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Chapter 1IntroductionThe focus of this dissertation is on matrix decompositions that use a limited amount ofcomputer memory, thereby allowing problems with a very large number of variables to besolved. Speci�cally, we will focus on two applications areas: optimization (Chapters 2 { 5)and information retrieval (Chapters 6 { 8).The goal in optimization is to �nd the minimum of a real-valued function of n variables.Most methods for solving minimization problems fall into the category of (iterative) quasi-Newton methods. At each iteration of a quasi-Newton method, we generate a search directionusing the gradient and an approximation to the Hessian (or its inverse), choose a step lengthalong the search direction, compute the next iterate and gradient, and choose a new Hessianapproximation. Di�erent choices for the Hessian approximation yield di�erent methods.We are particularly interested in choices for the approximate Hessian that do not explicitlystore a dense matrix. Many methods are able to construct a Hessian approximation usingonly a few vectors - these methods are loosely grouped under the title of limited-memoryquasi-Newton methods. Chapter 2 reviews both full- and limited-memory quasi-Newtonmethods.In Chapter 3, we present a new general algebraic form for the Hessian approximationin quasi-Newton methods. The general algebraic form incorporates both full- and limited-memory methods. The main result speci�es which methods �tting this algebraic form willterminate within n iterations on an n-dimensional strictly quadratic function (assumingthe line search to determine the step length is exact). This result generalizes and extendsexisting results about quadratic termination. One consequence of this result is that we nowhave quadratic termination results for limited-memory Broyden Family methods. BroydenFamily methods are the most popular methods for solving small optimization problems. Onemember of the Broyden Family, BFGS, has a limited-memory analog (L-BFGS) which is verypopular for solving large optimization problems. L-BFGS is known to have the quadratictermination property, but nothing was known about the other limited-memory BroydenFamily methods. Our result shows that, in fact, BFGS is the only Broyden Family methodto have a limited-memory analog with the quadratic termination property. Furthermore, wecan derive new variations to L-BFGS which retain the quadratic termination property.Chapter 4 focuses on a particular aspect of full-memory Broyden Class methods. We1



show that if we skip p updates to the Hessian approximation in a full-memory BroydenFamily method (assuming the line search to determine the step length is exact), then thealgorithm will terminate in no more than n + p iterations on an n-dimensional strictlyquadratic function.Chapter 5 describes some new variations on the L-BFGS method and tests them onoptimization problems from a standard problem collection. We will see that these variationshave promise.In Chapter 6 we explore a matrix approximation method that we call the semi-discretedecomposition (SDD). The SDD approximates an m�n matrix via a sum of rank-1 matricesof the form dxyT where d is a positive real scalar, x is anm-vector whose entries are restrictedto the set f�1; 0; 1g and y is an n vector whose entries are also restricted to the set f�1; 0; 1g.We describe the SDD and how to construct it. We present new results which show that theapproximation converges linearly to the true matrix, and we test methods for constructingthe approximation.In Chapter 7 we digress to describe the vector space method for information retrieval.In information retrieval, we wish to match a query to relevant documents in a collection.The vector space method represents the document collection as a matrix, called the term-document matrix, and the query as a vector. The (i; j)th entry of the term-documentmatrix is nonzero only if term i appears in document j. The exact value of the entry canbe determined via numerous di�erent schemes that are detailed in the chapter, but thinkof the value as a measurement of importance. Similarly, the ith entry of the query vectoris a measurement of the ith term's importance to the query and is nonzero only if the ithterm appears in the query. The jth column of the term-document matrix represents the jthdocument, and the score of that document for a given query is determined by computingthe inner product of the document vector and the query vector. The documents can then beranked by their inner products with the query. We describe this in more detail and surveyrecent improvements on this model in the chapter.One major improvement on the vector space method is Latent Semantic Indexing (LSI).LSI is special because it has the ability to automatically recognize inter-word relationships InChapter 8, we describe LSI in detail and show how the SDD can be used to drastically improveLSI with respect to storage requirements and time to perform a query. The main idea behindLSI is the replacement of the term-document matrix used in the vector space model with alow-rank approximation generated via the singular value decomposition (SVD). The maindi�culty in this approach is that even a low-rank SVD requires substantially more storagethan the original term-document matrix (which is sparse). Replacing the SVD with the SDDreduces the storage requirements substantially; in fact, the SDD approximation requires lessstorage than the original term-document matrix. The time for the query computation is alsoreduced. We also show how the SDD approximation can be updated in the event that newdocuments are added. 2



Chapter 2Quasi-Newton Methods for OptimizationThe next four chapters consist of material taken (sometimes verbatim) from Kolda, O'Learyand Nazareth [40].2.1 IntroductionThe problem we wish to solve in optimization is the following:minx2<n f(x);where the function f maps<n to <. We will assume that f is twice continuously di�erentiableand let g and G denote its gradient and Hessian respectively. The solution, x�, is called theminimizer, and f(x�) is called the minimum. Speci�cally, we are looking for an x� such thatf(x�) � f(x) for all x in a neighborhood of x�, in other words, for a local minimizer.We will focus on quasi-Newton iterative methods for the solution of this problem, andmore precisely, we are interested in techniques that are computationally feasible for largeproblems. Figure 2.1 outlines a general quasi-Newton method. Here xk denotes the kthiterate, gk � g(xk), and Hk is the n� n quasi-Newton matrix.At each iteration of a quasi-Newton method we model the function using a quadraticf(xk + d) � f(xk) + dTgk + 12dTH�1k d � �k(d): (2.1)The quadratic �k is minimized when its gradient with respect to d is zero, that is,gk +H�1k d = 0;and Hk is positive de�nite1. In that case, we can solve for the optimal d, denoted by dk:dk = �Hkgk:1Hk may not always be chosen to be positive de�nite, but here we are just establishing the frameworkfor the general method. 3



1. Let x0 be the starting point. Compute g0.2. Let H0 be an n� n positive de�nite matrix.3. k  0.4. Until convergence do:(a) Compute dk = �Hkgk.(b) Choose steplength �k > 0.(c) Compute xk+1 = xk + �kdk.(d) Compute gk+1.(e) Choose quasi-Newton matrix Hk+1.(f) k  k + 1.5. End do.Figure 2.1: Quasi-Newton MethodAlthough dk is the minimizer of �k, (xk + dk) is not necessarily a minimizer of f in thedirection dk, so we digress for a moment to discuss possible choices for the steplength, �k.There are three ways we can choose �k:1. We say a method is perfect if we always choose � so thatf(xk + �kdk) � f(xk + �dk); for all � > 0:Performing an exact line search at each iteration is generally too expensive to do inpractice; however, perfect methods are interesting from a theoretical point of view.2. We call a method a direct prediction method if we always choose �k = 1. Directprediction methods can work well locally, but often cause problems if the initial startingpoint is not su�ciently close to the minimizer.3. Otherwise we say the method uses an inexact line search. Here, we will accept apositive steplength � if it satis�es the Wolfe conditions2:f(x+ �d) � f(x) + !1 � g(x)Td; (2.2)g(x+ �d)T d � !2 g(x)Td; (2.3)2These are also sometimes referred to as the Goldstein-Armijo conditions.4



where 0 < !1 < !2 < 1. The �rst condition guarantees su�cient decrease in f , andthe second condition safeguards against steplengths being too small. If dk is a descentdirection, then there exists an �k satisfying the Wolfe conditions; furthermore, if wealways choose a descent direction and a steplength satisfying the Wolfe conditions, thenwe are guaranteed global convergence (assuming f is bounded below and g is Lipschitzcontinuous) [19]. In our experiments, we replace (2.3) with a slightly stronger curvaturecondition: j g(x+ �d)Td j � !2 j g(x)Td j: (2.4)Our theory will focus primarily on perfect methods but our experiments will use an inexactline search (see Chapter 5 for further details).Note that there are two choices to make at each iteration: steplength and quasi-Newtonmatrix. We have already discussed some possible ways to choose the steplength. Thisresearch focuses on the choice of the quasi-Newton matrix. For the remainder of this chapterwe will discuss existing quasi-Newton methods and their advantages and disadvantages. Inthe next chapter, we will present a result that generalizes some of the results seen here.Of special interest to us is the performance of these methods on strictly convex quadraticfunctions.2.2 Newton's MethodNewton's method is the basis for quasi-Newton methods, so it is logical to discuss thismethod �rst. Here we choose Hk to be [G(xk)]�1, so the model �k is the 2nd order Taylorexpansion of f about xk. Newton's method will �nd the exact minimizer of a strictly convexquadratic function in only one iteration.If, for example, we use a backtracking line search strategy which obeys the Wolfe condi-tions (2.2) and (2.3) with !1 < 12 , and always try a step length of one �rst, then Newton'smethod is globally convergent3 and the rate of convergence is quadratic [19]. We must checkto be sure that Newton's method always produces a descent direction.There are also some computational disadvantages for Newton's Method. At each itera-tion, we must compute the Hessian of f and solve the equationG(xk) d = �gk: (2.5)The Hessian may not be analytically available, and even if it is, solving the linear equationis expensive unless G(xk) has special structure. Furthermore, we are required to store then� n matrix G(xk).The disadvantages of Newton's method make it impractical for large scale optimization.This research will focus on using other matrices in place of G(xk), but the reader shouldalso be aware of truncated-Newton methods that solve the Newton equation (2.5) using an3By globally convergent, we mean that the method converges to some local minimizer from any startingpoint whenever f is su�ciently smooth and bounded below.5



iterative method and �nite-di�erence approximations to approximate the action of G(xk);see O'Leary [50] or Dembo and Steihaug [18] for more information on this approach.2.3 Steepest DescentCompared to Newton's method, the method of steepest descent is at the opposite end of thespectrum. As its name implies, at each iteration, we take a step in the direction of steepestdescent, that is, �gk. This corresponds to choosing Hk as the identity matrix.Computationally, this method is attractive because each iteration only requires the com-putation of the gradient and the calculation of the steplength. Although the work periteration is cheap, it requires a large number of iterations to converge to the true solution.The rate of convergence when using an inexact line search is linear, as compared to quadraticfor Newton's method [19]. Furthermore, on a strictly convex quadratic function, the methodmay never �nd the exact minimizer [19].In the next section we will discuss a method that has approximately the same work periteration as steepest descent but performs better.2.4 Conjugate GradientsThe method of conjugate gradients [35] for minimization is described in Section 8.6 of Lu-enberger [42].4 In the preconditioned Fletcher-Reeves [26] version with preconditioner H0,the search direction dk+1 can be expressed asdk+1 = � I � dkgTkgTk�1gk�1!H0gk:Conjugate gradients terminates in no more than n iterations on a strictly convex quadraticfunction [30, 35, 42]. Furthermore, the method is globally convergent if every step satis�esthe strong Wolfe conditions (2.2) and (2.4) with 0 < !1 < !2 < 12. [1]2.5 Broyden FamilyThe Broyden Family methods [8] use an approximation to the inverse Hessian that is updatedvia a rank-1 or rank-2 symmetric update at each iteration. The update is of the formHk+1 = �HBFGSk+1 + (1 � �)HDFPk+1 ; � 2 <:The BFGS [8, 29, 23, 60] and DFP [16, 25] updates are given byHBFGSk+1 = (I � �kskyTk )Hk(I � �kyksTk ) + �ksksTk ;4The example in Luenberger requires a restart every n iterations, but we are not making that assumption.6



and HDFPk+1 = Hk � HkykyTkHkyTkHkyk + �ksksTk ;where sk � xk+1 � xk;yk � gk+1 � gk;�k � sTk yk:Every Broyden Family member satis�es the secant condition, that is,Hk+1yk = sk; (2.6)and these methods are sometimes referred to as symmetric secant methods [19].Powell [53] showed that the perfect DFP method has a superlinear rate of convergence,and Dixon [20] showed that all perfect Broyden Family methods produce exactly the samesearch directions at each iteration, assuming that the quasi-Newton matrix is always de�ned.Thus, perfect Broyden Family methods have a superlinear rate of convergence as long asthe quasi-Newton matrix is de�ned. Furthermore, perfect Broyden Family methods alwaysterminate in no more than n iterations on a strictly convex quadratic function [54].If we use an inexact line search satisfying the Wolfe conditions with 0 < !1 < !2 < 12 andchoose a step of one whenever possible, then Powell [55] showed that the BFGS method isglobally and superlinearly convergent for any choice of x0 and positive de�nite H0 providedthat f is convex, twice continuously di�erentiable and the set fx : f(x) � f(x0)g is bounded.These results were later extended to Broyden Family members with � 2 (0; 1] [11]. It is stillan open question whether or not DFP (� = 0) converges superlinearly with an inexactlinesearch [48].2.6 Limited-Memory Broyden FamilyAt each iteration in a Broyden Family method, we have an update of the formHk+1 = U(Hk; sk; yk):This establishes a recurrence relation:Hk+1 = U(Hk; sk; yk)= U(U(Hk�1; sk�1; yk�1); sk; yk)= U(U(� � �U(Hk�m+1; sk�m+1; yk�m+1) � � � ; sk�1; yk�1); sk; yk):If we know Hk�m+1 and the m pairs (sk�m+1; ym�k+1) through (sk; yk) we can reconstructHk+1. We make this a limited-memory method by replacing Hk�m+1 with H0 which is a7



positive de�nite matrix that requires little storage; for example, the identity matrix. Thus,the update is given byHk+1 = U(U(� � �U(H0; sk�m+1; yk�m+1) � � � ; sk�1; yk�1); sk; yk):The limited-memory BFGS (L-BFGS) update has a very compact form [47]. It can bewritten as Hk+1 = V Tk�mk+1;kH0Vk�mk+1;k + kXi=k�mk+1V Ti+1;k sisTisTi yiVi+1;k; (2.7)where mk = minfk + 1;mg and Vik = kYj=i I � yisTisTi yi! :This representation requires only O(mn) storage and the search direction can be computedimplicitly in only O(mn) time [47]. Furthermore, L-BFGS terminates in no more than niterations on a strictly convex quadratic function [47] and has been shown to be globally andlinearly convergent on convex problems for any starting point [41].The other Broyden methods do not reduce to such a nice form in their limited-memoryversions [12] and will be discussed in the next chapter.
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Chapter 3Quadratic Termination Properties ofLimited-Memory Quasi-Newton Methods3.1 A General Form for Limited-Memory Quasi-NewtonUpdatesUsing the notation developed in the previous chapter, we will present a general resultthat characterizes perfect quasi-Newton methods that terminate in n iterations on an n-dimensional strictly convex quadratic. We restrict ourselves to methods with an update ofthe form Hk+1 = 
kP Tk H0Qk + mkXi=1wikzTik: (3.1)Here,1. H0 is an n� n symmetric positive de�nite matrix that remains constant for all k, and
k is a nonzero scalar that iteratively rescales H0.2. Pk is an n� n matrix that is the product of projection matrices of the formI � uvTuTv ; (3.2)where u 2 spanfy0; : : : ; ykg and v 2 spanfs0; : : : ; sk+1g1, and Qk is an n � n matrixthat is the product of projection matrices of the same form where u is any n-vectorand v 2 spanfs0; : : : ; skg,3. mk is a nonnegative integer, wik (i = 1; 2; : : : ;mk) is any n-vector, and zik (i =1; 2; : : : ;mk) is any vector in spanfs0; : : : ; skg.1Although the vector sk+1 has not yet been explicitly calculated, it may be available implicitly as we willshow for the limited-memory DFP in the proof of Proposition 3.1.9



We refer to this as the general form. Many known quasi-Newton methods have updatesthat can be expressed in the general form (3.1). We do not assume that these quasi-Newtonmethods satisfy the secant condition (2.6), nor that Hk+1 is positive de�nite and symmetric.Symmetric positive de�nite updates are desirable since this guarantees that the quasi-Newtonmethod produces descent directions. Note that if the update is not positive de�nite, we mayproduce a dk such that dTk gk > 0 in which case we choose �k over all negative � rather thanall positive �.3.1.1 Steepest DescentThe method of steepest descent (see Section 2.3) has an update that can be expressed in thegeneral form (3.1). For each k we de�ne
k = 1; mk = 0; and Pk = Qk = H0 = I: (3.3)Note that neither w nor z vectors is speci�ed since mk = 0.3.1.2 Conjugate GradientsThe (k+1)st update for the conjugate gradient method (see Section 2.4) with preconditionerH0 has an update that can be expressed in the general form (3.1) with
k = 1; mk = 0; Pk = I � yksTksTk yk ; and Qk = I: (3.4)3.1.3 L-BFGSThe L-BFGS update (see Section 2.6) has an update that can be expressed in the generalform (3.1) if at iteration k we choose
k = 1; mk = minfk + 1;mg; (3.5)Pk = Qk = Vk�mk+1;k; andwik = zik = (Vk�mk+i+1;k)T (sk�mk+i)q(sk�mk+i)T (yk�mk+i) :Observe that Pk; Qk and zik (i = 1; : : : ;mk) all obey the constraints imposed on their con-struction.3.1.4 Limited-Memory DFPWe will de�ne limited-memoryDFP (L-DFP) using the framework established in Section 2.6.Let m � 1 and let mk = minfk + 1;mg. In order to de�ne the L-DFP update we need to10



create a sequence of auxiliary matrices for i = 0; : : : ;mk. LetĤ(0)k+1 = H0; andĤ(i)k+1 = UDFP(Ĥ(i�1)k+1 ; sk�mk+i; yk�mk+i);where UDFP(H; s; y) = H � HyyTHyTHy + ssTsTy :The matrix Ĥ(mk)k+1 is the result of applying the DFP update mk times to the matrix H0 withthe mk most recent (s; y) pairs. Thus, the (k + 1)st L-DFP matrix is given byHk+1 = Ĥ(mk)k+1 :To simplify our description, note that Ĥ(i)k+1 can be rewritten asĤ(i)k+1 = 0@I � Ĥ(i�1)k+1 yk�mk+iyTk�mk+iyTk�mk+iĤ(i�1)k+1 yk�mk+i1A Ĥ(i�1)k+1 + sk�mk+isTk�mk+isTk�mk+iyk�mk+i= �V̂ (i)0k �T H0 + iXj=1 �V̂ (i)jk �T sk�mk+jsTk�mk+jsTk�mk+jyk�mk+j ;for i � 1 where V̂ (i)jk = iYl=j+1 264I � yk�mk+l �H(l�1)k+1 yk�mk+l�TyTk�mk+lH(l�1)k+1 yk�mk+l 375 :Note that we de�ne the product to be taken from left to right, that is,kYi=jBj = ( Bj �Bj+1 � � �Bk if j � k;I otherwise.Thus Hk+1 can be written asHk+1 = V T0kH0 + mkXi=1  V Tik sk�mk+isTk�mk+isTk�mk+iyk�mk+i! ; (3.6)where Vik = mkYj=i+1 264I � yk�mk+j �Ĥ(j�1)k+1 yk�mk+j�TyTk�mk+jĤ(j�1)k+1 yk�mk+j 375 :Equation (3.6) �ts the general form (3.1) with the following choices:
k = 1; Pk = V0k; Qk = I; (3.7)wik = V Tik sk�mk+i=(sTk�mk+iyk�mk+i); and zik = sk�mk+i:11



Except for the choice of Pk, it is trivial to verify that the choices satisfy the general form (3.1).To prove that Pk satis�es the requirements, we need to showĤ(i�1)k+1 yk�mk+i 2 spanfs0; : : : ; sk+1g; for i = 1; : : : ;mk and all k: (3.8)Proposition 3.1 For limited-memory DFP, the following three conditions hold for eachvalue of k: Ĥ(i�1)k+1 yk�mk+i 2 spanfs0; : : : ; skg for i = 1; : : : ;mk � 1 and (3.9)Ĥ(i�1)k+1 yk�mk+i 2 spanfs0; : : : ; sk;H0gk+1g for i = mk; and (3.10)spanfH0g0; : : : ;H0gk+1g � spanfs0; : : : ; sk+1g: (3.11)Proof. We will prove this via induction. Suppose k = 0. Then m0 = 1. We haveĤ(0)k+1yk = H0y0 = H0g1 �H0g0 2 spanfs0;H0g1g:(Recall that spanfs0g is trivially equal to spanfH0g0g.) Furthermore,s1 = ��1H1g1= ��1 "H0g1 � yT0H0g1yT0H0y0 (H0g1 �H0g0) + sT0 g1yT0 s0 s0# :So we can conclude, 1� yT0H0g1yT0H0y0!H0g1 = � " 1�1 s1 + yT0H0g1yT0H0y0H0g0 + sT0 g1yT0 s0s0# :Hence, H0g1 2 spanfs0; s1g, and so the base case holds.Assume thatĤ(i�1)k yk�1�mk�1+i 2 spanfs0; : : : ; sk�1g for i = 1; : : : ;mk�1 � 1; andĤ(i�1)k yk�1�mk�1+i 2 spanfs0; : : : ; sk�1;H0gkg for i = mk�1; andspanfH0g0; : : : ;H0gkg � spanfs0; : : : ; skg:Using the induction assumption, we will show that (3.9) { (3.11) holds for (k+1). We show(3.9) for i = 1; : : : ;mk � 1. For i = 1 (assume mk > i),Ĥ(0)k+1yk�mk+1 = H0yk�mk+1 = H0gk�mk+2 �H0gk�mk+1:Using the induction hypotheses, we get thatĤ(0)k+1yk�mk+1 2 spanfs0; : : : ; skg:Assume that Ĥ(j)k+1yk�mk+j+1 2 spanfs0; : : : ; skg (3.12)12



for j between 1 and i� 2, i � mk � 2. Then,Ĥ(i�1)k+1 yk�mk+i = �V̂ (i�1)0k �T H0yk�mk+i+ i�1Xj=1 sTk�mk+j�1yk�mk+isTk�mk+j�1yk�mk+j�1 �V̂ (i�1)jk �T sk�mk+j�1:For values of i � mk � 1, �V̂ (i�1)jk �T maps any vector v intospanfv; Ĥ(0)k+1yk�mk+1; : : : ; Ĥ(i�2)k+1 yk�2g:and so Ĥ(i�1)k+1 yk�mk+i is inspanfH0yk�mk+i; Ĥ(0)k+1yk�mk+1; : : : ; Ĥ(i�2)k+1 yk�2; sk�mk+1; : : : ; sk�2g:Using the induction hypothesis and (3.12), we getĤ(i�1)k+1 yk�mk+i 2 spanfs0; : : : ; skg;and we can conclude that (3.9) is true for i = 1; : : : ;mk � 1 in the (k + 1)st case. If i = mk,then Ĥ(mk�1)k+1 yk 2 spanfH0yk; Ĥ(0)k+1yk�mk+1; : : : ; Ĥ(mk�2)k+1 yk�1; sk�mk+1; : : : ; sk�1g;so Ĥ(mk�1)k+1 yk 2 spanfs0; : : : ; sk;H0gk+1g:Hence (3.10) is true for (k + 1).Now, consider sk+1 = ��k+1Hk+1gk+1= V T0kH0gk+1 + mkXi=1 sTk�mk+igk+1sTk�mk+iyk�mk+iV Tik sk�mk+i:Using the structure of Vjk and (3.9) we see thatH0gk+1 2 spanfs0; : : : ; sk+1g:Hence, (3.11) also holds for (k + 1). 2 13



3.1.5 Limited-Memory Broyden FamilyThe Broyden Family is described in Section 2.5. The parameter � is usually restrictedto values that are guaranteed to produce a positive de�nite update, although recent workwith SR1, a Broyden Family method, by Khalfan, Byrd and Schnabel [36] may change thispractice. No restriction on � is necessary for the development of our theory. The BroydenFamily update can be expressed asHk+1 = Hk + sksTksTk yk � HkykyTkHkyTkHkyk+ � yTkHkyk  sksTk yk � HkykyTkHkyk! sksTk yk � HkykyTkHkyk!T :We sketch the explanation of how the full-memory version has an update that can beexpressed in the general form (3.1). The limited-memory case is similar. We can rewrite theBroyden Family update as follows:Hk+1 = Hk + (�� 1)HkykyTkyTkHkykHk � � skyTksTk ykHk + sksTksTk yk+ � yTkHkyk � sksTk(sTk yk)2 � � HkyksTksTk yk= 24I � �(1 � �)sTk yk �Hkyk + � yTkHkyk � sk� yTkyTkHkyk � sTk yk 35Hk+ " 1 + � yTkHkyksTk yk ! sk � �Hkyk# sTksTk yk :Hence, Hk+1 = V0kH0 + k+1Xi=1 wikzTik;where Vik = Qkj=i �I � ((1��)sTj yj �Hjyj+� yTj Hjyj �sj)yTjyTj Hjyj�sTj yj � ;wik = Vik ��1 + � yTi�1Hi�1yi�1sTi�1yi�1 si�1�� �Hi�1yi�1� ; and zik = sTi�1sTi�1yi�1 :It is left to the reader to show that Hkyk is in spanfs0; : : : ; sk+1g, and thus the BroydenFamily updates �t the general form (3.1).3.2 Termination of Limited-Memory MethodsIn this section we show that methods �tting the general form (3.1) produce conjugate searchdirections (Theorem 3.1) and terminate in n iterations (Corollary 3.1) on a strictly convex14



n-dimensional quadratic if and only if Pk maps spanfy0; : : : ; ykg into spanfy0; : : : ; yk�1g foreach k = 1; 2; : : : ; n. Furthermore, this condition on Pk is satis�ed only if yk is used in itsformation (Corollary 3.2).Theorem 3.1 Suppose that we apply a quasi-Newton method (Figure 2.1) with an updatethat can be expressed in the general form (3.1) to minimize an n-dimensional strictly convexquadratic function f(x) = 12xTAx� bTx:Then for each k, we havegTk+1sj = 0; for all j = 0; 1; : : : ; k; (3.13)sTk+1Asj = 0; for all j = 0; 1; : : : ; k; and (3.14)spanfs0; : : : ; sk+1g = spanfH0g0; : : : ;H0gk+1g; (3.15)if and only ifPjyi 2 spanfy0; : : : ; yj�1g; for all i = 0; 1; : : : ; j; j = 0; 1; : : : ; k: (3.16)Proof. (() Assume that (3.16) holds. We will prove (3.13){(3.15) by induction. Since theline searches are exact, g1 is orthogonal to s0. Using the fact that P0y0 = 0 from (3.16), andthe fact that zi0 2 spanfs0g implies gT1 zi0 = 0, i = 1; : : : ;mk, we see that s1 is conjugate tos0 since sT1As0 = �1dT1 y0= ��1gT1HT1 y0= ��1gT1  
0QT0H0P0 + m0Xi=1 zi0wTi0! y0= ��1  
0gT1 QT0H0P0y0 + m0Xi=1 gT1 zi0wTi0y0!= 0:Lastly, spanfs0g = spanfH0g0g, and so the base case is established.We will assume that claims (3.13){(3.15) hold for k = 0; 1; : : : ; k̂� 1 and prove that theyalso hold for k = k̂.The vector gk̂+1 is orthogonal to sk̂ since the line search is exact. Using the inductionhypotheses that gk̂ is orthogonal to fs0; : : : ; sk̂�1g and sk̂ is conjugate to fs0; : : : ; sk̂�1g, wesee that for j < k̂, gT̂k+1sj = (gk̂ + yk̂)T sj = (gk̂ +Ask̂)T sj = 0:Hence, (3.13) holds for k = k̂.To prove (3.14), we note thatsT̂k+1Asj = ��k̂+1gT̂k+1H T̂k+1yj;15



so it is su�cient to prove that gT̂k+1H T̂k+1yj = 0 for j = 0; 1; : : : ; k̂. We will use the followingfacts:1. gT̂k+1QT̂k = gT̂k+1 since the v in each of the projections used to formQk̂ is in spanfs0; : : : ; sk̂gand gk̂+1 is orthogonal to that span.2. gT̂k+1zik̂ = 0 for i = 1; : : : ;mk̂ since each zik̂ is in spanfs0; : : : ; sk̂g and gk̂+1 is orthogonalto that span.3. Since we are assuming that (3.16) holds true, for each j = 0; 1; : : : ; k̂ there exist�0; : : : ; �k̂�1 such that Pk̂yj can be expressed as Pk̂�1i=0 �iyi.4. For i = 0; 1; : : : ; k̂ � 1, gk̂+1 is orthogonal to H0yi because gk̂+1 is orthogonal tospanfs0; : : : ; sk̂g and H0yi 2 spanfs0; : : : ; sk̂g from (3.15).Thus, gT̂k+1H T̂k+1yj = gT̂k+1  
k̂QT̂kH0Pk̂ + mk̂Xi=1 zik̂wTik̂! yj= 
k̂gT̂k+1QT̂kH0Pk̂yj + mk̂Xi=1 gT̂k+1zik̂wTik̂yj= 
k̂gT̂k+1H0Pk̂yj= 
k̂gT̂k+1H0 0@k̂�1Xi=1 �iyi1A= 
k̂ k̂�1Xi=1 �igT̂k+1H0yi= 0:Thus, (3.14) holds for k = k̂.Lastly, using (1) and (2) from above,sk̂+1 = ��k̂+1Hk̂+1gk̂+1= ��k̂+1  
k̂P T̂k H0Qk̂gk̂+1 + mk̂Xi=1wik̂zTik̂gk̂+1!= ��k̂+1
k̂P T̂k H0gk̂+1:Since P T̂k maps any vector v into spanfv; s0; : : : ; sk̂+1g by construction, there exist �0; : : : ; �k̂+1such that sk̂+1 = ��k̂+1
k̂ 0@H0gk̂+1 + k̂+1Xi=0 �isi1A :16



Hence, H0gk̂+1 2 spanfs0; : : : ; sk̂+1g;so spanfH0g0; : : : ;H0gk̂+1g � spanfs0; : : : ; sk̂+1g:To show equality of the sets, we will show thatH0gk̂+1 is linearly independent of fH0g0; : : : ;H0gk̂g.(We already know that the vectors H0g0; : : : ;H0gk̂ are linearly independent since they spanthe same space as the linearly independent set fs0; : : : ; sk̂g.) Suppose that H0gk̂+1 is notlinearly independent. Then there exist �0; : : : ; �k̂, not all zero, such thatH0gk̂+1 = k̂Xi=0 �iH0gi:Recall that gk̂+1 is orthogonal to fs0; : : : ; sk̂g. By our induction hypothesis, this implies thatgk̂+1 is also orthogonal to fH0g0; : : : ;H0gk̂g. Thus for any j between 0 and k̂,0 = gT̂k+1H0gj = 0@ k̂Xi=0 �iH0gi1AT gj = k̂Xi=0 �igTi H0gj = �jgTj H0gj:Since H0 is positive de�nite and gj is nonzero, we conclude that �j must be zero. Since this istrue for every j between zero and k, we have a contradiction. Thus, the set fH0g0; : : : ;H0gk̂+1gis linearly independent. Hence, (3.15) holds for k = k̂.()) Assume that (3.13){(3.15) hold for all k such that gk+1 6= 0 but that (3.16) does nothold; i.e., there exist j and k such that gk+1 6= 0, j is between 0 and k, andPkyj 62 spanfy0; : : : ; yk�1g (3.17)This will lead to a contradiction. By construction of Pk, there exist �0; : : : ; �k such thatPkyj = kXi=0 �iyi: (3.18)By assumption (3.17), �k must be nonzero. From (3.14), it follows that gTk+1HTk+1yj = 0.Using facts (1), (2), and (4) from before, (3.15) and (3.18), we get0 = gTk+1HTk+1yj = gTk+1  
kQTkH0Pk + mkXi=1 zikwTik! yj= 
kgTk+1QTkH0Pkyj + mkXi=1 gTk+1zikwTikyj= 
kgTk+1H0Pkyj= 
kgTk+1H0  kXi=0 �iyi!17



= 
k kXi=0 �igTk+1H0yi= 
k�kgTk+1H0yk= 
k�k �gTk+1H0gk+1 � gTk+1H0gk�= 
k�kgTk+1H0gk+1:Thus since neither 
k nor �k is zero, we must havegTk+1H0gk+1 = 0;but this is a contradiction since H0 is positive de�nite and gk+1 was assumed to be nonzero.2 When a method produces conjugate search directions, we can say something about ter-mination.Corollary 3.1 Suppose that the assumptions of Theorem 3.1 hold. Suppose further thatcondition (3.16) holds for all k and that Hjgj 6= 0 whenever gj 6= 0. Then the scheme repro-duces the iterates from the conjugate gradient method with preconditioner H0 and terminatesin no more than n iterations.Proof. Let k be such that g0; : : : ; gk are all nonzero and such that Higi 6= 0 for i = 0; : : : ; k.Since we have a method of the type described in Theorem 3.1 satisfying (3.16), condi-tions (3.13) { (3.15) hold. We claim that the (k + 1)st subspace of search directions,spanfs0; : : : ; skg, is equal to the (k + 1)st Krylov subspace, spanfH0g0; : : : ; (H0A)kH0g0g.From (3.15), we know that spanfs0; : : : ; skg = spanfH0g0; : : : ;H0gkg. We will showvia induction that spanfH0g0; : : : ;H0gkg = spanfH0g0; : : : ; (H0A)kH0g0g. This base case istrivial, so assume thatspanfH0g0; : : : ;H0gig = spanfH0g0; : : : ; (H0A)iH0g0g;for some i < k. Now, gi+1 = Axi+1 � b = A(xi + si)� b = Asi + gi;and from (3.15) and the induction hypothesis,si 2 spanfH0g0; : : : ;H0gig = spanfH0g0; : : : ; (H0A)iH0g0g;which implies that H0Asi 2 spanf(H0A)H0g0; : : : ; (H0A)i+1H0g0g:So, H0gi+1 2 spanfH0g0; : : : ; (H0A)i+1H0g0g:18



Hence, the search directions span the Krylov subspace. Since the search directions areconjugate (3.14) and span the Krylov subspace, the iterates are the same as those producedby conjugate gradients with preconditioner H0.Since we produce the same iterates as the conjugate gradient method and the conjugategradient method is well-known to terminate within n iterations [30, 35, 42], we can concludethat this scheme terminates in at most n iterations. 2Note that we require that Hjgj be nonzero whenever gj is nonzero; this requirement isnecessary since not all the methods produce positive de�nite updates and it is possible toconstruct an update that maps gj to zero. If this were to happen, we would have a breakdownin the method.The next corollary de�nes the role that the latest information (sk and yk) plays in theformation of the kth H-update.Corollary 3.2 Suppose we have a method of the type described in Theorem 3.1 satisfying(3.16). Suppose further that at the kth iteration Pk is composed of p projections of the form in(3.2). Then at least one of the projections must have u =Pki=0 �iyi with �k 6= 0. Furthermore,if Pk is a single projection (p = 1), then v must be of the form v = �ksk + �k+1sk+1 with�k 6= 0.Proof. Consider the case of p = 1. We havePk = I � uvTvTu;where u 2 spanfy0; : : : ; ykg and v 2 spanfs0; : : : ; sk+1g. We will assume thatu = kXi=0 �iyi and v = k+1Xi=0 �isi:for some scalars �i and �i. By (3.16), there exist �0; : : : ; �k�1 such thatPkyk = k�1Xi=0 �iyi:Then yk � vTykvTu u = k�1Xi=0 �iyi;and so vTykvTu u = yk � k�1Xi=0 �iyi: (3.19)From (3.14), the set fs0; : : : skg is conjugate and thus linearly independent. Since we areworking with a quadratic, yi = Asi for all i; and since A is symmetric positive de�nite, the19



set fy0; : : : ; ykg is also linearly independent. So the coe�cient of the yk on the left-hand sideof (3.19) must match that on the right-hand side, thusvTykvTu �k = 1:Hence, �k 6= 0; (3.20)and yk must make a nontrivial contribution to Pk.Next we will show that �0 = �1 = � � � = �k�1 = 0. Assume that j is between 0 and k� 1.Then Pkyj = yj � vTyjvTu u= yj � �Pk+1i=0 �isi�T yjvTu u= yj � Pk+1i=0 �isTi AsjvTu u= yj � �jsTj AsjvTu u:Now sTj Asj is nonzero because A is positive de�nite. If �j is nonzero then the coe�cient ofu is nonzero and so yk must make a nontrivial contribution to Pkyj, implying that Pkyj 62spanfy0; : : : ; yk�1g. This is a contradiction. Hence, �j = 0.To show that �k 6= 0, consider Pkyk. Suppose that �k = 0. ThenvTyk = �k+1yTk sk+1 + �kyTk sk= �k+1sTkAsk+1= 0;and so Pkyk = yk � vTykvTu u = yk:This contradicts Pkyk 2 spanfy0; : : : ; yk�1g, so �k must be nonzero.Now we will discuss the p > 1 case. Label the u-components of the p projections as u1through up. Then Pkyk = yk + pXi=1 
iui;for some scalars 
1 through 
p. Furthermore, each ui can be written as a linear combinationof fy0; y1; : : : ; ykg, so Pkyk = yk + pXi=1 kXj=0 
i�ijyj;20



for some scalars �10 through �pk. SincePkyk 2 spanfy0; : : : ; yk�1g;and yk 62 spanfy0; : : : ; yk�1g;we must have 1 + pXi=1 
i�ik = 0:Thus �ik must be nonzero for some i, and we can conclude that at least one ui must have anontrivial contribution from yk. 23.3 Examples of Methods that Reproduce the CG It-eratesHere are some speci�c examples of methods that �t the general form (3.1), satisfy condi-tion (3.16) of Theorem 3.1, and thus terminate in at most n iterations. The examples inSections 3.3.1 { 3.3.3 are well-known results, but the corollary in Section 3.3.4 is original.3.3.1 Conjugate GradientsThe conjugate gradient method with preconditioner H0 (see (3.4)) satis�es condition (3.16)of Theorem 3.1 since Pkyj =  I � yksTksTk yk! yj = 0 for all j = 0; : : : ; k:3.3.2 L-BFGSLimited-memory BFGS (see (3.5)) satis�es condition (3.16) of Theorem 3.1 sincePkyj = ( 0 for j = k �mk + 1; : : : ; k; andyj for j = 0; : : : ; k �mk:3.3.3 DFPDFP (with full memory), see (3.7), satis�es condition (3.16) of Theorem 3.1. Consider Pkin the full memory case. We havePk = kYi=0 I � yiyiHTiyTi Hiyi! :21



For full-memory DFP, Hiyj = sj for j = 0; : : : ; i � 1. Using this fact, one can easily verifythat Pkyj = 0 for j = 0; : : : ; k. Therefore, full-memory DFP satis�es condition (3.16) ofTheorem 3.1. The same reasoning does not apply to the limited-memory case as we shallshow in Section 3.4.2.3.3.4 Variations on L-BFGSThe next corollary gives some ideas for other methods that are related to L-BFGS andterminate in at most n iterations on strictly convex quadratics.Corollary 3.3 The L-BFGS method with an exact line search will terminate in n itera-tions on an n-dimensional strictly convex quadratic function even if any combination of thefollowing modi�cations is made to the update:1. Vary the limited-memory constant, keeping mk � 1.2. Form the projections used in Vk from the most recent (sk; yk) pair along with any setof m� 1 other pairs from f(s0; y0); : : : ; (sk�1; yk�1)g .3. Form the projections used in Vk from the most recent (sk; yk) pair along with any m�1other linear combinations of pairs from f(s0; y0); : : : ; (sk�1; yk�1)g:4. Iteratively rescale H0.Proof. For each variant, we show that the method has an update that can be expressed inthe general form (3.1) and satis�es condition (3.16) of Theorem 3.1 and hence terminates byCorollary 3.1.1. Let m > 0 be a value that may change from iteration to iteration, and de�neVik = kYj=i I � yjsTjsTj yj! :Choose 
k = 1; mk = minfk + 1;mg;Pk = Qk = Vk�mk+1;k; andwik = zik = (Vk�mk+i+1;k)T (sk�mk+i)q(sk�mk+i)T (yk�mk+i) :These choices �t the general form (3.1). Furthermore,Pkyj = ( 0 if j = k �mk; k �mk + 1; : : : ; k; andyj if j = 0; 1; : : : ; k �mk � 1;so this variation satis�es condition (3.16) of Theorem 3.1.22



2. This is a special case of the next variant.3. At iteration k, let (ŝ(i)k ; ŷ(i)k ) denote the ith (i = 1; : : : ;m � 1) choice of any linearcombination from the span of the setf(s0; y0); : : : ; (sk�1; yk�1)g;and let (ŝ(m)k ; ŷ(m)k ) = (sk; yk). De�neVik = mYj=i0@I � (ŷ(i)k )(ŝ(i)k )T(ŝ(i)k )T (ŷ(i)k )1A :Choose 
k = 1; mk = minfk + 1;mg;Pk = Qk = V1;k; andwik = zik = (Vi+1;k)T (ŝ(i)k )q(ŝ(i)k )T (ŷ(i)k ) :These choices satisfy the general form (3.1). Furthermore,Pkyj = ( 0 if yj = y(i)k for some i; andyj otherwise:Hence, this variation satis�es condition (3.16) of Theorem 3.1.4. Let 
k in be the scaling constant, and choose the other vectors and matrices as inL-BFGS (3.5).Combinations of variants are left to the reader. 2Part 3 of the previous corollary shows that the \accumulated step" method of Gill andMurray [28] terminates on quadratics.Part 4 of the previous corollary shows that scaling does not a�ect termination in L-BFGS.In fact, for any method that has an update that can be expressed in the general form (3.1),it is easy to see that scaling will not a�ect termination on quadratics.3.4 Examples of Methods that Do Not Reproduce theCG IteratesWe will discuss several methods that �t the general form (3.1) but do not satisfy the condi-tions of Theorem 3.1. 23



3.4.1 Steepest DescentSteepest descent, see (3.3), does not satisfy condition (3.16) of Theorem 3.1 and thus doesnot produce conjugate search directions. This fact is well-known; see, e.g., Luenberger [42].3.4.2 Limited-Memory DFPLimited-memory DFP, see (3.7), with m < n does not satisfy the condition on Pk (3.16) forall k, and so the method will not produce conjugate directions. This fact was previouslyunknown.For example, suppose that we have a convex quadratic withA = 264 1 0 00 2 00 0 4 375 ; and b = 264 111 375 :Using a limited-memory constant of m = 1 and exact arithmetic, it can be seen that theiteration does not terminate within the �rst 20 iterations of limited-memory DFP withH0 = I. The MAPLE notebook �le used to compute this example is available on the WorldWide Web [37].Using the above example, we can easily see that no limited-memory Broyden Familymethod except limited-memory BFGS terminates within the �rst n iterations.
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Chapter 4Quadratic Termination of Update-SkippingBroyden Family MethodsThe previous chapter discussed limited-memorymethods that behave like conjugate gradientson n-dimensional strictly convex quadratic functions. In this chapter, we are concerned withmethods that skip some updates. The average computation cost per iteration is reduced, andit can save memory if the quasi-Newton matrix is stored implicitly. We establish conditionsunder which �nite termination is preserved but delayed for the Broyden Family.4.1 Termination when Updates are SkippedIt was shown by Powell [54] that if we skip every other update and take direct prediction steps(i.e. steps of length one) in a Broyden Family method, then the procedure will terminate inno more than 2n + 1 iterations on an n-dimensional strictly convex quadratic function. Analternate proof of this result is given by Nazareth [46].We will prove a related result. Suppose that we are using a perfect Broyden Familymethod on a strictly convex quadratic function and decide to \skip" p updates to H (i.e.choose Hk+1 = Hk on p occasions). Then, the algorithm terminates in no more than n + piterations. In contrast to Powell's result, it does not matter which updates are skipped or ifmultiple updates are skipped in a row.Theorem 4.1 Suppose that a Broyden Family method using exact line searches is appliedto an n-dimensional strictly convex quadratic functionf(x) = 12xTAx� bTx;and p updates are skipped. LetJ(k) = fj � k : the update at iteration j is not skippedg:Then for all k = 0; 1; : : : gTk+1sj = 0; for all j 2 J(k); and (4.1)sTk+1Asj = 0; for all j 2 J(k): (4.2)25



Furthermore, the method terminates in at most n + p iterations at the exact minimizer.Proof. We will use induction on k to show (4.1) andHk+1yj = sj ; for all j 2 J(k): (4.3)Then (4.2) follows easily since for all j 2 J(k),sTk+1Asj = ��k+1gTk+1Hk+1yj= ��k+1gTk+1sj= 0:Let k0 be the least value of k such that J(k) is nonempty; i.e., J(k0) = fk0g. Then gk0+1is orthogonal to sk0 since line searches are exact, and Hk0+1yk0 = sk0 since all members ofthe Broyden Family satisfy the secant condition. Hence, the base case is true. Now assumethat (4.1) and (4.3) hold for all values of k = 0; 1; : : : ; k̂ � 1. We will show that they alsohold for k = k̂.Case I. Suppose that k̂ 62 J(k̂). Then Hk̂+1 = Hk̂ and J(k̂ � 1) = J(k̂), so for anyj 2 J(k̂), gT̂k+1sj = (gk̂ +Ask̂)T sj (4.4)= gT̂k sj + sT̂kAsj= 0;and Hk̂+1yj = Hk̂yj = sj:Case II. Suppose that k̂ 2 J(k̂). Then Hk̂+1 satis�es the secant condition and J(k̂) =J(k̂ � 1) [ fk̂g. Now gk̂+1 is orthogonal to sk since the line searches are exact, and it isorthogonal to the older sj by the argument in (4.4). The secant condition guarantees thatHk̂+1yk̂ = sk̂, and for j 2 J(k̂) but j 6= k̂ we haveHk̂+1yj = Hk̂yj + sk̂sT̂ksT̂k yk̂ yj � Hk̂yk̂yT̂kHk̂yT̂kHk̂yk̂ yj+ � (yT̂kHk̂yk̂) sk̂sT̂k yk̂ � Hk̂yk̂yT̂kHk̂yk̂! sk̂sT̂k yk̂ � Hk̂yk̂yT̂kHk̂yk̂!T yj= sj + sT̂kAsjsT̂k yk̂ sk̂ � Hk̂yk̂yT̂k sjyT̂kHk̂yk̂+ � (yT̂kHk̂yk̂) sk̂sT̂k yk̂ � Hk̂yk̂yT̂kHk̂yk̂! sT̂kAsjsT̂k yk̂ � yT̂k sjyT̂kHk̂yk̂!= sj: 26



In either case, the induction result follows.Suppose that we skip p updates. Then the set J(n+ p � 1) has cardinality n. Withoutloss of generality, assume that the set fsigi2J(n+p�1) has no zero elements. From (4.2), thevectors are linearly independent. By (4.1),gTn+psj = 0; for all j 2 J(n� 1 + p);and so gn+p must be zero. This implies that xn+p is the exact minimizer of f . 24.2 Loss of Termination for Update Skipping with Limited-MemoryUnfortunately, updates that use both limited-memory and repeated update-skipping do notproduce conjugate search directions for n-dimensional strictly convex quadratics, and thetermination property is lost. We will show a simple example, limited-memory BFGS withm = 1, skipping every other update. Note that according to Corollary 3.2, we would still beguaranteed termination if we used the most recent information in each update.Example. Suppose that we have a convex quadratic withA = 264 1 0 00 2 00 0 4 375 ; and b = 264 111 375 :We apply limited-memory BFGS with limited-memory constant m = 1 and H0 = I and skipthe update to H on even iterations. Using exact arithmetic in MAPLE, we observe that theprocess does not terminate even after 100 iterations [37].
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Chapter 5Experimental ResultsThe results of Chapters 3 and 4 lead to a number of ideas for new methods for unconstrainedoptimization. In this chapter, we motivate, develop, and test these ideas. We describe thecollection of test problems in Section 5.2. The test environment is described in Section 5.3.Section 5.4.1 outlines the implementation of the L-BFGS method (our base for all com-parisons) and Sections 5.4.2{5.4.7 describe the variations. Pseudo-code for L-BFGS and itsvariations is given in Appendix B. Complete numerical results, many graphs of the numericalresults, and the original FORTRAN code are available [37].5.1 MotivationSo far we have only given results for convex quadratic functions. While termination onquadratics is beautiful in theory, it does not necessarily yield insight into how these methodswill do in practice.We will not present any new results relating to convergence of these algorithms on generalfunctions; however, many of these can be shown to converge using the convergence analysispresented in Section 7 of [41]. In [41], Liu and Nocedal show that a limited-memory BFGSmethod implemented with a line search that satis�es the strong Wolfe conditions (see Sec-tion 2.1 for a de�nition) is R-linearly convergent on a convex function that satis�es a fewmodest conditions.5.2 Test ProblemsFor our test problems, we used the Constrained and Unconstrained Testing Environment(CUTE) by Bongartz, Conn, Gould and Toint. The package is documented in [7] and can beobtained via the World Wide Web [6] or via ftp [5]. The package contains a large collectionof test problems as well as the interfaces necessary for using the problems. We chose acollection of 22 unconstrained problems. The problems ranged in size from 10 to 10,000variables, but each took L-BFGS with limited-memory constant m = 5 at least 60 iterationsto solve. Table 5.1 enumerates the problems, giving the SIF �le name, the dimension (n),28



No. SIF Name Size Description & Reference1 EXTROSNB 10 Extended Rosenbrock function (nonseparable ver-sion) [64, Problem 10].2 WATSONS 31 Watson problem [43, Problem 20].3 TOINTGOR 50 Toint's operations research problem [63].4 TOINTPSP 50 Toint's PSP operations research problem [63].5 CHNROSNB 50 Chained Rosenbrock function [63].6 ERRINROS 50 Nonlinear problem similar to CHNROSNB [62].7 FLETCHBV 100 Fletcher's boundary value problem [24, Prob-lem 1].8 FLETCHCR 100 Fletcher's chained Rosenbrock function [24, Prob-lem 2].9 PENALTY2 100 Second penalty problem [43, Problem 24].10 GENROSE 500 Generalized Rosenbrock function [44, Problem 5].11 BDQRTIC 1000 Quartic with a banded Hessian with bandwidth=9[14, Problem 61].12 BROYDN7D 1000 Seven diagonal variant of the Broyden tridiagonalsystem with a band away from diagonal [63].13 PENALTY1 1000 First penalty problem [43, Problem 23].14 POWER 1000 Power problem by Oren [52].15 MSQRTALS 1024 The dense matrix square root problem by Nocedaland Liu (case 0)[9, Problem 204].16 MSQRTBLS 1025 The dense matrix square root problem by Nocedaland Liu (case 1)[9, Problem 201].17 CRAGGLVY 5000 Extended Cragg & Levy problem [64, Prob-lem 32].18 NONDQUAR 10000 Nondiagonal quartic test problem [14, Prob-lem 57].19 POWELLSG 10000 Extended Powell singular function [43, Prob-lem 13].20 SINQUAD 10000 Another function with nontrivial groups and rep-etitious elements [31].21 SPMSRTLS 10000 Liu and Nocedal tridiagonal matrix square rootproblem [9, Problem 151].22 TRIDIA 10000 Shanno's TRIDIA quadratic tridiagonal problem[64, Problem 8].Table 5.1: Optimization test problem collection. Each problems was chosen from the CUTEpackage. 29



and a description for each problem. The CUTE package also provides a starting point (x0)for each problem.5.3 Test EnvironmentWe used FORTRAN77 code on an SGI Indigo2 to run the algorithms, with FORTRANBLAS routines from NETLIB. We used the compiler's default optimization level.Figure 2.1 outlines the general quasi-Newton implementation that we followed. For theline search, we use the routines cvsrch and cstep written by Jorge J. Mor�e and DavidThuente from a 1983 version of MINPACK. The line search �nds an � that meets the strongWolfe conditions (2.2) and (2.4). We used !1 = 1:0 � 10�4 and !2 = 0:9. Except for the�rst iteration, we always attempt a step length of 1.0 �rst and only use an alternate value if1.0 does not satisfy the Wolfe conditions. In the �rst iteration, we initially try a step lengthequal to kg0k�1. The remaining line search parameters are detailed in Appendix A.We generate the matrix Hk by either the limited-memory update or one of the variationsdescribed in Section 5.4, storing the matrix implicitly in order to save both memory andcomputation time.We terminate the iterations if any of the following conditions are met at iteration k:1. The inequality kgkk < 1:0� 10�5 �maxf1; kxkkg;is satis�ed,2. the line search fails due to rounding errors, or3. the number of iterations exceeds 3000.We say that the iterates have converged if the �rst condition is satis�ed. Otherwise, themethod has failed.5.4 L-BFGS and Its VariationsWe tried a number of variations to the standard L-BFGS algorithm. L-BFGS and thesevariations are described in this section and summarized in Tables 5.2{5.3.5.4.1 L-BFGS: Algorithm 0The limited-memory BFGS update is given in (2.7) and described fully by Nocedal [47].Our implementation and the following description come essentially from Byrd, Nocedal andSchnabel [12].Let H0 be symmetric and positive de�nite and assume that the mk pairsfsi; yigk�1i=k�mk30



No. Reference Brief Description0 x 5.4.1 L-BFGS with no options.1 x 5.4.2, Variation 1 Allow m to vary iteratively basing thechoice of m of kgk and not allowing m todecrease.2 x 5.4.2, Variation 2 Allow m to vary iteratively basing thechoice of m of kgk and allowing m todecrease.3 x 5.4.2, Variation 3 Allow m to vary iteratively basing thechoice of m of kg=xk and not allowing mto decrease.4 x 5.4.2, Variation 4 Allow m to vary iteratively basing thechoice of m of kg=xk and allowing m todecrease.5 x 5.4.3 Dispose of old information if the steplength is greater than one.6 x 5.4.4, Variation 1 Back-up if the current iteration is odd.7 x 5.4.4, Variation 2 Back-up if the current iteration is even.8 x 5.4.4, Variation 3 Back-up if a step length of 1.0 was used inthe last iteration.9 x 5.4.4, Variation 4 Back-up if kgkk > kgk�1k.10 x 5.4.4, Variation 3* Back-up if a step length of 1.0 was used inthe last iteration and we did not back-upon the last iteration.11 x 5.4.4, Variation 4* Back-up if kgkk > kgk�1k and we did notback-up on the last iteration.Table 5.2: Description of Numerical Optimization Algorithms (Part I)
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No. Reference Brief Description12 x 5.4.5, Variation 1 Merge if neither of the two vectors to bemerged is itself the result of a merge andthe 2nd and 3rd most recent steps takenwere of length 1.0.13 x 5.4.5, Variation 2 Merge if we did not do a merge the lastiteration and there are at least two old svectors to merge.14 x 5.4.6, Variation 1 Skip update on odd iterations.15 x 5.4.6, Variation 2 Skip update on even iterations.16 x 5.4.6, Variation 3 Skip update if kgk+1k > kgkk.17 Alg. 5 & Alg. 8 Dispose of old information and back-upon the next iteration if the step length isgreater than one.18 Alg. 13 & Alg. 1 Merge if we did not do a merge the lastiteration and there are at least two old svectors to merge, and allow m to vary iter-atively basing the choice of m of kgk andnot allowing m to decrease.19 Alg. 13 & Alg. 3 Merge if we did not do a merge the lastiteration and there are at least two old svectors to merge, and allow m to vary it-eratively basing the choice of m of kg=xkand not allowing m to decrease.20 Alg. 13 & Alg. 2 Merge if we did not do a merge the lastiteration and there are at least two old svectors to merge, and allow m to vary iter-atively basing the choice of m of kgk andallowing m to decrease.21 Alg. 13 & Alg. 4 Merge if we did not do a merge the lastiteration and there are at least two old svectors to merge, and allow m to vary it-eratively basing the choice of m of kg=xkand allowing m to decrease.Table 5.3: Description of Numerical Optimization Algorithms (Part II)32



each satisfy sTi yi > 0.We will let Sk = [sk�mksk�mk+1 � � � sk�1] and Yk = [yk�mkyk�mk+1 � � � yk�1];where mk = minfk+1;mg, and m is some positive integer. We will assume that H0 = I andthat H0 is iteratively rescaled by a constant 
k as is commonly done in practice. Then, thematrixHk obtained by k applications of the limited-memory BFGS update can be expressedas Hk = 
kI + � Sk 
kYk � U�Tk (Dk + 
kY Tk Yk)U�1k �U�Tk�U�1k 0 ! STk
kY Tk ! ;where Uk and Dk are the mk �mk matrices given by(Uk)ij = ( sk�mk�1+iTyk�mk�1+j if i � j;0 otherwise;and Dk = diagfsTk�mkyk�mk ; : : : ; sTk�1yk�1g:We will describe how to compute dk = �Hkgk in the case that k > 0. Let xk be the currentiterate. Letmk = minfk+1;mg. Given sk�1; yk�1; gk, the matrices Sk�1; Yk�1; Uk�1; Y Tk�1Yk�1;Dk�1,and the vectors STk�1gk�1; Y Tk�1gk�1:1. Update the n �mk�1 matrices Sk�1 and Yk�1 to get the n �mk matrices Sk and Ykusing sk�1 and yk�12. Compute the mk-vectors STk gk and Y Tk gk.3. Compute the mk-vectors STk yk�1 and Y Tk yk�1 by using the fact thatyk�1 = gk � gk�1:We already know mk�1 components of Skgk�1 from Sk�1gk�1, and likewise for Ykgk�1.We need only compute sTk�1gk�1 and yTk�1gk�1 and do the subtractions.4. Compute U�1k . Rather than recomputing U�1k , we update the matrix from the previousiteration by deleting the leftmost column and topmost row ifmk = mk�1 and appendinga new column on the right and a new row on the bottom. Let �k�1 = 1=sTk�1yk�1 andlet (U�1k�1)0 be the (mk � 1)� (mk � 1) lower right submatrix of U�1k�1 and let (STk yk�1)0be the upper mk � 1 elements of STk yk�1. ThenU�1k =  (U�1k�1)0 ��k�1(U�1k�1)0(STk yk�1)00 �k�1 ! :Note that sTk�1yk�1 = (STk yk�1)mk and so is already computed.33



5. Assemble Y Tk Yk. We have already computed all the components.6. Update Dk using Dk�1 and sTk�1yk�1 = (STk yk�1)mk .7. Compute 
k = yTk�1sk�1=yTk�1yk�1:Note that both yTk�1sk�1 and yTk�1yk�1 have already been computed.8. Compute two intermediate valuesp1 = U�1k STk gk;p2 = U�1k (
kY Tk Ykp1 +Dkp1 � 
kY Tk gk):9. Compute dk = 
kYkp1 � Skp2 � 
kgk:The storage costs for this are very low. In order to reconstruct Hk, we need to storeSk; Yk; U�1k ; Y Tk Yk, Dk (a diagonal matrix) and a few m-vectors. This requires only 2mn +2m2 + O(m) storage. Assuming m << n, this is much less storage than the n2 storagerequired for a typical implementation of BFGS.Step Operation Count2 4mn� 2m3 4n+ 2m� 24 2m2 � 4m+ 37 18 8m2 + 2m9 4m2 + 2mTable 5.4: Operations count for computation of Hkgk. Steps with no operations are notshown.The computation of Hg takes at most O(mn) operations assuming n >> m. (SeeTable 5.4.) This is much less than the O(n2) time normally needed to compute Hg whenthe whole matrix H is stored.We are using L-BFGS as our basis for comparison. For information on the performanceof L-BFGS see Liu and Nocedal [41] and Nash and Nocedal [45].34



Alg. No. m = 5 m = 10 m = 15 m = 500 1 0 0 11 0 0 0 02 1 0 0 03 2 0 0 14 1 0 0 15 0 0 0 06 1 0 0 17 0 0 0 18 0 0 0 09 0 0 0 010 0 0 0 011 0 0 0 012 1 0 0 113 1 0 0 114 12 12 12 1215 5 5 5 516 11 11 9 1017 0 0 0 018 1 1 0 019 1 0 0 120 1 1 1 121 3 1 0 1Table 5.5: The number of failures of the algorithms on the 22 test problems. An algorithm issaid to have \failed" on a particular problem if a line search fails or the maximum allowablenumber of iterations (3000 in our case) is exceeded.5.4.2 Varying m Iteratively: Algorithms 1{4In typical implementations of L-BFGS,m is �xed throughout the iterations: once m updateshave accumulated, m updates are always used. We considered the possibility of varying miteratively, preserving �nite termination on convex quadratics. Using an argument similar tothat presented in [41], we can also prove that this algorithm has a linear rate of convergenceon a convex function that satis�es a few modest conditions.We tried four di�erent variations on this theme. All were based on a linear formula thatscales m in relation to the size of kgk. The motivation is that we will need a stronger modelusing more information as kgk gets smaller and we are closer to the minimizer; far away werequire less information. Let mk be the number of iterates saved at the kth iteration, withm0 = 1. Here, think of m as the maximum allowable value of mk. Let the convergence test35



Alg. No. m = 5 m = 10 m = 15 m = 501 8/22 10/22 17/22 17/222 7/22 13/22 13/22 19/223 14/21 14/22 12/22 15/214 12/21 17/22 15/22 16/215 19/22 20/22 20/22 21/226 21/21 22/22 22/22 21/217 8/22 12/22 10/22 10/228 12/22 14/22 12/22 15/229 6/22 13/22 12/22 16/2210 12/22 14/22 12/22 15/2211 10/22 10/22 11/22 14/2212 21/21 22/22 22/22 21/2113 3/22 4/22 4/22 4/2214 1/21 1/22 1/22 1/2115 1/22 1/22 1/22 0/2216 0/22 1/22 1/22 0/2217 12/22 13/22 12/22 14/2218 3/22 4/22 5/22 4/2219 2/22 3/22 4/22 4/2220 2/22 4/22 4/22 5/2221 1/22 2/22 4/22 4/22Table 5.6: Function Evaluations Comparison. The �rst number in each entry is the numberof times the algorithm did as well as or better than normal L-BFGS in terms of functionevaluations. The second number is the total number of problems solved by at least one ofthe two methods (the algorithm and/or L-BFGS).be given by kgkk=maxf1; kxkkg < �. Then the formula for mk at iteration k ismk = min(mk�1 + 1;$(m� 1) log �k � log �0log 100�� log �0%+ 1) :We can specify �k to be kgkk without any regard to normalization, or we can normalize thegradient with respect to kxkk. (If kxkk < 1, we normalize by 1.) The choice may depend onthe sensitivity of the gradient to scale. We begin with m1 = 1 and then compute mk eachtime based on the formula above. We may, however, want to restrict mk so it cannot gobelow the previous value, mk�1. The four variations are1. �k = kgkk and require mk � mk�1,2. �k = kgkk, 36



Alg. No. m = 5 m = 10 m = 15 m = 501 15/22 18/22 20/22 18/222 16/22 19/22 18/22 18/223 16/21 14/22 15/22 15/214 17/21 18/22 20/22 18/215 15/22 13/22 14/22 15/226 16/21 19/22 15/22 15/217 11/22 11/22 10/22 7/228 11/22 7/22 6/22 5/229 9/22 10/22 7/22 8/2210 11/22 8/22 5/22 5/2211 9/22 8/22 9/22 5/2212 11/21 12/22 8/22 11/2113 5/22 10/22 13/22 17/2214 1/21 1/22 1/22 2/2115 5/22 6/22 9/22 9/2216 0/22 2/22 3/22 2/2217 11/22 8/22 5/22 4/2218 8/22 14/22 19/22 20/2219 11/22 11/22 17/22 19/2220 10/22 14/22 17/22 19/2221 9/22 16/22 16/22 18/22Table 5.7: Time Comparison. The �rst number in each entry is the number of times thealgorithm did as well as or better than normal L-BFGS in terms of time. The second numberis the total number of problems solved by at least one of the two methods (the algorithmand/or L-BFGS).3. �k = kgkk=maxf1; kxkkg and require mk � mk�1, and4. �k = kgkk=maxf1; kxkkg.We used four values of m: 5, 10, 15 and 50, for each algorithm. The results are summa-rized in Tables 5.5 { 5.9. More extensive results can be obtained [37].Table 5.5 shows that these algorithms had roughly the same number of failures as L-BFGS.Table 5.6 compares each algorithm to L-BFGS in terms of function evaluations. Foreach algorithm and each value of m, the number of times that the algorithm used as few orfewer function evaluations than L-BFGS is listed relative to the total number of admissibleproblems. Problems are admissible if at least one of the two methods solved it. We observethat in all but three cases, the algorithm used as few or fewer function evaluations thanL-BFGS for over half the test problems. 37



Alg. No. m = 5 m = 10 m = 15 m = 501 1.054 1.017 0.931 1.0082 1.099 0.976 0.968 0.9453 1.006 0.957 1.391 1.0144 0.998 1.297 0.970 1.0005 1.021 0.971 1.005 1.0106 1.000 1.000 1.000 1.0007 1.099 0.996 1.205 1.0208 0.991 1.677 1.507 0.8919 1.035 1.371 1.005 0.94710 0.991 1.677 1.507 0.89111 1.044 0.992 0.981 0.91612 1.000 1.000 1.000 1.00013 1.137 1.178 1.244 1.37314 8.227 8.666 9.073 9.30815 3.185 4.754 5.317 6.03216 9.687 5.926 6.032 7.05417 0.981 1.023 0.924 0.91818 1.201 1.529 1.209 1.36519 1.212 1.959 1.242 1.38720 1.263 1.101 1.226 1.37521 1.406 1.161 1.178 1.394Table 5.8: Mean function evaluations ratios for each algorithm compared to L-BFGS. Prob-lems for which either method failed are not used in this mean.Table 5.7 compares each algorithm to L-BFGS in terms of time. The entries are similarto those in Table 5.6. Observe that Algorithms 1-4 did very well in terms of time, doing aswell or better than L-BFGS in nearly every case.For each problem in each algorithm, we computed the ratio of the number of functionevaluations for the algorithm to the number of function evaluations for L-BFGS. Table 5.8lists the means of these ratios. A mean below 1.0 implies that the algorithm does betterthan L-BFGS on average. The average is better for the �rst four algorithms in 6 out of 16cases. Observe, however, that all the means are close to one.We experience savings in terms of time for the �rst four algorithms. These algorithmswill tend to save fewer vectors than L-BFGS since mk is typically less than m; and so lesswork is done computing Hkgk in these algorithms. Table 5.9 gives the mean of the ratiosof time to solve for each value of m in each algorithm. Note that most of the ratios are farbelow one in this case.These variations did particularly well on problem 7. See [37] for more information.38



Alg. No. m = 5 m = 10 m = 15 m = 501 0.972 0.894 0.784 0.8842 0.993 0.831 0.780 0.7833 0.955 0.870 1.071 0.8984 0.907 1.119 0.823 0.8565 1.041 0.969 0.993 1.0046 1.007 0.983 0.977 0.9957 1.088 1.010 1.179 1.6928 1.057 1.421 1.426 1.4259 1.032 1.220 1.043 1.17310 1.056 1.405 1.440 1.41211 1.062 1.050 1.062 1.20812 1.008 1.011 1.013 1.00213 1.083 1.082 0.983 0.96014 5.008 4.046 3.527 2.64615 2.079 2.507 2.579 2.73516 9.272 5.736 5.129 6.40717 1.053 1.166 1.089 1.39918 1.081 1.229 0.860 0.88519 1.130 1.423 0.915 0.92320 1.114 0.867 0.837 0.91621 1.258 0.927 0.859 0.974Table 5.9: Mean time ratios for each algorithm compared to L-BFGS. Problems for whicheither method failed are not used in this mean.5.4.3 Disposing of Old Information: Algorithm 5We may decide that we are storing too much old information and that we should stopusing it. For example, we may choose to throw away everything except for the most recentinformation whenever we take a big step, since the old information may not be relevant tothe new neighborhood. We use the following test: If the last step length was bigger than 1,dispose of the old information.The algorithm performed nearly the same as L-BFGS. There was substantial deviationon only one or two problems for each value of m, and this seemed evenly divided in termsof better and worse. From Table 5.5, we see that this algorithm successfully converged onevery problem. Table 5.6 shows that it almost always did as well or better than L-BFGS interms of function evaluations. However, Table 5.8 shows that the di�erences were minor. Interms of time, we observe that the algorithm generally was faster than L-BFGS (Table 5.7),but again, considering the mean ratios of time (Table 5.9), the di�erences were minor. Themethod also does particularly well on problem 7 [37].39



5.4.4 Backing Up in the Update to H: Algorithms 6-11As discussed in Section 3.3, if we always use the most recent s and y in the update, wepreserve quadratic termination regardless of which older values of s and y we use.Using this idea, we created some algorithms. Under certain conditions, we discard thenext most recent values of s and y in the H although we still use the most recent s and yvectors and any other vectors that have been saved from previous iterations. We call this\backing up" because it is as if we back-up over the next most recent values of s and y.These algorithms used the following four tests to trigger backing up:1. The current iteration is odd.2. The current iteration is even.3. A step length of 1.0 was used in the last iteration.4. kgkk > kgk�1k.In two additional algorithms, we varied situations 3 and 4 by not allowing a back-up if aback-up was performed on the previous iteration.The backing up strategy seemed robust in terms of failures. In 4 out of the 6 variationswe did for this algorithm, there were no failures at all. See Table 5.5 for more information.It is interesting to observe that backing up on odd iterations (Algorithm 6) and backing upon even iterations (Algorithm 7) caused very di�erent results. Backing up on odd iterationsseemed to have almost no e�ect on the number of function evaluations (Table 5.8) and littlee�ect on the time (Table 5.9). However, backing up on even iterations causes much di�erentbehavior from L-BFGS. It does worse than L-BFGS on most problems, but better on a few.Algorithms 8 and 10 were two variations of the same idea: backing up if the previous steplength was one. This wipes out the data from the previous iteration after it has been used inone update. Both show improvement over L-BFGS in terms of function evaluations; in fact,these two algorithms have the best function evaluation ratio for the m = 50 case (Table 5.8).Unfortunately, these algorithms did not compete with L-BFGS in terms of time (Table 5.9).There is little di�erence between Algorithms 8 and 10 | probably because there were rarelytwo steps of length one is a row.Algorithms 9 and 11 are also two variations of the same idea: back-up on iteration k +1if the norm of gk is bigger than the norm of gk+1. There is a larger di�erence between theresults of 9 and 11 than there was between 8 and 10. In terms of function evaluation ratios(Table 5.8), Algorithm 11 did better, indicating that it may not be wise to back-up twice ina row. Both of these did poorly in terms of time as compared with L-BFGS (Table 5.9).5.4.5 Merging s and y Information in the Update:Algorithms 12 and 13Yet another idea is to \merge" s data so that it takes up less storage and computation time.By merging, we mean forming some linear combination of various s vectors. The y vectors40



would be merged correspondingly. Corollary 3.3 shows that as long as the most recent s andy are used without merge, old s vectors may be replaced by any linear combination of theold s vectors in L-BFGS.We used this idea in the following way: if certain criteria were met, we replaced thesecond and third newest s vectors in the collection by their sum, and did similarly for the yvectors. We used various tests to determine when we would do a merge:1. Neither of the two vectors to be merged is itself the result of a merge and the secondand third most recent steps taken were of length 1.0.2. We did not do a merge the last iteration and there are at least two old s vectors tomerge.The �rst variation (Algorithm 12) performs almost identically to L-BFGS, especially interms of time (Table 5.6). Occasionally it did worse in terms of time (Table 5.7). Theseobservations are also re
ected in the other results in Table 5.8 and Table 5.9. It is likelythat very few vectors were merged.The second variation (Algorithm 13) makes gains in terms of time, especially for thelarger values of m (Table 5.7 and Table 5.9). Unfortunately, this re
ects only a saving in theamount of linear algebra required. The number of function evaluations generally is largerfor this algorithm than L-BFGS (Table 5.6 and Table 5.8).5.4.6 Skipping Updates to H: Algorithms 14{16If every other update to H is skipped and a step length of one is always chosen, BFGS willterminate in 2n + 1 iterations on a strictly convex quadratic function. Similarily, if everyother update to H is skipped and an exact line search is used, BFGS will terminate in 2niterations on a strictly convex quadratic function. (See Chapter 4.) Unfortunately, neitherproperty holds in the limited-memory case. We will, however, try some algorithms motivatedby this idea.The idea is that, every so often, we do not use the current s and y to update H, andinstead just use the old H. There are three variations on this theme.1. Skip update on odd iterations.2. Skip update on even iterations.3. Skip update if kgk+1k > kgkk.As with the algorithms that did back-ups, the results of the skipping on odd or eveniterations were quite di�erent. Skipping on odd updates (Algorithm 14) did extremely wellfor every value of m only on problem 1. Otherwise, it did very badly. Skipping on evenupdates (Algorithm 15) performed somewhat better. It did extremely well on problem 7but not on problems 1 and 12. It also did better than L-BFGS in terms of time on moreoccasions than Algorithm 14 (Table 5.7). Neither did well in terms of function evaluations,41



but the mean ratios for function evaluations (Table 5.8) and time (Table 5.9) were usuallyfar greater than one.Skipping the update if the norm of g increased (Algorithm 16) did not do well at all.It only did better in terms of function evaluations for one problem for two values of m(Table 5.6) and rarely did better in terms of time (Table 5.7). Its ratios were very bad forfunction evaluations (Table 5.8) and time (Table 5.9)5.4.7 Combined Methods: Algorithms 17-21We did some experimentation with combinations of methods described in the previous sec-tions.In Algorithm 17, we combined Algorithms 5 and 8: we dispose of old information andback-up on the next iterations if the step length is greater than one. Essentially we areassuming that we have stepped out of the region being modeled by the quasi-Newton matrixif we take a long step and we should thus rid the quasi-Newton matrix of that information.This algorithm did well in terms of function evaluations, having mean ratios of less than onefor three values of m (Table 5.8), but it did not do as well in terms of time.In Algorithms 19-21, we combined merging and varying m. These algorithms did well interms of time for larger m (Table 5.9) but not in terms of function evaluations (Table 5.8).
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Chapter 6A Semi-Discrete Matrix DecompositionThe semi-discrete decomposition (SDD) was �rst proposed for image compression by O'Learyand Peleg [51]. In this chapter we will review the decomposition and the algorithm forgenerating it. Furthermore, we will present some new convergence results and also give someidea of how this decomposition relates to the singular value decomposition. In Chapter 7,we will describe information retrieval, and in Chapter 8 we will show how the SDD can beused in information retrieval.6.1 IntroductionThe O'Leary-Peleg idea [51] is to �nd a matrix approximation of the formAk = h x1 x2 � � � xk i 266664 d1 0 � � � 00 d2 � � � 0... ... . . . ...0 0 � � � dk 377775 266664 yT1yT2...yTk 377775 = kXi=1 dixiyTi ;| {z }Xk | {z }Dk | {z }Y Tkto an m� n matrix A. Here each xi is an m-vector with entries from the set S = f�1; 0; 1g,each yi is an n-vector with entries from the set S, and each di is a positive scalar. We callthis the semi-discrete decomposition (SDD) of rank k.1The SDD approximation is formed iteratively. The remainder of this section comes from[51] but is presented here in a slightly di�erent form. Let A0 = 0, and let Rk be the residualmatrix at the kth step, that is, Rk = A � Ak�1. We wish to �nd a triplet (dk; xk; yk) thatsolves minx2Smy2Snd>0 Fk(d; x; y) � kRk � dxyTk2F : (6.1)1This matrix may not be rank-k algebraically, but it is formed as the sum of k rank-1 matrices.43



This is a mixed integer programming problem.We can formulate this as an integer programming problem by eliminating d. We haveF (d; x; y) = mXi=1 nXj=1(rij � dxiyj)2= mXi=1 nXj=1 r2ij � 2dxirijyj + d2x2i y2j= kRk2F � 2dxTRy + d2kxk22kyk22;where for convenience, we have dropped the subscript k. At the optimal solution,@F=@d = �2xTRy + 2dkxk22kyk22 = 0;so the optimal value of d is given by d� = xTRykxk22kyk22 :Plugging d� into F , we getF (d�; x; y) = kRk2F � 2 xTRykxk22kyk22! xTRy +  xTRykxk22kyk22!2 kxk22kyk22= kRk2F � (xTRy)2kxk22kyk22 : (6.2)Thus (6.1) is equivalent to maxx2Smy2Sn ~F (x; y) � (xTRy)2kxk22kyk22 ; (6.3)which is an integer programming problem with 3(m+n) feasible points.For small values of both m and n, we can compute the value of ~F at each feasible pointto determine the minimizer. However, as the size of m and/or n grows, the cost of thisapproach grows exponentially. We know of no better algorithm for solving this problemexactly, so we do not. Instead we use an alternating algorithm to generate an approximatesolution. We begin by �xing y and solving (6.3) for x, we then �x that x and solve (6.3) fory, we then �x that y and solve (6.3) for x, and so on.Solving (6.3) is very easy when either x or y is �xed. Suppose that y is �xed. Then wemust solve maxx2Sm (xTs)2kxk22 ; (6.4)where s = Ry=kyk22 is �xed. Sort the elements of s so thatjsi1 j � jsi2j � � � � � jsimj:44



If we knew x had exactly J nonzeros, then it is clear that the solution to (6.4) would begiven by xij = ( sign(sij ) if 1 � j � J0 if J + 1 � j � m :Therefore, there are only m possible x-vectors we need to check to determine the optimalsolution for (6.4). Let R1 = A.Outer Iteration (k = 1; 2; : : : ; kmax):Choose starting vector y such that Rky 6= 0.Inner Iteration (i = 1; 2; : : : ; imax):Fix y and let x solve maxx2Sm xTRkykxk22 :Fix x and let y solve maxy2Sn yTRTk xkyk22 :End Inner Iteration.Let xk = x, yk = y, dk = xTkRkykkxkk22kykk22 .Let Rk+1 = Rk � dkxkyTk .End Outer Iteration.Figure 6.1: O'Leary-Peleg AlgorithmFigure 6.1 shows the O'Leary-Peleg algorithm to �nd the SDD approximation of rank-kmax to an m�n matrix A. We specify a set number of iterations for the inner loop, but wemay use a heuristic stopping criterion instead. From (6.2) note thatkRk+1k2F = kRk � dkxkyTk k2F= kRkk2F � (xTkRkyk)2kxkk22kykk22 : (6.5)So for a given (x; y) pair, we can predict exactly what the F-norm of Rk+1 will be if weaccept them. The method to determine when to stop the inner iterations proposed in [51] isthe following: At the beginning of the inner iterations, set change = 1. Then at the end ofeach inner iteration, computenewchange = (xTRky)2kxk22kyk22 ; and45



improvement = jnewchange� changejchange ;change = newchange:Once improvement falls below a given level, say 0.01, we terminate the inner iterations. Inother words, we iterate until the improvement in the residual has stagnated.6.2 Reconstruction via the SDDWe will show that the algorithm can exactly reproduce a rank-1 matrix of the form d̂x̂ŷTwhere d̂ > 0, x̂ 2 Sm, and ŷ 2 Sn, but it does depend on a �ne point that will be discussedin the proof.Proposition 6.1 Let A = d̂x̂ŷT where d̂ > 0, x̂ 2 Sm, and ŷ 2 Sn. Then the O'Leary-Pelegalgorithm can �nd d̂, x̂ and ŷ in exactly one inner iteration.Proof. Choose y such that Ay 6= 0. The �rst step of the inner iteration is to �nd x 2 Smthat maximizes xTAykxk22 = (d̂ŷTy) xT x̂kxk22If x̂ has more than one non-zero element, then the maximizer is not unique. However, if wealways break the tie by choosing the candidate with the largest number of nonzero elements,then we will get x = x̂. A similar argument applies to the second step, and we get y = ŷ.Lastly, d = xTAykxk22kyk22 = d̂(x̂T x̂)(ŷT ŷ)kx̂k22kŷk22 = d̂: 26.3 Convergence of the SDDNext we will focus on the convergence of the semi-discrete approximation. First we will showthat the norm of the residual generated by the O'Leary-Peleg algorithm is strictly decreasing.Then we will show that under certain circumstances, the approximation generated by theO'Leary-Peleg algorithm converges linearly to the true matrix.Proposition 6.2 The residual matrices generated by the O'Leary-Peleg Algorithm satisfykRk+1kF < kRkkF for all k:Proof. Assume that Rk 6= 0. (Otherwise the algorithm has terminated at the exact solution.)At the end of the inner iterations, we are guaranteed to have found xk and yk such thatxTkRkyk > 0. Using (6.5) and0 < (xTkRkyk)2kxk22kyk22 � (xTkRkyk)2 � kRkk2F ;46



we know that kRkk2F > kRk+1k2F � 0. 2Now we will discuss several strategies for initializing the inner loop in the O'Leary-Pelegalgorithm and give convergence results for each.Initialization Choice 1 (Max Element) At iteration k, assume Rk = [rij]. Choose y =e|̂ where jr{̂|̂j = maxij jrijj.Theorem 6.1 If we use initialization choice 1, then the sequence fAkg generated by theO'Leary-Peleg algorithm converges to A in the Frobenius norm. Furthermore, the rate ofconvergence is at least linear.Proof. Without loss of generality, assume that Rk 6= 0 for all k. (Otherwise the algorithmhas terminated at the exact solution.) Let �k denote kRkk2F . Then �k 6= 0 for all k, andby Proposition 6.2 we know that the sequence f�kg is strictly decreasing; furthermore, thesequence is bounded below by zero. Thus, the sequence must converge to a limit point, say,��. If �� = 0, then the proof is complete, so assume �� 6= 0. Then�k � �� > 0 for all k: (6.6)Set � = ��mn . By de�nition of convergence, there exists k̂(�) such that �k < �� + � for allk > k̂(�). Fix k > k̂(�). Let [rij] = Rk. Choose an initial y = e|̂ where jr{̂|̂j = maxij jrijj.Since we know the �rst part of the inner iteration picks the optimal x, it must be as least asgood as choosing x = e{̂, so(xTkRkyk)2kxkk22kykk22 � (eT̂{ Rke|̂)2ke{̂k22ke|̂k22 � jr{̂|̂j � kRkk2Fmn = �kmn > ��mn = � (6.7)Thus �k+1 = �k � (xTkRkyk)2kxkk22kykk22 < (�� + �)� � = ��:But this contradicts (6.6), so we conclude that �� = 0. Hence, Ak ! A.Now consider the rate of convergence. Using (6.5) and (6.7) we get�k+1 � �k � �kmn = �1 � 1mn� �k � �1 � 1mn�k �0:Hence the rate of convergence is at least linear. 2We will construct an example to show further that the rate of convergence is at mostlinear.The next proposition shows that, for any n, we can construct an n� n matrix such thatthe norm of the residual generated by the O'Leary-Peleg algorithm decreases at a constantrate for the �rst n� 1 steps. 47



Proposition 6.3 Using initialization choice 1, for any n, we can construct a matrix of sizen such that the residual matrices generated by the O'Leary-Peleg algorithm satisfy kRk+1k2F =12kRkk2F for k = 1; 2; : : : ; n� 1.Proof. For a given n, A2 is given byA2 = diagf2n�2; 2n�3; : : : ; 21; 20; 1g:Then at the kth step, we can show by induction that Rk is equal to A with the �rst k � 1diagonal elements deleted. This is trivially true for R1, so assume it is true for Rk, and wewill show that it is true for Rk+1. Using initialization choice 1, we choose y = ek whichcorresponds to the largest element in Rk. Thens = Rky = h 0 � � � 0 p2n�k�1 0 � � � 0 iT ;so choosing x = ek is optimal. Thus we will have xk = yk = ek and dk = p2n�k�1, and soRk+1 = Rk� dkxkyTk will be equal to A with the �rst k+1 nonzeros deleted. (Note that thisparticular triplet is the optimal triplet regardless of the inner iteration initialization choice.)Next observe that kRkk2F = 1 + n�k�1Xi=0 2i = 2n�k:Thus kRk+1k2F = 2n�k�1 = 12(2n�k) = 12kRkk2F ;for k = 1; : : : ; n� 1. 2Note that we have chosen an example where the O'Leary-Peleg algorithm terminates. Al-though we can �nd a �nite \semi-discrete" expansion of any matrixA, that is,Pmi=1Pnj=1 aijeieTj ,we are uncertain whether or not the O'Leary-Peleg algorithm is guaranteed to always yielda �nite expansion.Initialization choice 1 may be computationally expensive if we store Rk implicitly asA � Ak, so we consider some alternative initialization strategies. First we will proposecycling through the unit vectors although the rate of convergence for this is only guaranteedto be at least n-step linear. Next we will propose a threshold test that is at least linear andrequires much less work than the Max Element test.Initialization Choice 2 (Cycling) Cycle through the unit vectors in some order, beingsure to use each possible unit vector as the starting y every n outer iterations. We refer toeach unit of n outer iterations as a sweep.Theorem 6.2 If we use initialization choice 2, then the sequence fAkg generated by theO'Leary-Peleg algorithm converges to A in the Frobenius norm. Furthermore, the rate ofconvergence is at least n-step linear. 48



Proof. The proof is similar to that for Theorem 6.1. Instead of considering each step, considereach sweep. 2This is a very weak result, but we can improve it by using a threshold test to determinethe initial y.Initialization Choice 3 (Threshold) At iteration k, cycle through the unit vectors (be-ginning where we left o� at the last iteration) until we havekRkejk22 � kRkk2Fn ;and let y = ej. We are guaranteed that at least one unit vector will satisfy the above inequalityby de�nition of the F-norm.Even though Rk is stored implicitly, this threshold test is easy to perform because weonly need to multiply Rk by a vector. Furthermore, if we accept the �rst vector we try, weincur no extra computational expense because the computed vector s = Rky is used in theinner iteration.Theorem 6.3 If we use initialization choice 3, then the sequence fAkg generated by theO'Leary-Peleg algorithm converges to A in the Frobenius norm. Furthermore, the rate ofconvergence is at least linear.Proof. The proof is similar to that for Theorem 6.1, and so is omitted. 26.4 Computational ComparisonsWe will compare the three inner iteration initialization strategies for the O'Leary-Pelegalgorithm described in the last section.In our �rst sequence of examples, we will use the O'Leary-Peleg algorithm to gener-ate a approximation to a 25 � 25 dense matrix. Figure 6.2 plots the relative residual(kRkkF =kR0kF ) against the number of outer iterations when we �x the number of inneriterations at 1. The solid line represents the result of initialization choice 1 (Max Element).It is does not reduce the residual as quickly as the other two choices because it is, in somesense, too greedy. Initialization choices 2 (Cycle) and 3 (Threshold) are represented by thedotted and dashed lines respectively. The threshold test does better until approximatelyiteration 60, and then the two are nearly identical.Figure 6.3 plots the relative residual against the number of outer iterations when we usea varying number of inner iterations | the stopping heuristic is described at the end ofSection 6.1. Table 6.1 shows the average number of inner iterations for each initializationchoice. In the �gure, we see that initialization choice 2 (Cycling) seems to reduce the residualin the fewest number of outer iterations. Figure 6.4 plots the relative residual against the49
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Figure 6.2: Relative residual vs. number of outer iterations of three initialization strategiesfor the O'Leary-Peleg Algorithm on a 25� 25 dense matrix using exactly one inner iterationfor each outer iteration. Initialization strategies 1, 2 and 3 are represented by the solid,dotted, and dashed lines respectively.Initialization Choice 1 2 3Average Inner Iterations 4.73 4.93 4.52Table 6.1: Average number of inner iteration for each of three initialization strategies forthe O'Leary-Peleg Algorithm on a 25 � 25 dense matrix using a variable number of inneriterations each outer iteration. 50



0 10 20 30 40 50 60 70 80 90 100
10

−3

10
−2

10
−1

10
0

Outer Iterations

R
el

at
iv

e 
R

es
id

ua
l

Figure 6.3: Relative residual vs. number of outer iterations for three initialization strategiesin the O'Leary-Peleg Algorithm on a 25� 25 dense matrix using a variable number of inneriterations each outer iteration. Initialization strategies 1, 2 and 3 are represented by thesolid, dotted, and dashed lines respectively.
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Figure 6.4: Relative residual vs. number of inner iterations for three initialization strategiesin the O'Leary-Peleg Algorithm on a 25� 25 dense matrix using a variable number of inneriterations each outer iteration. Initialization strategies 1, 2 and 3 are represented by thesolid, dotted, and dashed lines respectively.
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total number of inner iterations. In terms of inner iterations, the methods seem almostidentical initially, and the threshold method seems to be slightly better after approximately100 inner iterations.Figure 6.5 plots relative residual against the number of inner iterations for a sparse100 � 100 matrix. We performed 200 outer iterations. Initially, the greediest strategy,choice 1 (Max Element), does best, but in the end the threshold test seems to be the best.
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Figure 6.5: Relative residual vs. number of inner iterations for three initialization strategiesin the O'Leary-Peleg Algorithm on a 100� 100 sparse matrix (approx. 1000 nonzeros) usinga variable number of inner iterations each outer iteration. Initialization strategies 1, 2 and3 are represented by the solid, dotted, and dashed lines respectively.6.5 Using the SVD to Generate Starting VectorsThe alternating method described in Section 6.1 is one way to heuristically solve (6.3),but here we introduce another possible approach. The singular value decomposition (SVD)approximates an m� n matrix A by 53



Ak = h u1 u2 � � � uk i 266664 �1 0 � � � 00 �2 � � � 0... ... . . . ...0 0 � � � �k 377775 266664 vT1vT2...vTk 377775 = kXi=1 �iuivTi :| {z }Uk | {z }�k | {z }V TkHere each ui 2 <m, each vi 2 <n, each �i 2 <, UTk Uk = V Tk Vk = I and �1 � �2 � � � � � �k �0. For convenience of discussion, assume n < m. After n iterations, the SVD reconstructsA exactly, that is, An = A. (See Golub and Van Loan [30] for more information.)If we consider the relaxed version of (6.3),maxu2<mv2<n ~F (u; v) � (uTRv)2kuk22kvk22 ; (6.8)the �rst left, uR1 , and right, vR1 , singular vectors of R (not A) maximize ~F whose maximumis the square of the �rst singular value of R, (�R1 )2 by the Courant-Fischer Minimax Theo-rem [30]. This is an upper bound for the integer program (6.3). Furthermore, we can geta lower bound for (6.3) since ~F is bounded below in the relaxed case by the square of theleast singular value of R, (�Rn )2.We can use the solution of the relaxed problem (6.8), which we will denote by u and v,to generate an approximate solution to the discrete problem by �nding an x 2 Sm that is adiscrete approximation to u, that is, an x that solvesminx2Smx̂�x=kxk2 kx̂� uk2: (6.9)This problem is easy to solve. Suppose that x has exactly J nonzeros, and order the elementsof u so that jui1j � jui2j � � � � � juimj:Then choose xij = ( sign(uij) if 1 � j � J0 if J + 1 � j � m :Therefore, there are only m possible x-vectors we need to check to determine the optimalsolution for (6.9). We can �nd y in a similar fashion.This leads to two possible initialization strategies:Initialization Choice 4 (SVD Approximation) At iteration k, use the discrete x andy vectors that are respectively closest to the �rst left and right singular vectors of Rk. Donot do any inner iterations.Initialization Choice 5 (SVD Start) At iteration k, chose the discrete y closest to the�rst right singular vector of Rk. 54



We can show that initialization choice 5 yields a linearly convergent method.Theorem 6.4 If we use initialization choice 5, then the sequence fAkg generated by theO'Leary-Peleg algorithm converges to A in the Frobenius norm. Furthermore, the rate ofconvergence is at least linear.Proof. Without loss of generality, assume that Rk 6= 0 for all k. (Otherwise the algorithmhas terminated at the exact solution.) Let �k denote kRkk2F . Then �k 6= 0 for all k, andby Proposition 6.2 we know that the sequence f�kg is strictly decreasing; furthermore, thesequence is bounded below by zero. Thus, the sequence must converge to a limit point, say,��. If �� = 0, then the proof is complete, so assume �� 6= 0. Then�k � �� > 0 for all k: (6.10)Set � = ��minfm;ngm2n2 :By de�nition of convergence, there exists k̂(�) such that �k < �� + � for all k > k̂(�). Fixk > k̂(�). Let �, u and v be the �rst singular value, left singular vector and right singularvector or Rk respectively, and assume that Rk = [rij]. Choose an initial y that solvesminy2Snŷ=y=kyk2 kŷ � vk2:Without loss of generality, assume that the elements of v are ordered so thatjv1j � jv2j � : : : � jvnj;and assume that y has J nonzeros. Now observe that� = uTRv = JXj=1 vj mXi=1 rijui + nXj=J+1 vj mXi=1 rijui;and the largest magnitude elements of v must correspond to the largest magnitude elementsof Ru, so we can conclude that JXj=1 vj mXi=1 rijui � Jn�:Each vi is less than or equal to one, so substituting y in place of v yieldsnXj=1 yj mXi=1 rijui � J�n :(Note that this guarantees us that Ry 6= 0.) Rewriting this, we getmXi=1 ui nXj=1 rijyj � J�n ;55



so there exists {̂ such that u{̂ nXj=1 rijyj � J�mn:So, if we set x = e{̂, we have(xTkRkyk)2kxkk22kykk22 � J2�2Jm2n2 � �2m2n2 � kRkk2Fminfm;ng �m2n2= �kminfm;ng �m2n2 � ��minfm;ng �m2n2 = � (6.11)Thus �k+1 = �k � (xTkRkyk)2kxkk22kykk22 < (�� + �)� � = ��:But this contradicts (6.10), so we conclude that �� = 0. Hence, Ak ! A.Now consider the rate of convergence. Using (6.5) and (6.11) we get�k+1 � �k � �kminfm;ng �m2n2 =  1 � 1minfm;ng �m2n2! �k�  1 � 1minfm;ng �m2n2!k �0:Hence the rate of convergence is at least linear. 2Figure 6.6 plots the relative residual against the number of outer iterations for initializa-tion choice 4 and 1. For the Max Element initialization, we allow 3 inner iterations. This isbecause we estimate it would take approximately the same amount of work to generate theleft and right singular vectors for Rk.Figure 6.7 plots the relative residual against the number of outer iterations for initial-ization choices 1 and 5 using a variable number of inner iterations. Here we see that usingthe SVD start does better in terms of outer iterations. Table 6.2 shows that SVD start onlyrequires about 2.6 inner iterations per outer iteration, but remember that some work wasrequired to generate the left and right singular vectors of Rk, so we argue that the work isabout equal. Initialization Choice 1 5Average Inner Iterations 4.73 2.61Table 6.2: Average number of inner iteration for two initialization strategies for the O'Leary-Peleg Algorithm on a 25� 25 dense matrix using a variable number of inner iterations eachouter iteration. 56
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Figure 6.6: Relative residual vs. number of outer iterations comparing initialization choice 4(dashed line) and initialization choice 1 with three inner iterations (solid line) in the O'Leary-Peleg Algorithm on a 25 � 25 dense matrix.
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Figure 6.7: Relative residual vs. number of outer iterations comparing the initializationchoice 5 (dashed line) and initialization choice 1 (solid line) in the O'Leary-Peleg Algorithmon a 25 � 25 dense matrix. Each is allowed a variable number of inner iterations.
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Chapter 7The Vector Space Model in InformationRetrievalHere we describe the problem in information retrieval and give a detailed description of thevector space model. In the next chapter, we will discuss an extension of the vector spacemodel called latent semantic indexing and show how this model can be improved using thesemi-discrete decomposition described in the previous chapter.7.1 IntroductionThere is an unprecedented amount of electronic textual information available today. Thisinformation is useless unless it can be e�ciently and e�ectively searched. In the �eld of in-formation retrieval, we match queries, that is, statements of information needs, with relevantdocuments, that is, information items.Most people have used an information retrieval system at one point or another. Examplesinclude electronic library search catalogs, World WideWeb search engines such as Alta Vista,and Unix tools such as the grep utility. To see both the e�ectiveness and short-comings ofan information retrieval system, we have an example of several queries in the University ofMaryland VICTOR electronic library catalog in Figure 7.1. For each query, it took only amatter of seconds to search through the more than 2.4 million volumes [65] in the UniversityQuery Items FoundGerman, math, dictionary 0German, mathematical, dictionary 2German, mathematical, dictionaries 3German, mathematics, dictionary 6German, mathematics, dictionaries 10Figure 7.1: Search results from �ve semantically equivalent queries in the University ofMaryland VICTOR electronic library catalog.59



of Maryland College Park library | an indication of how e�cient modern search enginesare. On the other hand, we see that each of the semantically equivalent queries returned adi�erent number of items, and one did not return anything at all | an indication of how farwe have yet to go.There are many di�erent approaches to information retrieval. People are most familiarwith the Boolean system: search terms are connected with Boolean operators such as AND,OR, and NOT. Boolean systems can be quite e�cient, but are not always very e�ective. TheBoolean system is but one conceptual model for an information retrieval system. Anotherpossible model is based on probability theory; the most well-known example of this is theINQUERY system [13]. In this model, each document is assigned a probability of beingrelevant. The probability is determined via an inference net. A brief survey of these and othermodern information retrieval techniques is given in Salton [56]; a more in-depth treatmentis given in Frakes and Baeza-Yates [27].We are concerned here with a conceptual model known as the vector space model. Thismodel was proposed over 25 years ago. One implementation of this idea is SMART, see e.g.[59]. In the vector space model, both documents and queries are represented as vectors andcompared via inner products. This model will be explained in detail in Section 7.2. One of themost important issues in the vector space model is term weighting, the determination of theentries in the vectors representing the documents and queries. We present a computationalcomparison of the weighting strategies in Section 7.3 and describe evaluation criteria. Manyadvances and variations have been proposed for the vector space model; these are presentedin Section 7.4.7.2 The Vector Space Model7.2.1 Preprocessing of the DocumentsIn the vector space model, we represent documents and queries as vectors. Before we canconstruct the representation, we must compile a list of index terms by preprocessing thedocuments. We do this as follows:1. Transform the documents to a list of words by removing all punctuation and numbers.Convert every letter to lower case.2. Remove stop words. Stop words are common words that contain no semantic contentsuch as \of", \next", and \already." This is language and context dependent. Standardlists of stop words exist for the English language. We performed stop word removalusing the program and stop word list in Frakes and Baeza-Yates [27].3. Remove words that appear in only one document. This greatly reduces the number ofterms we need to handle. The remaining words form the set of index terms.This is but one way to preprocess the documents. More elaborate systems might be usedin other settings. For example, we might want to treat upper- and lowercase di�erently.60



Punctuation can also be meaningful; in particular, we may want to do something specialwith hyphenations. There is also no reason to limit ourselves to just single words; we maywant to look at phrases as well (see Section 7.4).One common preprocessing technique that we did not use is stemming which reduceswords to their common stems. For example, \climb," \climbs," and \climbing" would allbe reduced to the stem \climb." This is a heuristic method with many shortcomings, butthe example in Figure 7.1 illustrates why stemming might be useful. See Frakes and Baeza-Yates [27] for more information and a sample stemming program.Lastly, we have speci�ed that, after removing stop words, we will use only terms thatappear in at least two documents. In some situations we may �nd it useful to use all theremaining terms, while in other situations we may want to trim the list even further byremoving any term that does not appear in at least, say, �ve documents.7.2.2 Description of the ModelWe will now formulate the vector space model. Suppose that we have n documents and mindex terms, hereafter referred to as just terms. We represent the documents as an m � nmatrix, A = [aij]; where aij represents the weight of term i in document j. We describe howto compute the weight of a term in a document in the next section. The jth column of Arepresents document j. Note that the matrix will be sparse since only a few of the possibleterms will appear in each document.Queries are preprocessed in much the same way as documents. A query is represented asan m-vector, q = [qi]; where qi represents the weight of term i in the query.The n-vector s = qTA;is the vector of scores. The jth element of s, sj = qTAej where ej is the jth unit vector,represents the score of document j. For a given query, the documents are ranked accordingto score, highest to lowest.7.2.3 Term WeightingThe success or failure of the vector space method is based on the term weighting. Therehas been much research on term weighting techniques but little consensus on which methodis best. We will summarize a number of the techniques that have been suggested in theliterature. Computational comparisons of these techniques will be given in Section 7.3.There are three components to a weighting scheme. The ij-th entry of A is computed byaij = gi tij dj;where gi is the global weight of the ith term, tij is the local weight of the ith term in the jthdocument, and dj is the normalization factor for the jth document.61



Tables 7.1 { 7.3 list possible formulas for each component. Here we assume that fij is thefrequency of term i in document j, all logs are base two, and � denotes the signum function,�(t) = ( 1 if t > 0;0 if t = 0:Table 7.1 lists some popular local weight formulas; each row of the table gives a uniquecharacter symbol, the formula for tij, a brief description that is the name that the formulais generally known by, and one or more references. Local term formulas depend only on thefrequencies within the document; they do not depend on inter-document frequencies.The binary formula (b) and term frequency formula (t) are simple and obvious possibil-ities for the term frequency component. A major drawback of the binary formula is thatit gives every word that appears in a document equal relevance; this might, however, beuseful when the number of times a word appears is not considered important. The frequencyformula gives more credit to words that appear more frequently, but often too much credit.For instance, a word that appears ten times in a document is not usually ten times moreimportant than a word that only appears once. What we would like to do is to give credit toany word that appears and then give some additional credit to words that appear frequently.The augmented normalized term frequency (c) is one such attempt. This gives a value of0.5 for appearing in the document plus a bonus (no more than 0.5) that depends on the fre-quency. A more general formula was proposed by Croft [15]; this formula is parameterizedby a value K, tij = K �(fij) + (1�K) fijmaxk fkj ! :It is suggested that K be set to something low (e.g. 0.3) for large documents and to highervalues (e.g. 0.5) for shorter documents. Logarithms are another way to deemphasize thee�ect of frequency. Two di�erent logarithm term frequency components are popular in theliterature; here we call them the log (l) and alternate log (a).A comparison of the di�erent frequency components for frequencies ranging between 0 and100 is shown in Figure 7.2; we assume that the maximum frequency (used in the augmentednormalized term frequency formula) is 100. Observe that the raw frequency count growsvery quickly whereas the other local weightings grow more slowly. Although it is not clearin the picture, every local weight formula assigns a value of zero to tij if term i does notappear in document j.Global term weights (see Table 7.2) are used to place emphasis on terms that are discrim-inating, and they are based on the dispersion of a particular term throughout the documents.For example, the inverse document frequency weighting (f) will be zero if the given termappears in every document, and the weight increases as the number of documents in whichthe term appears decreases. Various other inverse document frequency (IDF) measures havebeen proposed; see Frakes and Baeza-Yates for some examples. The probabilistic inverseweight (p), is also referred to as an IDF weight. It assigns weights ranging from �1 for62



Symbol Formula for tij Brief Description Ref.b �(fij) Binary [58]t fij Term Frequency [58]c :5 �(fij) + :5 fijmaxk fkj! Augmented NormalizedTerm Frequency [27, 58]l log(fij + 1) Log [27]a �(fij)(log(fij) + 1) Alternate Log [21]Table 7.1: Local Term Weight Formulas
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Figure 7.2: Comparison of Local Term Weighting Schemes63



Symbol Formula for gi Brief Description Ref.x 1 No change [58]f log  nPnk=1 �(fik)! Inverse DocumentFrequency (IDF) [58]p log  n �Pnk=1 �(fik)Pnk=1 �(fik) ! Probabilistic Inverse [27, 58]g Pnk=1 fikPnk=1 �(fik) GfIdf [21]e 1 + nXj=1 pij log pijlog n ! Entropy(pij = fij=Pnk=1 fik) [21, 27]Table 7.2: Global Term Weight Formulas
Symbol Formula for di Brief Description Ref.x 1 No Change [58]n (Pmk=1(gktkj)2)�1=2 Normal [58]Table 7.3: Normalization Formulas64



a term that appears in every document1 to log(n � 1) for a term that appears in only onedocument. The GfIdf (g) computes the ratio of the total number of times the term appearsin the collection to the number of documents it appears in. The entropy weight (e) assignsweights between zero and one, zero for a term that appears at the same frequency in everydocument and one for a term that appears in only one document. Global weighting is verysuccessful as we shall see when we look at the experimental results in Section 7.3.The use of global weighting can, in theory, eliminate the need for stop word removal sincestop words should have very small global weights. In practice, however, it is easier to removethe stop words in the preprocessing phase so that there are fewer terms to handle.Once we have computed the local and global term weights, it is often useful to normalizethe columns in the �nal matrix. If we do not, short documents may not be recognized asrelevant. We present two choices in Table 7.3: no normalization (x) and normalization bythe 2-norm (n). Other normalization strategies are possible, but the 2-norm is the mostpopular.In the vector space method literature, the cosine score is often mentioned. This is com-puted by sj = qTAejkqk2kAejk2 ;which gives the angle between the vector representing the query, q, and the vector represent-ing the document Aej. If the columns of A and q have been normalized, the inner product isequivalent to the cosine score. Thus whenever we choose the n normalization weighting forthe documents, we are using a scoring equivalent to the cosine score. Note that normalizingq makes no di�erence in the �nal ranking of documents, so we never do it.Thus far we have explained how to weight the documents, but not how to weight thequery. The query weighting is qi = gi t̂i;where gi is the global term weight computed as usual from the frequency counts in thedocuments and t̂i is the local term weight that is computed using the local weight formulaswith fij replaced by f̂i, the frequency of term i in the query. As mentioned before, there isno need to normalize the query.A weighting scheme is speci�ed by specifying a six-letter combination that indicates local,global, and normalization components for the term-document matrix and the local, global,and normalization components for the query. (The normalization component for the querywill always be x, but we specify it anyway.) For example, if we were to specify a weightingscheme of axn.afx, we would use the following formulas:aij = 8<: (log(fij) + 1) � �Pmk=1 (log(fkj) + 1)2��1=2 if fij 6= 0;0 otherwise,1In practice, if a term were to appear in every document, it would generally be removed from the list ofindex words. 65



and qi = 8><>: �log(f̂i) + 1� � log nPnk=1 �(fik)! if f̂i 6= 0;0 otherwise.This particular weighting is described in Buckley et al. [10].We have a total of 5 � 5 � 2 = 50 possible weighting schemes for the documents and5 � 5 = 25 possible weighting schemes for the queries, yielding a possible 50 � 25 = 1250possible weightings. Rather than compare all of these, we will restrict our attention to onlya few schemes. These are summarized in Table 7.4. Some are schemes that have beensuggested in the literature, and the remainder are modi�cations of those schemes.In addition to the weightings discussed above, there are two additional weightings thatwe will use; they were suggested by Singhal et al. [61]. We will talk more about where theseweightings originated in Section 7.4. The �rst is called the OKAPI weight, that shall bedenoted by okapi in the tests. For OKAPI, the weight on the term-document matrix isgiven by aij = fij � log  n�Pnk=1 fik + 0:5Pnk=1 fik + 0:5 !2 �  0:25 + 0:75 djmeankdk!!+ fij ;where dj is the length of document j in bytes, but we set dj equal to the number of termsin document j. The query is just the raw term frequency weight, i.e.,qi = f̂i:The second weight is called the INQUERY weight, denoted by inquery, and is de�ned asaij = 0:4 �(fij) + 0:6 �  0:4 �Hj + 0:6 � log(fij + 0:5)log(maxk fkj + 1:0)! � log nPnk=1 �(fik)!log n ;if fij 6= 0, and aij = 0 otherwise. Here,Hj = ( 1:0 if maxk fkj � 25;25=maxk fkj otherwise:Raw term frequency is used for the query:qi = f̂i:7.3 Experimental ComparisonsIn this section, we will describe the test sets we are working with and the basis for comparison,and present computational results. 66



SMART-like weighting schemestxx.txx Raw Frequency.txn.txx Original SMART weighting [21, 58].axn.afx SMART \ltc" weighting [10].lxn.lfx Modi�cation of \ltc" weight.Weightings from Dumais [21]tgn.tgx Term frequency plus GfIdf.tfn.tfx IDF plus term frequency.ten.tex Entropy with term frequency.len.lex Log-Entropy.Weightings from Dumais [21] withoutGlobal Weights on Term-Document Matrixtxn.tgx Term frequency plus GfIdf.txn.tfx IDF plus term frequency.txn.tex Entropy with term frequency.lxn.lex Log-Entropy.Weightings from Salton & Buckley [58]bxx.bxx Coordination level binary vectors.bxx.bpx Binary independence probabilistic.bfx.bfx Classical IDF without normalization.tfn.cfx Best fully weighted system.txn.cfx Weighted with inverse frequency.tfx.tfx Classical term frequency plus IDF.cxx.bpx Best weighted probabilistic.Other Weightingscxn.bpx cxn.lpx cxn.tpx cxn.bfxcxn.lfx cxn.tfx lxn.bpx lxn.lpxlxn.tpx lxn.bfx lxn.lfx lxn.tfxTable 7.4: Term Weightings67



7.3.1 Test CollectionsAn information retrieval system is \good" if it ranks the relevant documents high and theirrelevant documents low. In order to evaluate an information retrieval system, therefore, weneed a set of documents, one or more queries, and a set of relevance judgments for each query.Relevance judgments are binary; a document is either relevant or it is not. The validity ofthe relevance judgments is often questioned, but we will not consider these arguments here;see, e.g., Salton [57]. MEDLINE CRANFIELD CISINumber of Documents 1033 1399 1460Number of (Indexing) Terms 5526 4598 5574Avg. No. of Terms/Document 48 57 46Avg. No. of Documents/Term 9 17 12% Nonzero Entries in Matrix 0.87 1.24 0.82Storage for Matrix (MB): 0.4 0.6 0.5Number of Queries 30 225 35Avg. No. of Terms/Query 10 9 7Avg. No. Relevant/Query 23 8 50Table 7.5: Characteristics of the Information Retrieval Test SetsA number of standard test collections are available. We will be focusing on three: MED-LINE, a collection of medical abstracts; CRANFIELD, a collection of aerospace abstracts;and CISI, a collection of library science abstracts. A summary of the characteristics of thesetest sets is given in Table 7.5. Since these are collections of abstracts, they only contain asmall number of terms (about 50) per document. We have sparse term-document matrices,all around 1% dense. The queries contain approximately eight key terms each, and so arereasonably speci�c. Both MEDLINE and CISI have a small number of queries (about 30)and a large number of relevant documents per query; CRANFIELD, on the other hand, hasa large number of queries but only a small number of relevant documents per query.The test sets described in Table 7.5 are considered small by modern standards. For thepast �ve years, the TREC competition [32, 33, 34] has been providing test sets with hundredsof thousands of documents. Unfortunately, it is di�cult to prepare code for TREC data,and there is little in between in terms of size.7.3.2 Performance Evaluation CriteriaWe will compare the systems by looking at some standard measures used in the informationretrieval community: non-interpolated average precision, interpolated average precision, andr-precision. 68



i ri Recall Precision1 1 0.027 1.0005 5 0.135 1.00010 9 0.243 0.90020 16 0.432 0.80040 27 0.730 0.67560 35 0.946 0.58371 37 1.000 0.5211Non-Interp Avg Prec 0.763Average Precision 0.781R-Precision 0.703Table 7.6: Sample recall and precision values, interpolated and non-interpolated averageprecision, and r-precision for the �rst MEDLINE query using the vector space model withweighting cxn.bpx. There are a total of 37 relevant documents for this query.Non-interpolated average precision. When we evaluate a query, we receive an orderedlist of documents. Let ri denote the number of relevant documents up to and includingposition i in the ordered list. For each document, we compute two values: recall and precision.The recall at the ith document is the proportion of relevant documents returned so far, thatis, rirn :(Note that rn is the total number of relevant documents.) The precision at the ith document,pi, is the proportion of documents returned so far that are relevant, that is,pi = rii :Let I be the set of positions of the relevant documents in the ordered list, then the non-interpolated average precision for a single query is de�ned as1rn Xi2I pi:The non-interpolated average precision for multiple queries is de�ned as the mean of thenon-interpolated average precisions for all queries.The �rst MEDLINE query has a total of 37 relevant documents. Table 7.6 presents somesample recall and precision values, and Figure 7.3 plots the 37 recall-precision pairs as circles(o). We used the cxn.bpxweighting in this example. The non-interpolated average precisionfor the �rst query is 0.763, and the (mean) non-interpolated average precision over all queriesis 0.521. 69



Mean Std DeviationNon-Interp Avg Prec 0.521 0.200Average Precision 0.536 0.191R-Precision 0.495 0.175Table 7.7: Various measures for the thirty MEDLINE queries using the vector space methodwith weighting cxn.bpx.Interpolated average precision. The pseudo-precision at recall level x 2 [0; 1], ~p(x), isde�ned as ~p(x) = maxfpi j ri � x � rn; i = 1; : : : ; ng :The N -point interpolated average precision for a single query is de�ned as1N N�1Xi=0 ~p� iN � 1� :Typically, 11-point interpolated average precision is used. The N -point interpolated averageprecision for multiple queries is the mean of the interpolated average precisions for all queries.The precision-recall graph plots the N pseudo-precision points generated above againstthe N evenly spaced recall values between 0 and 1. This is always a non-increasing curve.Figure 7.3 shows the interpolated precision-recall graph for the �rst query in the MED-LINE test set. The circles (o) represent precision-recall data points from the 37 relevantdocuments, that is, f(ri; pi)gi2I, and the asterisks (*) represent the interpolated data points,~p, at 11 evenly-spaced recall levels. The asterisks are connected to form the precision-recallcurve. The interpolated average precision for the �rst query in MEDLINE is 0.781.For multiple queries, we plot the mean of the pseudo-precision points for each of the Nrecall values and upper and lower \error lines" that show the standard deviations from eachpoint along the precision recall curve for multiple queries.Figure 7.4 shows the precision-recall curve for multiple queries including the \error lines."The asterisks (*) represent the mean value of all pseudo-precisions at each recall level, andthe circles (o) represent the points one standard deviation away on either side. The value ofthe interpolated average precision over all MEDLINE queries is 0.536.R-precision. For a single query, r-precision is the precision after r documents have beenreturned, that is, prn :The r-precision for multiple queries is the mean of the r-precisions of all queries.The r-precision for the �rst query of MEDLINE is 0.703 and the average r-precision forall queries of MEDLINE is 0.495. 70
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Weighting Average Non-Interp R-PrecisionPrecision Avg Precmean s.d. mean s.d. mean s.d.lxn.bpx 0.546 0.185 0.536 0.195 0.504 0.163lxn.bfx 0.546 0.185 0.536 0.194 0.501 0.164lxn.lpx 0.538 0.190 0.529 0.202 0.499 0.172lxn.lfx 0.537 0.191 0.528 0.202 0.499 0.172lxn.lfx 0.537 0.191 0.528 0.202 0.499 0.172cxn.bpx 0.536 0.190 0.521 0.200 0.494 0.175cxx.bpx 0.536 0.190 0.521 0.200 0.494 0.175cxn.bfx 0.536 0.189 0.521 0.199 0.494 0.175tgn.tgx 0.535 0.193 0.513 0.204 0.493 0.198okapi 0.535 0.199 0.521 0.213 0.489 0.187lxn.tpx 0.534 0.192 0.521 0.202 0.498 0.178axn.afx 0.533 0.191 0.520 0.200 0.504 0.180cxn.lpx 0.532 0.196 0.516 0.204 0.496 0.181cxn.lfx 0.532 0.194 0.516 0.204 0.495 0.181lxn.tfx 0.532 0.193 0.520 0.203 0.496 0.181cxn.tpx 0.526 0.197 0.509 0.206 0.484 0.182cxn.tfx 0.525 0.195 0.507 0.204 0.482 0.180txn.cfx 0.525 0.182 0.513 0.193 0.497 0.171tfn.cfx 0.525 0.180 0.508 0.193 0.482 0.164txn.tgx 0.522 0.187 0.503 0.198 0.481 0.185txn.tfx 0.517 0.186 0.501 0.194 0.482 0.183len.lex 0.516 0.191 0.500 0.205 0.482 0.183lxn.lex 0.516 0.191 0.500 0.205 0.480 0.184tfn.tfx 0.516 0.186 0.495 0.195 0.478 0.178tfx.tfx 0.516 0.186 0.495 0.195 0.478 0.178bxx.bpx 0.498 0.198 0.485 0.209 0.449 0.182ten.tex 0.483 0.192 0.467 0.201 0.438 0.187txn.tex 0.483 0.192 0.467 0.201 0.438 0.187txx.txx 0.482 0.193 0.467 0.201 0.436 0.185txn.txx 0.482 0.192 0.467 0.201 0.436 0.185bfx.bfx 0.479 0.193 0.460 0.203 0.443 0.187bxx.bxx 0.470 0.192 0.455 0.200 0.430 0.173inquery 0.422 0.215 0.392 0.220 0.381 0.208Table 7.8: Results on the MEDLINE data set for various weightings. The results are sortedhighest to lowest in terms of average precision.73



Weighting Average Non-Interp R-PrecisionPrecision Avg Precmean s.d. mean s.d. mean s.d.okapi 0.461 0.687 0.401 0.687 0.336 0.211lxn.lpx 0.457 0.686 0.396 0.260 0.339 0.211lxn.lfx 0.456 0.687 0.396 0.262 0.330 0.212lxn.lfx 0.456 0.687 0.396 0.262 0.330 0.212lxn.tfx 0.456 0.686 0.396 0.260 0.330 0.213lxn.tpx 0.456 0.686 0.395 0.259 0.336 0.213lxn.bpx 0.455 0.687 0.395 0.261 0.340 0.209lxn.bfx 0.455 0.686 0.394 0.258 0.330 0.209axn.afx 0.454 0.686 0.393 0.260 0.331 0.214cxn.lfx 0.442 0.686 0.382 0.257 0.325 0.207cxn.bfx 0.441 0.685 0.381 0.256 0.322 0.204cxn.tfx 0.439 0.686 0.380 0.259 0.325 0.206cxn.lpx 0.436 0.685 0.376 0.255 0.321 0.207cxn.bpx 0.434 0.684 0.374 0.251 0.320 0.203cxx.bpx 0.434 0.684 0.374 0.251 0.320 0.203txn.cfx 0.433 0.688 0.372 0.261 0.317 0.209cxn.tpx 0.433 0.686 0.373 0.255 0.321 0.206txn.tfx 0.430 0.688 0.370 0.260 0.317 0.208tfn.tfx 0.425 0.688 0.363 0.258 0.307 0.210tfx.tfx 0.425 0.688 0.363 0.258 0.307 0.210lxn.lex 0.425 0.687 0.365 0.258 0.316 0.205len.lex 0.424 0.687 0.364 0.257 0.312 0.205tfn.cfx 0.424 0.687 0.363 0.257 0.306 0.210ten.tex 0.397 0.685 0.337 0.248 0.292 0.200txn.txx 0.396 0.685 0.336 0.247 0.290 0.199txn.tex 0.395 0.685 0.335 0.248 0.287 0.199txx.txx 0.395 0.685 0.335 0.247 0.287 0.200bxx.bpx 0.392 0.684 0.333 0.240 0.286 0.192txn.tgx 0.376 0.687 0.316 0.250 0.264 0.205bxx.bxx 0.366 0.682 0.306 0.230 0.268 0.190bfx.bfx 0.361 0.685 0.301 0.235 0.262 0.194tgn.tgx 0.341 0.688 0.282 0.245 0.238 0.198inquery 0.296 0.678 0.232 0.198 0.205 0.181Table 7.9: Results on the CRANFIELD data set for various weightings. The results aresorted highest to lowest in terms of average precision.74



Weighting Average Non-Interp R-PrecisionPrecision Avg Precmean s.d. mean s.d. mean s.d.okapi 0.186 0.114 0.161 0.107 0.178 0.126lxn.tfx 0.184 0.119 0.160 0.112 0.182 0.131lxn.tpx 0.183 0.116 0.160 0.110 0.183 0.125lxn.lpx 0.183 0.112 0.159 0.106 0.183 0.123lxn.lfx 0.182 0.115 0.158 0.107 0.180 0.127lxn.lfx 0.182 0.115 0.158 0.107 0.180 0.127cxn.tfx 0.182 0.112 0.155 0.104 0.180 0.128cxn.tpx 0.182 0.110 0.156 0.103 0.178 0.124cxn.lfx 0.180 0.107 0.153 0.097 0.180 0.124axn.afx 0.179 0.118 0.157 0.111 0.179 0.125cxn.lpx 0.179 0.105 0.154 0.097 0.177 0.121tfn.tfx 0.178 0.112 0.157 0.107 0.181 0.117tfx.tfx 0.178 0.112 0.157 0.107 0.181 0.117lxn.bpx 0.178 0.104 0.154 0.097 0.182 0.124lxn.bfx 0.177 0.106 0.152 0.097 0.177 0.123txn.cfx 0.176 0.114 0.153 0.107 0.164 0.127tfn.cfx 0.176 0.105 0.154 0.099 0.182 0.112txn.tfx 0.175 0.119 0.154 0.115 0.166 0.127cxn.bpx 0.175 0.101 0.148 0.091 0.173 0.118cxx.bpx 0.175 0.101 0.148 0.091 0.173 0.118cxn.bfx 0.174 0.102 0.146 0.090 0.175 0.120bxx.bpx 0.166 0.091 0.140 0.081 0.165 0.108bfx.bfx 0.163 0.086 0.134 0.075 0.161 0.099lxn.lex 0.143 0.114 0.123 0.103 0.141 0.118len.lex 0.143 0.113 0.123 0.103 0.141 0.118inquery 0.140 0.082 0.109 0.069 0.125 0.106bxx.bxx 0.137 0.086 0.113 0.074 0.137 0.106ten.tex 0.134 0.115 0.118 0.108 0.127 0.119txn.tex 0.134 0.115 0.118 0.108 0.127 0.119txn.txx 0.134 0.115 0.118 0.108 0.127 0.119txx.txx 0.134 0.115 0.118 0.108 0.127 0.119txn.tgx 0.129 0.111 0.109 0.102 0.116 0.111tgn.tgx 0.126 0.110 0.104 0.102 0.108 0.110Table 7.10: Results on the CISI data set for various weightings. The results are sortedhighest to lowest in terms of average precision.75



MEDLINE CRANFIELD CISIlxn.bfx 0.546 okapi 0.461 okapi 0.186lxn.bpx 0.546 lxn.lpx 0.457 lxn.tfx 0.184lxn.lpx 0.538 lxn.lfx 0.456 lxn.lpx 0.183lxn.lfx 0.537 lxn.tpx 0.456 lxn.tpx 0.183cxx.bpx 0.536 lxn.lfx 0.456 lxn.lfx 0.182cxn.bpx 0.536 lxn.tfx 0.456 cxn.tpx 0.182cxn.bfx 0.536 lxn.bpx 0.456 cxn.tfx 0.182Table 7.11: The best weightings for each data set in terms of (interpolated) average precision.7.3.3 Computational ResultsTables 7.8, 7.9, and 7.10 show numerical results for the MEDLINE, CRANFIELD and CISIdata sets using the weightings listed in Table 7.4. For each test, we report the mean andstandard deviation for the average precision, the non-interpolated average precision, and ther-precision. In general, one compares methods via the average precision measure. As wecan see from the three tables, the average precision, non-interpolated average precision andr-precision are closely correlated.The okapi weighting is the best on the CRANFIELD and CISI data. We observe that inall three cases, the matrix weighting lxn gives good results. The weighting cxn is also goodfor the MEDLINE and CISI sets and axn is good for the CRANFIELD test set. The binarymatrix weightings, bfx and bxx, and the raw term frequency weightings, txx and txn, tendto be ranked towards the bottom, indicating that more sophisticated terms weightings, suchas the log weights, should be employed.It seemed to make little di�erence which query weighting was chosen, probably becausethe di�erence between the schemes is minimal when the terms only appear once or twice.In terms of global weighting, note that the schemes that did not employ global termweighting on the matrix generally fared as well or better than the schemes that did useglobal weighting on the term document matrix. In particular, compare the weightings withand without a global weight on the term-document matrix. We suggest applying globalweights to the query. The best global weightings were the Inverse Document Frequency (f)and the Probabilistic Inverse (p) weightings.Table 7.11 lists the best weightings (in terms of average precision) for each data set.7.4 Recent Advances in the Vector Space ModelA number of extensions and improvements to the vector space model have been proposed.Most important is the latent semantic indexing (LSI) model described in the next chapter.Here we will give a brief survey of some of the other advances, many of which can also beapplied in the LSI model. 76



Started in 1992, the annual Text REtrieval Conference (TREC) spurned many new de-velopments in information retrieval and �ltering. TREC participants have access to largerealistic document collections with queries and relevance judgments. The TREC collectionsare a few gigabytes in size; for example, the collection used for the third TREC competition isover three gigabytes and contained over one million documents on many di�erent topics [34].Before TREC, test collections were only a few megabytes. In the TREC competition, variousteams test their products against one another. The competition has sparked a wealth of newideas.The SMART group has been among the top competitors in every TREC competition;however, they have had to improve their system to keep up.One modi�cation is the use of term phrases in addition to individual terms. Speci�cally,let any pair of adjacent non-stop words be a potential phrase. The �nal set of term phrasesare those potential phrases that appear in 25 documents or more. This may also a�ectnormalization [10].One of the di�culties in information retrieval is forming the query; it generally containsonly a few terms and can make retrieval extremely di�cult. A number of competitors,including SMART, use something called massive query expansion. The idea is to add manyterms to the query | the problem is determining those terms. Thesaurus look-up is onepossible method, but it can give misleading results for words that have multiple meanings,for example, \foot." The method used in TREC is interesting because it did not work onsmaller test sets. In this case, the �rst few documents, say 25, from the search with thenormal query are assumed to be relevant. Terms from these documents are then used insome way to form a new query with many more terms and the search is repeated. Thismethod works in TREC because the �rst few documents are relevant. In smaller test sets,that is not usually the case [10].Another di�culty in the vector space model is the representation of documents of varyinglength. A long document may cover many topics, but each term would have a very smallweight if column normalization is done (as is done in the SMART \ltc" weighting). Singhal etal. [61] noted that, in the TREC collection, longer documents are statistically more likelyto be relevant than shorter documents. This is because longer documents tend to covermore subjects. Two new weighting schemes were proposed based on two of SMART's bestcompetitors: OKAPI and INQUERY. These weightings were presented in Section 7.2.3. Intests, the new weightings did better than the SMART \ltc" weightings [61]. We includedthese methods in our own tests. The OKAPI weighting did better than the best of all theother weightings tested on the CRANFIELD and CISI data. The INQUERY weighting didnot do well on any test set. Both of these weightings were originally designed for very largedocument collections, so it is not surprising that the INQUERY weighting does poorly. Theconstants should probably be chosen di�erently for short documents like the ones in our testsets.Notice that the Okapi weight, using the modi�ed de�nition of dj , breaks into local andglobal components. The INQUERY weight, on the other hand, is slightly too complicated tobreak into these components. The fraction on the far right, which is almost a global weight,77



is only multiplied by part of the expression.
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Chapter 8Latent Semantic IndexingIn the previous chapter, we described the vector space model for information retrieval. In thischapter we will describe an improvement to this model known as latent semantic indexing andshow how it can be improved using the semi-discrete decomposition described in Chapter 6.This chapter consists of material taken (sometimes verbatim) from Kolda and O'Leary [38,39].8.1 IntroductionOftentimes in information retrieval, users are searching for documents about a concept thatis not accurately described by their list of keywords. For example, a query on a term such as\Mark Twain" is unlikely to retrieve documents that only mention \Samuel Clemens." Wemight know that these are the same people, but the information retrieval systems have noway of knowing. Latent semantic indexing (LSI) is an approach to retrieval that attemptsto automatically discover latent relationships in the document collection.LSI is based on the vector space model described in Chapter 7, but the m � n term-document matrix is replaced by a low-rank singular value decomposition (SVD) approx-imation (see Section 6.5 for more about the SVD) [17]. This approximation to the term-document matrix is optimal in the sense of minimizing the distance between that matrix andall rank-k matrices. LSI has performed well in both large and small tests; see, for example,Dumais [21, 22].Thus far, only the singular value decomposition and its relatives, the ULV and URVdecompositions [2], have been used in LSI. We propose using a very di�erent decomposi-tion, the semi-discrete decomposition (SDD) described in Chapter 6. This decomposition isconstructed via a greedy algorithm and is not an optimal decomposition in the sense thatit minimizes with respect to any norm; however, for equal query times, the SDD does aswell as the SVD method and requires approximately one-tenth the storage. The trade-o� isthat the SDD takes substantially longer to compute for sparse matrices, but this is only aone-time expense. Computational comparisons with the SVD are given in Section 8.4.In many information retrieval settings, the document database is constantly being up-dated. Much work has been done on updating the SVD approximation to the term-document79



matrix [4, 49], but it can be as expensive as computing the original SVD. E�cient algorithmsfor updating the SDD are given in Section 8.5.8.2 LSI via the SVDLSI is an improvement on the vector space model. In LSI, we can use a matrix approximationto the term-document matrix generated by the SVD. The SVD is described in Section 6.5.It can be shown that Ak is the best rank-k approximation to A in the Frobenius norm andin the Euclidean norm [30].The approximation matrix is a \noisy" version of the original matrix. Suppose that\Clemens" and \Twain" often appear together in the document collection. If we then haveone document that only mentions \Twain," then ideally the approximation will add somenoise to the \Clemens" entry as a result of compressing the rank of the matrix. The amountof noise depends on the size of k. For very small values of k, there is lots of noise | usuallytoo much | and as k grows, the noise gets smaller until it completely disappears. At someintermediate value of k, we have about the right amount of noise.We can process queries using our approximation for A:s = qTA � qTAk= qTUk�kV Tk= (qTUk��k )(�1��k V Tk )� ~qT ~A:The scalar � controls the splitting of the �k matrix and has no e�ect unless we re-normalizethe columns of ~A. We will experiment with various choices for � and re-normalization inSection 8.4.1.The SVD has been used quite e�ectively for information retrieval, as documented innumerous reports. We recommend the original LSI paper [17], a paper reporting the e�ec-tiveness of the LSI approach on the TREC-3 dataset [21], and a more mathematical paper[4] for further information on the SVD for LSI.8.3 LSI via the SDDThe SVD produces the best rank-k approximation to a matrix, but generally, even a smallSVD approximation requires more storage than the original matrix if the original matrixis sparse. To save storage and query time, we propose replacing the SVD by the SDD,described in Chapter 6. This decomposition does not reproduce A exactly, even if k = n,but the rank-k approximation can use substantially less storage. The SDD requires only thestorage of 2k(n + m) values from the set f�1; 0; 1g and k scalars. An element of the setf�1; 0; 1g can be expressed using log2 3 bits, although our implementation uses two bits per80



element for simplicity. Furthermore, the SDD requires only single precision scalars becauseit is a self-correcting algorithm; on the other hand, the SVD has been computed in doubleprecision accuracy for numerical stability. Assuming that double precision scalars require8 bytes and single precision scalars require 4, and packing 8 bits in a byte, we obtain thefollowing storage comparison between a rank-k SVD and SDD approximation to an m � nmatrix: Method Component Total BytesU km double precision numbersSVD V kn double precision numbers 8k(m+ n + 1)� k double precision numbersX km numbers from f�1; 0; 1gSDD Y kn numbers from f�1; 0; 1g 4k + 14k(m+ n)D k single precision numbersWe evaluate queries in much the same way as we did for the SVD, by computing s = ~qT ~A,with ~A = D1��k Y Tk ; ~q = D�kXTk q:Again, we generally re-normalize the columns of ~A.For decompositions of equal rank, processing the query for the SDD requires signi�cantlyfewer 
oating-point operations than processing the query for the SVD:Operation SDD SVDAdditions k(m+ n) k(m+ n)Multiplications k k(1 +m+ n)If we re-normalize the columns of ~A then each each method requires n additional multipliesand storage of n additional 
oating point numbers.8.4 Computational Comparison of LSI MethodsIn this section, we present computational results comparing the SDD- and SVD-based LSImethods. All tests were run on a Sparc 20. Our code is in C, with the SVD taken fromSVDPACKC [3]. We will compare the SDD- and SVD-based LSI methods using the sametest sets as we did in the last chapter.8.4.1 Parameter ChoicesWe have two parameter choices to make for the SDD and SVD methods: the choice of thesplitting parameter �, and the choice of whether or not to re-normalize the columns of ~A.81



SDD SVDRe-Normalize? Re-Normalize?� Yes No Yes No0 62.1 61.2 65.1 64.20.5 62.6 61.2 64.7 64.2-0.5 57.9 61.2 64.7 64.21.0 61.7 61.2 64.2 64.2-1.0 48.6 61.2 62.3 64.2Table 8.1: Mean average precision for the SDD and SVD methods with di�erent parameterchoices on the MEDLINE data set with k=100 and weighting lxn.bpx.We experimented with the SVD and SDD methods on the MEDLINE data set using theweighting lxn.bpx. The results are summarized in Table 8.1. In all further tests, we will use� = 0:5 with re-normalization for the SDD method and � = 0 with re-normalization for theSVD method. We experimented using other weighings and other data sets and con�rmedthat these parameter choices are always best or very close to it.8.4.2 ComparisonsWe tried the SDD and SVD methods with a number of weighings. We selected these par-ticular weighings for testing in LSI based on their good performance for the vector spacemethod (see Chapter 7), but we excluded those that included any global weighting on theterm-document matrix. We present mean average precision results in Table 8.2 using a rankk = 100 approximation in each method; this table also includes vector space (VS) results forcomparison. MEDLINE CRANFIELD CISIWeight SDD SVD VS SDD SVD VS SDD SVD VSlxn.bfx 62.6 64.6 54.6 35.7 40.4 45.5 15.6 16.6 17.7lxn.bpx 62.6 65.1 54.6 35.6 39.9 45.5 15.2 16.9 17.8lxn.lfx 61.2 64.0 53.7 35.8 40.3 45.6 16.0 16.6 18.2lxn.lpx 61.3 64.3 53.8 35.5 40.1 45.7 15.5 16.9 18.3lxn.tfx 60.9 63.5 53.2 35.7 40.2 45.6 16.3 16.9 18.4lxn.tpx 60.9 63.8 53.4 35.4 39.9 45.6 15.7 17.0 18.3cxx.bpx 57.9 59.6 53.6 32.9 38.9 43.4 17.1 17.9 17.5cxn.bfx 58.4 62.5 53.6 33.1 38.7 44.1 17.8 16.5 17.4cxn.bpx 58.4 63.0 53.6 32.6 38.7 43.4 18.1 17.6 17.5cxn.tfx 56.8 61.5 52.5 33.3 38.8 43.9 17.1 16.9 18.2cxn.tpx 57.0 61.8 52.6 32.7 38.2 43.3 17.1 17.7 18.2Table 8.2: Mean average precision results for the SDD and SVD methods with k=100.82



To continue our comparisons, we select a \best" weighting for each data set. In Table 8.2we have highlighted the \best" results for each data set in boldface type. We will use onlythe corresponding weighings for the remainder of the paper, although further experimentsshow similar results for other weighings.In Figures 8.1 { 8.3, we compare the SVD and SDD methods on the data sets.In Figure 8.1, we present results for the MEDLINE data. The upper right graph plots themean average precision vs. query time, and the upper left graph plots the median averageprecision vs. query time. (The query time is the total time required to execute all queries as-sociated with the data set.) Observe that the SDD method has maximal precision at a querytime of 3.4 seconds, corresponding to k = 140, a mean average precision of 63.6 and a medianaverage precision of 71.4. The SVD method reaches its peak at 8.4 seconds, correspondingto k = 110, and mean and median average precisions of 65.5 and 71.7 respectively.In terms of storage, the SDD method is extremely economical. The middle left graph plotsmean average precision vs. decomposition size in megabytes (MB), and the middle right graphplots median average precision vs. the decomposition size. Note that a signi�cant amount ofextra storage space is required in the computation of the SVD; this is not re
ected in thesenumbers. From these plots, we see that even a rank-30 SVD takes 50% more storage than arank-600 SDD, and each increment of 10 in rank adds approximately 0.5 MB of additionalstorage to the SVD. The original data takes only 0.4 MB, but SVD requires over 1.5 MBbefore it even begins to come close to what the SDD can do in less than 0.2 MB.The lower left graph illustrates the growth in required storage as the rank of the de-composition grows. For a rank-600 approximation, the SVD requires over 30 MB of storagewhile the SDD requires less than 1 MB.It is interesting to see how good these methods are at approximating the matrix. Thelower right graph shows the Frobenius norm (F-norm) of the residual, divided by the Frobe-nius norm of the original matrix, as a function of storage (logarithmic scale). The SVDeventually forms a better approximation to the term-document matrix, making it behavemore like the vector space method. This is not necessarily desirable.The CRANFIELD dataset is troublesome for LSI techniques; they do not do as well asthe vector space method. From the upper two graphs in Figure 8.2 we see that, for equalquery times, the SDD method does as well as the SVD method. The other graphs showthat, as in the MEDLINE test, the SDD is much more economical in terms of storage andachieves a somewhat less accurate approximation of the matrix.In Figure 8.3 we compare the SVD and SDD methods on the CISI data. The SDD methodis better overall than the SVD method in terms of query time, and its mean average precisionpeaks higher than the SVD method | 19.1 versus 18.3. Again, the storage di�erences aredramatic.Table 8.3 compares the two methods for the query time at which the SDD method peakson mean average precision. On all three data sets, the SDD has higher mean and medianprecisions than the SVD. Since all the methods have similar performance in terms of the meanand median average precision, observe that the trade-o� is in the decomposition computationtime and the decomposition storage requirement; the SVD is much faster to compute, but83
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the SDD is much smaller.The results on the three data sets can be summarized as follows: the SDD method iscompetitive with the SVD method for information retrieval. For equal query times, the SDDmethod generally has a better mean and median average precision. The SDD requires muchless storage and may be the only choice when storage is at a premium. The only disadvantageis the long time required for the initial decomposition, but this is generally a one-time-onlyexpense. Further research should be done on improving the decomposition algorithm.8.5 Modifying the SDD when the Document Collec-tion ChangesThus far we have discussed the usefulness of the SDD on a �xed document collection. Inpractice, it is common for the document collection to be dynamic: new documents are added,and old documents are removed. Thus, the list of termsmight also change. In this section, wewill focus on the problem of modifying a SDD decomposition when the document collectionchanges.SVD-updating has been studied by O'Brien [49]. He reports that updating the SVD takesalmost as much time as re-computing it, but that it requires less memory. His methods aresimilar to what we do in Method 1 in the next section.8.5.1 Adding or Deleting DocumentsSuppose that we have an SDD approximation for a document collection and then wish to addmore documents. Rather than compute a new approximation, we will use the approximationfrom the original document collection to generate a new approximation for the enlargedcollection.Let m1 and n1 be the number of terms and documents in the original collection, n2 be thenumber of documents added, and m2 be the number of new terms1. Let the new documentcollection be represented as A = " A11 A12A21 A22 #where� A11 is an m1 � n1 matrix representing the original document collection,� A12 in an m1 � n2 matrix representing the new documents indexed by the m1 termsused in the original collection,1Recall that a term is any word which appears at least twice in the collections and is not a stop word.The addition of new documents may add new terms, some of which may have appeared once in the originaldocument collection. 87



� A21 is an m2 � n1 matrix representing the original documents indexed by the newlyintroduced terms, and� A22 is an m2�n2 matrix representing the new documents indexed by the newly intro-duced terms.Assume that X(1), D(1), and Y (1) are the components of the SDD approximation forA11. We propose two methods for updating this decomposition. Each methods is a two-stepprocess: In the �rst step, we incorporate the new documents using the existing terms, andin the second step, we incorporate the new terms (for both old and new documents).Method 1: Append rows to Y (1) and X(1). The simplest update method is to keep theexisting decomposition �xed and just append new rows corresponding to the new terms anddocuments. The D will not be recomputed, so the �nal D is given byD = D(1):To incorporate the documents (the �rst step), we want to �nd Y (2) 2 Sn2�k such thath A11 A12 i � X(1)D " Y (1)Y (2) #T :Let kmax be the rank of the decomposition desired; generally this is the same as the rankof the original decomposition. For each value of k = 1; : : : ; kmax, we must �nd the vector ythat solves miny2Sn2 kA(c) � dxyTkF ;where A(c) = A12�X(1)k�1Dk�1(Y (2)k�1)T , x is the kth column of X(1), and d is the kth diagonalelement of D. We never access A11, and this may be useful in some situations. The solutiony becomes the kth column of Y (2). The �nal Y is given byY = " Y (1)Y (2) # :To incorporate the terms, we want to �nd X(2) 2 Sm2�k such thatA = " A11 A12A21 A22 # � " X(1)X(2) #DY T :We �nd X(2) in a analogous way to �nding Y (2). For each k = 1; : : : ; kmax, we must �nd thevector x that solves minx2Sm2 kA(c) � dxyTkF ;where A(c) = h A21 A22 i �X(2)k�1Dk�1(Yk�1)T , y is the kth column of Y , and d is the kthdiagonal element of D. Again, we never access A11 for this computation. The �nal X isgiven by X = " X(1)X(2) # :88



Method 2: Re-Compute Y and D, then X and D. Another possible method is tocompletely re-compute Y and D (holding X �xed) to incorporate the documents, and thenrecompute X and D, holding Y �xed.Speci�cally, to incorporate the documents, we �rst want to �nd D(2) and Y such thath A11 A12 i � X(1)D(2)Y;where Y has no superscript because it will be the �nal Y .To do this, let kmax be the rank of the decomposition desired. For each k = 1; : : : ; kmax,we must �nd the d and y that solvemind>0y2Sn kA(c) � dxyTkF ;where A(c) = A � X(1)k�1D(2)k�1Y Tk�1 and x is the kth column of X(1). The solutions d and ybecome the kth diagonal element of D(2) and the kth column of Y respectively.To incorporate the documents, we wish to �nd X and D such thatA = " A11 A12A21 A22 # � XDY T :This is similar to how we computed Y and D(2) in the �rst step. For each k = 1; : : : ; kmax,we must �nd the d and x that solvemind>0x2Sm kA(c) � dxyTkF ;where A(c) = A�Xk�1Dk�1Y Tk�1 and y is the kth column of Y . The solutions d and x becomethe kth diagonal element of D and the kth column of X respectively.Neither method has any inner iterations, and so both are fast. We tried each updatemethod on a collection of tests derived from the MEDLINE data. We split the MEDLINEdocument collection into two groups. We did a decomposition on the �rst group of documentswith k = 100, then added the second group of documents to the collection, and updated thedecomposition via each of the two update methods. The results are summarized in Table 8.4.The second method is better, as should be expected since we are allowing more to change.For the second method, the decrease in mean average precision is not very great when we addonly a small number of documents. As the proportion of new documents to old documentsgrows, however, performance worsens.If we wish to delete terms or documents, we simply delete the corresponding rows in theX and Y matrices.8.5.2 Iterative Improvement of the DecompositionIf we have an existing decomposition, perhaps resulting from adding and/or deleting doc-uments and terms, we may wish to improve on this decomposition without actually re-computing it. We consider two approaches. 89



Method 1 Method 2Documents Decomp Time Mean Time MeanOld New Time (Sec) (Sec) Avg Prec (Sec) Avg Prec1033 { 150.5 { 62.18 { 62.18929 104 138.3 10.5 60.10 13.8 61.83826 207 122.1 10.4 58.44 13.7 61.80723 310 103.6 10.2 54.59 13.4 62.46619 414 94.2 10.2 47.70 13.2 59.28516 517 77.5 10.1 39.11 12.9 58.76413 620 60.7 9.9 34.00 12.6 58.83309 724 45.6 9.5 18.98 12.1 57.19206 827 26.2 9.6 18.50 11.7 52.29103 930 14.9 9.4 16.26 11.1 51.38Table 8.4: Comparison of two update methods on the MEDLINE data set with k = 100.Method 1: Partial Re-Computation In order to improve on this decomposition, wecould reduce its rank by deleting 10% of the vectors and then recompute them using ouroriginal algorithm. This method's main disadvantage is that it can be expensive in time. Ifperformed on the original decomposition, it has no e�ect.Method 2: Fix and Compute. This method is derived from the second update method.We �x the current X and re-compute Y and D; we then �x the current Y and re-computethe X and D. This method is very fast because there are no inner iterations. This can berepeated to further improve the results. If applied to an original decomposition, it wouldchange it.We took the decompositions resulting from the second update method in the last sub-section and applied the improvement methods to them. We have a rank-100 decomposition.For the �rst improvement method, we re-computed 10 dimensions. For the second improve-ment method, we applied the method once. The results are summarized in Table 8.5. If wehave added only a few documents, the �rst method improves the precision while the secondmethod worsens it. On the other hand, if we have added many documents, then the secondmethod is much better. The �rst method could be improved by re-computing more dimen-sions, but this would quickly become too expensive. The second method greatly improvespoor decompositions and is relatively inexpensive. It can be applied repeatedly to furtherimprove the decomposition.
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Method 1 Method 2Documents Prev Mean Time Mean Time MeanOld New Avg Prec (Sec) Avg Prec (Sec) Avg Prec1033 { 62.16 13.5 61.85 22.9 62.16929 104 61.83 13.4 61.22 20.8 61.45826 207 61.80 13.5 62.03 19.8 61.51723 310 62.46 13.4 61.89 21.6 61.91619 414 59.28 13.6 61.42 19.6 58.70516 517 58.76 13.5 59.32 19.2 59.43413 620 58.83 13.4 61.55 20.2 59.68309 724 57.19 13.6 59.59 20.1 57.94206 827 52.29 13.4 57.63 21.2 54.35103 930 51.38 13.4 56.46 22.7 53.88Table 8.5: Comparison of two improvement methods on the MEDLINE data set with k =100.
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Chapter 9ConclusionsWe have explored two applications of limited memory methods. In each case, we consideredtheoretical and experimental results.For optimization problems, we characterized which limited-memory quasi-Newton meth-ods �tting a general form (3.1) have the property of producing conjugate search directions onconvex quadratics. We showed that limited-memory BFGS is the only Broyden Family mem-ber that has a limited-memory analog with this property. We considered update-skipping,something that may seem attractive in a parallel environment. We show that update skip-ping on quadratic problems is acceptable for full-memory Broyden Family members in thatit only delays termination, but that we lose the property of �nite termination if we bothlimit memory and skip updates. Then we introduced simple-to-implement modi�cations ofthe standard limited-memory BFGS algorithm that are promising on test problems.There are a number of directions for future work in this area. The results that havebeen presented here apply to quasi-Newton methods that use an exact line search, but itwould be useful to know what happens with methods that are not perfect. This extendsfurther into the realm of possible limited-memory quasi-Newton methods for solving non-linear equations. Little work has been done in this area although there is promise for excitingnew methods. Other potential work includes developing the hybrid SR1-BFGS methodpreviously mentioned and implementing the new limited-memory methods in parallel.In the information retrieval application, we introduced a semi-discrete matrix decompo-sition for use in LSI. We showed that the approximation generated by the SDD convergeslinearly to the true matrix.We showed how the SDD can be used to improve the performance of LSI. For equalquery times, the SDD-LSI method performs as well as the original SVD-LSI method. Theadvantage of the SDD method is that the decomposition takes very little storage and thequery times are faster; the disadvantage is that the initial time to form the decompositionis large. Since decomposition is a one-time expense, we believe that the SDD-LSI algorithmwill be quite useful in application.We also introduced methods to dynamically change the SDD decomposition if the doc-ument collection changes and methods to improve the decomposition if it is found to beinadequate. 92



The LSI-SDD method is an exciting new approach to information retrieval, and futurework in this area would be to develop a full-scale system that can index gigabytes of text.
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Appendix ALine Search ParametersTable A.1 give the line search parameters used for our code. Note that in the �rst iteration,the initial steplength is kg0k�1 rather than 1.0.Variable Value DescriptionSTP 1.0 Step length to try �rst.FTOL 1:0 � 10�4 Value of !1 in Wolfe conditions.GTOL 0.9 Value of !2 in Wolfe conditions.XTOL 1:0 � 10�15 Relative width of interval of uncertainty.STPMIN 1:0 � 10�15 Minimum step length.STPMAX 1:0� 1015 Maximum step length.MAXFEV 20 Maximum number of function evaluations.Table A.1: Line Search Parameters
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Appendix BPseudo-CodeB.1 L-BFGS: Algorithm 0The pseudo-code for the computation of dk = �Hkgk at iteration k for L-BFGS is given inFigure B.2. The update of H is also handled implicitly in this computation.B.2 Varying m iteratively: Algorithms 1{4Suppose that mk denotes the number of (s; y) pairs to be used in the kth update. Thensimply chose sze as the minimum of oldsze + 1 and mk before computing dk.B.3 Disposing of Old Information: Algorithm 5If the disposal criterion is met at iteration k, set oldsze to zero and sze to one beforecomputing dk.B.4 Backing Up in the Update to H: Algorithms 6-11If we are to back-up at iterations k, set oldsze to the one less than the previous value ofsze and set sze as the minimum of oldsze + 1 and m, as usual.B.5 Merging s and y Information in the Update: Al-gorithms 12 and 13Merging is the most complicated variation to handle. Before we determine the newest szeand before we compute dk, we execute the pseudo-code given in Figure B.1. We then setoldsze to one less than the previous value of sze and set sze as the minimum of oldsze +95



% Compute d_k = -H_k g_kif (sze == 0)d = -g;else% Step 0idx = 2 - (sze - oldsze);% Step 1S = [S(:,idx:oldsze),s]; Y = [Y(:,idx:oldsze),y];% This is needed for Step 3 before we overwrite Stg and YtgStoldg = [Stg(idx:oldsze); s'*oldg];Ytoldg = [Ytg(idx:oldsze); y'*oldg];% Step 2Stg = S'*g; Ytg = Y'*g;% Step 3Sty = Stg - Stoldg;Yty = Ytg - Ytoldg;% Step 4rho = 1.0/Sty(sze);invU = [invU(idx:oldsze,idx:oldsze) - ...rho*invU(idx:oldsze,idx:oldsze)*Sty(1:sze-1)zeros(1,sze-1) rho];% Step 5YtY = [YtY(idx:oldsze,idx:oldsze) Yty(1:sze-1)(Yty(1:sze-1))' Yty(sze)];% Step 6D = [D(idx:oldsze), Sty(sze)];% Step 7gamma = Sty(sze)/Yty(sze);% Step 8p1 = invU*Stg;p2 = invU*(gamma*YtY*p1 + diag(D)*p1 - gamma*Ytg);% Step 9d = gamma*Y*p1 - S*p2 - gamma*g;endFigure B.1: MATLAB pseudo-code for the computation of d = Hg in L-BFGS. sze isthe number of s vectors available for the update this iteration and oldsze is the numberof s vectors that were available the previous iteration. For L-BFGS, sze is chosen as theminimum of oldsze + 1 and m (the limited-memory constant).96



1 and m, as usual. We are assuming we are at iteration k, but that the newest values of sand y have not yet been added to S and Y.% Execute before choosing new value for sze% and before computing dS(:,sze-1) = S(:,sze) + S(:,sze-1);Y(:,sze-1) = Y(:,sze) + Y(:,sze-1);Stg(sze-1) = S(:,sze-1)'*g;Ytg(sze-1) = Y(:,sze-1)'*g;delta = S(:,sze-1)'*Y(:,sze-1);rho = 1.0/delta;invU = ...[invU(1:sze-2,1:sze-2) - ...rho*invU(1:sze-2,1:sze-2)*S(:,1:sze-2)'*Y(:,sze-1)zeros(1,sze-2) rho];temp = YtY(1:sze-2,sze-1) + YtY(1:sze-2,sze);YtY = [YtY(1:sze-2,1:sze-2) temptemp' Y(:,sze-1)'*Y(:,sze-1)];D = [D(1:sze-2), delta];Figure B.2: MATLAB pseudo-code for the merge variation. This �xes the values of thecomponents that are used in the computation of dk.B.6 Skipping Updates to H: Algorithms 14{16To skip the update at iteration k, set sze to oldsze. Compute Stg and Ytg before Step 0and then skip to Step 8 and continue.
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