
ABSTRACT

Title of dissertation: BIOLOGICALLY-INSPIRED OPTIMAL CONTROL

Cheng Shao, Doctor of Philosophy, 2005

Dissertation directed by: Dr. Dimitrios Hristu-Varsakelis
Department of Mechanical Engineering
Institute for Systems Research

Inspired by the collective activities of ant colonies, and by their ability to

gradually optimize their foraging trails, this dissertation investigates the coopera-

tive solution of a broad class of trajectory optimization problems with various types

of boundary conditions. A set of cooperative control algorithms are presented and

proved to converge to an optimal solution by iteratively optimizing an initially fea-

sible trajectory/control pair. The proposed algorithms organize a group of identical

control systems by imposing a type of pair-wise interaction known as “local pursuit”.

The bio-inspired approach taken here requires only short-range, limited interactions

between group members, avoids the need for a “global map” of the environment in

which the group evolves, and solves an optimal control problem in “small” pieces,

in a manner which is made precise. These features enable the application of the

proposed algorithms in numerical optimization, leading to an increase of the per-

mitting size of problems that can be solved, as well as a decrease of numerical errors

incured in ill-conditioned problems. The algorithms’ effectiveness is illustrated in a

series of simulations and laboratory experiments.

BIOLOGICALLY-INSPIRED OPTIMAL CONTROL

by

Cheng Shao

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2005

Advisory Committee:

Assistant Professor Dimitrios Hristu-Varsakelis, Chair/Advisor
Professor Shapour Azarm
Professor Balakumar Balachandran
Professor Amr Baz
Professor P. S. Krishnaprasad

c© Copyright by

Cheng Shao

2005

DEDICATION

To my parents and grandparents

ii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude for all the people who have made this

thesis possible and because of whom my life as a graduate student has been one

that I will always cherish.

First and foremost, I am greatly appreciated to my advisor, Dr. Dimitrios

Hristu-Varsakelis, for his guidance and support through past four years. Dr. Hristu

provided me an invaluable opportunity to work on challenging and extremely inter-

esting research projects, his dedication to excellence and integrity in science pro-

pelled me to learn the essence of research that makes this dissertation possible.

I would like to thank other members of my dissertation committees, Prof. Shapour

Azarm, Prof. Balakumar Balachandran, Prof. Amr Baz, and Prof. P. S. Krish-

naprasad, for kindly serving on the committee and their invaluable advice on how

to improve the dissertation.

My thanks also go to my officemates, Mr. Lei Zhang, Mr. Kevin Roy Kefauver

and Mr. Philip Yip. I will never forget their friendship and talents. I am also grateful

to all my friends who make my life at Maryland a great journey, in particular Lei

Zhang, Guojing Tang, Peng Lin, Haiying Liu, Hai Shi, Wei Xi, Fang Rong, Xue Mei

and Wenjing Weng, to name a few.

I owe my deepest thanks to my parents for their love and encouragement in

past 29 years. My gratitude to them cannot be expressed by words.

Last but not the least, I would like to thank my girlfriend, Gengsheng Lu. I

would not have survived the doctorial program without her love and support.

iii

TABLE OF CONTENTS

1 Introduction 1

1.1 Research Objectives . 6

1.2 Research Contributions . 7

1.3 Dissertation Outline . 8

2 Literature Review 9

2.1 Cooperative Control Systems . 9

2.2 Biologically-inspired Control Laws . 12

3 Biologically Inspired Algorithms for Optimal Control 23

3.1 Problem Statements and Notation . 24

3.2 Difficulties Faced by a Single Agent 28

3.3 A Class of Bio-Inspired Pursuit Algorithms 30

3.4 Algorithm Advantages . 37

4 Main Results 39

4.1 Evolution under Sampled Local Pursuit 39

iv

4.2 Evolution under Modified Continuous Local Pursuit 51

4.3 Summary . 62

4.4 Special Cases: Length and Time Minimization 64

5 Local Pursuit as a Computational Tool 67

5.1 Motivation . 67

5.2 Local Pursuit as a Computational Tool 70

5.2.1 A Brief Review of Multiple Shooting 70

5.2.2 Numerical Optimization by Local Pursuit 75

6 Simulations and Experiments 81

6.1 Sampled Local Pursuit (Large δ) . 81

6.2 An LQR Example . 82

6.3 Minimum Time Control . 84

6.4 Finding Geodesics on Uneven Terrain 84

6.5 A Trail Optimization Problem with Free Final State 87

6.6 Minimum-time Control with Speed and Acceleration Constraints . . . 89

6.6.1 An Experiment in Minimum-time Control 91

6.7 Numerical Optimal Control via PBMS: An Orbit Transfer Problem . 92

6.7.1 A Comparison of MS vs. PBMS 95

6.7.2 Results . 97

v

6.7.3 Well-conditioned Case . 98

6.7.4 Ill-conditioned Case . 99

6.7.5 Large Number of Segments . 100

6.8 Quadratic Optimal Control on a Sphere 104

6.8.1 System Dynamics on a Sphere 104

6.8.2 Applying the Maximum Principle 107

6.8.3 Applying Multiple Shooting 108

7 Conclusions 112

7.1 Opportunities for Future Research . 113

A The Dynamics of a Massive Particle on S2 116

vi

LIST OF TABLES

3.1 Variations of local pursuit according to problem type 37

5.1 Comparing the dimensions of the NLP problem variables when us-

ing Multiple Shooting (MS) vs. Pursuit-based Multiple Shooting

(PBMS). Typically, N∆ << N . 77

6.1 Comparison between Multiple Shooting and Local Pursuit in well-

conditioned case . 98

6.2 Comparison between Multiple Shooting and Local Pursuit in ill-conditioned

case . 101

vii

LIST OF FIGURES

1.1 Illustration of a swarm of robots exploring an unknown planetary

surface. 2

2.1 Flow diagram illustrating a model of how honey bees allocate their

foragers. 14

2.2 An ant chooses the path in accordance with pheromone concentrations 16

2.3 Ants find the shortest path joining two members 17

3.1 It is easier to solve an optimization problem within a “small” region. 28

3.2 A snapshot of the updating processes executed by the kth agent. . . . 33

3.3 Illustration of local pursuit on a manifold. Each agent – except the

first – is trying to “catch up” its predecessor before the predecessor

reaches SQ, and trying to reach SQ via a locally optimal trajectory

thereafter. 35

4.1 Illustrating Sampled Local Pursuit 40

4.2 First two steps in sampled local pursuit 43

4.3 There is one update between two trajectories 45

viii

4.4 Overlapped local minimums lead to the local minimum overall 49

4.5 Illustration of the trajectory obtained by a single update when λ <

Tk−1 − ∆. 53

4.6 Illustration of the trajectory obtained by a single update when λ ≥

Tk−1 − ∆. 53

4.7 Illustration of the trajectory sequence xi
k(t). Each trajectory is ob-

tained by a single update upon its predecessor. 54

4.8 Illustrating the proof of Lemma 4.7: “overlapping” optimal trajecto-

ries form a locally optimal trajectory. 56

4.9 Illustrating the proof of Lemma 4: pursuit between agents moving

on two supposed “limiting” equal-cost trajectories, leads to the con-

clusion that the cost along the follower’s trajectory is less than that

along the leader’s. 58

4.10 Differences between the planned and realized trajectories contradict

the convergence of trajectories under mCLP. 60

4.11 The minimum cost from xk+1(t)) to xk(t) is decreasing if dC/dt is

independent. 65

5.1 Local pursuit decreases the problem size at every updating step. In

this figure, the number of variables involved in multiple shooting is

N = 13, while the number of variables handled by each agent in local

pursuit is N∆ = 5. 76

6.1 Iterated trajectories for the minimum length problem, using SLP on R
2 82

6.2 Iterated trajectories for the Lagrangian problem through SLP with

∆ = 0.5, δ → 0 . 83

ix

6.3 Iterated trajectories for the minimum time control problem via CLP

with ∆ = 0.3π . 85

6.4 Uneven terrain consisting of two cones and a plane. 86

6.5 Iterated trajectories for the geodesic discovery problem using mCLP

with ∆ = 0.2T . 87

6.6 Continuous local pursuit in a complex environment. The initial tra-

jectory (along the borders of the cones) was easy to describe (for ex-

ample, “move along the cone boundaries”) but far from optimal. The

locally optimal trajectories were easier to compute than the global

optimum because of the limited pursuit distance (∆ = 0.2T0). The

iterated trajectories converged to the optimum. 88

6.7 Iterative trajectories for minimum control with limited acceleration

and speed. The simulated control loop ran at a frequency of 2000Hz

so that the control policy could be regarded as approximately CLP.

The pursuit interval was ∆ = 1.3. 90

6.8 Applying local pursuit with a trio of motors to obtain minimum-time

control with limited acceleration and speed. 91

6.9 Iterative trajectories of motors when applying local pursuit to attain

minimum-time control with limited acceleration and speed. The pur-

suit interval was ∆ = 1.3. The third motor evolved under essentially

optimal control. 93

6.10 A planar spacecraft in orbit around the Earth. 94

6.11 Trajectories generated by MS and PBMS for a well-conditioned case

with N = 101, N∆ = 30, Nδ = 16. The trajectories obtained from

both methods were virtually identical. The symbol “•” indicated the

starting point of the trajectories. 99

x

6.12 Satellite trajectories for an ill-conditioned case with N = 201, N∆ =

30, Nδ = 16. The trajectory obtained via local pursuit was essen-

tially optimal; multiple shooting failed to converge. The symbol “•”

indicated the starting point of the trajectories. 102

6.13 Spacecraft trajectory in the case of large number of segments, N =

601, N∆ = 60, Nδ = 32. The symbol “•” indicates the starting point

of the trajectories. 103

6.14 The angle between the body-fixed coordinate and sphere coordinate

frames varies differ along the particle’s trajectory. The relationship

between them the two frames can be obtained via parallel transport. . 106

6.15 The controls for the initial trajectory in bodyfixed coordinate and

sphere coordinate . 109

6.16 Trajectories generated by PBMS for this problem. The parameters

selected were N = 201, ∆ = 60, δ = 32. 110

6.17 Top: optimal controls, expressed in bodyfixed and sphere coordinates.

Bottom: The orientation angle α(t) of the bodyfixed coordinate frame

in sphere coordinates. 111

xi

Chapter 1

Introduction

In nature, animal aggregation is a common phenomenon, seen in organisms that

range in complexity from primitive zooplanktons to advanced mammals. Many

species exhibit collective movement patterns which are highly organized when com-

pared to the seemingly independent behaviors of their members. This is particularly

spectacular in species whose individuals are of lower intelligence. For example, a

school of fish can move together in a tight formation and respond almost as a single

organism to evade approaching predators; worker honey bees can distribute them-

selves to different nectar sources in accordance with the profitability of each source;

foraging ants can recruit their nest-mates to form efficient trails between the nest

and a food source [13, 56].

The collective behaviors of these biological groups, especially social insects,

suggest a variety of promising cooperative solutions to complex control and opti-

mization tasks, such as formation control, resource allocation and trajectory op-

timization. It is therefore no surprise that in recent years, a growing number of

1

researchers have focused on cooperation as a means of solving challenging systems

and control problems, and that cooperative control systems have been emerging

as attractive alternatives to their centralized counterparts. The rising interest in

cooperative control also stems from the fact that it has recently become possible,

and in some cases straightforward, to construct groups of communicating, low-cost,

small-scale electromechanical systems that have the potential to operate collectively

and outperform single-system solutions, much like animal groups can outperform

individuals. For example, mobile exploration and information-gathering tasks could

be accomplished cheaply and more reliably by swarms of small autonomous robots

as opposed to a more sophisticated single vehicle (see Fig. 1.1). Other examples in-

clude satellite arrays that enable global communication, and teams of mobile robots

that perform localization, estimation, and search tasks.

Figure 1.1: Illustration of a swarm of robots exploring an unknown planetary surface.

2

Besides solving problems that are interesting from an engineering point of

view, some biological systems also operate under sensing, communication and com-

putational constraints which are similar to those faced by members of artificial

collectives. For instance, an ant can only see within a small region around itself, its

communication with others is based on primitive methods, such as pheromonal se-

cretions, and its cognitive ability is limited. Small-scale, low-cost units of a robotic

team may be facing similar challenges regarding short-range sensing, communica-

tion and limited computing power. These considerations form the basic motivation

behind what is known as the “bio-inspired” approach to systems in general, and

cooperative control in particular: extracting effective ways to organize and control

what would be broadly termed “engineered collectives”, by studying the behavior

of their biological counterparts.

The performance of a cooperative system (for example, a team of autonomous

ground, aerial or underwater vehicles) depends on what could be termed its “organiz-

ing principle”, taken to mean the set of rules or policies that govern the interactions

among its members. An effective organizing principle can make a collective into

“more than the sum of its parts”, by endowing it with properties or abilities that

are beyond those of individual members. At the same time, the rules of interaction

must take into account the limitations of individuals and attempt to circumvent

them by cooperation. In that regard, natural systems have developed specialized

skills through natural selection, and may offer us important clues on how to proceed.

Finding effective organizing principles is generally a challenge because it re-

quires solving a difficult inverse problem, namely decomposing a desired group be-

3

havior into individual behaviors. Except in degenerate cases, there is almost no

hope that such a mapping – if it could be written down – would be linear. Thus

one could not assume that the behavior of a group is somehow the “sum” of its

members’ behaviors. In many instances, the “forward” problem is more straightfor-

ward, namely postulating rules for individual behavior and predicting the collective

pattern that will emerge.

To be useful, the forward approach requires one to “decode” the interactions

within animal groups whose behavior is interesting or relevant, and to modify what

is observed there to fit specific cooperative control problems. This modeling process

requires making decisions about what kind of architecture is most appropriate for de-

scribing what is observed. Perhaps the most basic categorization that we are called

to make is whether any proposed control policy should be centralized or decentral-

ized, and whether limiting ourselves to one category leaves us with a sufficiently rich

class in which to seek solutions. Certainly, if all group members are coordinated by

a centralized “leader”, that leader must have the capability to communicate with

others and coordinate their behaviors. Leaders do exist in animal aggregates with

a relatively small number of group members and advanced intelligence, e.g. wolf

packs and primates. However, in groups with hundreds or thousands of – or more –

members, e.g., fish schools or ant colonies, central coordination of the activities of

all members seems to be out of the question, as it is beyond the capabilities of any

member. The existence of centralized leaders in such aggregates would also make

such groups “fragile” to possible loss or injury of those leaders. These considera-

tions, combined with observations of the qualitatively similar behaviors of members

4

in an insect aggregate, suggest that there are no such leaders in these groups, and

this is supported by other research [13, 56, 31]. Similar concerns exist for engi-

neered collectives. For example, it might be difficult or inefficient to coordinate the

movement of a large team of autonomous vehicles by designating one of them as the

“leader”.

On the other hand, decentralized systems schemes have apparently been suc-

cessful in nature. For instance, at the individual level, honey bees receive limited

information (including the relative direction of nectar sources only) from other work-

mates and go to forage selected flowers. One may think that this type of behavior

would lead to random distribution over the various sources, because the message

each bee obtains does not convey accurate information about the profitability of

nectar sources. At the group level, however, one observes that foragers are ratio-

nally dispatched over different flowers in accordance with the distribution of nectar

over various sources [13]. Similar examples of useful collective behavior emerging

from decentralized cooperation include trail formation by ant colonies [10], and

swarming in fish and bird populations [35].

In addition to the biological evidence against centralized schemes, and techni-

cal difficulties of applying centralized control to large groups, it is significant that

mathematical models of cooperating teams suggest that a few simple, myopic rules

of interaction between members can often generate dramatic and complex behaviors

at the group level [13, 10, 35]. Combined with empirical observations, this fact sug-

gests that the mechanisms behind complex natural behaviors may indeed be “local”,

and at the very least, local interactions are a rich “language” in which to explore

5

the problem of constructing useful cooperative control laws. This is precisely the

approach taken in this thesis.

1.1 Research Objectives

The goal of this dissertation is to explore a class of cooperative control strategies that

can be applied to groups of agents1 with limited sensing and computing capabilities

in order to solve difficult optimal control problems. We have argued that biological

systems demonstrate many promising cooperative solutions that are similar (at least

functionally) to what one might want to do with engineered collectives. What we are

essentially interested in is trading off individual capabilities for cooperation in order

to accomplish a complex task with less sophisticated equipment: low power, short

sensing range and low communication burden. We will look to natural examples

(specifically the foraging behavior of ant colonies) for successful prototypes.

Our approach will be to postulate organizing principles inspired by observa-

tions of individual behavior, and then investigate the “collective behavior” that

emerges. We will obtain control policies for individual agents by modeling the in-

dividual behaviors that seem to explain the collective movement patterns of ant

colonies. An effective model will allow us to capture some aspects of the “expe-

rience” accumulated through interaction within the colony. The rules we aim to

extract are to be kept simple with respect to the computation and communication

1Throughout the document we will use “agent” to refer to a member of a group of control

systems.

6

resources required to implement them, and are to be applied to cooperative control

systems, including inexpensive autonomous robots.

1.2 Research Contributions

The main contributions of this thesis are:

• To propose a set of novel bio-inspired optimization algorithms that enable a

group of control systems with limited communication, sensing and computa-

tion capabilities to solve complex optimal control problems under conditions

that would be prohibitive for an individual system.

• To generalize earlier pursuit-based cooperative optimization algorithms to a

broad class of optimal control problems that involve systems with non-trivial

dynamics and include many of the well-studied situations in optimal control,

such as the computation of geodesics, and optimal control in minimum-time

and/or with partially-constrained final states.

• To explore the application of pursuit-based optimization as a numerical method

and to illustrate the advantages of combining the proposed cooperative algo-

rithms with existing numerical methods in order to address large scale opti-

mization problems.

• To demonstrate the proposed optimal control methods through a series of

simulations and laboratory experiments.

7

1.3 Dissertation Outline

The remainder of this thesis is organized as follows:

Chapter 2: We review previous research on cooperative and biologically-inspired

control strategies as well as an early prototype of one of the algorithms to be pre-

sented in Chapter 3.

Chapter 3: We define the class of optimal control problems under consideration,

and introduce a set of biologically inspired algorithms that achieve optimality via

cooperation. The proposed algorithms are variants of a strategy known as “local

pursuit” and mimic the interactions of ant colonies.

Chapter 4: We present the main results concerning the behavior of a group of

control systems that evolve according to the proposed algorithms, and prove that

local pursuit leads to a locally optimal solution.

Chapter 5: We discuss the application of local pursuit as a computational tool,

when combined with current numerical optimization methods. In particular, we

will show that the proposed algorithms cannot only extend the permitting size of

numerical optimal control problems, but also decrease computational errors.

Chapter 6: We present a series of simulations and laboratory experiments that

illustrate the performance of the proposed algorithms.

Chapter 7: We summarize the results of this research and discuss possible direc-

tions for future work.

8

Chapter 2

Literature Review

This work lies at the intersection of cooperative and biologically-inspired control.

There is a broad variety of research directions in each of these two areas. In this

chapter we review some of the works most relevant to our approach.

2.1 Cooperative Control Systems

Group Formations

Current research directions under the general theme of “cooperative control” include

work on group formation control, virtual leader-based formations and group-based

estimation, among others.

The work in [25] described a control framework that allows robots equipped

with range sensors to coordinate their movements in order to accomplish search

and rescue manipulations. The authors derived three formation control policies

- “Separation-Bearing Control”, “Separation-Separation Control” and “Separation

9

Distance-To-Obstacle Control” - with respect to relative position of neighboring

robots or obstacles in the environment. Using the above formation controls, a higher-

level “basic formation” policy was constructed and proved to stabilize the formation

of a robot team.

A team of robots in formations were modeled as a triple (g, r,H) in [17],

where g represents the gross position and orientation of the lead robot, r is a set

of shape variables describing the relative position of individual robots and H is a

so-called “control graph” which describes the control strategy used by each robot

and is modeled by a transition matrix. This framework enables the representation

and enumeration of possible transition between two formations. The authors also

developed a set of decentralized control laws that allow robots to maintain different

kinds of formations and undergo shape changes.

Virtual Leader-Based Formations

Another important research direction in group formation is concerned with the con-

struction of artificial potentials and virtual leaders, such as the coordination strategy

for vehicle group maneuvers, including translation, rotation, expansion and contrac-

tion, as presented in [53]. The control applied on each vehicle is defined as the linear

combination of the gradient of these potentials (VI and Vh in the following equation)

as well as a linear damping term:

ui = −

N
∑

j 6=i

∇xi
VI(xij) −

M
∑

k 6=i

∇xi
Vh(hik) − Kẋi,

10

where ui = ẍi is the control, xij is the distance between the ith vehicle and the jth

vehicle, and hik is the distance between the ith vehicle and the virtual leader k. The

artificial potentials VI apply attraction to distant neighbors as well as repulsion for

neighbors which are too close. The accomplishment of a desired mission is through

controll of the direction of the virtual leaders, while the speed of the virtual leader

is to ensure the convergence of the formation. The convergence property is proved

by Lyapunov’s method.

The work in [22] also proposed a general, platform-independent approach by

letting the virtual leader follow a desired trajectory. By constructing a one-to-one

formation constraint function F (x1, . . . ,xm) : R
n × · · · × R

n → R
+, where xi is

the position of each vehicle, the solution of the desired trajectories is obtained by

taking the steepest descent to desired formation. Under the assumption that the

real robots track their respective reference trajectories perfectly, it holds that the

virtual leader’s trajectory converges to the desired trajectory.

Distributed Localization and Estimation

In [43, 44], the authors proposed a method called “Cooperative Positioning System

(CPS)” to alleviate the weakness of traditional position identification techniques

usually applied in robotics, including dead reckoning and landmark-based local-

ization. In that work, a robot group is divided into two teams in order to provide

“portable landmarks”. At every instance, one team moves and the other stays static,

acting as the landmark, then they exchange roles. Therefore, each team can benefit

from accurate measurements by utilizing static landmarks, while at the same time,

11

no prior placing of landmarks is required. The drawback is that at least one robot

must stay stationary so that the overall speed of the algorithm is limited.

Another approach to simultaneous relative localization for a group of mobile

robots was presented in [58]. Each robot measures its own motion using its pro-

prioceptive sensors. When two robots xi, xj meet, they share information with one

another, then the ith robot updates the estimate of its own position with respect

to that of the jth robot’s and the relative distance estimate between the two. The

process is described by a set of Kalman filter equations. This method “distributes”

what would be a centralized estimation process among a number of Kalman filters,

each of them operating on a different robot.

2.2 Biologically-inspired Control Laws

Animal Group Pattern Modeling

Successful observations of biological groups have seeded a variety of bio-inspired re-

search in engineering, from modeling of animal groups, to distributed collective

covering and searching, swarm formation stabilization analysis and biologically-

motivated optimization.

The work of [64] proposed a simple model concerning the movement of n

autonomous agents moving at the same speed but with varying initial headings. If

each agent of the group uses the “nearest neighbor rule” to update its heading, that

12

is

〈θi(t)〉r =
1

1 + ni(t)



θi(t) +
∑

j∈Ni(t)

θj(t)



 ,

where θi(t) is the heading of the ith agent and ni(t) is the number of neighbors of

the ith agent at time t. All agents’ headings are proved to converge to a common

constant vector as time goes on. The theoretical explanation for the convergence

described in the above model is provided in [35], along with several similar models

inspired by [64], such as “leader following” showing that if there exists an agent

acting as the “leader” in the group, all agents will evolve to point to the same

heading as the leader . This “nearest neighbor rule” can cause all the members

of a group to move towards the same direction despite the fact that there is no

centralized coordination and that an agent’s set of nearest neighbors might change

as the system evolves. The successful models developed on [64, 35] have been used

to explain how a group of birds or fish manage to move in tight formation as a single

entity while there is no central coordinator.

A mathematical model for describing the honey bees’ behaviors was con-

structed in [13]. Although individual honey bees do not have global information

about the distribution of nectar sources, each one will comply with certain rules to

determine where it will go to forage. This process is described by a flow diagram

illustrated in Fig. 2.1. At the bifurcations on the diagram, honey bees make deci-

sions on which nectar source to forage and whether to dance - the way honey bees

transfer information - or not. The decision-making process is modeled by means

of probabilities of proceeding with various actions. For example, P A
X represents the

13

Foraging at
Flower A

Foraging at
Flower B

Unloading nectar
from A (HA)

Unloading nectar
from B (HB)

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

Following
dancers(F)

Dancing
for A (DA)

Dancing
for B (D

B
)

PX
A

PX
B

1- PX
A 1- PX

B

PF
A PF

B

Pd
A(1- PX

A) Pd
B(1- PX

B)

Figure 2.1: Flow diagram illustrating a model of how honey bees allocate their

foragers.

probability for one bee to watch other dancers after it unloads the nectar collected

from flower A, P A
d (1 − P A

X) represents the probability of dancing to convey infor-

mation on flower A, and P A
F represents the probability of following other dancers

to forage flower A. Noticing that honey bees make decisions only after receiving

limited information from their workmates, [13] proposed a set of simple equations

to describe these probabilities, e.g.,

P A
F =

DAdA

DAdA + DBdB

,

where DA represent the number of dancers for flower A and dA is the proportion of

time that foragers actually dance. Other probabilities such as P A
X can be assumed

to be a constant. Simulations showed a collective result that is qualitatively similar

to what is observed in real bee colonies.

The work of [16] presented a model of how ants select foraging areas. According

14

to that model, each ant initially has a uniform distribution over all foraging areas,

so that it is equally likely to forage everywhere. If at time t, the ant finds food in

zone i, then the probability Pi(t + 1) of foraging at area i at time (t + 1) is given by

Pi(t+1) = Pi(t)+min(P+, 1−Pi(t)), where P+ is a constant indicating the relative

importance of “learning”. If at time t there is no food found at area i, then the

probability Pi(t + 1) will be decreased. By this mechanism, both an individual ant

and its colony will evolve into an optimal spatial distribution over foraging areas –

obtaining maximum food when the appearance of food at each zone is random and

unknown to the ants.

Models of Ant-Trail Formation

An insect aggregation example of particular relevance to this thesis is the foraging

activity of ant colonies, which includes discovering food, recruiting nest-mates and

forming trails. When an ant finds food, it will recruit other ants around to con-

vey that food back to the nest. These co-workers will rapidly form a well-defined

trail between the nest and food even though they are homogeneously distributed at

first. Finding an efficient path between the nest and food seems too complicated

a problem for an individual ant to solve, especially if one considers the ant’s tiny

size relatively to obstacles in the environment, such as stones, stick and crevices.

Nonetheless, a colony of ants seem quite adept at such tasks [13]. To explore the

intrinsic mechanism that leads to the collective efficiency as opposed to individual

clumsiness, several models concerning ant-trail formation have been proposed.

The work of [13] described a model about how ants utilize pheromonal secre-

15

tions to choose ongoing pathways. According to this model, pheromonal secretions

are laid along the paths by ants to keep a trace and recruit other nest-mates. At

the same time, pheromonal secretions evaporate as time goes on. When an ant

comes to a location where several traces cross, it follows the path with the highest

concentration. As illustrated in Fig. 2.2, the probability of taking the left branch of

xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx

xxxx
xxxx
xxxx

Figure 2.2: An ant chooses the path in accordance with pheromone concentrations

a “fork” in the terrain is quantified as

PL =
(k + CL)n

(k + CL)n + (k + CR)n
,

The parameters CL and CR represent the pheromone concentrations on the left and

right branch, n and k are constants corresponding to the degree of nonlinearity of

the choice and the attraction of an unmarked branch, respectively. The key point

is that the pheromonal secretions play a “positive feedback” role. Although an

individual ant knows little about the entire environment and the distribution of its

co-workers, simulations suggest that the colony has the collective potential to find

the shortest path.

16

Another model concerning ant-trail formation on a plane was explored in [10].

The basic rule in this model is that each ant “follows” one of its co-workers instead

of measuring pheromonal secretions, as Fig. 2.3 illustrates. In [10], the pheromonal

secretions laid by an ant are used to trace its own tail and find its way back to

the nest but not to recruit its nest-mates. Paraphrasing [10], the path traveled by

Figure 2.3: Ants find the shortest path joining two members

a single ant is a curve xk(t) : [0, T] → R
2 with ẋk = u (u ∈ R

2). The boundary

conditions for these systems are x0(0) = x0 and x0(T) = xf , which represent the

starting point (nest) and the target point (food) respectively. Any ant can trace its

own trajectory back to the nest so that we have a sequence virtually infinite of ants

departing from x0. Each ant moves with unit speed and there are ∆ units of time

between the departure time of successive ants. At every instance, each ant except

the first one will follow its predecessor by pointing its speed vector in a straight line

toward the predecessor. In short, for k = 1, 2, 3 . . .

ẋk(t) =
xk−1(t) − xk(t)

‖xk−1(t) − xk(t)‖
,

with xk(0) = x0 for t ≤ k∆ and xk(T) = xf if xk reaches the target xf . For the

17

case when xk(t) ∈ R
2, it has been shown that if the initial ant x0(t) follows a sub-

optimal path from x0 to xf , then the trajectories {xk} will converge to a straight

line connecting x0 and xf .

Distributed Covering and Searching

Inspired by the fact that ants and other insects use pheromones for various com-

munication and coordination tasks, [65] developed robust adaptive algorithms to

perform tasks requiring the traversal over an unknown region, such as cleaning the

floor of an unmapped building. The region to be covered is described by a graph

G = (V, E), where every vertex represents an “atomic region” (tile). When agents

deployed in the algorithms are traveling on G, they mark their trails by depositing

a pheromone, which evaporates as time goes on. By this mechanism, the agents can

assign each edge of the graph (which represents an adjacency neighborhood relation

between two “atoms”), with a label of the time of the most recent traversal of that

edge. An agent visiting vertex u ∈ V (G) checks the labels on all edges emanat-

ing from u, and goes in the direction that was not visited for the longest time by

choosing the smallest label. The time tk needed to cover all edges of the graph by

k agents under the “ANT-WALK-1” rule based on the above idea is bounded by

tk ≤ n∆

(

ρ(G) +
(1 + α)n

k

)

,

where ∆ is the maximum vertex degree in G, n = |V (G)|, α is related to the

measurement noise and ρ(G) is the cut-resistant of G. In the same work, the “ANT-

WALK-2” rule, a generalization of the famous Depth-First search algorithm, was

18

developed for agents with limited memory. The time tk for this rule is bounded by

tk ≤ (n∆/2)

⌈

(1 + α)

k

⌉

.

The work in [55] investigated the performance of cooperative strategies that

control autonomous air vehicles searching a dynamic environment to gather infor-

mation. The proposed framework considers two main components for each agent:

distributed learning of the environment and distributed path planning based on the

information gathered. The collective results based on a recursive q-step ahead as well

as an interleaved planning technique illustrate that the cooperation among vehicles

improves the performance. The authors also explored the feasibility of developing

coordination control strategies inspired by the social foraging activities of E. coli, a

common type of bacteria.

Swarm Formation Stability Analysis

In [27, 29] the authors considered a continuous-time swarm model in an n-dimensional

space base on artificial potential functions, which is inspired from the literature on

swarming in mathematical biology. The motion of individual i is given by

ẋi =
M

∑

j=1,j 6=i

g(xi − xj), (2.1)

where g(.) represents an attraction/repulsion function between the swarm members.

Thus, the force acting on a particle in the swarm is determined by the sum of

the attraction and repulsion forces from all other members. Then, if a swarm is

19

described by Eq. (2.1), all members of the swarm will converge to a hyper-ball

Bǫ(x̄) = x : ‖x − x̄‖ < ǫ, where ǫ = b
a

√

c
2
exp(−1

2
) and x̄, the center of the swarm,

can be shown to be stationary.

The last potential function has also been extended to social foraging swarms

in [28], where the motion of each individual is determined by

ẋi = −∇xiσ(xi) +
M

∑

j=1,j 6=i

g(xi − xj). (2.2)

Here σ : R
n → R represents the attractant/repellent profile of some substances (for

example, food/nutrients, or toxic chemicals), hence the term −∇xiσxi represents

the motion preference of the individual toward regions with higher nutrient con-

centration and away from regions with high concentration of toxic substances. The

authors also proposed a cohesion analysis (swarm stability) for different kinds of

attractant/repellent profile.

Biologically-Motivated Optimization

In [18] a search methodology was introduced based on the “distributed autocatalytic

process”, to solve a classical optimization problem - the Traveling Salesman Problem

(TSP). Inspired from the fact that ants can use pheromonal secretions to find the

shortest path when foraging, [18] utilized an ant team to travel through the towns

in TSP. The transition probability from town i to town j for the kth ant is defined

as

pk
ij(t) =















[τij(t)]α·[ηij]βP
k∈Ωi

[τik(t)]α ·[ηik]β
if j ∈ Ωi

0 otherwise

, (2.3)

20

where Ωk is the set of towns reachable by k, and τij(t) is the intensity of pheromonal

trail on edge (i, j) at time t, which is laid by ants on the edge and evaporates as time

goes on. The visibility of the path, ηij , is defined as the reciprocal of the distance

between the town i and town j, dij , i.e., ηij = 1/dij. Lastly, α and β are parameters

evaluating the relative importance of the trail and the visibility, respectively. Based

on Eq. (2.3), [18] developed three algorithms: “ant-cycle”,“ant density” and “ant-

quantity”, each based on slightly different rules by which ants update τij(t) along

their trails. The trajectories of the ant team in each algorithm eventually converges

to the optimal tour for the TSP.

A “probabilistic pursuit” algorithm for a group of agents moving on a planar

grid was presented in [11]. Briefly, a sequence of agents A0, A1, . . . move from the

origin at time t = 0, ∆, 2∆, . . . to a destination. While moving on the grid, An+1

“chases” An by making a random choice of a neighboring grid point and moving

there. The probability distribution that defines the agent’s choice is determined by

its relative position to its predecessor, that is

An+1(t + 1) = An+1(t) + δn+1(t + 1),

where δn+1(t + 1) ∈ {1,−1, j,−j} and

Prob{δn+1(t + 1) = sign(dx)} =
‖dx‖

d
,

Prob{δn+1(t + 1) = j · sign(dy)} =
‖dy‖

d
,

where An(t) is the position of the nth agent at time t, d = ‖dx‖+‖dy‖ and dx, dy are

relative distances between An and An+1 at the x and y directions, respectively. An-

21

alytical proofs showed that the average trajectories of agents converge to a straight

line on the discretized plane.

Lastly, a biologically motivated algorithm, termed “particle swarm optimiza-

tion”, was presented in [37, 20]. Particle swarm optimization lies somewhere between

the generic algorithms and evolutionary programming. The algorithm was initially

inspired by the choreography of bird flocks. The algorithm seeks the minimum of

a cost function by first setting up a swarm of particles with random positions and

velocities. The velocity of each particle is changed towards a random linear combi-

nation of the best solution achieved by the particle and the best solution achieved

by the swarm so far.

22

Chapter 3

Biologically Inspired Algorithms

for Optimal Control

In this chapter we introduce a class of cooperative, optimal control algorithms in-

spired by ant-trail formation and discuss their potential advantages. The algorithms

cover a broad set of trajectory optimization problems, including problems with fixed

or partially-constrained final states, and fixed or free final time. Among the existing

models of ant-trail formation which were discussed in Chapter 2, we are particularly

interested in the simplicity of [10]. However, that work applies to a rather narrow

domain, specifically, it is restricted to the discovery of shortest paths in the Euclid-

ean plane, by a group of kinematic vehicles. Our goal is to exploit the same principle

used in [10] but to expand its applicability to a much broader class of optimization

problems. Before proceeding, we describe the precise problems we are concerned

with.

23

3.1 Problem Statements and Notation

This dissertation explores the solution of optimal control problems using a group of

cooperating “agents”. The term “agent” here refers to a number of “copies” of a

system with non-trivial dynamics, i.e., for k = 0, 1, 2 . . .

ẋk = f(xk, uk), xk(t) ∈ R
n, uk(t) ∈ Ω ⊂ R

m, (3.1)

Physically, each copy of Eq. (3.1) could stand for a robot, UAV or other autonomous

system.

The systems evolving under Eq. (3.1) are with fixed initial states xs. The final

states could be either fixed or partially-constrained. Each curve xk(t) : [0, T] →

R
n are the trajectory of the kth agent. We begin with a class of optimal control

problems with fixed final time and fixed final states. In all algorithms, we assume

that we have available an initial feasible (but sub-optimal) control/trajectory pair

(ufeas(t), xfeas(t)) for Eq. (3.1), obtained through a combination of priori knowledge

about the problem and/or random exploration.

Problems with Fixed Final Time and Fixed Final States

Assume that there is a pair of states xs and xf which are equilibrium points1 of

Eq. (3.1) for u = 0.

Problem 3.1: Find a trajectory x∗(t) (t ∈ [0, T], T fixed) that minimizes

J(x, ẋ, t0, T) =

∫ t0+T

t0

g(x(t), ẋ(t))dt (3.2)

1Without loss of generality we assume that u = 0 at those equilibria.

24

with x(t0) = xs, x(t0 + T) = xf , g(·, ·) ≥ 0, and x(t) subject to Eq. (3.1).

It will be convenient to define the following notation. Let D ⊂ R
n be a domain

containing states a and b. Assume 0 < σ ≤ T and t0 ≥ 0. The optimal trajectory

from a to b in fixed T units of time will be denoted by x∗(t) (t ∈ [t0, t0 + T]) and

will satisfy:

J(x∗, ẋ∗, t0, T) = min
x

J(x, ẋ, t0, T), (3.3)

subject to x(t0) = a, x(t0 + T) = b. We denote the cost of following the optimal

trajectory from a to b for σ units of time by:

η(a, b, T, t0, σ) ,

∫ t0+σ

t0

g(x∗(t), ẋ∗(t))dt, σ ≤ T, (3.4)

where the optimal trajectory x∗(t) is defined by Eq. (3.3).

For a generic trajectory x(t) of Eq. (3.1), we define

C(x, t0, σ) ,

∫ t0+σ

t0

g(x(t), ẋ(t))dt (3.5)

to be the cost incurred along x(t) during [t0, t0 + σ).

Problems with Free Final Time and Partially-Constrained

Final States

We are also interested in problems with free-final time and partially-constrained

final state:

Problem 3.2: Find a trajectory x∗(t), a final time Γ∗ > 0 and a final state x∗(Γ∗)

that minimize

JQ(x, ẋ, t0) =

∫ t0+Γ

t0

g(x(t), ẋ(t))dt + G(x(t0 + Γ)) (3.6)

25

subject to the constraints x(t0) = xs and Q(x(t0 + Γ)) = 0.

Here it is assumed that Q(·) is an algebraic function of the state, g(x(t), ẋ(t)) ≥

0 and

G(x) =















F (x) if x ∈ SQ

0 if x /∈ SQ

,

with F (x) ≥ 0, ∀x ∈ SQ is a penalty cost for the final state. SQ is the constraint set

of final state:

Definition 3.1: Given the final state constraint Q(x) = 0, the constraint set of x

is

SQ , {x|Q(x) = 0}.

For any pair of fixed states a, b ∈ D ⊂ R
n, let x∗(t) denote the optimal trajec-

tory from a to b with free final time (minimizing J with respect to x and Γ only).

The corresponding optimal final time is Γ∗(a, b). The cost of following x∗ is denoted

by:

ηF (a, b, t0) ,

∫ t0+Γ∗

t0

g(x∗(t), ẋ∗(t))dt + G(x∗(t0 + Γ∗))

= min
x,Γ

JQ(x, ẋ, t0), (3.7)

subject to x(t0) = a, x(t0 + Γ) = b.

Now, let x∗(t) be the optimal trajectory from an initial state a to the constraint

set SQ, and let Γ∗
Q(a, SQ) be the corresponding optimal final time from a to SQ. The

26

cost of following x∗ is denoted by

ηQ(a, t0) ,

∫ t0+Γ∗

Q

t0

g(x∗, ẋ∗)dt + G(x∗(t0 + Γ∗
Q))

= min
x,ΓQ

JQ(x, ẋ, t0), (3.8)

subject to x(t0) = a, Q(x(t0 + ΓQ)) = 0.

The cost of following a generic trajectory x(t) of Eq. (3.1) during [t0, t0 + σ)

is denoted by:

CQ(x, t0, σ) ,

∫ t0+σ

t0

g(x(t), ẋ(t))dt + G(x(t0 + σ)). (3.9)

The following facts can be derived easily from the properties of optimal tra-

jectories and will be helpful in the sequel.

Fact : Let η, C, ηF as defined in Eq. (3.4),(3.5),(3.7); let xk(t) be a trajectory

of Eq. (3.1) and x∗(t) an optimal trajectory of Eq. (3.2) or Eq. (3.6). Then, the

following holds:

1. η(a, b, T, t0, σ) ≤ C(xk, t0, σ) with any xk(t0) = x∗(t0), xk(t0 + σ) = x∗(t0 + σ)

where x∗(t) satisfies Eq. (3.3).

2. η(a, c, T, t0, T) ≤ η(a, b, σ, t0, σ) + η(b, c, T − σ, t0 + σ, T − σ).

3. C(xk, t0, T) = C(xk, t0, σ) + C(xk, t0 + σ, T − σ).

4. ηF (a, b, t0, σ) ≤ η(a, b, T, t0, σ).

5. η(a, b, T, t0, σ) = C(x∗, t0, σ) where x∗(t) satisfies Eq. (3.3).

27

3.2 Difficulties Faced by a Single Agent

It may be difficult for a single system or a centralized system to solve instances of

the optimal control problems stated above when the problems’ boundary conditions

are far apart (here “far” refers to intervals in space as well as time). As Fig. 3.1

illustrates, there are a number of considerations which highlight the challenges of

finding an optimal trajectory over “long distances”:

?

Figure 3.1: It is easier to solve an optimization problem within a “small” region.

1. Environment information. An individual must have access to a map of the

terrain, or at least a partial map containing the optimal trajectory and the

coordinates of the target state. Such a map is difficult to construct from sensor

data of a single system because it requires the system to “discover” the global

geometry of the space. The map usually covers more area than is necessary.

2. Sensing/communicating capabilities. It is much more costly to construct long-

range sensors and communication devices. Thus it is more difficult to commu-

nicate with far-off members of the group than with nearby ones. Moreover,

28

unless group members agree on a common coordinate system, state and sensor

data communicated from other members may need to be transformed appro-

priately by the receiver. This implies that the receiver must know how its own

coordinate system is related to that of a far-off neighbor.

3. Information fusion. Even if a group of agents can be dispersed and are able

to compose a map that describes a local “patch” around each of them, the

composition of these patches is nontrivial. It is not guaranteed that the com-

position of these patches covers the whole environment, or at least covers the

region containing the optimal trajectory. If enough such local patches have

been collected, their fusion into a composite map requires a large amount of

information communication, and sophisticated algorithms. That is because

each agent could in principle use its own coordinate system when composing

its map, so that the composite map would have to need additional one agent

in the group has sufficient memory, communication bandwidth and computing

ability to accomplish this.

4. Computational costs. Even if an effective global map could be obtained, solv-

ing optimization problems over a moderately complex environment, especially

one that cannot be parametrized by a single coordinate system, requires large

amounts of calculations. Oftentimes, the associated optimal control problems

have no closed-form solution and one needs to make use of numerical methods.

As we shall see in the sequel, the computing resources needed by numerical

optimal control methods may be prohibitive when long trajectories are con-

29

sidered.

In light of these considerations and for the purposes of avoiding the high

cost and low reliability associated with solving such problems with a single system,

we now propose a class of cooperative control algorithm – inspired from foraging

activities of ant colonies – which use a group of cooperative systems in a way that

allows for demands on individual agents to be minimized.

3.3 A Class of Bio-Inspired Pursuit Algorithms

Considering the sensor and communication limitations of an individual autonomous

vehicle (or indeed of an ant), it seems easier to aim at its leader on a manifold and

move on a shortest path toward it if the two of them were close. Similarly, it is much

easier for an agent to detect the state of its leader and compute an optimal trajectory

to that state if the pair were closer. Fig. 3.1 illustrates this point. In the following

we generalize the notion of “pursuit” as a process of seeking optimal trajectories

locally, by combining the efforts of a group of agents to gradually optimize an initial

solution.

Depending on the type of optimal control problem in Section 3.1, we have

four variations of a basic pursuit-based algorithm – a control policy for cooperative

optimization by the group. All are similarly structured and vary only in the manner

in which agents adjust their own trajectories when proceeding. For simplicity, we

start with the algorithms that apply to problems with fixed final states and fixed

final time.

30

We consider the formation of an ordered sequence of agents, with each agent

trying to reach its predecessor along an optimal trajectory. The sequence is initiated

with the first agent following xfeas to the desired final state. The precise rules that

govern the movement of each agent are:

Algorithm 3.1 (Sampled Local Pursuit): Identify two states xs and xf on

D. Let x0(t) (t ∈ [0, T]) be an initial trajectory satisfying Eq. (3.1) with x0(0) =

xs, x0(T) = xf . Choose ∆, δ ∈ R such that 0 < δ < ∆ ≤ T . Then:

1. For k = 1, 2, 3 . . ., let tk = k∆ be the starting time of the kth agent, i.e.,

uk(t) = 0, xk(t) = xs for 0 ≤ t ≤ tk.

2. When t = tk + iδ, i = 0, 1, 2, 3, . . ., calculate the control u∗
t (τ) that achieves:















η(xk(t), xk−1(t), ∆, t, ∆), τ ∈ [t, t + ∆] if ∆ + iδ < T

η(xk(t), xf , λ, t, λ), τ ∈ [t, tk + T] otherwise

,

where λ = tk + T − t.

3. Apply uk(t) = u∗
tk+iδ(t − tk − iδ) to the kth agent for t ∈ [tk + iδ, tk + (i +

1)δ) if ∆ + iδ < T , or for t ∈ [tk + iδ, tk + T) otherwise.

4. Repeat from step 2 until the kth agent reaches xf .

According to the Sampled Local Pursuit (SLP) algorithm, agents leave the

starting state xs one after another, every ∆ units of time , so that the kth agent leaves

at time tk = k∆. We assume that the number of agents in the group is sufficiently

large and let xk(t) denote the kth agent’s trajectory2. Each agent moves to “pursue”

2By slight abuse of notation, we will sometimes utilize xk to denote both the kth agent and its

trajectory.

31

its predecessor – to move along the optimal trajectory from the follower’s state to

that of the leader’s. When considering two agents as a pursuit pair, we denote the

(k − 1)th agent as the “leader” and, the kth agent as the “follower”.

The two adjustable parameters in the SLP algorithm are the pursuit interval

∆, which denotes the frequency with which new agents depart from xs, and the

updating interval δ, which denotes the frequency with which an agent updates its

own trajectory. At each t = tik, the follower calculates the optimal control u∗
t (τ) (τ ∈

[t, t+∆)) that steers it from xk(t) to xk−1(t) over ∆ units of time, i.e., from its current

state to the leader’s current state. During [tk + iδ, tk + (i + 1)δ], the follower moves

along the trajectory produced by u∗
t (τ), and the process repeats until the follower

reaches xf . Usually, we will take 0 < δ < ∆ so that each agent only needs to solve

a finite number of optimal control problems along its trajectory. If the problem in

question can be solved efficiently, e.g., in closed form, one may choose to decrease

δ.

Given xk−1(t), SLP yields a well-defined trajectory xk(t) on [0, T] for the kth

agent. The resulting trajectory is continuous but not necessarily smooth on the

interval [tk, tk + T]. A snapshot of this iterative updating processes is illustrated in

Fig. 3.2.

For notational convenience, we define the planned trajectories, denoted by

x̂k,i(t), to be the trajectories along which the follower plans to move at (tk + iδ)

but may not do so because it will update its future trajectory at tk + (i + 1)δ (for

notational convenience we will often neglect the i subscript and simply use x̂k(t),

when the value of i is clear from the discussion). In other words, the planned

32

t=tk t=tk+δ t=tk+2δ

Follower Xk

Leader Xk-1

Xk(t) Xk(t)

Xk-1(t)

Figure 3.2: A snapshot of the updating processes executed by the kth agent.

trajectories are the trajectories that would be produced by u∗
tk+iδ(τ) on [tk + (i +

1)δ, tk + iδ + ∆]. Of course, in the next iteration of Step 2, u∗
tk+(i+1)δ(τ) will steer

the agent along a different trajectory. The realized trajectories, defined as the

trajectories along which the follower actually moves, are xk(t). Referring to Fig. 3.2,

the planned trajectories and realized trajectories are represented by the dashed lines

and solid lines, respectively.

SLP can also be altered to apply in problems with free final times. Doing

so requires that at every updating step the calculated optimal final time Γ defined

by Eq. (3.6) satisfies Γ ≤ δ. If that is not the case, then for some agent, there

will be a trajectory segment which will remain “static” and will not be further

optimized. To avoid that situation, we must select δ to be less than all Γ defined

by Eq. (3.6) for all instances of the“local” optimal control problem in Step 2 of the

SLP algorithm, the obvious choice being δ = 0. As we shall see, δ = 0 suggests a

kind of continuous pursuit of each leader by the corresponding follower. We proceed

33

to describe this continuous version of SLP, which we later show, can be obtained by

having δ approach 0.

Algorithm 3.2 (Continuous Local Pursuit): Identify two states xs and xf on

D. Let x0(t) (t ∈ [0, T0]) be an initial trajectory satisfying Eq. (3.1) with x0(0) =

xs, x0(T0) = xf . Choose ∆ such that 0 < ∆ ≤ T . Then:

1. For k = 1, 2, 3 . . ., let tk = k∆ be the starting time of the kth agent, i.e.,

uk(t) = 0, xk(t) = xs for 0 ≤ t ≤ tk.

2. For all t ≥ tk, calculate u∗
t (τ) for all t ∈ [tk, tk+Tk] such that f(x̂k(τ), u∗

t (τ)) =

˙̂xt(τ), and x̂t(τ) achieves:














ηF (xk(t), xk−1(t), t), τ ∈ [t, t + Γ∗(xk(t), xk−1(t))], if xk−1(t) 6= xf

ηF (xk(t), xf , t), τ ∈ [t, t + Γ∗
Q(xk(t), xf], if xk−1(t) = xf

.

3. Apply uk(t) = u∗
t (0) to the kth agent.

4. Repeat from step 2, until the kth agent reaches xf .

Besides being applicable to problems with free final time, CLP can be “ex-

tended” to settings with partially constrained final states.

Algorithm 3.3 (Modified Continuous Local Pursuit): Identify the starting

state xs on D and the constraint set SQ. Let x0(t) (t ∈ [0, T0]) be an initial trajec-

tory satisfying Eq. (3.1) with x0(0) = xs, Q(x0(T0)) = 0. Choose 0 < ∆ ≤ T0.

1. For k = 1, 2, 3 . . ., let tk = k∆ be the starting time of kth agent. Let uk(t) =

0, xk(t) = xs for 0 ≤ t ≤ tk.

34

2. For all t ≥ tk, calculate u∗
t (τ) for all t ∈ [tk, tk+Tk] such that f(x̂k(τ), u∗

t (τ)) =

˙̂xt(τ), and x̂t(τ) achieves:














ηF (xk(t), xk−1(t), t), τ ∈ [t, t + Γ∗(xk(t), xk−1(t))] if xk−1(t) /∈ SQ

ηQ(xk(t), t), τ ∈ [t, t + Γ∗
Q(xk(t), SQ) if xk−1(t) ∈ SQ

.

3. Apply uk(t) = u∗
t (0) to the kth agent.

4. Repeat from step 2, until the kth agent reaches SQ.

M

Xk

Xk+1

Xk-1

Initial Trajectory
Limit Trajectory

Locally Optimal
Trajectory

xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx

SQ

S

Figure 3.3: Illustration of local pursuit on a manifold. Each agent – except the

first – is trying to “catch up” its predecessor before the predecessor reaches SQ, and

trying to reach SQ via a locally optimal trajectory thereafter.

As Step 2 of the algorithm indicates, in modified continuous local pursuit

(mCLP) there are two types of follower movements, “catching up” and “free run-

ning”, depending on whether the leader has reached the final constraint set SQ. The

35

former lets agents “learn” from their leaders, while the “free running” stage enables

them to find the optimal final state within SQ once they are close enough to that

set. Both stages will be essential in order for the group to solve Problem Eq. (3.2).

The process of mCLP is illustrated in Fig. 3.3.

Finally, if we fix the final time in mCLP, or set the final state in SLP to

partially-constrained, we obtain the modified sampled local pursuit (mSLP) algo-

rithm:

Algorithm 3.4 (Modified Sampled Local Pursuit): Identify the starting state

xs on D and the constraint set SQ. Let x0(t) (t ∈ [0, T0]) be an initial trajectory

satisfying Eq. (3.1) with x0(0) = xs, Q(x0(T0)) = 0. Choose the pursuit interval ∆

and updating interval δ such that 0 < δ < ∆ ≤ T0.

1. For k = 1, 2, 3 . . ., let tk = k∆ be the starting time of the kth agent, i.e.,

uk(t) = 0, xk(t) = xs for 0 ≤ t ≤ tk.

2. When t = tk + iδ, i = 0, 1, 2, 3, . . ., calculate the control u∗
t (τ) that achieves:















η(xk(t), xk−1(t), ∆, t, ∆), τ ∈ [t, t + ∆] if xk−1(t) /∈ SQ

ηQ(xk(t), t, T − (t − tk)), τ ∈ [t, tk + T] if xk−1(t) ∈ SQ

.

3. Apply uk(t) = u∗
tk+iδ(t) to the kth agent for t ∈ [tk + iδ, tk +(i+1)δ) if ∆+ iδ <

T , or for t ∈ [tk + iδ, tk + T) otherwise.

4. Repeat from step 2 until the kth agent reaches SQ.

The applicability of the four algorithms which we have so far defined is, sum-

marized in Table 3.1. The selection of proper algorithm depends on the problems

36

to be solved. The followings are properties which are common to all four versions

of local pursuit.

Table 3.1: Variations of local pursuit according to problem type

Fixed Final Time Free Final Time

Fixed Sampled Continuous

Final States Local Pursuit Local Pursuit

Partially-Constrained modified Sampled modified Continuous

Final States Local Pursuit Local Pursuit

3.4 Algorithm Advantages

Recall that solving the optimal control problems we have posed by a single system

requires significant sensing, communication and computing capabilities. However,

the algorithms described above, require each agent that participates in local pur-

suit to calculate optimal trajectories from itself to its nearby leader. Meanwhile

the “distance” separating them can be limited by choice of the following interval

∆. Therefore every agent only needs to sense the environment within a limited

region when in pursuit processes. This is preferable to obtaining a global map via

random exploration with limited sensor range. There is no requirement for agents

to exchange or fuse local maps that they sense in local pursuit, either. Agents only

have to communicate in limited ways, e.g., using vision to track one another or by

communicating in primitive ways to signal their locations, e.g., sound or radio trans-

37

mission. In local pursuit, agents do not even need to agree on a common coordinate

system. In fact, they do not need to know the coordinates of the target state/set!

All that is required is an initial set of instructions for getting there. Although this is

tentatively an open loop signal u(t), it could also be given in other forms, e.g., using

landmarks to reach the goal state. Finally, local pursuit only requires computing

optima within small regions so that fewer resources are needed.

As we will show in the next chapters, local pursuit provides a tool for obtaining

locally optimal trajectories over long distances by solving the problem in many

short “pieces”. This is accomplished by cooperation among an ordered sequence of

identical agents, and requires only local knowledge about the environment as well as

calculation of optimal trajectories within small regions. The trade-off is that each

agent must solve multiple instances of the optimal control problem (although each

instance is expected to be easier to solve than the overall problem).

38

Chapter 4

Main Results

In this chapter we investigate the collective behavior of a group whose members

satisfy Eq. (3.1) and evolve under local pursuit. Recall that each of the pursuit al-

gorithms presented in Chapter 3 defines an ordered sequence of trajectories {xk(t)}.

We will first explore the convergence of that sequence involved under sampled local

pursuit (SLP). The limiting trajectory will be proved to be locally optimal, yielding

the collective property we are seeking to obtain. Similar results will be proven for

modified continuous local pursuit (mCLP).

4.1 Evolution under Sampled Local Pursuit

We begin by investigating the properties of the limiting trajectory generated by

the group, i.e., xk(t) as k → ∞. The convergence of the trajectories’ cost will be

explored first, followed by the convergence of trajectories themselves, {xk(t)}. We

will then show that the limiting trajectory, denoted by x∞(t), is locally optimal.

39

Lemma 4.1 (Convergence of Cost in SLP): Assume a group of agents — copies

of Eq. (3.1) — x1, . . . , xk evolve under SLP with starting state xs and target state

xf . Suppose an initial control/trajectory pair, {u0(t), x0(t)} (t ∈ [0, T]), satisfying

x0(t) = xs and x0(T) = xf is given. If the SLP updating time satisfies 0 < δ ≤ ∆,

then the cost of the iterated trajectories converges, i.e., limk→∞ C(xk, tk, T) exists.

Proof: It is enough to show that the cost of the iterated trajectories is non-

increasing with k. Consider the pursuit process between the (k − 1)th and kth agents.

The dotted line in Fig. 4.1 indicates the leader’s path, xk−1(t) on [tk−1, tk−1 + T].

The solid lines, denoted by xk(t), are the trajectories of the “follower”, and the

dashed lines, denoted by x̂k(t), are the follower’s planned trajectories, as defined

in Section 3.3. We also use x̃(t) to denote the trajectory segment during which

x̃k(t + ∆) = xk−1(t), i.e., the follower “copies” the leader’s trajectory, with a delay

of ∆.

Xk(tk)

Xk(tk+δ)

Xk(tk+2δ)

Xk(tk+3δ)
Xk(tk+nδ)

Xk(tk+Τ)

Xk-1(tk-1)

Xk-1(tk)

Xk-1(tk+δ)

Xk-1(tk+2δ)

Xk-1(tk+nδ−δ)

Xk-1(tk-1+Τ)

Xk(tk+nδ−δ)

Figure 4.1: Illustrating Sampled Local Pursuit

40

The follower leaves the starting state at time tk, while the leader leaves it at

time tk−1, where tk = tk−1 +∆. For t ∈ [tk, tk + δ], the follower moves on an optimal

trajectory from state xk(tk) to xk−1(tk) over ∆ units of time. Thus from Fact 1:

η(xk(tk), xk−1(tk), ∆, tk, ∆) ≤ C(x̃k, tk, ∆)

= C(xk−1, tk−1, ∆). (4.1)

The right-hand side is the cost along the leader’s path for the first ∆ units of time

wile the left-hand side is the optimal cost from xk(tk) to xk−1(tk).

At time tk+δ the follower reaches the state xk(tk+δ). Recall that the trajectory

driven by u∗
tk

(τ) is optimal from xk(tk) to xk−1(tk) and that from Fact 3, we can

divide the cost into two parts, actual and planned1, i.e.,

η(xk(tk), xk−1(tk), ∆, tk, ∆)

= η(xk(tk), xk−1(tk), ∆, tk, δ) + η(xk(tk + δ), xk−1(tk), ∆ − δ, tk + δ, ∆ − δ).

(4.2)

From equations (4.1),(4.2), we obtain:

η(xk(tk), xk−1(tk), ∆, tk, δ)

≤ C(xk−1, tk−1, ∆) − η(xk(tk + δ), xk−1(tk), ∆ − δ, tk + δ, ∆ − δ). (4.3)

At time tk + δ, the follower updates its trajectory to intercept the leader at

its new location xk(tk + δ). Because this trajectory is optimal from xk(tk + δ) to

xk−1(tk + δ) over time ∆, any path xk(t) (t ∈ [tk + δ, tk + δ + ∆]) from xk(tk + δ) to

1These two pieces are both optimal with respect to their corresponding end points.

41

xk−1(tk + δ) over time ∆ passing through xk−1(tk) at time tk + ∆ = tk + δ + ∆ − δ

has equal or greater cost. From Fact 2 it follows that:

η(xk(tk + δ), xk−1(tk + δ), ∆, tk + δ, ∆)

≤ η(xk(tk + δ), xk−1(tk), ∆ − δ, tk + δ, ∆ − δ) + η(xk−1(tk), xk−1(tk + δ), δ, tk + ∆, δ)

≤ η(xk(tk + δ), xk−1(tk), ∆ − δ, tk + δ, ∆ − δ) + C(x̃k, tk + ∆, δ)

= η(xk(tk + δ), xk−1(tk), ∆ − δ, tk + δ, ∆ − δ) + C(xk−1, tk, δ). (4.4)

We can also divide the cost η(xk(tk + δ), xk−1(tk + δ), ∆, tk + δ, ∆) into a realized

part and a planned one, i.e.,

η(xk(tk + δ), xk−1(tk + δ), ∆, tk + δ, ∆)

= η(xk(tk + δ), xk−1(tk + δ), ∆, tk + δ, δ)

+η(xk(tk + 2δ), xk−1(tk + δ), ∆ − δ, tk + 2δ, ∆ − δ). (4.5)

From Eq. (4.1)∼(4.5), we obtain

C(xk, tk, 2δ)

= η(xk(tk), xk−1(tk), ∆, tk, δ) + η(xk(tk + δ), xk−1(tk + δ), ∆, tk + δ, δ)

≤ C(xk−1, tk−1, ∆) + C(xk−1, tk, δ) − η(xk(tk + 2δ), xk−1(tk + δ), ∆ − δ, tk + 2δ, ∆ − δ)

= C(xk−1, tk−1, ∆ + δ) − C(x̂k, tk + 2δ, ∆ − δ), (4.6)

where η(xk(tk + 2δ), xk−1(tk + δ), ∆ − δ, tk + 2δ, ∆ − δ) = C(x̂k, tk + 2δ, ∆ − δ) is

from the fact that the planned trajectory is optimal.

We repeat this procedure until t = tk+nδ where ∆+(n−1)δ < T and ∆+nδ ≥

42

Xk(tk)

Xk(tk+δ)

Xk(tk+2δ)

Xk-1(tk-1)

Xk-1(tk+δ)

Figure 4.2: First two steps in sampled local pursuit

T . This choice of n means that the leader has not reached the final state, and

C(xk, tk, nδ) =

n−1
∑

i=0

η(xk(tk + iδ), xk−1(tk + iδ), ∆, tk + iδ, δ).

≤ C(xk−1, tk−1, ∆ + (n − 1)δ) − C(x̂k, tk + nδ, ∆ − δ). (4.7)

When t ∈ [tk + nδ, tk + T], the leader reaches the final state and stays static.

During this time period, no matter how many times the follower updates its move-

ment, it will evolve on the same path that was determined at time t = tk +nδ. This

path, which is indicated by the last solid line in Fig. 4.1, is locally optimal between

the states xk(tk + nδ) and xk(tk + T) over T − nδ units of time. Therefore

C(xk, tk + nδ, T − nδ)

= η(xk(tk + nδ), xk−1(tk−1 + T), T − nδ, tk + nδ, T − nδ)

≤ C(x̂k, tk + nδ, ∆ − δ) + C(xk−1, tk + (n − 1)δ, T − (n − 1)δ − ∆). (4.8)

From Eq. (4.7)∼(4.8), we obtain

C(xk, tk, T) ≤ C(xk−1, tk−1, ∆ + (n − 1)δ) + C(xk−1, tk + (n − 1)δ, T − (n − 1)δ − ∆)

= C(xk−1, tk−1, T). (4.9)

43

We have shown that cost incurred by the follower is no greater than the leader’s.

Writing Ck = C(xk, tk, T) for convenience, we can see that Ck ≤ Ck−1. Obviously

Ck is bounded below if there exits an optimal trajectory from the starting state to

the target state. Hence we conclude that

lim
k→∞

Ck = C. (4.10)

Of course, convergence of the trajectories’ cost does not automatically imply

the convergence of the trajectories themselves. For example, if there exist multiple

locally optimal trajectories connecting the leader and follower at the updating times,

then the convergence of trajectories is not guaranteed, and Lemma 4.1 defines an

equivalence class of trajectories with equal cost.

If we restrict the pursuit process to take place within a “small” region by

selecting ∆ sufficiently small, e.g., agents follow close to one another, there will

exist a unique locally optimal trajectory from the follower to the leader at every

updating time tk + iδ. Under that hypothesis, we obtain the following result:

Lemma 4.2 (Uniqueness of the Limiting Trajectory): If at each updating

time, the locally optimal trajectory obtained through SLP is unique, then the limiting

trajectory x∞(t) is also unique.

Proof: Suppose there exist more than one limiting trajectories, and suppose x1(t)

and x2(t) are two possibilities. Suppose also that x1(t) differs from x2(t) for t ∈

44

[t1, t2]∪ [t3, t4] From Lemma 4.1 these two trajectories must have the same cost.

Let the leader xk−1(t) travel along x1(t), while the follower xk(t) travels along

x2(t). If no update occurs during [t1, t2], then x2(t) has less cost during [t1, t2]

because the follower moves along x2(t) and the local optimum is unique. The same

arguments applied to subsequent time periods leads to the fact that the total cost

along x2(t) is less than that along x1(t) if no update occurs during t ∈ [t1, t2] ∪

[t3, t4] . . ., which contradicts to the fact that x1(t) and x2(t) have equal costs.

Next, assume that only one update occurs during [t1, t2], as Fig. 4.3 indicates.

Separate the curves during [t1, t2] into several segments (the meaning of different

X1(t)

X2(t)

t1

t2

1

2

3

4

5

Figure 4.3: There is one update between two trajectories

curve style is the same as in Lemma 4.1), and indicate the cost along curve i by Ci.

From the uniqueness of local optimum, we have C1 + C5 < C3 and C2 < C5 + C4.

Therefore C1 +C2 < C3 +C4, which means that x2(t) has less cost than x1(t) during

[t1, t2].

If there are multiple updates during [t1, t2], we can see that the updates do

not change the fact that the cost along x2(t) is less than that along x1(t). Hence

we still get the result that the cost along x2(t) is less than x1(t) for t ∈ [t1, t2], no

45

matter how many updates occur.

By applying the same argument on the subsequent periods we are led to the

fact that the total cost along x2(t) must be less than that along x1(t).

Even if the locally optimal trajectories obtained at every updating time are

smooth, e.g., solutions to a set of Euler-Lagrange equations, xk(t) is only known

to be piecewise smooth. For example, in R
2 with ẋk = uk, if the locally optimal

trajectories are straight lines, xk(t) is not smooth because there exists a “corner”

at the joint of two segments. However, we can show that the limiting trajectory is

smooth in the time interval [0, T] if the locally optimal trajectories obtained at every

updating time are smooth. The following definitions will be necessary for discussing

the properties of the limiting trajectory.

Definition 4.1: Let γ1(t) and γ2(t) be trajectories of Eq. (3.1), defined on time

intervals I1 and I2, respectively, where I1 ∩ I2 6=ø. We say that γ1 and γ2 overlap

if γ1(t) = γ2(t) for all t ∈ I1 ∩ I2.

Definition 4.2: Let γ1(t) and γ2(t) be trajectories of Eq. (3.1), defined on a time

interval I1 and another time interval I2, respectively, where I1 ∩ I2 6=ø. The com-

position of γ1(t) and γ2(t) on the interval I1 ∪ I2 is defined as

γ1 ◦ γ2 ,















γ1(t) t ∈ I1, t /∈ I2 − I1 ∩ I2

γ2(t) t /∈ I1, t ∈ I2 − I1 ∩ I2

.

46

Lemma 4.3 (Smoothness of Composition): Suppose that in Lemma 4.1 the

updating interval δ and following interval ∆ satisfy 0 < δ < ∆. Then, the planned

trajectory x̂(t) and realized trajectory x(t) of an agent whose leader evolves along the

limiting trajectory overlap. Furthermore, if the locally optimal trajectories obtained

at every updating time are smooth, the limiting trajectory is also smooth.

Proof: Let a leader evolve along the limiting trajectory x∞(t) and suppose it is the

(k − 1)th agent. From Lemma 4.2 we know that the limiting trajectory means that

xk−1(t) = xk(t + ∆) for ∀t ∈ [tk, tk + T].

At first we claim that in the time interval [tk+δ, tk+∆], the planned trajectory

“agrees” with the realized one, i.e., x̂k(t) = xk(t), t ∈ [tk + δ, tk + ∆]. To see why

that has to be the case, suppose that x̂k(t) 6= xk(t) for some t ∈ [tk + δ, tk + ∆].

Because x̂(t) is optimal from xk(tk + δ) to xk(tk + δ + ∆), the trajectory

x̄(t) =















x̂k(t) t ∈ [tk + δ, tk + ∆)

xk(t) t ∈ [tk + ∆, tk + δ + ∆]

has a lower cost than xk(t) (t ∈ [tk + δ, tk + δ+∆]), which is updated by the follower

at the time t = tk +δ and is supposed to be optimal from xk(tk +δ) to xk(tk +δ+∆).

This is a contradiction. Therefore, we obtain x̂k(t) = xk(t) for ∀t ∈ [tk + δ, tk + ∆].

The same argument applies to the subsequent time periods [tk + iδ, tk + iδ + ∆].

The trajectory x̄(t) is smooth for t ∈ [tk, tk + ∆] because the locally optimal

trajectory is smooth. For the same reason, xk(t) is smooth for t ∈ [tk + δ, tk + δ +∆]

(second update step). We also know that x̂k(t) = xk(t) for ∀t ∈ [tk + δ, tk + ∆].

Thus the actual trajectory xk(t)(t ∈ [tk, tk +2δ]) is smooth. Repeating the argument

for the next time intervals leads to the result that the entire trajectory xk(t) (t ∈

47

[tk, tk + T]) is smooth.

Before proceeding to the main theorem, we define the following Lipschitz-like

condition about the optimal cost with respect to changes in the problem’s boundary

conditions:

Condition 4.1: Assume that there exists an ε > 0 such that for all a, b1, b2 ∈ D

and all ∆ > 0, the optimal cost η(a, b1, ∆, 0, ∆) from a to b1 and η(a, b2, ∆, 0, ∆)

from a to b2 satisfy

‖b1 − b2‖ < ε ⇒ ‖η(a, b1, ∆, 0, ∆) − η(a, b2, ∆, 0, ∆)‖ < L∆ (4.11)

for some constants L independent of ∆.

A piecewise locally optimal trajectory is not necessarily optimal. However, the

composition of overlapping locally optimal trajectories is locally optimal if Condi-

tion 4.1 is satisfied.

Lemma 4.4 (Composition of Optimal Trajectories): Let γ1(t) and γ2(t) be

overlapping locally optimal trajectories defined on time intervals I1 and I2 respec-

tively, where I1 ∩ I2 6=ø. If Condition 4.1 is satisfied, then the composition γ1 ◦ γ2

is locally optimal on I1 ∪ I2.

Proof: We will prove that that if x∗(t) (t ∈ [0, t1 + ∆1]) and x∗(t) (t ∈ [t1, T])

are two locally optimal trajectories, and Condition 4.1 is satisfied, where 0 < t1 <

48

t1 + ∆1 < T , then the trajectory x∗(t), t ∈ [0, T] is a local minimum.

We take 0 < ∆ ≤ ∆1. From the principle of optimality, we obtain that

x∗(t)(t ∈ [0, t1 + ∆]) and x∗(t)(t ∈ [t1, T]) are two locally optimal trajectories with

respect to their corresponding end points.

Suppose that x∗(t)(t ∈ [0, T]) is not the local minimum, then there must exist

an ǫ < ε and another optimum x(t) ∈ D × [0, T] satisfying ‖x(t) − x∗(t)‖∞ < ǫ and

C(x(t), 0, T) < C(x∗(t), 0, T), as Fig. 4.4 shows.

X*(t)

Xf

X(t)

X0

X*(t1)

X*(t1+∆)

X(t1)

X(t1+∆)

Y2(t)

Y1(t)

Figure 4.4: Overlapped local minimums lead to the local minimum overall

Construct two optimal trajectories y1(t), y2(t), t ∈ [t1, t1 + ∆] connecting x(t)

and x∗(t) such that x∗(t1) = y2(t1), x
∗(t1+∆) = y1(t1+∆), x(t1) = y1(t1), x(t1+∆) =

y2(t1 + ∆). From the principle of optimality, x∗(t) and x(t) (t ∈ [t1, t1 + ∆]) are

both optimal trajectories with respect to their corresponding end points. Now using

Eq. (4.11), we obtain

C(y1(t), t1, ∆) < C(x(t), t1, ∆) + L∆,

C(y2(t), t1, ∆) < C(x∗(t), t1, ∆) + L∆. (4.12)

For x∗(t) (t ∈ [0, t1 + ∆]) and x∗(t) (t ∈ [t1, T]) are two unique local optimal

49

trajectories, we have

C(x∗(t), 0, t1) + C(x∗(t), t1, ∆)

< C(x(t), 0, t1) + C(y1(t), t1, ∆),

C(x∗(t), t1, ∆) + C(x∗(t), t1 + ∆, T − t1 − ∆)

< C(x(t), t1 + ∆, T − t1 − ∆) + C(y2(t), t1, ∆). (4.13)

Combining Eq. (4.12) and Eq. (4.13) leads to

C(x∗(t), 0, T) + C(x∗(t), t1, ∆) < C(x(t), 0, T) + C(x∗(t), t1, ∆) + 2L∆,

which can be expressed as

C(x∗(t), 0, T) < C(x(t), 0, T) + 2L∆. (4.14)

C(x(t), 0, T) is assumed to be less than C(x∗(t), 0, T), but if we take

0 < ∆ <
C(x∗(t), 0, T) − C(x(t), 0, T)

2L
,

we see that Eq. (4.14) cannot be true. Thus, there is a contradiction, because ∆

could be set to be arbitrarily small. It follows that x∗(t) (t ∈ [0, T]) must be the

local minimum.

The next theorem is an immediate consequence of the above lemmas.

Theorem 4.1 (Sampled Local Pursuit): Suppose that a group of agents {xk}

evolve under SLP and that at each updating time t = tk + iδ, the locally optimal

50

trajectory from xk(t) to xk−1(t) is unique. If the updating interval and following in-

terval satisfy 0 < δ < ∆ and Condition 4.1 is satisfied, then the trajectory sequence

xk(t) converges to a unique local optimum. Furthermore, if the locally optimal tra-

jectories at every updating time are smooth, the limiting trajectory is also smooth.

Proof: From Lemma 4.2, the limiting trajectory is unique. We know that x∞(t) (t ∈

[0, ∆)) and x∞(t) (t ∈ [δ, δ + ∆)) are locally optimal for the realized trajectory and

planned trajectories overlap (Lemma 4.3). The optimality of x∞(t) (t ∈ [0, δ + ∆))

follows from Lemma 4.4. Repeating this argument on [iδ, iδ + ∆] (i = 0, 1, 2 . . .)

leads to the result that x∞(t) (t ∈ [0, T]) is locally optimal. The proof of smoothness

follows from a similar argument.

4.2 Evolution under Modified Continuous Local

Pursuit

This section explores the behavior of the group under modified continuous local

pursuit (mCLP). Recall that mCLP differs from SLP in that it includes a “free run-

ning” stage and can handle problems with free final time and partially-constrained

final states. Our first task is to show that a single SLP-like update on the leader’s

trajectory decreases the trajectory’s cost.

Lemma 4.5 Consider a leader-follower pair evolving under mCLP with a pursuit

51

interval ∆. Let the leader’s trajectory be xk−1(t) (t ∈ [tk−1, tk−1 + Tk−1]) and fix

λ ∈ [0, Tk−1). Suppose the follower updates its trajectory only once during [tk, tk+Tk]

in the manner described next:

• If λ < Tk−1 − ∆, the follower moves along the optimal trajectory (in the

sense of Eq. (3.7)) joining xk(tk + λ) and xk−1(tk + λ) with optimal final time

Γ = Γ∗(xk(tk + λ), xk−1(tk + λ)). During other times, the follower replicates

the leader’s trajectory, i.e.,














xk(t) = xk−1(t − ∆) t ∈ [tk, tk + λ]

xk(t) = xk−1(t − Γ) t ∈ [tk + λ + Γ, tk + Tk]

,

• If λ ≥ Tk−1−∆, the follower evolves along the optimal trajectory from xk(tk+λ)

to the constraint set SQ (in the sense of Eq. (3.8)). Similarly, during other

times

xk(t) = xk−1(t − ∆) t ∈ [tk, tk + λ],

Then the cost along the follower’s trajectory will be no greater than the leader’s.

Proof: First, choose λ < Tk−1 − ∆. Starting at time tk + λ and during t ∈

[tk + λ, tk + λ + Γ], the follower moves on the locally optimal trajectory xk(t) (see

Fig. 4.5). The cost along xk is

CQ(xk, tk, Tk)

= CQ(xk, tk, λ) + CQ(xk, tk + λ + Γ, Tk − λ − Γ) + ηF (xk(tk + λ), xk−1(tk + λ), tk + λ)

≤ CQ(xk−1, tk−1, λ) + CQ(xk−1, tk−1 + λ, ∆) + CQ(xk−1, tk−1 + λ + ∆, Tk−1 − λ − ∆)

= CQ(xk−1, tk−1, Tk−1), (4.15)

52

xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx

Xk(tk)Xk-1(tk-1)=

Xk(tk+λ)

Xk(tk+λ+Γ)

SQ

Xk(tk+Tk)

Xk-1

Figure 4.5: Illustration of the trajectory obtained by a single update when λ <

Tk−1 − ∆.

where Γ = Γ∗(xk(tk +λ), xk−1(tk +λ)). If λ ≥ Tk−1−∆ (see Fig. 4.6), the cost along

xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx

Xk(tk)Xk-1(tk-1)=

Xk(tk+λ) Xk(tk+Tk)

SQ

Xk(tk-1+Tk-1)

xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Figure 4.6: Illustration of the trajectory obtained by a single update when λ ≥

Tk−1 − ∆.

xk is

CQ(xk, tk, Tk)

= CQ(xk, tk, λ) + ηQ(xk(tk + λ), tk + λ)

≤ CQ(xk−1, tk−1, λ) + CQ(xk−1, tk−1 + λ, Tk−1 − λ)

= CQ(xk−1, tk−1, Tk−1).

53

Therefore the cost along the follower’s trajectory is no greater than the leader’s.

Now, the cost of the iterative trajectories can be shown to converge under

mCLP:

Lemma 4.6 (Convergence of Cost): If the agents governed by Eq. (3.1) evolve

under mCLP, then the cost of the iterated trajectories converges.

Proof: Let Ck−1 be the cost along the leader’s trajectory xk−1(t) (t ∈ [tk−1, tk−1 +

Tk−1]). Define a trajectory sequence xi
k(t) (t ∈ [tk, tk + T i

k]), i = 0, 1, 2 . . . , whose

corresponding costs and final times are Ci
k and T i

k, as follows: let x0
k(t) = xk−1(t)

(the trajectory of a “leader”) and let xi
k (i > 0) be the trajectory of an agent that

pursues xi−1
k by performing only a single trajectory update, as described in Lemma 1,

with λ = (i − 1)δ, δ > 0 (see Fig. 4.7).

Xk
1 2

3 4

Xk

Xk Xk

xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx

SQ SQ

xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx

SQ

xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx

SQ

xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx

Figure 4.7: Illustration of the trajectory sequence xi
k(t). Each trajectory is obtained

by a single update upon its predecessor.

From Lemma 4.5, the cost of each follower’s trajectory will be no greater than

the leader’s. Also, the sequence Ci
k is bounded below for fixed k. Thus, Ci

k ≤ Ci−1
k

54

and limk→∞ Ci
k = C∞

k exists for each k. Consequently,

C∞
k ≤ C0

k = Ck−1.

Now, take δ = Tk−1/i, so that δ → 0 as i → ∞. At the limit, the trajectory

x∞
k (t) is precisely what would be obtained by an agent that pursues its leader xk−1,

using mCLP. Hence, the follower’s cost is Ck = C∞
k ≤ Ck−1. Because the sequence

{Ck} is non-increasing and bounded below (there exists a minimum for Eq. (3.6)),

it must converge to a limit.

Now Condition 4.1 is modified to:

Condition 4.2: Assume that for a generic trajectory x1(t) there exists ε > 0 such

that for all a, b1, b2 ∈ D and all ∆ > 0, there exists a trajectory x2(t) such that the

cost CQ(x1, 0, ∆) (x1(0) = a, x1(T) = b1) from a to b1 and cost CQ(x2, 0, ∆) (x2(0) =

a, x2(T) = b2) from a to b2 satisfy

‖b1 − b2‖∞ < ε ⇒ ‖CQ(x1, 0, ∆) − CQ(x2, 0, ∆)‖∞ < L∆

for some constant L, independent of ∆.

Then the next lemma holds:

Lemma 4.7: Let x∗(t) be a trajectory of Eq. (3.1) such that:

1. x∗(t) (t ∈ [0, t1 + ∆1]) is optimal (in the sense of Eq. (3.7)) from x∗(0) to

x∗(t1 + ∆1).

2. x∗(t) (t ∈ [t1, T
∗]) is optimal (in the sense of Eq. (3.8)) from x∗(t1) to the

constraint set SQ.

55

Assume Condition 4.2 is satisfied and 0 < t1 < t1 + ∆1 < T ∗. Then the trajectory

x∗(t) (t ∈ [0, T ∗]) is a local minimum of Eq. (3.8) from x∗(0) to SQ.

Proof: Choose 0 < ∆ ≤ ∆1. From the principle of optimality, x∗(t) (t ∈ [0, t1 +∆])

and x∗(t) (t ∈ [t1, T
∗]) are locally optimal with respect to their corresponding end

points. Suppose ‖x∗(t1 + ∆) − s‖∞ ≥ ε1 for any s ∈ SQ and that x∗(t) (t ∈ [0, T ∗])

is not a local minimum. There must exist ǫ < min(ε, ε1/2) (where ε is defined in

Condition 1) and another optimum x(t) ∈ D × [0, T] satisfying ‖x(t) − x∗(t)‖∞ < ǫ

and CQ(x(t), 0, T) < CQ(x∗(t), 0, T ∗).

xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx

X*(t)

X(t)

X0

X*(t1)

X*(t1+∆)
X(t1)

X(t1+∆)

Y2(t)

Y1(t)

SQ

Figure 4.8: Illustrating the proof of Lemma 4.7: “overlapping” optimal trajectories

form a locally optimal trajectory.

Notice that ‖x(t1 + ∆) − s‖∞ ≥ ǫ for any s ∈ SQ. Construct two trajectories

y1(t), y2(t) (t ∈ [t1, t1 + ∆]) that connect x(t) and x∗(t) (see Fig. 4.8) and satisfy

Condition 4.2 (with x∗ or x playing the role of x1, and y1 or y2 standing in for x2).

There must exist a ∆∗ such that y1(t1 + ∆∗), y2(t1 + ∆∗) /∈ SQ because ‖x(t1 +

∆) − s‖∞ ≥ ǫ and ‖x∗(t1 + ∆) − s‖∞ ≥ ǫ for any s ∈ SQ. We pick ∆ < ∆∗. In

particular, let y1, y2 be such that x∗(t1) = y2(t1), x
∗(t1 + ∆) = y1(t1 + ∆), x(t1) =

56

y1(t1), x(t1 + ∆) = y2(t1 + ∆). Now ,Condition 4.2 implies that

CQ(y1(t), t1, ∆) < CQ(x(t), t1, ∆) + L∆,

CQ(y2(t), t1, ∆) < CQ(x∗(t), t1, ∆) + L∆. (4.16)

Because x∗(t) (t ∈ [0, t1 + ∆]) and x∗(t) (t ∈ [t1, T
∗]) are each locally optimal, the

following holds:

CQ(x∗(t), 0, t1) + CQ(x∗(t), t1, ∆)

< CQ(x(t), 0, t1) + CQ(y1(t), t1, ∆), (4.17)

and

CQ(x∗(t), t1, ∆) + CQ(x∗(t), t1 + ∆, T ∗ − t1 − ∆)

< CQ(x(t), t1 + ∆, T − t1 − ∆) + CQ(y2(t), t1, ∆). (4.18)

Combining Eq. (4.16) with Eq. (4.17,4.18) leads to

CQ(x∗(t), 0, T) < CQ(x(t), 0, T) + 2L∆. (4.19)

The cost C(x(t), 0, T) is apparently less than C(x∗(t), 0, T); but if ∆ is chosen

so that

0 < ∆ < min{∆1, ∆
∗,

CQ(x∗(t), 0, T) − CQ(x(t), 0, T)

2L
},

then Eq. (4.19) cannot hold. This is a contradiction, because ∆ could be chosen

arbitrarily small. It follows that x∗(t) (t ∈ [0, T ∗]) must be a local minimum.

57

Now let us assume that the locally optimal trajectory from the follower to the

leader (or to SQ) is unique at all times. Then, convergence of the trajectories’ cost

also implies convergence of the trajectories themselves:

Lemma 4.8: If at all times during mCLP, the locally optimal trajectory from

follower to leader (or to SQ) is unique, then mCLP converges to a unique limiting

trajectory x∞(t).

Proof: Suppose that the trajectories’ cost converges but that there exist more than

one limiting trajectory. Let x1(t) (t ∈ [0, T1]) and x2(t) (t ∈ [0, T2]) be two such

possibilities. Let t1 ∈ [0, T1] be the earliest time that x1(t) differs from x2(t). From

Lemma 2, x1 and x2 must have the same cost, otherwise convergence of the cost

is contradicted. Suppose that a leader xk−1(t) travels along x1(t), while a follower

xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx

X1(t)

X2(t)
X1(t1) SQ

X1(t1+∆)

X2(t1+h)

X1(T1)

X2(T2)

X2(t1+nh)

Figure 4.9: Illustrating the proof of Lemma 4: pursuit between agents moving on

two supposed “limiting” equal-cost trajectories, leads to the conclusion that the cost

along the follower’s trajectory is less than that along the leader’s.

xk(t) travels along x2(t). Choose h > 0 small, and that a series of sampled updates

occur at t1 + ih (i = 1, 2 . . . , n = (T1 − t1 − ∆)/h), as Fig. 4.9 indicates.

58

Consider the update occurring at t1, after which the follower moves on x2(t), t ∈

[t1, t1+h). This fact means that either i) the trajectory defined by x2(t), t ∈ [t1, t1+h)

and the optimal trajectory from x2(t1 + h) to x1(t1 + ∆) (as indicated by the left

dashed line in Fig. 4.9) has less cost than x1(t), t ∈ [t1, t1 + ∆), or ii) it has the

same cost with x1(t), t ∈ [t1, t1 + ∆). The latter contradicts the assumption that

there exists a unique locally optimal trajectory from follower to leader at any time.

Therefore the locally optimal trajectory that the follower actually calculated at t1

has cost CQ(x2, t1, h) + ηF (x2(t1 + h), x1(t1 + ∆), t1 + h), and

CQ(x2, t1, h) + ηF (x2(t1 + h), x1(t1 + ∆), t1 + h)

< CQ(x1, t1, ∆). (4.20)

Similarly, investigate the update occurring at t1 = ih (i = 2, 3, . . . , n), we

obtain

CQ(x2, t1 + h, h) + ηF (x2(t1 + 2h), x1(t1 + ∆ + h), t1 + 2h)

< ηF (x2(t1 + h), x1(t1 + ∆), t1 + h) + CQ(x1, t1 + ∆, h),

.

C(x2, t1 + (n − 1)h) + ηF (x2(t1 + nh), x1(T1), t1 + nh) (4.21)

< ηF (x2(t1 + (n − 1)h), x1(T1 − h), t1 + (n − 1)h) + C(x1, T1 − h, h).

And at the last update step, the follower chooses the locally optimal trajectory

from itself to SQ:

CQ(x2, t1 + nh, T2 − t1 − nh)

< ηF (x2(t1 + nh), x1(T1), t1 + nh). (4.22)

59

Notice that the inequality does not depend on the size of h. No matter how small

h is, it can always be concluded from Eq. (4.20)∼(4.22) that

CQ(x2, t1, T2 − t1) < CQ(x1, t1, T1 − t1). (4.23)

If we let h → 0, the above sampled process will approach the continuous local pur-

suit. Because Eq. (4.23) holds regardless of the (decreasing) value of h, therefore

the cost along x2(t) must be less than that for x1(t) under mCLP, which contradicts

the convergence of the cost under mCLP.

Lemma 4.9: Along the limiting trajectory produced under mCLP, the planned

trajectories x̂k(t) and realized trajectories xk(t) overlap, i.e., x̂k(t) = xk(t). Further-

more, if the locally optimal trajectories obtained at every updating time are smooth,

then the limiting trajectory is also smooth.

Proof: Suppose also that a leader, xk−1 evolves along the limiting trajectory

x∞(t). Lemma 4 then implies that xk−1(t) = xk(t + ∆) for ∀t ∈ [tk, tk + Tk].

Xk(t)

t1

t2

t1+Γ1

t2+Γ2Xt1(t)

t1+Γ1

Figure 4.10: Differences between the planned and realized trajectories contradict

the convergence of trajectories under mCLP.

Suppose that with the leader at xk−1(t1 + Γ(t1)), where Γ(t1) is the best final

time for update at t1, and follower at xk(t1), the planned trajectory x̂t1(t) (t ∈

60

[t1, t1 + Γ̂(t1)) obtained at t1 differs from xk(t) (t ∈ [t1, t1 + Γ(t1)) starting at some

time t2 ≥ t1. Furthermore, let x̂t1(t1 + Γ̂(t1)) = x(t1 + Γ(t1)). Because the planned

trajectory x̂t1(t) is unique (by assumption) and optimal,

CQ(x̂t1 , t2, Γ̂(t1) − (t2 − t1)) < CQ(xk, t2, Γ(t1) − (t2 − t1)).

Construct the trajectory

x̄(t) =















x̂t1(t) t ∈ [t2, t1 + Γ̂(t1))

xk(t − Γ̂(t1) + Γ(t1)) t ∈ [t1 + Γ̂(t1), t2 + Γ(t2)]

.

Clearly, x̄ has lower cost than xk(t) (t ∈ [t2, t2 + Γ(t2)]) (See Fig. 4.10). Thus,

under mCLP, the follower would have taken x̄ (or another trajectory with even

lower cost) over xk(t) (t ∈ [t2, t2 + Γ(t2)]). This contradicts the convergence to a

limiting trajectory. The same argument can be applied at any other updating time,

so that it can be concluded that x̂(t) = xk(t) (t ∈ [0, Tk]).

Finally, recall that xk(t) is smooth for t ∈ [t1, t1 + Γ(t1)], because the locally

optimal trajectories linking follower and leader are smooth by assumption. Similarly,

xk(t) is smooth for t ∈ [t2, t2 + Γ(t2)] for any t1 < t2 < t1 + Γ(t1). Therefore,

xk(t)(t ∈ [t1, t2 + Γ(t2)]) is smooth. Repeated applications of this argument lead to

the conclusion that the entire trajectory xk(t) (t ∈ [0, Tk]) is smooth.

The next theorem is an immediate consequence of above Lemmas:

Theorem 4.2 (Modified Continuous Local Pursuit): Suppose that the group of

Eq. (3.1) evolves under mCLP and that at all times t, the locally optimal trajectories

from follower to leader are unique. Then, the limiting trajectory is unique and locally

optimal. It is also smooth, if the locally optimal trajectories calculated at every

61

updating time are smooth.

Proof: From Lemma 4.8, the limiting trajectory is unique. It follows that xk−1(t−

∆) = xk(t) if xk−1(t) = x∞(t− tk−1). Choose δ1, δ2 such that 0 < δ1 < δ2 < Γ for all

optimal final times Γ of the planned trajectories x̂k generated during mCLP. The

limiting trajectory x∞ is piecewise smooth and locally optimal for t ∈ [tk + iδ1, tk +

iδ1 + δ2], i = 0, 1, 2 . . . because it coincides with the planned trajectories x̂k(t).

From Lemma 4.7 – in this case SQ is a single point – it can be concluded that

xk(t) (t ∈ [tk, tk +δ1+δ2]) is optimal because it is the composition of two overlapping

locally optimal trajectories, xk(t) (t ∈ [tk, tk + δ2]) and xk(t) (t ∈ [tk + δ1, tk + δ1 +

δ2]). From successive applications of this argument (i = 2, 3, . . .), we conclude that

x∞(t) is locally optimal. Smoothness of x∞ is proved via a similar “piece by piece”

argument.

Having shown how to obtain the results for SLP and mCLP, similar results

for CLP and mSLP could be derived easily by fixing the final time or final states in

mCLP.

4.3 Summary

Until now, we have seen that each of the two pursuit algorithms we have investi-

gated (SLP, mCLP) will generate an interesting “collective behavior” - namely the

local optimum for the optimal control problem of interest. Although each agent

only solves the optimal control problem within a small region (limited by ∆), the

trajectories generated by them are gradually optimized. Each agent “learns” from

62

its predecessor and the limiting trajectory exhibits the collective “knowledge” of the

group. Therefore, a complicated task (optimizing over long distances) is separated

into small tasks requiring lesser capabilities in terms of sensing, communicating and

computing.

Our algorithms fall into the category of “learning by repetition”. Newton’s

method and gradient methods are well-known examples in this category, and are

usually applied to solve extremal problems in finite dimensional vector spaces [15].

Extensions of such methods in function spaces also enable the development of tra-

jectory optimization algorithms through repetition. For example, the work of [40]

utilized a developed gradient method to iteratively optimize the control for a spec-

ified dynamic system . The control u(t) is derived by

du

dt
= −α

∂

∂u

[

∂W (x, t)

∂x
X(x, u)

]

, (4.24)

where X(x, u) = ẋ(t) are the system dynamics and W (x, t) is the minimal cost of

reaching the final state xf provided with the initial state is x(t0) = x. Eq. (4.24)

converges to the optimal control u∗(t) and x∗(t) if the optimal control is smooth.

However, existing algorithms usually require the cost function and the control

to be partial differentiable. To proceed with the above algorithm, one also needs

to store and describe the entire xk, in order to obtain xk+1. Moreover, to obtain a

smooth curve, infinitely small time increments are required so that laborious calcu-

lations are introduced. All these factors hinder the application of these algorithms

in decentralized systems whose members are working cooperatively.

In contrast, the proposed algorithms are suitable for a large class of opti-

63

mization problems and do not suffer from the above drawbacks. For example, our

algorithms could be applied in the situations where the control and trajectory are

not smooth, such as bang-bang control. The computational requirements for each

agent could be limited by defining an appropriate ∆. Furthermore, each agent only

needs limited information from its predecessor so that multiple agents could work

together to achieve the greatest effectiveness.

The idea of optimizing a trajectory by applying a repeatedly-updated sequence

of controls is also present in model predictive control (MPC). However, in MPC one

typically computes the optimal control from the current state to the terminal state

xf (see, for example, [19] and [47]), which in the present situation we would like

to avoid. Instead, local pursuit substitutes a series of “shortened” versions of the

original problem, involving only trajectories linking leader and follower.

4.4 Special Cases: Length and Time Minimiza-

tion

For trajectory optimization problems that often involve length or time optimization,

we have the following interesting results.

Theorem 4.3 : If the time rate of the change of the cost along a trajectory is

independent on xk(t) for all t, then the minimum cost from the follower to the

leader with free final time is strictly decreasing under local pursuit, unless the leader

moves along a locally optimal trajectory.

64

Proof: Let ρ(a, b) = JF (x∗, ẋ∗, τ) be the minimum cost to steer system from state

a to another b. For the pursuit process shown in Fig. 4.11, We have that

Xk+1(t)

Xk+1(t+δ)

Xk(t)

Xk(t+δ)

Figure 4.11: The minimum cost from xk+1(t)) to xk(t) is decreasing if dC/dt is

independent.

ρ(xk+1(t + δ), xk(t + δ)) ≤ ρ(xk+1(t + δ), xk(t)) + ρ(xk(t), xk(t + δ))

≤ ρ(xk+1(t + δ), xk(t)) + C(xk(t), t, δ)

= ρ(xk+1(t + δ), xk(t)) + C(xk+1(t), t, δ)

= ρ(xk+1(t), xk(t)). (4.25)

If the equalities hold in Eq. (4.25) then xk(t) must be moving along an optimal

trajectory.

This result has a variety of applications, e.g., the minimum time control prob-

lem

J(x, ẋ, 0, T) = T, ‖ẍ‖ ≤ 1, (4.26)

whose solution could be obtained via the maximum principle; or the minimum path

65

length problem with the condition that all agents are moving on unit speed

J(x, ẋ, 0, T) = T, with ‖ẋ‖ = 1, T is free. (4.27)

66

Chapter 5

Local Pursuit as a Computational

Tool

This chapter discusses the use of local pursuit as a computational tool and how

it can be used to complement existing numerical optimal control methods. As we

shall see, local pursuit can not only extend the domain of applicability of existing

numerical methods, but can also potentially reduce computational errors.

5.1 Motivation

As discussed in Chapter 2, local pursuit was originally conceived as a means of

solving optimal control problems in settings where mapping, communication and

sensing capabilities were severely limited. The algorithm manages to avoid the need

for global information by breaking up the original problem into many pieces, each

to be optimized by a leader-follower agent pair. Its key feature is a reduction in the

67

range (measured by time, distance or other metric) over which computations must

take place, by paying a price in terms of the number of agents that are necessary to

carry out the algorithm. Up to now, we have focused on broadening the domain of

applicability of local pursuit and on the limiting properties of the agents’ trajectories.

However, the algorithm’s limited information requirements make it a potentially

useful tool in numerical trajectory optimization, where there are often similar trade-

offs to be made.

For many practical optimal control problems, exact (closed-form) solutions

do not exist or are difficult to calculate. These include optimal control of nonlinear

systems such as the well-known satellite transfer problem [49], minimum-time control

for higher order systems [24], and initial value problems in ordinary differential

equations [30], to name a few. In those settings, one must resort to numerical instead

of analytical methods in order to compute optimal control policies. For continuous-

time systems, the set of possible inputs is often infinite-dimensional. In order to pass

to a finite-dimensional optimization problem, numerical optimal control methods

typically generate a sequence of input samples that are to be optimized and applied

at discrete times (meaning that the input signals are piecewise constant). We will

provide a brief review of this process in the next section. Important considerations

when applying numerical methods include the following:

1. Computing time. Numerical methods usually involve iterative computations,

and may take numerous steps to converge to the desired result. Thus, a faster

convergence rate can imply significant time savings.

68

2. Storage requirements. There usually exists an upper limit with respect to

memory size for operating data – variables that are used to store the system’s

states or other data to be optimized. That limit is determined by various

requirements for the solution, including smoothness, dynamics of system and

desired accuracy.

3. Computational Accuracy. Iterative computations incur truncation errors at

each step. These errors may accumulate and generate unacceptable results,

as is the case, for example, when solving an ill-conditioned linear system of

algebraic equations.

In light of the above considerations, there is a balance that must be struck

between the number of trajectory samples and the size of the time intervals that

separate them. On one hand, we would like to keep the number of segments small, so

that the associated numerical optimization problem requires modest storage. How-

ever, if the number of trajectory segments is too small, then propagating the state

vector from one sample point to the next may result in unacceptable approximation

errors. At the same time, if the trajectory is sampled too densely, then there may

not be adequate memory to run the numerical method of choice (e.g., nonlinear pro-

gramming), which at the same time may be prone to a more significant accumulation

of numerical error (we shall see an example of this in next chapter). In the follow-

ing, we describe how local pursuit could be used in concert with existing numerical

methods (specifically, multiple shooting), in order to relax this trade-off, and solve

large-scale problems with limited storage, while maintaining small segment size.

69

5.2 Local Pursuit as a Computational Tool

The numerical optimization method known as multiple shooting (MS), together

with its various improved forms, could be considered a workhorse of numerical op-

timization. However, the large storage requirements associated with MS limit the

so-called “permitting size” of problems which can be solved on a digital computer

[4]. In the following, we briefly review MS before showing how it can be improved

when combined with SLP.

5.2.1 A Brief Review of Multiple Shooting

In principle, MS is a type of nonlinear programming (NLP) method. The develop-

ment of NLP algorithms (and of MS) has followed the growth of the digital computer.

The size of a typical application in the early 1960s was n, m ≈ 10, while in the 1970s

and early 1980s most application were of size as n, m < 100. With subsequent ad-

vances in linear algebra techniques, such as matrix sparsity, and ongoing progress

in the semiconductor industry, the permitting size in late 1990s was n, m ≈ 10, 000

[4]. Suppose, for now, that we are interested in minimizing the scalar cost function

F (x) : R
n → R, subject to m (m ≤ n) equality constraints c(x) = 0, where c(x) is

an (m × 1) vector. Using the notation in [4], we first introduce the Lagrangian:

L(x, λ) = F (x) + λT c(x). (5.1)

70

The necessary conditions for the point (x∗, λ∗) to be an optimum are satisfied by

the stationary points of the L which are the solutions of 1:

∇xL(x, λ) = ∇xF (x) + ∇xc(x)T λ = 0, (5.2)

∇λL(x, λ) = c(x) = 0. (5.3)

The equations (5.2)∼(5.3) can be solved via Newton’s method. Proceeding formally,

we obtain the following Karush-Kuhn-Tucker system:








HL ∇xc(x)T

∇xc(x) 0

















∆x

∆λ









=









−∇xF (x) −∇xc(x)T λ

−c(x)









,

(5.4)

where ∆x is the “search-direction” and HL is the Hessian of the Lagrangian

HL = ∇2
xF (x) +

m
∑

i=1

λi∇
2
xci. (5.5)

For convenience, we define

H =









HL ∇xc(x)T

∇xc(x) 0









. (5.6)

Suppose now that we are interested in optimizing Eq. (3.6) subject to the

dynamics

ẋ = f(x(t), u(t)). (5.7)

1Here, we use the notation:

∇xA(x) =

























∂a1

∂x1

∂a1

∂x2

· · · ∂a1

∂xn

∂a2

∂x1

∂a2

∂x2

· · · ∂a2

∂xn

· · · · · · · · · · · ·

∂an

∂x1

∂an

∂x2

· · · ∂an

∂xn

























.

71

Doing so with MS (here we mainly refer to direct MS) involves breaking up the tra-

jectory into “shorter” pieces [4] by partitioning the time domain [t0, tf] = ∪N−1
i=1 [ti, ti+1)

t0 = t1 < · · · < tN = tf . Each subinterval [ti, ti+1) is called a “segment”.

Multiple shooting uses NLP to find the optimal trajectory (i.e., to minimize a

scalar function along a trajectory), by defining the NLP variables ν = [ν1, . . . , νN]

to be the arguments – usually they are concatenations of the states and the corre-

sponding controls – at the sampling times t1, . . . , tN along a trajectory of the system.

The stationary points [ν∗
1 , . . . , ν

∗
N], obtained via NLP, will approach points on the

optimal trajectory. Without loss of generality, we may choose to sample the state

and control vectors at the segment endpoints, and define the NLP variables

ν = {x1, u1, x2, u2, . . . , xN , uN}. (5.8)

Note that the dimension of xi and ui, i = 1, . . . , N is Mx and Mu, respectively.

As the NLP variables are adjusted, one must ensure that they satisfy the

system dynamics Eq. (5.7), and that sequential trajectory segments obey a matching

condition at their boundaries. This means that the evolution of Eq. (5.7) from xi

at ti with input ui, should steer the system to xi+1 at ti+1. This suggests that the

72

following constraints are necessary:

c(x) =









































x2 − x̄1

x3 − x̄2

...

xN − x̄N−1

φ0(x1, t0)

φT (xN , tf)









































= 0, (5.9)

where the functions φ0(x1, t0) and φT (xN , tf) represent the initial and final condition

constraints, respectively, and x̄i are to be calculated by integrating the differential

equation (5.7) from ti to ti+1.

In practice, one often computes x̄i only approximately, instead of integrating

the complete equations of motion. For example, Euler’s method provides a first-

order approximation to the integration of Eq. (5.7):

x̄i+1 = xi + hf(xi, ui), (5.10)

where h is the time step of each segment. Other methods, e.g., Rung-Kutta meth-

ods, can provide higher order approcimation. The choice of approximation should

be based on the following considerations: First, we have sampled the controls at

the segment boundaries (the samples are to be optimized) instead of considering

the continuous-time control on the intervals [ti, ti+1]; therefore, we cannot compute

the precise state evolution by integration unless the controls are piece-wise con-

stant upon the segments. Second, using linear approximation reduces the computa-

tional burden; on the other hand, higher-order approximations are likely to produce

73

more precise results, but they will also give rise to more complicated equations in

Eq. (5.2)∼(5.9) and the resulting NLP problem will require more time to solve.

One shortcoming of linear approximation is that the time separation between

neighboring points must be limited to a small time step h. If h is “too large”, then

x̄i+1 will not be a good estimate of the true state of Eq. (5.7) as it evolves from xi

to xi+1 under ui, and NLP will produce erroneous results. The estimation error is

of o(hn), where n ∈ N is the order of the approximation method [42]. It is clear that

a smaller h results in better approximation. For that reason, keeping the segment

size small is desirable and is a key feature of MS compared with other single-step

shooting methods [4].

Let us assume that we can fix an acceptable h, i.e., one that is small enough

to lead to convergence for the associated NLP. Then the permitting size of problems

that can be solved by MS depends solely on the number of steps N required to cover

the time span [0, T], with T = (N − 1)h. Thus, solving large-scale problems (with

large time spans), requires a large number of segments N = Th + 1. For problems

with time-varying dynamics and fixed time span, the requirement for large N could

arise because nonlinearities in the dynamics make it necessary to use dense sampling

to ensure that the estimates x̄i are precise enough, and that the associated NLP

will convergence. To summarize, for any given set of dynamics and choice of NLP

method, the time step h is effectively upper bounded. The permitting size in MS is

proportional to the number of segments N , if h is pre-determined.

Recall that the dimension of NLP variables for a multiple shooting method

is nx = (Mx + Mu)N , and the NLP has at least MxN constraints (the number of

74

constraints could be larger if the final states are fixed). The Hessian in Eq. (5.5)

is of dimension nx × nx = (Mx + Mu)
2N2. To proceed with NLP, one must obtain

the solution of Eq. (5.4), which requires finding the solution to a linear system of

algebraic equations with dimension at least (Mu + 2Mx)
2N2. Here we have seen

that the number of segments involved in the calculation affects the “degree of labor-

consumption” with O(N2).

5.2.2 Numerical Optimization by Local Pursuit

As we have seen, the number of segments used in MS affects the dimension of

the associated NLP variables as well as the computational complexity of the NLP

problem to be solved. For that reason, it would be desirable to use fewer segments

with the MS method. However, because the time step h is upper bounded for a

fixed set of dynamics and NLP algorithm, decreasing the number of segments means

that NLP process can only deal with trajectories spanning shorter time intervals.

This limitation can be circumvented by combining local pursuit with direct MS,

to obtain what we refer to as pursuit-based multiple shooting (PBMS). Specifically,

we will introduce a sequence of simulated agents that pursue each other using the

mSLP algorithm given in Chapter 3. Each agent will use MS to compute the optimal

trajectory from its own state to that of its leader, giving rise to a series of smaller

NLP problems, whose time span is limited by the pursuit interval ∆. Although

there will be more of these NLP problems to solve, their lower dimension will make

it possible to handle larger optimization problems overall.

75

Decreasing the Size of the NLP Problems During Computation

For simplicity, fix h = T/(N−1) and select the pursuit interval ∆ = (N∆−1)h, N∆ ∈

N, where N∆ is the number of segments within ∆. Usually we will have N∆ << N .

For convenience, we also choose the updating interval in the SLP algorithm to be

an integer multiple of segment size, δ = Nδh, Nδ ∈ N, so that the agents are always

updating their trajectories at the sampling times ti which we chose for trajectory of

Eq. (5.7).

XK

XK+1

XK

XK+1

XK+2

Multiple Shooting

Local Pursuit

Figure 5.1: Local pursuit decreases the problem size at every updating step. In this

figure, the number of variables involved in multiple shooting is N = 13, while the

number of variables handled by each agent in local pursuit is N∆ = 5.

At each updating step t = iδ, each agent is solving a NLP over N∆ segments,

with a time span of (N∆ − 1)h instead of (N − 1)h, as illustrated in Fig. 5.1.

Because the computational complexity of MS is related to the square of the number

of segments, using N∆ << N will significantly decrease the computational burden

76

for each agent. Table 5.1 shows the dimensions of the NLP vector, ν, the constraints

c(x), and the matrix H in Eq. (5.6), respectively, for MS and PBMS. The dimension

of the associated Karush-Kuhn-Tucker system is on the order of N2 for MS, vs.

N2
∆ for PBMS. Operating on large matrices consumes large amounts of memory,

especially when using non-iterative methods, e.g., the memory of a typical desktop

PC can be easily used up by a matrix with dimension of 5000 × 5000 in Matlab

when using 64 bits of digital precision. However, under PBMS, the matrix size is

scaled down by a factor of (N∆/N) × (N∆/N) and hardware requirements can be

decreased significantly for any given problem.

Table 5.1: Comparing the dimensions of the NLP problem variables when using

Multiple Shooting (MS) vs. Pursuit-based Multiple Shooting (PBMS). Typically,

N∆ << N .

MS PBMS

dim(ν) (Mx + Mu)N ∝ T (Mx + Mu)N∆ ∝ ∆

dim(c(x)) MxN ∝ T MxN∆ ∝ ∆

dim(H) ((Mu + 2Mx)N)2 ∝ T 2 ((Mu + 2Mx)N∆)2 ∝ ∆2

We note that under PBMS, each agent needs to solve (N −N∆)/Nδ “smaller”

MS problems in order to reach the target set SQ from the initial state x0, but

the time needed to do so – denoted by Ta – will generally be less than the total

iterative time in multiple shooting, which we will denote by TMS. Of course, the

total running time for PBMS – denoted by TLP – may be greater than TMS because

77

local pursuit relies on multiple agents to converge to the optimum. Our experience

with local pursuit and with various numerical experiments (including the example

in next chapter) has been that, for well-conditioned problems, the convergence rate

of PBMS is usually slower than that of MS. As expected, decreasing N∆ leads to

slower convergence for PBMS. However, the added running time comes with the

benefit of lower memory requirements, allowing us to handle problems with larger

state vectors and longer time horizons. At the same time, if N∆ is decreased and

the available storage is fixed, one can afford to also decrease the segment size h.

Doing so has the effect of improving the state estimates x̄i used to formulate the

NLP, without making the problem ill-conditioned. This situation will be illustrated

and discussed further in the next chapter.

Reducing Numerical Error When H is Ill-Conditioned

Besides maximum problem size, another important consideration in numerical opti-

mal control, is the computational error introduced by the finite precision of digital

computers and by algorithmic accuracy. It is possible that the error is too large to

obtain useful results, e.g., solving a linear system with large condition number can

result in unacceptable errors and non-convergence. In such settings, correction algo-

rithms, such as Tikhonov regularization, can be applied [42, 51]; they are, however,

time and storage consuming, and do not always succeed.

Consider, for example, using Gaussian elimination to solve Eq. (5.4) with

limited digital precision. Every step of the elimination algorithm introduces some

truncation error, so that the total accumulated error when solving a large linear

78

system will generally be much larger than that associated with solving one of lower

dimension, because the number of steps required by the algorithm is proportional to

the system size. Furthermore, if H in Eq. (5.6) is ill-conditioned, then the numerical

solution of Eq. (5.4) introduces significant errors which accumulate towards the final

segment N . If the problem’s time horizon is long, the accumulated error may lead

to erroneous results, or prevent MS from converging.

PBMS can help reduce these numerical errors because the algorithm’s simu-

lated agents solve MS problems with a shorter time horizon, compared to that of

the original problem. This implies that the dimension of Eq. (5.4) is reduced for

each agent and there will be cases in which PBMS will succeed where MS failed to

converge. Furthermore, if every locally optimal trajectory satisfies the convergence

criteria of the numerical method used to solve the “short-range” MS problems be-

tween leader-follower pairs, then the convergence of the agents’ trajectory sequence

is guaranteed by the local pursuit algorithm itself.

Remarks

To summarize, the combination of MS with local pursuit can increase the permitting

size of problems that can be handled with fixed storage, because at every updating

step, each agent deals with a problem with “reduced size”. However, when using

a fixed time partition, PBMS involves solving problems of size N∆ << N instead

of N . Therefore, we can address much larger problems under the limits imposed

by the hardware. Although it requires more running time, PBMS does provide a

feasible solution when the traditional formulation exceeds those limits, making it

79

impossible to proceed.

In cases where MS fails to converge because the errors introduced by the

approximation to Eq. (5.7) are too great, PBMS may succeed by reducing the seg-

ment size h, thereby reducing the accumulated error over the trajectory of a single

agent. In next section we will present an example of MS stagnancy caused by an

ill-conditioned matrix H and how PBMS can avoid the problem.

80

Chapter 6

Simulations and Experiments

In this chapter we illustrate the application of local pursuit in a series of simulations

and laboratory experiments. We do this through a progression of optimal control

examples that make use of the four algorithms (SLP, CLP, mSLP and mCLP) which

were discussed in Chapter 2.

6.1 Sampled Local Pursuit (Large δ)

In the first example, we illustrate the use of sampled local pursuit through an intu-

itive and straightforward example. We seek to minimize the path length

∫ 1

0

‖x‖dt

on R
2 subject to ẋ = u and boundary conditions x(0) = (0, 0), x(1) = (1, 1). Of

course, the optimal trajectory is a straight line. We set δ = 0.25, ∆ = 0.5, and T =

1, and let the first agent move along a half circle to the final state. Then each

subsequent agent departed from (0, 0) 0.5 seconds after its predecessor. At every

81

updating time tk + iδ, i = 0, 1, 2, . . . each follower moved on a straight line towards

its leader and changed its speed to ∆/d, where d is the length of the line segment

connecting the leader and follower. Fig. 6.1 shows the trajectories of the first five

agents. The fifth trajectory was close to a straight line.

−0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

X(m)

Y
(m

)

Robot 0
Robot 1
Robot 2
Robot 3
Robot 4
Robot 5
Optimum

Figure 6.1: Iterated trajectories for the minimum length problem, using SLP on R
2

6.2 An LQR Example

Suppose that we are to minimize the quantity

∫ 1

0

ẋ1(t)
2 + u(t)2dt, (6.1)

subject to

ẋ =









ẋ1

ẋ2









=









0 1

−1 0









x +









0

1









u, (6.2)

and boundary conditions x(0) = (0, 0), x(1) = (1, 0). We used CLP to solve

this problem. We simulated a collection of agents whose dynamics were given by

82

Eq. (6.2). The pursuit interval ∆ was set to 0.5. The first was steered to the fi-

nal state along a sinusoidal trajectory. Each subsequent agent left x(0) 0.5 second

after its leader, and updated its trajectory continuously in an attempt to reach its

leader’s state with minimum cost, as defined by Eq. (6.1). In each case, the locally

optimal trajectories linking a follower to its leader were obtained by solving the

corresponding Euler-Lagrange equation:

d4x1

dt4
+

d2x1

dt2
+ x1 = 0.

The trajectory sequence generated by the agents converged to the optimum, as

Fig. 6.2 illustrates.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

X
 (

m
)

Optimum
Agent 0
Agent 1
Agent 2
Agent 3
Agent 4
Agent 5

Figure 6.2: Iterated trajectories for the Lagrangian problem through SLP with

∆ = 0.5, δ → 0

83

6.3 Minimum Time Control

We want to minimize the final time

T =

∫ T

0

1dt

subject to the the following system

ẋ =









ẋ1

ẋ2









=









0 1

0 0









x +









0

1









u

with the boundary conditions of x(0) = (π, 0), x(T) = (0, 0) and constraint ‖u‖ ≤ 1.

Because the final time was free, we applied mCLP with the following interval set

to ∆ = 0.3π. The input for the first agent was arbitrarily selected (here the initial

control input was chosen to a sine wave). Each agent continuously updated its

trajectory after departure from x(0), trying to reach the state of its leader within

the minimum time TL. From the maximum principle it was well-known that the

optimal input for the locally optimal trajectory is the “bang-bang” control law:

u∗(t) =















−1 if t ∈ [0, TL/2)

1 if t ∈ [TL/2, TL]

. (6.3)

As Fig. 6.3 illustrates, the sixth agent evolved under the essentially optimal control,

and the convergence was rapid. It is interesting to see that we reach the optimum

with finite numbers of agents.

6.4 Finding Geodesics on Uneven Terrain

We now present a geodesic discovery example that involves complex calculations

when solved in its “global” version, but which becomes straightforward when solved

84

0 1 2 3 4 5 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

t(second)

Agent 0

Acceleration
Velocity
Position

0 1 2 3 4 5 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

t(second)

Agent 1

Acceleration
Velocity
Position

0 1 2 3 4 5 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

t(second)

Agent 2

Acceleration
Velocity
Position

0 1 2 3 4 5 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

t(second)

Agent 3

Acceleration
Velocity
Position

0 1 2 3 4 5 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

t(second)

Agent 4

Acceleration
Velocity
Position

0 1 2 3 4 5 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

t(second)

Agent 5

Acceleration
Velocity
Position

Figure 6.3: Iterated trajectories for the minimum time control problem via CLP

with ∆ = 0.3π

85

over local patches. Consider the problem of finding shortest paths in an environment

consisting of a plane with two right cones; a partial view is shown in Fig. 6.4. The

radii of the cones were 800 and 1000 units of length, respectively. The agents were

Figure 6.4: Uneven terrain consisting of two cones and a plane.

governed by ẋk = uk, ‖uk‖ = 1 and were required to travel from x0 = (3500, 0, 0) to

(−1300, 0, 0).

The first agent moved on a trajectory that followed along the border of the

cones. In this environment, long geodesics were difficult to compute because doing so

demands knowledge of the entire map and because one has to take into account four

coordinate switches that occur along the optimal path. However, if we set ∆ = 0.2T

in CLP, the follower was required to compute optimal trajectories that crossed over

at most one coordinate patch. When the leader and follower were both on the

plane or on the same cone, the computation of optimal trajectories was straightfor-

ward. In other cases, agents had to optimize trajectories that crossed at most two

coordinate patches (plane-to-cone or cone-to-plane), and did so by selecting from

a one-parameter family of curves joining leader and follower. On the other hand,

computing the globally optimal trajectory at once would have required searching

86

over a four-parameter family of curves (there are a total of four “crossings” between

coordinate patches). The iterated trajectories converged to the optimum, as Fig.

6.5 illustrates.

Figure 6.5: Iterated trajectories for the geodesic discovery problem using mCLP

with ∆ = 0.2T .

6.5 A Trail Optimization Problem with Free Final

State

Consider the problem of finding shortest paths in the same environment described

in the last section, where the agents were required to travel from x0 = (3500, 0, 0) to

the second cone with constant speed. Suppose that now we would like to minimize

the path length (proportional to the final time T) necessary to reach the second

87

cone. Because this is a problem with free final time and partially-constrained final

state, mCLP was applied.

Fig. 6.6 shows the iterated trajectories generated when the agents imple-

mented the mCLP policy with T0 = 3499, ∆ = 0.2T0. For the computation of the

Figure 6.6: Continuous local pursuit in a complex environment. The initial trajec-

tory (along the borders of the cones) was easy to describe (for example, “move along

the cone boundaries”) but far from optimal. The locally optimal trajectories were

easier to compute than the global optimum because of the limited pursuit distance

(∆ = 0.2T0). The iterated trajectories converged to the optimum.

optimal trajectory, each agent had to solve its own version of the optimal control

problem which was simpler than the “global” problem, for the same reasons that

were outlined in the previous example. The only difference between this and the

88

previous example was that when a follower detected that its leader had already

reached the cone boundary, it ignored the leader and optimized its trajectory to the

cone boundary, as described by mCLP.

6.6 Minimum-time Control with Speed and Ac-

celeration Constraints

Next, consider the second-order system

ẋ
△
=









ẋ1

ẋ2









=









0 1

0 0









x +









0

1









u, (6.4)

where we seek to minimize

J(x, ẋ, 0) =

∫ T

0

1dt = T

subject to |u| ≤ 30, |x2| ≤ 8 and with boundary conditions ẋ1(0) = ẋ1(T) =

x1(0) = 0, and x1(T) fixed. Here, the constraint set SQ was a single point in the

state space. The optimal control policy for this problem is the well-known “bang-

off-bang” control: the control u switched at most once between 30 and −30, with

u = 0 when the maximum or minimum speed x2 had been reached.

To apply CLP, we simulated a sequence of agents-copies of Eq. (6.4). The

initial agent was driven by a suboptimal input (Agent 1 in Fig. 6.7) which alternated

between the maximum and minimum available acceleration. Subsequent agents

departed from the initial state with ∆ = 1.3 sec. Each agent chose the (bang-off-

bang) control input that would allow it to intercept its leader’s state in minimum

89

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−2

0

2

4

6

8

10

12
Agent 1

Time (sec)

Acceleration/16

Speed

Position

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−2

0

2

4

6

8

10

12
Agent 2

Time (sec)

Acceleration/16

Speed

Position

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−2

0

2

4

6

8

10

12
Agent 3

Time (sec)

Acceleration/16

Speed

Position

Figure 6.7: Iterative trajectories for minimum control with limited acceleration and

speed. The simulated control loop ran at a frequency of 2000Hz so that the control

policy could be regarded as approximately CLP. The pursuit interval was ∆ = 1.3.

90

time, and continuously updated that choice until it reached the final state. The

third agent’s trajectory was optimal (see Fig. 6.7). Notice that after t > 2.7 sec the

second agent intercepted the first and subsequently moved along the same trajectory.

It is also interesting to note that in this case, optimality was achieved after a finite

number of iterations.

6.6.1 An Experiment in Minimum-time Control

Motor 1 Motor 2 Motor 3

Figure 6.8: Applying local pursuit with a trio of motors to obtain minimum-time

control with limited acceleration and speed.

We implemented the example of last section using a collection of three motors,

pictured in Fig. 6.8. Each motor was equipped with position and speed sensors,

which were sampled by a PC-based controller at a rate of 2000Hz. The goal was

to rotate the motors to a fixed final position in minimum time. Motor acceleration

91

and speed were limited to 30 rad/sec2 and 8 rad/sec, respectively.

The input to the first motor was a rectangular pulse with amplitude equal

to the maximum acceleration (same as in the simulation of Sec. 2.4). Each of the

remaining two motors tried to “catch up” with its predecessor by measuring the

predecessor’s state and applying a control to reach that state in minimum time.

The trajectories of all three motors with ∆ = 1.3 sec are shown in Fig. 6.9. We

saw that the third motor evolved under essentially optimal control, and the second

motor “intercepted” the first after t ≈ 2.3 sec. We noted that because of unmodeled

friction, the final position θ(T) was less than the nominal value (see x(T) in the

last simulation). The presence of friction also caused the motors to decelerate when

a zero input was applied (once the motors had reached maximum speed). That

deceleration in turn caused the CLP policy to try and “catch up” by introducing a

positive control input, resulting in chatter observed in the velocity and acceleration

curves of motors 2 and 3 in Fig. 6.9.

6.7 Numerical Optimal Control via PBMS: An

Orbit Transfer Problem

In this section we illustrate the performance of PBMS via an optimal control example

that requires the use of numerical methods. Consider an idealized spacecraft which

must be transfered from one stable orbit1 to another, within some fixed time T . For

1The term “stable orbit” means that the spacecraft will remain on this orbit if no external force

(other than gravity) is applied, i.e., θ̇ =
√

uE/r3.

92

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−6

−4

−2

0

2

4

6

8

10
Motor 1

Time (sec)

Acceleration/16

Speed

Position

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−6

−4

−2

0

2

4

6

8

10
Motor 2

Time (sec)

Acceleration/16

Speed

Position

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−6

−4

−2

0

2

4

6

8

10
Motor 3

Time (sec)

Acceleration/16

Speed

Position

Figure 6.9: Iterative trajectories of motors when applying local pursuit to attain

minimum-time control with limited acceleration and speed. The pursuit interval

was ∆ = 1.3. The third motor evolved under essentially optimal control.

93

simplicity, we only considered the effect of the Earth and restricted the problem to

a plane, as illustrated in in Fig. 6.10.

xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx

R

Earth

θ

Spacecraft

ϕ
I

Figure 6.10: A planar spacecraft in orbit around the Earth.

The dynamics of this system were

r̈ =
θ̇2

r
−

uE

r2
+

Pu1

mg
,

θ̈ = −
2θ̇ṙ

r
+

Pu2

mgr
,

ṁ = −
P (u2

1 + u2
2)

g2
, (6.5)

u1 = I sin(ϕ),

u2 = I cos(ϕ),

where r was the distance between the spacecraft and the center of Earth, θ was

its longitude with respect to the horizontal line, m was the mass of the spacecraft,

uE was the gravitational parameter of Earth, P was a constant concerning engine

power, and g was the acceleration of gravity at sea level [63]. The control inputs, u1

94

and u2, were functions of I and ϕ, the thrust force and thrust steering angle with

respect to the tangent of the local orbit.

We would like to minimize the fuel consumed (equivalently, to maximize the

final mass m(T)) while steering the system (6.5) from the initial condition r(0) =

R0, ṙ(0) = 0, θ̇(0) =
√

uE/R3
0, m(0) = M0 to the final condition r(T) = RT , ṙ(T) =

0, θ̇(T) =
√

uE/R3
T , where T was fixed. For that reason, we chose

J =

∫ T

0

u1(t)
2 + u2(t)

2dt.

For simplicity, we assumed that there was no upper bound of the thrust force, thus

there were no restrictions on the controls u1 and u2.

6.7.1 A Comparison of MS vs. PBMS

To solve the problem by MS, we first wrote the cost to be optimized as a function

of the NLP variable:

J =

N
∑

0

(u1(i)
2 + u2(i)

2),

where u1(i), u2(i) are the controls at the ith segment grid. We also used Euler’s

method to (approximately) integrate the dynamics of Eq. (6.5) and imposed the

95

following continuity constraints:

0 = rj+1 − r̄j

= rj+1 − (rj + hj ṙj),

0 = ṙj+1 − ¯̇rj

= ṙj+1 − (ṙj + hj(
θ̇2

j

rj

−
uE

r2
j

+
Pu1j

mjg
)),

0 = θ̇j+1 −
¯̇
θj

= θ̇j+1 − (θ̇j + hj(−
2θ̇j ṙj

rj

+
Pu2j

mjgrj

)),

0 = mj+1 − m̄j

= mj+1 − (mj − hj

P (u2
1 + u2

2)

g2
), (6.6)

for j = 1, 2, 3 . . . , N − 1, and

0 = r1 − R0,

0 = ṙ1 − Ṙ0,

0 = θ̇1 − θ̇0,

0 = m1 − M0,

0 = rT − RT ,

0 = ṙT − ṘT ,

0 = θ̇T − θ̇T , (6.7)

where ri = r((i− 1)h), ṙi = ṙ((i− 1)h), . . . and h = T/(N − 1) was the time step of

the integration. The dimension of constraints c(x) was (4× (N − 1) + 7). The NLP

96

variable

ν = {r1, . . . , rN , ṙ1, . . . , ṙN , θ̇1, . . . , θ̇N , m1, . . . , mN

, u11, . . . , u1N−1, u21, . . . , u2N−1} (6.8)

was of dimension (6 × N − 2).

When applying local pursuit in PBMS, we simulated a sequence of control

systems-copies of Eq. (6.5), that pursued one another in pairs, using mSLP. The first

of those systems reached the target orbit along a feasible but suboptimal trajectory

which was produced by an input similar to a bang-bang control law. During pursuit,

each agent used multiple shooting to find the optimal (minimum fuel) control that

steered it from its current position to that of its leader. The number of segments

N (under MS) was now replaced by N∆ in Eq. (6.8), and the boundary conditions

were adjusted to correspond to the states of each leader-follower pair.

6.7.2 Results

We solved the orbit transfer problem both by PBMS and by standard MS. The crite-

ria for convergence were ‖m(T)i+1−m(T)i‖ ≤ 10−8 (to guarantee little improvement

with future iterations) and ‖c(x)‖ ≤ (10−15) × m, where m was the dimension of

constraints (to guarantee that the trajectory satisfied the system dynamics). For

the convenience of verifying our experimental results, the total time T was fixed to

the same amount (300 minutes) in all cases so that we could compare results using

different number of segments. The numerical “behavior” of the problem – and the

performance of the two methods – depended on the selection of the total number of

97

segments N .

6.7.3 Well-conditioned Case

With N = 101, the matrix H in Eq. (5.6) was well conditioned (this fact could be

verified by checking its condition number and was suggested by the fast convergence

rate for MS, as shown below). The performance of MS and PBMS are summarized in

Table 6.1, where c(H) denotes the condition number of matrix H . The “iterations”

Table 6.1: Comparison between Multiple Shooting and Local Pursuit in well-

conditioned case

N=101 Multiple SLP SLP

Shooting (N∆ = 30, Nδ = 16) (N∆ = 60, Nδ = 32)

Computing Time 66.8594 793.8594 430.2344

Iterations 14 277 41

m(T) 0.524246124 0.524245714 0.524246100

‖c(x)‖ 3.7144E-14 9.2499E-15 9.9170E-15

Ave(c(H)) 1.5931E+6 4.8919E+5 5.3612E+5

row lists the number of iterations required for convergence in multiple shooting, and

number of agents needed for local pursuit to converge, respectively.

We see that both methods were successful and that the convergence rate of

PBMS was slower than that of MS. Increasing N∆ resulted in increased storage

requirements and decreased running time. When N∆ = N , PBMS reduced to MS.

98

The final trajectories obtained by both methods are shown in Fig. 6.11.

 5

 10

 15

30

210

60

240

90

270

120

300

150

330

180 0

Initial Trajectory

Multiple Shooting

Local Pursuit

Figure 6.11: Trajectories generated by MS and PBMS for a well-conditioned case

with N = 101, N∆ = 30, Nδ = 16. The trajectories obtained from both meth-

ods were virtually identical. The symbol “•” indicated the starting point of the

trajectories.

6.7.4 Ill-conditioned Case

When the segment size was halved, i.e., N ≥ 201, MS was stagnant because the ma-

trix H in Eq. (5.6) became ill-conditioned. The error generated by solving Karush-

99

Kuhn-Tucker system became so large that the NLP algorithm was not able to con-

verge when using Newton’s method. The large condition number of H (our criterion

of ill-condition) was due to the large number of segments into which the trajectory

was broken down. In fact H ’s condition number increased with the size of seg-

ments (see Table 6.2). For PBMS, the reduction in the number of segments for

the sub-problems solved by pursuing agents meant a corresponding reduction in the

condition number of H when using small N∆.

The results from both methods are summarized in Table 6.2. In this case,

MS could not converge (the values of the constraint residues c(x) did not become

sufficiently small). On the other hand, PBMS was effective in producing the optimal

trajectory. The final trajectories of both methods are shown in Fig. 6.12. By

comparing to the trajectories generated in the well-conditioned case, it is clear that

the trajectory obtained from multiple shooting was sub-optimal.

6.7.5 Large Number of Segments

When N ≥ 600, the orbit transfer problem could not be solved a PC with 1Gb of

RAM using MS2. On the other hand, PBMS’s lower memory requirements meant

that the algorithm was able to operate and converge to the optimum. Here we used

N∆ = 60, Nδ = 32; the final trajectory is shown in Fig. 6.13.

2This included the memory requirements of the function used to compute condition numbers.

If we did not want to record condition numbers and only used Gaussian elimination method to

solve the linear system, then N could be increased a bit further.

100

Table 6.2: Comparison between Multiple Shooting and Local Pursuit in ill-

conditioned case

N=201 Multiple SLP SLP

Shooting (N∆ = 30, Nδ = 16) (N∆ = 60, Nδ = 32)

Time ≥100000 32911.8750 10676.9844

Iteration ≥3000 7223 603

m(T) 0.523948746 0.524560874 0.524571236

‖c(x)‖ 0.01709873 6.0790E-14 1.4019E-14

Ave(c(H)) 1.8263E+10 5.0576E+5 4.7881E+5

Max(c(H)) 4.3377E+12 6.1142E+5 5.6897E+5

N=301 Multiple SLP SLP

Shooting (N∆ = 30, Nδ = 16) (N∆ = 60, Nδ = 32)

Time ≥360000 239601.4219 81264.3906

Iteration ≥3200 30722 2845

m(T) 0.527347984 0.524643889 0.524700485

‖c(x)‖ 0.04135162 2.6051E-13 1.2922E-13

Ave(c(H)) 4.5106E+10 5.3032E+5 4.8184E+5

Max(c(H)) 7.3201E+10 6.5692E+5 6.5833E+5

101

 5

 10

 15

 20

30

210

60

240

90

270

120

300

150

330

180 0

Initial Trajectory

Multiple Shooting

Local Pursuit

Figure 6.12: Satellite trajectories for an ill-conditioned case with N = 201, N∆ =

30, Nδ = 16. The trajectory obtained via local pursuit was essentially optimal;

multiple shooting failed to converge. The symbol “•” indicated the starting point

of the trajectories.

102

 5

 10

 15

 20

30

210

60

240

90

270

120

300

150

330

180 0

Initial Trajectory

PBMS

Figure 6.13: Spacecraft trajectory in the case of large number of segments, N =

601, N∆ = 60, Nδ = 32. The symbol “•” indicates the starting point of the trajec-

tories.

103

6.8 Quadratic Optimal Control on a Sphere

We now consider a quadratic optimal control problem involving a massive particle

that moves on S2 under the influence of external forces. We begin by deriving the

dynamics of the particle in spherical coordinates; we will use the notion of parallel

transport to maintain the correct direction on tangent space along which control

forces are applied. Finally, we show how optimal controls can be computed via SLP.

6.8.1 System Dynamics on a Sphere

We described the particle’s position (we do not consider any rotations of the particle

in this example) on the unit sphere via the usual parametrization:

x(θ, φ) = (sin θ cos φ, sin θ sin φ, cos θ). (6.9)

We assumed that there were two thrusters fixed on the particle, which produce

the forces FR1, FR2. Those forces act along a set of orthogonal directions. In a body-

fixed coordinate frame, we have FR1 = [u1, 0]T and FR2 = [0, u2]
T , where u1 and u2

were the magnitudes of the two forces.

Suppose that we want to minimize

J =

∫ T

0

F 2
R1(t) + F 2

R2(t)dt (6.10)

with fixed T and with θ(0) = θ0, θ̇(0) = θ̇0, φ(0) = φ0, φ̇(0) = φ̇0, θ(T) = θT , θ̇(T) =

θ̇T , φ(T) = φT , φ̇(T) = φ̇T . FR1 and FR2 are the forces applied on the massive

particle along the direction body-fixed coordinates.

The particle’s acceleration can be shown to be given by (see Appendix A for

104

derivation):

ẍ(θ, φ) = xθθθ̇
2 + xθθ̈ + 2xθφθ̇φ̇ + xφφ̈ + xφφφ̇

2

= (− sin θ cos φ,− sin θ sin φ,− cos θ)θ̇2 + (cos θ cos φ, cos θ sin φ,− sin θ)θ̈

+2(− cos θ sin φ, cos θ cos φ, 0)θ̇φ̇

+(− sin θ sin φ, sin θ cos φ, 0)φ̈ + (− sin θ cos φ,− sin θ sin φ, 0)φ̈. (6.11)

We defined a pair of orthonormal vectors x̄θ, x̄φ on the tangent space TS2 such

that they were parallel to the tangent vectors xθ and xφ. These vectors formed an

orthonormal basis for TS2; we referred to the associated coordinate system as sphere

coordinates. In particular

x̄θ = xθ, x̄φ = xφ/ sin θ,

By expressing the particle’s acceleration in the frame (x̄θ, x̄φ) we obtained (see

Appendix A) :

θ̈ = φ̇2 sin θ cos θ + FS1,

φ̈ = 1/ sin θ(−2θ̇φ̇ cos θ + FS2), (6.12)

where the FS1 and FS2 were forces applied to the particle along the directions x̄θ

and x̄φ, respectively.

Eq. (6.12) represents the dynamics of the particle on the sphere. Of course,

the directions on TS2 along which u1 and u2 were applied will generally differ from

x̄θ and x̄φ, as illustrated in Fig. 6.14. We must therefore calculate the relation-

ship between the body-fixed and sphere coordinate systems (equivalently, we must

105

Xθ

Xφ

α

u1u2

Figure 6.14: The angle between the body-fixed coordinate and sphere coordinate

frames varies differ along the particle’s trajectory. The relationship between them

the two frames can be obtained via parallel transport.

describe FSi in body-fixed coordinates) along the particle’s trajectory, so that we

could know how the control inputs u1 and u2 affected the particle’s trajectory in

sphere coordinates. This was accomplished by performing parallel transport of the

body-fixed coordinate frame along the particle’s trajectory.

Because FR1, FR2 are the thrust forces expressed in bodyfixed coordinates, we

obtained:

FR1(t) = FS1(t) cos α(t) + FS2(t) sin α(t),

FR2(t) = FS2(t) cos α(t) − FS1(t) sin α(t), (6.13)

where

α = arctan

(

b(t) sin θ(t)

a(t)

)

106

is the relative orientation between the bodyfixed and sphere coordinate frames,

and a(t), b(t) are the components of the bodyfixed x-axis (along which FR1 acts)

expressed in sphere coordinates:

da(t)

dt
= sin θ(t) cos θ(t)φ(t)′b(t),

db(t)

dt
= −

cos θ(t)

sin θ(t)
(φ(t)′a(t) + θ(t)′b(t)). (6.14)

6.8.2 Applying the Maximum Principle

To apply the maximum principle, we set up the Hamiltonian

H = F 2
S1 + F 2

S2 + p1θ̇ + p2φ̇ + p3(φ̇
2 sin θ cos θ + FS1) + p4(−2 cos θθ̇φ̇ + FS2)/ sin θ.

The optimal control pair (F ∗, ω∗) is

(F ∗
S1, F

∗
S2) = argminFS1,FS2∈F

H∗

= argmin FS1,FS2∈F
[F 2

S1 + F 2
S2 + p∗1θ̇

∗ + p∗2φ̇
∗

+p∗3(φ̇
∗
2
sin θ∗ cos θ∗ + FS1) + p∗4(−2 cos θ∗θ̇∗φ̇∗ + FS2)/ sin θ∗]

= argmin FS1,FS2∈F
[F 2

S1 + F 2
S2 + p∗3FS1 + p∗4FS2/ sin θ∗]. (6.15)

Suppose that there is no restriction on the magnitude of the force (FS1, FS2 ∈ R);

Eq. (6.15) leads to

FS1 = −p∗3/2, FS2 = −p∗4/(2 sin θ∗),

107

where

ṗ∗1 =
∂H∗

∂θ∗
= −p∗3φ̇

∗φ̇∗ cos 2θ∗ − 2p4θ̇∗φ̇∗/ sin2 θ∗,

ṗ∗2 =
∂H∗

∂φ∗
= 0,

ṗ∗3 = −
∂H∗

∂θ̇∗
= −p∗1 + 2p∗4φ̇

∗ cos θ∗/ sin θ∗,

ṗ∗4 = −
∂H∗

∂φ̇∗
= −p∗2 − p∗3 sin 2θ∗φ̇∗ + 2p∗4θ̇

∗ cos θ∗/ sin θ∗. (6.16)

This is a set of coupled partial differential equations with unknown initial conditions

(and final conditions) for the co-states. Considering the complexity involved in

obtaining an analytical solution to Eq. (6.16), we decided to use numerical methods

to solve this problem, specifically PBMS.

6.8.3 Applying Multiple Shooting

To apply the multiple shooting method, we defined a node sequence {1, 2, . . . , N},

where at each node the states were

{θ1, . . . , θN , θ̇1, . . . , θ̇N , φ1, . . . , φN , φ̇1, . . . , φ̇N},

and the controls were

{FS1(1), . . . , FS1(N − 1), FS2(1), . . . , FS2(N − 1)}.

The cost function we want to minimize was

J =

N−1
∑

i=1

(FS1(i)
2 + FS2(i)

2)∆t, (6.17)

108

where ∆t was the length of the time segment. The NLP variable was

ν = {θ1, . . . , θN , θ̇1, . . . , θ̇N , φ1, . . . , φN , φ̇1, . . . , φ̇N ,

FS1(1), . . . , FS1(N − 1), FS2(1), . . . , FS2(N − 1)}. (6.18)

The controls for the initial trajectory are shown in Fig. 6.15. This was a problem

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.4

−0.2

0

0.2

0.4
Initial Forces on Robot Coordinate and Sphere Coordinate

FR1

FR2

FS1

FS2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.8

−0.6

−0.4

−0.2

0
The Angle between Robot Coordinate and Sphere Coordinate

Alpha

Figure 6.15: The controls for the initial trajectory in bodyfixed coordinate and

sphere coordinate

with fixed final time and fixed final states, so we applied PBMS with N = 201, ∆ =

60, δ = 32. For convenience, we decided to compute the optimal inputs in sphere

coordinates first (FS1 and FS2), and then transform those to their bodyfixed values

FR1 and FR2 by means of Eq. (6.13). The resulting trajectories generated by agents

109

are shown in Fig. 6.16, and the optimal controls are shown in Fig. 6.17. It took 810

Figure 6.16: Trajectories generated by PBMS for this problem. The parameters

selected were N = 201, ∆ = 60, δ = 32.

agents to converge to the optimal trajectory with convergence criteria ‖Ji+1−Ji‖ ≤

10−10 and ‖c(x)‖ ≤ 10−15.

110

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.4

−0.2

0

0.2

0.4
Optimal input forces expressed in body−fixed and sphere coordinates

FR1
FR2
FS1
FS2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.5

−1

−0.5

0
Orientation angle between body−fixed coordinates and sphere coordinates

Alpha

Figure 6.17: Top: optimal controls, expressed in bodyfixed and sphere coordinates.

Bottom: The orientation angle α(t) of the bodyfixed coordinate frame in sphere

coordinates.

111

Chapter 7

Conclusions

Inspired by the foraging activities of ant colonies that have the capability to form

shortest paths between their nest and a food resource on uneven terrain, we de-

veloped a set of cooperative, pursuit-based algorithms that can be used to solve a

broad class of optimal control problems. These algorithms differ according to the

different boundary conditions that apply to the problems, namely fixed or free final

time, and fixed versus free final state.

Our pursuit-based algorithms enable a group of cooperating agents – identical

copies of a control system – to solve an optimal control problem by separating it

into simpler instances, each of which can be solved by a pair of agents (designated

as “leader” and “follower”) with limited capabilities. The first agent in the group

evolves along a known feasible (but suboptimal) trajectory; subsequent members

learn from their predecessors, successively improving the initial solution. The col-

lective behavior of the group thus leads to a decrease of the cost function to be

optimized. The learning process encoded in the proposed algorithms requires lim-

112

ited, short-range information exchanges to locate the leader, and it relies on an

agent’s sensing and computing capabilities to update its own trajectory. The tra-

jectory sequence generated by the agents converges to a local optimum, as is the

case with most analytical or numerical optimization methods that are based on nec-

essary conditions for optimality. This optimum may be difficult for a single agent

to obtain when considering the information constraints it must operate under. The

proposed algorithms enable the group to act as “more than the sum of its parts” and

are useful in a variety of settings, from robotic exploration of unknown regions with

short-range sensors and low-band width communications, to numerical optimization

for large-scale problems that involve nonlinear dynamical systems (as, for example,

in the space science).

When applied as a numerical optimization method, local pursuit increases the

permitting size of problems by breaking up the long trajectory into “smaller pieces”,

and solving a more manageable version of the problem over each piece. This property

makes it possible to solve large-scale problems in computers with limited memory. In

addition, local pursuit may improve the performance of existing numerical methods

by introducing smaller accumulated errors and by enabling convergence in cases

where traditional approaches fail.

7.1 Opportunities for Future Research

There are several research directions building upon on results of this thesis. One

concern in local pursuit is that it may require an infinite number of agents to con-

113

verge to the optimum. In practical settings, only a finite number of agents will

be available. However, from the examples in Section 6.3, 6.6, one can see that a

finite number of agents was sufficient when the inputs took on values in a finite set,

e.g., bang-bang control. It would be of great practical importance to investigate

the most general set of conditions under which the convergence generated by finite

agents occurs.

Furthermore, it would also be interesting to investigate the performance of

local pursuit under noisy sensors and state measurements. One feasible approach

might be to first set up a generic model describing how a follower behaves when it

pursues an optimally evolving leader (this kind of “local” analysis of the optimum

under noisy measurements might be a good starting point), and then investigate the

evolution of each leader/follower pair under noisy measurements.

Besides ants, other social insects, e.g. worker honey bees, demonstrate inter-

esting and potentially useful coordinated behaviors, whose “mechanism” has been

partly revealed by previous studies of bee activities. One may consider ways of “bor-

rowing” the rules that govern the behaviors of bees and other insects, to develop

additional biologically inspired algorithms for engineering. Potential topics include:

• The foraging activities of worker honey bees [13] could provide us with clues on

solving resource allocating problems, including routing of pickup and delivery

vehicles, and cooperative manufacturing by a limited number of robots.

• Further modeling of ant activities in [16] may help engineers to develop more

effective adaptive control strategies. For example, one might consider search-

114

ing for objects in a number of zones by a limited number of mobile robots. If

each zones has the “unknown distribution of generating objects of interest”,

one can attempt to devise ways in which the robots can learn the distribution

of each zone, and develop decentralized rules for searching and convoying.

115

Appendix A

The Dynamics of a Massive

Particle on S2

From Eq. (6.9), we obtain that

xθ(θ, φ) = (− cos θ cos φ,− cos θ sin φ, sin θ),

xφ(θ, φ) = (− sin θ sin φ,− sin θ cos φ, 0) (A.1)

are a set of basis vectors for TS2
x (but not normalized). The particle’s velocity is

ẋ(θ, φ) = (cos θ cos φ, cos θ sin φ,− sin θ)θ̇ + (− sin θ sin φ, sin θ cos φ, 0)φ̇

= xθθ̇ + xφφ̇. (A.2)

Taking derivative of Eq. (A.2) yields Eq. (6.11).

To find the relationship between the terms xθθ,xθ,xθφ,xφ,xφφ, we calculate

their inner products (using the metric “inherited” from Euclidean 3-space) and their

116

norms

‖xθ‖ = ‖xθθ‖ = 1,

‖xφφ‖ = | sin θ|‖xφ‖ = | sin θ|,

‖xθφ‖ = | cos θ|,

and

< xθθ,xθ > = < xθθ,xφ >=< xθθ,xθφ >=< xφφ,xφ >=< xθφ,xθ >= 0,

< xθφ,xφ > = − < xφφ,xθ >= sin θ cos θ,

< xθθ,xθθ > = sin2 θ.

Therefore we can conclude that

x̄φφ = xφφ/ sin θ, x̄θφ = xθφ/ cos θ, x̄θθ = xθθ (A.3)

and

x̄θθ⊥x̄θ, x̄θθ⊥x̄φ, x̄θφ = x̄φ, x̄φφ = − cos θx̄θ + sin θx̄θθ. (A.4)

Thus

ẍ(θ, φ) = θ̇2x̄θθ + θ̈x̄θ + 2θ̇φ̇ cos θx̄θφ + φ̈ sin θx̄φ + φ̇2 sin θx̄φφ

= [θ̈ + φ̇2 sin θ(− cos θ)]x̄θ + [φ̈ sin θ + 2θ̇φ̇ cos θ]x̄φ + [θ̇2 + φ̇2 sin2 θ]x̄θθ

(A.5)

is the acceleration of the particle when no external forces are applied. Now consider

applying an external force F that lies in the tangent plane at the particle’s current

117

position and makes an angle of ω with the direction of x̄θ. Newton’s second law

then implies:

θ̈ + φ̇2 sin θ(− cos θ) = FS1 = F cos ω,

φ̈ sin θ + 2θ̇φ̇ cos θ = FS2 = F sin ω,

or, equivalently we could obtain Eq. (6.12).

To derive the parallel transport equations, first we calculate

E = < xθ(θ, φ),xθ(θ, φ) >

= cos2 θ cos2 φ + cos2 θ sin2 φ + sin2 θ

= 1,

F = < xθ(θ, φ),xφ(θ, φ) >

= sin θ cos θ sin φ cosφ − sin θ cos θ sin φ cos φ

= 0,

G = < xφ(θ, φ),xφ(θ, φ) >

= sin2 θ sin2 φ + sin2 θ cos2 φ

= sin2 θ, (A.6)

which are the components of the first fundamental form [14]. Also

Eθ = Eφ = Fθ = Fφ = Gφ = 0, Gθ = 2 sin θ cos θ.

118

Therefore, the Christoffel Symbols Γk
ij(i, j, k ∈ {1, 2}) satisfy

Γ1
11E + Γ2

22F =
1

2
Eθ,

Γ1
11F + Γ2

22G = Fθ −
1

2
Eφ,

Γ1
12E + Γ2

12F =
1

2
Eφ,

Γ1
12F + Γ2

12G =
1

2
Gθ,

Γ1
22F + Γ2

22G = Fφ −
1

2
Gθ,

Γ1
22F + Γ2

22G =
1

2
Gφ. (A.7)

Solving Eq. (A.7) yields

Γ1
11 = Γ2

11 = Γ1
12 = Γ2

22 = 0,

Γ2
12 =

cos θ

sin θ
,

Γ1
22 = − sin θ cos θ. (A.8)

Suppose now that a curve on the sphere is parameterized by (θ(t), φ(t)). Let w(t)

be the unit vector parallel to the particle’s u1 axis, expressed in sphere coordinates.

Because TS2 is two-dimensional, w(t) (equivalently, the angle it forms with the xθ

axis) is sufficient to describe the orientation of the body-fixed coordinate system in

sphere coordinates. We write

w(t) = a(t)xθ + b(t)xφ. (A.9)

Let w0 = a0xθ + b0xφ be the initial value of the particle’s orientation. We compute

Dw/dt, the tangent component of dw/dt, by taking w’s derivative and dropping the

119

normal component:

Dw

dt
= (a′ + Γ1

11aθ′ + Γ1
12aφ′ + Γ1

12bθ
′ + Γ1

22bφ
′)xθ

+(b′ + Γ2
11aθ′ + Γ2

12aφ′ + Γ2
12bθ

′ + Γ2
22bφ

′)xφ, (A.10)

where the prime means the derivative with respect to t.

To obtain the parallel transport of the initial vector w0, we must solve on-line

the following coupled differential equations

da(t)

dt
= sin θ(t) cos θ(t)φ(t)′b(t),

db(t)

dt
= −

cos θ(t)

sin θ(t)
(φ(t)′a(t) + θ(t)′b(t)).

Having obtained the orientation w(t), we can calculate the orientation angle

α(t) between w(t) and the x̄θ as

α = arctan

(

b(t) sin θ(t)

a(t)

)

.

We can now find the components of the forces FR1, FR2 in the sphere coordinate

frame:

FR1(t) = FS1(t) cos α(t) + FS2(t) sin α(t),

FR2(t) = FS2(t) cos α(t) − FS1(t) sin α(t).

120

Bibliography

[1] C. Ashcraft, R. G. Grimes, and J. G. Lewis. Accurate symmetric indefi-

nite linear equation solvers. SIAM Journal of Matrix Analysis & Application,

40(3):636–666, Sep. 1998.

[2] N.S. Bakhvalov. On the optimization of numerical algorithms. In B. Bojanov

and H. Woźniakowski, editors, Optimal Recovery, pages 1–58. Nova Science

Publishers Inc., 1992.

[3] D.P. Bertsekas. Dynamic programming and optimal control, volume I. Athena

Scientific, Belmont, Massachusetts, 2000.

[4] J.T. Betts. Survey of numerical methods for trajectory optimization. Journal

of Guidance, Control and Dynamics, 21(2):193–207, Mar.–Apr. 1998.

[5] J.T. Betts and W. P. Huffman. Trajectory optimization on a parallel processor.

Journal of Guidance, Control and Dynamics, 31(10):955–958, Oct. 1986.

[6] A. Billard, A. J. Ijspeert, and A. Martinoli. A multi-robot system for adap-

tive exploration of a fast-changing environment: Probabilistic modeling and

experimental study. Connection Science, 11:359–379, 1999.

121

[7] H. G. Bock and K. J. Plitt. A multiple shooting algorithm for direct solution

of optimal control problems. In Proceedings of the 9th IFAC World Congress,

pages 242–247, Pergamon, 1984.

[8] R. A. Brooks. Artificial life and real robots. In Proceeding of the First

European Conference on Artificial Life, pages 3–10, Cambridge, 1992. MIT

Press/Bradford Books.

[9] R.A. Brooks and A.M Flynn. Fast, cheap and out of control: a robot invasion

of the solar system. Journal of the British Interplanetary Society, 42:478–485,

1989.

[10] A.M. Bruckstein. Why the ant trails look so straight and nice. The Mathemat-

ical Intelligencer, 15(2):59–62, 1993.

[11] A.M. Bruckstein, C.L. Mallows, and I. A. Wagner. Probabilistic pursuits on

the grid. The American Mathematical Monthly, 104(4):323–343, April 1997.

[12] A.E. Bryson, Jr., and Y.C. Ho. Applied optimal control: optimization, estima-

tion and control. Hemisphere Pub. Corp., Washington, 1975.

[13] S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz, and

E. Bonabeau. Self-Organization in Biological Systems. Princeton University

Press, Princeton, New Jersey 08540, 2001.

[14] M. D. Carmo. Differential Geometry of Curves and Surfaces. Prentice-Hall,

Englewood Cliff, NJ, 1976.

122

[15] E.K.P. Chong and S.H. Żak. An introduction to optimization. Wiley, New York,

1996.

[16] J-L. Deneubourg, S. Goss, J.M. Pasteels, D. Fresneau, and J-P. Lachaud. Self-

organization mechanisms in ant societies (ii): learning in foraging and division

of labor. In J.M. Pasteels and J-L. Deneubourg, editors, From individual to col-

lective behavior in social insects, pages 177–196. Les Treilles Workshop, Basel,

Boston, 1987.

[17] J. P. Desai, J. P. Ostrowski, and V. Kumar. Modeling and control of for-

mations of nonholonomic mobile robots. IEEE Transactions on Robotics and

Automation, 17(6):905–908, 2001.

[18] M. Dorigo, V. Maniezzo, and A. Colorni. Ant systems: Optimization by a

colony of cooperating agents. IEEE Transactions on Systems, Man and Cyber-

netics, Part B, 26(1):29–41, 1996.

[19] W. B. Dunbar and R. M. Murray. Model predictive control of coordinated

multi-vehicle formation. In Proceedings of the 41st Conference on Decision and

Control, pages 4631–4636, Las Vegas, Nevada USA, December 2002.

[20] R. C. Eberhart and Y. Shi. Particle swarm optimization: developments, appli-

cations and resources. In Proceedings Congress on Evolutionary Computation,

pages 81–86, Hawaii, 2001.

123

[21] L. Edelstein-Keshet. Trail following as adaptable mechanism for popular be-

havior. In R. Murphey and P.M. Pardalos, editors, Animal groups in three di-

mensions, pages 282–300. Cambridge University Press, Cambridge, U.K., 1997.

[22] M. Egerstedt and X. Hu. Formation constrained multi-agent control. IEEE

Transactions on Robotics and Automation, 17(6):947–951, 2001.

[23] P. J. Enright and B. A. Conway. Discrete approximations to optimal trajectories

using direct transcription and nonlinear programming. Journal of Guidance,

Control and Dynamics, 15(4):994–1002, Jul.–Aug. 1992.

[24] D. Feng and B. H. Krogh. Acceleration-constrained time-optimal control in n

dimensions. IEEE Transactions on Automatic Control, 14(2):431–439, Mar.–

Apr. 1991.

[25] R. Fierro, P. Song, A. Das, and V. Kumar. Cooperative control of robot for-

mation. In R. Murphey and P.M. Pardalos, editors, Cooperative control and

optimization, pages 73–93. Kluwer Academic Publishers, 2002.

[26] G.D. Forney and Jr. The viterbi algorithm. In Proceedings of the IEEE, vol-

ume 61 of 3, pages 268–278, March 1973.

[27] V. Gazi and K. M. Passino. A class of attraction/repulsion functions for stable

swarm aggregations. In Proceedings of Conference on Decision and Control,

pages 2842–2847, Las Vegas, Nevada, December 2002.

124

[28] V. Gazi and K. M. Passino. Stability analysis of social foraging swarms.

IEEE Transaction on Systems, Man and Cybernetics – Part B: Cybernetics,

34(1):539–557, February 2003.

[29] V. Gazi and K. M. Passino. Stability analysis of swarms. IEEE Transactions

on Automatic Control, 48(4):692–697, April 2003.

[30] C. W. Gear. Numerical initial value problems with ordinary differential equa-

tions. Prentice-Hall, Englewood Cliffs, New Jersey, 1971.

[31] D.M. Gordon. Ants at work. The Free Press, New York, 1999.

[32] W. W. Hager. Iterative methods for nearly singular linear systems. SIAM

Journal on Scientific Computing, 22(2):747–766, 2000.

[33] D. Hristu-Varsakelis. Robot formations: Learning minimum-length paths on

uneven terrain. In Proceedings of the 8th IEEE Mediterranean Conference on

control and Automation, 2000.

[34] D. Hristu-Varsakelis, P. Krishnaprasad, S. Andersson, F. Zhang, P. Sodre, and

L. D’Anna. The mdle engine: a software tool for hybrid motion control. Techni-

cal Report TR2000-54, Institute for systems Research, University of Maryland,

College Park, MD 20742, Oct. 2000.

[35] A. Jadbabaie, J. Lin, and A.S. Morse. Coordination of groups of mobile au-

tonomous agents using nearest neighbor rules. IEEE Transactions on Automatic

Control, 48(6), June 2003.

125

[36] H.B. Keller. Numerical methods for two-point boundary value Problems. Blais-

dell Publishing Company, Waltham, Massachusetts, 1968.

[37] J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Proceedings

of IEEE Int’l Conference on Neural Networks, volume IV, pages 1942–1948,

Piscataway, NJ, 1995.

[38] Y. Ketema and G. Balas. Agent-localized conditions for formation maintenance.

In Proceeding of the 42nd IEEE Conference on Decision and Control, pages

1012–1016, Maui, Hawaii USA, December 2003.

[39] H.K. Khalil. Nonlinear Systems. Prentice Hall, New jersey, 2002.

[40] E.M. Khazen. Searching for optimal trajectory with learning. IEEE Transaction

on Systems, Man, and Cybernetics - Part A: Systems and Humans, 31(6), 2001.

[41] D. Kincaid and W. Cheney. Numerical Analysis. Brooks/Cole Publishing Com-

pany, Pacific Grove, California, 1991.

[42] R. Kress. Numerical Analysis. Springer-Verlag New York Inc, New York, 1998.

[43] R. Kurazume and S. Hirose. Study on cooperative positioning system: optimum

moving strategies for cps-iii. In Proceeding of the 1998 IEEE International

Conference in Robotics and Automation, volume 4, pages 2896–2903, Leuven,

Belgium, May 1998.

[44] R. Kurazume, S. Hirose, S. Nagata, and N. Sashida. Study on cooperative

positioning system(basic principle and measurement experiment). In Proceed-

126

ing of the 1996 IEEE International Conference in Robotics and Automation,

volume 2, pages 1421–1426, Minneapolis, MN, April 1996.

[45] N.E. Leonard and E. Fiorelli. Virtual leaders, artificial potentials and coor-

dinated control of groups. In Proceedings of the 40th IEEE Conference on

Decision and Control, pages 2968–2973, Orlando, Florida, December 2001.

[46] Y. Liu, K.M. Passino, and M. Polycarpou. Stability analysis of one-dimensional

asynchronous swarms. IEEE Transaction on Automatic control, 48(10):1848–

1854, 2003.

[47] D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M. Scokaert. Constrained

model predictive control: stability and optimality. Automatica, 36:789–814,

2000.

[48] R. Murphey and P.M. Pardalos. Cooperative control and optimization. Kluwer

Academic Publishers, 2002.

[49] R.S. Nah, S.R. Vadali, and E. Braden. Fuel-optimal, low-thrust, three-

dimensional earth-mars trajectories. Journal of Guidance, Control, and Dy-

namics, 24(6):1100–1107, Nov.–Dec. 2001.

[50] G.L. Nemhauser. Introduction to dynamic programming. John Wiley and Sons

Inc., New York, 1966.

[51] A. Neumaier. Solving ill-conditioned and singular linear systems: a tutorial on

regularization. SIAM Review, 40(3):636–666, Sep. 1998.

127

[52] P. Ögren, E. Fiorelli, and N.E. Leonard. Cooperative control of mobile sensor

networks: Adaptive gradient climbing in a distributed environment. submitted

to IEEE Transactions on Automatic Control.

[53] P. Ögren, E. Fiorelli, and N.E. Leonard. Formation with a mission: Stable

coordination of vehicle group maneuvers. In Proceedings Fifteenth International

Symposium on Mathematical Theory of Networks and Systems, Notre Dame, IL,

August 2002.

[54] J.K. Parrish and W.M. Hammer. Animal groups in three dimensions. Cam-

bridge University Press, Cambridge, U.K, 1997.

[55] K. Passino, M. Polycarpou, D. Jacques, M. Pachter, Y. Liu, Y. Yang, M. Flint,

and M. Baum. Cooperative control for autonomous air vehicles. In R. Murphey

and P.M. Pardalos, editors, Cooperative control and optimization, pages 233–

272. Kluwer Academic Publishers, 2002.

[56] J.M. Pasteels and J-L. Deneubourg. From individual to collective behavior in

social insects. Les Treilles Workshop, Basel, Boston, 1987.

[57] D. G. Rajnarayan and D. Chose. Multiple agent team theoretic decision-making

for searching unknown environment. In Proceeding of the 42nd IEEE Conference

on Decision and Control, pages 2543–2548, Maui, Hawaii USA, December 2003.

[58] S.I. Roumeliotis and G.A. Bekey. Distributed multi-robot localization. IEEE

Transactions on Robotics and Automation, 18(5):781–795, 2002.

128

[59] H. Seywald. Trajectory optimization based on differential inclusion. Journal of

Guidance, Control and Dynamics, 17(3):480–487, May–Jun. 1994.

[60] C. Shao and D. Hristu-Varsakelis. Biologically inspired algorithms for optimal

control. Technical Report TR2004-29, Institute for Systems Research, Univer-

sity of Maryland, College Park, MD 20742, 2004.

[61] C. Shao and D. Hristu-Varsakelis. Biologically-inspired optimal control via

intermittent cooperation. In Proceedings of the 24th American Control Confer-

ence, pages 1060–1065, Portland, OR, June 2005.

[62] H. Sussmann and J.C. Willems. 300 years of optimal control: from the brachys-

tochrone to the maximum principle. IEEE Control Systems Magazine, 17(3):32–

44, June 1997.

[63] S.R. Vadali and R. Nah. Fuel-optimal planar earth-mars trajectories using

low-thrust exhaust-modulated propulsion. Journal of Guidance, Control, and

Dynamics, 23(3):476–482, May–Jun. 2000.

[64] T. Vicsek, A. Czirok, E.B. Jacob, I. Cohen, and O. Schochet. Novel type of

phase transitions in a system of self-driven particles. Physical Review Letters,

75:1226–1229, 1995.

[65] I.A. Wagner, M. Lindenbaum, and A.M. Bruckstein. Distributed covering by

ant-robots using evaporating traces. IEEE Transactions on Robotics and Au-

tomation, 15(5):918–933, 1999.

129

[66] D.J. Wilde. Optimum seeking methods. Prentice-Hall, Englewood Cliffs, N.J.,

1964.

[67] H. Yamaguchi. A cooperative hunting behavior by mobile-robot troops. The

International Journal of Robotics Research, 18(8):931–940, September 1999.

[68] H. Yamaguchi and J.W. Burdick. Asymptotic stabilization of multiple non-

holonomic mobile robots forming group formations. In Proceedings of IEEE

International Conference on Robotics and Automation, volume 4, pages 3573–

3580, 1998.

130

