denote the number of

base OTs used in their protocol. Now, in our protocol we set ` = `′ + κ; P1 leaks

κ bits of s when revealing the set I in Step 4, and so is left with `′ unknown bits

of s. Thus, the security argument presented by Asharov et al. carries over into our

setting.

4.4 Our Protocol

As noted above, the main technical challenge of the PVC model is in the signed-

OT construction and model definitions. The AO protocol in the FΠ
signedOT-hybrid

model is relatively straightforward: the natural (but careful) combination of taking a

non-halting covert protocol, having the GC generator P1 sign appropriate messages,

and replacing OTs with signed-OTs works. In particular, our signed-OT extension

can be naturally modified and used in place of the signed-OT primitive in the AO

protocol.

In this section we present a new PVC protocol based on signed-OT extension.

Our protocol is similar to the AO protocol in the FΠ
signedOT-hybrid model, but with

applying several simple yet very effective optimizations, resulting in a much lower

communication cost.
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We present our protocol by starting off with the AO protocol and pointing

out the differences. We presented the AO protocol intuition at the beginning of

this Chapter; see Figure 4.5 for its formal description. In presenting our changes,

we sketch the improvement each of them brings. Thus, we start by reviewing the

communication cost of the AO protocol.

Communication cost of the AO protocol. Using state-of-the-art optimiza-

tions [29, 53, 54], the size of each GC sent in Step 5 is 2κ|GC |, where |GC | is the

number of non-XOR gates in circuit C (note that |GC | = |GC′ | for circuit C ′ gen-

erated in Step 1 since the XOR-tree only adds XOR gates to the circuit, which are

“free” [29]). Let τ be the field size (in bits), ν the XOR-tree replication factor, λ the

GC replication factor, and n the length of the inputs, and assume that each signa-

ture is of length τ and the commitment and decommitment values are of length κ.

Using the signed-OT instantiations of Asharov and Orlandi [20, Protocols 1 and 2],

we get a total communication cost of

τ(7νn+ 11) + 2λκνn (Step 4)

+ `(2κ|GC |+ τ) (Step 5)

+ 2nλ(κ+ τ) (Step 6)

+ τ(3 + 2λ+ 11(λ− 1)) + λκ(2(n+ νn)(λ− 1) + 2n(λ− 1) + n). (Step 7)

As an example, consider the secure computation of AES(m, k), where P1 inputs

message m ∈ {0, 1}128 and P2 inputs key k ∈ {0, 1}128, and suppose we set both
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the GC replication factor λ and the XOR-tree replication factor ν to 3, giving a

cheating probability of ε = 1/2. Letting κ = 128 and τ = 256, we have a total

communication cost of 9.3 Mb (where we assume that the AES circuit has 9,100

non-XOR gates [55]).

Our modifications. We make the following modifications to the AO protocol:

• In Step 6, instead of using a commitment scheme we can use a hash function.

This saves on communication in Step 7 as P1 no longer needs to send the

openings {oiwp,b} to the commitments in the signed-OT, and is secure when

treating H as a random oracle since the labels are generated uniformly at

random and thus it is infeasible for P2 to guess the committed values. The

total savings are 2n(λ− 1)κλ bits; in our example, this saves us 196 Kb.

• In Step 3, we use a random seed to generate the input-wire labels. Namely,

for all j ∈ [λ] we compute sj ∈R {0, 1}κ, and compute the input-wire labels

for circuit j as Xj
w1,0
‖Xj

w1,1
‖ · · · ‖Xj

wn+νn,0
‖Xj

wn+νn,1
:= G(sj), where G is a

pseudorandom generator. Now, in the 1-out-of-λ signed-OT in Step 7 we can

just send the seeds to the input-wire labels rather than the input-wire labels

themselves. The total savings are 2(n + νn)(λ − 1)λκ − n(λ − 1)λκ bits; in

our example, this saves us 688 Kb.

• In Step 5, P1 generates each Ĉj from a seed sj
Ĉ

. (This idea was first put

forward by Goyal et al. [50].) That is, sj
Ĉ

specifies the randomness used to

construct all wire labels except for the input-wire labels which were set in

Step 3. Instead of P1 sending each GC to P2 in Step 5, P1 instead sends a

100



commitment cj
Ĉ

:= H(Ĉj). Now, in Step 7, P1 can send the appropriate seeds

{sj
Ĉ
}j∈[λ]\{j} in the jth input of the 1-out-of-λ signed-OT to allow P2 to check

the correctness of the check GCs. We then add an additional step where,

if the checks pass, P1 sends Ĉγ (along with a signature on Ĉγ) to P2, who

can check whether H(Ĉγ) = cγ
Ĉ

. Note that this does not violate the security

conditions required by the PVC model because P2 catches any cheating of P1

before the evaluation circuit is sent. If P1 tries to cheat here, P2 already has a

commitment to the circuit so can detect any cheating. The total savings are

(λ− 1)2κ|GC | − λτ − λκ(λ− 1) bits; in our example, this saves us 4.6 Mb.

Our PVC protocol and its cost. Below we present our optimized protocol. For

simplicity, we sign each message in Steps 5 and 6 separately; however, we note that

we can group all the messages in a given step into a single signature.

Private inputs: P1 has input x1 ∈ {0, 1}n; P2 has input x2 ∈ {0, 1}n.
Common inputs: Security parameter κ; XOR-tree replication factor ν; garbled circuit
replication factor λ; circuit C(·, ·); hash function H : {0, 1}∗ → {0, 1}κ; pseudorandom gen-

erator G : {0, 1}κ → {0, 1}2(n+νn)κ
; ideal functionalities FΠ

signedOT and
(
λ
1

)
-FΠ

signedOT for
EU-CMPRA signature scheme Π.

1. P1 and P2 define a new circuit C ′(x1, x
1
2, . . . , x

ν
2) = C(x1,

⊕
i∈[ν] x

i
2). Let w1, . . . , wn

denote the input wires of x1 and let wn+(i−1)ν , . . . , wn+iν denote the input wires of xi2.

2. For i ∈ [ν − 1], P2 chooses xi2 ∈R {0, 1}n and sets xν2 := (
⊕

i∈[ν−1] x
i
2)⊕ x2.

3. For j ∈ [λ], P1 chooses sj ∈R {0, 1}κ and computesXj
w1,0
‖Xj

w1,1
‖ · · · ‖Xj

wn+νn,0
‖Xj

wn+νn,1
:=

G(sj).

4. P1 and P2 run FΠ
signedOT, where in the ith execution P1 acts as the sender with input

(X1
wn+i,0‖ · · · ‖Xλ

wn+i,0, X
1
wn+i,1‖ · · · ‖Xλ

wn+i,1) and P2 acts as the receiver with input

x
di/ne
2 [i mod ν]. If Pi’s output is abort, it outputs abort.

5. For j ∈ [λ], P1 computes sj
Ĉ
∈R {0, 1}κ and uses sj

Ĉ
as the randomness used to generate

garbled circuit Ĉj , where for i ∈ [n + νn] the labels for input wire wi are Xj
wi,0

and

Xj
wi,1

. P1 computes cj
Ĉ

:= H(GCj) and sends (cj
Ĉ
,Sign(cj

Ĉ
)) to P2, who checks that

the signature is valid; if not, P2 outputs abort.
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6. For i ∈ [n] and j ∈ [λ], P1 computes cjwi,0 := H(Xj
wi,0

) and cjwi,1 := H(Xj
wi,1

), and
sends (cwi,b,Sign(cwi,b)), (cwi,b̄,Sign(cwi,b̄)) to P2, where b ∈R {0, 1}. P2 checks that
the signatures are valid; if not, P2 outputs abort.

7. P1 and P2 run
(
λ
1

)
-FΠ

signedOT with P1 as the sender and P2 as the receiver. P2 uses

γ ∈R [λ] as its input and P1 uses ({si, siĈ}i∈[λ]\{j}, {Xj
wi,x1[i]}i∈[n]) as its jth input. If

Pi’s output is abort, it outputs abort.

8. P2 does the following:

• For j ∈ [λ]\{γ}, i ∈ [n], and b ∈ {0, 1}, P2 checks that H(Xj
wi,b

) = cjwi,b. If not,
P2 sets key := InvalidDecommitment and moves to Step 12.

• For j ∈ [λ]\{γ}, P2 uses sj and sj
Ĉ

received from
(
λ
1

)
-FΠ

signedOT to check that

Ĉj is a correctly garbled circuit and that H(Ĉj) = cj
Ĉ

. If not, P2 sets key :=
InvalidCircuit and moves to Step 12.

• For j ∈ [λ]\{γ}, P2 checks that the labels received in FΠ
signedOT match the labels

generated by sj received in Step 7. If not, P2 sets key := SelectiveOTAttack and
moves to Step 12.

9. Let ((γ,mγ), σ) be P2’s output of
(
λ
1

)
-FΠ

signedOT. P2 sends (γ, σ) to P1, who checks
that the signature is valid and otherwise outputs abort.

10. P1 sends (Ĉγ ,Sign(Ĉγ)) to P2, who checks that the signature is valid; if not, P2 outputs
abort.

11. P2 checks that H(Ĉγ) = cγ
Ĉ

. If not, P2 sets key := InvalidCircuitHash and moves to
Step 12.

12. If any of the above checks fail, P2 computes Cert := Blame(id1, key,View2), publishes
Cert, and outputs corrupted1. Otherwise, P2 uses the labels to compute C ′(x1, x

1
2, . . . , x

ν
2)

and outputs the result.

The Blame and Judgment algorithms described below are straightforward.

Blame outputs the relevant parts of the view, including the cheater’s signatures:

Input: Cheating identity id, error key key, and view View.
Output: A certificate of cheating Cert = (id, key,msg).

• If key = InvalidDecommitment, set msg := (c, o,X, σ, σ′), where (c, o) is the invalid
commitment-decommitment pair of label X (i.e., X 6= Open(c, o)), σ is the signature
of c obtained in Step 6, and σ′ is the signature obtained in the signed-OT in Step 7.
Output (id, key,msg).

• If key = InvalidCircuit, set msg := (Ĉ, {X}, σ1, σ2), where Ĉ is the invalid garbled circuit
received in Step 5, {X} are the labels received in Step 7, σ1 is the signature of the
invalid garbled circuit received in Step 5, and σ2 is the signature of the labels received
in Step 7. Output (id, key,msg).

• If key := SelectiveOTAttack, set msg = (m, {X}, σ1, {σ}), where m is the bitstring
received in the signed-OT in Step 4 and σ1 is the associated signature, and {X} and
{σ} are the labels and associated signatures sent in Step 7. Output (id, key,msg).

• If key = InvalidCircuitHash, set msg := (cγ
Ĉ
, Ĉγ , σ, σ

′), where (cγ
Ĉ
, σ) is the commitment

to Ĉγ and associated signature sent in Step 5, and (Ĉγ , σ
′) is the circuit and signature
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sent in Step 10. Output (id, key,msg).

• Otherwise, output ⊥.

Judgment checks that the signatures output by Blame are valid:

Input: A certificate of cheating Cert = (id, key,msg).
Output: The cheating identity id, or ⊥.

• If key = InvalidDecommitment, parse msg as (c, o,X, σ, σ′), and check thatX 6= Open(c, o),
σ is a valid and appropriate signature of c signed by id, and σ′ is a valid and appropriate
signature containing o and signed by id. If so, output id; otherwise output ⊥.

• If key = InvalidCircuit, parse msg as (Ĉ, {X}, σ1, σ2), and check that Ĉ is indeed an
invalid garbled circuit using input-wire labels {X}, and σ1, σ2 are valid and appropriate
signatures signed by id. If so, output id; otherwise output ⊥.

• If key = SelectiveOTAttack, parse msg as (m, {X}, σ1, {σ}), check that the signatures
are valid, and check that there is indeed a mismatch between the labels in m and {X}.
If so, output id; otherwise output ⊥.

• If key = InvalidCircuitHash, parse msg as (c, Ĉ, σ, σ′), check that the signatures are valid,

and check that H(Ĉ) 6= c. If so, output id; otherwise output ⊥.

• Otherwise, output ⊥.

Theorem 4.4. Let λ ∈ poly(κ) and ν ∈ poly(κ) be parameters to the protocol,

and set ε := (1 − 1/λ)(1 − 2−ν+1). Let f be a polynomial sized function, let H be

a random oracle, let FΠ
signedOT and

(
λ
1

)
-FΠ

signedOT be the
(

2
1

)
-signed-OT and

(
λ
1

)
-

signed-OT ideal functionalities, respectively, where Π is an EU-CMPRA signature

scheme. Then the protocol above securely computes f in the presence of (1) an

ε-PVC adversary corrupting P1 and (2) a malicious adversary corrupting P2.

Proof. The proof closely follows that of Aumann and Lindell [19, §6.2]. Let SĈ(1κ, y,Φ(C))

be a garbled circuit simulator, which takes as input the security parameter 1κ, an

output bitstring y, and circuit leakage Φ(C), and outputs a garbled circuit Ĉ which

is indistinguishable from a correctly garbled circuit with output y [56]. We use SĈ

in the proof for a corrupted P2 below.

Clearly, the protocol is non-halting by inspection: an honest party only outputs
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corrupted if it detects deviation from the protocol by the other party; this only

happens if the other party is malicious.

The rest of the proof involves four steps. We first demonstrate a simulator for

a corrupted P2 and prove that this simulator produces a transcript indistinguishable

from an adversary running the real protocol. We then proceed to show a simulator

for a corrupted P1. We then prove the accountability and defamation-free properties

required by the PVC security model.

P2 is corrupted. Let A be a ppt malicious adversary corrupting P2. We construct

a simulator S as follows:

1. S acts like P1 up through Step 3.

2. In Step 4, S receives A’s inputs to FΠ
signedOT and proceeds as follows:

(a) IfA’s input is abort, then S sends abort to the trusted party and simulates

P1 aborting, outputting whatever A outputs.

(b) If the input is a bit b, then S sends A the appropriate labels generated

in Step 3.

3. S constructs x2 based on A’s inputs to FΠ
signedOT extracted above and sends

x2 to the trusted party, receiving back output y2.

4. S chooses ρ ∈R [λ]. For j ∈ [λ]\{ρ}, S acts like P1 in Step 5. For j = ρ,

S computes Ĉρ ← SĈ(1κ, y2, φ(C)). It then computes c := H(Ĉρ) and sends

(c, SignP1
(c)) to A.

5. S acts as P1 in Step 6.
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6. In Step 7, S receives A’s input to
(
λ
1

)
-FΠ

signedOT and proceeds as follows:

• IfA’s input is abort, then S sends abort to the trusted party and simulates

P1 aborting, outputting whatever A outputs.

• If the input is a choice bit γ, S does the following. If γ 6= ρ, S rewinds

to Step 4 above, unless S has rewound κλ times, it which case it outputs

fail and halts. Otherwise, S inputs ({si, sjĈ}i∈[λ]\{ρ}
, {Xj

wi,r[i]
}
i∈[n]

) as the

jth input to
(
λ
1

)
-FΠ

signedOT, and then proceeds as an honest P1 would.

7. S acts like P1 for the rest of the protocol, outputting whatever A outputs.

The proof that S correctly simulates a malicious P2 follows closely to the proof by

Aumann and Lindell [19] and thus we do not repeat it here.

P1 is corrupted. Let A be a ppt covert adversary corrupting P1. We construct a

simulator S as follows:

1. S acts as P2 up through Step 3.

2. In Step 4, S receives A’s inputs to FΠ
signedOT and proceeds as follows:

(a) If A inputs abort in any iteration, S sends abort to the trusted party and

simulates P2 aborting, outputting whatever A outputs.

(b) Otherwise, S parses the inputs as mn tuples where the i tuple is

(X1
wn+i,0

‖ · · · ‖Xλ
wn+i,0

, X1
wn+i,1

‖ · · · ‖Xλ
wn+i,1

).

3. S acts as P2 through Step 6.
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4. In Step 7, S receives A’s input to
(
λ
1

)
-FΠ

signedOT and proceeds as follows:

(a) If A inputs abort, S sends abort to the trusted party and simulates P2

aborting, outputting whatever A outputs.

(b) Otherwise, S parses the input as λ tuples, where the jth tuple is con-

structed as (
{si, sjĈ}i∈[λ]\{j}

, {Xj
wi,x1[i]}i∈[n]

)
.

5. For γ ∈ [λ], S sends γ to
(
λ
1

)
-FΠ

signedOT, receiving back

(
(γ, {si, sγĈ}i∈[λ]\{γ}

, {Xγ
wi,x1[i]}i∈[n]

), σ
)
.

If σ is not a valid signature, S aborts as an honest P2 would, outputting

whateverA outputs. Otherwise, S rewinds to before it sent γ to
(
λ
1

)
-FΠ

signedOT.

At this stage, S has (possibly invalid) openings of all circuits as well as (possi-

bly invalid) labels associated withA’s input. There exist four cases to consider.

We follow similar terminology to that of Aumann and Lindell [19, §6.2]. We

call a legitimate circuit one that can be correctly opened; an illegitimate cir-

cuit is one that cannot be correctly opened. An inconsistent label is one that

differs from the label committed to by P1. An inconsistent wire is a wire such

that for some garbled circuit either the 0-label or the 1-label is inconsistent.

Finally, a totally inconsistent input is one where all of the wires associated

with the share of that input are inconsistent.

(a) There exists an illegitimate circuit. Let Ĉj0 be the first such circuit. S
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sends cheat1 to the trusted party. There are two cases to consider.

i. S receives corrupted1 from the trusted party. Then it chooses γ 6= j0

uniformly at random, and inputs γ to
(
λ
1

)
-FΠ

signedOT, receiving back

the appropriate output. S then simulates P2 aborting due to the

detected cheating, outputting whatever A outputs.

ii. S receives undetected and P2’s input x2 from the trusted party. With

probability p = 1
λ(1−ε) , S chooses γ = j0 and with probability 1 − p

it chooses γ 6= j0 uniformly at random, inputting γ to
(
λ
1

)
-FΠ

signedOT

and receiving back the appropriate output. S then emulates an hon-

est P2 with input x2 for the rest of the protocol execution. Let z

be the resulting output. S sends z to the trusted party and outputs

whatever A outputs.

(b) There exists a totally inconsistent input. Assume without loss of gen-

erality that the ith input bit x2[i] is totally inconsistent and that all

the inconsistent labels are 0-labels. S sends cheat1 to the trusted party.

There are two cases to consider.

i. S receives corrupted1 from the trusted party. S chooses bits for

the wires wn+(i−1)ν+1, . . . , wn+iν−1 uniformly at random subject to

all wires not being one. Let wire wk be the first zero wire and let Ĉj0

be the first garbled circuit with inconsistent labels for wk. S chooses

γ 6= j0 uniformly at random and inputs γ to
(
λ
1

)
-FΠ

signedOT, receiving

back the appropriate output. S then emulates an honest P2 aborting
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and outputs whatever A outputs.

ii. S receives undetected and P2’s input x2 from the trusted party. S

sets the shares of the ith input and the OT choice γ as follows:

• With probability p = 2−m+1/(1− ε), S sets the wires wn+(i−1)ν+1,

. . . , wn+iν−1 to one and sets wn+iν := x2[i]⊕⊕t∈[m−1] wn+(i−1)ν+t.

S sets γ ∈R {0, 1}λ.

• With probability 1− p, S sets the wires wn+(i−1)ν+1, . . . , wn+iν−1

to a uniformly random value subject to all wires not being one,

and sets wn+iν := x2[i]⊕⊕t∈[m−1]wn+(i−1)ν+t. Let wk be the first

wire that is set to zero, and let j0 be the first circuit such that

the label of wk is inconsistent. S sets γ := j0.

S inputs γ to
(
λ
1

)
-FΠ

signedOT, receiving back the appropriate output.

S then continues by emulating an honest P2 using the shares chosen

above, and outputs whatever A outputs.

(c) S reaches this case if all circuits are legitimate and there exist no totally

inconsistent inputs. However, there may still be inconsistent wires. S

proceeds as follows. It chooses a random value for each inconsistent wire

and checks if the given value corresponds to an inconsistent label. There

are two cases to consider.

i. S chooses bits with inconsistent labels. Let wk be the first wire

with an inconsistent label, and let Ĉj0 be the first circuit with said

inconsistent label. S sends cheat1 to the trusted party. Again, we
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have two cases.

A. S receives corrupted1 from the trusted party. It chooses γ 6= j0

uniformly at random and inputs γ to
(
λ
1

)
-FΠ

signedOT, receiving

back the appropriate output. S then simulates P2 aborting, out-

putting whatever A outputs.

B. S receives undetected and x2 from the trusted party. S chooses

bits for the consistent wires at random subject to the shares

equaling x2[i]. With probability p = 1/λ
1−ε the simulator S sets

γ := j0 and with probability 1−p the simulator S chooses γ 6= j0

uniformly at random. S inputs γ to
(
λ
1

)
-FΠ

signedOT, receiving back

the appropriate output, and continues by emulating an honest P2

using the shares chosen above, and outputs whatever A outputs.

ii. S chooses bits with consistent labels. Thus, the circuits and labels

S receives from A are equivalent to those sent by an honest P1, and

thus S proceeds as follows. S chooses γ ∈R [λ] and sends γ to
(
λ
1

)
-

FΠ
signedOT, receiving back the appropriate output. If the signatures

output by
(
λ
1

)
-FΠ

signedOT are invalid, then S sends abort to the trusted

party and simulates P2 aborting, outputting whatever A outputs.

Otherwise, if there is any other inconsistency, S sends corrupted1 to

the trusted party and simulates P2 aborting, outputting whatever A

outputs.

6. S acts as P2 in Steps 9 through 11.
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7. S uses the circuit openings retrieved during the rewinding to open the circuit

Ĉγ and extracts A’s input x′1. S then sends x′1 to the trusted party, along with

the continue message, and outputs whatever A outputs.

The proof that S correctly simulates a covert P1 follows closely to the proof by

Aumann and Lindell [19], and thus we do not repeat it here.

Accountability. Let A be a ppt covert adversary corrupting party P1 and fix

inputs x1, x2 such that Output(Execπ,A(z)(x1, x2; 1κ)) = corrupted1. The fact that

Pr[Judgment(Cert) = id1] > 1 − negl(κ) follows directly from the construction and

the Blame and Judgment algorithms. Namely, at any point that A is detected

cheating, P2 has proof of such cheating by way of A’s signatures on the messages it

sent.

Defamation-free. Let A be a ppt adversary corrupting P2 (the case where A

corrupts P1 is similar). We show that Pr[Judgment(Cert) = id1 : Cert ← A] <

negl(κ). This follows from the security of the underlying EU-CMA signature scheme.

Namely, if there exists an adversary that succeeds with non-negligible probability,

we can convert this directly into an adversary B which breaks the signature scheme.

We construct B as follows.

On input verification key vk, B proceeds by emulating A, playing the role of

an honest P1 with verification key vk and using the signing oracle to compute the

required signatures. If A outputs Cert such that Judgment(Cert) = id1, it must

have constructed a signature on some message not queried by P1. Thus, B outputs

this message and the associated signature, succeeding with the same probability as

110



A.

The total communication cost of our optimized protocol is

Cost(signed-OT/signed-OT extension) (Step 4)

+ λκ+ τ (Step 5)

+ 2nλκ+ τ (Step 6)

+ τ(3 + 2λ+ 11(λ− 1)) + λ(2κ(λ− 1) + nκ) (Step 7)

+ log(λ) + τ (Step 9)

+ 2κ|GC |+ τ. (Step 10)

Using our AES circuit example, we find that the total communication cost is now 2.5

Mb, plus the cost of signed-OT/signed-OT extension. In this particular example,

signed-OT requires around 1 Mb and signed-OT extension requires around 1.4 Mb.

However, as we show below, as the number of OTs required grows, signed-OT ex-

tension quickly outperforms signed-OT, both in communication and computation.

4.5 Evaluation

We now compare our signed-OT extension construction (including optimizations,

and in particular, the signature batching optimization) with the signed-OT proto-

col of Asharov and Orlandi [20], along with a comparison of existing covert and

malicious protocols and our PVC protocol using both signed-OT and signed-OT

extension. All comparisons are done through calculating the number of bits trans-
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ferred and estimated running times based on the relative cost of public key versus

symmetric operations. We use a very conservative (low-end) estimate on the pub-

lic/symmetric speed ratio. We note that this ratio does vary greatly across plat-

forms, being much higher on low power mobile devices, which often employ a weak

CPU but have hardware AES support. For such platforms our numbers would be

even better.7

Recall that τ is the field size (in bits), ν is the XOR-tree replication factor, λ is

the GC replication factor, n is the input length, and we assume that each signature

is of length τ .

Communication cost. We first look at the communication cost of the two pro-

tocols. The signed-OT protocol of Asharov and Orlandi [20] is based on the mali-

ciously secure OT protocol of Peikert et al. [48], and inherits similar costs. Namely,

the communication cost of executing ` OTs each of length n is (6`+ 11)τ if n ≤ τ ,

and (6`+ 11)τ + 2n` if n > τ . Signed-OT requires the additional communication of

a signature per OT, adding an additional τ` bits. In the underlying secure computa-

tion protocol we have that n = λκ, where λ is the garbled circuit replication factor.

For simplicity, we set λ = 3 (which along with an XOR-tree replication factor of

three equates to a deterrence factor of ε = 1/2) and thus n = 3κ. Thus, the total

communication cost of executing t signed-OTs is τ (7t + 11) bits if 3κ ≤ τ and

τ (7t + 11) + 6κt bits otherwise.

7The code for computing the numbers in the subsequent figures can be found at https://gist.
github.com/amaloz/82367afc83ff4c41d6df.
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On the other hand, the cost of signed-OT extension for t OTs is

(6`+ 11)τ + 2`t (Step 1)

+ `t (Step 2)

+ µ` log `+ 4µ`κ (Step 3)

+ κ log `+ (n+ κ)t+ τ. (Step 4)

Asharov et al. [49, §3.2] present concrete choices of µ and ` for various security

parameters. However, in our setting we need to increase ` by κ bits. Thus, let `′

be the particular choice of ` specified by Asharov et al.; we set ` = `′ + κ. Thus,

for the short security parameter we set ` = 133 + 80 = 213 and µ = 3, and for the

long security parameter we set ` = 190 + 128 = 318 and µ = 2. Thus, the total

communication cost of executing t signed-OTs when using signed-OT extension is

(6`+ 12)τ + (3`+ n + κ)t + µ`log`+ 4µ`κ+ κlog` bits.

Figure 4.6 presents a comparison of the communication cost of both approaches

when executing 1,000 and 10,000 OTs, for various keylength settings and underlying

public key cryptosystems. We see improvements from 1.1–10.3×, depending on the

number of OTs, the underlying public key cryptosystem, and the size of the security

parameter. Note that for a smaller number of OTs (such as 100), signed-OT is more

efficient, which makes sense due to the overhead of OT extension and the need

to compute the base OTs. However, as the number of OTs grows, we see that

signed-OT extension is superior across the board.
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Computational cost. We now look at the computational cost of the two proto-

cols. Let ξ denote the cost of a public key operation (we assume exponentiations

and signing take the same amount of time), and let ζ denote the cost of a sym-

metric key operation (where we let ζ denote the cost of operating over κ bits; e.g.,

hashing a 2κ-bit value costs 2ζ). We assume all other operations are “free”. This is

obviously a very coarse analysis; however, it gives a general idea of the performance

characteristics of the two approaches.

The cost of executing ` OTs on n-bit messages is (14` + 12)ξ if n ≤ τ and

(14` + 12)ξ + 2`n
κ
ζ if n > τ . Signed-OT requires an additional 2`ξ operations (for

signing and verifying). We again set n = 3κ, and thus the cost of executing t

signed-OTs is (16t + 12)ξ if 3κ ≤ τ and (16t + 12)ξ+ 6tζ otherwise.

The cost of our signed-OT extension protocol for t OTs (where we assume

t > κ and we hash the input prior to signing in Step 4) is

`

κ
tζ + (14`+ 12)ξ + 2`

t

κ
ζ (Step 1)

+ 6`µ
t

κ
ζ (Step 3)

+ 2 log `ζ + 2t
`+ n+ κ

κ
ζ + 2ξ. (Step 4)

As above, we set ` = 213 and µ = 3 for the short security parameter, ` = 318 and

µ = 2 for the long security parameter, and n = 3κ. Thus, the cost of executing t

signed-OTs is (14`+ 14)ξ+((5 + 6µ) `
κ
+8)tζ + 2log`ζ.

Figure 4.7 presents a comparison of the computational cost of both approaches

when executing 1,000 and 10,000 OTs, for various keylength settings and underlying

114



public key cryptosystems. Here we see that regardless of the number of OTs and

public key cryptosystem used, signed-OT extension is (often much) more efficient,

and as the number of OTs increases so does this improvement. For as few as 1,000

OTs we already see a 3.5–5.1× improvement, and for 10,000 OTs we see a 30.9–

42.4× improvement.

Comparing covert, PVC, and malicious protocols. We now compare the

computation cost of our optimized PVC protocol, using both signed-OT and signed-

OT extension, with the covert protocol of Goyal et al. [50] and the malicious protocol

of Afshar et al. [21], which are the most efficient protocols for their respective security

models that we are aware of.

The cost of Goyal et al.’s protocol is λ10|GC |ζ+λ4(νn+n)ζ+λ(2νn+2n)ζ+

(λ−1)10|GC |ζ+(λ−1)4(νn+n)ζ+(4|GC |+n+νn)ζ+Cost(OT extension), where

we use the malicious OT extension of Asharov et al. [49].8

The cost of Afshar et al.’s protocol [21] is Cost(ρ OTs)+Cost(OT extension)+

ξ + 4nξ + ρ(6nξ + 9nζ + 8|GC |ζ) + ρ/2(8|GC |ζ) + ρ/2(5nζ + 2nξ + 2|GC |ζ) + nξ.

8While one can use the covert OT extension of Asharov et al. [49], this decreases the deterrence
factor and thus the GC and/or XOR-tree replication factor must be increased to maintain a
deterrence factor of ε = 1/2.
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The cost of our optimized protocol is

2λ(νn+ n)ζ (Step 3)

+ Cost(λn signed-OTs on λκ-bit inputs) (Step 4)

+ 10λ|GC |ζ + 2(λζ + ξ) (Step 5)

+ 2λnζ + 2(2λnζ + ξ) (Step 6)

+ Cost(1-out-of-λ signed-OT on (2(λ− 1) + n)κ-bit inputs) (Step 7)

+ (λ− 1)(2n+ 10|GC |+ 2(νn+ n))ζ (Step 8)

+ 2|GC |ζ + 2ξ (Step 10)

+ 2|GC |ζ, (Step 12)

where we assume that all signed values are first hashed. Using the 1-out-of-λ signed-

OT protocol of Asharov and Orlandi [20, Protocol 2], we have a cost of 12(λ−1)ξ+

2ξ+4λξ+2( (4λ+2)τ
κ

ζ+ξ)+2(λ+1)(2(λ−1)+n)ζ+2ξ in Step 7. For the signed-OTs

in Step 4 we use the costs computed previously.

Figure 4.8 presents a comparison of the computation cost of our protocol using

both signed-OT (OurssOT) and signed-OT extension (OurssOT-ext), as well as com-

parisons to the Goyal et al. protocol (GMS) and Afshar et al. protocol (AMPR).

We fix κ = 128, λ = ν = 3 (giving a deterrence factor of ε = 1/2), and assume

the use of elliptic curve cryptography (and thus τ = 256). We expect public key

operations to take between 125–1250× more than symmetric key operations, de-

pending on implementation details, whether one uses AES-NI, etc. This range is a
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very conservative estimate using the Crypto++ benchmark [59], experiments using

OpenSSL, and estimated ratios of running times between finite field and elliptic

curve cryptography [57].

When comparing against GMS, we find that OurssOT-ext is slightly more ex-

pensive, due almost entirely to the larger number of base OTs in the signed-OT

extension. We note that in practice, however, a deterrence factor of 1/2 may not be

sufficient for a covert protocol but may indeed be sufficient for a PVC protocol, due

to the latter’s ability to “name-and-shame” the perpetrator. When increasing the

deterrence factor for the covert protocol to ε ≈ .9, the cost ratios favor OurssOT-ext.

For example, for 16×16 matrix multiplication, the ratio becomes 3.60–3.53× (versus

1.00–0.98×), depending on the cost of public key operations.

Comparing OurssOT-ext with OurssOT, we find that the former is 1.0–86.7×

more efficient, depending largely on the characteristics of the underlying circuit. For

circuits with a large number of inputs but a relatively small number of gates (e.g.,

16384-bit Comp., Hamming 16000, and 1024-bit Sum) this difference is greatest,

which makes sense, as the cost of the OT operations dominates. The circuits for

which the ratio is around 1.0 (e.g., 1024-bit RSA) are those that have a huge number

of gates compared to the number of inputs, and thus the cost of processing the GC

far outweighs the cost of signed-OT/signed-OT extension.

Finally, comparing OurssOT-ext with AMPR, the former is 9.6–567.2× more

efficient, again depending in a large part on the characteristics of the circuit. For

example, for the Hamming 16000 circuit, we get an improvement of 67.4–399.7×.

These results demonstrate that for settings where public shaming is enough of a

117



deterrent from cheating, OurssOT-ext may present a better security/efficiency trade-

off than existing malicious protocols.
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P1’s inputs: Messages {(X0
j , X

1
j )}

j∈[m]
where X0

j , X
1
j ∈ {0, 1}n; signing key sk.

P2’s inputs: Selection bit vector r ∈ {0, 1}m; verification key vk.
Common inputs: Security parameter κ; statistical security parameter ρ; number of base
OTs `; number of check functions µ; random oracle G : {0, 1}κ → {0, 1}`; random oracle

H : N× {0, 1}` → {0, 1}n; random oracle H ′ : {0, 1}m → {0, 1}κ; EU-CMA signature scheme
Π = (KeyGen′,Sign′,Verify′); ideal functionality Fot.

1. Initial OT Phase:

• P1 computes s ∈ {0, 1}` as follows. Let I be a set of indices, where |I| = κ. For
i ∈ I, P1 sets si = 0. Then, P1 fills the remaining bits at random.

• For j ∈ [m], P2 chooses kj ∈R {0, 1}κ and sets tj := G(kj).

• Let T be an m× ` matrix, where the jth row is tj and the ith column is ti. Let
V be an m× ` matrix, where the jth row is vj and the ith column is vi. P1 and
P2 run Fot ` times in parallel, where P1 acts as the receiver with input si and
P2 acts as the sender with input (ti, vi).

2. OT Extension Phase (Part I):

• For i ∈ [`], P2 sets ui := ti ⊕ vi ⊕ r, and sends ui to P1.

3. Consistency check of r:

• For i ∈ [µ], P1 chooses function φi : [`]→ [`] uniformly at random, and sends φi
to P2.

• For α ∈ [`], i ∈ [µ], let β := φi(α). P2 computes hb,b
′

α,β := H ′(wαb ⊕ wβb′) for b ∈
{0, 1}, b′ ∈ {0, 1}, where wα0 = tα and wα1 = vα. P2 sends {hb,b

′

α,β}b∈{0,1},b′∈{0,1}
to P1.

• For α ∈ [`], i ∈ [µ], P1 defines β := φi(α) and checks that h
sα,sβ
α,β = H ′(wαsα⊕wβsβ ),

h
s̄α,s̄β
α,β = H ′(wαsα ⊕ wβsβ ⊕ uα ⊕ uβ), and uα 6= uβ . If any check fails, P1 outputs

abort.

4. OT Extension Phase (Part II):

• Let Q be the m× ` matrix where each column qi = (si · (ui⊕ vi))⊕ ((1− si) · ti).
Note that qi = (si · r)⊕ ti and qj = (r[j] · s)⊕ tj .

• Let I be the set defined in Step 1, and let tj,i denote the ith bit in row tj . P1

sends I to P2, who checks that |I| = κ and otherwise aborts.

• For j ∈ [m], P1 computes X̂0
j := X0

j⊕H(j, qj) and X̂1
j := X1

j⊕H(j, qj⊕s) and sig-

natures σ′j ← Sign′sk

(
(I, j, X̂0

j , {tj,i}i∈I)
)

, and σ′′j ← Sign′sk

(
(I, j, X̂1

j , {tj,i}i∈I)
)

,

and sends
(
j, X̂0

j , X̂
1
j , {tj,i}i∈I , σ′j , σ′′j

)
to P2.

• For j ∈ [m], P2 computes Xj := X̂
r[j]
j ⊕H(j, tj).

5. Output:

• P1 outputs ⊥; P2 outputs
{
Xj ,

(
j, r[j], kj , I, X̂

0
j , X̂

1
j , {tj,i}i∈I , σ′j , σ′′j

)}
j∈[m]

.

Figure 4.4: Signed-OT extension, based on the OT extension protocol of Asharov
et al. [49].
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Private inputs: P1 has input x1 ∈ {0, 1}n and P2 has input x2 ∈ {0, 1}n.
Common inputs: Security parameter κ; XOR-tree replication factor ν; garbled circuit repli-
cation factor λ; circuit C(·, ·); commitment scheme ΠCom = (Com,Open); ideal functionalities
FΠ

signedOT and
(
λ
1

)
-FΠ

signedOT for EU-CMPRA signature scheme Π.

1. P1 and P2 define a new circuit C ′(x1, x
1
2, . . . , x

ν
2) = C(x1,

⊕
i∈[ν] x

i
2). Let w1, . . . , wn

denote the input wires of x1 and let wn+(i−1)ν , . . . , wn+iν denote the input wires of xi2.

2. For i ∈ [ν − 1], P2 chooses xi2 ∈R {0, 1}n. P2 sets xν2 := (
⊕

i∈[ν−1] x
i
2)⊕ x2.

3. For j ∈ [λ], i ∈ [n+ νn], and b ∈ {0, 1}, P1 chooses Xj
wn+i,b

∈R {0, 1}κ.

4. P1 and P2 run FΠ
signedOT, where in the ith execution P1 acts as the sender with input

(X1
wn+i,0‖ . . . ‖Xλ

wn+i,0, X
1
wn+i,1‖ . . . ‖Xλ

wn+i,1) and P2 acts as the receiver with input

x
di/ne
2 [i mod ν]. If P2’s output is abort, it outputs abort.

5. For j ∈ [λ], P1 constructs garbled circuit Ĉj of circuit C ′, where for i ∈ [n + νn] the

labels for input wire wi are Xj
wi,0

and Xj
wi,1

. P1 sends (Ĉj ,Sign(Ĉj)) to P2, who checks
that the signature is valid; if not, P2 outputs abort.

6. For i ∈ [n] and j ∈ [λ], P1 chooses b ∈R {0, 1}, computes commitments (cjwi,0, o
j
wi,0

)←
Com(Xj

wi,0
) and (cjwi,1, o

j
wi,0

) ← Com(Xj
wi,1

), and sends (cwi,b,Sign(cwi,b)) and
(cwi,b̄,Sign(cwi,b̄)) to P2, who checks that the signatures are valid; if not, P2 outputs
abort.

7. P1 and P2 run
(
λ
1

)
-FΠ

signedOT with P1 as the sender inputting

({Xi
wp,b
}
i∈[λ]\{j},p∈[n+νn],b∈{0,1}

, {oiwp,b}i∈[λ]\{j},p∈[n],b∈{0,1}
, {Xj

wi,x1[i]}i∈[n]
) as

its jth input and P2 as the receiver inputting γ ∈R [λ] as its input; if P2’s output is
abort, it outputs abort.

8. P2 does the following:

• For j ∈ [λ]\{γ}, i ∈ [n], and b ∈ {0, 1}, P2 checks that Open(cjwi,b, o
j
wi,b

) = Xj
wi,b

.
If not, P2 sets key := InvalidDecommitment and moves to Step 9.

• For j ∈ [λ]\{γ}, P2 uses the input wire keys received from the signed-OT in Step 7

to check that Ĉj is a correctly garbled circuit. If not, P2 sets key := InvalidCircuit
and moves to Step 9.

• For j ∈ [λ]\{γ}, P2 checks that the keys received in the signed-OT in Step 4
match the keys sent by P1 in Step 7. If not, P2 sets key := SelectiveOTAttack and
moves to Step 9.

9. If any of the above checks fail, P2 computes Cert := Blame(id1, key,View2), publishes
Cert, and outputs corrupted1. Otherwise, P2 uses the keys to compute C ′(x1, x

1
2, . . . , x

ν
2)

and outputs the result.

Figure 4.5: The AO PVC protocol [20, Protocol 3].
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1,000 OTs 10,000 OTs

Security sOT sOT-ext Improvement sOT sOT-ext Improvement

Short (FFC) 7,179 2,539 2.8× 71,691 11,305 6.3×
Short (ECC) 1,602 1,398 1.1× 16,002 10,164 1.6×
Long (FFC) 21,538 7,694 2.8× 215,074 20,888 10.3×
Long (ECC) 2,563 2,288 1.1× 25,603 15,482 1.7×

Figure 4.6: Communication cost (in kbits) of transferring the input wire labels for
P2 when using signed-OT (sOT) versus signed-OT extension (sOT-ext) for 1,000
and 10,000 OTs.

1,000 OTs 10,000 OTs

Security sOT sOT-ext Improvement sOT sOT-ext Improvement

Short (FFC) 16.0 3.1 5.1× 160.0 3.8 42.4×
Short (ECC) 5.3 1.1 4.9× 53.3 1.7 30.9×
Long (FFC) 144.1 40.2 3.6× 1440.1 40.7 35.4×
Long (ECC) 14.4 4.1 3.5× 144.1 4.5 31.9×

Figure 4.7: Computation cost (in millions of “time units”) of transferring the input
wire labels for P2 when using signed-OT (sOT) versus signed-OT extension (sOT-
ext) for 1,000 and 10,000 OTs. We assume symmetric-key operations take 1 “time
unit”, FFC (resp., ECC) operations take 1000 (resp., 333) “time units” for the short
security parameter, and FFC (resp., ECC) operations take 9000 (resp., 900) “time
units” for the long security parameter [57].

f # inputs # gates GMS
OurssOT-ext

OurssOT

OurssOT-ext
AMPR

OurssOT-ext

16384-bit Comp. 16,384 32,229 0.85–0.73 17.1–86.7 103.0–533.4
Hamming 16000 16,000 97,175 0.90–0.79 11.0–67.0 67.4–399.7
16×16 Matrix Mult. 8192 4,186,368 1.00–0.98 1.2–3.1 10.8–21.9
1024-bit Sum 1,024 2,977 0.71–0.61 6.7–10.2 41.0–61.5
1024-bit Mult. 1,024 6,371,746 1.00–0.99 1.0–1.2 9.7–10.5
1024-bit RSA 1,024 15,149,856,895 1.00–1.00 1.0–1.0 9.6–9.6

Figure 4.8: Ratio of computation cost of various secure computation protocols with
our signed-OT extension construction, using a deterrence factor of 1/2 for the covert
and PVC protocols. GMS denotes the covert protocol of Goyal et al. [50], OurssOT

denotes the optimized Asharov-Orlandi protocol run using signed-OT, OurssOT-ext

denotes the same protocol using signed-OT extension, and AMPR denotes the pro-
tocol of Afshar et al. [21]. We let f denote the function being computed, # inputs
denote the number of input bits required as input by P2, and # gates denote the
number of non-XOR gates in the resulting circuit. All circuit information is taken
from the PCF compiler [58, Table 5]. We report each ratio as a range; the first
number uses ξ = 125 as the cost of public-key operations and the second number
uses ξ = 1250, where we assume a symmetric-key operation costs ζ = 1.
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Chapter 5: The Input Validity Setting

Even with the significant progress in improving the performance of protocols in

the malicious setting over the last several years, most practical 2PC research still

focuses on the semi-honest setting. We argue that this is due to several reasons. For

one, a slowdown of 40× to achieve security 2−40 is still significant. Moreover, even a

protocol that is secure in the malicious model offers no assurance on its own that the

adversarial party uses a “valid” input (for some definition of valid). Finally, in the

semi-honest setting parties can rely on (some) local computation which can greatly

reduce the size of the circuit that needs to be garbled. In contrast, in the malicious

setting such local computation cannot (in general) be relied upon because there

is no guarantee that an adversary correctly computes said computation. Below,

we describe these latter two issues in more detail and describe how they can be

addressed (inefficiently) using existing protocols before describing our solution.

Input validity. One inherent limitation of the malicious security model is that

a malicious party can choose an arbitrary value as its input. This potentially al-

lows a malicious party to learn a significant amount of information, or violate cor-

rectness (at least in an intuitive sense). As an example of the former, consider a

shortest-path computation where one party holds a weighted graph, the other holds
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a source-destination pair, and both parties learn the length of the shortest path.

By manipulating edge weights, the first party can ensure that it learns the source-

destination pair of the other party. As an example of the latter, consider computing

the average of several temperature readings, where one party uses a temperature of

1000◦C.

One possible solution to this input-validity problem is to let the two parties

verify that the other party’s input is signed by some trusted party, or satisfies some

other predicate. However, verifying a signature can require more than one hundred

billion non-free gates [58]. Recalling that malicious security requires an additional

O(ρ) multiplicative overhead due to cut-and-choose, this approach appears imprac-

tical, especially if the underlying function to be computed is small.

Local computation. One popular technique to improve efficiency in the semi-

honest model is to utilize local computation. Namely, instead of each party sub-

mitting their input directly, each party first performs some local computation on

their input and submits the result of that local computation as input to some secure

computation. (An interactive approach, in which a secure computation is run to

generate intermediate values which are further processed by the parties locally be-

fore further secure computation is done, can also be used.) Some works have shown

that for specific examples this approach improves the running time of (semi-honest)

secure computation by orders of magnitude, including private set intersection [60]

and edit-distance estimation [61]. One common characteristic shared by these works

is that most of the computation is done locally such that the part of the function
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requiring secure computation is significantly, and in many cases asymptotically,

smaller. However, in the malicious setting, local computation is not beneficial at

all, since there is no guarantee that the malicious party provides the correct result

of a local computation starting from some input. Thus, all computation must be

integrated into the secure-computation protocol itself.

Abstracting the problem. We observe that the two problems mentioned above

relate to a common problem where the two parties, holding inputs x and y, respec-

tively, wish to compute a function of the form

f(x, y) := “if f1(x) and f2(y) then g(x, y) else ⊥”,

where f1(·) and f2(·) are (public) predicates on each party’s input and g(·, ·) is the

underlying function the parties would like to compute. Note that this directly cap-

tures the input-validity problem, in that the predicate functions could check validity

however the parties choose to define it. Likewise, for the local-computation problem

we can have the predicates verify that the local computation was done correctly—

something which can often be more efficient than re-doing the computation.

As f(·, ·) is a two-party function, we can compute it securely using any existing

malicious 2PC protocol. We refer to this as the “generic solution.” In this work we

show how it is possible to do much better by using cut-and-choose only on g(·, ·).

For the predicate checks, we use the zero-knowledge-using-garbled-circuits (ZKGC)

approach of Jawurek et al. [62] to evaluate f1(·) and f2(·). This allows us to garble

f1(·) and f2(·) only once, while garbling only g(·, ·) a total of ρ times. Combining
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these protocols in a naive way, however, does not guarantee that a malicious party

uses consistent inputs between the predicate circuits (namely f1(·) and f2(·)) and

the computation circuit (namely g(·, ·)). In order to solve this consistency problem

efficiently, we extend the protocol of Afshar et al. [21], the best known cut-and-

choose-based 2PC protocol we are aware of, to support secure composition with the

ZKGC approach. See details below.

To understand the performance gains of our protocol versus the generic solu-

tion, we present a detailed cost analysis, comparing the computation and commu-

nication costs of our protocol with that of Afshar et al. We obtain savings of up to

≈ 80× in communication and ≈ 56× in computation for many realistic examples.

We refer to Section 5.4 for more details.

Building Blocks

Because our protocol relies heavily on the existing works of Jawurek et al. [62] and

Afshar et al. [21], we briefly recap how these constructions work.

Efficient zero-knowledge using garbled circuits [62]. In a zero-knowledge

proof-of-knowledge (ZKPoK), two parties, a prover and a verifier, have some com-

mon predicate f(·), and the prover would like to demonstrate to the verifier that it

knows some witness w such that f(w) = 1, without revealing w to the verifier. Such

a protocol is a particular case of 2PC, so any generic secure-computation protocol,

with malicious security, could be used. Jawurek et al. [62] showed, however, that

one can do much better, and devised a ZKPoK protocol with essentially the same

cost as a semi-honest garbled-circuit protocol for the predicate f .
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The basic idea is as follows. The verifier sends a garbling of f(·) to the prover,

who evaluates it using the input-wire labels it receives through OT, learning an

output-wire label Z. The prover commits to this value, and then asks the verifier to

open the garbled circuit so the prover can verify that the garbled circuit sent by the

verifier indeed corresponds to the correct predicate f(·). If this is the case, the prover

decommits to reveal Z to the verifier; if Z is the output-wire label corresponding

to ‘1’ then the verifier learns that the prover supplied a valid witness. Security of

the OT implies that the prover’s input w is hidden from the verifier; security of the

garbled circuit implies that the prover cannot learn the correct output-wire label Z

if its witness does not satisfy the predicate.

Efficient malicious two-party computation [21]. Afshar et al. [21] propose an

optimized variant of Lindell’s “fast cut-and-choose with cheating punishment” pro-

tocol [10], which garbles ρ circuits for 2−ρ statistical security (cf. Chapter 2).1 Recall

that the basic idea with Lindell’s protocol is that if any of the evaluation circuits

lead to inconsistent outputs, these inconsistencies can be used to recover the circuit

generator’s input x, allowing the evaluator to locally compute f(x, y). Lindell’s

protocol requires running an additional secure computation protocol for the “cheat-

ing punishment” phase; Afshar et al. show how to remove this (computationally

expensive) step. Their idea is as follows.

The circuit generator P1 begins by committing to its input bits using a specific

ElGamal commitment scheme. Namely, for all i ∈ [n1], where n1 is P1’s input length,

1While Afshar et al. also show how their protocol can be used to provide non-interactive secure
computation, we do not utilize this property in our setting.
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P1 computes EGCommith(x[i]; r) = (gr, hrgx[i]), where h = gw for some secret value

w known to P1, and sends these commitments to P2. Note that if the evaluator P2

learns w it can break the commitments and thus learn x. Party P1 then constructs

garbled circuits such that if P2 learns both output-wire labels in an evaluation

circuit, then it learns w. Thus, if P1 tries to cheat, P2 can recover w and thus learn

P1’s input, allowing P2 to compute f(x, y) locally. Party P1’s input consistency is

enforced by having P1 prove that the input-wire labels it provides for the evaluation

circuits are commitments to the bits P1 initially committed to.

Our Contribution

In this work, we combine the works of Jawurek et al. [62] and Afshar et al. [21] to

handle functions with predicate checks on each party’s input. The parties first prove

(in zero-knowledge) that their inputs satisfy the requisite predicate, and if so, the

parties compute the underlying function. The main technical difficulty is devising a

mechanism for tying together the inputs of the predicate checks with the inputs to

the underlying computation function. Namely, we need to enforce that, for example,

the input P1 supplies to f1(·) is the same input used when computing g(·, ·). We

describe how we do this for each party in turn.

Enforcing consistency on P1’s input. Recall that in the protocol of Afshar et al.,

P1 commits (using a specific ElGamal commitment scheme) to each individual input

bit of its input x at the beginning of the protocol, and then proves in zero-knowledge

that the input-wire labels it provides to the evaluation circuits are commitments to

those same input bits. Thus, in order to support input consistency across f1(·) and
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g(·, ·) we need to somehow enforce that P1’s inputs to f1(·) are the same as those it

committed to initially. However, f1 is garbled by P2, and thus it is not immediate

how to enforce this without allowing P1 to equivocate on its input. We solve this

by using a specific ElGamal-based OT protocol which works with the ElGamal

commitment scheme used by P1. Namely, the ElGamal commitments to x[i] sent

by P1 are used to construct P2’s OT messages encoding the input-wire labels to the

garbling of f1(·); P1 can only recover those wire labels associated with the bit values

it committed to.

In more detail, recall that P1 commits to its input bits using the commitment

scheme (A,B) = (gr, hrgb) := EGCommith(b; r). Letting s and t be random elements

in Zp, note that if b = 0 then the tuple (g, gr, gsht, AsBt) is a Diffie-Hellman tuple.

Likewise, if b = 1 then the tuple (g, gr, gsht, As(B/g)t) is a Diffie-Hellman tuple.

Thus, letting (Ai, Bi) be the ElGamal commitment of input bit x[i], P2 can encode

the ith input-wire labels Xi,0, Xi,1 to the garbling of f1(·) as

(Âi,0, B̂i,0)← (gsi,0hti,0 , (Ai)
si,0(Bi)

ti,0 ·Xi,0)

(Âi,1, B̂i,1)← (gsi,1hti,1 , (Ai)
si,1(Bi/g)ti,1 ·Xi,1),

for random si,0, ti,0, si,1, ti,1, and send Âi,0, B̂i,0, Âi,1, B̂i,1 to P1, who can only recover

one of the two wire labels based on which value x[i] it committed to.

Note that this OT protocol is not maliciously secure in the sense that a simu-

lator cannot extract P2’s inputs. This is okay in our setting, as the garbling of f1(·)

is fully opened later in the protocol, and thus we can recover the wire labels in that
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step.

Another issue is that when proving security for a malicious P1, the simulator

needs to be able to extract P1’s input x. In the protocol of Afshar et al., this

extraction happens when P1 sends the garbled circuits to P2: the simulator can

learn w and thus break the commitments sent by P1. However, in our protocol we

need to extract x earlier, and in particular, in the phase where we check whether

f1(x) = 1. We do this by having P1 prove in zero-knowledge that it knows the

exponent of h used in the commitments. When simulating, we can extract this

exponent and break the commitments, learning P1’s input.

Enforcing consistency on P2’s input. In this step we need to enforce that P2’s

input y is consistent between f2(·) and g(·, ·). Note that P1 garbles both of these

functions: f2(·) is garbled once and g(·, ·) is garbled ρ times, with around half being

used as evaluation circuits and the other half being checked. Thus, we can use OT

to enforce consistency by having P1 input as the sender P2’s input-wire labels for

f2 and the input-wire labels for the ρ garblings of g. However, we have the added

challenge that P1 needs to open various pairs of messages to (1) check that f2 is

correctly garbled and (2) check that the check circuits of g are correctly garbled.

We handle these two issues as follows. All the input-wire labels for each

circuit are generated from some seed: for the f2 garbling we use seed0 and for the

jth garbling of g we use seedj. Now, when opening f2 party P1 can send seed0 to

P2, who can check correctness, and likewise for the jth garbling of g. However, this

approach as described has a selective-failure attack in that P1 can use, for example,
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an invalid 0-bit input-wire label as input to the OT for the ith input. If P2’s ith

input is zero it aborts (since the input-wire label it receives is invalid) and otherwise

it succeeds, allowing P1 to learn the ith bit of P2’s input. This can be fixed by

applying the XOR-tree approach of Lindell and Pinkas [8] (cf. Chapter 2).

5.1 Preliminaries

Besides the notation introduced in Chapter 2, we let n1 denote the length of P1’s

input, n2 the length of P2’s input, and n3 the output length.

Two-party functionality for enforcing predicate checks. We consider a reac-

tive two-party functionality F2pc of a certain form, where each party’s input must

satisfy some predicate function before some underlying function (computed on both

parties’ inputs) is run. In case a party’s input does not satisfy the necessary predi-

cate, the functionality outputs ⊥ to the other party.

The functionality begins by taking either an input x or ⊥ from P1; if the

functionality receives x such that f1(x) = 1 then it sends an ok message to P2 and

waits for either an input y or ⊥ from P2, and otherwise it halts. Likewise, if the

functionality receives y such that f2(y) = 1 from P2 then it sends an ok message

to P1 and otherwise it halts. If both parties send valid inputs to the functionality,

then it waits for a continue message from P1, at which point it outputs g(x, y) to P2

and halts. See Figure 5.1 for the formal description.

F2pc is slightly weaker than the non-reactive functionality F ′2pc that accepts

inputs x and y from the two parties, and then returns ⊥ to both parties if either
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Functionality F2pc

Private inputs: P1 has input x ∈ {0, 1}n1 and P2 has input y ∈ {0, 1}n2 .
Common input: Circuit C0 : {0, 1}n1 × {0, 1}n2 → {0, 1}n3 , where

C0(x, y) := if f1(x) and f2(y) then g(x, y) else ⊥.

1. Upon receiving either (input, x) or (input,⊥) from P1, proceed as follows:

• If x was received and f1(x) = 1, then send (received, ok) to P2 and continue.

• If either ⊥ was received or f1(x) = 0, send (received,⊥) to P2 and halt.

2. Upon receiving either (input, y) or (input,⊥) from P2, proceed as follows:

• If y was received and f2(y) = 1, then send (received, ok) to P1 and continue.

• If ⊥ was received or f2(y) = 0, send (received,⊥) to P1 and halt.

3. Upon receiving either (abort) or (continue) from P1, proceed as follows:

• If abort was received, send (output,⊥) to P2 and halt.

• If continue was received, send (output, g(x, y)) to P2 and halt.

Figure 5.1: Functionality F2pc for two-party secure computation with predicate
checks.

Fot On receiver input (choose, i, b) and sender input (transfer, i, {m0
j}, {m1

j}), send

(transferred, i, {mb
j}) to the receiver.

Fzkpok On prover input (prove, h, w), if h := gw then send (verified, h) to the verifier, and
otherwise send (verified,⊥).

Figure 5.2: Ideal functionalities for oblivious transfer (Fot) and zero-knowledge
proof-of-knowledge (Fzkpok).

f1(x) = 0 or f2(y) = 0, and g(x, y) otherwise. In particular, F2pc allows P2 to

learn whether f1(x) = 1 even if f2(y) = 0—something that is not possible when

interacting with the non-reactive functionality F ′2pc just described. In most practical

scenarios, however, we expect that an honest P1 would only ever use an input for

which f1(x) = 1, and so “leaking” that information to an attacker is insignificant.

Additional ideal functionalities. We make use of two additional (standard)

ideal functionalities for oblivious transfer and zero-knowledge proof-of-knowledge of

(h,w) under the relation that h = gw; see Figure 5.2.
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5.2 Our Protocol

Our construction carefully combines Jawurek et al.’s ZK-using-garbled-circuits pro-

tocol [62] with the maliciously secure 2PC protocol of Afshar et al. [21], where the

functions we are interested in are of the form

f(x, y) = “if f1(x) = 1 and f2(y) = 1 then g(x, y) else ⊥”.

We begin by giving a brief intuition before presenting the full protocol description.

P1 begins by choosing some w ∈R Zp which will act as the trapdoor to P1’s

input. P1 commits to its input bits by computing EGCommith(x[i], ri), where h = gw,

for some randomness ri, and P2 uses these commitments to form an OT protocol in

order to transfer the wire labels associated with P1’s input for the garbled circuit of

f1. P1 can evaluate this garbled circuit, learning the output-wire label Zf1 , which it

commits to. Now, P2 can open the garbled circuit, allowing P1 to check correctness

before it decommits to the label it received, allowing P2 to learn whether f1(x) = 1.

The next step is to check that f2(y) = 1. P1 and P2 run OT, where P2

receives both the appropriate input-wire label for the garbled circuit of f2 and the

appropriate input-wire labels for the ρ garbled circuits of g. The input-wire labels

for the jth garbling of g are generated using some seed seedj, and likewise the

input-wire labels for f2 are generated using some seed seed0. Now, P2 evaluates

the garbled circuit of f2, learning output-wire label Zf2 , which it commits to. P1

can now open the garbled circuit by sending seed0, allowing P2 to check correctness
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before it decommits to the label it received, allowing P1 to learn whether f2(y) = 1.

Note that as written, this protocol is subject to a selective-failure attack in that

P1 can input invalid labels into the OT; however, this is easily prevented using the

XOR-tree approach.

Finally, the parties need to compute g(x, y). Note that the input-wire labels

of both parties at this point are fixed: P1 needs to use those input-wire labels corre-

sponding to its commitments at the beginning of the protocol, and P2 needs to use

those input-wire labels corresponding to the labels received in the OT protocol. We

enforce that P1 uses the correct input-wire labels as follows. The input-wire labels

for P1’s inputs are derived by computing hashes of the output of EGCommit. Namely,

the ith input-wire label Xb
j,i for circuit j and bit b is set to H(EGCommith(b; r

b
j,i))

for some randomness rbj,i, where H is a hash function. In addition, P1 sends a

commitment to the output of EGCommit, and provides decommitments for those

values corresponding to its input x, and proves equality between EGCommith(b; r
b
j,i)

and P1’s originally committed inputs EGCommith(x[i], ri). It does this as follows.

Let (ubj,i, v
b
j,i) := EGCommith(b; r

b
j,i), and let (Ai, Bi) := EGCommith(x[i], ri). P2 can

check that (ubj,i, v
b
j,i) commits to the bit committed by P1 originally by having P1

send ri − rbj,i and checking whether gri−r
b
j,i · ubj,i = Ai and hri−r

b
j,i · vbj,i = Bi.

The next challenge is to enforce that if P1 cheats by constructing an invalid

garbling of g in one or more of the ρ garbled circuit it produces, then P2 can recover

w, learn P1’s input x, and compute g(x, y) on its own. Here we follow the approach

of Afshar et al. [21]. P1 garbles g a total of ρ times, where the jth garbled circuit

uses randomness based on some seed seedj. In addition, P1 encrypts information
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for checking consistency of values using some key kj. Now, the parties run OT a

total of ρ times, where P2 learns either seedj or kj. If it learns seedj, then P2 can

check correctness of the circuit, aborting on any inconsistency. If it learns kj, then

P2 can decrypt the information sent by P1 and use this information to evaluate

the garbled circuit and check that evaluation “succeeded”. The point is that if

two or more evaluation circuits “succeed”, then P2 either learns the appropriate

output or there is some inconsistency in the output-wire labels. It can then use

this inconsistency and the information it decrypted to learn w, and thus decommit

the initial commitments made by P1 to its input x. Thus, on any inconsistency in

output-wire labels, P2 learns x and can thus compute g(x, y) itself.

In more detail, each garbling of g has the same set of output wires {Zb
i }. P1

sends output commitments for each output wire of g, where each output commitment

is a secret sharing of its trapdoor w. More concretely, for i ∈ [n3], P1 sends gw
0
i , gw

1
i

to P2, where w0
i + w1

i = w. In addition, it also sends output recovery commitments

gw
0
i+K0

j,i , gw
1
i+K1

j,i for each circuit j, their decommitments w0
i +K0

j,i, w
1
i +K1

j,i, along

with encryptions of Kb
j,i under Zb

i . Now, for output-wire label Zb
i recovered by P1,

it learns Kb
j,i by decrypting the encryption and can thus recover wbi . Note that if it

also learns Z1−b
i , it recovers w1−b

i and can thus recover w by computing wbi + w1−b
i ,

allowing it to learn P1’s input x.

Formal description. We now proceed to the formal description of the protocol.

Private inputs: P1 has input x ∈ {0, 1}n1 and P2 has input y ∈ {0, 1}n2 .

Auxiliary inputs: Computational security parameter κ; statistical security parameter ρ;
group G with (prime) order p and generator g; hash function H : {0, 1}∗ → {0, 1}κ; (ex-
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tractable and equivocal) commitment scheme (Com,Open); circuit C0 : {0, 1}n1 × {0, 1}n2 →
{0, 1}n3 , where C0(x, y) := “if f1(x) and f2(y) then g(x, y) else ⊥”; ideal functionalities
Fzkpok and Fot.

Protocol:

Check that f1(x) = 1:

1. If f1(x) = 0 then P1 sends ⊥ to P2, who aborts.

2. P1 chooses w ∈R Zp, computes h := gw, and sends h to P2. P1 then sends (prove, h, w)
to Fzkpok, which sends (verified, h) to P2.

3. P2 constructs garbled circuit Ĉf1 of function f1. Let {Xb
i }
b∈{0,1}
i∈[n1] denote the input-wire

labels.

4. For i ∈ [n1]: P1 computes (Ai, Bi) := EGCommith(x[i]; ri) for random ri, and sends
(Ai, Bi) to P2. Denote these as P1’s input commitments.

5. For i ∈ [n1]: P2 computes

(Â0
i , B̂

0
i ) := (gs

0
i ht

0
i , A

s0i
i B

t0i
i ·X0

i )

(Â1
i , B̂

1
i ) := (gs

1
i ht

1
i , A

s1i
i (Bi/g)t

1
i ·X1

i ),

for random s0
i , t

0
i , s

1
i , t

1
i , and sends Â0

i , B̂
0
i , Â1

i , and B̂1
i to P1.

6. For i ∈ [n1]: P1 computes X
x[i]
i := B̂

x[i]
i /(Â

x[i]
i )ri .

7. P2 sends Ĉf1 to P1, who evaluates it using input-wire labels X
x[i]
i , learning output-

wire label Zf1 . P1 computes (cf1 , df1) ← Com(Zf1), where Com is an equivocal and
extractable commitment scheme, and sends cf1 to P2.

8. P2 sends {s0
i , t

0
i , s

1
i , t

1
i }i∈[n1] to P1, who recovers all the input-wire labels {Xb

i }, using

the labels to check that Ĉf1 was constructed correctly and aborting if not. Otherwise,
P1 sends df1 to P2, who computes Zf1 := Open(cf1 , df1). If Zf1 is the 1-bit output-wire

label of Ĉf1 then P2 continues. Otherwise, P2 outputs ⊥.

Check that f2(y) = 1:

9. If f2(y) = 0 then P2 sends ⊥ to P1, who aborts.

10. P1 constructs garbled circuit Ĉf2 of function f ′2(y1, . . . , yρn2
) = f2(

⊕
yi) using seed

seed0 as the initial randomness. Let {Y bi }
b∈{0,1}
i∈[ρn2] denote the input-wire labels.

11. For j ∈ [ρ]: P1 chooses seed seedj ∈R {0, 1}κ and key kj ∈R {0, 1}κ.

12. For j ∈ [ρ], i ∈ [ρn2]: P1 chooses Y 0
j,i ∈R {0, 1}κ and Y 1

j,i ∈R {0, 1}κ using randomness
derived from seedj .

13. For i ∈ [ρn2] the parties run Fot: P2 inputs (choose, i, y[i]) and P1 inputs (transfer, i, (Y 0
i ,

{Y 0
j,i}j∈[ρ]), (Y

1
i , {Y 1

j,i}j∈[ρ])), with P2 receiving (transferred, i, (Y
y[i]
i , {Y y[i]

j,i }j∈[ρ])).

14. P1 sends Ĉf2 to P2, who evaluates it using wire labels Y
y[i]
i , learning output wire label

Zf2 . P2 computes (cf2 , df2) ← Com(Zf2), where Com is an extractable commitment,
and sends cf2 to P1.
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15. P1 sends seed0 to P2, who uses seed0 to regenerate Ĉf2 and check it was constructed
correctly; if not, or if the input-wire labels generated from seed0 do not match those
it received from Fot, then P2 aborts. Otherwise, P2 sends df2 to P1, who computes

Zf2 := Open(cf2 , df2). If Zf2 is the 1-bit output-wire label of Ĉf2 then P1 continues.
Otherwise, P1 outputs ⊥.

Evaluate g(x, y):

16. For i ∈ [n3]: P1 chooses w0
i ∈R Zp, sets w1

i := w − w0
i , computes output commitments

h0
i := gw

0
i and h1

i := gw
1
i , and sends h0

i and h1
i to P2. P2 checks that h0

i · h1
i = h,

aborting if not.

17. For j ∈ [ρ]:

(a) The parties run Fot: P2 inputs (choose, j, b) for b ∈R {0, 1} and P1 inputs
(transfer, j, kj , seedj), with P2 receiving (transferred, j, kj) or (transferred, j, seedj).

(b) For i ∈ [n1], b ∈ {0, 1}: P1 computes (ubj,i, v
b
j,i) := EGCommith(b; rbj,i), where rbj,i

is derived from seedj .

(c) P1 constructs garbling Ĉj of function g′(x, y1, . . . , yρn2) = g(x,
⊕
yj), where P1’s

ith input-wire labels are defined as (H(u0
j,i, v

0
j,i), H(u1

j,i, v
1
j,i)), P2’s ith input-

wire labels are defined as (Y 0
j,i, Y

1
j,i), and the randomness used to construct Ĉj

is derived from seedj . Let {Zbi } be the output-wire labels, which are the same

across each circuit. P1 sends Ĉj to P2.

(d) For i ∈ [n1]: P1 computes (c0j,i, d
0
j,i)← Com(u0

j,i, v
0
j,i), (c1j,i, d

1
j,i)← Com(u1

j,i, v
1
j,i),

and sends {cπj,i, c1−πj,i : π ∈R {0, 1}} to P2.

(e) For i ∈ [n3]: P1 chooses K0
j,i,K

1
j,i ∈R Zp and sends output recovery commitments

h0
i · gK

0
j,i and h1

i · gK
1
j,i and encryptions EncZ0

i
(K0

j,i), EncZ1
i
(K1

j,i) to P2.

(f) Let

Inputsj := {cx[i]
j,i , d

x[i]
j,i }i∈[n1]

InputEqualityj := {ri − rx[i]
j,i }i∈[n1]

OutputDecomj := {(w0
i +K0

j,i, w
1
i +K1

j,i)}i∈[n3].

P1 sends Enckj (Inputsj , InputEqualityj ,OutputDecomj) to P2.

18. For all check circuits j (i.e., where P2 received seedj in Step 17a), proceed as follows:

(a) P2 checks that seedj generates Ĉj and the other values constructed using ran-
domness derived from seedj , and aborts if not.

19. Set cheat := 0. For all evaluation circuits j (i.e., where P2 received key kj in Step 17a),
proceed as follows:

(a) P2 decrypts Enckj (Inputsj , InputEqualityj ,OutputDecomj).

(b) For i ∈ [n1]: P2 computes (ũ
x[i]
j,i , ṽ

x[i]
j,i ) := Open(c

x[i]
j,i , d

x[i]
j,i ) and checks that

(gri−r
x[i]
j,i · ũx[i]

j,i , h
ri−rx[i]j,i · ṽx[i]

j,i ) = (Ai, Bi); if not set cheat := 1.

(c) For i ∈ [n3], b ∈ {0, 1}: P1 checks that gw
b
i+K

b
j,i equals the output recovery

commitments sent by P1; if not set cheat := 1.
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(d) P2 evaluates Ĉj using Y
y[i]
j,i as its input-wire labels and learning output-wire labels

{Zi}. P2 uses these labels to learn the appropriate Kb
j,i values, and uses these to

check that hbj · gK
b
j,i equals the appropriate output recovery commitment sent by

P1; if not set cheat := 1. If this succeeds, P2 marks the circuit as “semi-trusted”.

20. If cheat = 1 then abort. Otherwise, if all the semi-trusted circuits have the same
output-wire labels, P2 outputs that value. Otherwise, let Zj,i and Zj′,i be two differing

output-wire labels for garbled circuits j and j′ and output wire i. P2 can extract w0
i

and w1
i by using the sets OutputDecomj and OutputDecomj′ , and thus learn w, allowing

P2 to decrypt P1’s initial commitments to learn x. P2 then outputs g(x, y).

Theorem 5.1. The protocol above securely realizes F2pc in the (Fot,Fzkpok)-hybrid

model.

Proof. We prove security by constructing simulators for the case that either P1 or

P2 is corrupted.

Malicious P1. Suppose adversary A corrupts P1. We construct a simulator S as

follows.

1. S invokes A on its input.

2. If A sends ⊥ in Step 1, S sends (input,⊥) to F2pc and outputs whatever A

outputs.

3. In Step 2, S receives (prove, h, w) from A. If h 6= gw then S sends (input,⊥)

to F2pc and outputs whatever A outputs.

4. In Step 4, S uses w extracted above to extract x ∈ {0, 1}n1 ∪ {⊥} from the

commitments sent by A, where x = ⊥ if any of the commitments are invalid.

5. S continues to act as an honest P2 would, where if P2 would abort then S

sends ⊥ to F2pc. In Step 8, S checks if either x = ⊥ or f1(x) = 0; if so, S
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sends (input,⊥) to F2pc and outputs whatever A outputs. Otherwise, S sends

(input, x) to F2pc.

6. S extracts A’s input to Fot, and uses these values to open the garbled circuit

sent by A, thus learning the one-bit output-wire label Z1. S sends Com(Z1)

to A.

7. S receives seed0 from A and checks consistency with the values received in Fot

and the garbled circuit. If anything fails, S sends (abort) to F2pc and outputs

whatever A outputs.

8. S continues to act as an honest P2 would. If cheat = 0 in Step 20 then S

sends (continue) to F2pc and outputs whatever A outputs. Otherwise, (i.e.,

cheat = 1), S sends (abort) to F2pc and outputs whatever A outputs.

We now prove that the view of A is computationally indistinguishable in the hybrid

and ideal worlds. We do so by a series of hybrid experiments.

H1. Same as the hybrid-world execution.

H2. Same as H1, except that P2 extracts w from P1’s message to Fzkpok and uses

w to extract P1’s input x.

These two hybrids are indistinguishable by the use of Fzkpok and the security

of the commitment scheme.

H3. Same as H2, except that P2 aborts in Step 8 if f1(x) = 0.
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These hybrids are computationally indistinguishable by the hiding property of

the ElGamal-based oblivious transfer and the security of the garbling scheme.

Namely, in H2, A cannot recover the appropriate input-wire label in Step 5

for those input bits which are incorrectly committed and likewise can only

recover one of the two input-wire labels for those input bits which are correctly

committed. Thus, by the authenticity property of the garbling scheme, A is

unable to recover the one-bit output-wire label Z1 with high probability. Thus,

if A can distinguish between H2, where P2 aborts due to A committing to

an invalid output-wire label, and H3, where P2 aborts regardless of what A

commits to, then this leads to an attack on the authenticity property of the

garbling scheme.

H4. Same as H3, except that P2 aborts if the input-wire labels derived from seed0

do not match those it received from A when simulating Fot.

These two hybrids are statistically indistinguishable by the use of the XOR-

tree. Namely, for A to distinguish between these two hybrids it must correctly

guess P2’s input to Fot. However, as this input is secret shared, A only

succeeds with probability ≤ 2−ρ.

H5. Same as H4, except that P2 aborts if all the evaluated circuits are not correctly

constructed.

These two hybrids are perfectly indistinguishable except that P2 may abort

in H5 and not H4. However, this only happens if A correctly guesses which

circuits will end up as check versus evaluation circuits, which happens with
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probability 2−ρ.

H6. Same as H5, except that P2 uses P1’s extracted input x to compute and output

g(x, y) instead of evaluating the garbled circuits.

These two hybrids are perfectly indistinguishable because if A tries to cheat

in H6 then P2 can extract A’s input and just compute g(x, y) locally and

otherwise P2 retrieves g(x, y) by evaluating the garbled circuits.

As H6 is the same as the ideal world protocol, this completes the proof for a malicious

P1.

Malicious P2. Suppose adversary A corrupts P2. We construct a simulator S as

follows.

1. S invokes A on its input.

2. If S receives (input,⊥) from F2pc, then S sends ⊥ to A and outputs whatever

A outputs.

3. S acts as an honest P1 would, using 0n1 as P1’s input, until Step 7, at which

point S commits to a random value.

4. S continues to act as an honest P1 would, where in Step 8 it opens the gar-

bled circuit sent by A and learns the one-bit output-wire label Z1. If S fails

to open the garbled circuit, it sends ⊥ to F2pc and outputs whatever A out-

puts. Otherwise, it equivocates on its previously sent commitment to make

the committed value equal to Z1.
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5. In Step 9, if A sends ⊥ then S sends ⊥ to F2pc and outputs whatever A

outputs.

6. S extracts y from Fot and proceeds to act as an honest P1 would until Step 14.

Here, if f2(y) = 0 then S sends (input,⊥) to F2pc, outputting whatever A

outputs.

7. S continues to act as an honest P1 would until Step 17a. Here, S extracts

A’s choices as to which circuits are check circuits and which are evaluation

circuits. For check circuit j, S replaces the key kj input to Fot with a random

string.

8. In Step 17, S sends (input, ok) to F2pc, receiving (output, z), and proceeds as

follows:

• For the check circuits, S constructs them as an honest P1 would.

• For the evaluation circuits, S uses fresh randomness to generate every-

thing related to the garbling and garbles a circuit with fixed output

z. It also replaces Com(u
1−y[i]
j,i , v

1−y[i]
j,i ) with commitments to zeros, and

Enc
Z

1−z[i]
i

(K
1−z[i]
j,i ), with encryptions to zeros.

9. S outputs whatever A outputs.

We now prove that the view of A is computationally indistinguishable in the hybrid

and ideal worlds. We do so by a series of hybrid experiments.

H1. Same as the hybrid-world execution.
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H2. Same as H1, except P1 equivocates on the commitment it sends to P2 in Step 7

to be the output of Ĉf1 .

These two hybrids are computationally indistinguishable based on the security

of the equivocal commitment scheme.

H3. Same as H2, except that in Step 15 P1 aborts if f2(y) = 0.

These two hybrids are computationally indistinguishable based on the authen-

ticity property of the garbled circuit.

H4. Same as H3, except that P1 replaces the kj values for the check circuits with

random values and generates the evaluation circuits using fresh randomness.

These two hybrids are perfectly indistinguishable in the Fot-hybrid model.

H5. Same as H4, except that P1 uses 0n1 as its input to the check circuits.

These two hybrids are computationally indistinguishable by the security of the

encryption scheme.

H6. Same as H5, except that P1 replaces the commitments of (u
1−y[i]
j,i, , v

1−y[i]
j,i ) with

commitments to zeros in the evaluation circuits.

These two hybrids are computationally indistinguishable by the security of the

commitment scheme.

H7. Same as H6, except that P1 uses the output z of F2pc to construct fake garbled

circuits with fixed output z for all evaluation circuits.
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These two hybrids are computationally indistinguishable by the security of the

garbling scheme.

H8. Same as H7, except that P1 replaces the output encryptions for all output

bits that do not correspond to z with encryptions of zero.

These two hybrids are computationally indistinguishable by the security of the

encryption scheme.

H9. Same as H8, except that P1 replaces its input with 0n1 in the evaluation

circuits and input commitments.

These two hybrids are computationally indistinguishable by the security of the

ElGamal commitment scheme.

H10. Same as H9, except that P1 replaces the input-wire labels for P2’s input that

do not correspond to y with random strings.

These two hybrids are computationally indistinguishable by the security of the

garbling scheme.

As H10 is the same as the ideal world protocol, this completes the proof for a

malicious P2, and thus the proof of the theorem.

5.3 Protocol Optimizations

We begin by noting a couple of immediate optimizations to our protocol. First

off, assuming the random oracle model, we can instantiate all the commitment

143



operations with a hash function. We also note that we can use privacy-free garbled

circuits [63] with the “half gate” optimization [54] for the garbling of f1 and f2,

taking only one ciphertext per non-free gate. Finally, we can instantiate Fzkpok

efficiently using Schnorr’s protocol [64] and Fot using the OT protocol of Chou and

Orlandi [44] and malicious OT extension [49].

As our protocol requires public key operations for both P1’s and P2’s inputs,

we consider optimizations to reduce the number of exponentiations required. First

off, when P1 computes values of the form gsht in EGCommit, only one exponentiation

is needed since P1 knows w such that h = gw and thus can directly compute gs+wt

(= gsht). For P2, gsht can be computed more efficiently using the “Euclidean

method” described by de Rooij [65]. The high level idea is to apply the following

observation recursively:

gsht = (ghq)shp, q = b t
s
c, p = t mod s.

We also note that for both P1 and P2, most of the exponentiations are fixed-base

exponentiations, which can be computed much more efficiently using pre-computed

tables [66].

We also note that our protocol as written only addresses the situation where

all the input bits are used both in the predicate check stage (i.e., the proofs that

f1(x) = 1 and f2(y) = 1) and the computation stage (i.e., the computation of

g(x, y)), which may not always be the case. When only parts of the input are used

in the predicate check or computation stage, we do not need the heavy machinery
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we use to ensure input consistency between each party’s input in the two stages.

To be more specific, we consider the input of each party as three parts:

1. Input used only in the predicate check stage (denote these inputs as x1, y1);

2. Inputs used in both the predicate check and computation stages (denote these

inputs as x2, y2);

3. Inputs used only in the computation stage (denote these inputs as x3, y3).

For the first case (i.e., inputs x1 and y1) we can use committed OT which allows

us to use OT extension for input x1 and avoid the XOR-tree for input y1. For the

third case (i.e., inputs x3 and y3), we can handle these as in the work of Afshar et

al. [21]; see below for details.

Denote P1’s input by x = (x1‖x2‖x3), P2’s input by y = (y1‖y2‖y3), and the

function to be computed by:

f(x, y) = “if f1(x1, x2) and f2(y1, y2)then g(x2, x3, y2, y3) else ⊥”.

We can construct a protocol for dealing with this extended case as follows. It is the

same as the protocol described in Section 5.2 except with the following changes:

1. For input x1, we can skip the input commitment steps (Steps 4–6) and checking

step (Step 8). This allows us to use a committed OT which works with OT

extension.

2. For input y1, we can skip the XOR-tree (Step 10). Instead, we can use com-

mitted OT as above.
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3. For inputs x2 and y2, these are handled as in our original protocol.

4. When computing g(·, ·), we use EGCommit to ensure the consistency of x3

among computation circuits.

5. For input y3 we do not need the XOR-tree, and can instead use committed

OT during the computation stage.

For several real world examples, these extensions lead to important practical im-

provements; see Section 5.4.

5.4 Evaluation

In this section, we compare our protocol with generic malicious two-party computa-

tion protocols for several example functions to showcase the gains in communication

and computation that our approach gives. In particular, we compare our protocol

with the protocol of Afshar et al. [21], the most efficient and practical malicious

2PC construction that we are aware of. We refer to this protocol as the “generic

solution” in contrast to our solution which is specifically designed for the type of

functions we consider. We evaluate the improvement based on the speedup of both

computation and communication. We do so by calculating the number of symmet-

ric key operations, public key operations, and bytes sent by both our protocol and

the generic solution. While obviously a rough approximation of the actual running

time of an implementation, we believe this gives a good benchmark independent of

implementation details, computer/network configuration, etc.
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While we are aware of more efficient customized protocols for some of the

examples discussed below, these protocols are not as flexible as our approach. For

example, it is usually very difficult, and sometimes even impossible, to change or

even just extend a customized protocol to support secure pre- or post-computation,

which in many real-world settings seems necessary. As an example, consider the

following use-case for private set intersection: a dating application would like to

securely compute the intersection of two peoples’ interests, and then give weights

to the matched items in order to compute some expected match percentage. This

requires some post-processing on the matched items, which existing customized

protocols are unable to do as they reveal the items upon completion of the private

set intersection protocol.

We assume a computational security parameter of κ = 128 and a statistical

security parameter of ρ = 40. We utilize all known garbled circuit optimizations,

including privacy-free garbled circuits [63] for computing the predicate checks, the

“half-gates” optimization [54] for reducing the size of the garbled circuit, elliptic

curve cryptography for smaller public key sizes, etc. If not specified otherwise, we

use γ = 1250 as the ratio between the cost of a public key operation and a symmetric

key operation. (As our protocol makes heavy use of public key operations, a smaller

ratio leads directly to better results for our protocol.) This number is derived from

estimates using the Crypto++ benchmark [59] and OpenSSL, and while this is of

course a rough estimate, we believe it is reasonably accurate for current systems.

Note that we do not separate the cost of, e.g., fixed-base exponentiations and the

exponentiate-and-multiply optimizations as discussed in Section 5.3, which in a real
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implementation would further reduce this ratio.

In what follows we show different examples where input checking improves

the performance of realistic functions. To briefly summarize our findings, we find

that in many applications our improvement yields up to about 56× improvement

in terms of computation and 80× improvement in terms of communication. (The

exact improvement in concrete running time will of course be a combination of these

two improvements depending on the computational power of the parties and the

network throughput.) Although we discuss signature checks and local computation

separately, they can be used together, which makes the predicate circuit larger and

our results better.

5.4.1 Signature Checks on Inputs

One of the main applications of our improved protocol is to efficiently check that

the input of each party is correctly signed by some third party. The motivation here

is that the malicious security model allows an attacker to carefully choose some fake

but consistent input that helps it learn extra information from the other party, such

as by supplying the full universe in a private set intersection computation to learn

the other party’s input. A solution to this problem using existing protocols is to

compute a functionality that first checks a pre-signed signature on the input and then

computes the original function if and only if the signature is valid. However, checking

a signature within a garbled circuit is extremely expensive, and often more expensive

than the underlying computation itself. Our protocol is particularly beneficial here,
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Figure 5.3: Varying the predicate circuit size. We fix the input size of each
party to 5000 bits and the size of computation circuit g(·, ·) to ten million gates,
and vary the size of the predicate circuit for party P1. We use two ratios, γ = 125
and γ = 1250, for the public-key to symmetric-key cost. The curves represent
the communication and computation improvement of our protocol compared to the
generic protocol by Afshar et al., with the vertical lines denoting the sizes of the
circuits for RSA 512, RSA 1024 and RSA 2048.

as it reduces the cost of the signature check by O(ρ) times with only a slight increase

in public key operations required.

In the following, we evaluate our protocol using both “small” and “large” in-

puts. For computing the signature verification, we follow the hash-and-sign paradigm

and first hash the input to a 512-bit digest which we verify, and use SHA-256 as the

underlying hash function.

Signature checks for “small” inputs. Suppose both parties have 5000 bits of

input and P1 also has a signature on its input. The parties would like to compute

a circuit with ten million (non-free) gates if P1’s input is correctly signed.2

2We use a computation circuit with ten million gates to be able to cover many practical circuits.
Using a computation circuit with smaller size only benefits our comparison.
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In Figure 5.3, we show the improvement of this setting for various sizes of the

predicate circuit, from 106 to 1012. Particularly, we highlight three special cases,

where the size of the predicate circuit corresponds to signature verification using

either RSA 512, RSA 1024, or RSA 2048.3 We obtained the sizes for these circuits

using an existing circuit compiler work [58]. As we can see in Figure 5.3, for RSA

512 we are able to achieve an improvement of about 40× for computation and 50×

for communication. For a large enough predicate circuit, such as when using RSA

2048, we are able to achieve up to about 56× speedup in computation and up to

about 80× speedup in communication.

Note that these numbers agree with what we would expect asymptotically. Let

|C| be the size of the predicate circuit. The protocol by Afshar et al. [21] needs to

perform 40·4·|C|+20·4·|C|+20·2·|C| = 280|C| symmetric key operations (to garble

and evaluate the circuits), and send 40 ·2 · |C| = 80|C|κ bits. On the other hand, our

protocol only need to perform 2|C| + 2|C| + |C| = 5|C| symmetric key operations

and send |C|κ bits when using privacy-free garbled circuits and the “half-gates”

optimization. Thus, the asymptotic improvement is 280/5 = 56 for computation

and 80/1 = 80 for communication when calculating the predicate circuit on its own.

Thus, when the predicate circuit is much larger than the computation circuit, these

costs dominate the overall cost and the asymptotic bound is reached.

Signature checks for “large” inputs. In Figure 5.4, we consider a similar sit-

uation as above, but here we vary the input size of P1’s input, using RSA 2048 as

3We use an RSA-based signature scheme because this is the only signature scheme with known
circuit sizes.
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(a) N sized computation circuit
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(b) N logN sized computation circuit

Figure 5.4: Varying the input size. We fix the predicate circuit to be RSA 2048
and vary P1’s input length N from 103–1012 bits, with the size of the computation
circuit based on the input size. The left graph presents the speedup versus the
generic approach for a computation circuit of size N , and the right graph presents
the speedup versus the generic approach for a computation circuit of size N logN .
We present results for both γ = 125 and γ = 1250 for the ratio of public-key to
symmetric-key costs.

the signature scheme. In Figure 5.4(a) the computation circuit is of size N for N

bit input, while in Figure 5.4(b) the computation circuit size is N logN .

We can see that the improvement is about 80 for communication and about

56 for computation up to around 105 input bits. When the input size becomes

more than 107 bits, the improvement for computation is less than 10×, and the

improvement for communication reduces to about 40× for the linear computation

circuit and about 10× for the N logN computation circuit. Note that the main

reason for such a reduction is that as the number of input bits increase the cost
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of checking the signature becomes amortized away, in which case our improvement

becomes less significant.

Note however, that (1) in both cases, our protocol never performs worse than

that of Afshar et al. [21] in terms of computation and improves 10–40× in terms of

communication, and (2) the reduction in the improvement only happens when the

number of input bits is huge (about ten million).

5.4.2 Enforcing Correct Local Computation

Using local computation to reduce the cost of 2PC in the semi-honest model has

been used in several existing works [60, 61]. Our protocol is able to provide some of

these same benefits in the malicious model. Suppose two parties want to compute

f(x, y), which can be represented as h3(h1(x), h2(y)), for some functions h1(·), h2(·),

and h3(·, ·). In the semi-honest setting, we let the parties compute h1(x) and h2(y)

locally and then jointly perform a semi-honest secure computation on h3(·, ·). Here,

the bottleneck is now computing h3(·, ·), as the other computations are all local.

However, in the malicious setting, the advantage of local computation is completely

lost: the result of the local computation cannot be trusted in the malicious setting.

Therefore, a generic malicious protocol needs to compute a circuit that contains

both local computation (h1(·) and h2(·)) and joint computation (h3(·, ·)).

However, using our protocol, we can view predicate checking as a way to

ensure that local computation is done honestly. That is, the two parties first locally

compute H1 = h1(x) and H2 = h2(y). Then they use H1‖x and H2‖y as their
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input to the protocol, using predicate functions f1(H1‖x) := (H1
?
= h1(x)) and

f2(H2‖y) := (H2
?
= h2(y)) and computation function g(x, y) = h3(H1, H2). This

is particularly beneficial when there are more efficient ways of checking that, say,

H1
?
= h1(x), than redoing the local computation itself. For example, checking that

a list of N elements is sorted takes O(N) time whereas sorting a list of N elements

takes O(N logN) time.

Thus, using our protocol improves over generic malicious 2PC for the following

two reasons:

1. We save a factor of O(ρ) on the predicate circuits used to check the local

computation.

2. Since x and y are not used in the underlying computation directly, they do

not require the machinery needed to enforce input consistency. That is, we

only need to ensure the consistency of h1(x) and h2(y), which can be much

smaller than the original input (see the examples below for more details).

We look at three examples of protocols that can be improved using local computa-

tion: (1) private edit distance approximation, (2) solving a linear system, and (3)

private set intersection.

Private edit distance approximation. Wang et al. [61] designed an algorithm to

approximate the edit distance of two genome sequences in the semi-honest setting.

They proposed several optimizations that minimize the circuit for joint computa-

tion. Let N be the number of edits in the genome compared to the reference genome,

and let ε be the relative error we want to achieve with 2−δ failure probability. Dur-

153



0.0 0.2 0.4 0.6 0.8 1.0
Number of Edits in P1’s Input ×106

0.0

0.2

0.4

0.6

0.8

1.0

N
u

m
b

er
of

E
d

it
s

in
P

2
’s

In
p

u
t

×106
[59, 63) [54, 59) [47, 54)

Figure 5.5: Computation improvement for private edit distance approx-
imation. We vary the input size of each party and fix the ratio of public-key to
symmetric-key costs to γ = 1250. F represents a speedup in the range [59, 63),
represents a speedup in the range [54, 59), and ◦ represents a speedup in the range
[47, 54).

ing the local computation, each party hashes each edit to either 1 or −1 and sums

them up, while the joint computation computes the square of the difference between

the two sums. In order to achieve the error mentioned above, we need to compute

this O( 1
ε2

log 1
δ
) times, each time using a new random hash function. Therefore,

local computation is on the order of O(N/ε2 log 1
δ
), while the joint computation

has a circuit of size O( logN
ε2

log 1
δ
). Thus, whereas the generic solution in the ma-

licious setting has a complexity of O
(
ρκ
(
N
ε2

log 1
δ

+ logN
ε2

log 1
δ

))
, our protocol has

only O
(
κN
ε2

+ ρκ logN
ε2

log 1
δ

)
complexity.

We compare the two protocols for a varying number of genome edits, based on

an error rate of 1% with 95% confidence; see Figure 5.5. Our protocol achieves about

79× communication improvements for all combinations we tested, therefore we only

show the computation improvement. We achieve a computation improvement up to
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Figure 5.6: Improvement when solving linear systems. This graph shows the
speedup in terms of computation and communication versus the naive approach
when solving linear systems, where we vary P1’s input size and use γ = 125 and
γ = 1250 as the ratios of public-key to symmetric-key costs.

about 63×, with the exact improvement increasing as we increase the input size of

P1 or P2. Note that the improvement here is greater than the asymptotic bound of

56× described in Section 5.4.1 because here both parties do an input check while in

the previous setting only P1 did an input check. Having P2 also do an input check

leads to additional improvements.

Note that our protocol also works for other algorithms with a similar pattern

as private edit distance approximation, such as heavy hitters, quantiles, etc.

Solving a linear system. Suppose P1 holds an invertible matrix A and P2 holds

a vector b. The two parties want to securely solve the linear system Ax = b.

A naive solution is to perform Gaussian elimination obliviously within the secure

computation, which requires a circuit with O(N3) multiplications. A better solution

in the semi-honest setting is to let P1 compute A−1 locally so that the parties only
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need to perform O(N2) multiplications in the secure computation portion of the

protocol.

When it comes to the malicious setting, we can check that P1 inputs a correct

inverse by checking that A−1A = I. Applying the generic solution gives us a protocol

with complexity O(ρκN3) whereas our protocol achieves a complexity of O(κN3 +

ρκN2).

As shown in Figure 5.6, we achieve an improvement of 10× in terms of com-

munication when the dimension of the matrix is as small as 10. The improvement

reaches the theoretical improvement calculated in Section 5.4.1 when the dimen-

sion increases to about one thousand. The computation improvement also behaves

similarly to the previous example of checking signatures.

Private set intersection. We now evaluate private set intersection following the

approach of Huang et al. [60]. Private set intersection has a predicate circuit of size

N and a computation circuit of size O(N logN). We evaluated our protocol on this

with input size up to one million and found a 1.3× improvement in computation

and communication. While these gains are not as great as the order-of-magnitude

gains for other functions, we note that a 30% improvement in running time is still

significant.

The main reason for a smaller improvement than the order-of-magnitude im-

provements we see in the previous examples is because the predicate circuit is of size

N for N input bits while the computation circuit size is O(N logN). This means

that the cost is dominated by the computation circuit and hence we get smaller
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gains.
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Chapter 6: The Three Party Setting

Research on secure computation has traditionally been divided into two classes:

work focusing on two-party computation (2PC), and work focusing on multi-party

computation (MPC) for an arbitrary number of parties.1 Yet, in practice, it seems

that the most likely scenarios for secure MPC would involve a small number of

parties. In general, as the number of parties increases, the cost of communication

amongst the parties increases as well. In a wide-area network setting, this may have

a huge impact on the running time of the protocol.

6.1 Our Contribution

Motivated by these observations, we initiate the study of efficient three-party compu-

tation (3PC) in the malicious model, tolerating an arbitrary number of corruptions.

We construct the first practical, constant-round protocol for secure three-party com-

putation of Boolean circuits. Our protocol uses player-simulation techniques in order

to compile existing (cut-and-choose-based) 2PC protocols into three-party protocols.

We instantiate our compiler with state-of-the-art 2PC constructions and show that

the addition of a third party comes at the cost of roughly a factor eight overhead over

1Here we are interested in protocols tolerating an arbitrary number of corruptions. One could
further distinguish work on MPC that assumes an honest majority.
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the underlying 2PC protocol in terms of computation, and a factor sixteen overhead

in terms of communication. This running time appears to be superior to existing

state-of-the-art MPC protocols in terms of start-to-finish running time. Of course,

computing the exact overhead requires implementations of both our protocol and the

underlying 2PC protocol, which we leave as future work. As a further optimization

point, our protocol makes only three calls overall to a broadcast channel (one with

each party as sender), as opposed to existing practical MPC solutions (for more

than two parties) which use broadcast for communicating all protocol messages.

This may be important in certain wide-area network settings where communication

(and broadcast specifically) is very expensive. The most efficient instantiation of

our protocol requires the random oracle model. As a downside, our protocol does

not currently support free-XOR [29] or garbled row reduction [53]; we leave such

developments as future work.

Overview of our protocol. Denote the three parties by P1, P2, and P3. The

high-level idea of our construction is to execute a two-party protocol π̂, where one

of the two parties (say P̂1) is emulated by P1 and P2 via a two-party protocol π, and

the other party is played by P3.

Clearly, naively applying the above idea yields an inefficient construction even

when state-of-the-art 2PC protocols are used for π and π̂. Assume, for example, that

the most efficient 2PC protocol is used for both π and π̂, where π simply computes

the circuit of P̂1 among P1 and P2. The security of the resulting construction follows

trivially from the composition theorem. However, unless the size of the circuit is very

159



small, this approach results in a huge blowup on the overall runtime; in particular,

if t is the time π needs to compute the circuit of P̂1 and t̂ is the time that π̂ needs to

compute the three-party circuit, then the runtime of the above naive construction

is t · t̂, yielding at least a quadratic blowup.

Emulating the garbler versus emulating the evaluator. One might be tempted

to think that, because the role of the circuit evaluator in the protocol is more “pas-

sive” (in the sense that the computation is less complicated) than the circuit garbler,

the most natural approach would be to emulate the evaluator among P1 and P2 (and

have P3 locally do the heavier work doing circuit generation and opening over broad-

cast). This seemingly direct approach fails as one needs a mechanism for P1 and P2

to include their inputs into the garbled circuits. Clearly, doing so by having P1 first

receive its input-wire labels via oblivious transfer (as in the standard garbled circuit

constructions) and then handing them to P2 yields an insecure protocol; indeed, an

adversary corrupting P2 and P3 can then trivially learn P1’s inputs.

Instead, in this work we have P1 and P2 emulate the sender, and we have

P3 play the role of the receiver. More precisely, we adapt the distributed circuit-

garbling technique [67, 68] to the two-party setting, allowing P1 and P2 to compute a

sharing of a garbled circuit which they then reconstruct towards P3. By appropriate

optimizations, we ensure that distributed garbling requires P1 and P2 to compute

and communicate roughly as much as the garbler in an execution of a standard

two-party garbled circuit protocol (plus some oblivious transfer calls per gate); P3

needs to do nothing during the circuit garbling. Most interestingly, our construction
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features a mechanism which allows P3 to receive the labels corresponding to its input

bits for evaluating the garbled circuit by only one invocation of oblivious transfer

per input-bit with each of P1 and P2.

Our distributed garbling scheme is secure against malicious adversaries, which

ensures that an adversary corrupting only one of the parties P1 or P2 cannot produce

a maliciously constructed garbled circuit. In order to protect against an adversary

who corrupts both P1 and P2, we rely on the cut-and-choose technique. We give

concrete instantiations (in the random oracle model) of our protocol using a combi-

nation of two 2PC protocols by Lindell and Pinkas [8, 9], as well as a construction

based on the more recent protocol by Lindell [10] which drastically reduces the

number of circuit garblings required for cut-and-choose.

Interestingly, the cut-and-choose technique does not only protect against cor-

rupting both P1 and P2, but allows a considerable efficiency improvement. More

precisely, it allows us to avoid using costly authenticated shares (towards P3) for

the computed (shared) garbled circuit. Instead, our distributed garbling scheme

outputs, even in the malicious setting, a plain two-out-of-two sum sharing of the

garbled circuit.

Outline. In Section 6.2 we cover preliminary topics. In Section 6.3 we describe

our two-party distributed garbling scheme, and in Section 6.4 we discuss our three

party protocol. In Section 6.5 we show how to instantiate the various two-party

functionalities we utilize in our protocols and in Section 6.6 we compare our protocol

with prior work.
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6.2 Preliminaries

Circuit notation. In this Chapter we follow the circuit notation of Bellare et

al. [56]. Let (n,m, q, L,R,G) ← C be a circuit, where n is the number of input

wires, m is the number of output wires, and q is the number of gates, where each

gate is indexed by its output wire. Thus, the total number of wires in the circuit is

n + q. The numbering of wires starts with the inputs and ends with the outputs;

i.e., we have inputs {1, . . . , n} and outputs {n+ q−m+ 1, . . . , n+ q}. The function

L (resp., R) takes as input a gate index and returns the left (resp., right) input wire

to the gate. We require L(γ) < R(γ) < γ for any gate index γ. The function G

encodes the functionality of a given gate, e.g., Gγ(0, 1) = 0 if the gate with index γ

is an AND gate. Because we consider circuits with inputs from multiple parties, let

{ni−1 + 1, . . . , ni} denote the input wires “controlled” by party Pi, with n0 = 0.

We denote input gates as those gates with one or more input wires, inner gates

as those gates with no input or output wires, and output gates as those gates with

an output wire.

Secret sharing. Our constructions use two-out-of-two secret sharing. In the semi-

honest setting, we use a standard (linear) sharing of strings: the secret x ∈ {0, 1}∗

is split into two random summands x1 and x2 such that x1 ⊕ x2 = x, with Pi

holding the summand xi. We denote the sharing of x by [x] = ([x](1) , [x](2)), where

we refer to each [x](i) = xi as Pi’s share of x. This sharing is linear: If [x] and

[y] are sharings of x and y respectively, then [x]⊕ [y] is a sharing of x⊕ y; that is,

[x⊕ y] = [x]⊕[y] and thus Pi can locally compute its share as [x⊕ y](i) = [x](i)⊕[y](i).
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It is straight-forward to verify that the above secret-sharing is private provided that

the summands x1 and x2 are uniformly chosen (restricted only on x1⊕x2 = x); i.e.,

any single share [x](i) contains no information about the secret x. Reconstructing a

sharing [x] is easily done by having each party announce its share [x](i) and taking

x to be the exclusive-or of the announced shares.

Our protocols use shares of two types of secrets: κ-bit strings x ∈ {0, 1}κ

and bits b ∈ {0, 1}. For clarity in the presentation, we use the bracket notation

introduced above for sharings of x ∈ {0, 1}κ, and use the notation 〈·〉 for sharings

of bits; i.e., if b ∈ {0, 1} then a sharing of b is denoted as 〈b〉 = (〈b〉(1), 〈b〉(2)).

In the malicious setting we need the sharings of bits to be authenticated ; i.e., in

addition to its summand bi, each party Pi holds an authentication tag ti for a Mes-

sage Authentication Code (MAC), with another party Pj holding the corresponding

verification key kj. More precisely, in a sharing 〈b〉 = (〈b〉(1), 〈b〉(2)) of b, each party’s

share is now a tuple 〈b〉(i) := (bi, ti, kj), where b1 ⊕ b2 = b, and ti is a valid MAC

on bi with key kj. This ensures that the adversary cannot make the reconstruction

output any value other than the secret b. In particular, to reconstruct some sharing

〈b〉 = (〈b〉(1), 〈b〉(2)), each party Pi first announces its summand bi and the corre-

sponding authentication tag ti; subsequently, each party Pi checks that the other

party Pj announced a validly authenticated summand matching its own verification

key and if this is not the case it rejects. The inability of an adversarial Pi to an-

nounce a summand other than bi follows from the unforgeability of the MAC, as Pi

does not know the key kj matching its authentication tag.

We also assume this authentication is linear in the following sense: Given
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〈b〉 and 〈b′〉, the parties can compute 〈b〉 ⊕ 〈b′〉 locally. Namely, 〈b〉 ⊕ 〈b′〉 =

(〈b⊕ b′〉(1), 〈b⊕ b′〉(2)), where 〈b⊕ b′〉(i) = (bi⊕ b′i, ti⊕ t′i, kj ⊕ k′j) is a valid authenti-

cation. Such an authenticated sharing can be constructed using known techniques;

see Section 6.5.

6.3 Two-Party Distributed Garbling Scheme

In this Section we describe our construction of a two-party distributed garbling

scheme. Our protocol combines garbled circuits (cf. Chapter 2)with distributed

garbling ideas from Damg̊ard and Ishai [68]. The main idea is the following: The

players jointly compute a garbled circuit, where the gates are garbled by use of a

distributed encryption scheme which takes, for each encryption, one label from each

party.

Distributing the Garbling Scheme Between Two Parties

Consider the garbling scheme in Chapter 2 with the following change: Each label

Xw,b consists of two sub-labels s1
w,b and s2

w,b; that is, Xw,b = (s1
w,b, s

2
w,b). We now show

how to emulate this garbling scheme between two parties in the semi-honest setting.

We assume the parties have access to the following two-party ideal functionalities:

• Gate computation FGgate(〈a〉, 〈b〉): The functionality takes as input sharings

〈a〉 and 〈b〉 of bits a and b, respectively, and is parameterized by a binary gate

G; it outputs a sharing 〈G(a, b)〉 of the output of G on input (a, b).

• One-out-of-two oblivious secret sharing F ioshare(〈b〉,m0,m1): The functionality
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takes as input a sharing 〈b〉 of a bit b (i.e., each party inputs its share), along

with two messages m0, m1 from Pi, and outputs a random two-out-of-two

sharing [mb] of mb.

• Constant bit sharing F bconst(): The functionality is parameterized by a bit

b ∈ {0, 1}, and outputs a random sharing 〈b〉 of b.

• Random bit sharing Frand(): The functionality chooses a random bit r ∈R

{0, 1} and computes and outputs a random sharing 〈r〉 of r.

• Bit secret sharing F iss(b): The functionality takes input bit b ∈ {0, 1} from Pi

and outputs a random two-out-of-two sharing 〈b〉 of b.

Each of these can be instantiated efficiently in the semi-honest setting; see Sec-

tion 6.5 for details.

Distributed encryption scheme. We utilize the distributed encryption scheme

of Damg̊ard and Ishai [68]. Suppose the message and the label for the encryption

scheme are distributed as follows:

• The message m is secret-shared; i.e., P1 and P2 hold [m](1) and [m](2), respec-

tively.

• The label X = (s1, s2) is distributed such that P1 and P2 hold s1 and s2,

respectively.

The encryption of the secret-shared message m with tweak T under label X =
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(s1, s2) is:

EncTX([m]) =
(
Enc1

s1,T

(
[m](1)

)
,Enc2

s2,T

(
[m](2)

))
=
(

[m](1) ⊕ F 1
s1(T ), [m](2) ⊕ F 1

s2(T )
)
,

where F 1
k is a PRF keyed by key k. To decrypt a ciphertext c := EncTX(m), each

party Pi sends its sub-label si to the decrypter, who uses them to recover the shares

of m and reconstruct m.

Double encryption is defined analogously. For labels Xα = (s1
α, s

2
α) and Xβ =

(s1
β, s

2
β), where Pi holds (siα, s

i
β), encryption with tweak T works as follows:

EncTXα,Xβ([m]) =
(

[m](1) ⊕ F 1
s1α

(T )⊕ F 2
s1β

(T ), [m](2) ⊕ F 1
s2α

(T )⊕ F 2
s2β

(T )
)
.

Distributed garbling scheme. We now give a high-level description of our two-

party distributed garbling scheme ΠGC(P1, P2). For each wire w in the circuit we

associate labels Xw,0 = (s1
w,0, s

2
w,0) and Xw,1 = (s1

w,1, s
2
w,1) corresponding to bits ‘0’

and ‘1’, respectively. Each sub-label is only known to one of the two parties; i.e.,

Pi only knows (siw,0, s
i
w,1). Each wire is also associated with a mask bit λw which is

secret shared between the two parties such that no party knows λw.

Consider gate Gγ in the circuit with input wires indexed by α and β. We

construct an array containing four rows corresponding to a random permutation of

the four possible outcomes of gate Gγ applied to bits bα and bβ. However, in the

distributed case neither party should know what is being encrypted. Recall that for

standard garbled circuits, the garbler can easily compute Gγ(λα ⊕ bα, λβ ⊕ bβ) to
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construct the array. However, in the distributed setting, neither party knows (and

should not know) λα or λβ. Thus, the parties utilize the Fgate functionality, which

takes as input the shares 〈λα〉 ⊕ 〈bα〉 and 〈λβ〉 ⊕ 〈bβ〉, and computes a sharing of

Gγ(λα ⊕ bα, λβ ⊕ bβ). Let 〈σγ,bα,bβ〉 = FGgate(〈bα〉 ⊕ 〈λα〉, 〈bβ〉 ⊕ 〈λβ〉) ⊕ 〈λγ〉. The

value σγ,bα,bβ denotes which label to encrypt; that is, in row (bα, bβ) we encrypt

label Xγ,σγ,bα,bβ
. However, we must still enforce that neither party knows what label

Xγ,σγ,bα,bβ
represents. We handle this by utilizing another functionality, Foshare.

For each of the four σγ,bα,bβ values, and for each party Pi, the parties compute

F ioshare(〈σγ,bα,bβ〉, siγ,0, siγ,1). This produces a share of the appropriate sub-label for

party Pi, with the crucial fact that Pi does not know which of his sub-labels was

shared. The results of Foshare are used as the shares to be encrypted.

See below for the full description.

Auxiliary Inputs: Security parameter k, circuit (n,m, q, L,R,G) := C.

Parties P1 and P2 generate 〈1〉 ← F1
const, which they use throughout the protocol.

1. Generate mask bits:

• Generate masks for P1’s inputs: For w ∈ {1, . . . , n1}: P1 generates λw ∈R {0, 1}
and computes 〈λw〉 ← F1

ss(λw).

• Generate masks for P2’s inputs: For w ∈ {n1 + 1, . . . , n}: P2 generates λw ∈R
{0, 1} and computes 〈λw〉 ← F2

ss(λw).

• Generate masks for inner wires: For w ∈ {n + 1, . . . , n + q − m}: generate
〈λw〉 ← Frand.

• Generate masks for output wires: For w ∈ {n + q − m + 1, . . . , n + q}: generate
〈λw〉 ← F0

const.
a

2. Generate sub-labels:

• For w ∈ {1, . . . , n + q} and b ∈ {0, 1}: Pi generates sub-labels siw,b ∈R {0, 1}
κ
.

3. Construct garbled circuit:

• For γ ∈ {n + 1, . . . , n + q}:
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Let α := L(γ) and β := R(γ) be the indices of the left and right input wires,
respectively, of the gate indexed by γ. Compute the following selector bits:

〈σγ,0,0〉 ← FGγgate(〈λα〉, 〈λβ〉)⊕ 〈λγ〉 〈σγ,0,1〉 ← FGγgate(〈λα〉, 〈λβ〉 ⊕ 〈1〉)⊕ 〈λγ〉
〈σγ,1,0〉 ← FGγgate(〈λα〉 ⊕ 〈1〉, 〈λβ〉)⊕ 〈λγ〉 〈σγ,1,1〉 ← FGγgate(〈λα〉 ⊕ 〈1〉, 〈λβ〉 ⊕ 〈1〉)⊕ 〈λγ〉.

Next, compute sharings of the appropriate sub-labels to use for each row:[
ŝ1
γ,0,0

]
← F1

oshare(〈σγ,0,0〉, s1
γ,0, s

1
γ,1),

[
ŝ2
γ,0,0

]
← F2

oshare(〈σγ,0,0〉, s2
γ,0, s

2
γ,1)[

ŝ1
γ,0,1

]
← F1

oshare(〈σγ,0,1〉, s1
γ,0, s

1
γ,1),

[
ŝ2
γ,0,1

]
← F2

oshare(〈σγ,0,1〉, s2
γ,0, s

2
γ,1)[

ŝ1
γ,1,0

]
← F1

oshare(〈σγ,1,0〉, s1
γ,0, s

1
γ,1),

[
ŝ2
γ,1,0

]
← F2

oshare(〈σγ,1,0〉, s2
γ,0, s

2
γ,1)[

ŝ1
γ,1,1

]
← F1

oshare(〈σγ,1,1〉, s1
γ,0, s

1
γ,1),

[
ŝ2
γ,1,1

]
← F2

oshare(〈σγ,1,1〉, s2
γ,0, s

2
γ,1).

Finally, compute the distributed encryptions of the (permuted) sub-labels and
selector bits. That is, letting Kw,b = (s1

w,b, s
2
w,b), compute:

P [γ, 0, 0] = (P 1[γ, 0, 0], P 2[γ, 0, 0]) := Enc
γ‖0‖0
Kα,0,Kβ,0

(
[
ŝ1
γ,0,0

]
‖
[
ŝ2
γ,0,0

]
‖〈σγ,0,0〉),

P [γ, 0, 1] = (P 1[γ, 0, 1], P 2[γ, 0, 1]) := Enc
γ‖0‖1
Kα,0,Kβ,1

(
[
ŝ1
γ,0,1

]
‖
[
ŝ2
γ,0,1

]
‖〈σγ,0,1〉),

P [γ, 1, 0] = (P 1[γ, 1, 0], P 2[γ, 1, 0]) := Enc
γ‖1‖0
Kα,1,Kβ,0

(
[
ŝ1
γ,1,0

]
‖
[
ŝ2
γ,1,0

]
‖〈σγ,1,0〉),

P [γ, 1, 1] = (P 1[γ, 1, 1], P 2[γ, 1, 1]) := Enc
γ‖1‖1
Kα,1,Kβ,1

(
[
ŝ1
γ,1,1

]
‖
[
ŝ2
γ,1,1

]
‖〈σγ,1,1〉).

4. Output circuit:

• Let Ĉi := (n,m, q, L,R, P i) and let SKi :=
{

(siw,0, s
i
w,1) : w ∈ {1, . . . , n}

}
.

• P1 outputs the tuple
(
Ĉ1, SK1,

{
(〈bw〉(1), 〈λw〉(1), bw, λw) : w ∈ {1, . . . , n1}

})
.

• P2 outputs the tuple
(
Ĉ2, SK2,

{
(〈bw〉(2), 〈λw〉(2), bw, λw) : w ∈ {n1 + 1, . . . , n}

})
.

aNote that we do not in fact need to create ‘zero’ masks for the output wires; we include
this step mainly for ease of presentation.

Achieving Malicious Security

The semi-honest distributed garbling scheme described above can be directly adapted

to work against a malicious adversary by modifying the hybrid functionalities to

work in an authenticated manner; namely, we use authenticated sharings in place

of standard secret sharings:

• F1
const() and Frand(): The output share is authenticated.

• FGgate(〈a〉, 〈b〉): The inputs and outputs are all authenticated sharings.
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• F ioshare(〈b〉,m0,m1): The selection bit b is an authenticated sharing.

• F iss(b): The output is an authenticated sharing of b.

See Section 6.5 for the detailed functionalities and Section 6.5.2 for their instantia-

tions.

We also need to define a notion of encrypting authenticated shares. Recall

that for an authenticated share 〈b〉 = (〈b〉(1), 〈b〉(2)), we have 〈b〉(i) = (bi, ti, kj),

where party Pi holds bi and ti and party Pj holds kj. Thus, letting X = (s1, s2), we

define

EncTX(〈b〉) = (Enc1
s1,T (b1‖t1‖k1),Enc2

s2,T (b2‖t2‖k2)).

On decryption, each party’s ciphertext is decrypted and the authenticity of b1 and b2

are verified using the (encrypted) tags and labels. Thus, when evaluating a garbled

circuit, the party checks the authenticity of the share from the decrypted row of

each garbled gate; if the check fails, the party aborts.

Note that we can convert this protocol into a maliciously-secure 2PC protocol,

which we denote as Π2PC(P1, P2), as follows.

Auxiliary Inputs: Security parameter k, circuit (n,m, q, L,R,G) := C.

Inputs: For w ∈ {1, . . . , n1}, P1 has inputs bw; for w ∈ {n1 + 1, . . . , n}, P2 has inputs bw.

1. The parties execute ΠGC(P1, P2).

2. For w ∈ {1, . . . , n1}: The parties execute 〈bw〉 ← F1
ss(bw).

3. For w ∈ {n1 + 1, . . . , n2}: The parties execute 〈bw〉 ← F2
ss(bw).

4. P1 sends GC1 to P2.

5. For w ∈ {1, . . . , n1}: P1 sends (s1
w,bw⊕λw , 〈bw〉(1) ⊕ 〈λw〉(1)) to P2 who reconstructs

bw ⊕ λw locally.

6. For w ∈ {n1 + 1, . . . , n}: P2 sends 〈bw〉(2) ⊕ 〈λw〉(2) to P1, who reconstructs bw ⊕ λw
locally. P1 then sends s1

w,bw⊕λw to P2.
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7. P2 evaluates the garbled circuit using the labels (s1
w,bw⊕λw , s

2
w,bw⊕λw) and selector bits

bw ⊕ λw, for w ∈ {1, . . . , n}.

Theorem 6.1. Let C be an arbitrary polynomial-size circuit. Then the protocol

Π2PC(P1, P2), using authenticated hybrids, securely evaluates the circuit C in the

presence of a (static) malicious adversary in the (Fconst,Fgate,Foshare,Frand,Fss)-

hybrid world.

Proof. We construct simulators S1 and S2 which simulate an adversary corrupting P1

and P2, respectively. We note that we can ignore the negligible probability difference

due to a direct attack on the authentication mechanism by a simple hybrid argument.

Malicious P1. We simulate adversary A corrupting party P1 as follows. The

simulator S1 chooses 0n−n1 as P2’s input and then runs exactly as P2 would. In

addition, S1 extracts A’s input x through the calls to F1
ss and passes x to the

trusted party.

As S1 acts exactly as P2 does (albeit on a different input), and A receives no

output, we need only show that the protocol aborts with equal probability across

the two views. Note that A has three possible places in the protocol in which it can

try to force the protocol to abort:

1. Sending an invalid sub-label in Step 5 or Step 6 of Π2PC,

2. Inputting invalid or flipped sub-labels into the calls to Foshare, or

3. Encrypting the incorrect sub-labels shares or using some arbitrary string as

encryptions.

170



We claim that the probability of aborting due to any of the above attacks is inde-

pendent of P2’s input. Clearly, if A sends invalid sub-labels for its own input wires,

the probability of aborting is independent of P2’s input. In the case that A sends

an invalid sub-label in Step 6 of Π2PC, the probability of aborting is independent of

P2’s input due to the masking by the (uniformly chosen) mask bit.

Now consider the case where A corrupts t rows in a given garbled gate. Note

that even though A can control which rows in the garbled gate table to corrupt, the

probability that any given row is hit during evaluation is exactly 1/4 (by the security

of the point-and-permute method). Thus, the probability that a given bad row is

hit is t/4, independent of the bits on the incoming wires into the gate. Thus, as

the probability of aborting is independent of P2’s input, the two views are perfectly

indistinguishable.

Malicious P2. We simulate adversary A corrupting party P2 as follows. The

simulator S2 selects 0n1 as the input of P1, and then proceeds to act as P1 in ΠGC.

Then, S2 extracts A’s input y through the calls to F2
ss and passes y to the trusted

party, receiving back f(x, y). Now, S2 continues executing as P1, except it modifies

its share for the output of Fgate on the output gates so that the selector bits for all

rows in the output gates contain the appropriate bit from f(x, y). In more detail,

right before sending its share GC1 at Step 4 of the protocol, S2 does the following:

• For each output gate Gγ, let zγ denote the correct output (i.e., the appropriate

bit from f(x, y)) of the gate. Now, for each of the four rows of this gate,

S2 modifies the original authenticated sharing (〈zγ,1〉(1), 〈zγ,2〉(2)) into a new
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sharing (〈z∗γ,1〉(1), 〈zγ,2〉(2)) that would be reconstructed to zγ. Note that this is

possible, since S2 emulates the Fgate functionality and has all the information

necessary to construct new authenticated shares. In addition, S2 modifies the

corresponding encryption in the garbled gate accordingly.

S2 continues executing as P1, and outputs whatever A outputs.

We now prove that the view of the adversary when communicating with S2

versus the view when communicating with a real P1 is computationally indistinguish-

able. We show this by constructing a set of hybrids and proving indistinguishability

between them.

H0. The same as the execution with P1.

H1. The same as H0, except the output of Fgate in each output gate is modified

to be equal to an authenticated sharing of the correct output from f(x, y).

Indistinguishability follows from the security of the underlying garbling scheme;

the only difference here is that A can try to force the protocol to abort. How-

ever, by the security of the authenticated bit sharing scheme, the output of

Fgate towards A provides no information about the underlying selector bit’s

value, and thus A acts independently of the value σγ,i,j.

H2. The same as H1, except input 0n1 is used instead of P1’s real input.

Indistinguishability holds by the use of Fss.

As H2 is the same as the simulator, the proof is complete.
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6.4 Three-Party Computation from Cut-and-Choose

We can directly adapt the distributed garbling scheme to work over multiple parties,

and thus construct a 3PC scheme; however, in this case the underlying function-

alities need to support multiple parties rather than just two parties and are thus

unlikely to be efficient in practice. Thus, in this Section we show how to utilize the

maliciously secure two-party distributed garbling scheme from Section 6.3 to con-

struct a maliciously secure three-party secure computation protocol, using almost

entirely two-party constructs (the only three-party functionality needed is that of

coin-tossing).

We first cover preliminary notions, such as the ideal functionalities we need.

Then, we show how to adapt a combination of two existing cut-and-choose pro-

tocols [8, 9] to the three-party setting. Finally, we use this “generic” protocol to

show how to adapt Lindell’s “fast cut-and-choose” protocol [10] to the three-party

setting. The cost of each of these three-party protocols is roughly eight times the

computational cost of the underlying two-party protocol they are based on, and

roughly sixteen times the communication cost (plus the cost of a small number of

OTs per gate, which can be efficiently amortized using OT extension [7, 33]), and

thus we show that we can achieve efficient secure three-party computation at only

a small factor of the cost of the most efficient garbled circuit-based protocol.
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Preliminaries

Ideal functionalities. In addition to the ideal functionalities used in the two-party

distributed garbling scheme, we need the following additional (maliciously secure)

functionalities:

• Three-party coin-flipping Fcf (): The functionality outputs a random bitstring

to each party.

• One-out-of-two oblivious transfer F i,jot (b,m0,m1): The functionality takes as

input a choice bit b from party Pi and messages m0, m1 from Pj, and outputs

mb to party Pi.

• ZKPoK of extended Diffie-Hellman tuple F i,jzkpok(a, (g, h0, h1, {ui, vi}i)): The

functionality takes as input a from party Pi, and tuple (g, h0, h1, {ui, vi}i) from

party Pj, and outputs 1 to party Pj if either all tuples in {(g, h0, ui, vi)}i are

Diffie-Hellman tuples with h0 = ga or all tuples in {(g, h1, ui, vi)}i are Diffie-

Hellman tuples with h1 = ga, and 0 otherwise.

These can all be efficiently instantiated in a standard fashion. We can implement

Fcf in the random oracle model using three commitments and openings. The Fot

functionality can be instantiated using any maliciously secure OT implementation,

such as the construction by Peikert et al. [48]. Likewise, Fzkpok can be efficiently

instantiated using existing protocols [9, Section B].

Distributed garbled circuits for three parties. Note that the garbling protocol

ΠGC described before only garbles a circuit containing inputs from two parties. We
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can easily adapt this to support input from a third (external) party as follows. Let

Π′GC(P1, P2) be the same as ΠGC(P1, P2) except for the following modifications:

• All of the operations over P2’s input now operate over wires w ∈ {n1 +

1, . . . , n2}.

• In Step 1, we add the following sub-step for generating shares for P3’s input

wires:

– For w ∈ {n2 + 1, . . . , n}: generate 〈λw〉 ← Frand.

• In Step 4, party Pi outputs
{
〈λw〉(i) : w ∈ {n2 + 1, . . . , n}

}
in addition to his

normal outputs.

Achieving Malicious Security for Three Parties

Note that our two-party distributed garbling scheme has the property that if at

most one of the two parties is corrupt, the garbling of circuit C either correctly

evaluates C on P1’s and P2’s inputs, or causes the evaluator to abort. That is,

a malicious party cannot “alter” the garbling to evaluate some circuit other than

C. Now, if both P1 and P2 are corrupt, they can of course garble an arbitrary

circuit. This suggests the following approach to three-party computation: If either

P1 or P2 are honest, we need only construct a single garbled circuit, which is sent

to P3 to be evaluated. To cover the case where both P1 and P2 are corrupt, we use

cut-and-choose to prevent P3 from evaluating a maliciously constructed circuit. In

what follows, we utilize existing cut-and-choose protocols from the literature [8, 9],

and “plug in” our distributed garbling scheme as necessary. Thus, security mostly
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follows from the security proofs of the underlying cut-and-choose protocols. We also

show how we can use this protocol in an adaptation of Lindell’s protocol [10] to the

three-party setting.

The basic intuition for security is as follows. Cut-and-choose is used to pre-

vent P3 from evaluating maliciously constructed circuits when both P1 and P2 are

malicious. For the case where either P1 or P2 is honest, Π′GC(P1, P2) assures us that

the garbled circuit constructed between P1 and P2 is either correctly constructed or

causes P3 to abort (independent of any party’s input).

Protocol description. We now give a high-level description of our protocol.

1. The parties first replace the input circuit C0 with a circuit C, where the only

difference is each of P3’s input wires is replaced by an XOR of ρ new input

wires, preventing either party P1 or P2 from launching a selective failure attack

on P3’s input choices.

2. P1 and P2 generate the required commitments needed for input consistency,

as is done in the protocol of Lindell and Pinkas [9].

3. P1 and P2 construct ρ garbled circuits using Π′GC and the input sub-labels

generated as is done in the protocol of Lindell and Pinkas [9].

4. P1 and P2 compute authenticated sharings (between each other; P3 is not

involved here) of their input bits.

5. P1 and P2 both run (separately) an OT protocol with P3 for each of P3’s input

wires, where P1/P2 input their sub-labels and P3 chooses based on his input.
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(Note that any cheating by P1/P2 here will be caught with high probability

by the cut-and-choose step below.) Thus, P3 now has labels for each of his

input bits.

6. P1 and P2 send the (distributed) garbled circuits, along with the input consis-

tency commitments, to P3.

7. All three parties run a coin-tossing protocol to determine which circuits for P3

to open and which to evaluate.

8. For the evaluation circuits, P1 and P2 send the sub-labels and selector bits

for their inputs to P3. Note that we need to be careful in this step, as we

need to enforce that, for example, P1 uses the same input as was shared in

Step 2 above. This is accomplished as follows. Recall that P1 and P2 have

sharings of each other’s inputs and mask bits, all of which are authenticated.

Thus, P1 can send the (authenticated) share of its masked input to P2, who

can verify its authenticity, and thus reconstruct the masked input bit using its

own share. This allows an honest P2 to send the correct sub-label (correct in

the sense that it corresponds to P1’s input shared in Step 2) to P3, even with

a malicious P1.

9. For the check circuits, P1 and P2 send the required information for P3 to

decrypt the check circuits and verify correctness. If any of these check circuits

are incorrectly constructed, P3 aborts; otherwise, it has high confidence that

the majority of the evaluation circuits are correctly constructed.
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10. For the evaluation circuits, P3 checks for input consistency against the sub-

labels sent by P1 and P2 in Step 8 using a zero-knowledge proof-of-knowledge

protocol [9], aborting on any inconsistency.

11. Finally, P3 evaluates the evaluation circuits, outputting the majority over the

circuits’ output.

See below for the full protocol description.

Auxiliary Inputs: Security parameter κ, statistical security parameter ρ, circuit C0, cyclic
group G with (prime) order q and generator g, and randomness extractor Ext.

Inputs: For w ∈ {1, . . . , n1}, P1 has inputs bw; for w ∈ {n1 + 1, . . . , n2}, P1 has inputs bw;
for w ∈ {n2 + 1, . . . , n}, P3 has inputs bw.

1. Each party replaces C0 with a circuit C where each of P3’s input wires is replaced by
an exclusive-or of ρ new input wires. We let (n,m, q, L,R,G) := C, and denote P3’s

new inputs by b̂w.

2. For w ∈ {1, . . . , n1}: P1 generates a1
w,0, a

1
w,1 ∈R Zq and constructs set

{
(w, 0, ga

1
w,0), (w, 1, ga

1
w,1)
}

.

For w ∈ {n1+1, . . . , n2}: P2 generates a2
w,0, a

2
w,1 ∈R Zq and constructs set

{
(w, 0, ga

2
w,0), (w, 1, ga

2
w,1)
}

.

For j ∈ {1, . . . , ρ}: Pi, for i ∈ {1, 2}, generates rij ∈R Zq and constructs set
{

(j, gr
i
j )
}

.

For j ∈ {1, . . . , ρ}: P1 and P2 run up to Step 2 (“Generate sub-labels”) of Π3
GC(P1, P2),

where the parties do the following in the jth iteration:

For w ∈ {1, . . . , n1}: P1 generates sub-labels s1
w,b⊕λw,j ,j := Ext(ga

1
w,b·r

1
j ) for b ∈

{0, 1}.
For w ∈ {n1 + 1, . . . , n2}: P2 generates sub-labels s2

w,b⊕λw,j ,j := Ext(ga
2
w,b·r

2
j ) for

b ∈ {0, 1}.
All other sub-labels are generated in the normal fashion.

3. For j ∈ {1, . . . , ρ}: P1 and P2 continue their executions of Π3
GC(P1, P2), producing

garbled circuit Ĉj .

4. For w ∈ {1, . . . , n1}: P1 and P2 compute 〈bw〉 ← F1
ss(bw).

For w ∈ {n1 + 1, . . . , n2}: P1 and P2 compute 〈bw〉 ← F2
ss(bw).

5. For j ∈ {1, . . . , ρ} and w ∈ {n2 + 1, . . . , n}: P1 and P2 exchange 〈λw,j〉 with each other,
reconstructing λw,j locally. Both P1 and P2 send λw,j to P3.

For w ∈ {n2 + 1, . . . , n}: Pi, for i ∈ {1, 2}, and P3 run Fot, with Pi as the sender
inputting({

siw,λw,j ,j

}
j∈{1,...,ρ}

,
{
siw,λw,j⊕1,j

}
j∈{1,...,ρ}

)
and P3 as the receiver inputting b̂w.
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6. Pi, for i ∈ {1, 2}, sends the sets constructed in Step 2, along with the garbled circuit{
Ĉij

}ρ
i=1

, to P3.

7. The parties compute r ← Fcf . Let CC = {i : r[i] = 1}, and let EC = {1, . . . , ρ} \ CC.
8. For j ∈ EC:

For w ∈ {1, . . . , n1}: P1 sends 〈bw〉(1)⊕〈λw,j〉(1) to P2, who reconstructs bw ⊕λw,j
locally. P1 sends (s1

w,bw⊕λw,j ,j , bw ⊕ λw,j) to P3, and P2 sends (s2
w,bw⊕λw,j ,j , bw ⊕

λw,j) to P3.

For w ∈ {n1+1, . . . , n}: P2 sends 〈bw〉(2)⊕〈λw,j〉(2) to P1, who reconstructs bw⊕λw,j
locally. P1 sends (s1

w,bw⊕λw,j ,j , bw ⊕ λw,j) to P3, and P2 sends (s2
w,bw⊕λw,j ,j , bw ⊕

λw,j) to P3.

9. For j ∈ CC:
Pi, for i ∈ {1, 2}, does the following:

Sends rij to P3, and P3 checks that these values are consistent with the pairs{
(j, gr

i
j )
}

sent before.

For w ∈ {1, . . . , n}: Sends sub-labels siw,0,j and siw,1,j , mask bit share λ
(i)
w,j ,

and the labels to the authenticated bits to P3.

Given the above information, P3 reconstructs all input labels and verifies they
match with those labels sent previously. Also, using said labels, P3 verifies that
the garbled circuit is correctly constructed.

10. For j ∈ EC:
For w ∈ {1, . . . , n1}: P1 sends ga

1
w,bw

·r1j to P3, who computes s1
w,bw⊕λw,j ,j :=

Ext(ga
1
w,bw

·r1j ).

For w ∈ {n1 + 1, . . . , n2}: P2 sends ga
2
w,bw

·r2j to P3, who computes s2
w,bw⊕λw,j ,j :=

Ext(ga
2
w,bw

·r2j ).

For w ∈ {1, . . . , n1}: P1 and P3 run Fzkpok, with P1 as the prover inputting a1
w,bw

and

P3 as the verifier inputting

(
g, ga

1
w,0 , ga

1
w,1 ,

{
(gr

1
j , ga

1
w,bw

·r1j )
}
j∈EC

)
.

For w ∈ {n1 + 1, . . . , n2}: P2 and P3 run Fzkpok, with P2 as the prover inputting a2
w,bw

and P3 as the verifier inputting

(
g, ga

2
w,0 , ga

2
w,1 ,

{
(gr

2
j , ga

2
w,bw

·r2j )
}
j∈EC

)
.

11. For j ∈ EC: P3 evaluates circuit Ĉj using
{

(s1
w,bw⊕λw,j ,j , s

2
w,bw⊕λw,j ,j , bw ⊕ λw,j)

}
w∈{1,...,n}

as inputs.

P3 outputs the majority output over the evaluated circuits.

Theorem 6.2. Let C be an arbitrary polynomial-size circuit and let G be a cyclic

group with prime order. Given access to ideal functionalities Fconst, Fgate, Foshare,

Fot, Frand, and Fss, and assuming that the decisional Diffie-Hellman problem is

hard in G, then Πm
3PC(P1, P2, P3) securely computes the circuit C in the presence of

an adversary corrupting an arbitrary number of parties.
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Proof. The proof is similar to prior work in two-party garbling schemes based on

cut-and-choose [8, 9, 32]. We make use of the following lemma:

Lemma. Consider garbled gate Gγ with input wires α and β, and let Xw,b =

(s1
w,b, s

2
w,b, b⊕λw), for w ∈ {α, β} denote the valid labels. Fix a (valid) label Xw,b for

some fixed w and b. Let X̄w,b be equal to Xw,b except that two of the three components

(i.e., the sub-labels and selector bit) are altered arbitrarily. Then using label X̄w,b to

decrypt Gγ causes a decryption failure with all but negligible probability.

Proof. This follows directly from our encryption scheme and garbling scheme.

Informally, what this lemma says is that for a given garbled gate, a sub-label /

selector bit combo can only be used correctly on a single row of the garbled table, and

modifying some (but not all) of the components results in a decryption failure; thus

an adversary must change both the sub-label and permutation bit accordingly for the

garbled gate to successfully decrypt. Note that in the two-party secure computation

protocol described in Section 6.3 we enforce the above by authenticating all of the

selector bits (thus preventing any malicious party from altering these). However, the

authenticated sharing protocol only works between two parties, namely the parties

doing the distributed garbling. Thus, we need a way for the evaluator to gain

confidence in the sub-label / selector bit combos sent to him by P1 and P2. We do

this by utilizing the Diffie-Hellman pseudorandom synthesizer trick of Lindell and

Pinkas [9]. This enforces that P1 and P2 are consistent in the sub-label they send to

P3, and because at least one sub-label is correct, the adversary can at most cause

P3 to abort.
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There are six possible (interesting) corruption cases. However, due to symme-

tries, we only need to consider four of them.

The adversary corrupts parties P1 and P2. We need to construct a simulator S

with access to the adversary A (who controls P1 and P2) and a trusted third party

which computes f(x, y, z) given inputs x, y, and z. The simulator S is constructed as

follows: S invokes the adversary A, and then runs as P3 would until Step 10. Here,

S uses the witnesses aiw,bw send by P1 and P2 to Fzkpok to extract their inputs.

S then feeds these inputs to the trusted third party, receiving back f(x, y, z). S

continues to run as P3 would, and halts, outputting whatever A outputs.

We now argue that the adversary’s view in the real and ideal worlds are compu-

tationally indistinguishable. The proof closely follows existing work [9, pp. 17–21],

and thus we only give some intuition here.

Note that if A tries to cheat in Step 5, it gets caught in the cut-and-choose

step with high probability. Similarly, if A tries to send different labels in Step 8

(i.e., the “input inconsistency” attack), it gets caught in Step 10 when proving the

consistency of the sub-labels sent.

The adversary corrupts parties P1 and P3. We again demonstrate a simulator,

this time with A controlling parties P1 and P3. This is similar to the two-party case

where P2 is corrupted. The main challenge is that the simulator needs to construct

“fake” garbled circuits in order for A to output the correct output; however, as

shown in the proof of our two-party protocol, such a simulator exists. Thus, the

simulator S is constructed as follows: S invokes the adversary A, and runs as P2
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would up until Step 6. S can extract both P1’s input x and its mask bits λw,j

through P1’s calls to F1
ss in Step 4 and Step 2. Likewise, in Step 5, S extracts P3’s

input z through the calls to Fot. S then passes x and z to the trusted third party,

learning f(x, y, z). In Step 6, S chooses r ∈R {0, 1}3ρ. Then for j ∈ {1, . . . , 3ρ},

S proceeds as follows: If r[j] = 0, S uses the simulator that is known to exist for

the two-party circuit garbling protocol to construct garbled circuits which output

f(x, y, z). Otherwise, S acts as P2 would. S continues to act as P2 would, except

that in Step 7 it sets the output of Fcf to be equal to the ρ chosen above. Finally,

S halts, outputting whatever A outputs.

The main intuition here is that, since P1 learns nothing about the portion of

the circuit garbled by P2, this reduces to the two-party setting where P2 is corrupt.

Recall that by the security of our garbling protocol, P1 can only construct circuits

that cause the evaluator to abort. If P1 tries to cheat in Step 5 by exchanging invalid

mask shares, P2 detects this with high probability, and likewise for Step 8.

The adversary corrupts parties P2 and P3. The analysis here is very similar to

the case where parties P1 and P3 are corrupt.

The adversary corrupts party P1. We construct a simulator S with access to an

adversary A controlling P1 as follows: S invokes the adversary A, and runs as P2

and P3 would, extracting P1’s input x through the calls to F1
ss in Step 4. S passes

x to the trusted third party, learning f(x, y, z), and halts, outputting whatever A

outputs.

As S acts exactly as P2 and P3 would, and A gets no output, we need only
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show that the probability that A aborts in both the real and ideal world is identical.

In fact, this follows from our maliciously secure two-party protocol and the security

of the input-consistency checks.

The adversary corrupts party P2. The analysis here is very similar to the case

where party P1 is corrupt.

The adversary corrupts party P3. We construct a simulator S with access to an

adversaryA controlling P3 as follows: S invokes the adversaryA, and runs as P1 and

P2 would, extracting P3’s input z through the Fot calls in Step 5. S then hands z to

the trusted third party, who returns f(x, y, z). In Step 6, S chooses r←$ {0, 1}3ρ, and

then for j ∈ {1, . . . , 3ρ} S proceeds as follows: If r[j] = 0, S constructs a distributed

garbled circuit which outputs f(x, y, z), otherwise S proceeds as normal. Then, in

Step 7, S fixes the output of Fcf to be ρ. For the rest of the protocol, S acts as P1

and P2 would, and eventually halts, outputting what A outputs.

The analysis is very similar to prior work [9, pp. 22–23].

Adapting Lindell’s Protocol to the Three-Party Setting

The 3PC protocol described above has a replication factor of roughly 3×; namely,

for statistical security parameter ρ, the actual probability of cheating is roughly

2−0.32ρ [9]. Thus, for a desired error probability of 2−40 a total of 128 circuits need

to be garbled. Recently, Lindell [10] showed a construction which removes this

replication factor in the two-party setting; that is, for a cheating probability of 2−ρ

the sender needs to garble only ρ circuits. In this Section we show how to adapt
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this protocol to the three-party setting.

Lindell’s construction works in two phases. In the first phase, the parties do a

standard cut-and-choose, with P1 constructing ρ circuits (for error probability 2−ρ)

and P2 opening half of them. If, during evaluation, P2 finds that two or more circuits

have conflicting outputs, it stores these conflicting outputs as a “proof-of-cheating”

φ. In the second phase, the parties run a circuit which takes as input from P1 its

original input x, and from P2 the “proof-of-cheating” φ. If φ is a valid proof, then

the circuit reveals x to P2, who can then compute the output itself; otherwise P2 gets

no output. Thus, this second phase enforces that if P1 cheated in the cut-and-choose

then P2 learns P1’s input.

To adapt this to the three-party setting, we proceed as follows. For the circuit

in the first phase, we essentially just run Πm
3PC(P1, P2, P3), with the same tweaks as

are used by Lindell [10] (namely, the use of encoded output translation tables and

doing circuit evaluation before circuit checking).

For the second phase circuit, we run into some issues, due to Lindell’s scheme

being inherently a “two-party” approach. Recall that this circuit is constructed in

such a way that if P2 receives any conflicting outputs when evaluating, he inputs

these outputs as a “proof-of-cheating” in order to reveal P1’s input. At first glance,

it appears this technique would not work in the three-party setting because in that

case P3 needs to learn both P1’s and P2’s inputs to reconstruct the output; however,

it could be the case that only one of these two parties is cheating. Recall, however,

that our distributed garbling scheme enforces that as long as one of the two parties

is honest, the garbled circuits are “correct” in the sense that they either correctly
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compute the desired circuit are cause a failure independent of any party’s input.

Thus, P3 only finds mismatched outputs in the case where both P1 and P2 cheat,

making it okay at this point to reveal both those parties’ inputs in the second phase

circuit.

Another issue arises in how this circuit is constructed. In Lindell’s two-party

scheme, P1 hardwires the output labels into the circuit. In a naive adaptation to the

three-party setting, both P1 and P2 would need to hardwire their output sub-labels

into the circuit. However, this would allow each party to learn the others’ sub-labels

for the output, which leads to the following attack by a colluding P1 and P3: During

the construction of the second phase circuit, P1 learns P2’s output sub-labels, and

he sends these, as well as his own output sub-labels, to P3. Now, when P3 evaluates

the circuit, he can input conflicting outputs as his “proof-of-cheating” because he

knows all of the outputs labels, thus allowing P1 and P3 to learn P2’s input. We

can fix this by having the output sub-labels of P1 and P2 be inputs to the circuit,

rather than hardcoded. However, this raises another issue, as P3 cannot verify that

the sub-labels input by P1 and P2 are the correct ones. Thus, we modify the circuit

to output these sub-labels in the clear, allowing P3 to do this check.

See below for the full protocol description.

Auxiliary Inputs: Security parameter κ, statistical security parameter ρ, circuit C0, cyclic
group G with (prime) order q and generator g, randomness extractor Ext, one-way function
H.

Inputs: For w ∈ {1, . . . , n1}, P1 has inputs bw; for w ∈ {n1 + 1, . . . , n2}, P2 has inputs bw;
for w ∈ {n2 + 1, . . . , n}, P3 has inputs bw.

1. Each party replaces C0 with a circuit C where each of P3’s input wires is replaced by
an exclusive-or of ρ new input wires. We let (n,m, q, L,R,G) := C, and denote P3’s
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new inputs by b̂w.

2. For w ∈ {1, . . . , n1}: P1 generates a1
w,0, a

1
w,1 ∈R Zq and constructs set

{
(w, 0, ga

1
w,0), (w, 1, ga

1
w,1)
}

.

For w ∈ {n1+1, . . . , n2}: P2 generates a2
w,0, a

2
w,1 ∈R Zq and constructs set

{
(w, 0, ga

2
w,0), (w, 1, ga

2
w,1)
}

.

For w ∈ {n + q−m + 1, . . . , n + q}: Pi, for i ∈ {1, 2}, generates oiw,0, o
i
w,1 ∈R {0, 1}κ.

For j ∈ {1, . . . , ρ}: Pi, for i ∈ {1, 2}, generates rij ∈R Zq and constructs set
{

(j, gr
i
j )
}

.

For j ∈ {1, . . . , ρ}: P1 and P2 run up to Step 2 (“Generate sub-labels”) of Π′GC(P1, P2),
where the parties do the following:

• For w ∈ {1, . . . , n1}: P1 generates sub-labels s1
w,b⊕λw,j ,j := Ext(ga

1
w,b·r

1
j ) for b ∈

{0, 1}.
• For w ∈ {n1 + 1, . . . , n2}: P2 generates sub-labels s2

w,b⊕λw,j ,j := Ext(ga
2
w,b·r

2
j ) for

b ∈ {0, 1}.
• For w ∈ {n + q−m + 1, . . . , n + q}: Pi sets siw,b⊕λw,j := oiw,b.

• All other sub-labels are generated in the normal fashion.

3. For j ∈ {1, . . . , ρ}: P1 and P2 continue their executions of Π′GC(P1, P2), producing
(distributed) garbled circuit GCj := (GC1

j , GC
2
j ).

4. For w ∈ {1, . . . , n1}: P1 and P2 compute 〈bw〉 ← F1
ss(bw).

For w ∈ {n1 + 1, . . . , n2}: P1 and P2 compute 〈bw〉 ← F2
ss(bw).

5. For j ∈ {1, . . . , ρ} and w ∈ {n2 + 1, . . . , n}: P1 and P2 exchange 〈λw,j〉 with each other,
reconstructing λw,j locally. Both P1 and P2 send λw,j to P3.

For w ∈ {n2 + 1, . . . , n}: Pi, for i ∈ {1, 2}, and P3 run Fot, with Pi as the sender
inputting({

siw,λw,j ,j

}
j∈{1,...,ρ}

,
{
siw,λw,j⊕1,j

}
j∈{1,...,ρ}

)
and P3 as the receiver inputting b̂w.

6. For i ∈ {1, 2}: Pi sends the sets constructed in Step 2, along with the garbled

circuit
{
Ĉij

}ρ
j=1

, to P3. In addition, Pi sends the encoded output translation table{
(H(oiw,0), H(oiw,1))

}n+q

w=n+q−m+1
to P3.

7. The parties compute r ← Fcf . Let CC = {i : r[i] = 1}, and let EC = {1, . . . , ρ} \ CC.
8. For j ∈ EC (the evaluation circuits):

• For w ∈ {1, . . . , n1}: P1 sends 〈bw〉(1)⊕〈λw,j〉(1) to P2, who reconstructs bw⊕λw,j
locally. P1 sends (s1

w,bw⊕λw,j ,j , bw ⊕ λw,j) to P3, and P2 sends (s2
w,bw⊕λw,j ,j , bw ⊕

λw,j) to P3.

• For w ∈ {n1 +1, . . . , n}: P2 sends 〈bw〉(2)⊕〈λw,j〉(2) to P1, who reconstructs bw⊕
λw,j locally. P1 sends (s1

w,bw⊕λw,j ,j , bw⊕λw,j) to P3, and P2 sends (s2
w,bw⊕λw,j ,j , bw⊕

λw,j) to P3.

• For w ∈ {1, . . . , n1}: P1 sends k1
w,j := ga

1
w,bw

·r1j to P3, who computes s1
w,bw⊕λw,j ,j :=

Ext(ga
1
w,bw

·r1j ).

• For w ∈ {n1 + 1, . . . , n2}: P2 sends k2
w,j := ga

2
w,bw

·r2j to P3, who computes

s2
w,bw⊕λw,j ,j := Ext(ga

2
w,bw

·r2j ).
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• P3 evaluates circuit GCj using
{

(s1
w,bw⊕λw,j ,j , s

2
w,bw⊕λw,j ,j , bw ⊕ λw,j)

}
w∈{1,...,n}

as inputs.

P3 uses the encoded output translation tables sent in Step 6 to check if he received
exactly one valid output value for each output wire. If not, he stores these outputs as
oj0 and oj1 and continues.

9. P1 and P2 construct a circuit C ′ as follows:

• P1 inputs string x ∈ {0, 1}n1 and strings oiw,0, o
i
w,1 ∈ {0, 1}κ, for w ∈ {n + q −

m + 1, . . . , n + q}.
• P1 inputs string y ∈ {0, 1}n2−n1 and strings o2

w,0, o
2
w,1 ∈ {0, 1}κ, for w ∈ {n + q−

m + 1, . . . , n + q}.
• P3 inputs o0, o1 ∈ {0, 1}κ.

• If there exists some j such that o1
j,0‖o2

j,0 = oj0 and o1
j,1‖o2

j,1 = oj1, then P3’s output
is x‖y; otherwise P3 receives no output.

• The circuit also outputs the values
{
o1
w,0, o

1
w,1, o

2
w,0, o

2
w,1

}n+q

w=n+q−m+1
input by

parties P1 and P2 above.

The parties run Πm
3PC(P1, P2, P3) on circuit C ′ as follows:

• P1 inputs her input x = b1 . . . bn1 ; P2 inputs his input y = bn1+1 . . . bn2 .

• If P3 received two conflicting outputs o1
0‖o2

0 and o1
1‖o2

1 for some circuit j ∈
{1, . . . , ρ} in Step 8, then he inputs these values; otherwise he inputs garbage.

• The garbled circuit uses the same a1
w,0, a

1
w,1, a

2
w,0, a

2
w,1 values as in Step 2.

P3 verifies that the values
{
o1
w,0, o

1
w,1, o

2
w,0, o

2
w,1

}n+q

w=n+q−m+1
output by C′ match those

in the encoded output translation tables sent in Step 6

10. For j ∈ CC (the check circuits):

• Pi, for i ∈ {1, 2}, does the following:

– Sends rij to P3, and P3 checks that these values are consistent with the pairs{
(j, gr

i
j )
}

sent before.

– For w ∈ {1, . . . , n}: Sends sub-labels siw,0,j and siw,1,j , mask bit share λ
(i)
w,j ,

and the labels to the authenticated bits to P3.

• Given the above information, P3 reconstructs all input labels and verifies they
match with those labels sent previously. Also, using said labels, P3 verifies that
the garbled circuit is correctly constructed.

11. For the cut-and-choose computation from Step 9, let ÊE be the check circuits, let r̂ij
be analogous to the rij values from Step 2, and let k̂iw,j be analogous to the kiw,j from
Step 6.

For w ∈ {1, . . . , n1}: P1 and P3 run a zero-knowledge proof-of-knowledge, with P1

proving that there exists some bw ∈ {0, 1} such that for every j ∈ EE and for every

j′ ∈ ÊE , k1
w,j = ga

1
w,bw

·r1j and k̂1
w,j′ = ga

1
w,bw

·r̂1
j′ .

For w ∈ {n1 + 1, . . . , n2}: P2 and P3 run a zero-knowledge proof-of-knowledge, with
P2 proving that there exists some bw ∈ {0, 1} such that for every j ∈ EE and for every

j′ ∈ ÊE , k2
w,j = ga

2
w,bw

·r2j and k̂2
w,j′ = ga

2
w,bw

·r̂2
j′ .
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12. P3 either outputs the output received in the evaluation circuits, or, if P3 received any
inconsistent inputs in Step 8, then it locally computes f(x, y, z), where x and y are the
inputs P3 received in Step 9, and z is P3’s own input.

Theorem 6.3. Let C be an arbitrary polynomial-size circuit and let G be a cyclic

group with prime order. Given access to ideal functionalities Fconst, Fgate, Foshare,

Fot, Frand, and Fss, and assuming that the decisional Diffie-Hellman problem is hard

in G, then Πm−lindell
3PC (P1, P2, P3) securely computes the circuit C in the presence of

an adversary corrupting an arbitrary number of parties.

Proof. The analysis here is nearly identical to the previous proof as well as the

proof for the two-party case [10], and thus we just present the simulators for each

corruption case.

The adversary corrupts parties P1 and P2. The simulator S is constructed as

follows: S invokes the adversary A, and runs as P3 would, using input 0n−n2 , until

Step 11. Here, S uses the witnesses aiw,bw sent by P1 and P2 for the zero-knowledge

proof-of-knowledge to extract their inputs. S then feeds these inputs to the trusted

third party, receiving back f(x, y, z). S continues to run as P3 would, and halts,

outputting whatever A outputs.

The adversary corrupts parties P1 and P3. The simulator S is constructed as

follows: S invokes the adversary A, and runs as P2 would up until Step 6. S can

extract both P1’s input x and its mask bits λw,j through P1’s calls to F1
ss in Step 2

and Step 4. Likewise, in Step 5, S extracts P3’s input z through the calls to Fot.

S then passes x and z to the trusted third party, learning f(x, y, z). In Step 6, S

chooses r←$ {0, 1}ρ. Then for j ∈ {1, . . . , ρ}, S proceeds as follows: If r[j] = 0, S

uses the simulator that is known to exist for the two-party circuit garbling protocol
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to construct garbled circuits which output f(x, y, z). Otherwise, S acts as P2 would.

S continues to act as P2 would, except that in Step 7 it sets the output of Fcf to be

equal to the r chosen above. Finally, S halts, outputting whatever A outputs.

The adversary corrupts parties P2 and P3. The analysis here is the same as

the case where parties P1 and P3 are corrupt.

The adversary corrupts party P1. We construct a simulator S with access to an

adversary A controlling P1 as follows: S invokes the adversary A, and runs as P2

and P3 would, extracting P1’s input x through the calls to F1
ss in Step 4. S passes

x to the trusted third party, learning f(x, y, z). For the rest of the protocol, S acts

as P2 and P3 would, and eventually halts, outputting whatever A outputs.

The adversary corrupts party P2. The analysis here is the same as the case

where party P1 is corrupt.

The adversary corrupts party P3. We construct a simulator S with access to an

adversaryA controlling P3 as follows: S invokes the adversaryA, and runs as P1 and

P2 would, extracting P3’s input z through the Fot calls in Step 5. S then hands z to

the trusted third party, who returns f(x, y, z). In Step 6, S chooses r←$ {0, 1}ρ, and

then for j ∈ {1, . . . , ρ} S proceeds as follows: If r[j] = 0, S constructs a distributed

garbled circuit which outputs f(x, y, z), otherwise S proceeds as normal. Then, in

Step 7, S fixes the output of Fcf to be r. For the rest of the protocol, S acts as P1

and P2 would, and eventually halts, outputting whatever A outputs.
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Efficiency

We now briefly argue why our 3PC protocols are roughly eight times as expensive

in terms of computation as the underlying 2PC protocols we utilize, and roughly

sixteen times as expensive in terms of communication; see Section 6.6 for a more

detailed analysis and comparison with prior work.

Both protocols are very similar to the underlying 2PC protocol they are based

on; the major changes in terms of computation cost are that (1) the cost of en-

crypting a single row increases due to the use of the distributed encryption scheme,

and (2) P3 needs to do twice the work (due to needing to communicate with both

P1 and P2) as compared to the evaluator in the underlying 2PC protocol. Indeed,

it takes about eight PRF calls (where one PRF call equals outputting κ bits) to

encrypt a single row of the garbled circuit, and thus the cost and size of a garbled

circuit increases by a factor of eight. The cost for P1 and P2 to distributively garble

a circuit is a small number of OTs per gate, and this can be amortized using OT

extension techniques [7].

In terms of communication cost, both P1 and P2 need to send their half of the

distributed garbled circuit to P3, and the communication cost of actually construct-

ing a distributed garbled circuit is roughly the cost of a standard garbled circuit.

Since each garbled circuit is eight times larger than in the underlying 2PC protocol,

we find that the overall communication size increases by approximately sixteen.
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6.5 Hybrid Functionalities

We now describe in more detail the ideal functionalities described in Section 6.3,

as well as efficient implementations of them in both the semi-honest and malicious

settings.

Secret sharing of a constant bit. The functionality F bconst is parameterized by

a bit b, and outputs a sharing (authenticated, in the malicious setting) of that bit.

Functionality Fbconst → 〈b〉
Output: The functionality does the following:

1. Choose bit r ∈R {0, 1}.
2. (Semi-honest setting) Output r to Pi and r ⊕ b to Pj .

3. (Malicious setting) Construct authenticated bits ri = 〈r〉(i) and rj = 〈r ⊕ b〉(j), and
output ri to party Pi and rj to party Pj .

In the semi-honest setting, this functionality can be instantiated by having Pi gen-

erate a random bit r and sending r to Pj, who computes r ⊕ b. In the malicious

setting we can instantiate this using the protocol described by Nielsen et al. [33,

Figure 3].

Bit secret sharing. The functionality Fss in the semi-honest setting is the standard

secret sharing functionality. In the malicious setting, the functionality creates an

authenticated sharing of the input bit.

Functionality F iss(b)→ 〈b〉
Input: Party Pi inputs a bit b.

Output: The functionality does the following:

1. Select r ∈R {0, 1} uniformly at random.

2. (Semi-honest setting) Output r to party Pj , and b⊕ r to party Pi.

191



3. (Malicious setting) Construct authenticated bits bj = 〈r〉(j) and bi = 〈b⊕ r〉(i), and
output bj to party Pj and bi to party Pi.

Implementing the functionality in the semi-honest setting is trivial. In the malicious

setting we can use the Input protocol described by Nielsen et al. [33, Figure 6].

One-out-of-two oblivious secret sharing. The functionality Foshare is used to

share the sub-labels of the garbled table in an oblivious fashion while preserving

consistency with respect to the circuit such that the circuit evaluation succeeds

given the correct input sub-labels. More precisely, Foshare interacts with two parties,

called the sender Pj and the receiver Pi; it expects two inputs, m0 and m1, from

the sender along with a two-out-of-two sharing 〈b〉 of a selection bit b between the

sender and receiver, and outputs a random two-out-of-two sharing [mb] of mb. In the

malicious setting, 〈b〉 is an authenticated bit share. The functionality does not leak

any information about b to the parties. Furthermore, when the sender is honest, it

leaks no information on its inputs to the receiver. However, to ensure simulatability

we allow a corrupted sender to choose its output share, y(j), at will.

Functionality F i,joshare(〈b〉(i), (〈b〉(j),m0,m1, y
(j)))→ [mb]

Input: Party Pi inputs share bi = 〈b〉(i). Party Pj inputs share bj = 〈b〉(j) and vector
(m0,m1) ∈ {0, 1}κ ×{0, 1}κ. In the malicious setting, bi and bj are authenticated. Addition-
ally, party Pj inputs a value y(j) ∈ {0, 1}κ ∪ {⊥}; if Pj is honest it sets y(j) = ⊥, otherwise
y(j) can be arbitrary.

Output: The functionality does the following:

1. (Malicious setting) If either 〈b〉(i) or 〈b〉(j) is not a correctly authenticated bit then
abort.

2. Compute b := bi ⊕ bj
3. If y(j) = ⊥, then choose y(j) ∈R {0, 1}κ.

4. Output mb ⊕ y(j) to Pi and y(j) to Pj .

See Section 6.5.1 for an instantiation of Foshare in the semi-honest setting, and
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Section 6.5.2 for an instantiation in the malicious setting.

Oblivious secret sharing. The oblivious secret sharing functionality Frand takes

no inputs, and outputs a sharing of a random bit. In the malicious setting, this

output sharing is authenticated.

Functionality Frand → 〈r〉
Output: The functionality does the following:

1. Choose bits r, r′ ∈R {0, 1}.
2. (Semi-honest setting) Output r′ to Pi and r ⊕ r′ to Pj .

3. (Malicious setting) Construct authenticated bits ri = 〈r′〉(i) and rj = 〈r ⊕ r′〉(j), and
output ri to party Pi and rj to party Pj .

In the semi-honest setting, this can be easily instantiated by each party choosing a

random bit ri and letting r = ri ⊕ rj. In the malicious setting we need to construct

authenticated shares and thus need additional machinery: we can utilize the Rand

protocol by Nielsen et al. [33, Figure 6].

Oblivious gate evaluation. The functionality FGgate takes as inputs shares of bits

a and b, and outputs a share of G(a, b) for some binary gate G. In the malicious

setting, both input and output shares are authenticated.

Functionality FGgate(〈a〉, 〈b〉)→ 〈G(a, b)〉

Input: The parties input bit shares 〈a〉 and 〈b〉. In the malicious setting, these shares are
authenticated.

Auxiliary Input: The description of a binary gate G.

Output: The functionality does the following:

1. (Malicious setting) If any of the shares are not correctly authenticated then abort.

2. Compute a and b from the shares.

3. Compute c = G(a, b) and output a sharing (authenticated in the malicious setting) of
c.

As our circuits require only AND and XOR gates, we only consider those choices
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for G here. In the semi-honest setting, we can compute XOR gates locally and

AND gates using one-out-of-four OT, as is done in the GMW protocol [2]. In the

malicious setting we can efficiently instantiate the functionality for XOR and AND

gates using the XOR and AND protocols by Nielsen et al. [33, Figure 6].

Oblivious transfer. The functionality Fot implements standard oblivious transfer.

Functionality F i,jot (b, (m0,m1))→ mb

Input: Party Pi inputs a choice bit b. Party Pj inputs two messages m0 and m1.

Output: The functionality outputs mb to Pi, and ⊥ to Pj .

This can be implemented efficiently in both the semi-honest and malicious setting

using known existing protocols [48].

6.5.1 Semi-honest Implementation of Foshare

The following protocol implements the Foshare functionality, where m � b = m if

b = 1 and the zero-string otherwise.

Protocol Πi,j
oshare(〈b〉(i), (〈b〉(j),m0,m1,⊥))

Input: Party Pi inputs its share bi = 〈b〉(i) of 〈b〉. Party Pj inputs its share bj = 〈b〉(j) of 〈b〉
along with two strings m0,m1 ∈ {0, 1}κ.

1. Pj chooses r ∈R {0, 1}κ uniformly at random.

2. Execute Fot with Pj as the sender having inputs (s0, s1) = (m0⊕ r,m1⊕ r), and Pi as
the receiver having input b′ = 1⊕ bi; denote Pi’s output as yi.

Outputs: Pj outputs yj = ((m0 ⊕m1)� (1⊕ bj))⊕ r and Pi outputs yi.

Lemma 6.1. The protocol Πi,j
oshare securely implements the functionality F i,joshare in

the presence of a semi-honest adversary in the Fot-hybrid world.

Proof. First, we show correctness; namely, we argue that the output of the protocol
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is a two-out-of-two sharing of mb, that is, yi ⊕ yj = mb. Indeed,

yi ⊕ yj = m1⊕bi ⊕ r ⊕ ((m0 ⊕m1)� (1⊕ bj))⊕ r

= m1⊕bi ⊕ ((m0 ⊕m1)� (1⊕ bj)).

Note that if bj = 0, we have

yi ⊕ yj = m1⊕bi ⊕m0 ⊕m1 = mb.

Likewise, if bj = 1, we have

yi ⊕ yj = m1⊕bi = mb.

To prove that the protocol is simulatable, observe that (1) Pj receives no

information in the protocol (which follows from the privacy of OT) and (2) Pi only

sees yi, where the value m1⊕bi is perfectly blinded by r. Hence, similarly to the ideal

evaluation of F i,joshare, the values seen by the parties give them no information. More

formally, we consider the following cases:

Pi is corrupted: The simulator, emulating the execution of Fot towards Pi, waits

for A to input his bit 1 ⊕ 〈b〉(i). The simulator extracts 〈b〉(i), submits it to

Foshare, forwards the reply to A, and halts with A’s output.

Pj is corrupted: The simulator receives the messages (m0 ⊕ r,m1 ⊕ r) from A and

extracts r. The simulator then submits (〈b〉(j),m0,m1, y
(j)) to Foshare, where
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y(j) = (m0 ⊕m1)� (1⊕ 〈b〉(j))⊕ r, and halts with A’s output.

Noting that each of these simulators perfectly simulates the adversary in the Fot-

hybrid world, the protocol is secure.

6.5.2 The Malicious Setting

In the malicious setting we utilize ideas from the protocol by Nielsen et al. [33].

In particular, each party Pi holds a global key ∆i, which they use to construct

authenticated bit shares. For a bit b authenticated towards Pi, Pi holds both the

bit b and a MAC Mb, with Pj holding the authentication key Kb, with the condition

that Mb = Kb ⊕ b∆j. To ease notation, in this Section we let 〈b〉(i) = (b,Mb, Kb).

Authenticated bit. We repeat here the FaBit functionality [33, Figure 5].

Functionality FaBit → 〈r〉(i)

Auxiliary Input: Party Pj inputs its global key ∆j ∈ {0, 1}κ.

Output:

1. (If Pi is malicious) Set 〈b〉(i) = (b,M,M ⊕ b∆).

2. (If Pj is malicious) Let b ∈R {0, 1} and set 〈b〉(i) = (b,K ⊕ b∆j ,K).

3. (If both are honest) Let b ∈R {0, 1} and K ∈R {0, 1}κ, and set 〈b〉(i) = (b,K ⊕ b∆j ,K).

4. Output (b,K ⊕ b∆j) to Pi and (K,∆j) to Pj .

The implementation of FaBit is detailed in the work of Nielsen et al. [33, Section

4] and not repeated here. Note that the parties can utilize FaBit to construct a

constant bit by Pi setting M = 0κ and Pj setting K = b∆j.

Receiver-authenticated one-out-of-two oblivious transfer. We first define

the functionality for receiver-authenticated oblivious transfer, which we utilize in

our construction of a maliciously secure implementation of Foshare.
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Functionality F i,jraot(〈b〉(i), (m0,m1))→ mb

Input: Party Pi inputs an authenticated choice bit b. Party Pj inputs two messages m0 and
m1.

Output: The functionality does the following:

1. If Pi’s choice bit b is not correctly authenticated then abort.

2. Output mb to Pi.

In order to efficiently implement Fraot, we need the following functionality:

Functionality Feq(a, b)→ {0, 1}

Input: Party Pi inputs a ∈ {0, 1}κ, and party Pj inputs b ∈ {0, 1}κ.

Output: The functionality outputs 1 if a = b, and 0 otherwise.

This can be instantiated efficiently using two calls to a random oracle H [33, pg. 7].

We can thus instantiate Fraot as follows:

Protocol Πraot(〈b〉(i), (m0,m1))

Let 〈b〉(i) = (b,Mb,Kb).

1. The parties compute 〈r〉(i) = (r,Mr,Kr)← F iaBit.

2. Pi computes d = b⊕ r and sends d to Pj .

3. Pi sends Mb⊕Mr to Feq, and Pj sends (Kb⊕Kr)⊕ d∆j to Feq, to check the equality
of the two values. If they are not equal, Pj aborts the protocol.

4. The parties then compute 〈d〉(i) ← Fdconst.
5. Let 〈w〉(i) = 〈r〉(i) ⊕ 〈d〉(i). Pj sends X0 = H(Kw)⊕m0 and X1 = H(Kw ⊕∆j)⊕m1

to Pi.

Output: Pi outputs Xw ⊕H(Mw) and Pj outputs ⊥.

Lemma. The protocol Πraot securely implements the functionality Fraot in the pres-

ence of a malicious adversary in the Random Oracle model.

Proof. Correctness is immediate. To prove simulatability, we consider the following

corruption cases:

Pi is corrupted: The simulator S simulating an adversary A corrupting Pi proceeds

as follows. S forwards its input (b,Mb) toA as input to the protocol. IfA sends
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a message v to Feq such that v 6= Mb⊕Mr, S aborts the protocol. Otherwise,

S sends 〈b〉(i) to the trusted party, receiving back mb. S then generates two

random bit-strings X0 and X1, and programs H so that H(Mw) = Xb ⊕mb.

Finally, S sends X0 and X1 to A.

Pj is corrupted: The simulator S simulating an adversary A corrupting Pj proceeds

as follows. S forwards its input (m0,m1, Kb) to A as input to the protocol.

If A sends a message v to Feq such that v 6= (Kb ⊕ Kr) ⊕ d∆j, S aborts

the protocol. Next, S waits until Pj sends X0 and X1 to Pi. It then uses

its knowledge of 〈r〉(i) and 〈d〉(i) to extract m0 and m1, which it feeds to the

trusted party.

Noting that each of these simulators perfectly simulate the adversary in the (FaBit,

Fconst, Feq)-hybrid world, the protocol is secure.

One-out-of-two oblivious secret sharing. We can instantiate Foshare in the

malicious setting using a protocol similar to Πoshare with the following modifications:

1. We use receiver-authenticated OT in place of standard OT;

2. To ensure that the simulator can extract consistent inputs from a corrupted

sender, we do two invocations of Fraot;

3. In order to extract Pj’s input in the case Pj is corrupt, we need an addition

authentication check requiring one invocation of FaBit.
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Protocol Πi,j
oshare−m(〈b〉(i), (〈b〉(j),m0,m1,⊥))

Let 〈b〉(i) = (bi,Mbi ,Kbi) and 〈b〉(j) = (bj ,Mbj ,Kbj ).

1. Pj chooses r0, r1 ∈R {0, 1}κ uniformly at random.

2. Execute Fraot with Pj as sender having inputs (s0, s1) = (m0⊕ r0,m1⊕ r1), and Pi as
the receiver having input 〈1〉(i) ⊕ 〈b〉(i); Pi denotes his output by yi.

3. Execute Fraot with Pj as sender having inputs (s0, s1) = (r0, r1), and Pi as the receiver
having input 〈b〉(i); Pi denotes his output by rbi .

4. Execute 〈r〉(j) = (r,Mr,Kr) ← FjaBit. Pj sends (d,Md) to Pi, where d = r ⊕ bj and
Md = Mr⊕Mbj , and Pi checks if (d,Md,Kd⊕Kr) is a valid authenticated bit, aborting
if not.

Outputs: Pj outputs y(j) = ((m0 ⊕m1)� (1⊕ bj))⊕ r0 ⊕ r1 and Pi outputs yi ⊕ rbi .

Lemma. The protocol Πoshare−m securely implements the functionality Foshare in

the presence of a malicious adversary in the (FaBit, Fraot)-hybrid world.

Proof. We first demonstrate correctness. It suffices to show that yi ⊕ yj = mb.

Indeed,

yi ⊕ yj = (m1⊕bi ⊕ r1⊕bi ⊕ rbi)⊕ ((m0 ⊕m1)� (1⊕ bj))⊕ r0 ⊕ r1

= m1⊕bi ⊕ ((m0 ⊕m1)� (1⊕ bj)),

and the derivation follows exactly as in the semi-honest case.

To prove that the protocol is simulatable, we consider the following corruption

cases:

Pi is corrupted: The simulator S waits for A to input his choice bit 〈b′〉(i) to the first

Fraot invocation. If 〈b′〉 is not a valid authenticated bit, S aborts. Otherwise,

S returns to A a random string y′i. Likewise, in the second Fraot invocation,

S retrieves 〈b〉(i) from A, aborting if the authentication check fails. S then

invokes Foshare with 〈b〉(i), receiving Pi’s output yi. S computes r′i = yi ⊕ y′i
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and sends r′i to A as the output of the second Fraot. Finally, S acts as Pj

would in Step 4, and halts with A’s output.

Pj is corrupted: The simulator S emulates the two executions of Fraot towards

the adversary A controlling Pj, from which S receives (x0, x1) and (r′0, r
′
1),

respectively. In Step 4, S extracts 〈bj〉(j). S then computes (m′0,m
′
1) =

(x0 ⊕ r′0, x1 ⊕ r′1) and submits the message (〈bj〉(j),m′0,m′1, y(j)) to Foshare,

where y(j) = ((m′0 ⊕m′1)� (1⊕ bj))⊕ r′0 ⊕ r′1, and halts with A’s output.

Noting that each of these simulators perfectly simulates the adversary in the (FaBit,

Fraot)-hybrid world, the protocol is secure.

6.6 Evaluation

For simplicity we assume each party’s input has length `. Since we apply the XOR-

tree technique to P3’s input, we let `′ = max{4`, 8ρ} be the new input length.

Protocol based on cut-and-choose. Table 6.1 details the specific computational

cost of each step for Πm
3PC(P1, P2, P3). Note that these numbers are across all par-

ties; the actual per-party cost is less. Each of the hybrid calls can be instantiated

efficiently using known techniques: Fcf can be instantiated very efficiently in the

random oracle model requiring only three oracle calls, Fzkpok can be instantiated

using 3ρ/2 + 18 exponentiations [9, pg. 36], and Fot can be computed using three

exponentiations [48].

Protocol based on Lindell’s protocol. The concrete computational cost for this

protocol are similar to the ones above, except ρ in this case is smaller to achieve the
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Step Exponentiations Hybrids Calls Symmetric Ops

1
2 4`+ 2(3ρ) (2` · Fss + (`′ + q) · Frand + 4` ·H) · (3ρ)
3 (4q · Fgate + 8q · Foshare) · (3ρ) 8(3ρ)q
4 2` · Fss

5 (2`′ · Fot) · (3ρ)
6
7 Fcf

8
9 3ρ 4(3ρ)q
10 (2` ·H + 2` · Fzkpok) · (3ρ)
11 (3ρ)q

Table 6.1: Computational cost for each step of Πm
3PC(P1, P2, P3).

Step Exponentiations Hybrids Calls Symmetric Ops

1
2 4`+ 2ρ (2` · Fss + (`′ + q)Frand + 4` ·H) · ρ
3 (4q · Fgate + 8q · Foshare) · ρ 8ρq
4 2` · Fss

5 (2`′ · Fot) · ρ
6 (2m ·H) · ρ
7 Fcf

8 ((2`+ m) ·H) · ρ ρq
9 — Cost of running Πm

3PC(P1, P2, P3) on circuit of size roughly O (`+ m) —
10 ρ 4ρq
11 (2` · Fzkpok) · ρ
12

Table 6.2: Computational cost for each step of Πm−lindell
3PC (P1, P2, P3).

same level of security. However, we must run the above protocol as a sub-protocol.

See Table 6.2 for the concrete efficiency counts.

Comparison with SPDZ. We compare our three-party protocol with the SPDZ

protocol [69, 24, 70, 71, 72], an efficient MPC protocol which works for n parties

and arbitrary corruptions over arithmetic circuits, and follows the preprocessing

paradigm. SPDZ represents the state-of-the-art at the time of writing in terms

of efficiency in the multi-party setting. Here we focus on the differences between
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both SPDZ and our protocol, and discuss their strengths and weaknesses. Due

to the different characteristics of each protocol (e.g., arithmetic versus boolean,

linear versus constant round, etc.), these protocols are somewhat “incomparable”.

However, we hope to give a general idea of the efficiency trade-offs of both protocols.

There are several key differences between the SPDZ protocol and our own. For

one, SPDZ works over arithmetic circuits, whereas our protocol works over boolean

circuits.2 In terms of communication, the SPDZ protocol requires rounds linear

in the depth of the circuit, whereas our protocol is constant-round. While it is

difficult to compare the impact of this without an implementation and experiments,

it seems intuitive that as the latency between machines increases, the cost of each

additional communication round increases as well; this intuition has been backed

up by experiments in the semi-honest setting [74].

Finally, we consider the start-to-finish execution time (i.e., including the cost

of preprocessing) for running an AES circuit. The preprocessing in our protocol is

basically that found in the TinyOT protocol [33], and, using the numbers presented

there, is fairly efficient (around 1 minute [33, Figure 21]). Efficiency comes from

the fact that the preprocessing is only between two parties, namely, the circuit

generators. The on-line running time is conjectured to be around that of maliciously

secure two-party protocols using cut-and-choose.

The SPDZ protocol, on the other hand, has a very efficient (information-

theoretic) online phase but a much costlier offline phase (around 17 minutes for

2Damg̊ard and Zakarias [73] develop a SPDZ-like protocol for Boolean circuits; however, its
practical efficiency is unclear.
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three parties [70, Table 2]). In addition, it has a one-time setup phase which is very

costly: the parties need to execute an MPC protocol for a circuit which generates

a key pair with the secret key secret-shared among the parties. Executing this

on its own would likely eclipse the running time of our protocol.3 Thus, given

preprocessing, it seems likely that SPDZ would out-perform our protocol; however,

in the setting of executing the protocol from start to finish, we conjecture that our

protocol would be more efficient.

Finally, our protocol is most efficient in the random oracle model, whereas

SPDZ works in the standard model.

3We note that the work of Damg̊ard et al. [71] presents an efficient protocol for this one-time
setup phase in the weaker covert security model [75].
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Chapter 7: Conclusion

In this dissertation we presented four improvements to the state-of-the-art in secure

computation for various security models and settings. In Chapter 3 we show how to

achieve an upwards of 5× improvement over the state-of-the-art maliciously secure

two-party computation (2PC) protocols when considering the multiple-execution

setting, where the two parties would like to compute the same function multiple

times. In Chapter 4, we show a protocol in the publicly-verifiable covert (PVC)

setting, where a cheating party produces a certificate of cheating if caught, which is

nearly as efficient as the best known protocol in the covert setting. In Chapter 5,

we present a maliciously secure 2PC protocol for functions with predicate checks

on their inputs. And finally, in Chapter 6, we show an efficient three-party secure

computation protocol which utilizes ideas from the two-party setting to construct a

protocol more efficient than known multi-party protocols.

While these results bring the community closer to making secure computation

a truly practical tool, there is still a lot of work that needs to be done before we

can expect secure computation to be a viable approach in real-world settings. First

and foremost, robust implementations need to be developed to benchmark the var-

ious proposed protocols, including several presented in this dissertation. We have
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done some initial work on this with the release of libgarble1, a garbled circuit

library based on an implementation by Bellare et al. [6]. However, more needs to

be done. Well developed libraries for oblivious transfer and other secure computa-

tion primitives need to be developed, and efficient and easy-to-use frameworks for

implementing secure computation protocols need to be released to further the devel-

opment of more efficient protocols. With regards to the (theoretical) research side

of things, a better understanding of what security models are applicable to what

settings needs to be studied, to determine whether semi-honest, PVC, or malicious

protocols need to be used for certain real-world applications. Finally, developing

ever-more practical protocols is always an important step towards making secure

computation deployable in practice.

1https://github.com/amaloz/libgarble
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