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This dissertation focuses on the numerical analysis and scientific computation

of two classes of nonlinear variational problems that originate from materials sci-

ence: the large deformation of plates with metric constraint and constrained energy

minimizations for nematic liquid crystals (LCs).

For the former, we design a local discontinuous Galerkin method (LDG) fi-

nite element approach for prestrained and bilayer plates, and the LDG hinges on

the notion of reconstructed Hessian. We consider both Dirichlet and free bound-

ary conditions, the former imposed on part of the boundary. In order to solve the

ensuing discrete minimization problems subject to nonconvex metric constraints,

we propose discrete gradient flow schemes. We prove Γ-convergence of the discrete

energy to the continuous energy for each problem. Then we prove that the discrete

gradient flow decreases the energy at each step and computes discrete minimizers

with controllable discrete metric constraint violation. We present several insight-



ful numerical experiments for each problem, some of practical interest, and assess

various computational aspects of the approximation process.

For LCs we focus on the one-constant Ericksen model that couples a direc-

tor field with a scalar degree of orientation variable, and allows the formation of

various defects with finite energy. We propose a simple but novel finite element ap-

proximation of the problem that can be implemented easily within standard finite

element packages. Our scheme is projection-free and thus circumvents the use of

weakly acute meshes, which are quite restrictive in 3d but are required by recent

algorithms for convergence. We prove stability and Γ-convergence properties of the

new FEM in the presence of defects. We also design an effective nested gradient

flow algorithm for computing minimizers that in turn controls the violation of the

unit-length constraint of the director. We present several simulations in 2d and 3d

that document the performance of the proposed scheme and its ability to capture

quite intriguing defects.
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Chapter 1: Introduction

The study of materials science has evolved to an interdisciplinary area, in

which physicists, engineers and applied mathematicians share common interests.

In the past several decades, in order to describe the physical essence of material

behavior, there have been significant efforts in developing new mathematical models

and analysis of materials. Meanwhile, the design of suitable numerical methods for

these mathematical models becomes more challenging because they involve such

diverse areas as the calculus of variations, convex analysis, optimization, numerical

analysis of PDEs, and scientific computation. For example, variational problems

with non- linear, non-convex constraints frequently appear in this area, and the

nonlinearity usually makes the numerical analysis quite demanding.

This dissertation focuses on two classes of such problems: the large deforma-

tion of plates with metric constraints and the constrained energy minimization for

nematic liquid crystals. The first part involves the study of prestrained plates and

bilayer plates, which have rich applications in natural and manufactured phenomena

such as nematic glasses [56, 57], natural growth of soft tissues [42, 80], manufactured

polymer gels [51, 52, 79] and biomedical devices [45, 46, 66, 75]. The second part

focuses on a new finite element method designed for the Ericksen model of nematic
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LCs. It well-known that nematic LCs, a mesophase in between crystalline solid

and isotropic liquid, represent a host of numerous potential applications in material

science; we refer to [1, 5, 18].

1.1 A general framework

For all the problems considered in this dissertation, mathematical models are

constrained minimization problems. In other words, we need to minimize an en-

ergy functional E[y] (E[s,n] respectively in chapter 4) within an admissible set

y ∈ A ((s,n) ∈ A respectively). The admissible sets A contain nonconvex nonlin-

ear constraints. Our goal is to design proper discrete energies Eh[yh] (Eh[sh,nh]

respectively) and discrete admissible sets yh ∈ Ah,ε ((sh,nh) ∈ Ah,ε respectively)

that approximate the continuous energies E and admissible sets A.

We prove the Γ-convergence of discrete energies Eh for each problem. In

particular, we say Eh[yh] Γ-converges to E[y] if the following conditions are valid:

• Lim-inf condition: Let {yh} ⊂ Ah,ε be a sequence such that yh → y in L2 up

to a subsequence as h, ε→ 0, then

E[y] ≤ lim inf
h→0

Eh[yh];

• Lim-sup condition: For every y ∈ A, there exists a recovery sequence {yh} ⊂
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Ah,ε converging to y in L2 as h, ε→ 0 such that

E[y] ≥ lim sup
h→0

Eh[yh].

Furthermore, in each chapter and in order to compute solutions to the discrete

minimization problems, we design iterative schemes. In fact, we relax and linearize

the nonconvex constraints at each step. For these schemes, we show the energy

stability of discrete energies and prove a control of constraints violations.

1.2 Large deformation of plates with metric constraint

1.2.1 Prestrained plates

Prestrained materials can develop internal stresses at rest, deform out of plane

without an external force and exhibit nontrivial 3d shapes. The derivation of dimen-

sionally reduced models for plates is essential in elasticity, and one would express

the equilibrium states of plates by 2d deformations of the mid-plane. Starting from

the Saint Venant energy in 3d hyperelasticity, a geometrically nonlinear, dimen-

sionally reduced energy for isotropic prestrained plates was derived rigorously via

Γ-convergence in [17]. If y : Ω → R3 is a 2d deformation of the plate Ω, I[y] and

II[y] are the first and second fundamental forms of the deformed plate y(Ω), the

elastic bending energy reads

E[y] =
µ

12

ˆ
Ω

∣∣∣g− 1
2 II[y]g−

1
2

∣∣∣2 +
λ

2µ+ λ
tr
(
g−

1
2 II[y]g−

1
2

)2

, (1.2.1)
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and is subject to the metric constraint

I[y](x) = g(x) ∀x ∈ Ω, (1.2.2)

where g is a given 2 × 2 symmetric positive definite matrix, λ and µ are Lamé

parameters of the material. In the special case of g = I2 (i.e. y is an isometry), a

formal derivation of (1.2.1) can be traced back to Kirchhoff in 1850, and an ansatz-

free rigorous derivation was carried out in the seminal work [39].

Our goal is to find y ∈ [H2(Ω)]3 that minimizes the bending energy (1.2.1)

subject to the nonlinear, non-convex metric constraint (1.2.2). We conduct a for-

mal asymptotic analysis under a modified Kirchhoff-Love assumption to reproduce

(1.2.1) and (1.2.2). We next show an equivalent formulation that basically replaces

II[y] by the Hessian D2y in (1.2.1), which makes the constrained minimization prob-

lem amenable to computation.

The case g = I2 has already been discretized with Kirchhoff element [10] and

discontinuous Galerkin methods with interior penalty (DGIP) [22] were used to

discretize this problem. For prestrained plates, for which g is in general different

from I2, the second term of (1.2.1) cannot be absorbed into the first one, which

makes the possible formulation of DGIP too complicated to use.

We introduce a local discontinuous Galerkin (LDG) approach for the dis-

cretization of the reduced energy (1.2.1), and to the best of our knowledge, our

effort is the first FEM accompanying numerical analysis proposed on the prestrained

plates. We summarize the significant ingredients and advantages of our discretiza-
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tion as follows.

• Discrete Hessian. The fundamental idea of LDG is to replace the Hessian in

(1.2.1) by a reconstructed discrete Hessian. Such discrete Hessian Hh[yh] con-

sists of three distinct parts: the broken Hessian D2
hyh, the lifting Rh([∇hyh])

of the jump of the broken gradient ∇hyh of yh, and the lifting Bh([yh]) of

the jumps of yh itself. LDG method was originally introduced in [32]. Lifting

operators were introduced in [15] and analyzed in [29, 30]. The definition of

Rh and Bh is motivated by the liftings of [62, 63] leading to discrete gradient

operators. Discrete Hessians were instrumental to study convergence of DG

for the bi-Laplacian in [65] and plates with isometry constraint in [22]. In

the present contribution, Hh[yh] makes its debut as a chief constituent of the

numerical method.

• Linear solver. We relax the pointwise metric constraint by using its integral on

elements to make it computable. In order to compute minimizers, we propose

a discrete H2-gradient flow with linearized constraint to decrease the discrete

energy while keeping the metric constraint defect under control.

• Γ-convergence. We prove the Γ-convergence of the discrete energy for both

Dirichlet and free boundary conditions. We emphasize that the latter was

never discussed in previous numerical analysis works for this type of problem,

for instance [13, 22].

• Initialization. If an explicit expression of y that satisfies the metric constraint

5



(1.2.2) is known, then it is natural to take an interpolation of such a y as the

initialization of the gradient flow. However, this is not readily accessible for a

general g. Therefore, we propose a reasonable construction of an initialization

that has a small violation of the metric constraint and a bounded discrete

energy, which are provably important to control the constraint violation at

the end of gradient flow.

• Numerical experiments. We present interesting numerical experiments to in-

vestigate the performance of the proposed method and the model capabilities

for the cases with and without boundary conditions, and some of practical

interest. Our simulations are done with the finite element library deal.ii [7].

• Advantages of LDG. Since Kirchhoff element and DGIP have been studied

for this type of problem, we compare LDG with them. First, a DG method

is more standard to implement and requires fewer polynomial degrees than

Kirchhoff element. Second, in contrast to DGIP, the stabilization parameters

for LDG must be positive for stability but not necessarily large. Last but not

least, the formulation of LDG is conceptually simpler and its CPU time is less

than DGIP.

The discussion in chapter 2 corresponds to the works presented in [19, 20].

1.2.2 Bilayer plates

Bilayer plates are made of two films with different material properties attached

together. These layers react differently to non-mechanical stimuli, such as thermal,
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electrical, chemical actuation [49, 50, 73]. Bilayer plates can develop large bending

deformations without external force.

Bilayer plates can be modeled as thin 3d elastic bodies as in Fig. 1.1. For

bilayer plates, a 2d model for the bending behavior of them has been rigorously de-

rived and analyzed from 3d hyperelasticity in [67, 68]. A formal dimension reduction

model allowing for various effects is presented in [13]. The 2d model as thickness

s → 0 consists of a nonlinear minimization problem with a nonconvex metric con-

straint. The resulting bending energy functional involves second order derivatives

of deformation y, while the constraint enforces deformations to be isometries, i.e.

the first fundamental form of the deformed mid-surface equals to identity.

Figure 1.1: Bilayer plates: Ω × (−s/2, s/2). Ω ⊂ R2 is the mid-plane (bounded
Lipschitz domain) and s is the thickness parameter. Ω× (−s/2, 0) and Ω× (0, s/2)
represent the two layers of different materials.

Mathematically, the bilayer plates develop an intrinsic spontaneous curvature

tensor Z and the deformation y : Ω → R3 of the midplane Ω ⊂ R2 minimizes the

elastic energy

E[y] =
1

2

ˆ
Ω

∣∣∣II[y]− Z|2, (1.2.3)

such that y is an isometry, i.e, y satisfies (1.2.2) with g = I2. Expanding (1.2.3)

and observing that |II[y]|2 = |D2y|2 for isometries, we can expect that the nonlinear
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term arising from the cross-product

ˆ
Ω

II[y] : Z =
2∑

ij=1

ˆ
Ω

∂ijy · (∂1y × ∂2y)Zij (1.2.4)

is the most demanding part of the problem. This brings additional nonlinearities.

In [12, 13], a discretization based on Kirchhoff element is developed for the

bilayer plates and its Γ-convergence is proved in [13]. The analysis of [13] requires

a special definition of unit normal to the discrete plate, namely

∂1yh
|∂1yh|

× ∂2yh
|∂2yh|

(1.2.5)

which turns out to complicate the numerical scheme and makes it highly nonlinear.

An iterative scheme that decreases energy is proposed in [13], and in each step a

fixed point sub-iteration is conducted to solve the discrete nonlinear equation. In

contrary, a recent work [14] also considers the Kirchhoff element, but avoids the

use of (1.2.5). It then has a fully practical gradient flow scheme that requires only

solving linear systems in each step. Energy decreasing property of the new scheme

and the Γ-convergence of the new formulation are proved, and the key new ingredient

of analysis is an a priori L∞(Ω)-bound for the first derivatives ∂iyh. Moreover, a

recent computational work [23] presents a DGIP approximation of the problem

(1.2.3), and also proposes a fully practical scheme as in [14], but without supporting

theory.

Motivated by [14, 23] and advantages of LDG indicated in Section 1.2.1, we
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design a LDG approach for the problem (1.2.3). We summarize the originalities and

strengths of our method as follows.

• Reduced discrete Hessian. We recall that the LDG method hinges on the re-

constructed Hessian, but for the bilayer problem we further need a reduced

discrete Hessian to guarantee the Γ-convergence theory. In fact, we construct

the reduced discrete Hessian H̃h[yh] by local L2-projection of Hh[yh] and re-

place (1.2.4) by the discrete counterpart

2∑
i,j=1

∑
T∈Th

|T |
[
(H̃h[yh]ij · (∂1yh × ∂2yh)Zij

]
(xT ), (1.2.6)

where xT is the barycenter of each element T .

• Discrete isometry constraint. We impose the discrete isometry constraint as

∣∣[∇yTh∇yh − I2

]
(xT )

∣∣ ≤ δ(h) (1.2.7)

at barycenters for any element T with parameter δ(h) → 0 as h → 0. Com-

pared with [23], this is a novel way of imposing the metric constraint discretely

in the DG context, and helps with the Γ-convergence theory.

• Γ-convergence. Other than the term (1.2.6) that is cubic in yh, all remaining

terms in the discrete energy can be treated as in Section 1.2.1 using LDG.

With this new discretization, we prove the Γ-convergence for the first time in

the setting of DG for bilayer plates.
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• Linear solver. In contrast to [12, 13], we design a fully linear and practical

gradient flow scheme. Although the discrete constraint (1.2.7) is nonlinear and

nonconvex, and the variational derivative of (1.2.6) in the discrete energy is

nonlinear in yh, we linearize (1.2.7) and treat the variation of (1.2.6) explicitly

at each step of iterations. We prove the energy stability with a condition on

time-step and the control of constraint violation.

The discussion in chapter 3 corresponds to the work presented in [24].

1.3 Constrained energy minimization for nematic liquid crystals

We consider the one-constant Ericksen model for nematic LCs with variable

degree of orientation [33, 37], which lies between the Oseen-Frank director model

and the Landau - de Gennes Q-tensor model. The state of the LC is described

by a director field n and a scalar function s, which satisfy the constraints |n| =

1 and −1/(d − 1) < s < 1 for the space dimension d = 2, 3. The director n

indicates the preferred orientations of LC molecules, while s represents the degree

of alignment that molecules have with respect to n, both in the sense of local

probabilistic average. The equilibrium state is given by an admissible pair (s,n)

that minimizes the Ericksen’s energy

E[s,n] =
1

2

ˆ
Ω

(
κ|∇s|2 + s2|∇n|2

)
+

ˆ
Ω

ψ(s). (1.3.1)
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under a unit length constraint |n| = 1 and κ > 0 constant; the constraint on s is

enforced by the double well potential ψ. We refer to [4, 54] for early analysis of the

Ericksen model.

If s can be approximated by a non-vanishing constant, then the energy (1.3.1)

reduces to the Oseen-Frank energy E[n] = κ
2

´
Ω
|∇n|2, whose minimizers are har-

monic maps and have been extensively studied, e.g., in [28, 70]. However, the sim-

pler Oseen-Frank model has severe limitations in capturing defects: it only admits

point defects with finite energy for d = 3. In contrast, the Ericksen model (1.3.1)

allows for n /∈ [H1(Ω)]d and compensates blow up of ∇n by letting s to vanish,

which is the mechanism for the formation of a variety of line and surface defects for

d = 2, 3. This physical process leads to a degenerate Euler-Lagrange equation for

n that poses serious difficulties to formulate mathematically sound algorithms to

approximate (1.3.1) and study their convergence.

Several numerical methods for the Oseen-Frank model have been proposed

[3, 9, 55]. Finite element methods (FEMs) for the Ericksen model are designed in

[8, 31, 59, 60, 77]; see also the recent review [25]. In contrast to [8], a fundamental

structure of (1.3.1) is exploited in [59, 60] to design and analyze FEMs that handle

the inherent degeneracy of (1.3.1) without regularization and enforce the constraint

|n| = 1 robustly. Stability and convergence properties via Γ-convergence are proved

in [59, 60], pioneering results in this setting. They hinge on a clever discrete energy

that mimics the structure of (1.3.1) discretely but, unfortunately, is cumbersome to

implement in standard software packages and requires weakly acute meshes. The

latter ensures that the projection of discrete director fields onto the unit sphere is
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energy decreasing, and thus compatible with the quasi-gradient flow, but is quite

restrictive and difficult to implement for d = 3 and domains with non-trivial topol-

ogy.

We propose a projection-free FEM scheme that avoids dealing with weakly

acute meshes. Without the projection step, the unit length constraint |n| = 1 is no

longer satisfied exactly but instead is relaxed at each step of our iterative solver, a

nested gradient flow. The latter guarantees control of the violation of |n| = 1 and

asymptotic enforcement of it. We summarize the chief novelties and advantages of

our approach as follows.

• Shape regular meshes. Partitions of Ω are assumed to be only shape regular,

which allows for the use of software with general mesh generators such as

Netgen [69]. Avoiding weakly acute meshes is important in 3d to deal with

interesting but non-trivial geometries. An earlier work achieving this goal is

[77], which presents a mass-lumped FEM with a consistent stabilization term

involving s2∇nTn for the generalized Ericksen energy.

• Standard algorithm. Our novel discretization of (1.3.1) is straightforward, re-

quires no stabilization, and is easy to implement in standard software packages

such as NGSolve [69]. In contrast to [59, 60], our FEM does no longer exploit

the structure of (1.3.1) but its analysis does.

• Linear solver. We propose a nested gradient flow that, despite the nonlinear

nature of the problem, is fully linear to compute minimizers. The inner loop

to advance the director field n for fixed degree of orientation s is allowed
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to subiterate. This turns out to induce an acceleration mechanism for the

computation and motion of defects. For a recent acceleration techniques based

on a domain decomposition approach, we refer to [31].

• Γ-convergence. The analysis of our FEM hinges heavily on the underlying

structure of (1.3.1) and relies on the notion of L2-gradient on n [38, The-

orem 6.2]; see Proposition 4.1.1. Such a notion was already used in [26] in

the context of the uniaxial Q-tensor LC model. We prove stability and Γ-

convergence. Our results are similar to those in [59, 60, 77] but the way to the

discrete structure is new.

• Numerical experiments. We present several simulations. Some are meant to

compare the new algorithm with the existing literature in terms of performance

and ability to capture defects. Other experiments explore 3d intriguing con-

figurations such as the propeller defect and a configuration more challenging

than the Saturn ring.

The discussion in chapter 4 corresponds to the work presented in [58].

1.4 Outline

Chapter 2 is concerned with the numerical treatment of the large deforma-

tion of prestrained plates. We start with a justification of a 3d elastic energy E[u]

for prestrained plates followed by a formal derivation of (1.2.1) and (1.2.2) as the

asymptotic limit of s−3E[u] as s → 0. Moreover, we show an equivalent formula-
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tion that basically replaces the second fundamental form II[y] by the Hessian D2y,

which makes the constrained minimization problem amenable to computation.Then,

we introduce the LDG type discretization, give the definition of the discrete Hes-

sian Hh[yh] and the discrete energy Eh, as well as preliminary key properties of the

discrete functions, such as discrete Poincaré-Friedrich type inequalities. Later, we

prove weak and strong convergence properties of Hh[yh], and apply them to prove

the Γ-convergence of Eh for both Dirichlet boundary condition case and free bound-

ary case. Next, we introduce the gradient flow scheme used to solve the discrete

problem, and prove the unconditional stability and control of violation of the metric

constraint for it. We also discuss the effect of flow metric on the discrete solution

in the free boundary case. Subsequently, we discuss the scheme that is designed

for the initialization and illustrate its effectiveness. Finally, we present numerical

simulations for prestrained plates and show performance of our algorithms.

We present the new numerical method for large deformation of bilayer plates

in Chapter 3, following the LDG type discretization considered in Chapter 2, and

especially the use of discrete Hessian Hh[yh]. We start by introducing the bilayer

plates model and its simplification. Then, we present the corresponding discrete

energy, and emphasize the novel reduced discrete Hessian H̃h[yh] and the new way

of imposition of the discrete admissible set. Afterwards, we prove the Γ-convergence

of the discrete energy. Subsequently, we design an explicitly linearized, practical

discrete gradient flow scheme, and prove its conditional energy stability and the

control of the constraint. Eventually, we illustrate our method by showing several

numerical examples.
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Chapter 4 is devoted to the new FEM method for the Ericksen’s model of

the nematics liquid crystals. First, we describe the Ericksen model for LCs with

variable degree of orientation and discuss its key structure. Second, we introduce

our discretization of the model and discuss our Γ-convergence result. Then we

present our iterative scheme for the computation of discrete local minimizers. Last

but not least, we show numerical experiments illustrating effectiveness and efficiency

of our method, as well as its flexibility to deal with complex defects in 3d.
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Chapter 2: LDG Method of Large Deformations of Prestrained Plates

In this chapter we introduce the model of prestrained plates and the LDG

discretization of it. We prove the Γ-convergence of the discrete energy, as well as

the energy stability and control of constraint violation property of a discrete gradient

flow. We explore the performance of the numerical scheme computationally with

several insightful simulations.

2.1 Problem statement

We start by rederiving the 2d elastic energy (1.2.1) from 3d hyperelasticity.

Prestrained plates develop internal stresses, deform out of plane and exhibit

nontrivial 3d shapes. A model postulates that these plates may reduce internal

stresses by undergoing large out of plane deformations u as a means to minimize an

elastic energy E[u] that measures the discrepancy between a reference (or target)

metric G and the orientation preserving realization u of it.

Let Ωs := Ω × (−s/2, s/2) ⊂ R3 be a three-dimensional plate at rest, where

s > 0 denotes the thickness and Ω ⊂ R2 is the (flat) midplane. Given a Riemannian

metric G : Ωs → R3×3 (symmetric uniformly positive definite matrix), we consider
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3d deformations u : Ωs → R3 driven by the strain tensor εG(∇u) given by

εG(∇u) :=
1

2

(
∇uT∇u−G

)
, (2.1.1)

that measures the discrepancy between ∇uT∇u and G; hence, the 3d elastic energy

E[u] = 0 whenever εG(∇u) = 0. We say that G is the reference (prestrained or

target) metric. An orientable deformation u : Ωs → R3 of class H2(Ωs) satisfying

εG(∇u) = 0 is called an isometric immersion. We assume that G does not depend

on s and is uniform throughout the thickness, written as follows

G(x′, x3) = G(x′) =

g(x′) 0

0 1

 ∀x′ ∈ Ω, x3 ∈ (−s/2, s/2), (2.1.2)

with g : Ω → R2×2 symmetric uniformly positive definite [35, 53]. If g1/2 denotes

the square root of g, we have

G
1
2 =

g
1
2 0

0 1

 , G−
1
2 =

g−
1
2 0

0 1

 . (2.1.3)

We will use the following notation below. The ith component of a vector

v ∈ Rn is denoted vi while for a matrix A ∈ Rn×m, we write Aij the coefficient of

the ith row and jth column. The gradient of a scalar function is a column vector

and for v : Rm → Rn, we set (∇v)ij := ∂jvi, i = 1, .., n, j = 1, ...,m. The

Euclidean norm of a vector is denoted | · |. For matrices A,B ∈ Rn×m, we write

A : B := tr(BTA) =
∑n

i=1

∑m
j=1 AijBij and |A| :=

√
A : A the Frobenius norm of
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A. To have a compact notation later, for higher-order tensors we set

A = (Ak)
n
k=1 ∈ Rn×m×m ⇒ tr(A) =

(
tr(Ak)

)n
k=1

, |A| =

(
n∑
k=1

|Ak|2
) 1

2

. (2.1.4)

Furthermore, we will frequently use the convention

BAB := (BAkB)3
k=1 ∈ R3×2×2, (2.1.5)

for A ∈ R3×2×2 and B ∈ R2×2. In particular, for y : R2 → R3, we will often write

g−1/2D2y g−1/2 =
(
g−1/2D2yk g

−1/2
)3

k=1
, (2.1.6)

which, combined with (2.1.4), yields

∣∣g−1/2D2y g−1/2
∣∣ =

(
3∑

k=1

∣∣g−1/2D2yk g
−1/2

∣∣2)1/2

,

tr
(
g−1/2D2y g−1/2

)
=
(
tr
(
g−1/2D2yk g

−1/2
))3

k=1
.

(2.1.7)

Finally, In will denote the identity matrix in Rn×n.

2.1.1 Elastic energy for prestrained plates

We present, following [35], a simple derivation of the energy densityW (∇uG−1)

for prestrained materials. This hinges on the well-established theory of hyperelas-

ticity, and reduces to the classical St. Venant-Kirchhoff model provided G = I3.
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Such model for isotropic materials reads

W (F ) := µ|εI |2 +
λ

2
tr(εI)

2, εI(F ) :=
1

2

(
F TF − I3

)
. (2.1.8)

Here, F is the deformation gradient, εI is the Green-Lagrange strain tensor and λ

and µ are the (first and second) Lamé constants. This implies

D2W (I3)(F, F ) = 2µ|e|2 + λtr(e)2, e :=
F + F T

2
. (2.1.9)

We point out that in [39], the strain tensor εI = εI(F ) of (2.1.8) is set to be

εI(F ) =
√
F TF − I3, which yields the same relation (2.1.9), and thus the same

Γ-limit discussed below.

Given an arbitrary point x0 ∈ Ωs, we consider the linear transformation

r0(x) := G1/2(x0)(x− x0); hence ∇r0(x) = G1/2(x0). The map r0 can be viewed as

a local re-parametrization of the deformed 3d elastic body, and z = r0(x) is a new

local coordinate system. This induces the deformation U(z) := u(x) and

u = U ◦ r0 ⇒ ∇u(x) = ∇zU(z)G
1
2 (x0),

where ∇z denotes the gradient with respect to the variable z. The deviation of

∇uT∇u from the reference metric G at x = x0 is thus given by (2.1.1)

εG(∇u) =
1

2

(
∇uT∇u−G

)
=

1

2
G

1
2

(
∇zU

T∇zU− I3

)
G

1
2 = G

1
2εI(∇zU)G

1
2 .
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The energy density W (∇zU) at z = r0(x) with x = x0 associated with εI(∇zU),

which minimizes when εI(∇zU) vanishes, is governed by (2.1.8) for isotropic materi-

als according to the theory of hyperelasticity. What we need to do now is to rewrite

this energy density in terms of ∇u at x = x0, namely W (∇zU) = W (∇uG−1/2),

whence

W (∇uG−1/2) = µ
∣∣∣G−1/2 εG(∇u)G−1/2

∣∣∣2 +
λ

2
tr
(
G−1/2 εG(∇u)G−1/2

)2

. (2.1.10)

This motivates the definition of hyperelastic energy for prestrained materials

E[u] :=

ˆ
Ωs

W
(
∇u(x)G(x)−

1
2

)
dx−

ˆ
Ωs

fs(x) · u(x)dx, (2.1.11)

where fs : Ωs → R3 is a prescribed forcing term and W is given by (2.1.10).

Note that the pointwise decomposition G(x0) = ∇r0(x0)T∇r0(x0) is always

possible because G(x0) is symmetric positive definite. However, a global transfor-

mation r such that ∇rT∇r = G everywhere need not exist in general because G is

not required to be immersible in R3. This is referred to as incompatible elasticity

in [35]. Moreover, the infimum of E[u] in (2.1.11) should be strictly positive if the

Riemann curvature tensor associated with G does not vanish identically [53].

2.1.2 Reduced model

It is well-known that the case E[u] ∼ s corresponds to a stretching of the

midplane Ω (membrane theory) while pure bending occurs when E[u] ∼ s3 (bending
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theory); see [40]. We examine now the formal asymptotic behavior of s−3E[u] as

s→ 0; see also [35].

We start with the assumption [17, 41, 53]

u(x) = y(x′) + x3α(x′)ν(x′) +
1

2
x2

3β(x′)ν(x′) ∀x′ ∈ Ω, x3 ∈ (−s/2, s/2),

(2.1.12)

where y : Ω→ R3 describes the deformation of the mid-surface of the plate, ν(x′) :=

∂1y(x′)×∂2y(x′)
|∂1y(x′)×∂2y(x′)| is the unit normal vector to the surface y(Ω) at the point y(x′), and

α, β : Ω→ R are functions to be determined. Compared to the usual Kirchhoff-Love

assumption

u(x′, x3) = y(x′) + x3 ν(x′) ∀x′ ∈ Ω, x3 ∈ (−s/2, s/2), (2.1.13)

(2.1.12) not only restricts fibers orthogonal to Ω to remain perpendicular to the

surface y(Ω) but also allows such fibers to be inhomogeneously stretched. We rescale

the forcing term in (2.1.11) as follows

f(x′) := lim
s→0+

s−3

ˆ s/2

−s/2
fs(x

′, x3) dx3 ∀x′ ∈ Ω, (2.1.14)

and assume the limit to be finite. However, for the asymptotics below we omit

this term for simplicity from the derivation and focus on the energy density W in

(2.1.11).

Denoting by∇′ the gradient with respect to x′ and writing b(x′) := α(x′)ν(x′)

21



and d(x′) := β(x′)ν(x′), we have for all x = (x′, x3) ∈ Ωs

∇u(x) =

[
∇′y(x′) + x3∇′b(x′) +

1

2
x2

3∇′d(x′),b(x′) + x3d(x′)

]
∈ R3×3.

Using the relations

νTν = 1 and νT∇′y = νT∇′ν = dT∇′ν = dT∇′y = bT∇′ν = bT∇′y = 0,

we easily get

∇uT∇u =

∇′yT∇′y 0

0 α2

+ x3

∇′yT∇′b +∇′bT∇′y ∇′bTb

bT∇′b 2αβ



+ x2
3

1
2
(∇′yT∇′d +∇′dT∇′y) +∇′bT∇′b 1

2
∇′dTb +∇′bTd

1
2
bT∇′d + dT∇′b β2


+ h.o.t.

Moreover, since

|ν|2 = 1, ∂jb = (∂jα)ν + α∂jν and ν · ∂jy = 0 for j = 1, 2,

we have

∇′bT∇′y = α∇′νT∇′y and ∇′bTb = α∇′α.
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Therefore, the expression 2G−1/2εG(∇u)G−1/2 becomes

G−
1
2∇uT∇uG−

1
2 − I3 = A1 + 2x3A2 + x2

3A3 +O(x3
3),

where

A1 :=

g−
1
2 I[y] g−

1
2 − I2 0

0 α2 − 1

 ,

A2 :=

−αg−
1
2 II[y] g−

1
2

1
2
αg−

1
2∇′α

1
2
α∇′αTg− 1

2 αβ

 ,

A3 :=

g−
1
2 (∇′bT∇′b + 1

2
(∇′yT∇′d +∇′dT∇′y))g−

1
2

1
2
g−

1
2 (∇′dTb + 2∇′bTd)

1
2
(∇′dTb + 2∇′bTd)Tg−

1
2 β2


are independent of x3 and

I[y] = ∇′yT∇′y and II[y] = −∇′νT∇′y

are the first and second fundamental forms of y(Ω), respectively. To evaluate the

two terms on the right-hand side of (2.1.10), we split them into powers of x3. We

first deal with the pre-asymptotic regime, in which s > 0 is small, and next we

consider the asymptotic regime s→ 0.

Pre-asymptotics. To compute s−3
´

Ωs

∣∣G− 1
2εG(∇u)G−

1
2

∣∣2, we first note that

∣∣∣G− 1
2εG(∇u)G−

1
2

∣∣∣2 =
1

4
|A1|2 + x3A1 :A2 +

x2
3

2
A1 :A3 + x2

3|A2|2 +O(x3
3),
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all the terms with odd powers of x3 integrate to zero on [−s/2, s/2], and those terms

hidden in O(x3
3) integrate to an O(s) contribution after rescaling by s−3. We next

realize that

s−3

ˆ s/2

−s/2
dx3

ˆ
Ω

|A1|2dx′ = s−2

ˆ
Ω

∣∣A1

∣∣2dx′
s−3

ˆ s/2

−s/2
x2

3 dx3

ˆ
Ω

A1 :A3dx
′ =

1

12

ˆ
Ω

A1 :A3dx
′

s−3

ˆ s/2

−s/2
x2

3 dx3

ˆ
Ω

|A2|2dx′ =
1

12

ˆ
Ω

∣∣A2

∣∣2dx′,
and exploit that s−3

´
Ωs

∣∣G− 1
2εG(∇u)G−

1
2 |2 ≤ Λ independent of s to find that

∣∣∣ˆ
Ω

A1 :A3dx
′
∣∣∣ ≤ s

(
s−2

ˆ
Ω

|A1|2dx′
) 1

2
(ˆ

Ω

|A3|2dx′
) 1

2 ≤ CΛ
1
2 s

is a higher order term because
´

Ω
|A3|2dx′ ≤ C2. We thus obtain the expression

s−3

ˆ
Ωs

∣∣G 1
2εG(∇u)G

1
2

∣∣2 =
1

4s2

ˆ
Ω

∣∣A1

∣∣2dx′ + 1

12

ˆ
Ω

∣∣A2

∣∣2dx′ +O(s).

We proceed similarly with the second term in (2.1.10) to arrive at

tr
(
G−

1
2εG(∇u)G−

1
2

)2
=

1

4
tr(A1)2 + x3 tr(A1) tr(A2) +

1

2
x2

3 tr(A1) tr(A3)

+ x2
3 tr(A2)2 +O(x3

3),
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and

s−3

ˆ
Ωs

tr
(
G−

1
2εG(∇u)G−

1
2

)2
=

1

4s2

ˆ
Ω

tr
(
A1

)2
dx′ +

1

12

ˆ
Ω

tr
(
A2

)2
dx′ +O(s).

In view of (2.1.10) and (2.1.11), we deduce that the rescaled elastic energy s−3E[u] ≈

Es[y] + Eb[y] for s small, where the two leading terms are the stretching energy

Es[y] =
1

8s2

ˆ
Ω

(
2µ
∣∣A1

∣∣2 + λtr
(
A1

)2
)
dx′ (2.1.15)

and the bending energy

Eb[y] =
1

24

ˆ
Ω

(
2µ
∣∣A2

∣∣2 + λtr
(
A2

)2
)
dx′ (2.1.16)

with A1 and A2 depending on I[y] and II[y], respectively.

Asymptotics. We now let the thickness s → 0 and observe that for the scaled

energy to remain uniformly bounded, the integrant of the stretching energy must

vanish with a rate at least s2. By definition of A1, this implies that the parametriza-

tion y must satisfy the metric constraint g−
1
2 I[y] g−

1
2 = I2, or equivalently y is an

isometric immersion of g

∇′yT∇′y = g a.e. in Ω, (2.1.17)

and α2 ≡ 1. Since Es[y] = 0, we can take the limit for s→ 0 and neglect the higher
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order terms to obtain the following expression for the reduced elastic energy

lim
s→0

1

s3

ˆ
Ωs

W (∇uG−
1
2 )dx =

1

24

ˆ
Ω

(
2µ|A2|2 + λtr(A2)2︸ ︷︷ ︸

=:w(β)

)
dx′, (2.1.18)

where, using the definition of A2, w(β) is given by

w(β) = 2µ|g−
1
2 II[y] g−

1
2 |2 + 2µβ2 + λ(−tr(g−

1
2 II[y] g−

1
2 ) + β)2

because α2 ≡ 1. In order to obtain deformations with minimal energies, we now

choose β = β(x′) such that w(β) is minimized. Since

dw

dβ
= 4µβ + 2λ

(
− tr

(
g−

1
2 II[y] g−

1
2

)
+ β

)
= 0 and

d2w

dβ2
= 4µ+ 2λ > 0,

we get

β =
λ

2µ+ λ
tr
(
g−

1
2 II[y] g−

1
2

)
,

which gives

w(β) = 2µ
∣∣g− 1

2 II[y] g−
1
2

∣∣2 +
2µλ

λ+ 2µ
tr
(
g−

1
2 II[y]g−

1
2

)2
.

Finally, the right-hand side of (2.1.18) has to be supplemented with the forcing

term that we have ignored in this derivation but scales correctly owing to definition

(2.1.14). In the sequel, we relabel the bending energy Eb[y] as E[y], add the forcing
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and replace x′ by x (and drop the notation ′ on differential operators)

E[y] =
µ

12

ˆ
Ω

(∣∣g− 1
2 II[y]g−

1
2

∣∣2 +
λ

2µ+ λ
tr
(
g−

1
2 II[y]g−

1
2

)2
)
dx−

ˆ
Ω

f · ydx. (2.1.19)

This formal procedure has been justified via Γ-convergence in [39, 41] for isometries

I[y] = I2 and in [53, Corollary 2.7], [17, Theorem 2.1] for isometric immersions

I[y] = g. Moreover, as already observed in [39], we mention that using the Kirchhoff-

Love assumption (2.1.13) instead (2.1.12) yields a similar bending energy, namely

we obtain (2.1.19) but with λ instead of µλ
2µ+λ

.

2.1.3 Admissibility

We need to supplement (2.1.19) with suitable boundary conditions for y for

the minimization problem to be well-posed. For simplicity, we consider Dirichlet and

free boundary conditions in this chapter, but other types of boundary conditions

are possible. Let ΓD ⊂ ∂Ω be a (possibly empty) open set on which the following

Dirichlet boundary conditions are imposed:

y = ϕ and ∇y = Φ on ΓD, (2.1.20)

where ϕ : Ω → R3 and Φ : Ω → R3×2 are sufficiently smooth and Φ satisfies the

compatibility condition ΦTΦ = g a.e. in Ω. The set of admissible functions is

A(ϕ,Φ) :=
{
y ∈ V(ϕ,Φ) : ∇yT∇y = g a.e. in Ω

}
, (2.1.21)
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where the affine manifold V(ϕ,Φ) of H2(Ω) is defined by

V(ϕ,Φ) :=
{
y ∈ [H2(Ω)]3 : y ΓD

= ϕ, ∇y ΓD
= Φ

}
. (2.1.22)

Our goal is to obtain

y∗ := argminy∈A(ϕ,Φ)E(y), (2.1.23)

but this minimization problem is highly nonlinear and seems to be out of reach both

analytically and geometrically. In fact, whether or not there exists a smooth global

deformation y from Ω ⊂ Rn into RN satisfying the metric constraint (2.1.17), a so-

called isometric immersion, is a long standing problem in differential geometry [47].

Note that ∇y is full rank if y is an isometric immersion; if in addition y is injective,

then we say that y is an isometric embedding. For n = 2, Nash’s theorem guarantees

that an isometric embedding exists for N = 10 (Nash proved it for N = 17, while

it was further improved to N = 10 by Gromov [43]). When N = 3, as in our

context, a given metric g may or may not admit an isometric immersion. Some

elliptic and hyperbolic metrics with special assumptions have isometric immersions

in R3 [47]. We assume implicitly below that A(ϕ,Φ) is non-empty, thus there exists

an isometric immersion that satisfies boundary conditions, but now we discuss an

illuminating example in polar coordinates [36, 64].

Change of variables and polar coordinates. If ζ = (ζ1, ζ2) : Ω̃→ Ω is a change

of variables ξ 7→ x into Cartesian coordinates x = (x1, x2) ∈ Ω and J(ξ) is the
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Jacobian matrix, then the target metrics g̃(ξ) and g(x) = g(ζ(ξ)) satisfy

g̃(ξ) = J(ξ)Tg(ζ(ξ))J(ξ), J(ξ) =

∂ξ1ζ1(ξ) ∂ξ2ζ1(ξ)

∂ξ1ζ2(ξ) ∂ξ2ζ2(ξ)

 . (2.1.24)

Let ξ = (r, θ) indicate polar coordinates with r ∈ I = [0, R] and θ ∈ [0, 2π). If

g = I2 is the identity matrix (i.e., I[y] = I2) and η(r) = r, then g̃(ξ) reads

g̃(r, θ) =

1 0

0 η(r)2

 . (2.1.25)

We now show that some metrics of the form of (2.1.25) with η(r) 6= r are still

isometric immersible provided η is sufficiently smooth. Consider the case |η′(r)| ≤ 1

along with the parametrization

ỹ(r, θ) = (η(r) cos θ, η(r) sin θ, ψ(r))T . (2.1.26)

Since ∂rỹ · ∂θỹ = 0 and |∂θỹ|2 = η(r)2, if ψ satisfies |∂rỹ|2 = η′(r)2 + ψ′(r)2 = 1,

we realize that ỹ is an isometric embedding compatible with (2.1.25). On the other

hand, if |η′(r)| ≥ 1 and a ≥ maxr∈I |η′(r)| is an integer, then the parametrization

ỹ(r, θ) =
(η(r)

a
cos(aθ),

η(r)

a
sin(aθ),

ˆ r

0

√
1− η′(t)2

a2
dt
)T

(2.1.27)

is an isometric immersion compatible with (2.1.25) but not an isometric embedding.

We will construct later a couple of isometric embeddings computationally.
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We also point out that (2.1.25) accounts for shrinking if 0 ≤ η(r) < r and

stretching if η(r) > r. To see this, let γr(θ) = (r, θ)T , θ ∈ [0, 2π), be the parametriza-

tion of a circle in Ω centered at the origin and of radius r, and let Γr(θ) = ỹ(γr(θ))

be its image on ỹ(Ω̃) = y(Ω). The length `(Γr) satisfies

`(Γr)=

ˆ 2π

0

∣∣∣ d
dθ

Γr(θ)
∣∣∣dθ =

ˆ 2π

0

√
γ′r(θ)

T g̃(r, θ)γ′r(θ)dθ =

ˆ 2π

0

η(r)dθ = `(γr)
η(r)

r
,

and the ratio η(r)/r acts as a shrinking/stretching parameter.

Gaussian curvature. Since E[y] > 0 provided that the Gaussian curvature κ =

det(II[y]) det(I[y])−1 of the surface y(Ω) does not vanish identically [17, 53], it is

instructive to find κ for a deformation ỹ so that I[ỹ] = g̃ is given by (2.1.25). Since

the formula for change of variables for II[ỹ] is the same as that in (2.1.24) for g̃ = I[ỹ],

we realize that κ is independent of the parametrization of the surface. According

to Gauss’s Theorema Egregium, κ = det(II[ỹ]) det(I[ỹ])−1 can be rewritten as an

expression solely depending on I[ỹ]. Do Carmo gives an explicit formula for κ in

case g̃ = I[ỹ] is diagonal [34, Exercise 1, p.237], which reduces to

κ = −η
′′(r)

η(r)
(2.1.28)

for g̃ of the form (2.1.25). Alternatively, we may express II[ỹ]ij = ∂ijỹ · ν̃, where

ν̃(r, θ) is the unit normal vector to the surface ỹ(Ω̃) at the point ỹ(r, θ), in terms
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of the orthonormal basis {ν̃, ∂rỹ, η(r)−1∂θỹ} as follows. First observe that

|∂rỹ|2 = 1 ⇒ ∂rrỹ · ∂rỹ = 0, ∂θrỹ · ∂rỹ = 0,

|∂θỹ|2 = η2(r) ⇒ ∂rθỹ · ∂θỹ = η(r)η′(r), ∂θθỹ · ∂θỹ = 0,

∂rỹ · ∂θỹ = 0 ⇒ ∂rrỹ · ∂θỹ = 0.

This yields

∂rrỹ = (∂rrỹ · ν̃)ν̃, ∂θθỹ = (∂θθỹ · ν̃)ν̃ + (∂θθỹ · ∂rỹ)∂rỹ,

whence

II[ỹ]rr II[ỹ]θθ = (∂rrỹ · ν̃)(∂θθỹ · ν̃) = ∂rrỹ · ∂θθỹ.

We next differentiate ∂rrỹ · ∂θỹ = 0 and ∂rθỹ · ∂θỹ = η(r)η′(r) with respect to θ and

r, respectively, to obtain

∂rrỹ · ∂θθỹ = ∂rθỹ · ∂rθỹ − η′(r)2 − η(r)η′′(r).

We finally notice that ∂rθỹ = (∂rθỹ · ν̃)ν̃ + η′(r)
η(r)

∂θỹ, whence

(
II[ỹ]rθ

)2
= (∂rθỹ · ν̃)2 = ∂rθỹ · ∂rθỹ − η′(r)2.

Therefore, we have derived det II[ỹ] = II[ỹ]rr II[ỹ]θθ −
(
II[ỹ]rθ

)2
= −η(r)η′′(r) and as

det I[ỹ] = η(r)2, we obtain (2.1.28). This expression will be essential in a computa-
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tional example that is presented later.

2.1.4 Alternative energy

The expression (2.1.19) involves the second fundamental form II[y] = −∇νT∇y

and is too nonlinear to be practically useful. To render (2.1.23) amenable to com-

putation, we show now that II[y] can be replaced by the Hessian D2y without

affecting the minimizers. This is the subject of next proposition, which uses the

notation (2.1.7) for g−1/2D2yg−1/2.

Proposition 2.1.1 (alternative energy). Let y = (yk)
3
k=1 : Ω→ R3 be a sufficiently

smooth orientable deformation and let g = I[y] and II[y] be the first and second

fundamental forms of y(Ω). Then, there exist functions f1, f2 : Ω→ R≥0 depending

only on g and its derivatives, with precise definitions given in the proof, such that

∣∣g− 1
2 D2y g−

1
2

∣∣2 =
∣∣g− 1

2 II[y] g−
1
2

∣∣2 + f1, (2.1.29)

and ∣∣tr(g− 1
2 D2y g−

1
2

)∣∣2 = tr
(
g−

1
2 II[y] g−

1
2

)2
+ f2. (2.1.30)

Proof. First of all, because y is smooth and orientable, the second derivatives ∂ijy

of the deformation y can be (uniquely) expressed in the basis {∂1y, ∂2y,ν} as

∂ijy =
2∑
l=1

Γlij ∂ly + IIij[y]ν, (2.1.31)

where ∂1y×∂2y
|∂1y×∂2y| is the unit normal and Γlij are the so-called Christoffel symbols of
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y(Ω). Since Γlij are intrinsic quantities, they can be computed in terms of the

coefficients gij of g and their derivatives [34]; they do not depend explicitly on y.

We start with the proof of relation (2.1.29). To simplify the notation, let us

write a = g−
1
2 . Using (2.1.31) we get

(a II[y] a)ij ν =
2∑

m,n=1

aim
(
IImn[y]ν

)
anj

=
2∑

m,n=1

aim(∂mny)anj −
2∑

m,n=1

aim

(
2∑
l=1

Γlmn∂ly

)
anj,

or equivalently, rearranging the above expression,

(aD2y a)ij = (a II[y] a)ijν +
2∑

m,n=1

aim

(
2∑
l=1

Γlmn∂ly

)
anj.

Since the unit vector ν is orthogonal to both ∂1y and ∂2y, the right-hand side is an

l2-orthogonal decomposition. Computing the square of the l2-norms yields

3∑
k=1

(aD2yk a)2
ij = (a II[y] a)2

ij + fij (2.1.32)

with

fij :=
2∑

l1,l2=1

gl1l2

2∑
m1,m2,n1,n2=1

aim1aim2Γ
l1
m1n1

Γl2m2n2
an1jan2j.

Functions fij do not depend explicitly on y but on g and first derivatives of g.

Therefore, summing (2.1.32) over i, j from 1 to 2 gives (2.1.29) with f1 :=
∑2

i,j=1 fij.

The proof of (2.1.30) is similar. Since tr(a II[y] a)ν =
∑2

i=1(a II[y] a)ii ν it

suffices to take i = j and sum over i in the previous derivation to arrive at (2.1.30)

33



with

f2 :=
2∑

l1,l2=1

gl1l2

2∑
i1,i2,m1,m2,n1,n2=1

ai1m1ai2m2Γ
l1
m1n1

Γl2m2n2
an1i1an2i2 .

This completes the proof because f2 does not dependent explicitly on y.

Remark 2.1.1 (alternative energy). As stated, Proposition 2.1.1 is valid for smooth

deformations y and metric g. It turns out that for y ∈ [H2(Ω)]3 and g ∈ [H1(Ω) ∩

L∞(Ω)]2×2, the key relation (2.1.31) holds a.e. in Ω and so does the conclusion of

Proposition 2.1.1.

Proposition 2.1.1 (alternative energy) shows that the solutions of (2.1.23) with

the energy E[y] given by (2.1.19) are the same as those given by the energy

E(y) :=
µ

12

ˆ
Ω

(∣∣∣g− 1
2 D2y g−

1
2

∣∣∣2 +
λ

2µ+ λ

∣∣∣tr(g− 1
2 D2y g−

1
2

)∣∣∣2)− ˆ
Ω

f · y. (2.1.33)

The Euler-Lagrange equations characterizing local extrema y ∈ [H2(Ω)]3 of (2.1.33)

δE[y; v] = 0 ∀v ∈ [H2(Ω)]3, (2.1.34)

can be written in terms of the first variation of E[y] in the direction v given by

δE[y; v] :=
µ

6

ˆ
Ω

(
g−

1
2 D2y g−

1
2

)
:
(
g−

1
2 D2v g−

1
2

)
+

µλ

6(2µ+ λ)

ˆ
Ω

tr
(
g−

1
2 D2y g−

1
2

)
· tr
(
g−

1
2 D2v g−

1
2

)
−
ˆ

Ω

f · v.
(2.1.35)

The presence of the trace term in (2.1.35) makes it problematic to find the governing

partial differential equation hidden in (2.1.34) (strong form). However, when λ = 0,
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integration by parts shows that Pk := g−1D2yk g
−1 ∈ R2×2 for k = 1, 2, 3 satisfies

δE[y; v] =
µ

6

3∑
k=1

(ˆ
Ω

div divPk vk−
ˆ
∂Ω

divPk · nvk +

ˆ
∂Ω

Pkn · ∇vk
)
−
ˆ

Ω

f · v,

where n is the outwards unit normal vector to ∂Ω. On the other hand, if g = I2 in

which case y is an isometry, then E[y] in (2.1.19) and (2.1.33) are equal and reduce

to

E[y] =
α

2

ˆ
Ω

|D2y|2 −
ˆ

Ω

f · y, α :=
µ(µ+ λ)

3(2µ+ λ)
(2.1.36)

thanks to the relations for isometries [10, 13, 22]

|II[y]| = |D2y| = |∆y| = tr(II[y]). (2.1.37)

The strong form of the Euler-Lagrange equation for a minimizer of (2.1.36) reads

α div divD2y = α∆2y = f . This problem has been studied numerically in [10, 22].

2.2 Discretization

We propose here a local discontinuous Galerkin (LDG) method to approximate

the solution of the problem (2.1.23). LDG is inspired by, and in fact improves upon,

the previous dG methods [22, 23] but they are conceptually different. LDG hinges on

the explicit computation of a discrete Hessian Hh[yh] for the discontinuous piecewise

polynomial approximation yh of y, which allows for a direct discretization of Eh[yh]

in (2.1.33), including the trace term. A salient feature is that the stability of the

LDG method is retained even when the penalty parameters are arbitrarily small.
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2.2.1 LDG-type discretization

From now on, we assume that Ω ⊂ R2 is a polygonal domain. Let {Th}h>0 be

a shape-regular but possibly graded elements T , either triangles or quadrilaterals,

of diameter hT := diam(T ) ≤ h. In order to handle hanging nodes (necessary for

graded meshes based on quadrilaterals), we assume that all the elements within each

domain of influence have comparable diameters. We refer to Sections 2.2.4 and 6 of

Bonito-Nochetto [21] for precise definitions and properties. At this stage, we only

point out that sequences of subdivisions made of quadrilaterals with at most one

hanging node per side satisfy this assumption.

Let Eh = E0
h∪Ebh denote the set of edges, where E0

h stands for the set of interior

edges and Ebh for the set of boundary edges. We assume a compatible representation

of the Dirichlet boundary ΓD, i.e., if ΓD 6= ∅ then ΓD is the union of (some) edges

in Ebh for every h > 0, which we indicate with EDh ; note that ΓD and EDh are empty

sets when dealing with a problem with free boundary conditions. Let Eah := E0
h ∪EDh

the set of active edges on which jumps and averages will be computed. The union

of these edges give rise to the corresponding skeletons of Th

Γ0
h := ∪

{
e : e ∈ E0

h

}
, ΓDh := ∪

{
e : e ∈ EDh

}
, Γah := Γ0

h ∪ ΓDh . (2.2.1)

If he is the diameter of e ∈ Eh, then we introduce the piecewise constant mesh

density function h defined to be equivalent locally to the size hT of T and he of an

edge e. From now on, we use the notation (·, ·)L2(Ω) and (·, ·)L2(Γah) to denote the L2
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inner products over Ω and Γah, and a similar notation for subsets of Ω and Γah.

Broken spaces. For an integer k ≥ 0, we let Pk (resp. Qk) be the space of

polynomials of total degree at most k (resp. of degree at most k in the each variable).

The reference unit triangle (resp. square) is denoted by T̂ and for T ∈ Th, we let

FT : T̂ → T be the generic map from the reference element to the physical element.

When Th is made of triangles the map is affine, i.e., FT ∈ [P1]2, while FT ∈ [Q1]2

when quadrilaterals are used.

If k ≥ 2, the (broken) finite element space Vk
h to approximate each component

of the deformation y (modulo boundary conditions) reads

Vk
h :=

{
vh ∈ L2(Ω) : vh T ◦ FT ∈ Pk (resp. Qk) ∀T ∈ Th

}
(2.2.2)

if Th is made of triangles (resp. quadrilaterals). We define the broken gradient ∇hvh

of vh ∈ Vk
h to be the gradient computed elementwise, and use similar notation for

other piecewise differential operators such as the broken Hessian D2
hvh = ∇h∇hvh.

We now introduce the jump and average operators. To this end, let ne be a

unit normal to e ∈ E0
h (the orientation is chosen arbitrarily but is fixed once for all),

while for a boundary edge e ∈ Ebh, ne is the outward unit normal vector to ∂Ω. For

vh ∈ Vk
h and e ∈ E0

h, we set

[vh] e := v−h − v
+
h , [∇hvh] e := ∇hv

−
h −∇hv

+
h , (2.2.3)

where v±h (x) := lims→0+ vh(x ± sne) for x ∈ e. We compute the jumps compo-
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nentwise provided the function vh is vector or matrix-valued. In what follows, the

subindex e is omitted when it is clear from the context.

In order to deal with Dirichlet boundary data (ϕ,Φ) we resort to a Nitsche

approach; hence we do not impose essential restrictions on the discrete space [Vk
h]

3.

However, to simplify the notation later, it turns out to be convenient to introduce

the discrete sets Vk
h(ϕ,Φ) and Vk

h(0,0) which mimic the continuous counterparts

V(ϕ,Φ) and V(0,0) but coincide with [Vk
h]

3. In fact, we say that vh ∈ [Vk
h]

3 belongs

to Vk
h(ϕ,Φ) provided the boundary jumps of vh are defined to be

[vh]e := vh −ϕ, [∇hvh]e := ∇hvh − Φ, ∀ e ∈ EDh . (2.2.4)

We stress that ‖[vh]‖L2(ΓDh ) → 0 and ‖[∇hvh]‖L2(ΓDh ) → 0 imply vh → ϕ and

∇hvh → Φ in L2(ΓD) as h→ 0; hence the connection between Vk
h(ϕ,Φ) and V(ϕ,Φ).

Therefore, we emphasize again that the sets [Vk
h]

3 and Vk
h(ϕ,Φ) coincide but the

latter carries the notion of boundary jump, namely

Vk
h(ϕ,Φ) :=

{
vh ∈ [Vk

h]
3 : [vh]e, [∇hvh]e given by (2.2.4) for all e ∈ EDh

}
. (2.2.5)

When free boundary conditions are imposed, i.e., ΓD = ∅, then we do not need to

distinguish between Vk
h(ϕ,Φ) and [Vk

h]
3. However, we keep the notation Vk

h(ϕ,Φ)

in all cases thereby allowing for a uniform presentation.
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We define the average of vh ∈ Vk
h across an edge e ∈ Eh to be

{vh}e :=


1
2
(v+
h + v−h ) e ∈ E0

h

v−h e ∈ Ebh,
(2.2.6)

and apply this definition componentwise to vector and matrix-valued functions. As

for the jump notation, the subindex e is drop when it is clear from the context.

Discrete Hessian. To approximate the elastic energy (2.1.33), we propose an LDG

approach. Inspired by [22, 65], the idea is to replace the Hessian D2y by a discrete

Hessian Hh[yh] ∈ [L2(Ω)]
3×2×2

to be defined now. To this end, let l1, l2 be non-

negative integers and consider two local lifting operators re : [L2(e)]2 → [Vl1
h ]2×2 and

be : L2(e)→ [Vl2
h ]2×2 defined for e ∈ Eah by

re(φ) ∈ [Vl1
h ]2×2 :

ˆ
ωe

re(φ) : τh =

ˆ
e

{τh}ne · φ ∀τh ∈ [Vl1
h ]2×2, (2.2.7)

be(φ) ∈ [Vl2
h ]2×2 :

ˆ
ωe

be(φ) : τh =

ˆ
e

{div τh} · neφ ∀τh ∈ [Vl2
h ]2×2. (2.2.8)

It is clear that supp(re(φ)) = supp(be(φ)) = ωe, where ωe is the patch associated

with e (i.e., the union of two elements sharing e for interior edges e ∈ E0
h or just one

single element for boundary edges e ∈ Ebh). We extend re and be to [L2(e)]3×2 and

[L2(e)]3, respectively, by component-wise applications.

The corresponding global lifting operators are then given by

Rh :=
∑
e∈Eah

re : [L2(Γah)]
2 → [Vl1

h ]2×2, Bh :=
∑
e∈Eah

be : L2(Γah)→ [Vl2
h ]2×2. (2.2.9)

39



This construction is simpler than that in [22] for quadrilaterals. We now define the

discrete Hessian operator Hh : Vk
h(ϕ,Φ)→ [L2(Ω)]

3×2×2
to be

Hh[vh] := D2
hvh −Rh([∇hvh]) +Bh([vh]). (2.2.10)

We can prove in a standard way (using trace and inverse inequalities), see for

instance [22, 30], the following a priori upper bounds for the L2(Ω) norm of the

lifting operators Rh and Bh:

Lemma 2.2.1 (L2-bound of lifting operators). For any vh ∈ Vk
h(ϕ,Φ), for any l1, l2

non-negative we have

‖Rh([∇hvh])‖L2(Ω) . ‖h−1/2[∇hvh]‖L2(Γah),

and

‖Bh([vh])‖L2(Ω) . ‖h−3/2[vh]‖L2(Γah).

Discrete energies. We are now ready to introduce the discrete energy on Vk
h(ϕ,Φ)

Eh[yh] :=
µ

12

ˆ
Ω

∣∣∣g− 1
2 Hh[yh] g

− 1
2

∣∣∣2
+

µλ

12(2µ+ λ)

ˆ
Ω

∣∣∣tr(g− 1
2 Hh[yh] g

− 1
2

)∣∣∣2
+
γ1

2
‖h−

1
2 [∇hyh]‖2

L2(Γah) +
γ0

2
‖h−

3
2 [yh]‖2

L2(Γah) −
ˆ

Ω

f · yh,

(2.2.11)

where γ0, γ1 > 0 are stabilization parameters; recall the notation (2.1.4) and (2.1.5).

One of the most attractive feature of the LDG method is that γ0, γ1 are not required
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to be sufficiently large as is typical for interior penalty methods [22].

Note that the Euler-Lagrange equation δEh[yh; vh] = 0 in the direction vh

reads

ah(yh,vh) = F (vh) ∀vh ∈ Vk
h(0,0), (2.2.12)

where

ah(yh,vh) :=
µ

6

ˆ
Ω

(
g−

1
2Hh[yh]g

− 1
2

)
:
(
g−

1
2Hh[vh]g

− 1
2

)
+

µλ

6(2µ+ λ)

ˆ
Ω

tr
(
g−

1
2Hh[yh]g

− 1
2

)
· tr
(
g−

1
2Hh[vh]g

− 1
2

)
+ γ1

(
h−1[∇hyh], [∇hvh]

)
L2(Γah)

+ γ0

(
h−3[yh], [vh]

)
L2(Γah)

,

(2.2.13)

and

F (vh) :=

ˆ
Ω

f · vh; (2.2.14)

compare with (2.1.34) and (2.1.35).

We reiterate that finding the strong form of (2.1.35) is problematic because of

the presence of the trace term. Yet, it is a key ingredient in the design of discontin-

uous Galerkin methods such as the interior penalty method and raises the question

how to construct such methods for (2.1.35). The use of reconstructed Hessian in

(2.2.13) leads to a numerical scheme without resorting to the strong form of the

equation.

Constraints. We now discuss how to impose the Dirichlet boundary conditions

(2.1.20) and the metric constraint (2.1.17) discretely. The former is enforced via the

Nitsche approach and thus is not included as a constraint in the discrete admissible
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set as in (2.1.21); this turns out to be advantageous for the analysis of the method

[22]. The latter is too strong to be imposed on a polynomial space. Inspired by [22],

we define the metric defect as

Dh[yh] :=
∑
T∈Th

∣∣∣∣ˆ
T

(
∇yTh∇yh − g

)∣∣∣∣ (2.2.15)

and, for a positive number ε, we define the discrete admissible set to be

Ak
h,ε :=

{
yh ∈ Vk

h(ϕ,Φ) : Dh[yh] ≤ ε
}
.

Therefore, the discrete minimization problem, discrete counterpart of (2.1.23), reads

min
yh∈Akh,ε

Eh[yh]. (2.2.16)

Problem (2.2.16) is nonconvex due to the structure of Ak
h,ε.

2.2.2 Discrete inequalities

In this subsection we collect and prove some key definitions, inequalities and

properties for discrete functions vh ∈ [Vk
h]

3, which will be useful in the analysis later

in the dissertation.

We first introduce the mesh-dependent quantity 〈·, ·〉H2
h(Ω) defined for any
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vh,wh ∈ [Vk
h]

3 by

〈vh,wh〉H2
h(Ω) := (D2

hvh, D
2
hwh)L2(Ω) + (h−1[∇hvh], [∇hwh])L2(Γah)

+ (h−3[vh], [wh])L2(Γah) (2.2.17)

which is a discrete H2 scalar product on Vk
h(0,0) when ΓD 6= ∅. Moreover, we define

|||vh|||2H2
h(Ω) := 〈vh,vh〉H2

h(Ω).

In the Dirichlet boundary case ΓD 6= ∅, the latter is a norm on Vk
h(0,0) but is not

a norm on Vk
h(ϕ,Φ) due to the prescribed boundary data. Moreover, ||| · |||H2

h(Ω) is

only a seminorm for the free boundary case (ΓD = ∅).

Then, following what is done in [21, 22], when k ≥ 2 we define a smoothing

interpolation operator Πh : E(Th) := ΠT∈ThH
1(T )→ Vk

h ∩H1(Ω) as follows.

Definition 2.2.1 (Smoothing interpolation). Given the canonical basis functions

{φi}Ni=1 of Vk
h ∩H1(Ω) with supports {ωi}Ni=1 associated with nodes {xi}Ni=1, we com-

pute the local L2 projection vh,i ∈ Vk
h∩H1(Ω) of vh ∈ Vk

h on ωi for each i = 1, . . . , N

ˆ
ωi

(vh − vh,i)wh = 0 ∀wh ∈ Vk
h ∩H1(Ω), (2.2.18)

and we define Πhvh =
∑N

i=1 vh,i(xi)φi. For functions vh ∈ [Vk
h]

3, Πh is applied

component-wise. For the general case vh ∈ E(Th), we can modify the definition of

Πh by composition with a local L2-projection from E(Th) to Vk
h, as in [22].
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By (2.2.18), it is clear that Vk
h ∩ H1(Ω) is invariant under Πh. We have the

following estimates for Πh. First, as proven in [22] for any vh ∈ E(Th) there holds

‖∇Πhvh‖L2(Ω) + ‖h−1(vh − Πhvh)‖L2(Ω) . ‖∇hvh‖L2(Ω) + ‖h−
1
2 [vh]‖L2(Γ0

h). (2.2.19)

Then, we further have

Lemma 2.2.2 (Estimates of the smoothing interpolant Πh). For any vh ∈ Vk
h we

have

‖h−1(∇hvh −∇Πhvh)‖L2(Ω) . ‖D2
hvh‖L2(Ω) + ‖h−

1
2 [∇hvh]‖L2(Γ0

h) + ‖h−
3
2 [vh]‖L2(Γ0

h),

(2.2.20)

‖Πhvh‖L2(Ω) . ‖vh‖L2(Ω), (2.2.21)

and

‖∇Πhvh−
1

|Ω|

ˆ
Ω

∇Πhvh‖L2(Ω) . ‖D2
hvh‖L2(Ω) + ‖h−

1
2 [∇hvh]‖L2(Γ0

h) + ‖h−
3
2 [vh]‖L2(Γ0

h)

(2.2.22)

Proof. We prove the three inequalities following the ideas used in the proof of Lemma

6.6 in [21] and of Lemma 2.1 in [22]. Definition (2.2.18) implies that

‖vh,i‖L2(ωi) ≤ ‖vh‖L2(ωi).

Then for any T ∈ Th, denoting by ωT the union of all the ωi that intersect T , we
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have

‖Πhvh‖L2(T ) .
∑
xi∈T

‖vh,i(xi)‖L2(T ) ≤
∑
xi∈T

‖vh,i‖L∞(T )|T |
1
2

.
∑
xi∈T

‖vh,i‖L2(T ) . ‖vh‖L2(ωT ),

where we used that vh,i belongs to a finite dimensional space (and thus ‖vh,i ◦

FT‖L∞(T̂ ) and ‖vh,i ◦FT‖L2(T̂ ) are equivalent with constant independent of the mesh

size) and the shape regularity of the mesh. Then we obtain (2.2.21) by summing

last inequality over the elements T ∈ Th. To prove (2.2.20), it suffices to prove that

‖h−1(∇hvh −∇vh,i)‖L2(ωi) . ‖D2
hvh‖L2(ωi) + ‖h−

1
2 [∇hvh]‖L2(Γ0

h,i)
+ ‖h−

3
2 [vh]‖L2(Γ0

h,i)
,

(2.2.23)

where Γ0
h,i denotes the union of the edges e ∈ Γ0

h that belong to the interior to wi.

Since vh belongs to a finite dimensional space, then according to standard norm

equivalence and scaling arguments, it suffices to show that if the right-hand side of

(2.2.23) vanishes then the left-hand side also vanishes. If the right-hand side equals

to zero then vh ∈ P1(ωi) which implies that vh,i = vh in ωi. Hence, the left-hand

side is zero. We emphasize again that the powers of the meshsize result from the

scaling argument.
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To prove (2.2.22), we first note that for any wh ∈ E(Th) there holds

‖wh −
1

|Ω|

ˆ
Ω

wh‖L2(Ω) ≤ ‖wh − Πhwh‖L2(Ω) +

∥∥∥∥ 1

|Ω|

ˆ
Ω

wh −
1

|Ω|

ˆ
Ω

Πhwh

∥∥∥∥
L2(Ω)

+

∥∥∥∥Πhwh −
1

|Ω|

ˆ
Ω

Πhwh

∥∥∥∥
L2(Ω)

. ‖wh − Πhwh‖L2(Ω) + ‖∇Πhwh‖L2(Ω)

. ‖∇hwh‖L2(Ω) + ‖h−
1
2 [wh]‖L2(Γ0

h), (2.2.24)

where we use the triangle inequality for the first inequality, the Cauchy-Schwarz and

the standard Poincaré-Friedrichs inequalities for the second one, and the estimate

(2.2.19) for the third one. The hidden constant depends on Ω and is independent

of h.

Then we apply (2.2.24) to wh = ∇Πhvh ∈ Vk
h and get

‖∇Πhvh −
1

|Ω|

ˆ
Ω

∇Πhvh‖L2(Ω) . ‖D2
hΠhvh‖L2(Ω) + ‖h−

1
2 [∇Πhvh]‖L2(Γ0

h).

Then we have

‖D2
hvh,i‖L2(ωi) + ‖h−

1
2 [∇vh,i]‖L2(Γ0

h,i)
. ‖D2

hvh‖L2(ωi) + ‖h−
1
2 [∇hvh]‖L2(Γ0

h,i)

+ ‖h−
3
2 [vh]‖L2(Γ0

h,i)
,

since vh ∈ P1(ωi) implies that vh,i = vh in ωi and then implies the left-hand side is

0. Altogether we prove (2.2.22) as a consequence.
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We have the following inequalities related to ||| · |||H2
h(Ω).

Lemma 2.2.3 (discrete Poincaré-Friedrichs). (i) Case ΓD 6= ∅. For any discrete

function vh ∈ Vk
h(ϕ,Φ) we have

‖vh‖L2(Ω) + ‖∇hvh‖L2(Ω) . |||vh|||H2
h(Ω) + ‖ϕ‖H1(Ω) + ‖Φ‖H1(Ω). (2.2.25)

Moreover, for any vh ∈ Vk
h(0,0) we have

‖vh‖L2(Ω) + ‖∇hvh‖L2(Ω) . |||vh|||H2
h(Ω). (2.2.26)

In both (2.2.25) and (2.2.26), the hidden constant depends on Ω and ΓD.

(ii) Case ΓD = ∅. For any vh ∈ [Vk
h]

3 we have

‖∇hvh‖L2(Ω) . |||vh|||H2
h(Ω) + ‖vh‖L2(Ω), (2.2.27)

where the hidden constant depends on Ω.

Proof. The proof of (i) is given in [22]. To prove (ii), applying (2.2.20) component-

wisely and assuming h ≤ 1 we have

‖∇hvh −∇Πhvh‖L2(Ω) . ‖D2
hvh‖L2(Ω) + ‖h−

1
2 [∇hvh]‖L2(Γ0

h) + ‖h−
3
2 [vh]‖L2(Γ0

h).
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By (2.2.22) componentwisely and the triangle inequality we have

‖∇Πhvh‖L2(Ω) . ‖D2
hvh‖L2(Ω) + ‖h−

1
2 [∇hvh]‖L2(Γ0

h) + ‖h−
3
2 [vh]‖L2(Γ0

h) (2.2.28)

+ ‖ 1

|Ω|

ˆ
Ω

∇Πhvh‖L2(Ω).

Note that for Πhvh ∈ [H1(Ω)]3, by integration by parts for each component there

holds ˆ
Ω

∇Πhvh =

ˆ
∂Ω

(Πhvh)⊗ ν∂Ω,

and thus using the Cauchy-Schwarz inequality, the trace inequality and Young’s

inequality we have

‖ 1

|Ω|

ˆ
Ω

∇Πhvh‖L2(Ω) =
1

|Ω| 12

∣∣∣ˆ
∂Ω

(Πhvh)⊗ ν∂Ω

∣∣∣ . |∂Ω| 12
|Ω| 12

‖Πhvh‖L2(∂Ω)

. ε‖∇Πhvh‖L2(Ω) +
C

ε
‖Πhvh‖L2(Ω),

with ε chosen small enough (depends on Ω but is independent of h) such that

ε‖∇Πhvh‖L2(Ω) can be absorbed into the left-hand side of (2.2.28). As a result,

‖∇Πhvh‖L2(Ω) . ‖D2
hvh‖L2(Ω) + ‖h−

1
2 [∇hvh]‖L2(Γ0

h) + ‖h−
3
2 [vh]‖L2(Γ0

h) + ‖Πhvh‖L2(Ω),

where the hidden constant depends on Ω.

Using (2.2.21), we eventually obtain

‖∇Πhvh‖L2(Ω) . ‖D2
hvh‖L2(Ω) + ‖h−

1
2 [∇hvh]‖L2(Γ0

h) + ‖h−
3
2 [vh]‖L2(Γ0

h) + ‖vh‖L2(Ω),
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where the hidden constant depends on Ω. Combining the above relations we get

(2.2.27) with a hidden constant depending on Ω.

2.3 Γ-convergence

We first introduce some properties of the discrete Hessian Hh[vh] that will be

used to prove the Γ-convergence of the discrete energy Eh to the continuous one E.

Lemma 2.3.1. For any γ1, γ0 > 0 there exists a constant C(γ0, γ1) > 0 such that

for any vh ∈ Vk
h(ϕ,Φ) and any l1, l2 ≥ 0 we have

C(γ0, γ1)|||vh|||2H2
h(Ω) ≤

ˆ
Ω

|Hh[vh]|2 + γ1

∑
e∈Eah

ˆ
e

h−1|[∇hvh]|2 + γ0

∑
e∈Eah

ˆ
e

h−3|[vh]|2.

(2.3.1)

Moreover, the constant C(γ0, γ1) tends to 0 when γ0 or γ1 tends to 0.

Proof. Let us write

ˆ
Ω

|Hh[vh]|2 + γ1

∑
e∈Eah

ˆ
e

h−1|[∇hvh]|2 + γ0

∑
e∈Eah

ˆ
e

h−3|[vh]|2 =: I1 + I2 + I3. (2.3.2)

We give a lower bound for the term I1. We have

I1 = ‖D2
hvh‖2

L2(Ω) + ‖ −Rl1
h ([∇hvh]) +Bl2

h ([vh])‖2
L2(Ω)

+ 2

ˆ
Ω

D2
hvh : (−Rl1

h ([∇hvh]) +Bl2
h ([vh]))
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Then

I1 ≥ ‖D2
hvh‖2

L2(Ω) + ‖ −Rl1
h ([∇hvh]) +Bl2

h ([vh])‖2
L2(Ω)

− 2‖D2
hvh‖L2(Ω)‖Bl2

h ([vh])−Rl1
h ([∇hvh])‖L2(Ω)

≥ (1− α−1)‖D2
hvh‖2

L2(Ω) + (1− α)‖Bl2
h ([vh])−Rl1

h ([∇hvh])‖2
L2(Ω),

where we used the Cauchy-Schwarz inequality for the first inequality and Young’s

inequality with α > 1 for the second one. Similarly, using triangle and Young’s

inequalities we get

‖Bl2
h ([vh])−Rl1

h ([∇hvh])‖2
L2(Ω) ≤ 2‖Bl2

h ([vh])‖2
L2(Ω) + 2‖Rl1

h ([∇hvh])‖2
L2(Ω).

Since α > 1, we have 1− α < 0, and thus

I1 ≥ (1− α−1)‖D2
hvh‖2

L2(Ω) + 2(1− α)‖Bl2
h ([vh])‖2

L2(Ω) + 2(1− α)‖Rl1
h ([∇hvh])‖2

L2(Ω)

≥ (1− α−1)‖D2
hvh‖2

L2(Ω) + 2(1− α)C0‖h−3[vh]‖2
L2(Γah)

+ 2(1− α)C1‖h−1[∇hvh]‖2
L2(Γah),

where we used Lemma 2.2.1 for the second inequality with C0 and C1 some positive

constants. Using the last two terms in (2.3.2) we obtain

I1 + I2 + I3 ≥ min
{

1− α−1, 2(1− α)C0 + γ0, 2(1− α)C1 + γ1

}
‖vh‖2

H2
h(Ω).
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Therefore, the result holds with

C(γ0, γ1) := min
{

1− α−1, 2(1− α)C0 + γ0, 2(1− α)C1 + γ1

}
(2.3.3)

provided that for any γ0, γ1 > 0, we can choose α > 1 such that

2(1− α)C0 + γ0 > 0 and 2(1− α)C1 + γ1 > 0.

We easily see that we can take any

α ∈
(

1,min

{
1 +

γ0

2C0

, 1 +
γ1

2C1

})
,

the interval being non-empty for any γ0, γ1 > 0. Finally, the coercivity constant in

(2.3.3) tends to 0 since α tends to 1 as γ0 or γ1 tends to 0.

Lemma 2.3.2 (Weak convergence of Hh). Let vh ∈ Vk
h(ϕ,Φ). If |||vh|||H2

h(Ω) ≤ C

for all h and vh → v ∈ [H2(Ω)]3 in [L2(Ω)]3 as h → 0, then for any l1, l2 ≥ 0 we

have

Hh[vh] ⇀ D2v in
[
L2(Ω)

]3×2×2
as h→ 0. (2.3.4)
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Proof. For any φ ∈ [C∞0 ]3×2×2 we have

ˆ
Ω

Hh[vh] : φ =

ˆ
Ω

D2
hvh : φ−Rl1

h ([∇hvh]) : φ+Bl2
h ([vh]) : φ

= −
ˆ

Ω

∇hvh : div φ+
∑
e∈E0h

ˆ
e

[∇hvh] :
{
φ− I lhφ

}
ne

−
ˆ

Ω

Rl1
h ([∇hvh])(φ− I lhφ) +

ˆ
Ω

Bl2
h ([vh]) : φ

=

ˆ
Ω

vh · div(div φ) +
∑
e∈E0h

ˆ
e

[∇hvh] :
{
φ− I lhφ

}
ne

−
ˆ

Ω

Rl1
h ([∇hvh])(φ− I lhφ) +

ˆ
Ω

Bl2
h ([vh]) : (φ− I lhφ)

−
∑
e∈E0h

ˆ
e

[vh] ·
{

div(φ− I lhφ)
}

ne +
∑
e∈EDh

ˆ
e

(vh −ϕ) ·
{

div I lhφ
}

ne

=: T1 + T2 + T3 + T4 + T5 + T6.

Here, I lhφ ∈ [Vl
h ∩ H1

0 (Ω)]3×2×2 denotes the Lagrange interpolant of φ, and

l := min{l1, l2}. Note that T6 = 0 when ΓD = ∅. We treat each term separately.

Since vh → v ∈ [H2(Ω)]3 in [L2(Ω)]3 as h→ 0, we have

T1 →
ˆ

Ω

v · div(div φ) = −
ˆ

Ω

∇v : div φ =

ˆ
Ω

D2v : φ as h→ 0.

For T3 we have that

|T3| ≤ ‖Rl1
h ([∇hvh])‖L2(Ω)‖φ− I lhφ‖L2(Ω)

. ‖h−
1
2 [∇hvh]‖L2(Γah)‖φ− I lhφ‖L2(Ω)

≤ C‖I lhφ− φ‖L2(Ω) → 0
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as h→ 0, where we used the uniform boundedness of |||uh|||H2
h(Ω) and Lemma 2.2.1.

The proof that T4 converges to 0 as h→ 0 can be done in a similar way.

To bound the term T2, we use the scaled trace inequality

‖I lhφ− φ‖L2(e) . h
− 1

2
e ‖(I lhφ− φ)‖L2(ω(e)) + h

1
2
e ‖∇(I lhφ− φ)‖L2(ω(e)), (2.3.5)

where ω(e) denotes the union of the two elements adjacent to e ∈ E0
h. We have

|T2| =

∣∣∣∣∣∣
∑
e∈E0h

ˆ
e

[∇hvh] :
{
φ− I lhφ

}
ne

∣∣∣∣∣∣ ≤
∑
e∈E0h

‖h−
1
2 [∇hvh]‖L2(e)‖h

1
2 (φ− I lhφ)‖L2(e)

.

∑
e∈E0h

‖h−
1
2 [∇hvh]‖2

L2(e)

 1
2 (∑

T∈Th

‖I lhφ− φ‖2
L2(T ) + h2‖∇(I lhφ− φ)‖2

L2(T )

) 1
2

→ 0

as h → 0, using again that |||vh|||H2
h(Ω) is uniformly bounded. We can proceed

similarly to show that T5 tends to 0 as h→ 0. Finally, when ΓD 6= ∅, for T6 we get

|T6| .
∑
e∈EDh

‖h−
3
2 (vh −ϕ)‖L2(e)‖h

3
2 div I lhφ‖L2(e)

.

∑
e∈EDh

‖h−
3
2 (vh −ϕ)‖2

L2(e)

 1
2 (∑

T∈Th

h2|I lhφ|2H1(T ) + h4|I lhφ|2H2(T )

) 1
2

→ 0,
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as h→ 0 since

∑
e∈EDh

‖h−
3
2 (vh −ϕ)‖2

L2(e) =
∑
e∈EDh

‖h−
3
2 [vh]‖2

L2(e) ≤ |||vh|||2H2
h(Ω) ≤ C2.

To sum up, we have
´

Ω
Hh[vh] : φ →

´
Ω
D2v : φ, and thus we have the weak

convergence result.

Lemma 2.3.3. Let v ∈ [H2(Ω)]3 be any function such that, when ΓD 6= ∅, v = ϕ

and ∇v = Φ on ΓD. Moreover, let vh := Ikhv ∈ Vk
h(ϕ,Φ)∩ [H1(Ω)]3 be the Lagrange

interpolant of v. Then for any l1, l2 ≥ 0 we have as h→ 0

Hh[vh]→ D2v strongly in [L2(Ω)]3×2×2. (2.3.6)

Proof. To prove (2.3.6), we will show that

D2
hvh → D2v in [L2(Ω)]3×2×2 (2.3.7)

and

‖Rl1
h ([∇hvh])‖2

L2(Ω) → 0 and ‖Bl2
h ([vh])‖2

L2(Ω) → 0 (2.3.8)

as h→ 0. For the proof of (2.3.7), we use the H2-stability

‖D2vh‖L2(T ) . |v|H2(T ), ∀ T ∈ Th, (2.3.9)

of the Lagrange interpolant. The inequality (2.3.9) can be shown using the Bramble-
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Hilbert lemma and inverse inequalities (as shown in Section 9 of [22]). Moreover,

from [22], we have

h−2
T ‖v − vh‖L2(T ) + h−1

T ‖∇(v − vh)‖L2(T ) . |v|H2(T ). (2.3.10)

Next, we consider vε ∈ [C∞(Ω)]3 a smooth mollifier of v such that vε → v

in [H2(Ω)]3 as ε → 0. Then, thanks to (2.3.9) and (2.3.10) there exists a constant

C1 > 0 such that

‖D2(vh − v)‖2
L2(T ) . ‖D2(vh − vεh)‖2

L2(T ) + ‖D2(vεh − vε)‖2
L2(T ) + ‖D2(vε − v)‖2

L2(T )

≤ C1|v − vε|2H2(T ) + C2h
2
T |vε|2H3(T ) + |vε − v|2H2(T ),

where vεh := Ikhvε. Hence, summing over T ∈ Th and using hT ≤ h we get

‖D2
h(vh − v)‖2

L2(Ω) ≤ (1 + C1)|v − vε|2H2(Ω) + C2h
2|vε|2H3(Ω).

Then, since ‖v − vε‖H2(Ω) → 0 as ε → 0, given any η > 0 we can pick ε small

enough such that ‖v − vε‖2
H2(Ω) ≤ η/2. Then we pick h small enough such that

C2h
2|vε|2H3(Ω) ≤ η/2, and consequently we conclude ‖D2

hvh − D2v‖2
L2(Ω) → 0 as

h→ 0, which shows (2.3.7).

We now prove (2.3.8). By Lemma 2.2.1 we have

‖Rl1
h ([∇hvh])‖2

L2(Ω) . ‖h−
1
2 [∇hvh]‖2

L2(Γah) = ‖h−
1
2 [∇h(vh − v)]‖2

L2(Γah),
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as [∇v] = 0 on e ∈ E0
h and ∇v = Φ on e ∈ EDh (when ΓD 6= ∅). Moreover, by the

scaled trace inequality (2.3.5) and (2.3.10) we obtain for any e ∈ Eah

‖h−
1
2 [∇h(vh − v)]‖2

L2(e) . h−2
e ‖∇h(vh − v)‖2

L2(ω(e)) + ‖D2
h(vh − v)‖2

L2(ω(e))

= h−2
e ‖∇h(vh − v − Ikh(vh − v))‖2

L2(ω(e))

+ ‖D2
h(vh − v)‖2

L2(ω(e))

.
∑
T∈ω(e)

(h2
T

h2
e

+ 1
)
|vh − v|2H2(T ),

where ω(e) reduces to one element if e ∈ EDh (when ΓD 6= ∅), and thus further by

shape-regularity

‖Rl1
h ([∇hvh])‖2

L2(Ω) .
∑
T∈ω(e)

|vh − v|2H2(T ) → 0 as h→ 0.

Proceeding similarly, we can show that ‖Bl2
h ([vh])‖2

L2(Ω) → 0.

The strong convergence (2.3.6) of the reconstructed Hessians follows from the

definition of the reconstructed Hessians and the strong convergence properties of

D2
hvh, R

l1
h ([∇hvh]) and Bl2

h ([vh]) established previously.

The above properties of the discrete Hessian are now used to prove the coer-

civity and Γ-convergence of discrete energy Eh[yh].

Theorem 2.3.1 (Coercivity). Let yh ∈ Vk
h(ϕ,Φ) and let γ0, γ1 > 0. When ΓD = ∅,

|||yh|||2H2
h(Ω) . Eh[yh]. (2.3.11)
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When ΓD 6= ∅,

|||yh|||2H2
h(Ω) . Eh[yh] + ‖ϕ‖2

H1(Ω) + ‖Φ‖2
H1(Ω) + ‖f‖2

L2(Ω). (2.3.12)

The hidden constants of (2.3.11) and (2.3.12) depend only on µ, g and the constant

C(γ0, γ1) that appears in (2.3.1).

Proof. Let V denote the range space of H l1,l2
h : Vk

h(ϕ,Φ) → [L2(Ω)]3×2×2. We first

note that (
´

Ω
|g− 1

2 · g− 1
2 |2)

1
2 : V→ R is a norm as g is a symmetric positive definite

matrix. Since V is a finite dimensional space, and all the norms are equivalent on

a finite dimensional space, there exist two positive constants cg and Cg depending

only on g such that

Cg‖H l1,l2
h (yh,k)‖2

L2(Ω) ≤
ˆ

Ω

|g−
1
2H l1,l2

h (yh,k)g
− 1

2 |2 ≤ cg‖H l1,l2
h (yh,k)‖2

L2(Ω).

Then by Lemma 2.3.1 and the fact that the trace term in (2.2.11) is positive, in the

case ΓD = ∅, for any γ0, γ1 > 0 we have

Eh[yh] ≥ Cg
µ

12
‖H l1,l2

h (yh)‖2
L2(Ω) +

γ1

2
‖h−

1
2 [∇hyh]‖2

L2(Γah) (2.3.13)

+
γ0

2
‖h−

3
2 [yh]‖2

L2(Γah) ≥
1

2
min{Cg

µ

6
, 1}C(γ0, γ1)|||yh|||2H2

h(Ω),

which proves (2.3.11). Recall that we assume f = 0 for the free boundary case.

When ΓD 6= ∅, the left-hand side of (2.3.13) becomes Eh[yh] +
´

Ω
f · yh. To

estimate the forcing term, using Cauchy-Schwarz and Young’s inequalities, as well
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as Lemma 2.2.3 (i), we have for any α̃ > 0

ˆ
Ω

f · yh ≤ α̃
(
|||yh|||2H2

h(Ω) + ‖ϕ‖2
H1(Ω) + ‖Φ‖2

H1(Ω)

)
+

3

4α̃
‖f‖2

L2(Ω).

For any γ0, γ1 > 0 we can choose α̃ > 0 small enough such that

C3 :=
1

2
min{Cg

µ

6
, 1}C(γ0, γ1)− α̃ > 0.

Therefore, we get

C3|||yh|||2H2
h(Ω) ≤ Eh[yh] + α̃‖ϕ‖2

H1(Ω) + α̃‖Φ‖2
H1(Ω) +

3

4α̃
‖f‖2

L2(Ω). (2.3.14)

which concludes the proof of (2.3.12).

Remark 2.3.1. Note that the coercivity of Eh holds for any positive penalty pa-

rameter γ0 and γ1, and they do not necessarily have to be sufficiently large as in

[22].

Now, we turn to the Γ-convergence of Eh[yh]. In the remaining part of this

section, we mainly focus on the free boundary case. The case with Dirichlet boundary

conditions then naturally follows.

In the case ΓD = ∅, the key point is a compactness result. Indeed, the coerciv-

ity of Eh only provides the uniform boundedness of the seminorm ‖yh‖H2
h(Ω), which

clearly cannot ensure compactness in [L2(Ω)]3. In fact, the compactness can only

hold for the sequence yh after a proper rescaling for each h. Before proving this, see
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Theorem 2.3.2 below, we first make the following observation for functions in the

discrete admissible set Ak
h,ε.

Lemma 2.3.4. If yh ∈ Ak
h,ε, then ‖∇hyh‖2

L2(Ω) . ε+ ‖g‖L1(Ω).

Proof. Note that by the triangle inequality

∑
T∈Th

∣∣∣∣ˆ
T

∇yTh∇yh

∣∣∣∣ ≤ ∑
T∈Th

∣∣∣∣ˆ
T

∇yTh∇yh − g
∣∣∣∣+

∑
T∈Th

∣∣∣∣ˆ
T

g

∣∣∣∣
≤ ε+

∑
T∈Th

ˆ
T

|g|

≤ ε+ ‖g‖L1(Ω).

Then, we compute

∣∣∣∣ˆ
T

∇yTh∇yh

∣∣∣∣2 =
2∑

i,j=1

(ˆ
T

∂iyh · ∂jyh
)2

≥
2∑
i=1

(ˆ
T

|∂iyh|2
)2

(2.3.15)

≥ 1

2

(
2∑
i=1

ˆ
T

|∂iyh|2
)2

=
1

2

(ˆ
T

|∇yh|2
)2

.

Hence,

‖∇hyh‖2
L2(Ω) =

∑
T∈Th

ˆ
T

|∇yh|2 .
∑
T∈Th

∣∣∣∣ˆ
T

∇yTh∇yh

∣∣∣∣ ≤ ε+ ‖g‖L1(Ω).

This completes the proof.

Theorem 2.3.2 (Compactness for the free boundary case). Assume that ΓD = ∅

and let {yh} ⊂ Ak
h,ε be a sequence such that Eh[yh] ≤ C uniformly. Then there exists

a shifted sequence ȳh := yh − ch ∈ Ak
h,ε with constant ch ∈ R3 and y ∈ [H2(Ω)]3
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such that (up to a subsequence) ȳh → y and ∇hȳh → ∇y in [L2(Ω)]3 as h, ε → 0

provided that h ≤ 1.

Proof. Take ch := 1
|Ω|

´
Ω

yh. Then by the Poincaré-Friedrichs inequality (2.2.24)

applying to yh ∈ [Vk
h]

3 we have

‖ȳh‖2
L2(Ω) = ‖yh − ch‖2

L2(Ω) . ‖∇hyh‖2
L2(Ω) + ‖h−

1
2 [yh]‖2

L2(Γ0
h). (2.3.16)

By Lemma 2.3.4 and the fact that ∇hȳh = ∇hyh, we have that ‖∇hȳh‖L2(Ω)

is uniformly bounded. Since Eh[yh] ≤ C by assumption and Eh is coercive, we

have that ‖yh‖H2
h(Ω) is uniformly bounded and thus ‖D2

hȳh‖L2(Ω) = ‖D2
hyh‖L2(Ω)

is uniformly bounded. The uniform boundedness of ‖yh‖H2
h(Ω), recall h ≤ 1 by

assumption, also implies that

‖h−
1
2 [yh]‖2

L2(Γ0
h) . ‖h

− 3
2 [yh]‖2

L2(Γ0
h) ≤ C̃,

and thus using (2.3.16) we deduce that ‖ȳh‖2
L2(Ω) is also uniformly bounded. It is

clear that ȳh ∈ Ak
h,ε, [yh] = [ȳh] on each e ∈ E0

h. Moreover, as we assume that f = 0

in the free boundary case, we have Eh[ȳh] = Eh[yh].

Then we can apply the same argument used for the case ΓD 6= ∅ in [22, Propo-

sition 5.1, step1-step3] to conclude the claimed compactness result. It is therefore

only sketched. The uniform bound in L2 guarantees that ȳh converges weakly (up

to a subsequence) in [L2(Ω)]3 to some y. Setting zh := Πhyh − (1/|Ω|)
´

Ω
Πhyh ∈

[Vk
h∩H1(Ω)]3, we invoke the Poincaré-Friedrichs inequality (2.2.24) coupled with the
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[H1(Ω)]3 stability (2.2.19) of Πh to deduce that zh is uniformly bounded in [H1(Ω)]3.

As a consequence, zh converges strongly (up to a subsequence) in [L2(Ω)]3 to some

z ∈ [H1(Ω)]3. To show that y = z, we note that the interpolation property (2.2.20),

Poincaré-Friedrichs inequality (2.2.24) and the uniform boundedness of Eh[yh] yield

‖ȳh − zh‖L2(Ω) → 0 as h→ 0. Consequently, we also have

‖ȳh − z‖L2(Ω) ≤ ‖ȳh − zh‖L2(Ω) + ‖zh − z‖L2(Ω) → 0

as h → 0. The uniqueness of weak limits guarantees that y = z and thus ȳh

strongly converges (up to a subsequence) in [L2(Ω)]3 to y ∈ [H1(Ω)]3. Repeating

this argument for ∇hyh = ∇hȳh yields that ∇hȳh strongly converges (up to a

subsequence) in [L2(Ω)]3×2 to ∇y.

Remark 2.3.2. In the free boundary case, define Kh := {wh ∈ [Vk
h]

3 : Eh[yh +

wh] = Eh[yh] for all yh ∈ [Vk
h]

3} and Dh := {wh ∈ [Vk
h]

3 : yh+wh ∈ Ak
h,ε for all yh ∈

Ak
h,ε}. Then it is clear that if yh is a solution to (2.2.16) then yh + wh is also a

solution for any wh ∈ Kh ∩ Dh. Constants belong to Kh ∩ Dh.

Theorem 2.3.3 (Lim-inf of Eh). Assume that ΓD = ∅. Let l1, l2 ≥ 0 and let the

prestrain defect parameter ε = ε(h) → 0 as h → 0. Let {yh} ⊂ Ak
h,ε be a sequence

such that Eh[yh] ≤ C uniformly. Then there exists y ∈ A and a shifted sequence

ȳh := yh− ch ∈ Ak
h,ε with constant ch ∈ R3 such that (up to a subsequence) ȳh → y

in [L2(Ω)]3 as h→ 0, and E[y] ≤ lim inf
h→0

Eh[ȳh] = lim inf
h→0

Eh[yh].

Proof. If ch := 1
|Ω|

´
Ω

yh, by Theorem 2.3.2, we have ȳh ∈ Ak
h,ε and there exists

61



y ∈ [H2(Ω)]3 such that ȳh → y and ∇hȳh → ∇y in [L2(Ω)]3 as h→ 0 up to a sub-

sequence. Moreover, Eh[ȳh] = Eh[yh], ‖D2
hȳh‖L2(Ω) and ‖∇hȳh‖L2(Ω) are uniformly

bounded.

To prove that y ∈ A, we also need to show that y satisfies the constraint

∇yT∇y = g a.e. in Ω. We proceed in two steps. First, notice that

∑
T∈Th

∣∣∣∣ˆ
T

(∇ȳTh∇ȳh − g)

∣∣∣∣ ≤ ε
implies that ∑

T∈Th

‖∇ȳTh∇ȳh − g‖L1(T ) ≤ ch+ ε. (2.3.17)

Indeed, we have

∑
T∈Th

‖∇ȳTh∇ȳh − g‖L1(T ) ≤
∑
T∈Th

∥∥∥∥∇ȳTh∇ȳh − g −
1

|T |

ˆ
T

(∇ȳTh∇ȳh − g)

∥∥∥∥
L1(T )

+
∑
T∈Th

∥∥∥∥ 1

|T |

ˆ
T

(∇ȳTh∇ȳh − g)

∥∥∥∥
L1(T )

.
∑
T∈Th

hT‖∇(∇ȳTh∇ȳh)−∇g‖L1(T )

+
∑
T∈Th

∣∣∣∣ˆ
T

∇(ȳTh∇ȳh − g)

∣∣∣∣
.
∑
T∈Th

hT
(
‖D2ȳh‖L2(T )‖∇ȳh‖L2(T ) + ‖∇g‖L1(T )

)
+Dh[ȳh]

≤ h‖D2
hȳh‖L2(Ω)‖∇hȳh‖L2(Ω) + h‖∇g‖L1(Ω) +Dh[ȳh],

where the second inequality follows from the Poincaré inequality and the third one

uses Hölder’s inequality and the definition of the prestrain defect given in (2.2.15).
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Since ‖D2
hȳh‖L2(Ω) and ‖∇hȳh‖L2(Ω) are uniformly bounded, (2.3.17) follows from

the regularity assumption on g and the assumption that Dh[ȳh] ≤ ε.

Then, since

‖∇yT∇y − g‖L1(Ω) ≤
∑
T∈Th

(
‖∇yT∇(y − ȳh)‖L1(T ) + ‖∇(y − ȳh)

T∇ȳh‖L1(T )

)
+
∑
T∈Th

‖∇ȳTh∇ȳh − g‖L1(T ),

we have

‖∇yT∇y − g‖L1(Ω) ≤
(
‖∇y‖L2(Ω) + ‖∇hȳh‖L2(Ω)

)
‖∇hȳh −∇y‖L2(Ω)

+
∑
T∈Th

‖∇ȳTh∇ȳh − g‖L1(T ),

which goes to 0 as h, ε → 0. Here, we used the fact that ∇hȳh → ∇y in [L2(Ω)]3,

the uniform boundedness of ∇hȳh and ∇y, and (2.3.17). Thus, ∇yT∇y = g a.e. in

Ω, and hence y ∈ A.

Now we prove the lim-inf property. Due to Lemma 2.3.2 we have Hh[ȳh,k] ⇀

D2yk as h→ 0 for k = 1, 2, 3. Therefore, g−
1
2Hh[ȳh,k]g

− 1
2 ⇀ g−

1
2D2ykg

− 1
2 as h→ 0.

By weakly lower-semicontinuity of the L2(Ω) norm, we have that

ˆ
Ω

|g−
1
2D2ykg

− 1
2 |2 ≤ lim inf

h→0

ˆ
Ω

|g−
1
2Hh[ȳh,k]g

− 1
2 |2.

Now we focus on the trace term of Eh and E. Since we have g−
1
2Hh[ȳh,k]g

− 1
2 ⇀

g−
1
2D2ykg

− 1
2 , it suffices to prove the weakly lower semicontinuity of the following
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functional: ˆ
Ω

tr(F )2 ≤ lim inf
h→0

ˆ
Ω

tr(Fh)
2,

where Fh, F ∈ [L2(Ω)]2×2 are such that Fh ⇀ F as h→ 0.

Consider the functional p : [L2(Ω)]2×2 → R defined by p(F ) := (
´

Ω
tr(F )2)

1
2 .

We can easily see that p satisfies the triangle inequality, is a convex function and is

actually a semi-norm. Thus for any β > 0 the set S := {F ∈ [L2(Ω)]2×2 : p(F ) ≤ β}

is convex. Moreover, since the following estimate holds true

p(F ) = ‖tr(F )‖L2(Ω) = ‖F : I‖L2(Ω) . ‖F‖L2(Ω),

we infer that S is closed in the topology with respect to the L2(Ω) norm. Since

the convex set’s closure is the closure in the weak topology, S is then also closed in

the weak topology. This implies that p(F ) ≤ lim infh→0 p(Fh) whenever Fh ⇀ F as

h→ 0. Therefore,

ˆ
Ω

tr(g−
1
2D2ykg

− 1
2 )2 ≤ lim inf

h→0

ˆ
Ω

tr(g−
1
2Hh[ȳh,k]g

− 1
2 )2.

Finally, since the stabilization terms in Eh are positive, we have E[y] ≤

lim inf
h→0

Eh[ȳh] = lim inf
h→0

Eh[yh].

Remark 2.3.3 (Lim-inf for the Dirichlet boundary case). When ΓD 6= ∅, thanks

to Theorem 2.3.1 (coercivity of Eh) and equation (2.2.25) of Lemma 2.2 (discrete

Poincaré-Friedrich inequality), there exists y ∈ [H2(Ω)]3 satisfying the given bound-

ary conditions and such that, up to a subsequence, yh → y in [L2(Ω)]3 and ∇hyh →
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∇y in [L2(Ω)]3×2 as h → 0. The proof of this compactness result for the Dirichlet

boundary condition case is the same as Proposition 5.1 in [22]. Then the proof of

the lim-inf condition when ΓD 6= ∅ follows naturally as in the proof of Theorem 2.3.3

with ȳh replaced by yh. Finally, note that the possible presence of a forcing term in

this case is not be a problem as
´

Ω
f · yh →

´
Ω

f · y when yh → y in [L2(Ω)]3.

Theorem 2.3.4 (Lim-sup of Eh). Let l1, l2 ≥ 0. For any y ∈ A, there exists

{yh} ⊂ Ak
h,ε ∩ [H1(Ω)]3 such that

yh → y in [L2(Ω)]3 as h→ 0

and

E[y] ≥ lim sup
h→0

Eh[yh],

provided that ε ≥ Ch‖y‖2
H2(Ω) for some positive constant C.

Proof. Assume firstly that ΓD = ∅. Let yh = Ikhy ∈ Vk
h(ϕ,Φ) ∩ [H1(Ω)]3 be the

Lagrange interpolant of y. By Lemma 2.3.3 we have that Hh[yh,k]→ D2yk strongly

in [L2(Ω)]2×2 as h → 0, and thus g−
1
2Hh[yh,k]g

− 1
2 → g−

1
2D2ykg

− 1
2 in [L2(Ω)]2×2 as

h→ 0. Therefore,

lim
h→0

ˆ
Ω

|g−
1
2Hh[yh,k]g

− 1
2 |2 =

ˆ
Ω

|g−
1
2D2ykg

− 1
2 |2.

For the trace term, proceeding as in the proof of Theorem 2.3.3, it suffices to

show that the condition Fh → F in [L2(Ω)]2×2 as h → 0 implies
´

Ω
tr(F )2 ≥
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lim suph→∞
´

Ω
tr(Fh)

2. For p(F ) := (
´

Ω
tr(F )2)

1
2 , we have p(Fh) ≤ p(F )+p(Fh−F ).

If we take lim sup on both sides, we get

lim sup
h→0

p(Fh) ≤ p(F ) + lim sup
h→0

p(Fh − F ) ≤ p(F ) + lim sup
h→0

‖tr(Fh − F )‖L2

≤ p(F ) + c lim sup
h→0

‖Fh − F‖L2 = p(F ),

with c =
√

2|Ω| 12 , and thus

lim sup
h→0

ˆ
Ω

tr(g−
1
2Hh[yh,k]g

− 1
2 )2 ≤

ˆ
Ω

tr(g−
1
2D2ykg

− 1
2 )2.

Finally, as the stabilization terms in Eh tend to 0 for this particular choice of yh,

see Lemma 2.3.3, we have E[y] ≥ lim suph→0Eh[yh].

To conclude the proof, we also need to show that yh = Ikhy ∈ Vk
h(ϕ,Φ) ∩

[H1(Ω)]3 is in Ak
h,ε, namely that yh satisfies

Dh[yh] =
∑
T∈Th

∣∣∣∣ˆ
T

∇yTh∇yh − g
∣∣∣∣ ≤ ε.
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Since ∇yT∇y = g a.e. in Ω, we have

∑
T∈Th

‖∇yTh∇yh − g‖L1(T ) ≤
∑
T∈Th

(
‖∇y‖L2(T ) + ‖∇yh‖L2(T )

)
‖∇(y − yh)‖L2(T )

+
∑
T∈Th

‖∇yT∇y − g‖L1(T ))

.
∑
T∈Th

hT‖∇y‖L2(T )|y|H2(T ) +
∑
T∈Th

h2
T |y|2H2(T )

≤ h‖∇y‖L2(Ω)|y|H2(Ω) + h2|y|2H2(Ω) ≤ 2h‖y‖2
H2(Ω),

where the second inequality follows from the fact that ‖∇(y−yh)‖L2(T ) . hT |y|H2(T )

and ‖∇yh‖L2(T ) . ‖∇y‖L2(T ) + hT |y|H2(T ). Then for ε ≥ Ch‖y‖2
H2(Ω) we have

∑
T

∣∣∣∣ˆ
T

(∇yTh∇yh − g)

∣∣∣∣ ≤∑
T

‖∇yTh∇yh − g‖L1(T ) ≤ ε,

i.e., yh ∈ Ak
h,ε.

The same procedure can be applied in the case ΓD 6= ∅, using additionally

that limh→0

´
Ω

fh · yh =
´

Ω
f · y.

Recall that by our assumption of immersibility of g and compatibility of bound-

ary data, we know that A 6= ∅. By above argument in the proof of Theorem 2.3.4,

we know that the discrete admissible set Ak
h,ε is not empty, provided that ε is large

enough. Indeed, for any y ∈ A, let yh := Ikhy ∈ Vk
h(ϕ,Φ)∩[H1(Ω)]3 be the standard

Lagrange interpolant of y. Then there exists a constant C > 0 depending only on
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the shape regularity of Th and Ω such that

Dh[yh] ≤ Ch‖y‖2
H2(Ω). (2.3.18)

In particular, Ak
h,ε 6= ∅ provided ε ≥ Ch‖y‖2

H2(Ω).

This result can then be used to show the existence of a minimizer of the discrete

energy Eh within Ah,ε, see Proposition 2.3.1 below.

Proposition 2.3.1. Let h > 0 be fixed and let ε be large enough such that Ak
h,ε is

not empty. Then there exists at least one solution to Problem (2.2.16).

Proof. Let us first consider the free boundary case ΓD = ∅. Letm := infyh∈Akh,ε Eh[yh]

be finite. Let {ynh}n≥1 ⊂ Ak
h,ε be a minimizing sequence, i.e., such that

lim
n→∞

Eh[y
n
h] = m. (2.3.19)

Because Eh[y
n
h + c] = Eh[y

n
h] and Dh[y

n
h + c] = Dh[y

n
h] for any constant vector

c ∈ R3 (as f = 0 for free boundary case), we can assume without loss of generality

that
´

Ω
ynh = 0. Consequently, from the Poincaré-Friedrichs estimate (2.2.24), the

control of the gradients provided by Lemma 2.3.4 and the coercivity of the energy Eh

(Theorem 2.3.1), we deduce that ‖ynh‖L2(Ω) . 1. Because [Vk
h]

3 is finite dimensional,

we have that (up to a subsequence) {ynh}n≥1 converges strongly in [L2(Ω)]3 to some

y∞h ∈ [Vk
h]

3. In turn, the continuity of the quadratic energy Eh and the prestrain
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defect Dh guarantee that

Eh[y
∞
h ] = lim

n→∞
Eh[y

n
h] = inf

yh∈Akh,ε
Eh[yh]

and y∞h ∈ Ak
h,ε. This proves that y∞h is one solution to the minimization problem

(2.2.16).

We can proceed in a similar way for the case ΓD 6= ∅, except that

sup
n≥1
‖ynh‖L2(Ω) <∞

directly follows from Theorem 2.3.1 and the Poincaré-Friedrichs inequality (2.2.25).

In particular, the ynh do not need to have mean-value zero.

To summarize, we can conclude that Eh[yh] Γ-converges to E[y] as h→ 0 for

both the Dirichlet and free boundary conditions, which implies the convergence (up

to a subsequence) of almost global minimizers of the discrete problem (2.2.16) to

global minimizer of continuous problem (2.1.23) as in [22].

2.4 Discrete gradient flow

To find a local minimizer yh of Eh[yh] within Ak
h,ε for a fixed mesh, namely

to solve the non-convex constrained minimization problem (2.2.16), we execute a

discrete H2 gradient flow.

The H2
h metric is defined by (2.2.17) in the case ΓD 6= ∅ while in the free

boundary case ΓD = ∅, we add the term σ(·, ·)L2(Ω) with σ > 0. To have a unified
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notation, we introduce

(vh,wh)H2
h(Ω) := σ(vh,wh)L2(Ω) + (D2

hvh, D
2
hwh)L2(Ω)

+ (h−1[∇hvh], [∇hwh])L2(Γah) + (h−3[vh], [wh])L2(Γah), (2.4.1)

where σ = 0 when ΓD 6= ∅ and σ > 0 when ΓD = ∅. Moreover, we define

‖vh‖2
H2
h(Ω) := (vh,vh)H2

h(Ω).

We emphasize that we have (·, ·)H2
h(Ω) = 〈·, ·〉H2

h(Ω) and ‖ · ‖H2
h(Ω) = ||| · |||H2

h(Ω) when

ΓD 6= ∅. Note that ‖ · ‖H2
h(Ω) defines a norm and (·, ·)H2

h(Ω) defines a scalar product

on [Vk
h]

3 if ΓD = ∅, and on Vk
h(0,0) if ΓD 6= ∅. They are not norm or scalar

product respectively on V k
h (ϕ,Φ) if ΓD 6= ∅ because non-homogenous boundary

data are involved in jumps on boundary edges, but this is not problem as we shall

see (·, ·)H2
h(Ω) is only applied to Vk

h(0,0) in the gradient flow for Dirichlet boundary

case. Moreover, we deduce from the estimate (2.2.27) for the free boundary case

that

‖∇hvh‖L2(Ω) . ‖vh‖H2
h(Ω), (2.4.2)

where the hidden constant now depends on σ and Ω.

The discrete H2 gradient reads as follows. Given an initial guess y0
h ∈ Ak

h,ε0

and a pseudo time-step τ > 0, we iteratively compute yn+1
h := ynh+δyn+1

h ∈ Vk
h(ϕ,Φ)

that minimizes

yh 7→
1

2τ
‖yh − ynh‖2

H2
h(Ω) + Eh[yh], (2.4.3)
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under the following linearized constraint δyn+1
h ∈ Fh(ynh) for the increment, where

Fh(ynh) :=

{
vh ∈ Vk

h(0,0) : LT [ynh; vh] =

ˆ
T

∇vTh∇ynh + (∇ynh)T∇vh = 0, ∀T ∈ Th
}
.

(2.4.4)

This linearized constraint LT [ynh; δyn+1
h ] = 0 for all T ∈ Th is enforced using Lagrange

multipliers. Here, we consider the space of symmetric piecewise constant matrices

defined by

Λh :=
{
λh : Ω→ R2×2 : λTh = λh, λh ∈

[
V0
h

]2×2
}
.

To minimize (2.4.3) with the linearized constraint (2.4.4), we thus seek solu-

tions (δyn+1
h , λn+1

h ) ∈ Vk
h(0,0)× Λh such that

τ−1(δyn+1
h ,vh)H2

h(Ω) + δEh[y
n
h + δyn+1

h ](vh) + bh(vh, λ
n+1
h ; ynh) = F (vh),

bh(δy
n+1
h , µh; y

n
h) = 0,

(2.4.5)

for any vh ∈ Vk
h(0,0) and µh ∈ Λh. The bilinear form bh(·, ·; ynh) depends on ynh and

is defined for any (vh, λh) ∈ Vk
h(0,0)× Λh by

bh(vh, λ
n+1
h ; ynh) :=

∑
T∈Th

ˆ
T

λh : (∇vTh∇ynh + (∇ynh)T∇vh). (2.4.6)

Recall we define the bilinear form ah as in (2.2.13) and linear form F as in

(2.2.14). Also, we assume there is no forcing term in the free boundary case, namely
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f = 0. Then we have

Eh[yh] =
1

2
ah(yh,yh)− Fh(yh) and δEh[yh](vh) = ah(yh,vh)− Fh(vh), (2.4.7)

and (2.4.5) can be rewritten as: find (δyn+1
h , λn+1

h ) ∈ Vk
h(0,0)× Λh such that

τ−1(δyn+1
h ,vh)H2

h(Ω) + ah(δy
n+1
h ,vh) + bh(vh, λ

n+1
h ; ynh) = Fh(vh)− ah(ynh,vh)

(2.4.8)

bh(δy
n+1
h , µh; y

n
h) = 0

for all (vh, µh) ∈ Vk
h(0,0) × Λh. Note that ynh ∈ Vk

h(ϕ,Φ), and when ΓD 6= ∅,

the boundary data are implicitly contained in ah(y
n
h,vh) through the liftings of the

boundary data that appear in Hh[yh]. Moreover, when ΓD = ∅, the term σ(·, ·)L2(Ω)

in the H2
h metric fixes the kernel of the linear problem (2.4.8) and guarantees its

solvability.

The proposed strategy is summarized in Algorithm 1.

Algorithm 1: (discrete-H2 gradient flow) Finding local minima of Eh
Given a target metric defect ε > 0, a pseudo-time step τ > 0 and a target
tolerance tol;

Choose initial guess y0
h ∈ Ak

h,ε;

while τ−1|Eh[yn+1
h ]− Eh[ynh]| >tol do

Solve (2.4.3)-(2.4.4) for δyn+1
h ∈ Vk

h(0,0);
Update yn+1

h = ynh + δyn+1
h ;

end

We now show that the discrete gradient flow decreases the discrete energy Eh

at each step and controls the prestrain defect Dh.
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Theorem 2.4.1 (Energy Stability). Assume that δyn+1
h solves (2.4.8). If δyn+1

h is

non-zero, and we iterate yn+1
h = ynh +δyn+1

h for any 0 ≤ n ≤ N−1. For any N ≥ 1,

we have

Eh[y
N
h ] + τ−1

N−1∑
n=0

‖δyn+1
h ‖2

H2
h(Ω) ≤ Eh[y

0
h]. (2.4.9)

Proof. If we take vh = δyn+1
h 6= 0 and µh = λn+1

h in (2.4.8), then we obtain when

ΓD 6= ∅

τ−1‖δyn+1
h ‖2

H2
h(Ω) + ah(y

n+1
h , δyn+1

h ) = Fh(δy
n+1
h ).

When ΓD = ∅, the right-hand side is 0 as we assume f = 0 in this case. Since ah is

a symmetric bilinear form, we have

ah(y
n+1
h , δyn+1

h ) =
1

2
ah(y

n+1
h ,yn+1

h − ynh) +
1

2
ah(y

n+1
h ,yn+1

h − ynh) (2.4.10)

=
1

2
ah(y

n+1
h ,yn+1

h )− 1

2
ah(y

n+1
h ,ynh) +

1

2
ah(y

n
h + δyn+1

h ,yn+1
h − ynh)

=
1

2
ah(y

n+1
h ,yn+1

h )− 1

2
ah(y

n
h,y

n
h) +

1

2
ah(δy

n+1
h , δyn+1

h ).

Therefore, using (2.4.7) we get

τ−1‖δyn+1
h ‖2

H2
h(Ω) +

1

2
ah(δy

n+1
h , δyn+1

h ) + Eh[y
n+1
h ] = Eh[y

n
h]. (2.4.11)

Since δyn+1
h ∈ Vk

h(0,0) and δyn+1
h 6= 0 we have ah(δy

n+1
h , δyn+1

h ) ≥ 0 and further

‖δyn+1
h ‖2

H2
h(Ω)

> 0, and thus Eh[y
n+1
h ] < Eh[y

n
h]. Moreover, (2.4.9) follows after we

sum over n = 0, 1, . . . , N − 1.

Theorem 2.4.2 (Control of Defect). Let y0
h ∈ Ak

h,ε0
. Then, for any N ≥ 1, the N th
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iterate yNh of the gradient flow satisfies

Dh[y
n
h] =

∑
T∈Th

∣∣∣∣ˆ
T

((∇yNh )T∇yNh − g)

∣∣∣∣ ≤ ε0 + cτ(Eh[y
0
h] + c̃) =: ε. (2.4.12)

Here c > 0 is the hidden constant of (2.2.26) if ΓD 6= ∅ (of (2.4.2) if ΓD = ∅),

which depends only on Ω and ΓD (resp. on Ω and σ), while c̃ ≥ 0 depends only on

µ, g, the constant C(γ0, γ1) that appears in (2.3.1), as well as ‖ϕ‖H1(Ω), ‖Φ‖H1(Ω),

and ‖f‖L2(Ω) when ΓD 6= ∅.

Moreover, if Eh[y
N
h ] ≥ 0 (which is necessarily the case when f = 0, which is

assumed when ΓD = ∅), then (2.4.12) holds true with c̃ = 0.

In particular, if yh := Ikhy0 is the Lagrange interpolant of some y0 ∈ A, then

Dh[y
n
h] . (h+ τ)(‖y0‖2

H2(Ω) + c̃). (2.4.13)

Proof. Note that

ˆ
T

(∇yn+1
h )T∇yn+1

h =

ˆ
T

(∇ynh)T∇ynh +

ˆ
T

(∇δyn+1
h )T∇ynh (2.4.14)

+

ˆ
T

(∇ynh)T∇δyn+1
h +

ˆ
T

(∇δyn+1
h )T∇δyn+1

h

=

ˆ
T

(∇ynh)T∇ynh +

ˆ
T

(∇δynh)T∇δyn+1
h ,
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where the second equality follows from the linearized constraint (2.4.4). Therefore,

∑
T∈Th

∣∣∣∣ˆ
T

((∇yNh )T∇yNh − g)

∣∣∣∣ =
∑
T∈Th

∣∣∣∣∣
ˆ
T

(∇y0
h)
T∇y0

h − g +
N−1∑
n=0

((∇δyn+1
h )T∇δyn+1

h )

∣∣∣∣∣
(2.4.15)

≤
∑
T∈Th

∣∣∣∣ˆ
T

((∇y0
h)
T∇y0

h − g)

∣∣∣∣+
∑
T∈Th

N−1∑
n=0

‖∇δyn+1
h ‖2

L2(T )

≤ ε0 + c
N−1∑
n=0

‖δyn+1
h ‖2

H2
h(Ω),

where for the last inequality we used the fact that y0
h ∈ Ak

h,ε0
, as well as the discrete

Friedrich-Poincaré type inequality (2.2.26) if ΓD 6= ∅ and the inequality (2.4.2) if

ΓD = ∅. Using (2.4.9) and noting that Eh[y
N
h ] ≥ 0 (recall that f = 0 when ΓD = ∅,

which implies that Eh[y
N
h ] ≥ 0), then we have

N−1∑
n=0

‖δyn+1
h ‖2

H2
h(Ω) ≤ τEh[y

0
h],

and (2.4.12) with c̃ = 0 follows by inserting the last inequality in (2.4.15). For the

general case, which can only occur when ΓD 6= ∅, from (2.3.14) we have

C3|||yNh |||2H2
h(Ω) − c̃ ≤ Eh[y

N
h ],

where C3 > 0 and c̃ ≥ 0 depends only on ‖f‖L2(Ω), ‖ϕ‖H1(Ω), ‖Φ‖H1(Ω), µ, g and the

constant C(γ0, γ1) that appears in (2.3.1). Inserting the last inequality in (2.4.9),
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and using that |||yNh |||H2
h(Ω) ≥ 0, we have

N−1∑
n=0

‖δyn+1
h ‖2

H2
h(Ω) ≤ τEh[y

0
h] + τ c̃,

and (2.4.12) follows by inserting the last inequality in (2.4.15).

In turn, (2.4.13) follows from (2.3.18) and upon noting that the definition of

the discrete Hessians (2.2.10), Lemma 2.2.1 (L2 bound of lifting operators), a trace

inequality, and the local stability of the Lagrange interpolant imply

Eh[Ikhy0] . ‖Ikhy0‖2
H2
h(Ω) . ‖y

0‖2
H2(Ω). (2.4.16)

This concludes the proof.

Note that for a general target metric g, it may be difficult (if not impossible)

to construct an explicit y0 ∈ A. In this situation, a suitable initial guess y0
h ∈ Ak

h,ε0

with ε0 small can be generated via a preprocessing procedure, which is presented in

Section 2.5.1.

We emphasize again that in the case ΓD = ∅, we modify the definition of

(·, ·)H2
h(Ω) by adding an L2 term to fix the non-trivial kernel of the linear problem

(2.4.8). Indeed, the bilinear form ah(., .) has a nontrivial kernel in Fh(ynh) contain-

ing the constant vectors. This is reflected in Theorem 2.3.2 where the sequence

ȳh := yh − (1/|Ω|)
´

Ω
yh, and not yh, is precompact. For this but also to charac-

terize more precisely the limit deformation y∞h obtained by the gradient flow (see

Proposition 2.4.1), we note that our scheme actually controls the evolution of the
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deformation averages throughout the gradient flow for the free boundary case. This

is the object of the next result.

Theorem 2.4.3. Assume that ΓD = ∅ (recall that f = 0 in this case). Given any

initial deformation y0
h, the nth iterate ynh of the gradient flow satisfies

´
Ω

ynh =
´

Ω
y0
h.

Proof. Let us take vh = C in the first equation of (2.4.8), where C is a constant

vector. Note that D2vh = 0, ∇vh = 0 and [vh] = 0 along all interior edges e ∈ E ih.

Therefore we have ah(y
n
h,vh) = ah(δy

n+1
h ,vh) = bh(λ

n+1
h ,vh; y

n
h) = 0. Moreover, we

have

(δyn+1
h ,C)H2

h(Ω) = σ(δyn+1
h ,C)L2(Ω) =

3∑
i=1

Ciσ

ˆ
Ω

(δyn+1
h )i,

where the subscript i indicates the extraction of the ith component of a vector.

Then the first equation of (2.4.8) reduces to

3∑
i=1

Ciσ

ˆ
Ω

(δyn+1
h )i = 0,

which implies that
´

Ω
(δyn+1

h )i = 0 for any n and each component. Hence,

ˆ
Ω

(ynh)i =

ˆ
Ω

(y0
h)i +

n∑
j=1

(δyjh)i =

ˆ
Ω

(y0
h)i.

This finishes the proof.

Remark 2.4.1. If there is a non-zero external force f , then Theorem 2.4.3 does not
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hold. However, at each step of the gradient flow, we have

ˆ
Ω

δyn+1
h =

τ

σ

ˆ
Ω

f .

This can be shown easily by using the same calculation as in the proof of Theorem

2.4.3 but adding a term
´

Ω
f ·vh on the right-hand side of the first equation of (2.4.8).

This means that in the free boundary case, if
´

Ω
f 6= 0 then it is not possible for

the gradient flow to converge. This is physically meaningful: the plate will move

endlessly since it is not constrained on the boundary. In the free boundary case,

without losing generality, we have assumed the stronger assumption f = 0.

Remark 2.4.2. In particular, Theorem 2.4.3 implies that
´

Ω
ynh = 0 for all the

iterates if
´

Ω
y0
h = 0. The later can easily be achieved by subtracting (1/|Ω|)

´
Ω

y0
h

to any initial guess y0
h without affecting Eh[y

0
h] or Dh[y

0
h]. The sequence {yNh }h>0

of outputs of the gradient flow is then precompact and satisfies the assumption in

Theorem 2.3.3 without further shifting.

In the free boundary case, if yh solves (2.2.16), then Ryh + c is also a solution

for any 3 × 3 rotational matrix R and constant translation c. How the translation

c is fixed in the gradient flow is already shown in Theorem 2.4.3, and it is related

to the average of the initialization. We now show how the rotation R is fixed once

an initialization y0
h has been chosen.

Theorem 2.4.4. Assume that ΓD = ∅ (recall that f = 0 in this case). Given an

initialization y0
h for the gradient flow, we denote by ynh the corresponding nth iterate.

78



Then, if we take Ry0
h as a new initialization, the corresponding nth iterate is Rynh.

Proof. Let (δy1
h, λ

1
h) be the solution of (2.4.8) for n = 0. Then for any test function

vh ∈ [Vk
h]

3 we observe that RTvh ∈ [Vk
h]

3 is also an admissible test function and we

thus obtain

(δy1
h, R

Tvh)H2
h(Ω) + τah(δy

1
h, R

Tvh) + τbh(λ
1
h, R

Tvh; y
0
h) = −τah(y0

h, R
Tvh)

bh(µh, δy
1
h; y

0
h) = 0.

Now, consider again (2.4.8) for n = 0 but with y0
h replaced by ŷ0

h := Ry0
h in the

right-hand side of the first equation of (2.4.8). Then (δŷ1
h, λ̂

1
h) is such that

(δŷ1
h,vh)H2

h(Ω) + τah(δŷ
1
h,vh) + τbh(λ̂

1
h,vh;Ry0

h) = −τah(Ry0
h,vh) ∀vh ∈ Vk

h(0,0)

bh(µh, δŷ
1
h;Ry0

h) = 0 ∀µh ∈ Λh.

Since (δy1
h, R

Tvh)H2
h(Ω) = (Rδy1

h,vh)H2
h(Ω),

ah(y
0
h, R

Tvh) = ah(Ry0
h,vh), ah(δy

1
h, R

Tvh) = ah(Rδy
1
h,vh),

and

bh(λ
1
h, R

Tvh; y
0
h) = bh(λ

1
h,vh;Ry0

h), bh(µh, δŷ
1
h;Ry0

h) = bh(µh, R
T δŷ1

h; y
0
h),

we have δŷ1
h = Rδy1

h and λ̂1
h = λ1

h. This implies that ŷ1
h := ŷ0

h+δŷ1
h = R(y0

h+δy1
h) =

Ry1
h.

79



Inductively, we can conclude that ŷnh = Rynh for any n if ŷnh and ynh correspond

to nth iterate with initialization ŷ0
h = Ry0

h and y0
h respectively.

Energy decreasing gradient flow algorithms are generally not guaranteed to

converge to absolute minimizers. We address this aspect in the next proposition and

show that the gradient flow reaches a deformation y∞h , which is a local minimum

for Eh in the direction Fh(y∞h ).

Proposition 2.4.1 (Limit of gradient flow). For a fixed h, let y0
h ∈ Ak

h,ε0
be such

that Eh[y
0
h] < ∞ and let {ynh}n≥1 ⊂ Ak

h,ε be the sequence produced by the discrete

gradient flow. Suppose that for all n ≥ 0, there exists a constant βh > 0 independent

of n such that

inf
µh∈Λh

sup
vh∈Vkh(0,0)

bh(vh, µh; y
n
h)

‖vh‖H2
h(Ω)‖µh‖L2(Ω)

≥ βh. (2.4.17)

Then there exists a subsequence (not relabeled) and y∞h ∈ Ak
h,ε such that ynh → y∞h

as n→∞ and y∞h is a local minimum for Eh in the direction Fh(y∞h ), namely

Eh[y
∞
h ] ≤ Eh[y

∞
h + vh] ∀vh ∈ Fh(y∞h ). (2.4.18)

Proof. Thanks to (2.4.9) we have that supn≥1Eh[y
n
h] <∞. Arguing as in the proof

of Proposition 2.3.1, we can deduce that a subsequence (not relabeled) converges

to some y∞h ∈ Ak
h,ε in any norm defined on [Vk

h]
3 (in the free boundary case, we

can replace y0
h by y0

h − 1
|Ω|

´
Ω

y0
h, which does not affect Eh[y

0
h] and Dh[y

0
h], and use

Proposition 2.4.3 to deduce that all the iterates have mean-value zero). This proves

the first part of the Proposition. We now show (2.4.18). Since Eh is quadratic and
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convex, for any vh ∈ Vk
h(0,0) we have

Eh[y
∞
h + vh] = Eh[y

∞
h ] + δEh[y

∞
h ](vh) + δ2Eh[y

∞
h ](vh,vh) ≥ Eh[y

∞
h ] + δEh[y

∞
h ](vh)

and thus it is enough to show that

δEh[y
∞
h ](vh) = 0 ∀vh ∈ Fh(y∞h ). (2.4.19)

We start by showing that (up to a subsequence) {λn+1
h }n≥0 converges. Recall that

‖ · ‖H2
h(Ω) is a norm on Vk

h(0,0) for both cases ΓD 6= ∅ and ΓD = ∅. Therefore,

from (2.4.9) we also have that limn→∞ ‖δyn+1
h ‖H2

h(Ω) = 0 which in turn implies that

limn→∞ δy
n+1
h = 0. Taking the limit n→∞ in the first equation of (2.4.8), we get

lim
n→∞

bh(vh, λ
n+1
h ; ynh) = Fh(vh)− ah(y∞h ,vh) ∀vh ∈ Vk

h(0,0). (2.4.20)

Now using the inf-sup condition (2.4.17), we have for any n ≥ 0

‖λn+1
h ‖L2(Ω) ≤

1

βh
sup

vh∈Vkh(0,0)

bh(vh, λ
n+1
h ; ynh)

‖vh‖H2
h(Ω)

.

We deduce that supn≥0 ‖λn+1
h ‖L2(Ω) <∞ since the upper bound in the above inequal-

ity converges thanks to (2.4.20), and thus a subsequence (not relabeled) converges

to some λ∞h ∈ Λh in any norm defined on the finite dimensional space Λh. Recalling
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(2.4.6) and (2.4.7), from (2.4.20) we thus have

∑
T∈Th

ˆ
T

λ∞h : (∇vTh∇y∞h + (∇y∞h )T∇vh) = −δEh[y∞h ](vh) ∀vh ∈ Vk
h(0,0).

Since λ∞h is piecewise constant, by (2.4.4) we have that the left-hand side of the last

relation vanishes for any vh ∈ Fh(y∞h ) and thus (2.4.19) is proved.

A schematic illustration of the limit of gradient flow is given in Fig. 2.1.

Figure 2.1: A schematic illustration of the gradient flow. For illustration purpose,
without losing generality, we let y0

h satisfy the metric constraint. Here, the two
circles denote Dh = 0 and Dh = ε respectively. The annulus between the two circles
represent the discrete admissible set Ak

h,ε. In each step of the gradient flow, the

increment δyn+1
h (red line segement) is searched along the tangent plane Fh(ynh)

(grey dotted line in the figure) such that Eh[y
n+1
h ] < Eh[y

n
h]. In the limit as n→∞,

δyn+1
h → 0, and consequently Fh(ynh) also changes little and moves asymptotically

to Fh(y∞h ). Thus the gradient flow searches new iterates on tangential directions to
intermediate circles to decrease the energy asymptotically.

Remark 2.4.3. Although proving the inf-sup condition (2.4.17) for the proposed

method is open, we observe from numerical experiments that it should be satisfied

with at least a constant βh depending on h.
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We will prove the inf-sup condition with βh depending on h later in chapter

3, which deals with the LDG method for the bilayer problem. The key difference

in chapter 3, which plays a significant role, is that we impose the discrete metric

constraint pointwise at barycenters of elements instead of the `1 notion in (2.2.15).

2.5 Initialization

The gradient flow (2.4.8) starts with an initial deformation y0
h in Ak

h,ε0
with

ε0 = Dh[y
0
h] and Eh[y

0
h] affecting the prestrain defect of the successive iterates

controlled by ε0 + Cτ(Eh[y
0
h] + c̃) in view of (2.4.12). We also point out that the

monotone decay property (2.4.9) could require many iterations of the gradient flow

which are considerably reduced when starting with a small energy Eh[y
0
h]. Therefore,

the role of the preprocessing algorithm is to construct an initial deformation with ε0

relatively small and Eh[y
0
h] uniformly bounded. The proposed strategy produces a

deformation with small prestrain defect satisfying approximate boundary conditions

(if any).

The numerical strategy is divided in two steps: a boundary conditions prepro-

cessing step followed by a metric preprocessing step.
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2.5.1 Preprocessing: scheme

Boundary conditions preprocessing. When ΓD 6= ∅, we consider the bi-Laplacian

problem 
∆2ŷ = f̂ in Ω

∇ŷ = Φ on ΓD

ŷ = ϕ on ΓD.

(2.5.1)

where typically f̂ = 0. This vector-valued problem is well-posed and gives, in

general, a non-flat surface ŷ(Ω). We use the LDG method with boundary conditions

imposed à la Nitsche to approximate the solution ŷ ∈ V(ϕ,Φ) of (2.5.1):

ŷh ∈ Vk
h(ϕ,Φ) : ch(ŷh,vh) = (f̂ ,vh)L2(Ω) ∀vh ∈ Vk

h(0,0). (2.5.2)

Here, ch(ŷh,vh) is defined similarly to (2.2.13) using the discrete Hessian (2.2.10),

i.e.,

ch(wh,vh) :=

ˆ
Ω

Hh[wh] : Hh[vh]

+ γ̂1(h−1[∇hwh], [∇hvh])L2(Γah) + γ̂0(h−3[wh], [vh])L2(Γah),

(2.5.3)

where γ̂0 and γ̂1 are positive penalty parameters that may not necessarily be the

same as their counterparts γ0 and γ1 used in the definition of Eh. Then ŷh satisfies

(approximately) the given boundary conditions on ΓD and ŷh(Ω) is, in general,

non-flat.

In the case ΓD = ∅ (free boundary conditions), then an obvious choice is
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ŷ = (id, 0)T , where id(x) = x for x ∈ Ω, which gives a flat surface ŷ(Ω) = Ω × 0.

However, the metric preprocessing algorithm described below will not generate a

deformation out of plane if the initial configuration is flat, see Corollary 2.5.1. As

a consequence, only metrics g admitting flat immersion could be achieved. To

get a surface out of plane, we consider a somewhat ad-hoc procedure: we solve

(2.5.1) with a fictitious forcing f̂ 6= 0 supplemented with the Dirichlet boundary

condition ϕ(x) = (x, 0)T for x ∈ ∂Ω but obviating Φ and jumps of ∇hŷh on Γbh in

(2.5.3). This corresponds to enforcing discretely a variational (Neumann) boundary

condition ∆ŷ = 0 on ∂Ω.

Notice that when a deformation ŷ satisfying ∇ŷT∇ŷ = g is known, one can

simply use the interpolation of ŷ into [Vk
h]

3 for ŷh. However, this situation is not

likely to occur in general.

Metric preprocessing. In this step, an H2 discrete gradient flow is designed to

minimize the energy

Ẽh[ỹh] := Es
h[ỹh] + εbE

b
h[ỹh], (2.5.4)

where

Es
h[ỹh] :=

1

2

ˆ
Ω

|∇hỹ
T
h∇hỹh − g|2, (2.5.5)

Eb
h[ỹh] :=

1

2

(ˆ
Ω

|g−
1
2Hh[ỹh]g

− 1
2 |2 + ‖h−

1
2 [∇hỹh]‖2

L2(Γ0
h) + ‖h−

3
2 [ỹh]‖2

L2(Γ0
h)

)
,

(2.5.6)

and 0 < εb � 1 is a small parameter. At first glance, to produce a deformation with

a small prestrain defect Dh, we only need the term Es
h. Indeed, for any ỹh ∈ [Vk

h]
3
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we have

Dh[ỹh] ≤ ‖(∇hỹh)
T∇hỹh − g‖L1(Ω) . ‖(∇hỹh)

T∇hỹh − g‖L2(Ω) ≈ Es
h[ỹh]

1
2 , (2.5.7)

and a small prestrain defect Dh can thus be ensured by an energy decaying gradient

flow for Es
h. However, in order to guarantee the uniform boundedness of Eh, see

Remark 2.5.1 below, we need the second term Eb
h that involves the discrete Hessian

as a regularization.

Additionally, as discussed in Section 2.1.2, the elastic energy rescaled with s−1

(s is the thickness parameter in the 3d model of plates) can be expressed as stretching

energy plus bending energy multiplied by s2. We may view the metric preprocessing

energy (2.5.4) as a discrete analogue of this pre-asymptotic decomposition of elastic

energy for a small numerical thickness parameter
√
εb. We note that the first term

of (2.5.4) can be considered as a discrete stretching energy, and the second accounts

for the bending. We emphasize that Eb
h is different from the discrete bending energy

Eh we minimize in the main gradient flow, but they are equal if Lamé coefficients

are λ = 0 and µ = 6, the forcing term f = 0, and stabilization parameters are

γ0 = γ1 = 1, and they are equivalent in any event up to a multiplicative constants

depending on λ, µ, γ0, γ1.

Since the Es
h is quartic in ỹh, we need an explicit treatment on its variational

derivative in each step of the gradient flow; the gradient direction is linearized at

the previous iterate. The procedure is similar to the main gradient flow of Section

2.4. Recursively, given ỹnh we compute ỹn+1
h := ỹnh + δỹn+1

h by seeking the increment
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δỹn+1
h ∈ Vk

h(0,0) satisfying

τ̃−1(δỹn+1
h ,vh)H2

h(Ω) + ash(δỹ
n+1
h ,vh; ỹ

n
h) + εba

b
h(δỹ

n+1
h ,vh) = −ash(ỹnh,vh; ỹnh)

− εbabh(ỹnh,vh) (2.5.8)

for all vh ∈ Vk
h(0,0), where τ̃ is a pseudo time-step parameter that is not necessarily

the same as τ in the main gradient flow and

ash(ỹh,vh; ỹ
n
h) :=

ˆ
Ω

(∇hv
T
h∇hỹh +∇hỹ

T
h∇hvh) : ((∇hỹ

n
h)T∇hỹ

n
h − g) (2.5.9)

abh(ỹh,vh) :=

ˆ
Ω

(g−
1
2Hh[ỹh]g

− 1
2 ) : (g−

1
2Hh[vh]g

− 1
2 ) (2.5.10)

+ (h−
1
2 [∇hỹh], [∇hvh])L2(Γ0

h) + (h−
3
2 [ỹh], [vh])L2(Γ0

h).

For the stopping criteria, the flow is ended when either of the following two

conditions is satisfied:

1. the prestrain defect Dh reaches a prescribed value ε̃0, i.e, Dh[ỹ
n+1
h ] ≤ ε̃0;

2. the energy Ẽh becomes stationary, i.e., τ̃−1|Ẽh[ỹn+1]− Ẽh[ỹn]| ≤ ˜tol.

Summary. We summarize the previous discussion of preprocessing in Algorithm 2,

which consists of two separate steps: the boundary conditions and metric prepro-

cessing steps.

It is conceivable that more efficient or physically motivated algorithms could
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Algorithm 2: Initialization step for Algorithm 1.

Given t̃ol and ε̃0;
if ΓD 6= ∅ (Dirichlet boundary condition) then

Solve (2.5.2) for ŷh ∈ Vk
h(ϕ,Φ) with f̂ = 0;

else

Solve (2.5.2) for ŷh with f̂ 6= 0, ϕ = (id, 0) and without Φ;
end
Set ỹ0

h = ŷh;

while τ̃−1
∣∣Ẽh[ỹn+1

h ]− Ẽh[ỹnh]
∣∣ > t̃ol and Dh[ỹ

n+1
h ] > ε̃0 do

Solve (2.5.8) for δỹn+1
h ∈ Vk

h(0,0);
Update ỹn+1

h = ỹnh + δỹn+1
h ;

end
Set y0

h = ỹn+1
h .

be designed to construct initial guesses. We leave these considerations for future

research. As we shall see later, different initial deformations can lead to different

equilibrium configurations corresponding to distinct local minima of the energy Eh

in (2.2.11). These minima are generally physically meaningful.

2.5.2 Preprocessing: analysis

Now, we prove that the gradient flow (2.5.8) is conditionally energy stable,

namely the Ẽh decays at each step provided τ̃ is small enough and the increment

is nonzero. Note that if we have an implicit scheme in each step of gradient flow,

the unconditional energy decreasing is naturally guaranteed as in Theorem 2.4.1.

However, this is not practical due to the nonlinearity brought by Es
h. Since we treat

the nonlinearity explicitly, we break the structure of gradient flow that is presented

in Theorem 2.4.1, and we would rather anticipate an energy decay property with an

additional restriction on time-step for this preprocessing scheme.

Before proving it, we first introduce three lemmas: Lemma 2.5.1 contains a
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discrete Sobolev inequality, which has been proved in [62], and we reproduce it here

in a simpler way using the smoothing interpolation; in Lemma 2.5.2 we show the

continuity of ash and “coercivity” of the left-hand side of (2.5.8) at each step for

τ̃ sufficiently small, which guarantees the solvability of the system (2.5.8) at each

step; finally in Lemma 2.5.3 we prove that the L2(Ω) norm of the broken gradient

is controlled by the energy Ẽh and the L1(Ω) norm of the prestrain metric g.

Lemma 2.5.1 (Discrete Sobolev inequality). For any vh ∈ E(Th) there holds

‖vh‖2
L4(Ω) . ‖∇hvh‖2

L2(Ω) + ‖h−
1
2 [vh]‖2

L2(Γ0
h) + ‖vh‖2

L2(Ω) (2.5.11)

Proof. Let Πhvh ∈ H1(Ω)∩Vk
h be the smoothing interpolant introduced in Definition

2.2.1. Thanks to (2.2.19) the and the triangle inequality, we have

‖vh‖2
L4(Ω) . ‖vh − Πhvh‖2

L4(Ω) + ‖Πhvh‖2
L4(Ω)

. ‖h−1(vh − Πhvh)‖2
L2(Ω) + ‖Πhvh‖2

H1(Ω)

. ‖∇hvh‖2
L2(Ω) + ‖h−

1
2 [vh]‖2

L2(Γ0
h) + ‖Πhvh‖2

L2(Ω)

. ‖∇hvh‖2
L2(Ω) + ‖h−

1
2 [vh]‖2

L2(Γ0
h) + ‖vh‖2

L2(Ω),

where we used the inverse inequality (recall that Ω ⊂ R2)

‖wh‖L4(T ) . h
− 1

2
T ‖wh‖L2(T ) ∀T ∈ Th (2.5.12)

for the discrete function wh = vh − Πhvh and the standard Sobolev inequality for
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Πhvh ∈ H1(Ω) for the second inequality, the estimate (2.2.19) for the third inequal-

ity, and (2.2.21) for the last one (note that (2.2.21) can be naturally extended to the

case when v ∈ E(Th), if we recall the definition of Πh when v ∈ E(Th) is modified

by applying a further L2-projection from E(Th) to Vk
h).

The next proposition concerns the form ash and is key to guarantee that the

hypothesis of the Lax-Milgram theorem are satisfied.

Lemma 2.5.2. Let ỹnh ∈ Vk
h(ϕ,Φ). We have

|ash(vh,wh; ỹ
n
h)| ≤ C1E

s
h[ỹ

n
h]

1
2‖vh‖H2

h(Ω)‖wh‖H2
h(Ω) ∀vh,wh ∈ Vk

h(0,0), (2.5.13)

where C1 is a positive constant independent of n and h.

Moreover, when τ̃ ≤ (1 + C1Ẽh[ỹ
n
h]

1
2 )−1 with C1 independent of n and h we

have

‖vh‖2
H2
h(Ω) ≤

1

τ̃
(vh,vh)H2

h(Ω) + ash(vh,vh; ỹ
n
h) ∀vh ∈ Vk

h(0,0). (2.5.14)

As a consequence, there exists unique solution to the variational problem (2.5.8).

Proof. Let vh,wh ∈ Vk
h(0,0). It is clear that

|ash(vh,wh; ỹ
n
h)| ≤ 2‖(∇hvh)

T∇hwh‖L2(Ω)‖(∇hỹ
n
h)T∇hỹ

n
h − g‖L2(Ω).
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Thanks to the Cauchy-Schwarz inequality we have

‖(∇hvh)
T∇hwh‖L2(Ω) ≤ ‖∇hvh‖L4(Ω)‖∇hwh‖L4(Ω).

Moreover, applying Lemma 2.5.1 to ∇hzh ∈ E(Th), we infer that

‖∇hzh‖L4(Ω) . ‖∇hzh‖L2(Ω) + ‖D2
hzh‖L2(Ω) + ‖h−

1
2 [∇hzh]‖L2(Γ0

h), for zh = vh,wh.

Also, by definition and by Lemma 2.2.3 (relation (2.4.2) if ΓD = ∅), we have the

inequalities

‖D2
hzh‖L2(Ω) ≤ ‖zh‖H2

h(Ω) and ‖∇hzh‖L2(Ω) . ‖zh‖H2
h(Ω), for zh = vh,wh,

and thus

‖(∇hvh)
T∇hwh‖L2(Ω) . ‖vh‖H2

h(Ω)‖wh‖H2
h(Ω).

Therefore, by the definition (2.5.5), we get

|ash(vh,wh; ỹ
n
h)| ≤ C1E

s
h[ỹ

n
h]

1
2‖vh‖H2

h(Ω)‖wh‖H2
h(Ω)

for some positive constant C1 independent of n and h. This shows (2.5.13). Now,

taking wh = vh in the last inequality we easily get

τ̃−1‖vh‖2
H2
h(Ω) + ash(vh,vh; ỹ

n
h) ≥ τ̃−1‖vh‖2

H2
h(Ω) − C1E

s
h[ỹ

n
h]

1
2‖vh‖2

H2
h(Ω).
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Therefore, since Es
h[ỹ

n
h] < Ẽh[ỹ

n
h], if τ̃ ≤ (1+C1Ẽh[ỹ

n
h]

1
2 )−1 we have the claimed

result (2.5.14).

Thanks to the two estimates (2.5.13), (2.5.14) and the coercivity of the discrete

Hessian (Lemma 2.3.1), the Lax-Milgram theory applies to guarantee the existence

and uniqueness of a solution to (2.5.8).

Note that if we further have Ẽh[ỹ
n
h] ≤ Ẽh[ỹ

0
h] for any n ≥ 0, then we could

have a uniform upper bound for τ̃ in Lemma 2.5.2.

Lemma 2.5.3. For any vh ∈ [Vk
h]

3 we have

‖∇hvh‖2
L2(Ω) . Es

h[vh]
1
2 + ‖g‖L1(Ω).

Proof. By (2.3.15), we get

‖∇hvh‖2
L2(Ω) ≤

√
2‖(∇hvh)

T∇hvh‖L1(Ω) ≤
√

2
(
‖(∇hvh)

T∇hvh − g‖L1(Ω) + ‖g‖L1(Ω)

)
≤
√

2
[
|Ω|

1
2‖(∇hvh)

T∇hvh − g‖L2(Ω) + ‖g‖L1(Ω)

]
=
√

2
[√

2|Ω|
1
2Es

h[vh]
1
2 + ‖g‖L1(Ω)

]

which concludes the proof.

Theorem 2.5.1 (Energy stability for prestrain preprocessing). Let ỹ0
h ∈ Vk

h(ϕ,Φ)

with Ẽh[ỹ
0
h] ≤ C for some constant C, where Ẽh is defined as (2.5.4). There exists

a constant c0 depending on hmin := minT∈Th hT , Ẽh[ỹ
0
h], g, and Ω, but independent

of N , such that if τ̃ < c0/2 then (2.5.8) has a unique solution δỹn+1
h ∈ Vk

h(0,0), and
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if we further let ỹn+1
h := ỹnh + δỹn+1

h for any n ≥ 0, then we have the energy stability

estimate for any N ≥ 0 as follows:

Ẽh[ỹ
N+1
h ] +

1

2τ̃

N∑
n=0

‖δỹn+1
h ‖2

H2
h(Ω) ≤ Ẽh[ỹ

0
h]. (2.5.15)

Proof. For any n ≥ 0, if τ̃ ≤ (1 + C1Ẽh[ỹ
n
h]

1
2 )−1, there exists an unique solution

δỹn+1
h ∈ Vk

h(0,0) to (2.5.8) by Lemma 2.5.2. Under this assumption, we take vh =

δỹn+1
h in (2.5.8) to obtain

τ̃−1‖δỹn+1
h ‖2

H2
h(Ω) + ash(ỹ

n+1
h , δỹn+1

h ; ỹnh) + εba
b
h(ỹ

n+1
h , δỹn+1

h ) = 0 (2.5.16)

and proceed in several steps to rewrite this expression in terms of energies and prove

(2.5.15). The main difficulty is that ash is quadratic in its third argument. We will

also show that the assumption on τ̃ can be replaced by a uniform condition.

Step (i): energy relation. Because ash(·, ·; ỹnh) is bilinear and symmetric,

using the identity (a− b)b = 1
2
a2 − 1

2
b2 − 1

2
(a− b)2, we have

ash(ỹ
n
h, δỹ

n+1
h ; ỹnh) =

1

2
ash(ỹ

n+1
h , ỹn+1

h ; ỹnh)− 1

2
ash(ỹ

n
h, ỹ

n
h; ỹnh)− 1

2
ash(δỹ

n+1
h , δỹn+1

h ; ỹnh).

(2.5.17)

Furthermore, using the same identity, we have

1

2
ash(ỹ

n+1
h , ỹn+1

h ; ỹnh)− 1

2
ash(ỹ

n
h, ỹ

n
h; ỹnh) =

ˆ
Ω

W n
h : ((∇hỹ

n
h)T∇hỹ

n
h − g)

= Es
h[ỹ

n+1
h ]− Es

h[ỹ
n
h]− 1

2
‖W n

h ‖2
L2(Ω),
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where

W n
h := (∇hỹ

n+1
h )T∇hỹ

n+1
h − (∇hỹ

n
h)T∇hỹ

n
h. (2.5.18)

Therefore, we are able to express ash(ỹ
n+1
h , δỹn+1

h ; ỹnh) in terms of energies

ash(ỹ
n+1
h , δỹn+1

h ; ỹnh) = ash(ỹ
n
h, δỹ

n+1
h ; ỹnh) + ash(δỹ

n+1
h , δỹn+1

h ; ỹnh)

= Es
h[ỹ

n+1
h ]− Es

h[ỹ
n
h] +

1

2
ash(δỹ

n+1
h , δỹn+1

h ; ỹnh)− 1

2
‖W n

h ‖2
L2(Ω).

Similarly for abh(·, ·) and noting that Eb
h[ỹ

n
h] = 1

2
abh(ỹ

n
h, ỹ

n
h), we obtain

abh(ỹ
n+1
h , δỹn+1

h ) = Eb
h[ỹ

n+1
h ]− Eb

h[ỹ
n
h] +

1

2
abh(δỹ

n+1
h , δỹn+1

h ) ≥ Eb
h[ỹ

n+1
h ]− Eb

h[ỹ
n
h].

Using these two relations in (2.5.16), we arrive at

Ẽh[ỹ
n
h]− Ẽh[ỹn+1

h ] ≥ τ̃−1‖δỹn+1
h ‖2

H2
h(Ω) −R

n
h, (2.5.19)

where

Rn
h :=

1

2
‖W n

h ‖2
L2(Ω) −

1

2
ash(δỹ

n+1
h , δỹn+1

h ; ỹnh). (2.5.20)

This concludes the step.

Step (ii): estimate of Rn
h. Next, our goal is to estimate Rn

h in terms of

‖δỹn+1
h ‖2

H2
h(Ω)

. On the one hand, since δỹn+1
h ∈ Vk

h(0,0) and ỹnh ∈ Vk
h(ϕ,Φ), the
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continuity property (2.5.13) of ash guarantees that

|ash(δỹn+1
h , δỹn+1

h ; ỹnh)| ≤ C1E
s
h[ỹ

n
h]1/2‖δỹn+1

h ‖2
H2
h(Ω) < C1Ẽh[ỹ

n
h]1/2‖δỹn+1

h ‖2
H2
h(Ω).

(2.5.21)

On the other hand, we note that

W n
h = (∇hδỹ

n+1
h )T∇hỹ

n
h + (∇hỹ

n
h)T∇hδỹ

n+1
h + (∇hδỹ

n+1
h )T∇hδỹ

n+1
h ,

and so, taking advantage of the discrete Sobolev inequality (2.5.11), we obtain

‖W n
h ‖2

L2(Ω) . ‖∇hỹ
n
h‖2

L4(Ω)‖δỹn+1
h ‖2

H2
h(Ω) + ‖δỹn+1

h ‖4
H2
h(Ω). (2.5.22)

However, we need to further estimate ‖δỹn+1
h ‖4

H2
h(Ω)

. Note that by Lemma 2.5.2

when τ̃ ≤ (1 + C1Ẽh[ỹ
n
h]1/2)−1, the fact that abh(δỹ

n+1
h , δỹn+1

h ) ≥ 0 as well as (2.5.8)

we have

‖δỹn+1
h ‖2

H2
h(Ω) ≤ τ̃−1‖δỹn+1

h ‖2
H2
h(Ω) + ash(δỹ

n+1
h , δỹn+1

h ; ỹnh) + εba
b
h(δỹ

n+1
h , δỹn+1

h )

= −ash(ỹnh, δỹn+1
h ; ỹnh)− εbabh(ỹnh, δỹn+1

h ).

Proceeding as in the proof of Lemma 2.5.2 we get

|ash(ỹnh, δỹn+1
h ; ỹnh)| ≤ 2‖(∇hỹ

n
h)T∇hδỹ

n+1
h ‖L2(Ω)‖(∇hỹ

n
h)T∇hỹ

n
h − g‖L2(Ω)

. Es
h[ỹ

n
h]1/2‖∇hỹ

n
h‖L4(Ω)‖δỹn+1

h ‖H2
h(Ω),
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and thus by continuity of abh

‖δỹn+1
h ‖2

H2
h(Ω) . Es

h[ỹ
n
h]1/2‖∇hỹ

n
h‖L4(Ω)‖δỹn+1

h ‖H2
h(Ω) + εb|||ỹnh|||H2

h(Ω)|||δỹn+1
h |||H2

h(Ω).

Since Es
h[ỹ

n
h]1/2 < Ẽh[ỹ

n
h]1/2, εb|||ỹnh|||H2

h(Ω) . εbE
b
h[ỹ

n
h]1/2 < Ẽh[ỹ

n
h]1/2, and the fact

that ||| · |||H2
h(Ω) ≤ ‖ · ‖H2

h(Ω), there holds

‖δỹn+1
h ‖2

H2
h(Ω) . Ẽh[ỹ

n
h](‖∇hỹ

n
h‖2

L4(Ω) + 1).

Inserting this last relation in (2.5.22), using the inverse estimate (2.5.12) for

∇hỹ
n
h and Lemma 2.5.3 we get

‖W n
h ‖2

L2(Ω) .
(

1 + Ẽh[ỹ
n
h]
)(
‖∇hỹ

n
h‖2

L4(Ω) + 1
)
‖δỹn+1

h ‖2
H2
h(Ω)

.
(

1 + Ẽh[ỹ
n
h]
)

(h−1
min‖∇hỹ

n
h‖2

L2(Ω) + 1)‖δỹn+1
h ‖2

H2
h(Ω)

.h−1
min

(
1 + Ẽh[ỹ

n
h]
)(

Es
h[ỹ

n
h]

1
2 + ‖g‖L1(Ω) + 1

)
‖δỹn+1

h ‖2
H2
h(Ω)

from which we deduce that

‖W n
h ‖2

L2(Ω) ≤ C2h
−1
min

(
Ẽh[ỹ

n
h] + 1

)(
Ẽh[ỹ

n
h]

1
2 + ‖g‖L1(Ω) + 1

)
‖δỹn+1

h ‖2
H2
h(Ω) (2.5.23)

for some constant C2 independent of n and h. In summary, as in Lemma 2.5.2, as
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long as τ̃ ≤ (1 + C1Ẽh[ỹ
n
h]1/2)−1 we conclude that

|Rn
h| ≤

(
C1

2
Ẽh[ỹ

n
h]

1
2 +

C2

2
h−1

min

(
Ẽh[ỹ

n
h] + 1

)(
Ẽh[ỹ

n
h]

1
2 + ‖g‖L1(Ω) + 1

))
‖δỹn+1

h ‖2
H2
h(Ω).

(2.5.24)

Step(iii): conditional energy dissipation for one step. We now derive

the energy dissipation at an arbitrary step, if τ̃ is sufficiently small. We first define

cn := min

{(
1 + C1Ẽh[ỹ

n
h]1/2

)−1

, dn

}
, (2.5.25)

where

dn :=

(
C1

2
Ẽh[ỹ

n
h]1/2 +

C2

2
h−1

min

(
Ẽh[ỹ

n
h] + 1

)(
Ẽh[ỹ

n
h]

1
2 + ‖g‖L1(Ω) + 1

))−1

. (2.5.26)

Then if τ̃ < cn, inserting (2.5.24) into (2.5.19), we conclude that

Ẽh[ỹ
n+1
h ]+(τ̃−1−c−1

n )‖δỹn+1
h ‖2

H2
h(Ω) ≤ Ẽh[ỹ

n+1
h ]+(τ̃−1−d−1

n )‖δỹn+1
h ‖2

H2
h(Ω) ≤ Ẽh[ỹ

n
h],

(2.5.27)

for any n ≥ 0, which further implies that Ẽh[ỹ
n+1
h ] < Ẽh[ỹ

n
h] if δỹn+1

h 6= 0.

Step(iv): uniform condition on τ̃ . We proceed by induction to prove that

for every n ∈ N, δỹn+1
h is well defined, and cn+1 > cn, if τ̃ < c0. We start with

n = 0. In that case, by assumption τ̃ < c0, Lemma 2.5.2 guarantees that δỹ1
h is well

defined and step (i)-(iii) guarantees that

Ẽh[ỹ
1
h] < Ẽh[ỹ

0
h].
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From the expression (2.5.25) of cn, we also deduce that c1 > c0. For the induction

step, we assume that {δỹjh}nj=1 is well defined, cj > cj−1, j = 1, .., n. From the

latter, we see that τ̃ < c0 < cn. Therefore, using Lemma 2.5.2 and step (i)-(iii)

again guarantees that δỹn+1
h is well defined and

Ẽh[ỹ
n+1
h ] < Ẽh[ỹ

n
h] =⇒ cn+1 > cn.

This is the desired property at step n+ 1. This concludes the induction argument.

Furthermore, from (2.5.27) we deduce that

Ẽh[ỹ
n+1
h ] + (τ̃−1 − c−1

0 )‖δỹn+1
h ‖2

H2
h(Ω) ≤ Ẽh[ỹ

n
h], (2.5.28)

for any n ≥ 0. Moreover, if we further assume τ̃ < c0/2, then we can observe that

τ̃−1 − c−1
0 > (2τ̃)−1, and consequently

Ẽh[ỹ
n+1
h ] +

1

2τ̃
‖δỹn+1

h ‖2
H2
h(Ω) ≤ Ẽh[ỹ

n
h], (2.5.29)

for any n ≥ 0. Then we sum (2.5.29) over n = 0, . . . , N to get (2.5.15). This

concludes the proof.

From the condition τ̃ < c0/2 and definitions (2.5.25) and (2.5.26) with n = 0,

we see that τ̃ → 0 as hmin → 0.

Remark 2.5.1 (Choice of εb). Under the assumptions of Theorem 2.5.1, the prepro-

cessing gradient flow produces a sequence of deformations {ỹnh}n∈N with decreasing
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energies Ẽh[ỹ
n
h]. We now choose εb ∼ h2 and assume that the Nh-th iterate of the

preprocessing gradient flow, denoted ỹNhh , is such that

Ẽh[ỹ
Nh
h ] . h2.

Then, according to (2.5.7), the prestrain defect of yNhh satisfies

Dh(ỹ
Nh
h ) . Es

h[ỹ
Nh
h ]1/2 . h, i.e. ỹNhh ∈ Ak

h,ε0

for ε0 ∼ h. Moreover, we have

Eb
h[ỹ

Nh
h ] . ε−1

b Ẽh[ỹ
Nh
h ] . 1.

This implies that Eh[ỹ
Nh
h ] is also uniformly bounded by continuity of Eh and coer-

civity of Eb
h. As a consequence, the main gradient flow (Section 2.4) with initial

conditions y0
h = ỹNhh has uniformly bounded initial energy and small initial prestrain

defect, and thus controls the final prestrain defect; see Theorem 2.4.1. In addition,

recall the main gradient flow (Theorem 2.4.1) is energy decreasing, and hence the fi-

nal iterate of it is also uniformly bounded. Therefore, if the main gradient flow leads

to an almost global minimizer ynhh of the energy Eh, then the sequence {ynhh }h>0 has

uniformly bounded energies.

Remark 2.5.2. Note that when ΓD 6= ∅, the boundary conditions are enforced in the

following sense. As in Proposition 2.4.1, but now due to (2.5.15), we can conclude
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that there exists the limit ỹ∞h ∈ Vk
h(ϕ,Φ) such that ỹnh converges to it in any norm

and up to a subsequence as n→∞. Due to Remark (2.5.1), note that Eb
h[ỹ
∞
h ] ≤ C

is valid. Consequently, we have ‖[ỹ∞h ]‖2
L2(ΓD) . Ch3 and ‖[∇hỹ

∞
h ]‖2

L2(ΓD) . Ch, for

ỹ∞h ∈ Vk
h(ϕ,Φ).

Another observation is that if we start from a flat initialization (x3-coordinate

of ỹ0
h is 0) in the flow (2.5.8), then the resulting stationary solution ỹNh is flat; we

show this next. This justifies taking ỹ0
h as a discrete solution of the bi-Laplacian

equation (2.5.2) as proposed in Algorithm 2 with a non-zero fictitious force.

Corollary 2.5.1. If ỹnh is of form (f(x1, x2), g(x1, x2), 0) and δỹn+1
h is the solution

of the gradient flow (2.4.8), then ỹn+1
h := ỹnh + δỹn+1

h is also of form

(f̃(x1, x2), g̃(x1, x2), 0).

Proof. Assume δỹn+1
h = (d1, d2, d3) ∈ Vk

h(0,0), where the di are functions of x1, x2.

Let φ ∈ Vk
h be an arbitrary scalar function such that vh = (0, 0, φ) ∈ Vk

h(0,0), then

we have

(∇vh)
T∇ỹnh =

0 0 ∂1φ

0 0 ∂2φ



∂1f ∂2f

∂1g ∂2g

0 0

 = 0. (2.5.30)

Hence, we deduce ash(ỹ
n
h,vh; ỹ

n
h) = 0. Similarly, invoking (2.5.10) which multiplies

Hessians of the arguments componentwise we see that abh(ỹ
n
h,vh) = 0. Consequently,

the right hand side of (2.5.8) is zero.
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Also, we have

(∇vh)
T∇δỹn+1

h =

0 0 ∂1φ

0 0 ∂2φ



∂1d1 ∂2d1

∂1d2 ∂2d2

∂1d3 ∂2d3

 =

∂1φ∂1d3 ∂1φ∂2d3

∂2φ∂1d3 ∂2φ∂2d3

 , (2.5.31)

as well as,

(δỹn+1
h ,vh)H2

h(Ω) = (d3, φ)H2
h(Ω), (2.5.32)

whence abh(δỹ
n+1
h ,vh) reduces to the bilinear form only on d3 and φ.

As a result, taking φ = d3, and using Lemma 2.5.2 and non-negativity of the

abh term, we have the following when τ̃ small enough as in Lemma 2.5.2:

‖d3‖2
H2
h(Ω) . 0. (2.5.33)

This means that d3 = 0 as ‖ · ‖H2
h(Ω) defines a norm. As this third component of the

increment δỹn+1
h is 0, we have the claimed result.

2.6 Numerical experiments

We first make a few comments on the implementation of the gradient flow

(2.4.8), built in Algorithm 1, and the resulting linear algebra solver used at each

step.

Let {ϕih}Ni=1 be a basis for Vk
h(0,0) and let {ψi

h}Mi=1 be a basis for Λh. The
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discrete problem (2.4.8) is a saddle-point problem of the form

 A BT
n

Bn 0


δY n+1

h

Λn+1
h

 =

Fn

0

 . (2.6.1)

Here, (δY n+1
h ,Λn+1

h ) are the nodal values of (δyn+1
h ,λn+1

h ) in these bases, while

A = (Aij)
N
i,j=1 ∈ RN×N is the matrix corresponding to the first two terms of (2.4.8)

Aij := τ−1(ϕjh,ϕ
i
h)H2

h(Ω) + Ãij with Ãij := ah(ϕ
j
h,ϕ

i
h), i, j = 1, . . . , N,

while the matrix Bn ∈ RM×N corresponds to the bilinear form bh(·, ·; ynh) and is

given by

(Bn)ij := bh(ϕ
j
h,ψ

i
h; y

n
h) i = 1, . . . ,M, j = 1, . . . , N.

The vector Fn ∈ RN accounts for the right-hand-side of (2.4.8). It reads Fn =

F + L− ÃYn, where Yn contains the nodal values of ynh in the basis {ϕih}Ni=1 while

F = (Fi)
N
i=1 and L = (Li)

N
i=1 are defined by

Fi := Fh(ϕ
i
h) and Li := −ah(0̄,ϕih), i = 1, . . . , N.

Here, 0̄ denotes the zero function in the space Vh(ϕ,Φ), which is 0 everywhere but

equal to ϕ and its gradient equal to Φ on e ∈ EDh ; L contains the liftings of the

boundary data. Since Bn and Fn depend explicitly on the current deformation ynh,

they have to be re-computed at each iteration of Algorithm 1 (gradient flow). In

contrast, the matrices A and Ã and the vector L, which are the most costly to
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assemble because of the reconstructed Hessians, are independent of the iteration

number n and can thus be computed once for all.

More precisely, to compute the element-wise contribution on a cell T , the

discrete Hessian (2.2.10) of each basis function associated with T along with those

associated with the neighboring cells is computed. Recall that for any interior edge

e ∈ E ih, the support of the liftings re and be in (2.2.7) and (2.2.8) is the union of the

two cells sharing e as an edge. We employ direct solvers for these small systems.

We proceed similarly for the computation of the liftings of the boundary data ϕ

and Φ. Once the discrete Hessians are computed, the rest of the assembly process is

standard. Incidentally, we note that the proposed LDG approach couples the degree

of freedom (DoFs) of all neighboring cells (not only the cell with its neighbors). As a

consequence, the sparsity pattern of LDG is slightly larger than that for a standard

symmetric interior penalty dG (SIPG) method. However, the stability properties of

LDG are superior to those of SIPG.

System (2.6.1) can be solved using the Schur complement method. Denot-

ing Sn := BnA
−1BT

n the Schur complement matrix, the first step determines Λn+1
h

satisfying

SnΛ
n+1
h = BnA

−1Fn, (2.6.2)

followed by the computation of δYn+1
h solving

AδYn+1
h = Fn −BT

nΛn+1
h . (2.6.3)

103



Because the matrix A is independent of the iterations, we pre-compute its LU de-

composition once for all and use it whenever the action of A−1 is needed in (2.6.2)

and (2.6.3). Furthermore, a conjugate gradient algorithm is utilized to compute

Λn+1
h in (2.6.2) to avoid assembling Sn. The efficiency of the latter depends on the

condition number of the matrix Sn, which in turn depends on the inf-sup constant

of the saddle-point problem (2.6.1). Leaving aside the preprocessing step, we ob-

serve in practice that solving the Schur complement problem (2.6.2) is the most

time consuming part of the simulation. Finally, we point out that the stabilization

parameters γ0 and γ1 influence the number of Schur complement iterations: more

iterations of the gradient conjugate algorithm are required for larger stabilization

parameter values. We refer to Tables 2.1 and 2.2 below for more details.

Then we present a collection of numerical experiments to illustrate the per-

formance of the proposed methodology. We consider several prestrain tensors g, as

well as both ΓD 6= ∅ (Dirichlet boundary condition) and ΓD = ∅ (free boundary

condition). The Algorithms 1 and 2 are implemented using the deal.ii library [7]

and the visualization is performed with paraview [6]. The color code is the follow-

ing: (multicolor figures) dark blue indicates the lowest value of the deformation’s

third component while dark red indicate the largest value of the deformation’s third

component; (unicolor figures) magnitude of the deformation’s third component.

For all the simulations, we fix the polynomial degree k of the deformation yh

and l1, l2 for the two liftings of the discrete Hessian Hh[yh] to be

k = l1 = l2 = 2.
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Moreover, unless otherwise specified, we set the Lamé coefficients to λ = 8 and

µ = 6, and the stabilization parameters for (2.2.13) and (2.5.3) to be

γ0 = γ1 = 1, γ̂0 = γ̂1 = 1.

In striking contrast to [22, 23], these parameters do not need to be large for stability

purposes. When ΓD = ∅, we set σ = 1 in (2.4.1). Finally, we choose tol = 10−6 for

the stopping criteria in Algorithm 1 (gradient flow). In this section, the results are

presented for εb = 0 (regularization parameter introduced in Section 2.5.1 for metric

preprocessing), but we tested them for εb = 10−4 and notice that the difference is

negligible computationally.

To record the energy Eh and metric defect Dh after the three key proce-

dures described in Algorithms 1 and 2, we resort to the following notation: BC

PP (boundary conditions preprocessing); Metric PP (metric preprocessing); Final

(gradient flow).

2.6.1 Vertical load and isometry constraint

This first example has been already investigated in [10, 22]. We consider

the square domain Ω = (0, 4)2, the metric g = I2 (isometry) and a vertical load

f = (0, 0, 0.025)T . Moreover, the plate is clamped on ΓD = {0}× [0, 4]∪ [0, 4]×{0},

i.e., we prescribe the Dirichlet boundary condition (2.1.20) with

ϕ(x1, x2) = (x1, x2, 0)T , Φ = [I2,0]T (x1, x2) ∈ ΓD.
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Finally, we set the Lamé constant λ = 0 thereby removing the trace term in (2.2.11).

No preprocessing step is required because the flat plate, which corresponds

to the identity deformation y0
h(Ω) = Ω, satisfies the metric constraint and the

boundary conditions. For the discretization of Ω, we use ` = 0, 1, 2, · · · to denote

the refinement level and consider uniform partitions T` consisting of squares T of

side-length 4/2` and diameters hT = h =
√

2/2`−2. The pseudo-time step used for

the discretization of the gradient flow is chosen so that τ = h. The discrete energy

Eh[yh] and metric defect Dh[yh] for ` = 3, 4, 5 are report in Table 2.1 along with the

number of gradient flow iterations (GF Iter) required to reach the targeted stationary

tolerance and the range of number of iterations (Schur Iter) needed to solve the Schur

complement problem (2.6.2). Note that in this case we have Dh[y
0
h] = 0, namely

y0
h ∈ Ak

h,ε0
with ε0 = 0.

Nb. cells DoFs τ = h Eh Dh GF Iter Schur Iter

64 1920
√

2/2 -1.002E-2 1.062E-2 11 [60,65]

256 7680
√

2/4 -9.709E-3 5.967E-3 17 [85,101]

1024 30720
√

2/8 -8.762E-3 2.962E-3 28 [118,148]

Table 2.1: Effect of the numerical parameters h and τ = h on the energy and
prestrain defect for the vertical load example using γ0 = γ1 = 1. As expected
[10, 13, 22], we observe that Dh[yh] is O(h). The number of iterations needed by
the gradient flow and for each Schur complement solver increases with the resolution.

We point out that the SIPG method analyzed in [22] requires γ0 = 5000 and

γ1 = 1100 in this example. We report in Table 2.2 the performance of both methods

with this choice of stabilization parameters.

Based on Table 2.2, we see that the two methods give similar results. The

advantage of the LDG approach is that there is no constraint on the stabilization
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LDG SIPG
τ = h Eh Dh GF Schur Eh Dh GF Schur√

2/2 -8.28E-3 7.71E-3 7 [302,321] -8.30E-3 7.72E-3 7 [284,307]√
2/4 -6.63E-3 3.45E-3 14 [557,605] -6.64E-3 3.46E-3 13 [556,600]√
2/8 -4.88E-3 1.34E-3 37 [788,831] -4.90E-3 1.34E-3 35 [787,833]

Table 2.2: Comparison of the LDG and SIPG methods using the penalization pa-
rameters γ0 = 5000, γ1 = 1100 required by the SIPG. The results are similar.

parameters γ0 and γ1 other than being positive. In contrast, the coercivity of the

energy discretized with the SIPG method requires γ0 and γ1 to be sufficiently large

(depending on the maximum number of edges of the elements in the subdivision T

and the constant in the trace inequality) [22]. For instance, the choice γ0 = γ1 = 1

for the SIPG method yields an unstable scheme and the problem (2.4.8) becomes

singular after a few iterations of the gradient flow. Moreover, the large values of

γ0, γ1 are mainly dictated by the penalty of the boundary terms in Eh[y
0
h] and the

need to produce moderate values of Eh[y
0
h] to prevent very small time steps τ in

(2.4.12). Furthermore, within each gradient flow iteration, the solution of the Schur

complement problem (2.6.2) using the LDG approach with γ0 = γ1 = 1 (reported

in Table 2.1) requires less than a fifth of the iterations (Schur Iter) for SIPG with

γ0 = 5000 and γ1 = 1100 (reported in Table 2.2) at the expense of slightly larger

number of iterations of the gradient flow (GF Iter); compare Tables 2.1 and 2.2.

This documents a superior performance of LDG relative to SIPG.

Note that there is an artificial displacement along the diagonal x1 + x2 = 4

[10, 22] for this example, which does not correspond to the actual physics of the

problem, namely y = 0 for x1 + x2 ≤ 4. The artificial displacements obtained by
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the two methods for various meshes are compared in Figure 2.2 and Table 2.3.

Figure 2.2: Deformation along the diagonal x1 + x2 = 4. Top: LDG with γ0 =
γ1 = 1; bottom-left: LDG with γ0 = 5000 and γ1 = 1100; bottom-right: SIPG with
γ0 = 5000 and γ1 = 1100. The deflection is slightly larger when γ0 = γ1 = 1 while
both methods yield similar results when γ0 = 5000 and γ1 = 1100; see Table 2.3.

LDG SIPG
] ref. γ0 = γ1 = 1 γ0 = 5000, γ1 = 1100 γ0 = 5000, γ1 = 1100
l = 3 0.0478 0.0311 0.0312
l = 4 0.0443 0.0211 0.0213
l = 5 0.0365 0.0118 0.0119

Table 2.3: Deflection y3 along the diagonal x1 + x2 = 4 for both LDG and SIPG

2.6.2 Rectangle with cylindrical metric

The domain is the rectangle Ω = (−2, 2)× (−1, 1) and the Dirichlet boundary

is ΓD = {−2} × (−1, 1) ∪ {2} × (−1, 1). The mesh Th is uniform and made of

1024 rectangular cells of diameter hT = h =
√

5/4 (30720 DoFs) and the pseudo

time-step is fixed to τ = 0.1.
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2.6.2.1 One mode

We first consider the immersible metric

g(x1, x2) =

1 + π2

4
cos
(
π
4
(x1 + 2)

)2
0

0 1

 (2.6.4)

for which

y(x1, x2) = (x1, x2, 2 sin(
π

4
(x1 + 2)))T (2.6.5)

is a compatible deformation (isometric immersion), i.e., I[y] = g. We impose the

boundary conditions ϕ = y|ΓD and Φ = ∇y|ΓD , so that y ∈ V(ϕ,Φ) is an admissible

deformation and also a global minimizer of the energy.

To challenge our algorithm, we start from a flat initial plate and obtain an

admissible initial deformation y0
h using the two preprocessing steps (BC PP and

Metric PP) in Algorithm 2 with parameters

τ̃ = 0.05, ε̃0 = 0.1 and t̃ol = 10−6.

The deformation obtained after applying Algorithms 2 and 1 are displayed in Figure

2.3. Moreover, the corresponding energy and prestrain defect are reported in Table

2.4. Notice that the target metric defect ε̃0 is reached in 49 iterations while 380

iterations of the gradient flow are needed to reach the stationary deformation.

Interestingly, when no Dirichlet boundary conditions are imposed, i.e., the free
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Figure 2.3: Deformed plate for the cylinder metric with one mode. Left: BC PP;
middle: Metric PP; right: Final.

Initial BC PP Metric PP Final
Eh 120.3590 1.1951 2.5464 1.7707
Dh 9.8696 3.2899 9.8609E-2 9.5183E-2

Table 2.4: Energy and prestrain defect for the cylinder metric with one mode. All
the algorithms behave as intended: the boundary conditions preprocessing (BC
PP) reduces the energy by constructing a deformation with compatible boundary
conditions, the metric preprocessing (Metric PP) reduces the metric defect and the
gradient flow (Final) reduced the energy to its minimal value while keeping a control
on the metric defect.

boundary case, then the flat deformation (pure stretching)

y(x1, x2) =

(ˆ x1

−2

√
1 +

π2

4
cos
(π

4
(s+ 2)

)2

ds, x2, 0

)T

is also compatible with the metric (2.6.4) and has a smaller energy. We observe

that y1(2, x2) − y1(−2, x2) ≈ 5.85478 for x2 ∈ (−2, 2) corresponds to a stretching

ratio of approximately 1.5. The outcome of Metric PP in Algorithm 2 starting from

the flat plate produces an initial deformation with Eh = 0.81755 and Dh = 0.09574

using 37 iterations. The stationary solution of the main gradient flow is reached in

68 iterations and produces a flat plate with energy Eh = 0.376257 and metric defect

Dh = 0.0957329.
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2.6.2.2 Two modes

This example is similar to that of Section 2.6.2.1 but with one additional mode

of higher frequency, namely we consider the immersible metric

g(x1, x2) =

1 +
(
π
2

cos
(
π
4
(x1 + 2)

)
+ 5π

8
cos
(

5π
4

(x1 + 2)
))2

0

0 1

 .

In this case, the deformation

y(x1, x2) =

(
x1, x2, 2 sin

(π
4

(x1 + 2)
)

+
1

2
sin

(
5π

4
(x1 + 2)

))T

is compatible (isometric immersion) with the metric and we impose the correspond-

ing Dirichlet boundary conditions on ΓD as in Section 2.6.2.1.

Using the same setup as in Section 2.6.2.1, Algorithm 2 produced a suitable

initial guess in 1271 iterations, while Algorithm 1 terminated after 1833 steps. The

deformations obtained after each of the three main procedures are given in Figure

2.4. The corresponding energy and prestrain defect are reported in Table 2.5. We

see that the main gradient flow decreases the energy upon bending the shape but

keeping the metric defect roughly constant.

Initial BC PP Metric PP Final
Eh 413.7400 5.5344 28.9184 13.0706
Dh 25.2909 26.1854 9.9997E-2 1.0178E-1

Table 2.5: Energy and metric defect for the cylinder metric with two modes. Com-
pare with Table 2.4 corresponding to one mode.
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Figure 2.4: Deformed plate for the cylinder metric with two modes. Left: BC PP;
middle: Metric PP; right: Final. Compare with Figure 2.3 corresponding to the
metric (2.6.4) (one mode).

2.6.3 Rectangle with a catenoidal-helicoidal metric

Let Ω be a rectangle to be specified later and let the metric be

g(x1, x2) =

cosh(x2)2 0

0 cosh(x2)2

 . (2.6.6)

Notice that the family of deformations yα : Ω→ R3, 0 ≤ α ≤ π
2
, defined by

yα := cos(α)ȳ + sin(α)ỹ (2.6.7)

with

ȳ(x1, x2) =


sinh(x2) sin(x1)

− sinh(x2) cos(x1)

x1

 , ỹ(x1, x2) =


cosh(x2) cos(x1)

cosh(x2) sin(x1)

x2

 ,

are all compatible with the metric (2.6.6). The parameter α = 0 corresponds to an

helicoid while α = π/2 represents a catenoid. Furthermore, the energy E[yα] defined
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in (2.1.33) (or equivalently E[yα] given in (2.1.19)) has the same value for all α. To

see this, it suffices to note that the second fundamental form of yα is given by

II[yα] =

− cos(α) sin(α)

sin(α) cos(α)

 , D2yαk = cos(α)D2ȳk + sin(α)D2ỹk,

where yαk = (yα)k is the kth component of yα for k = 1, 2, 3.

In the following sections, we show how the two extreme deformations can be

obtained either by imposing the adequate boundary conditions or by starting with

an initial configuration sufficiently close to the energy minima.

2.6.3.1 Catenoid case

We consider the domain Ω = (0, 6.25)× (−1, 1). The mesh Th consists of 896

(almost square) rectangular cells of diameter hT = h ≈ 0.17 (26880 DoFs). We

do not impose any boundary conditions on the deformations, which corresponds to

ΓD = ∅ (free boundary condition). We apply Algorithm 2 (initialization) and start

the metric preprocessing with ỹ0
h = ŷh, the solution to the bi-Laplacian problem

(2.5.1) with fictitious force f̂ = (0, 0, 4)T and boundary condition ϕ(x) = (x, 0) on

∂Ω (but without Φ). Moreover, we use three tolerances t̃ol = 0.1, 0.025, 0.01 for this

preprocessing to investigate the effect on Algorithm 1 (gradient flow). Figure 2.5

depicts final configurations produced by Algorithm 1 with the outputs of Algorithm

2. Corresponding energies and metric defects are given in Table 2.6. We see that

the metric defect diminishes, as t̃ol decreases, and the surface tends to a full (closed)
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catenoid as expected from the relation (2.6.7) with α = π/2.

Figure 2.5: Final configurations for the catenoidal-helicoidal metric with free bound-
ary condition using tolerances t̃ol = 0.1 (left), 0.025 (middle) and 0.01 (right) for
the metric preprocessing of Algorithm 2. The second row offers a different view of
the final deformations.

t̃ol = 0.1 t̃ol = 0.025 t̃ol = 0.01
Algo 2 Algo 1 Algo 2 Algo 1 Algo 2 Algo 1

Eh 36.9461 4.01094 103.838 7.42946 146.215 8.78622
Dh 2.62428 3.19839 1.36864 2.69258 0.853431 1.83427

Table 2.6: Energies Eh and metric defects Dh produced by Algorithms 2 and 1
for the catenoidal-helicoidal metric with free boundary condition. We see that the
tolerance t̃ol of Algorithms 2 controls Dh and that Algorithm 1 does not increase
Dh much but reduces Eh substantially. The smaller t̃ol is the closer the computed
surface gets to the catenoid, which is closed (see Figure 2.5).

2.6.3.2 Helicoid shape

All the deformations yα in (2.6.7) are global minima of the energy but the final

deformation is not always catenoid-like as in the previous section. In fact, starting

with an initial deformation close to yα with α = 0 leads to an helicoid-like shape.
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We postpone such an approach to Section 2.6.4.3. An alternative to achieve an

helicoid-like shape is to enforce the appropriate boundary conditions as described

now.

We consider the domain Ω = (0, 4.5)× (−1, 1) and enforce Dirichlet boundary

conditions on ΓD = {0} × (−1, 1) compatible with yα given by (2.6.7) with α = 0.

The mesh Th consists of 640 (almost square) rectangular cells of diameter hT = h ≈

0.17 (19200 DoFs) and the pseudo time-step is τ = 0.01.

We apply Algorithm 2 (preprocessing) with τ̃ = 0.01, ε̃0 = 0.1 and t̃ol =

10−3 to obtain the initial deformation y0
h. The preprocessing stopped after 2555

iterations, meeting the criteria τ̃−1|Ẽh[ỹn+1
h ] − Ẽh[ỹnh]| ≤ t̃ol, while 2989 iterations

of Algorithm 1 (gradient flow) were needed to reach the stationary deformation.

Figure 2.6 displays the output of the boundary conditions preprocessing and the

metric preprocessing, the two stages of Algorithm 2, as well as two views of the

output of Algorithm 1. The corresponding energies and metric defects are reported

in Table 2.7.

Initial BC PP Metric PP Final
Eh 138020 0.658342 202.144 7.7461
Dh 5.17664 5.16565 0.248419 1.15764

Table 2.7: Energies and metric defects for the helicoid-like shape with Dirichlet
boundary conditions on the bottom side.
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Figure 2.6: Deformed plate for the catenoidal-helicoidal with Dirichlet boundary
conditions on the bottom side corresponding to {0} × (−1, 1). From left to right:
BC PP, Metric PP, and two views (the last from the top) of the output of Algorithm
1.

2.6.4 Disc with positive or negative Gaussian curvature

We now consider a plate consisting of a disc of radius 1

Ω =
{

(x1, x2) ∈ R2 : x2
1 + x2

2 < 1
}
.

We prescribe several immersible metrics g and impose no boundary conditions.

The mesh Th consists of 320 quadrilateral cells of diameter 0.103553 ≤ hT ≤

0.208375 (9600 DoFs) and the pseudo time-step is τ = 0.01. Moreover, we initialize

the metric preprocessing of Algorithm 2 with the identity function ỹ0
h(x) = (x, 0)T

for x ∈ Ω, and τ̃ = 0.05, ε̃0 = 0.1, t̃ol = 10−6.
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2.6.4.1 Bubble - positive Gaussian curvature

To obtain a bubble-like shape, we consider for any α > 0 the metric

g(x1, x2) =

1 + απ
2

4
cos
(
π
2
(1− r)

)2 x21
r2

απ
2

4
cos
(
π
2
(1− r)

)2 x1x2
r2

απ
2

4
cos
(
π
2
(1− r)

)2 x1x2
r2

1 + απ
2

4
cos
(
π
2
(1− r)

)2 x22
r2

 (2.6.8)

with r :=
√
x2

1 + x2
2. A compatible deformation is given by

y(x1, x2) =
(
x1, x2,

√
α sin

(π
2

(1− r)
))T

,

i.e., y is an isometric immersion I[y] = g. In the following, we choose α = 0.2.

In the absence of boundary conditions and forcing term, the flat configuration

ỹ0
h(Ω) = Ω has zero energy but has a metric defect of Dh = 1.0857. Algorithm 2

(preprocessing) performs 877 iterations to deliver an energy Eh = 35.3261 and a

metric defect Dh = 0.0999797. Algorithm 2 only stretches the plate which remains

flat; see Figure 2.7 (left and middle). Algorithm 1 (gradient flow) then deforms

the plate out of plane, and reaches a stationary state after 918 iterations with

Eh = 2.08544, while keeping the metric defect Dh = 0.087839; see Figure 2.7-right.

We point out Corollary 2.5.1 also applies to Algorithm 1, i.e., a flat initial

configuration (y3 = 0) will theoretically lead to flat deformations throughout the

gradient flow. However, in this example and the ones in Section 2.6.5, the initial de-

formation produced by Algorithm 2 has a non-vanishing third component y3 (order

of machine precision). Furthermore, Algorithm 2 may also produce discontinuous
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configurations (as for the initial deformation in Figure 2.7 left and middle) to ac-

commodate for the constraint and will thus have a relatively large energy due to the

jump penalty term. These two aspects combined may be responsible for the main

gradient flow Algorithm 1 to produce out of plane deformations even when starting

with a theoretical flat initial configuration. This is the case when starting with a

disc with positive Gaussian curvature metric as in Figure 2.7.

Figure 2.7: Deformed plate for the disc with positive Gaussian curvature metric.
Algorithm 2 stretches the plate but keeps it flat (left and middle). Algorithm 1
gives rise to an ellipsoidal shape (right).

2.6.4.2 Hyperbolic paraboloid - negative Gaussian curvature

We consider the immersible metric g with negative Gaussian curvature

g(x1, x2) =

1 + x2
2 x1x2

x1x2 1 + x2
1

 . (2.6.9)

A compatible deformation is given by y(x1, x2) = (x1, x2, x1x2)T , i.e., I[y] = g.

In this setting, the flat configuration has a prestrain defect of Dh = 1.56565

(still vanishing energy). Algorithm 2 (preprocessing) performs 856 iterations to

reach the energy Eh = 50.3934 and metric defect Dh = 0.0999757. Algorithm 1

(gradient flow) executes 1133 iterations to deliver an energy Eh = 1.83112 and met-
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ric defect Dh = 0.0980273. Again, the metric defect remains basically constant

throughout the main gradient flow, while the energy is significantly decreased. Fig-

ure 2.8 shows the initial (left) and final (middle) deformations of Algorithm 2 and

the output of Algorithm 1 (right) which exhibit a saddle point structure.

Figure 2.8: Deformed plate for the disc with negative Gaussian curvature. Algorithm
2 stretches the plate but keeps it flat (left and middle). Algorithm 1 gives rise to a
saddle shape (right). Compare with Figure 2.7.

We point out that Algorithm 2 gives rise to little gaps between elements of the

deformed subdivisions as a consequence of not including jump stabilization terms

in the bilinear form (2.5.9). These gaps are reduced by Algorithm 1.

2.6.4.3 Oscillating boundary

We construct an immersible metric in polar coordinates (r, θ) with a six-fold

oscillation near the boundary of the disc Ω. Let g̃(r, θ) = I[ỹ(r, θ)] be the first

fundamental form of the deformation

ỹ(r, θ) =
(
r cos(θ), r sin(θ), 0.2r4 sin(6θ)

)
. (2.6.10)

The expression of the prestrain metric g = I[y] in Cartesian coordinates is then

given by (2.1.24) and y(x1, x2) = ỹ(r, θ).
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We set the parameters

τ = 0.05, τ̃ = 0.05, ε̃0 = 0.1, t̃ol = 10−4, tol = 10−6,

and note that Algorithm 1 (gradient flow) does not necessarily stop at global minima

of the energy. Local extrema are frequently achieved and they are, in fact, of

particular interest in many applications. To illustrate this property, we consider a

couple of initial deformations and run Algorithms 2 and 1.

Case 1: boundary oscillation. We choose ỹ0
h to be the local nodal interpolation

of y = ỹ ◦ ψ into [Vk
h]

3, with ỹ given by (2.6.10). The output deformations of

Algorithms 2 and 1 are depicted in Figure 2.9. The former becomes the initial

configuration y0
h of Algorithm 1 and is almost the same as ỹ0

h, which is approximately

a disc with six-fold oscillations; see Figure 2.9 (left). This is due to the fact that

I[ỹ0
h] is already close to the target metric g. Algorithm 1 (gradient flow) breaks

the symmetry: two peaks are amplified while the other four are reduced. After the

preprocessing, the energy is Eh = 18.0461 and metric defect is Dh = 0.00208473.

The final energy is Eh = 13.6475 while the final metric defect is Dh = 0.00528294.

Figure 2.9: Deformed plate for the disc with oscillation boundary using the initial
deformation described in Case 1. Left: output of Algorithm 2 (preprocessing);
Middle: output of Algorithm 1 (gradient flow); Right: another view of output of
Algorithm 1.
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Case 2: no boundary oscillation. We run Algorithm 2 with the bi-Laplacian

problem (2.5.1) with fictitious force f̂ = (0, 0, 1)T and boundary condition ϕ(x) =

(x, 0) on ∂Ω (but without Φ). The output of Algorithm 2 is an ellipsoid without

oscillatory boundary as in Case 1.

This corresponds to an underlying metric rather different from the target g.

Algorithm 1 (gradient flow) is unable to improve on the metric defect because it is

designed to decrease the bending energy. Therefore, the output of Algorithm 1 is

again an ellipsoidal surface totally different from that of Case 1 that is displayed in

Figure 2.9. In this case, Dh = 0.801464 and Eh = 0.0377544 leading to a smaller

bending energy but larger metric defect when compared with Case 1.

(a) (b) (c) (d)

Figure 2.10: Ellipsoidal-like deformation of a disc without boundary oscillation when
using the initial deformation described in Case 2. (a)-(b): output of Algorithm 2
(preprocessing) with maximal third component y3 of the deformation about 7.8 ×
10−2; (c)-(d): output of Algorithm 1 (gradient flow) with maximal y3 ≈ 4.4× 10−2.
(a) and (c) are views from the top while (b) and (d) are views from the side where
the third component of the deformation is scaled by a factor 10.

2.6.5 Gel discs

Discs made of a NIPA gel with various monomer concentrations can be manu-

factured in laboratories [52, 71]. NIPA gels undergo a differential shrinking in warm

environments depending on the concentration. Monomer concentrations injected at
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the center of the disc generate prestrain metrics depending solely on the distance

to the center. We thus propose, inspired by [71, Section 4.2], prestrained metrics

g̃(r, θ) in polar coordinates of the form (2.1.25) with

η(r) =


1√
K

sin(
√
Kr) K > 0,

1√
−K sinh(

√
−Kr) K < 0.

(2.6.11)

In view of Section 2.1.3, these metrics are immersible, namely there exist compat-

ible deformations y such that I[y] = g (isometric immersions). We now construct

computationally isometric embeddings y for both K > 0 (elliptic) and K < 0 (hy-

perbolic). It turns out that they possess a constant Gaussian curvature κ = K

according to (2.1.28).

We let the domain Ω be the unit disc centered at the origin, do not enforce

any boundary conditions and let f = 0. The partition of Ω is as in Section 2.6.4 and

τ̃ = 0.05, ε̃0 = 0.1, t̃ol = 10−4, tol = 10−6.

Case K = 2 (elliptic): We use the fictitious force f̂ = (0, 0, 1)T in Algorithm 2

(preprocessing) and the pseudo-time step τ = 0.05 in Algorithm 1 (gradient flow).

We obtain a spherical-like final deformation; see Figure 2.11 and Table 2.8 for the

results.

Case K = −2 (hyperbolic): We experiment with two different initial deformations

for the metric preprocessing of Algorithm 2: (i) we take the identity map or (ii)
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Figure 2.11: Deformed plate for the disc with constant Gaussian curvature K = 2
(elliptic). Outputs of Algorithm 2 (left) and Algorithm 1 (right).

Algorithm 2 Algorithm 1
Eh 156.404 9.35368
Dh 0.0999494 0.188454

Table 2.8: Energy and prestrain defect for disc with constant curvature K = 2
(elliptic).

we solve the bi-Laplacian problem (2.5.1) with a fictitious force f̂ = (0, 0, 1)T and

boundary condition ϕ(x) = (x, 0) on ∂Ω (but without Φ). Algorithm 2 produces

saddle-like surfaces in both cases but with a different number of waves; see Figure

2.12. Algorithm 1 uses the pseudo-time steps τ = 0.00625 and τ = 0.0125 for

(i) and (ii), respectively, while the other parameters remain unchanged. Table 2.9

documents the results.

Figure 2.12: Deformed plate for the disc with constant Gaussian curvature K = −2
(hyperbolic). Outputs of Algorithm 1 with initialization (i) (left) and initialization
(ii) (middle) and another view with initialization (ii) (right).

It is worth mentioning that for the 3d slender model described in [71], it is
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Initialization (i) Initialization (ii)
Algorithm 2 Algorithm 1 Algorithm 2 Algorithm 1

Eh 699.396 6.92318 699.399 12.0978
Dh 0.0998791 0.245552 0.0999183 0.232627

Table 2.9: Energy and metric defect for disc with constant Gaussian curvature
K = −2 (hyperbolic) for two different initial deformations of Algorithm 2: (i)
identity map and (ii) solution to bi-Laplacian with fictitious force.

shown that when K < 0, the thickness s of the disc influences the number of waves

of the minimizing deformation for K < 0. Our reduced model is asymptotic as

s → 0 whence it cannot match this feature. However, it reproduces a variety of

deformations upon starting Algorithm 2 with suitable initial configurations.
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Chapter 3: LDG Method of Large Deformations of Bilayer Plates

In this chapter, we consider a local discontinuous Galerkin (LDG) type numer-

ical method for the approximation of large deformations of bilayer plates. With this

new discretization, we prove the Γ-convergence and design a fully practical gradient

flow scheme. We also prove the energy stability and the control of constraint defect

for this scheme. Moreover, we also illustrate the efficiency and effectiveness of the

method by numerical simulations. The key novel ingredients of analysis are an a

priori L∞-bound for the first derivatives of the approximated deformation, a re-

duced discrete Hessian, and an imposition of linearized discrete isometry constraint

at barycenters of elements.

3.1 Problem statement and discretization

3.1.1 Bilayer plates model

Mathematically, to find the 2d equilibrium deformations y : Ω→ R3 of bilayer

plates, one needs to solve the constrained minimization problem:

min
y∈A

E [y] :=
1

2

ˆ
Ω

∣∣II[y]− Z
∣∣2, (3.1.1)
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where the admissible set is defined as

A :=
{
y ∈ [H2(Ω)]3 : I[y] = I2 in Ω,y = ϕ ∇y = Φ on ΓD

}
. (3.1.2)

Here, I[y] := ∇yT∇y is the first fundamental form, and II[y] := −∇νT∇y = νTD2y

is the second fundamental form of the mid-surface y(Ω), where ν is its unit normal

vector, and I2 denotes the 2× 2 identity matrix. Dirichlet boundary conditions are

imposed on ΓD ⊂ ∂Ω with boundary data ϕ and Φ can be extended to [H1(Ω)]3 and

[H1(Ω)]3×2 respectively. To have boundary conditions compatible with the isometry

constraint, Φ is also assumed to satisfy ΦTΦ = I2 a.e. in Ω. Moreover, ΓD is allowed

to be empty in this work and it corresponds to free boundary case.

Z : Ω → R2×2 is spontaneous curvature and encodes the material properties

of the bilayer plates, i.e, the difference in reactions to the environmental stimuli

between two thin layers. It drives plates to undergo large deformation without

external forcing term. If the material is homogenous and isotropic, Z = αI2 with

a constant α. Otherwise, the material is anisotropic or inhomogeneous. Z is the

given data to the problem. In particular, when Z = 0 there is no difference between

properties of two layers, and thus in this case the model reduces to single layer

plates [22], which coincides with the classical Kirchhoff plate theory.

Energy functional E [y] can be further simplified. As y is an isometry (i.e.

I[y] = I2), there holds [11]

|II[y]|2 = |D2y|2 = |∆y|2 = tr(II[y])2. (3.1.3)
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As a result, expanding the energy and using (3.1.3),

E [y] :=
1

2

ˆ
Ω

∣∣D2y
∣∣2 − ˆ

Ω

II[y] : Z +
1

2

ˆ
Ω

∣∣Z∣∣2. (3.1.4)

The term
´

Ω
II[y] : Z is the challenging term, as it brings nonlinearity to variational

derivative of E [y]. Indeed, exploiting the definition of II[y] and constraint I[y] = I2,

we can write

ν =
∂1y × ∂2y

|∂1y × ∂2y|
=

∂1y

|∂1y|
× ∂2y

|∂2y|
= ∂1y × ∂2y (3.1.5)

and ˆ
Ω

II[y] : Z =
2∑

i,j=1

ˆ
Ω

∂ijy · (∂1y × ∂2y)Zij, (3.1.6)

and therefore this term is cubic in y. Moreover, since the term 1
2

´
Ω

∣∣Z∣∣2 depends

only on Z, it is equivalent to minimize the following energy for y ∈ A:

E [y] :=
1

2

ˆ
Ω

∣∣D2y
∣∣2 − 2∑

i,j=1

ˆ
Ω

∂ijy · (∂1y × ∂2y)Zij, (3.1.7)

and we keep the same notation for simplicity. We further define

Ẽ[y] :=
1

2

ˆ
Ω

∣∣D2y
∣∣2, (3.1.8)

which is the bending energy functional for single layer plates as in [22]. This is con-

sistent with the bending energy for prestrained plates (2.1.33) up to multiplicative

constants when the target metric for prestrained plates is g = I2 (no prestrain) and

there is no external force (f = 0).
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3.1.2 Discretization

In this chapter, we adopt notations of meshes, jumps, derivatives, finite ele-

ment spaces, norms, lifting operators, and the discrete Hessian from Chapter 2. For

a detailed introduction, we refer to Section 2.2.1 and Section 2.4.

We first recall the definition of the discrete HessianHh : Vk
h(ϕ,Φ)→ [L2(Ω)]

3×2×2

as

Hh[vh] := D2
hvh −R

l1
h ([∇hvh]) +Bl2

h ([vh]). (3.1.9)

The weak and strong convergence properties satisfied by Hh are discussed in Chapter

2, while in this chapter we restate the strong convergence property in a more general

set-up as follows. Note that in Lemma 2.3.3 we prove the strong convergence of

Hh[vh] for vh as the Lagrange interpolation of v, which satisfies the conditions in

Lemma 3.1.1 and thus a special case of this general set-up. Moreover, the proof of

Lemma 3.1.1 is verbatim the same as Lemma 2.3.3.

Lemma 3.1.1 (Strong convergence of Hh). Let v ∈ [H2(Ω)]3 be any function such

that, when ΓD 6= ∅, v = ϕ and ∇v = Φ on ΓD. Moreover, let vh ∈ Vk
h(ϕ,Φ) be

such that

‖D2vh‖L2(T ) . |v|H2(T ) for any T ∈ Th and
∑
T∈Th

|vh − v|2H2(T ) → 0 as h→ 0.

(3.1.10)

Then for any l1, l2 ≥ 0 we have as h→ 0

Hh[vh]→ D2v strongly in [L2(Ω)]3×2×2. (3.1.11)
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Discrete minimization problem. Consider a discrete energy approximating E[y]

using a LDG-type discretization:

Eh[yh] = Ẽh[yh]−
2∑

i,j=1

∑
T∈Th

|T |
[
(H̃h[yh])ij · (∂1yh × ∂2yh)Zij

]
(xT ). (3.1.12)

Here, Ẽh[yh] is defined as

Ẽh[yh] =
1

2

ˆ
Ω

∣∣Hh[yh]
∣∣2 + γ1‖h−

1
2 [∇hyh]‖2

L2(Γah) + γ0‖h−
3
2 [yh]‖2

L2(Γah), (3.1.13)

where the last two terms are stabilization terms with penalty parameters γ0, γ1 > 0.

Moreover, (3.1.13) is the discrete bending energy for the single layer problem with

the LDG method. Indeed, it is a natural discretization of (3.1.8) that hinges on

the discrete Hessian in the same spirit of Chapter 2. Ẽh[yh] is the quadratic part

(quadratic in yh) of (3.1.12) approximating (3.1.8), while the second term is the

cubic part approximating (3.1.6). When considering the variational derivative of

(3.1.12), the quadratic part Ẽh[yh] will only result in linear terms, while the cubic

term brings additional nonlinearity and requires more effort to deal with.

For the second term of (3.1.12), xT denotes the barycenter of any element T ∈

Th, and H̃h[yh] denotes a reduced discrete Hessian, whose definition and properties

are discussed later.

We consider the discrete admissible set Ah,δ defined as

Ah,δ := {yh ∈ Vk
h(ϕ,Φ) :

∣∣∣[∇yTh∇yh − I2

]
(xT )

∣∣∣ ≤ δ ∀T ∈ Th}, (3.1.14)
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and a discrete counterpart of (3.1.1) reads

min
yh∈Ah,δ

Eh[yh]. (3.1.15)

For yh ∈ Ah,δ, there holds that maxT∈Th

∣∣∣[∇yTh∇yh− I2

]
(xT )

∣∣∣ ≤ δ, and this implies

that a discrete version of L∞ norm of ∇yTh∇yh − I2 is controlled by δ; this is a

relaxed isometry constraint for the discrete function yh.

Lemma 3.1.2 (pointwise isometry constraint). If yh ∈ Ah,δ, then

1− δ ≤ |∂iyh(xT )|2 ≤ 1 + δ for i = 1, 2, and |∂1y(xT ) · ∂2y(xT )| ≤ δ, (3.1.16)

for all T ∈ Th.

Proof. Note that for any i, j = 1, 2

[
∇yTh∇yh

]
ij

(xT ) = ∂iy(xT ) · ∂jy(xT ).

By the definition (3.1.14), we deduce that for any i, j = 1, 2

∣∣∣[∇yTh∇yh
]
ij

(xT )− I2,ij(xT )
∣∣∣ ≤ δ.

Since I2,ij = 1 when i = j and I2,ij = 0 when i 6= j, we conclude (3.1.16).

Reduced discrete Hessian. The reduced discrete Hessian H̃h[yh] is defined as
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follows:

H̃h[yh] := Ph(Hh[yh]), (3.1.17)

where Ph is the local L2 projection onto [P0(T )]3×2×2 for each element T ∈ Th.

Indeed, Ph(Hh[yh])|T is defined as

Ph(Hh[yh])|T =
1

|T |

ˆ
T

Hh[yh]. (3.1.18)

The second term of (3.1.12) is an approximation (one-point quadrature rule)

of the integral
´

Ω
(H̃h[yh])ij ·(∂1yh×∂2yh)Zij. At first glance, using H̃h[yh] = Hh[yh]

would be the most natural choice for this term in the discrete energy, but it hinders

the Γ-convergence proof; the use of H̃h[yh] will be justified later in Section 3.2. Note

that here ∂iyh (i = 1, 2) denotes columns of the broken gradient ∇hyh.

Next we explore properties of the reduced discrete Hessian H̃h[yh].

Lemma 3.1.3 (Upper bound of reduced discrete Hessian). For any yh ∈ Vk
h(ϕ,Φ),

there holds

‖H̃h[yh]‖L2(Ω) ≤ cstab‖yh‖H2
h
, (3.1.19)

where the constant cstab is independent of h.

Proof. Due to Lemma 2.2.1, it suffices to prove ‖H̃h[yh]‖L2(Ω) . ‖Hh[yh]‖L2(Ω). This

is a consequence of definition (3.1.18), because we have the following on each element

T ∈ Th:

‖Ph(Hh[yh])‖L2(T ) ≤ ‖Hh[yh]‖L2(T ).
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Similar to Lemma 2.3.2, we have the following result.

Lemma 3.1.4 (Weak convergence for reduced discrete Hessian). Let yh ∈ Vk
h(ϕ,Φ).

If ‖yh‖H2
h(Ω) ≤ C for all h and yh → y in [L2(Ω)]3 for y ∈ [H2(Ω)]3, we have H̃h[yh]

converges weakly to D2y in [L2(Ω)]3.

Proof. For any φ ∈ [C∞c (Ω)]3×2×2, we have

ˆ
Ω

Ph(Hh[yh]) : φ =
∑
T∈Th

ˆ
T

Hh[yh] : Phφ =
∑
T∈Th

ˆ
T

Hh[yh] : φ+Hh[yh] : (Phφ− φ).

For the first term, by Lemma 2.3.2 we have

ˆ
Ω

Hh[yh] : φ→
ˆ

Ω

D2y : φ.

For the second term we can estimate

∣∣∣ ∑
T∈Th

Hh[yh] : (Phφ− φ)
∣∣∣ ≤ ∑

T∈Th

‖Hh[yh]‖L2(T )‖Phφ− φ‖L2(T )

≤
∑
T∈Th

‖Hh[yh]‖L2(T )hT‖∇φ‖L2(T )

≤ h‖Hh[yh]‖L2(Ω)‖∇φ‖L2(Ω).

Due to Lemma 2.2.1 we have ‖Hh[yh]‖L2(Ω) . ‖yh‖H2
h

is uniformly bounded, then

the second term converges to 0.

Remark 3.1.1. If Ph is defined to be the local L2-projection onto [Pk(T )]3×2×2 for
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any nonnegative integer k, Lemma 3.1.4 is still correct. Indeed, Ph is defined as for

any T ∈ Th

(Ph(v),wh)L2(T ) = (v,wh)L2(T ), ∀wh ∈ [Pk(T )]3×2×2. (3.1.20)

Then,

ˆ
Ω

[Ph(Hh[yh])−Hh[yh]] : φ =
∑
T∈Th

ˆ
T

[Ph(Hh[yh])−Hh[yh]] : (φ− Phφ)

+
∑
T∈Th

ˆ
T

[Ph(Hh[yh])−Hh[yh]] : Phφ

=
∑
T∈Th

ˆ
T

[Ph(Hh[yh])−Hh[yh]] : (φ− Phφ)

.
∑
T∈Th

‖Hh[yh]‖L2(T )‖φ− Phφ‖L2(T )

. ‖Hh[yh]‖L2(Ω)‖φ− Phφ‖L2(Ω),

where the second equality comes from the definition (3.1.20) and the inequality comes

from the L2-stability of the operator Ph. Moreover, since ‖Hh[yh]‖L2(Ω) is uniformly

bounded and ‖φ − Phφ‖L2(Ω) → 0 as h → 0, together with the weak convergence of

Hh[yh] to D2y, we can prove Lemma 3.1.4 for Ph defined as (3.1.20).

However, as we shall see in Section 3.2 we need to require Ph(Hh[yh]) ∈

[P1(T )]3×2×2 to prove the Γ-convergence, and thus k in (3.1.20) can only be 0 and

1 here. Moreover, since we define the cubic term in (3.1.12) by using a one-point

quadrature rule, using k = 0 for Ph helps with the efficiency and simplicity, and

does not harm the accuracy.
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3.2 Γ-convergence

First we recall coercivity, compactness and lim-inf property (Theorem 3.2.1

and Theorem 3.2.2) of the quadratic part Ẽh[yh]. Note that such results with LDG

discretization for prestrained plates are proved in Chapter 2 in the case of both

Dirichlet boundary and free boundary. Since single layer plates are only special

cases of prestrained plates (i.e, g = I2), the proofs in Chapter 2 carry over to

Ẽh[yh]. Here, for simplicity of presentation we focus on the case ΓD 6= ∅, while the

case ΓD = ∅ can be treated as in Chapter 2. Note that Hh[yh] in Ẽh[yh] can have

any choice of lifting polynomial degrees l1, l2 ≥ 0.

Theorem 3.2.1 (Coercivity of Ẽh). Let yh ∈ Vk
h(ϕ,Φ), and γ0, γ1 > 0. If ΓD 6= ∅,

then

‖yh‖2
H2
h(Ω) ≤ ccoer(Ẽh[yh] + C2

ϕ,Φ), (3.2.1)

where the constant ccoer of (3.2.1) depends only on γ0, γ1, and the constant Cϕ,Φ is

given by Cϕ,Φ := (‖ϕ‖2
H1(Ω) + ‖Φ‖2

H1(Ω))
1
2 .

Theorem 3.2.2 (Compactness and Lim-inf of Ẽh). Assume that ΓD 6= ∅. Let

l1, l2 ≥ 0 and let δ = δ(h) → 0 as h → 0. Let {yh} ⊂ Ah,δ be a sequence such that

Ẽh[yh] ≤ C uniformly. Then there exists y ∈ A such that (up to a subsequence)

yh → y in [L2(Ω)]3 as h→ 0, and Ẽ[y] ≤ lim inf
h→0

Ẽh[yh].

Moreover, the following Lemma reveals the conditions that a recovery sequence

{yh}h should satisfy, for the lim-sup condition of Ẽh. A proof can be carried out as

in Theorem 2.3.4.
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Lemma 3.2.1 (Conditions of recovery sequence for Ẽh). Assume that ΓD 6= ∅. For

any y ∈ A, if there exists yh ∈ Ah,δ such that Hh[yh] converges to D2y strongly in

[L2(Ω)]3×2×2, then Ẽ[y] = limh→0 Ẽh[yh].

Indeed, to prove lim-sup condition one needs to construct a recovery sequence

{yh}h ⊂ Ah,δ for any y ∈ A, which should satisfy the conditions in Lemma 3.1.1

to guarantee the strong convergence of the discrete Hessian. For example, such a

specific construction exploiting Lagrange interpolation are used in Theorem 2.3.4,

but we emphasize that a novel construction of recovery sequence is considered in

this work as in Theorem 3.2.4, corresponding to the brand new discrete constraint

(3.1.14).

Then, we turn to properties of the complete discrete energy Eh[yh]. With the

help of Theorem 3.2.1, we can further establish the equicoercivity of energy Eh:

Theorem 3.2.3 (Coercivity of Eh). Assume that ΓD 6= ∅. If yh ∈ Ah,δ and Eh[yh]

is uniformly bounded, then Ẽh[yh] is also uniformly bounded, and thus ‖yh‖H2
h

is

uniformly bounded as well.

Proof. Note that

2∑
i,j=1

∑
T∈Th

|T |
[
H̃h[yh]ij · (∂1yh × ∂2yh)Zij

]
(xT )

≤
2∑

i,j=1

∑
T∈Th

|T |‖H̃h[yh]ij‖L∞(T )|∂1yh(xT )||∂2yh(xT )|‖Zij‖L∞(T ).

Using yh ∈ Ah,δ and Lemma 3.1.2, we get that |∂iyh(xT )| ≤ (δ + 1)
1
2 for i = 1, 2.
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Thus,

2∑
i,j=1

∑
T∈Th

|T |
[
H̃h[yh]ij · (∂1yh × ∂2yh)Zij

]
(xT )

≤ (δ + 1)‖Zij‖L∞(Ω)

2∑
i,j=1

∑
T∈Th

|T |‖H̃h[yh]ij‖L∞(T )

≤ (δ + 1)‖Zij‖L∞(Ω)cinv

2∑
i,j=1

∑
T∈Th

|T |
1
2‖H̃h[yh]ij‖L2(T )

≤ (δ + 1)‖Zij‖L∞(Ω)cinv|Ω|
1
2‖H̃h[yh]‖L2(Ω)

≤ (δ + 1)‖Zij‖L∞(Ω)cinvcstab|Ω|
1
2‖yh‖H2

h

≤ (2ccoer)
−1‖yh‖2

H2
h

+
1

2
ccoer(δ + 1)2‖Zij‖2

L∞(Ω)c
2
invc

2
stab|Ω|

≤ 1

2
Ẽh[yh] +

1

2
C2
ϕ,Φ +

1

2
ccoer(δ + 1)2‖Zij‖2

L∞(Ω)c
2
invc

2
stab|Ω|,

where we use Young’s inequality, inverse inequality, Lemma 3.1.3 and Theorem 3.2.1.

We have proved that

2Eh[yh] ≥ Ẽh[yh]− C̃coer, (3.2.2)

where positive constant C̃coer is defined as

C̃coer := C̃coer(δ) = C2
ϕ,Φ + ccoer(δ + 1)2‖Zij‖2

L∞(Ω)c
2
invc

2
stab|Ω|. (3.2.3)

Moreover, we have

2ccoerEh[yh] ≥ ‖yh‖2
H2
h
− ccoerC2

ϕ,Φ − ccoerC̃coer := ‖yh‖2
H2
h
− ĉcoer, (3.2.4)
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where the positive constant ĉcoer is defined as

ĉcoer := ĉcoer(δ) = 2ccoerC
2
ϕ,Φ + c2

coer(δ + 1)2‖Zij‖2
L∞(Ω)c

2
invc

2
stab|Ω|. (3.2.5)

Consequently, the uniform boundedness of ‖yh‖H2
h

and Ẽh[yh] follows from the uni-

form boundedness of Eh[yh].

Now we prove the Γ-convergence of Eh:

Theorem 3.2.4 (Γ-convergence of Eh). Assume that ΓD 6= ∅. Let l1, l2 ≥ 0 and let

δ = δ(h)→ 0 as h→ 0.

(i) Let yh ∈ Ah,δ be a sequence such that Eh[yh] is uniformly bounded. Then

there exists y ∈ A such that yh → y in [L2(Ω)]3 and E[y] ≤ lim inf
h→0

Eh[yh].

(ii) For any y ∈ A there exists yh ∈ Ah,δ such that yh → y in [L2(Ω)]3 and

E[y] ≥ lim sup
h→0

Eh[yh].

Proof. Note that the same results have been established for Ẽh. So it suffices to

deal with the term
∑2

i,j=1

∑
T∈Th |T |

[
H̃h[yh]ij · (∂1yh × ∂2yh)Zij

]
(xT ) and the novel

way of imposing the discrete isometry constraint in Ah,δ.

Step (i): lim-inf property. By Theorem 3.2.3 and Theorem 3.2.2, we have

already shown that there exists y ∈ [H2(Ω)]3 such that boundary conditions are

satisfied and yh → y in [L2(Ω)]3 and Ẽ[y] ≤ lim inf
h→0

Ẽh[yh]. Moreover, there further

holds the strong convergence of ∇hyh to ∇y in [L2(Ω)]3×2 as in Chapter 2. To

check that y satisfies the isometry constraint as h → 0, we take advantages of the
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L2 convergence of ∇hyh to ∇y. Noting yh ∈ Ah,δ we can verify that

∑
T∈Th

∣∣∣ ˆ
T

(∇yTh∇yh − I2)
∣∣∣ ≤ ∑

T∈Th

|T |
∣∣[∇yTh∇yh − I

]
(xT )

∣∣
+
∑
T∈Th

ˆ
T

∣∣∇yTh∇yh − I2 − [∇yTh∇yh − I2

]
(xT )

∣∣
≤
∑
T∈Th

|T |δ +
∑
T∈Th

h

ˆ
T

|∇(∇yTh∇yh)|

≤ |Ω|δ + h‖D2
hyh‖L2(Ω)‖∇hyh‖L2(Ω)

→ 0,

as h → 0, where we use the uniform boundedness of ‖yh‖H2
h
. Applying Poincaré-

Friedrichs inequality we deduce that

‖∇hy
T
h∇hyh−I2‖L1(Ω) . h‖D2

hyh‖L2(Ω)‖∇hyh‖L2(Ω) +
∑
T∈Th

∣∣∣ ˆ
T

(∇yTh∇yh−I2)
∣∣∣→ 0,

as h→ 0. Moreover, considering

(
∇hy

T
h∇hyh − I2

)
−
(
∇yT∇y − I2

)
= ∇h(yh−y)T∇hyh+∇yT∇h(yh−y), (3.2.6)

we can further conclude that

‖∇yT∇y − I2‖L1(Ω) ≤
(
‖∇y‖L2(Ω) + ‖∇hyh‖L2(Ω)

)
‖∇hyh −∇y‖L2(Ω)

+ ‖∇hy
T
h∇hyh − I2‖L1(Ω) → 0,
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as h→ 0. This shows that y satisfies the isometry constraint, and thus y ∈ A.

Now to prove the lim-inf condition for Eh[yh], it suffices to check the term

tends to 0, where y ∈ A is the limit of yh that is just obtained.

2∑
i,j=1

∑
T∈Th

|T |
[
H̃h[yh]ij · (∂1yh × ∂2yh)Zij

]
(xT )−

2∑
i,j=1

ˆ
Ω

∂ijy · (∂1y × ∂2y)Zij

=
2∑

i,j=1

∑
T∈Th

ˆ
T

(H̃h[yh]ij − ∂ijy) · (∂1y × ∂2y)Zij

+
2∑

i,j=1

∑
T∈Th

|T |
[
H̃h[yh]ij · (∂1yh × ∂2yh − ∂1y × ∂2y)Zij

]
(xT )

+
2∑

i,j=1

∑
T∈Th

{
|T |
[
H̃h[yh]ij · (∂1y × ∂2y)Zij

]
(xT )−

ˆ
T

H̃h[yh]ij · (∂1y × ∂2y)Zij

}
=: R1 +R2 +R3.

First, due to the Lemma 3.1.4, we have R1 → 0 as h→ 0.

Then, the following inverse inequality for any function wh defined on a finite

dimensional space over T ∈ Th

|T |
1
2 |wh(xT )| ≤ |T |

1
2‖wh‖L∞(T ) ≤ cinv‖wh‖L2(T ), (3.2.7)

yields

|R2| =
∣∣ 2∑
i,j=1

∑
T∈Th

|T |
[
H̃h[yh]ij · ((∂1yh − ∂1y)× ∂2yh + ∂1y × (∂2yh − ∂2y))Zij

]
(xT )

∣∣
≤

2∑
i,j=1

∑
T∈Th

‖H̃h[yh]ij‖L2(T )‖Zij‖L∞(T )

(
‖∂1yh − ∂1y‖L2(T )|∂2yh(xT )|

+ ‖∂2yh − ∂2y‖L2(T )‖∂1y‖L∞(T )

)
.
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Then, by Lemma 3.1.2 and that y ∈ A we know |∂2yh(xT )| and ‖∂1y‖L∞(T ) are

uniformly bounded. Together with Lemma 3.1.3, the fact that ‖yh‖H2
h

is uniformly

bounded and the strong convergence of ∇hyh to ∇y in [L2(Ω)]3×2, we have R2 → 0

as h→ 0.

Since R3 is a quadrature error, we have

|R3| .
2∑

i,j=1

∑
T∈Th

h2

ˆ
T

|D2[H̃h[yh]ij · (∂1y × ∂2y)Zij]|

.
2∑

i,j=1

∑
T∈Th

h2
(
‖D2(H̃h[yh]ij)‖L1(T )‖(∂1y × ∂2y)Zij‖L∞(T )

+ ‖∇(H̃h[yh]ij)‖L2(T )‖∇((∂1y × ∂2y)Zij)‖L2(T )

+ ‖H̃h[yh]ij‖L∞(T )‖D2((∂1y × ∂2y)Zij)‖L1(T )

)
:= I1 + I2 + I3.

Note that

I2 =
2∑

i,j=1

∑
T∈Th

h2‖∇(H̃h[yh]ij)‖L2(T )‖∇((∂1y × ∂2y)Zij)‖L2(T )

.
∑
T∈Th

h‖H̃h[yh]‖L2(T )‖D2y‖L2(T )‖∇y‖L∞(T )‖Z‖L∞(T )

. h‖H̃h[yh]‖L2(Ω)‖D2y‖L2(Ω) . h,
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as ‖H̃h[yh]‖L2(Ω) . ‖yh‖H2
h
≤ C in view of Lemma 3.1.3. So I2 → 0 as h→ 0. Also,

I3 =
2∑

i,j=1

∑
T∈Th

h2‖H̃h[yh]ij‖L∞(T )‖D2((∂1y × ∂2y)Zij)‖L1(T )

. CZ
∑
T∈Th

h‖H̃h[yh]‖L2(T )(‖D3y‖L2(T )‖∇y‖L2(T ) + ‖D2y‖2
L2(T ))

. Ch‖H̃h[yh]‖L2(Ω)‖y‖2
H3(Ω),

where we use
∑

i aibici ≤ (
∑

i a
2
i )

1
2 (
∑

i b
2
i c

2
i )

1
2 ≤ (

∑
i a

2
i )

1
2 (
∑

i b
2
i

∑
j c

2
j)

1
2 . Note that

here we use a higher regularity of y, which requires a regularization argument for y ∈

A. In fact, isometries y in [H2(Ω)]3 can be approximated with arbitrary precision

in the H2-norm by smooth mollifier yε. Hence,

∣∣∣ˆ
Ω

∂ijy · (∂1y × ∂2y)Zij −
ˆ

Ω

∂ijy
ε · (∂1y

ε × ∂2y
ε)Zij

∣∣∣
. ‖y − yε‖H2(Ω)‖∂1y‖L2(Ω)‖∂2y‖L∞(Ω)

+ ‖yε‖H2(Ω)‖y − yε‖H1(Ω)(‖∂2y‖L∞(Ω) + ‖∂1y
ε‖L∞(Ω)),

which can be arbitrarily small when yε is close to y arbitrarily in [H2(Ω)]3. Upon

choosing first yε and next h, we can make I3 arbitrarily small.

For I1, since in each element T ∈ Th we have

D2(H̃h[yh]ij) = D2
(
(Ph(Hh[yh]))ij

)
= 0,

as Ph(Hh[yh]) ∈ P0(T ). Then we conclude I1 = 0. This justifies the use of reduced
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Hessian. Otherwise, if one considers Hh[yh]ij, D
2(Hh[yh]ij) is not necessarily 0 and

also there is no proper way to control I1 by hα with α > 0 (using inverse inequalities

can only guarantee that I1 is uniformly bounded).

To sum up, R3 → 0 as h→ 0, and finally we have E[y] ≤ lim inf
h→0

Eh[yh].

Step (ii): lim-sup property. We need to apply the regularization argument:

by [48], isometries y in [H2(Ω)]3 can be approximated with arbitrary precision in the

H2-norm by smooth isometries yε. Given y ∈ A we take yε be such approximation.

Then we can define the recovery sequence as

yh(x) = yε(xT ) +∇yε(xT )(x− xT ) +
1

2
(x− xT )TQε(x− xT ), (3.2.8)

for x ∈ T for any T ∈ Th. Here xT is the barycenter of T , and Qε := 1
|T |

´
T
D2yε. It

is clear that yh ∈ [Vk
h]

3 for k ≥ 2.

Now, we have

‖yh − yε‖L2(T ) . h3‖D3yε‖L2(T ), (3.2.9)

by Bramble-Hilbert lemma, and

‖D2yh −D2yε‖L2(T ) = ‖Qε −D2yε‖L2(T ) . h‖D3yε‖L2(T ) (3.2.10)

by Poincaré inequality.
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Moreover,

‖D2yh‖L2(T ) = ‖Qε‖L2(T ) ≤ |T |1/2|
1

|T |

ˆ
T

D2yε| ≤ |T |−1/2‖D2yε‖L1(T ) . ‖D2yε‖L2(T ).

(3.2.11)

Also, it is easy to compute that ∇yh(xT ) = ∇yε(xT ) for any T . Since yε is an

isometry, it holds trivially that yh ∈ Ah,δ for any δ > 0.

Summing over elements and recalling the arbitrary precision approximation

property of yε, properties (3.2.9),(3.2.10), (3.2.11) imply that yh → y in [L2(Ω)]3,

D2
hyh → D2y in [L2(Ω)]3×2×2 and ‖D2

hyh‖L2(Ω) . ‖D2y‖L2(Ω). Consequently, Lemma

3.1.1 and Lemma 3.2.1 guarantees that lim
h→0

Ẽh[yh] = Ẽ[y].

Since Ẽh[yh] is uniformly bounded, then by Theorem 3.2.1, there holds ‖yh‖H2
h(Ω)

is uniformly bounded. Therefore, using yh → y in [L2(Ω)]3, we have H̃h[yh] con-

verges weakly to D2y in [L2(Ω)]3 by Theorem 3.1.4. Consequently, convergence of

the remaining cubic term can be proved as in Step (i).

Remark 3.2.1. In this remark we discuss the motivation of using one-point quadra-

ture for cubic term and imposing discrete constraint on barycenters.

1. L∞-control: First, we need to impose the discrete constraint so that a discrete

L∞ norm of ∇hy
T
h∇yh−I2 is controlled; hence uniform boundedness of ∂iyh in

the discrete L∞ norm can be obtained from admissibility. This is used several

times in this section.

2. Compatibility: We note that the cubic term in Eh should be compatible with
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the discrete constraint. For example, this is necessary to bound the R2 term

using the admissibility in the lim-inf proof. More specifically, as we impose the

discrete constraint on barycenters, it is natural to use the one-point quadrature

(at barycenter) for the cubic term in Eh. Otherwise, if we consider the exact

integral of the cubic term, then the estimate of R2 is problematic, because it

is impossible to get a uniform L∞(T ) bound for gradients from point values at

xT without exploiting W s,∞ regularity (s > 1).

3. Options for the discrete constraint: Unfortunately, using one-point quadra-

ture for the cubic term may hinder the accuracy if one considers high degree of

FEM space (the case k > 2), although an error analysis for this type of non-

linear nonconvex problem is beyond reach. Therefore, a natural question is:

can we use more quadrature points or other alternative treatments for the cubic

term, as well as discrete constraint? On one hand, it is not obvious how to con-

struct a recovery sequence such that it satisfies the discrete isometry constraint

at several quadrature points. On the other hand, if one considers an alternative

way of defining the discrete constraint such as | 1
|T |

´
T

(∇hy
T
h∇hyh− I)| ≤ δ for

each T ∈ Th, it is always a challenge to construct a suitable recovery sequence

(satisfying (3.2.9),(3.2.10), and (3.2.11)), because ∇hyh may not be closed to

∇y in L∞. This is a limitation of the current work, and to be enhanced in the

future.
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3.3 Discrete gradient flow

To find a solution to (3.1.15), we conduct a discrete H2
h gradient flow. Recall

from Chapter 2 the definition of H2
h metric as follows:

(vh,wh)H2
h(Ω) := σ(vh,wh)L2(Ω) + (D2

hvh, D
2
hwh)L2(Ω)

+(h−1[∇hvh], [∇hwh])L2(Γah) + (h−3[vh], [wh])L2(Γah),

where σ = 0 when ΓD 6= ∅ and σ > 0 when ΓD = ∅. Moreover, we recall the

Discrete Poincaré inequality from Lemma 2.2.3 and (2.4.2), and for simplicity of

presentation, we denote the hidden constants in (2.4.2), (2.2.25), and (2.2.26) to be

a unified constant cp, which is independent of h.

The discrete H2
h gradient flow reads as follows. Given y0

h ∈ Ah,0 (i.e, y0
h satisfies

the isometry constraint exactly), in each step knowing ynh, we seek δyn+1
h ∈ Fh,b(ynh),

where Fh,b(ynh) is defined as

Fh,b(ynh) :=
{

vh ∈ Vk
h(0,0) :

[
(∇ynh)T∇vh + (∇vh)

T∇ynh
]
(xT ) = 0 ∀ T ∈ Th

}
.

(3.3.1)

Note that we impose a linearized discrete constraint in practice by requiring δyn+1
h ∈

Fh,b(ynh) at each step. Indeed, Fh,b(ynh) defines a discrete tangent space of the

isometry constraint at ynh for each barycenter xT .
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We compute δyn+1
h ∈ Fh,b(ynh) such that

1

τ
(δyn+1

h ,vh)H2
h

+ ah(δy
n+1
h ,vh) = −ah(ynh,vh) + `[ynh](vh), (3.3.2)

for any vh ∈ Fh,b(ynh). Here, τ is a pseudo time step, and ah is the bilinear form

corresponding to the variational derivative of Ẽh[yh]. More precisely

ah(wh,vh) =

ˆ
Ω

Hh[wh] : Hh[vh] + γ1(h−1[∇hwh], [∇hvh])L2(Γah)

+ γ0(h−3[wh], [vh])L2(Γah).

The linear form `[ynh](vh) on vh provides a linearization on the nonlinear term of

variational derivative of the Eh[yh] (comes from the cubic term), and it is defined

as

`[ynh](vh) =
2∑

i,j=1

∑
T∈Th

|T |
[
(H̃h[vh])ij · (∂1y

n
h × ∂2y

n
h)](xT )Zij(xT )

+
2∑

i,j=1

∑
T∈Th

|T |
[
(H̃h[y

n
h])ij · (∂1vh × ∂2y

n
h)
]
(xT )Zij(xT )

+
2∑

i,j=1

∑
T∈Th

|T |
[
(H̃h[y

n
h])ij · (∂1y

n
h × ∂2vh)

]
(xT )Zij(xT ).

We note that this is an explicit treatment on the nonlinear term in the iterative

scheme, as only ynh is involved.
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3.3.1 Energy stability and admissibility

Motivated by [14] we have the following energy stability and admissibility

property Theorem 3.3.1. Although we relax and linearize the isometry constraint in

the iterative scheme, we prove that violation of the constraint is indeed controlled

properly if τ is small enough.

First we prove a discrete inverse inequality, which will be useful in the proof

of Theorem 3.3.1. Define E(Th) := ΠT∈ThH
1(T ), and hmin := minT∈Th hT .

Lemma 3.3.1 (discrete Sobolev inequality). For any vh ∈ E(Th) ∩Wh, where Wh

is any finite dimensional space, there holds

‖vh‖2
L∞(Ω) . (1 + | log hmin|)(‖∇hvh‖2

L2(Ω) + ‖h−
1
2 [vh]‖2

L2(Γ0
h) + ‖vh‖2

L2(Ω)) (3.3.3)

Proof. We consider a smoothing interpolation operator Πh : E(Th) → Vk
h ∩ H1(Ω)

constructed originally in [21, 22] and discussed in Chapter 2, which satisfies (2.2.19)

and (2.2.21), i.e,

‖∇Πhvh‖L2(Ω) + ‖h−1(vh − Πhvh)‖L2(Ω) . ‖∇hvh‖L2(Ω) + ‖h−
1
2 [vh]‖L2(Γ0

h),

and

‖Πhvh‖L2(Ω) . ‖vh‖L2(Ω).
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Now, to prove (3.3.3) we consider

‖vh‖2
L∞(Ω) . ‖vh − Πhvh‖2

L∞(Ω) + ‖Πhvh‖2
L∞(Ω)

. ‖h−1(vh − Πhvh)‖2
L2(Ω) + ‖Πhvh‖2

L∞(Ω),

where the second inequality uses an inverse estimate. Using (2.2.19), (2.2.21) and

discrete inverse inequality for Πhvh ∈ H1(Ω) [27]:

‖Πhvh‖2
L∞(Ω) . (1 + | log hmin|)‖Πhvh‖2

H1(Ω), (3.3.4)

we get

‖vh‖2
L∞(Ω) . ‖∇hvh‖2

L2(Ω) + ‖h−
1
2 [vh]‖2

L2(Γ0
h) + (1 + | log hmin|)‖Πhvh‖2

H1(Ω)

. (1 + | log hmin|)(‖∇hvh‖2
L2(Ω) + ‖h−

1
2 [vh]‖2

L2(Γ0
h) + ‖vh‖2

L2(Ω)).

This concludes the proof.

Theorem 3.3.1. Given y0
h ∈ Ah,0, assume Eh(y

0
h) ≤ c0 with c0 independent of h.

There exists a constant α1 independent of N and h such that if τ < (2α1| log hmin|)−1,

then for any iterate yNh we have

Eh[y
N
h ] +

1

2τ

N−1∑
n=0

‖δyn+1
h ‖2

H2
h
≤ Eh[y

0
h], (3.3.5)
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and there exists constants α2 and α3 independent of N and h such that

∣∣[(∇yNh )T∇yNh − I2

]
(xT )

∣∣ ≤ α3τ | log hmin|
(
Eh[y

0
h] + α2

)
, (3.3.6)

for any T ∈ Th. Moreover, α1 and α2 depend on the data ϕ, Φ and Z, while α3 is

independent of the data.

Proof. We proceed by induction, and first we state the induction hypothesis as

follows:

Induction hypothesis 1 : assume the estimate (3.3.5) holds for any N ≤ k

(k ≥ 0) with the constant α1;

Induction hypothesis 2 : assume the estimate (3.3.6) holds for any N ≤ k

(k ≥ 0) with the constant α2 and α3.

Now we prove (3.3.5) and (3.3.6) are valid for N = k + 1 with the same

constants α1, α2 and α3 that are discovered in the process, and the constants are

independent of k and h. We split the proof into several steps.

Step (i): intermediate estimate on ‖δyk+1
h ‖2

H2
h
+τah(y

k+1
h ,yk+1

h ) in terms
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of ykh. Taking the test function vh = δyk+1
h in (3.3.2), we have

‖δyk+1
h ‖

2
H2
h

+
τ

2
ah(y

k+1
h ,yk+1

h )− τ

2
ah(y

k
h,y

k
h) +

τ

2
ah(δy

k+1
h , δyk+1

h )

= τ
2∑

i,j=1

∑
T∈Th

|T |
[
H̃h[δy

k+1
h ]ij · (∂1y

k
h × ∂2y

k
h)](xT )Zij(xT )

+ τ
2∑

i,j=1

∑
T∈Th

|T |
[
H̃h[y

k
h]ij · (∂1δy

k+1
h × ∂2y

k
h)
]
(xT )Zij(xT )

+ τ
2∑

i,j=1

∑
T∈Th

|T |
[
H̃h[y

k
h]ij · (∂1y

k
h × ∂2δy

k+1
h )

]
(xT )Zij(xT ).

Then, by Cauchy-Schwarz inequality we have

‖δyk+1
h ‖

2
H2
h

+
τ

2
ah(y

k+1
h ,yk+1

h )− τ

2
ah(y

k
h,y

k
h) +

τ

2
ah(δy

k+1
h , δyk+1

h ) (3.3.7)

≤ τ
2∑

i,j=1

∑
T∈Th

[
|T |

1
2 |H̃h[δy

k+1
h ]ij(xT )||T |

1
2 |∂1y

k
h(xT )||∂2y

k
h(xT )|

+ |T |
1
2 |H̃h[y

k
h]ij(xT )||T |

1
2 |∂1δy

k+1
h (xT )||∂2y

k
h(xT )|

+ |T |
1
2 |H̃h[y

k
h]ij(xT )||T |

1
2 |∂2δy

k+1
h (xT )||∂1y

k
h(xT )|

]
‖Zij‖L∞(T ).

By Induction hypothesis 2 we have

∣∣[(∇ykh)
T∇ykh − I2

]
(xT )

∣∣ ≤ α3τ | log hmin|
(
Eh[y

0
h] + α2

)
< C1, (3.3.8)

where C1 = α3(c0+α2)
2α1

due to τ < (2α1| log hmin|)−1 and Eh[y
0
h] < c0. By Lemma

3.1.2 with δ = C1, this implies that

|∂iykh(xT )|2 ≤ C2 := C1 + 1, (3.3.9)
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for i = 1, 2. Moreover, recalling (3.2.7) and noting that ah(δy
k+1
h , δyk+1

h ) ≥ 0,

together with Lemma 3.1.3 and Lemma 2.2.3, from (3.3.7) we get

‖δyk+1
h ‖

2
H2
h

+
τ

2
ah(y

k+1
h ,yk+1

h )− τ

2
ah(y

k
h,y

k
h) (3.3.10)

≤ c2
inv‖Z‖L∞(Ω)

√
C2τ

[
‖H̃h[δy

k+1
h ]‖L2(Ω)‖∇hy

k
h‖L2(Ω)

+ 2‖H̃h[y
k
h]‖L2(Ω)‖∇hδy

k+1
h ‖L2(Ω)

]
≤ c2

invcstab‖Z‖L∞(Ω)

√
C2cpτ

[
‖δyk+1

h ‖H2
h
(‖ykh‖H2

h
+ Cϕ,Φ) + 2‖ykh‖H2

h
‖δyk+1

h ‖H2
h

]
.

Then, denoting

C3 := c2
invcstab‖Z‖L∞(Ω)

√
C2cp, (3.3.11)

by Young’s inequality the term 1
2
‖δyk+1

h ‖2
H2
h

can be absorbed to the left hand side

of (3.3.10), and we get

1

2
‖δyk+1

h ‖
2
H2
h

+
τ

2
ah(y

k+1
h ,yk+1

h ) ≤ τ

2
ah(y

k
h,y

k
h) +

1

2
C2

3τ
2(3‖ykh‖H2

h
+Cϕ,Φ)2. (3.3.12)

Step (ii): intermediate estimate on τ−1‖δyk+1
h ‖2

H2
h

+ ah(y
k+1
h ,yk+1

h ) in

terms of constants. By Induction hypothesis 1, it is clear that

Eh[y
k
h] ≤ Eh[y

0
h] < c0. (3.3.13)

By Theorem 3.2.3 and in particular (3.2.4),

‖ykh‖2
H2
h
≤ 2ccoerEh[y

k
h] + ĉcoer(C1), (3.3.14)
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and we emphasize that ĉcoer(C1) means the δ in (3.2.5) is replaced by C1, because

ykh ∈ Ah,C1 by (3.3.8). Moreover, the constant ĉcoer(C1) is independent of h and k,

but related to data ϕ, Φ and Z. Then combining (3.3.13) and (3.3.14), we conclude

that

‖ykh‖2
H2
h
≤ 2ccoerc0 + ĉcoer(C1). (3.3.15)

By continuity of the bilinear form ah(y
k
h,y

k
h) ≤ ccont‖ykh‖2

H2
h
, where the constant ccont

is independent of h, k, and αi (i = 1, 2, 3), we have

ah(y
k
h,y

k
h) ≤ 2ccontccoerc0 + ccontĉcoer(C1). (3.3.16)

Substituting (3.3.16) and (3.3.15) into (3.3.12), we divide both sides of (3.3.12) by

τ . Without losing of generality we further assume that hmin is small enough so that

| log hmin| > 1 and τ < (2α1)−1. We get the intermediate estimate

1

2τ
‖δyk+1

h ‖
2
H2
h

+
1

2
ah(y

k+1
h ,yk+1

h ) ≤ C4, (3.3.17)

where constant C4 is defined as

C4 := ccontccoerc0 +
1

2
ccontĉcoer(C1) +

C2
3

4α1

(36ccoerc0 + 18ĉcoer(C1) + 2C2
ϕ,Φ), (3.3.18)

where only C3 and ĉcoer(C1) are related to αi (i = 1, 2, 3) and all the terms are

independent of k and h.

Step (iii): proof of (3.3.5) for N = k + 1. Now, we rewrite the following
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term in (3.3.7):

|T |
[
H̃h[δy

k+1
h ]ij · (∂1y

k
h × ∂2y

k
h) (3.3.19)

+ H̃h[y
k
h]ij · (∂1δy

k+1
h × ∂2y

k
h) + H̃h[y

k
h]ij · (∂1y

k
h × ∂2δy

k+1
h )

]
(xT )Zij(xT )

= |T |
[
H̃h[y

k+1
h ]ij · (∂1y

k+1
h × ∂2y

k+1
h )Zij

]
(xT )− |T |

[
H̃h[y

k
h]ij · (∂1y

k
h × ∂2y

k
h)Zij

]
(xT )

− |T |
[
H̃h[δy

k+1
h ]ij · (∂1y

k+1
h × ∂2y

k+1
h − ∂1y

k
h × ∂2y

k
h)Zij

]
(xT )

+ |T |
[
H̃h[y

k
h]ij · (∂1δy

k+1
h × (∂2y

k
h − ∂2y

k+1
h ))Zij

]
(xT ),

where we use the identity

ak+1bk+1ck+1 − akbkck = (ak+1 − ak)bk+1ck+1 + ak(bk+1 − bk)ck+1 + akbk(ck+1 − ck).

Note that the first two terms contribute to the energy Eh[y
k+1
h ] while the last

two terms are considered as a remainder, and then we can substitute (3.3.19) into

(3.3.7) and reach

‖δyk+1
h ‖

2
H2
h

+ τEh[y
k+1
h ]− τEh[ykh]

≤ τ
2∑

i,j=1

∑
T∈Th

|T |
∣∣∣[H̃h[δy

k+1
h ]ij · (∂1y

k+1
h × ∂2y

k+1
h − ∂1y

k
h × ∂2y

k
h)Zij

]
(xT )

∣∣∣
+ τ

2∑
i,j=1

∑
T∈Th

|T |
∣∣∣[H̃h[y

k
h]ij · (∂1δy

k+1
h × (∂2y

k
h − ∂2y

k+1
h ))Zij

]
(xT )

∣∣∣,
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and then due to (3.2.7) we have

‖δyk+1
h ‖

2
H2
h

+ τEh[y
k+1
h ]− τEh[ykh] (3.3.20)

≤ c2
invτ

2∑
i,j=1

∑
T∈Th

[
‖H̃h[δy

k+1
h ]ij‖L2(T )‖∂1δy

k+1
h ‖L∞(T )‖∂2y

k+1
h ‖L2(T )

+ ‖H̃h[δy
k+1
h ]ij‖L2(T )|∂1y

k
h(xT )|‖∂2δy

k+1
h ‖L2(T )

+ ‖H̃h[y
k
h]ij‖L2(T )‖∂1δy

k+1
h ‖L∞(T )‖∂2δy

k+1
h ‖L2(T )

]
‖Zij‖L∞(T )

≤ c2
invτ‖Z‖L∞(Ω)

[
cstabcp

√
C2‖δyk+1

h ‖
2
H2
h

+ 4cstabcpcsob| log hmin|‖δyk+1
h ‖

2
H2
h
(‖yk+1

h ‖H2
h

+ Cϕ,Φ + ‖ykh‖H2
h
)
]
,

where for the last inequality we apply (3.3.3) to ∂iδy
k+1
h and consider further discrete

Poincaré inequality (2.2.26) to get that

‖∂iδyk+1
h ‖L∞(Ω) ≤ csob(1 + | log hmin|)

1
2‖δyk+1

h ‖H2
h
≤ 2csob| log hmin|‖δyk+1

h ‖H2
h
,

(3.3.21)

for i = 1, 2. Moreover, by (3.2.1), (3.3.15) and (3.3.17) with the fact that Ẽh[y
k+1
h ] =

1
2
ah(y

k+1
h ,yk+1

h ) we have

‖yk+1
h ‖H2

h
+ Cϕ,Φ + ‖ykh‖H2

h
≤ c

1
2
coer(Ẽh[y

k+1
h ] + C2

ϕ,Φ)
1
2 + Cϕ,Φ + ‖ykh‖H2

h
(3.3.22)

≤ c
1
2
coer(C4 + C2

ϕ,Φ)
1
2 + Cϕ,Φ +

(
2ccoerc0 + ĉcoer(C1)

) 1
2

Finally, substitute (3.3.22) into (3.3.20) and recall the definition of C3 (3.3.11) we
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have

‖δyk+1
h ‖

2
H2
h

+ τEh[y
k+1
h ]− τEh[ykh] ≤ C5τ | log hmin|‖δyk+1

h ‖
2
H2
h
, (3.3.23)

where

C5 = C3 + 4csobC
− 1

2
2 C3

[
c

1
2
coer(C4 +C2

ϕ,Φ)
1
2 +Cϕ,Φ +

(
2ccoerc0 + ĉcoer(C1)

) 1
2
]
, (3.3.24)

where only constants C2, C3, C4, and ĉcoer(C1) depend on αi (i = 1, 2, 3), and all the

terms are independent of h, k. Moreover, if α1, α2 and α3 are such that

C5 ≤ α1, (3.3.25)

then together with τ < (2α1| log hmin|)−1 we prove (3.3.5) for N = k + 1. The

validity of (3.3.25) will be justified in the last step.

Step (iv): intermediate estimate of
∣∣[(∇yk+1

h )T∇yk+1
h − I2

]
(xT )

∣∣. Now

for δyk+1
h ∈ Fh,b(ykh) and any T ∈ Th, by definition (3.3.1) there holds

∣∣[(∇yk+1
h )T∇yk+1

h − I2

]
(xT )

∣∣ ≤ ∣∣[(∇ykh)
T∇ykh − I2

]
(xT )

∣∣ (3.3.26)

+
∣∣(∇δyk+1

h (xT ))T∇δyk+1
h (xT )

∣∣.
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By (3.3.3) and discrete Poincaré inequality (2.2.26),

|(∇δyk+1
h (xT ))T∇δyk+1

h (xT )| ≤ ‖∇hδy
k+1
h ‖

2
L∞(T ) ≤ csob(1 + | log hmin|)‖δyk+1

h ‖
2
H2
h
.

(3.3.27)

Using the intermediate estimate (3.3.17) and τ < (2α1| log hmin|)−1, we deduce that

|(∇δyk+1
h (xT ))T∇δyk+1

h (xT )| ≤ csob(1 + | log hmin|)2τC4 ≤ 2C4csobα
−1
1 . (3.3.28)

Together with (3.3.8), we conclude that

∣∣[(∇yk+1
h )T∇yk+1

h − I2

]
(xT )

∣∣ ≤ C1 + 2C4csobα
−1
1 =: C6. (3.3.29)

This implies that yk+1
h ∈ Ah,C6 .

Step (v): proof of (3.3.6) for N = k+1. As y0
h satisfies isometry constraint

on xT , recursively using (3.3.26) and (3.3.27) we have

|
[
(∇yk+1

h )T∇yk+1
h − I2

]
(xT )| ≤ csob(1 + | log hmin|)

k∑
n=0

‖δyn+1
h ‖2

H2
h
, (3.3.30)

Since in step (iii) we prove (3.3.5) for N = k + 1, we conclude that

k∑
n=0

‖δyn+1
h ‖2

H2
h
≤ 2τ(Eh[y

0
h]− Eh[yk+1

h ]).
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Moreover, by (3.2.4) and the fact that yk+1
h ∈ Ah,C6 , a lower bound

Eh[y
k+1
h ] ≥ −(2ccoer)

−1ĉcoer(C6)

holds. Therefore,

k∑
n=0

‖δyn+1
h ‖2

H2
h
≤ 2τ(Eh[y

0
h] + (2ccoer)

−1ĉcoer(C6)).

Hence, noting | log hmin| > 1 we have

|
[
(∇yk+1

h )T∇yk+1
h −I2

]
(xT )| ≤ 4csob| log hmin|τEh[y0

h]+2csobc
−1
coerĉcoer(C6)| log hmin|τ,

(3.3.31)

and thus this leads to (3.3.6) if

α3 ≥ 4csob and α2α3 ≥ 2csobc
−1
coerĉcoer(C6). (3.3.32)

Step (vi): choice of the constants αi. Our goal is to show that there

exists at least a set of constants {α1, α2, α3} that is independent of h, k and satisfies

the system of inequalities (3.3.25) and (3.3.32). We first fix α3 = 5csob by the first

inequality in (3.3.32), and α3 is independent of h, k and the data ϕ, Φ and Z.

Now it suffice to solve the following system of inequalities for α1 and α2:

α2 ≥
2

5
c−1
coerĉcoer(C6) and α1 ≥ C5. (3.3.33)
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Recall the constant C1 is defined as C1 = α3(c0 + α2)α−1
1 , and note that ĉcoer(δ) is

quadratic in δ as in (3.2.5). Moreover, we observe that Ci (i = 2, . . . , 6), ĉcoer(C1)

and ĉcoer(C6) are expressed in only positive powers of C1 and constants indepen-

dent of h, k, α1, α2, α3, which further implies that they can be expressed in only

negative powers of α1, positive powers of r := α2α
−1
1 and constants unrelated to

h, k, α1, α2, α3. If we consider a particular case α2 =
√
α1 and we let α1 →∞, then

we first notice that r → 0. Therefore, in the limit of α1 → ∞, we can observe in

the order that C1 → 0, C2 → 1, C3 tends to a constant depending on Z, ĉcoer(C1),

C4 and C5 converges to a constant depending on data ϕ, Φ and Z, C6 → 0, and

ĉcoer(C6) also tends to a constant depending on the data. Consequently, we con-

clude that when α1 is sufficiently large and α2 =
√
α1 they satisfy the system of

inequalities (3.3.33). In particular, they are independent of h, k, but depends on the

data ϕ, Φ and Z implicitly. In summary, this shows the existence of such a set of

constants {α1, α2, α3} and concludes the proof.

3.3.2 Inf-sup stability

To deal with the constraint δyn+1
h ∈ Fh,b(ynh), we apply the method of Lagrange

multipliers. Indeed, we use piecewise constant Lagrange multipliers in the space

Λh :=
{
λh : Ω→ R2×2 : λTh = λh, λh ∈

[
V0
h

]2×2
}
.
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We define the bilinear form bh(·, ·; ynh) for any (vh,µh) ∈ Vk
h(0,0)× Λh to be

bh(vh,µh; y
n
h) :=

∑
T∈Th

|T |(∇vTh∇ynh + (∇ynh)T∇vh)(xT ) : µh. (3.3.34)

We observe that bh(·, ·; ynh) depends on ynh and that bh(δy
n+1
h ,µh; y

n
h) = 0 for all

µh ∈ Λh implies (3.3.1) for all T ∈ Th. Therefore, in each gradient flow step with

the linearized metric constraint we seek (δyn+1
h ,λn+1

h ) ∈ Vk
h(0,0)× Λh such that

τ−1(δyn+1
h ,vh)H2

h
+ah(δy

n+1
h ,vh)+bh(vh,λ

n+1
h ; ynh)=`[ynh](vh)−ah(ynh,vh)

bh(δy
n+1
h ,µh; y

n
h)=0

(3.3.35)

for all (vh,µh) ∈ Vk
h(0,0)×Λh. Since ynh ∈ Vk

h(ϕ,Φ), whence yn+1
h = ynh + δyn+1

h ∈

Vk
h(ϕ,Φ), the Dirichlet condition of yn+1

h is inherited from that of ynh, which in turn

appears on the right-hand side ah(y
n
h,vh) when ΓD is not empty.

The proposed strategy is summarized in Algorithm 3.

Algorithm 3: (discrete-H2 gradient flow) Finding local minima of Eh

Given a pseudo-time step τ > 0 and a target tolerance tol;
Choose initial guess y0

h ∈ Ah,0;
while τ−1|Eh[yn+1

h ]− Eh[ynh]| >tol do
Solve (3.3.35) for (δyn+1

h ,λn+1
h ) ∈ Vk

h(0,0)× Λh;
Update yn+1

h = ynh + δyn+1
h ;

end

We solve (3.3.35) using the Schur complement approach as in Chapter 2. As

indicated in [61], the solvability of Schur complement matrix relies on the continuity

of ah and inf-sup stability of bh, and also as in [16] the conditioning of the Schur

complement matrix depends on the coercivity of ah, boundedness of bh and inf-sup
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stability of bh.

To prove inf-sup stability of bh, we first show a lemma in the context of linear

algebra as follows.

Lemma 3.3.2 (solvability of auxiliary matrix equation). Given a 2× 2 symmetric

matrix C, and given a 3× 2 matrix B with strictly positive smallest singular value

σmin(B) > 0 such that BC 6= 0, we can find a 3×2 matrix A that solves the equation

(ATB +BTA) : C = |C|2, (3.3.36)

and there holds |A| . |C|. Here | · | denotes the Frobenius norm of matrices.

Proof. Note that

ATB : C = tr(BTAC) = tr(CATB) = tr(ATBC) = BTA : C = A : BC.

Thus (3.3.36) is equivalent to

A : BC =
1

2
|C|2,

and so

A =
(BC)|C|2

2|BC|2

is clearly a solution to (3.3.36). Also,

|A| = |C|2

2|BC|
.
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Considering the singular value decomposition of B, we have B = UΣV T , where U

is 3× 3 orthogonal matrix, V is a 2× 2 orthogonal matrix, and Σ is a 3× 2 matrix

of form [σ1(B), 0; 0, σ2(B); 0, 0] with singular values σi(B) of B. Hence,

|BC|2 = |UΣV TC|2 = |ΣV TC|2 = |ΣC̃|2 ≥ σmin(B)2|C̃|2 = σmin(B)2|C|2,

where C̃ = V TC and thus |C̃| = |C|. Note that |C| cannot be 0, otherwise C = 0

and then BC = 0 that contradicts the assumption. As a result,

|A| ≤ |C|
2σmin(B)

.

This finishes the proof.

Therefore the following inf-sup condition for bh defined in (3.3.34) holds.

Theorem 3.3.2. For all n ≥ 0, there exists a constant βh = βhmin > 0 independent

of n such that

inf
µh∈Λh

sup
vh∈Vkh(0,0)

bh(vh,µh; y
n
h)

‖vh‖H2
h(Ω)‖µh‖L2(Ω)

≥ βh. (3.3.37)

Proof. Due to the Lemma 3.3.36, for any element K ∈ Th, we conclude that there

exists 3× 2 matrix AK such that

µh,K : (ATK∇ynh(xK) +∇ynh(xK)TAK) = |µh,K |2,

and |AK | .
|µh,K |

σmin(∇ynh(xK))
, where µh,K = µh|K is a constant symmetric 2× 2 matrix.
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Note that by definition

σmin(∇ynh(xK)) =
(
λmin((∇ynh(xK))T∇ynh(xK))

) 1
2 ,

where λmin denotes the smallest eigenvalue. Note that ynh ∈ Ah,δ, and thus

∣∣(∇ynh(xK))T∇ynh(xK)− I2

∣∣ ≤ δ.

One can show that the function λ(·) : M2×2 → R from the space of symmetric

matrices M2×2 into R such that λ(A) gives the (real) eigenvalues of A is continuous,

say in the Frobenius norm | · |, because all norms are equivalent. Hence,

|λmin

(
(∇ynh(xK))T∇ynh(xK)− I2

)
| . δ,

and therefore

λmin((∇ynh(xK))T∇ynh(xK)) > 1− cδ.

Consequently, for δ small enough we have

σmin(∇ynh(xK)) :=
(
λmin((∇ynh(xK))T∇ynh(xK))

) 1
2

is bounded away from 0. Therefore |AK | . |µh,K |

(1−cδ)
1
2

.

We define vh as vh(x) := AKx − 1
|K|

´
K
AKx on each K, and it is clear that
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vh ∈ Vk
h for k ≥ 2 and ∇vh = AK for all K ∈ Th. Thus, we have

bh(vh,µh; y
n
h) =

∑
K∈Th

|K|µh,K : [ATK∇ynh(xK) +∇ynh(xK)TAK ]

=
∑
K∈Th

|µh,K |2|K| = ‖µh‖2
L2(Ω).

Note that with this choice of vh, D
2vh = 0 on each element K. Now we

compute:

‖vh‖2
h,2 =

∑
e∈Eh

h−3‖[vh]‖2
L2(e) + h−1‖[∇vh]‖2

L2(e)

.
∑
K∈Th

h−4‖vh‖2
L2(K) + h−2‖∇vh‖2

L2(K)

.
∑
K∈Th

h−2‖∇vh‖2
L2(K)

.
∑
K∈Th

h−2

ˆ
K

|AK |2

.
∑
K∈Th

h−2

ˆ
K

|µh,K |2

(1− cδ)2

. h−2
min(1− cδ)−2‖µh‖2

L2(Ω),

where we use trace inequality and Poincaré inequality (vh is zero mean).

3.4 Numerical experiments

In this section we present several numerical experiments, compared with the

work [12, 13, 14, 23], and motivated by experimental work [2, 49, 72]. We conduct
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simulations with various spontaneous curvature matrix Z, and we consider both

Dirichlet and free boundary conditions. Different aspect ratios of rectangular domain

are also taken into accounts. Our numerical simulations illustrate the effectiveness

and efficiency of our algorithm.

3.4.1 Implementation

We start with a few comments on the implementation of the gradient flow

(3.3.35) and Algorithm 3.

First, the discrete problem (3.3.35) is a saddle-point system, which can be

solved efficiently by Schur complement method. For more details of its implementa-

tion, please refer to Chapter 2, where there is a similar linear algebra structure to

solve the discrete problem in each step. Here, we emphasize that we use a conjugate

gradient iterative solver to compute the inverse of the Schur complement matrix. In

numerical experiments shown in this section, we observe that the number of itera-

tions needed in the conjugate gradient solver is roughly order h, which is related to

the condition number of the Schur complement matrix.

We emphasize that the scalar product (·, ·)H2
h

and the bilinear form ah are

assembled once for all before the main loop, while the bilinear form bnh and right hand

side are assembled at each step of the loop as they depend on the previous iterate ynh.

We notice that computing the discrete Hessian Hh[yh] is the most expensive part

in the assemble process, as it requires solving the linear system (2.2.7) and (2.2.8)

for lifting operators. However, we manage to compute the discrete Hessian only one
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time before the main loop by storing Hh[ϕ
i
h] globally in the code, where {ϕih}Ni=1 is a

basis for [Vk
h]

3. In this way, although `[ynh](vh) contains the discrete Hessians H̃h[vh]

and H̃h[y
n
h], the cost of assembling the right hand side of (3.3.35) is tiny, since the

reduced discrete Hessian H̃h are simply L2 projection of discrete Hessian Hh, which

is only a light computation. Moreover, evaluating ah(y
n
h,vh) is also only a standard

matrix-vector operation since we have assembled ah and degrees of freedoms of ynh

is known.

To summarize, the time-consuming parts of our algorithm mainly consists of

two parts: i) computing discrete Hessian; ii) solving the linear system (3.3.35) by

Schur complement method. ii) eventually dominates since it needs to be done in

each iteration while i) is conducted once for all (empirically, it costs as much as

several iterations). By storing Hh[ϕ
i
h] we need to sacrifice certain memory of the

machine, but this is worthy as the speed and efficiency of the algorithm are improved

a lot.

The implementation is carried out within the software platform deal.ii [7] and

the visualization is performed with paraview [6].

For all the simulations, we fix the polynomial degree k of the deformation yh

and l1, l2 for the two liftings of the discrete Hessian Hh[yh] to be

k = l1 = l2 = 2.
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Moreover the stabilization parameters are taken to be

γ0 = γ1 = 1.

In contrast to [22, 23], these parameters do not need to be large for stability purposes.

In the following numerical simulations, we consider both free and clamped

Dirichlet boundary conditions. In either situation, a natural choice for the initial-

ization is y0
h(x1, x2) = (x1, x2, 0) for (x1, x2) ∈ Ω, which corresponds to a flat plane,

and satisfies the isometry constraint everywhere so that y0
h ∈ Ah,0 and the clamped

boundary condition. We notice that for a more complicated boundary condition not

satisfied by y0
h(x1, x2) = (x1, x2, 0), one can apply the boundary condition preprocess-

ing and the metric preprocessing as in Chapter 2 to generate a suitable initialization

y0
h.

3.4.2 Clamped plate: Z = I2

We consider a rectangular plate Ω = (−5, 5) × (−2, 2), clamped on the side

{−5} × [−2, 2], with spontaneous curvature given by Z = I2. The deformation

with minimal energy corresponds to a cylinder of radius 1 and energy 20 [67]. We

report iterations of the gradient flow in Fig.3.1, with number of elements is 1024

(30720 dofs), τ = 5× 10−3 and tol = 10−4. A cylindrical equilibrium configuration

is reached confirming the results in [67].

In contrast to [23], but similar to [14], we notice that self-intersecting appears

here in the evolution. It takes fewer iterations for our algorithm to reach the equi-
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librium configuration in this case, with the same or even smaller time step τ , than

methods in [13, 14, 23].

Moreover, with fixed τ = 5 × 10−3, we look at the mesh where there are 256

and 1024 elements respectively, and we observe that Eh = 16.8627 and Eh = 17.8038

respectively. The error in energy is smaller than the Kirchhoff method described in

[13], for which Eh = 15.961 and Eh = 16.544 with the same mesh-size and time step

τ . Also, the error is smaller than the new Kirchhoff method in [14], which computes

with the case Z = 2.5I2 and produce a 36% relative error with a smaller mesh (5120

triangular elements).

Figure 3.1: Evolution (counter-clockwise) towards the equilibrium of a clamped
rectangular plate with spontaneous curvature Z = I. The bilayer plate is depicted
at times 0, 50, 1000, 9000, 18000, 36050, 48100, 56050, 72100 of the gradient flow.

3.4.3 Free plate:Anisotropic Curvature

We now explore a cigar-type configuration motivated by [49]. The plate

Ω = (−5, 5) × (−2, 2), and no boundary condition is imposed, with an anisotropic
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spontaneous curvature

Z =

 3 −2

−2 3

 .
We expect that the plate deforms at 45 degrees with respect to the cartesian axes in

a symmetric way and eventually reaches a cigar-like configuration, as in [23], since

two eigenvectors of Z are [1, 1]T and [1,−1]T . We confirm this in Figure 3.2. The

computation is conducted with 1024 elements (30720 dofs) and τ = 5× 10−3. The

final energy is Eh = 46.3898. It also takes fewer iterations to reach the equilibrium

configuration than [23].

Figure 3.2: Evolution (counter-clockwise) towards the equilibrium of a free rectan-
gular plate. The bilayer plate is depicted at times 0, 50, 200, 1000, 10000, 30000 of
the gradient flow.
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3.4.4 Free plate: Helix Shape

We present the example with a helix-type shape motivated by [72], which is

a DNA-like configuration. We consider a high aspect ratio plate Ω = (−8, 8) ×

(−0.5, 0.5), and no boundary condition is imposed, with an anisotropic spontaneous

curvature

Z =

 1 −3/2

−3/2 1

 .
We expect that this choice of spontaneous curvature corresponds to principal direc-

tions that form an angle of 45 degrees with the coordinate axes, and together with

the high aspect ratio this leads to a deformation that resembles the twisting of DNA

molecules, as in [23]. We confirm this in Figure 3.3. The computation is conducted

with 256 elements and τ = 10−2. The final energy is Eh = 6.75379. It also takes

fewer iterations to reach the equilibrium configuration than [23].

Figure 3.3: Evolution (left to right) towards the equilibrium of a free rectangu-
lar strip. The bilayer plate is depicted at times 0, 50, 200, 1000, 4000, 13380 of the
gradient flow.
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Chapter 4: Γ-convergent projection-free finite element methods

for nematic liquid crystals: The Ericksen model

In this chapter, we design a new FEM to compute the equilibrium state of

nematic liquid crystals.

4.1 Problem formulation and discretization

4.1.1 Ericksen model

Let Ω ⊂ Rd (d = 2, 3) be a bounded Lipschitz domain. In the Ericksen model

(see, e.g., [37] or [76, Section 6.2]), the state of liquid crystals is described in terms of

a unit-length vector field n : Ω→ Sd−1 and a scalar function s : Ω→ [−1/(d−1), 1],

usually referred to as director and degree of orientation, respectively. Equilibrium

configurations of the liquid crystals are minimizers of the energy E[s,n] = E1[s,n]+

E2[s] in (1.3.1), where

E1[s,n] :=
1

2

ˆ
Ω

(
κ|∇s|2 + s2|∇n|2

)
, E2[s] :=

ˆ
Ω

ψ(s). (4.1.1)

Here, κ > 0 is constant, while the double well potential ψ : (−1/(d − 1), 1) → R≥0

satisfies the following properties:
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• ψ ∈ C2(−1/(d− 1), 1),

• lims→1− ψ(s) = +∞ = lims→−1/(d−1)+ ψ(s),

• ψ(0) > ψ(s∗) = mins∈(−1/(d−1),1) ψ(s) = 0 for some s∗ ∈ (0, 1),

• ψ′(0) = 0.

In (4.1.1), E1[s,n] is the so-called one-constant approximation of the elastic energy

proposed in [37], while E2[s] is a potential energy which confines the variable s

within the physically admissible interval (−1/(d−1), 1). The presence of the weight

s2 in the second term of E1[s,n] allows for blow-up of ∇n, namely n /∈H1(Ω), in

the singular set Σ where defects may occur

Σ := {x ∈ Ω : s(x) = 0}. (4.1.2)

To complete the setting, we define the set of admissible functions where we

seek minimizers of (4.1.1). Note that, allowing for a director n /∈ H1(Ω), one

encounters at least two difficulties: On the one hand, it is not clear how to interpret

the gradient of n appearing in E1[s,n]. On the other hand, the trace of n on the

boundary of Ω is not well-defined, so that one cannot impose Dirichlet conditions on

n in the standard way. To cope with these problems, following [4, 54], we introduce

the auxiliary variable u = sn. Then, the product rule formally yields that

∇u = n⊗∇s+ s∇n. (4.1.3)
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Since |n| = 1, the identities ∇n>n = 0 and |n ⊗ ∇s| = |∇s| are valid. It follows

that the above decomposition of ∇u is orthogonal, i.e.,

|∇u|2 = |n⊗∇s|2 + s2|∇n|2 = |∇s|2 + s2|∇n|2. (4.1.4)

In particular, E1[s,n] can be rewritten in terms of s and u = sn as

E1[s,n] = Ẽ1[s,u] =
1

2

ˆ
Ω

(
(κ− 1)|∇s|2 + |∇u|2

)
. (4.1.5)

In the latter, the degree of orientation and the auxiliary field are decoupled. In

particular, this reveals that, for (s,n) such that E1[s,n] < ∞, u = sn ∈ H1(Ω)

even though n /∈H1(Ω).

We say that a triple (s,n,u) satisfies the structural condition if

− 1

d− 1
< s < 1, |n| = 1, and u = sn a.e. in Ω. (4.1.6)

In view of the above discussion, we are therefore led to consider the following ad-

missible class:

A :=
{

(s,n,u) ∈ H1(Ω)×L∞(Ω)×H1(Ω) : (s,n,u) satisfies (4.1.6)
}
. (4.1.7)

For triples (s,n,u) ∈ A, it is possible to characterize the gradient of n occur-

ring in E1[s,n] using a weaker notion of differentiability. To this end, we recall the

following definition: We say that n is L2-differentiable at x ∈ Ω, and we denote its
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L2-gradient at x by ∇n(x), if

 
Br(x)

|n(y)− n(x)−∇n(x)(y − x)|2 dy = o(r2) as r → 0.

It is well-known that the notion of L2-differentiability is weaker than the exis-

tence of a L2-integrable weak gradient, in the sense that every H1-function is L2-

differentiable almost everywhere and its L2-gradient coincides with the weak gradi-

ent; see, e.g., [38, Theorem 6.2].

In the following proposition, we establish that if (s,n,u) ∈ A, then n is L2-

differentiable and the decomposition (4.1.4) holds almost everywhere outside of the

singular set Σ in (4.1.2).

Proposition 4.1.1 (orthogonal decomposition). Let (s,n,u) ∈ A. Then, n is

L2-differentiable a.e. in Ω \ Σ. In particular, its L2-gradient is given by

∇n = s−1(∇u− n⊗∇s) a.e. in Ω \ Σ. (4.1.8)

Moreover, the following identity holds

|∇u|2 = |∇s|2 + s2|∇n|2 a.e. in Ω \ Σ. (4.1.9)

Proof. Since (s,n,u) ∈ A, we have that s ∈ H1(Ω) and u = sn ∈ H1(Ω). Then,

for almost all x ∈ Ω (specifically, for all Lebesgue points of (s,u,∇s,∇u)), s and

u are L2-differentiable and their L2-gradients coincide with their respective weak
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gradients for a.e. x ∈ Ω, i.e., as r → 0, it holds that

 
Br(x)

|s(y)− s(x)−∇s(x) · (y − x)|2 dy = o(r2),

 
Br(x)

|u(y)− u(x)−∇u(x)(y − x)|2 dy = o(r2);

see [38, Theorem 6.2]. For almost all x ∈ Ω \Σ (specifically, for all Lebesgue points

of (s,n,u,∇s,∇u) in x ∈ Ω \ Σ), in view of the identity (4.1.3), we define the

quantity

∇n(x) :=
∇u(x)− n(x)⊗∇s(x)

s(x)
. (4.1.10)

Let r > 0. It holds that

 
Br(x)

|n(y)− n(x)−∇n(x)(y − x)|2 dy

.
1

s(x)2

 
Br(x)

|u(y)− u(x)−∇u(x)(y − x)|2dy

+
1

s(x)2

 
Br(x)

|s(y)− s(x)−∇s(x) · (y − x)|2|n(y)|2dy

+
|∇s(x)|2

s(x)2

 
Br(x)

|n(y)− n(x)|2|y − x|2dy = o(r2)

as r → 0. This shows that ∇n(x) is the L2-gradient of n at x. Moreover, (4.1.9)

follows from a direct computation. In fact, in view of (4.1.10), there holds that

s(x)2|∇n(x)|2 = |∇u(x)− n(x)⊗∇s(x)|2

= |∇u(x)|2 + |n(x)⊗∇s(x)|2 − 2∇u(x) : [n(x)⊗∇s(x)]

= |∇u(x)|2 − |∇s(x)|2,
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where the last equality follows from the identities

|n(x)⊗∇s(x)|2 =
d∑

i,j=1

ni(x)2 ∂js(x)2 =
d∑
j=1

∂js(x)2 = |∇s(x)|2

and for almost all x ∈ Ω \ Σ

∇u(x) : [n(x)⊗∇s(x)] =
d∑

i,j=1

∂jui(x)ni(x) ∂js(x) =
1

s(x)

d∑
i,j=1

∂jui(x)ui(x) ∂js(x)

=
1

2s(x)

d∑
i,j=1

∂j|ui(x)|2 ∂js(x) =
1

2s(x)

d∑
j=1

∂j|u(x)|2 ∂js(x)

=
1

2s(x)

d∑
j=1

∂j
[
s(x)2

]
∂js(x) =

d∑
j=1

∂js(x)2 = |∇s(x)|2.

This concludes the proof.

This allows us to give a precise meaning to E1[s,n] in (4.1.1). Depending on

the context, we interpret∇n in the sense of L2-gradient in Ω\Σ and
´

Σ
s2|∇n|2 = 0,

or we alternatively replace Ω by Ω \ Σ as domain of integration or even use the

representation Ẽ1[s,u] of (4.1.5).

Turning to boundary conditions, let ΓD ⊆ ∂Ω be a relatively open subset of the

boundary such that |ΓD| > 0, where we aim to impose Dirichlet boundary conditions.

These, in the context of LCs, are usually referred to as strong anchoring conditions.

To this end, given a triple (g, q, r) ∈ W 1,∞(R3) × L∞(R3) ×W 1,∞(R3) satisfying

the structural condition (4.1.6), we consider the following restricted admissible class
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that incorporates boundary conditions:

A(g, r) :=
{

(s,n,u) ∈ A : s|ΓD = g|ΓD and u|ΓD = r|ΓD
}
. (4.1.11)

Overall, we are interested in the following constrained minimization problem: Find

(s∗,n∗,u∗) ∈ A(g, r) such that

(s∗,n∗,u∗) = arg min
(s,n,u)∈A(g,r)

E[s,n]. (4.1.12)

To conclude this section, let δ0 > 0 be sufficiently small. Some of our results

below will require the following technical assumptions on the Dirichlet data, namely

− 1

d− 1
+ δ0 ≤ g(x) ≤ 1− δ0 for all x ∈ Rd (4.1.13)

and

g ≥ δ0 on ΓD, (4.1.14)

and on the double well potential, namely

ψ(s) ≥ ψ(1− δ0) for all s ≥ 1− δ0,

ψ(s) ≥ ψ

(
− 1

d− 1
+ δ0

)
for all s ≤ − 1

d− 1
+ δ0,

(4.1.15)

and ψ in monotone in (− 1
d−1

,− 1
d−1

+ δ0) and (1− δ0, 1). Note that (4.1.14) implies

that q = g−1r isW 1,∞ in a neighborhood of ΓD and hence n isH1 in a neighborhood

of ΓD, so that in this case one can impose the Dirichlet conditions n|ΓD = q|ΓD
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directly on n. Finally, the property (4.1.15) is consistent with the fact that ψ(s)→

+∞ as s→ −1/(d− 1) and s→ 1.

4.1.2 Discretization

We assume Ω be a polytopal domain and consider a shape-regular family {Th}

of simplicial meshes of Ω parametrized by the mesh size h = maxK∈Th hK , where

hK = diam(K). We denote by Nh the set of vertices of Th. For any K ∈ Th, we

denote by P1(K) the space of first-order polynomials on K and by Nh(K) the set of

vertices of K. We consider the space of Th-piecewise affine and globally continuous

functions

Vh :=
{
vh ∈ C0(Ω) : vh|K ∈ P1(K) for all K ∈ Th

}
.

Let Vh := (Vh)
d be the corresponding space of vector-valued polynomials. We

denote by Ih both the nodal interpolant Ih : C0(Ω) → Vh and its vector-valued

counterpart Ih : C0(Ω)→ Vh.

For sh ∈ Vh and nh ∈ Vh, let discrete energy be Eh[sh,nh] = Eh
1 [sh,nh] +

Eh
2 [sh] with

Eh
1 [sh,nh] :=

1

2

ˆ
Ω

(
κ|nh ⊗∇sh|2 + s2

h|∇nh|2
)
, Eh

2 [sh] :=

ˆ
Ω

ψ(sh). (4.1.16)

Note that Eh is consistent, in the sense that Eh[s,n] = E[s,n] if (s,n,u) ∈ A(g, r).

We say that a triple (sh,nh,uh) ∈ Vh×Vh×Vh satisfies the discrete structural
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condition if

− 1

d− 1
< sh(z) < 1, |n(z)| ≥ 1, and uh(z) = sh(z)nh(z) for all z ∈ Nh.

(4.1.17)

In (4.1.17), the requirements prescribed by the continuous structural condition (4.1.6)

are imposed only at the vertices of the mesh, which is practical. Moreover, the unit-

length constraint for the director is relaxed, since nh may attain also values outside

of the unit sphere.

Let ε > 0, gh = Ih[g], and rh = Ih[r]. We consider the following discrete

minimization problem: Find (s∗h,n
∗
h,u

∗
h) ∈ Ah,ε(gh, rh) such that

(s∗h,n
∗
h,u

∗
h) = arg min

(sh,nh,uh)∈Ah,ε(gh,rh)

Eh[sh,nh], (4.1.18)

where the discrete restricted admissible class is defined as

Ah,ε(gh, rh) :=
{

(sh,nh,uh) ∈ Vh ×Vh ×Vh :

(sh,nh,uh) satisfies (4.1.17), ‖Ih
[
|nh|2

]
− 1‖L1(Ω) ≤ ε,

sh(z) = gh(z), and uh(z) = rh(z) for all z ∈ Nh ∩ ΓD
}
. (4.1.19)

4.2 Γ-convergence

In this section, we show that the discrete energy (4.1.16) converges towards

the continuous one (4.1.1) in the sense of Γ-convergence.
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Theorem 4.2.1 (Γ-convergence). Suppose that ε→ 0 as h→ 0. Then, the following

two properties are satisfied:

(i) Lim-sup: Let ΓD = ∂Ω. Let the assumptions (4.1.13)–(4.1.15) hold. If

(s,n,u) ∈ A(g, r), then there exists a sequence {(sh,nh,uh)} ⊂ Ah,ε(gh, rh)

such that sh → s in H1(Ω), nh → n in L2(Ω \Σ), and uh → u in H1(Ω), as

h→ 0, and

E[s,n] ≥ lim sup
h→0

Eh[sh,nh]. (4.2.1)

(ii) Lim-inf: Let {(sh,nh,uh)} ⊂ Ah,ε(gh, rh) be a sequence such that Eh[sh,nh] ≤

C and ‖nh‖L∞(Ω) ≤ C, where C ≥ 1 is a constant independent of h. Then,

there exist (s,n,u) ∈ A(g, r) and a subsequence of {(sh,nh,uh)} (not rela-

beled) such that sh ⇀ s in H1(Ω), nh → n in L2(Ω \ Σ), and uh ⇀ u in

H1(Ω) as h→ 0, and

E[s,n] ≤ lim inf
h→0

Eh[sh,nh]. (4.2.2)

4.2.1 Lim-sup inequality

We start with two results from [59] that we state without proofs. The first

one shows that the degree of orientation s can be truncated near the end points of

the domain of definition (−(d− 1)−1, 1) of ψ without increasing the energy E[s,n].

We refer to [59, Lemma 3.1] for a proof.

Lemma 4.2.1 (truncation of s). Let the assumptions (4.1.13) and (4.1.15) hold.
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Let (s,n,u) ∈ A(g, r). For all 0 < ρ ≤ δ0, define for a.e. x ∈ Ω

sρ(x) := min

{
1− ρ,max

{
− 1

d− 1
+ ρ, s(x)

}}
and uρ(x) := sρ(x)n(x).

Then, (sρ,n,uρ) ∈ A(g, r) and E1[sρ,n] ≤ E1[sρ,n], E2[sρ] ≤ E2[s].

A simple consequence of Lemma 4.2.1, based on convergence of the characteristic

function χ{sρ 6=s} →ρ→0 χΩ, is that ‖(s,u) − (sρ,uρ)‖H1(Ω)1+d →ρ→0 0. The second

result is about regularization of admissible functions but preserving the structural

condition (4.1.6) and boundary values. This is a rather tricky two-scale process fully

discussed in [59, Proposition 3.2].

Lemma 4.2.2 (regularization of functions in A(g, r)). Let the assumptions (4.1.13)

and (4.1.14) hold, and suppose that ΓD = ∂Ω. Let (s,n,u) ∈ A(g, r) and ρ ≤ δ0

such that

− 1

d− 1
+ ρ ≤ s(x) ≤ 1− ρ for a.e. x ∈ Ω.

Then, for all δ > 0, there exists a triple (sδ,nδ,uδ) ∈ A(g, r) such that sδ ∈

W 1,∞(Ω) and uδ ∈W 1,∞(Ω). Moreover, there holds ‖(s,u)− (sδ,uδ)‖H1(Ω)1+d ≤ δ,

‖n− nδ‖L2(Ω\Σ) ≤ δ, and

− 1

d− 1
+ ρ ≤ sδ(x) ≤ 1− ρ for all x ∈ Ω.

It is well known that the Lagrange interpolation operator Ih : C(Ω) → Vh is

not stable in H1(Ω) unless d = 1. We exploit stability in L∞(Ω) to derive stability
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in W 1,p(Ω) for p > d.

Lemma 4.2.3 (W 1,p-stability of Lagrange interpolant). Let v ∈ W 1,p(Ω) for d <

p ≤ ∞. Then

‖∇Ihv‖Lp(K) . ‖∇v‖Lp(K) for all K ∈ Th. (4.2.3)

Proof. Let K ∈ Th be an arbitrary element and let vK =
ffl
K
v. An inverse estimate

gives

‖∇Ihv‖pLp(K) ≤ |K| ‖∇Ih(v − vK)‖pL∞(K) . hd−pK ‖v − vK‖
p
L∞(K).

The Bramble-Hilbert estimate yields ‖v − vK‖L∞(K) . h
1−d/p
K ‖∇v‖Lp(K) and ends

the proof.

Applying a standard density argument in W 1,p(Ω), for d < p <∞, we deduce

lim
h→0
‖∇(v − Ihv)‖Lp(Ω) = 0 for all v ∈ W 1,p(Ω). (4.2.4)

We have collected all the ingredients to show the existence of a recovery se-

quence.

Proof of Theorem 4.2.1(i). For the sake of clarity, we decompose the proof into

seven steps.

Step 1: Setup. Let (s,n,u) ∈ A(g, r). For all k ∈ N such that 1/k ≤ δ0,

let 0 < δk ≤ 1/k be sufficiently small. Applying successively Lemma 4.2.1 (with

ρ = 1/k) and Lemma 4.2.2 (with δ = δk), we obtain (sk,nk,uk) ∈ A(g, r) satisfying
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(sk,uk) ∈ [W 1,∞(Ω)]1+d and −1/(d − 1) + 1/k ≤ sk ≤ 1 − 1/k in Ω for all k.

Moreover, we have that

‖(s,u)− (sk,uk)‖H1(Ω)1+d → 0, ‖n− nk‖L2(Ω\Σ) → 0.

Since (s,n,u) ∈ A(g, r), Proposition 4.1.1 guarantees that n is L2-differentiable

a.e. in Ω\Σ, with its L2-gradient given by (4.1.8) and that the identity (4.1.9) holds.

The same result is valid for nk a.e. in Ω \ Σk, where Σk := {x ∈ Ω : sk(x) = 0}.

Let sk,h := Ih[sk] and uk,h := Ih[uk]. Let nk,h ∈ Vh be defined, for all z ∈ Nh,

as

nk,h(z) :=


uk,h(z)/sk,h(z) = uk(z)/sk(z) if z ∈ Ω \ Σk,

an arbitrary unit vector if z ∈ Σk.

Note that, by construction, (sk,h,nk,h,uk,h) satisfies the discrete structural condi-

tion (4.1.17), and ‖nk,h‖L∞(Ω) ≤ C. Moreover, since 0 = ‖Ih
[
|nk,h|2

]
− 1‖L1(Ω) ≤ ε

as well as sk,h(z) = gh(z) and uk,h(z) = rh(z) for all z ∈ Nh ∩ ΓD, we deduce

(sk,h,nk,h,uk,h) ∈ Ah,ε(gh, rh).

Given δ > 0, we consider the sets

Σk,δ := {x ∈ Ω : |sk(x)| ≤ δ} and Ωh
k,δ :=

⋃
{K : K ∈ Th, K ∩ Σk,δ = ∅}.

Note that, by construction, there holds Ωh
k,δ ⊂ Ω \ Σk,δ; see Figure 4.1.

Let K ∈ Th such that K ∩ Σk,δ 6= ∅. In particular, there exists x0 ∈ K ∩ Σk,δ.
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Σk

Σk,δ

Σk,2δ

Ωhk,δ

Figure 4.1: A schematic illustration of the mutual relations of the sets defined in
Step 1 of the proof of Theorem 4.2.1(i). Note that the set Σk ⊂ Ω is closed, as it is
the preimage of a closed set with respect to the continuous function sk, but it might
be more topologically complicated than in the picture.

For x1 ∈ K arbitrary, Lipschitz continuity of sk yields

|sk(x1)| ≤ |sk(x0)|+ |sk(x1)− sk(x0)| ≤ δ + Ckh.

In particular, Ω \ Ωh
k,δ ⊂ Σk,2δ provided h is sufficiently small so that Ckh ≤ δ. We

refer again to Figure 4.1.

Now, for any x ∈ Ωh
k,δ, we infer that

|sk(x)− sk,h(x)| ≤ ‖sk − sk,h‖L∞(Ωhk,δ)
= ‖sk − Ih[sk]‖L∞(Ωhk,δ)

. h‖∇sk‖L∞(Ωhk,δ)
,

whence

|sk,h(x)| ≥ |sk(x)| − |sk(x)− sk,h(x)| > δ − Ch‖∇sk‖L∞(Ωhk,δ)
> δ/2

provided the mesh size h is chosen to be sufficiently small. Hence, for those h, we can

define ñk := uk,h/sk,h in Ωh
k,δ. Note that, by definition, the relation nk,h = Ih[ñk]
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in Ωh
k,δ holds.

To conclude this step, we observe that the L2-gradient ∇nk of nk exists a.e.

in Ω \ Σk and

ˆ
Ωhk,δ

|∇nk −∇nk,h|2 .
ˆ

Ωhk,δ

|∇nk −∇ñk|2 +

ˆ
Ωhk,δ

|∇ñk −∇nk,h|2, (4.2.5)

where ∇ñk and ∇nk,h denote the weak gradients of ñk and nk,h, respectively, which

coincide elementwise with their classical gradients in Ωh
k,δ. In the following steps,

we will show that, for fixed k ∈ N and δ > 0, both two terms on the right-hand side

of (4.2.5) converge to 0 as h→ 0.

Step 2: Proof of limh→0

´
Ωhk,δ
|ñk −nk,h|2 + |∇ñk −∇nk,h|2 = 0. Since nk,h =

Ih[ñk] in Ωh
k,δ, a classical local interpolation estimate yields that

ˆ
Ωhk,δ

|∇ñk −∇nk,h|2 =
∑
K∈Th

K∩Σk,δ=∅

ˆ
K

∣∣∇(ñk − Ih[ñk])
∣∣2 . ∑

K∈Th
K∩Σk,δ=∅

h2
K

∥∥D2ñk
∥∥2

L2(K)
.

Moreover, in view of ñk = uk,h/sk,h in Ωh
k,δ, explicit computations reveal that

∂iñk = s−1
k,h ∂iuk,h − s

−2
k,h ∂isk,h uk,h = s−1

k,h

(
∂iuk,h − ∂isk,h ñk

)
,

∂j∂iñk = s−1
k,h

(
s−1
k,h ∂jsk,h ∂isk,h ñk − ∂ish ∂jñk − s

−1
k,h ∂jsk,h ∂iuk,h

)
,

for all 1 ≤ i, j ≤ d. Several applications of the generalized Hölder inequality, in
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conjunction with the lower bound |sk,h| > δ/2 in Ωh
k,δ, thus yield

∥∥D2ñk
∥∥
L2(K)

. δ−3‖∇sk,h‖2
L8(K)‖uk,h‖L4(K)

+ δ−1‖∇sk,h‖L4(K)

(
δ−1‖∇uk,h‖L4(K) + δ−2‖uk,h‖L8(K)‖∇sk,h‖L8(K)

)
+ δ−2‖∇sk,h‖L4(K)‖∇uk,h‖L4(K).

In view of (4.2.3), sk,h (resp., uk,h) is uniformly bounded in W 1,p(Ω) (resp.,W 1,p(Ω))

when d < p ≤ ∞. Altogether, we thus obtain the desired estimate

ˆ
Ωhk,δ

|∇ñk−∇nk,h|2 +
∑
K∈Th

K∩Σk,δ=∅

h−2
K

ˆ
K

|ñk−nk,h|2 .
∑
K∈Th

K∩Σk,δ=∅

h2
K

∥∥D2ñk
∥∥2

L2(K)
. h2.

Step 3: Proof of limh→0

´
Ωhk,δ
|nk− ñk|2 + |∇nk−∇ñk|2 = 0. We first observe

that

‖ñk − nk‖Lq(Ωhk,δ) = ‖s−1
k,huk,h − s

−1
k uk‖Lq(Ωhk,δ)

≤ δ−2‖sk − sk,h‖Lq(Ωhk,δ)‖uk,h‖L∞(Ωhk,δ)
+ δ−1‖uk,h − uk‖Lq(Ωhk,δ),

for all q ≥ 1. This shows, in view of (4.2.4), that ‖ñk − nk‖Lq(Ωhk,δ) → 0 as h → 0

for d < q <∞. To deal with the gradient part, we resort to available expressions of

∇nk and ∇ñk to write

ˆ
Ωhk,δ

|∇nk −∇ñk|2 =

ˆ
Ωhk,δ

|s−1
k (∇uk − nk ⊗∇sk)− s−1

k,h(∇uk,h − ñk ⊗∇sk,h)|
2

= T1 + T2 + T3
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where

T1 :=

ˆ
Ωhk,δ

|s−1
k,h(∇uk −∇uk,h)|2

T2 :=

ˆ
Ωhk,δ

|s−1
k,h(ñk ⊗∇sk,h − nk ⊗∇sk)|

2

T3 :=

ˆ
Ωhk,δ

|(s−1
k − s

−1
k,h)(∇uk − nk ⊗∇sk)|

2.

Recalling again |sk|, |sk,h| > δ/2 in Ωh
k,δ, as well as (4.2.4), the asserted estimate

follows from

T1 . δ−2‖∇(uk − Ihuk)‖2
L2(Ω),

T2 . δ−2‖∇sk,h‖2
L4(Ωhk,δ)

‖ñk − nk‖2
L4(Ωhk,δ)

+ δ−2‖nk‖2
L4(Ωhk,δ)

‖∇(sk − Ihsk)‖2
L4(Ωhk,δ)

,

T3 . δ−4‖sk − Ihsk‖2
L4(Ω)‖∇uk − nk ⊗∇sk‖2

L4(Ω).

Step 4: Proof of limh→0

´
Ω
s2
k,h|∇nk,h|2 =

´
Ω\Σk

s2
k|∇nk|2. Combining Steps 2

and 3 gives

lim
h→0

ˆ
Ωhk,δ

|∇nk −∇nk,h|2 = 0. (4.2.6)

In order to exploit this property, we split the integral under consideration as

ˆ
Ω

s2
k,h|∇nk,h|2 =

ˆ
Ωhk,δ

s2
k,h|∇nk,h|2 +

ˆ
Ω\Ωhk,δ

s2
k,h|∇nk,h|2. (4.2.7)

The fact that sk,h → sk strongly in Lp(Ω) as h → 0 for d < p < ∞, according to

(4.2.4), together with sk,h ∈ L∞(Ω) uniformly in h, ∇nk ∈ L∞(Ω\Σk,δ) and (4.2.6),
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yields

lim
h→0

∣∣∣∣ ˆ
Ωhk,δ

s2
k,h|∇nk,h|2 −

ˆ
Ωhk,δ

s2
k|∇nk|2

∣∣∣∣ = 0.

Since Ω \ Σk,2δ ⊂ Ωh
k,δ ⊂ Ω \ Σk,δ, we deduce

lim
δ→0

lim
h→0

ˆ
Ωhk,δ

s2
k,h|∇nk,h|2 =

ˆ
Ω\Σk

s2
k|∇nk|2.

Now, we consider the second term on the right-hand side of (4.2.7). Since Ω\Ωk,δ ⊂

Σk,2δ and sk,h∇nk,h = ∇(sk,hnk,h)−nk,h ⊗∇sk,h, using uk,h = Ih(sk,hnk,h), we see

that

ˆ
Ω\Ωhk,δ

s2
k,h|∇nk,h|2 .

ˆ
Σk,2δ

|∇(sk,hnk,h)|2 +

ˆ
Σk,2δ

|nk,h ⊗∇sk,h|2

≤
ˆ

Σk,2δ

|∇(sk,hnk,h)−∇Ih(sk,hnk,h)|2 +

ˆ
Σk,2δ

|∇uk,h|2

+

ˆ
Σk,2δ

|∇sk,h|2.

Combining an interpolation estimate with the fact that sk,h and nk,h are piece-

wise affine, and exploiting an inverse estimate to bound ‖∇nk,h‖L∞(K) in terms of

‖nk,h‖L∞(K) ≤ C, yields

ˆ
Σk,2δ

|∇(sk,hnk,h)−∇Ih(sk,hnk,h)|2 .
∑
K∈Th

K∩Σk,2δ 6=∅

h2
K‖D2(sk,hnk,h)‖2

L2(K)

.
∑
K∈Th

K∩Σk,2δ 6=∅

h2
K‖∇sk,h‖2

L2(K)‖∇nk,h‖
2
L∞(K) .

∑
K∈Th

K∩Σk,2δ 6=∅

‖∇sk,h‖2
L2(K).

Using the W 1,p-stability (4.2.3) of the nodal interpolant with p > d for elements
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K ∩Σk,2δ 6= ∅, which thus satisfy K ⊂ Σk,3δ when h is sufficiently small by Lipschitz

continuity of sk, we end up with the following as δ → 0

ˆ
Ω\Ωhk,δ

s2
k,h|∇nk,h|2 . ‖∇uk‖2

Lp(Σk,3δ)
+ ‖∇sk‖2

Lp(Σk,3δ)

→ ‖∇uk‖2
Lp(Σk) + ‖∇sk‖2

Lp(Σk) = 0.

Step 5: Proof of limh→0

´
Ω
|nk,h ⊗∇sk,h|2 =

´
Ω
|∇sk|2. We split the integral as

ˆ
Ω

|nk,h ⊗∇sk,h|2 =

ˆ
Ωhk,δ

|nk,h ⊗∇sk,h|2 +

ˆ
Ω\Ωhk,δ

|nk,h ⊗∇sk,h|2.

Exploiting the identity nk,h⊗∇sk,h−nk⊗∇sk = (nk,h−nk)⊗∇sk+nk,h⊗(∇sk,h−

∇sk), and using the convergence results for sk,h and nk,h in Ωh
k,δ from Steps 1-3, we

readily see that

lim
δ→0

lim
h→0

ˆ
Ωhk,δ

|nk,h ⊗∇sk,h|2 =

ˆ
Ω\Σk
|nk ⊗∇sk|2 =

ˆ
Ω

|∇sk|2.

Moreover, employing Ω \ Ωk,δ ⊂ Σk,2δ together with (4.2.3) implies

ˆ
Ω\Ωhk,δ

|nk,h ⊗∇sk,h|2 . ‖∇Ihsk‖2
L2(Σk,2δ)

. ‖∇Ihsk‖2
Lp(Σk,2δ)

. ‖∇sk‖2
Lp(Σk,3δ)

.

Finally, taking δ → 0 yields the desired limit.

Step 6: Convergence of {sk,h}, {nk,h}, and {uk,h}. The triangle inequality
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gives

‖sk,h − s‖H1(Ω) ≤ ‖sk,h − sk‖H1(Ω) + ‖sk − s‖H1(Ω) → 0 as h→ 0 and k →∞.

Likewise, uk,h → u in H1(Ω) as h→ 0 and k →∞. Turning to n, we observe that

‖nk,h − nk‖L2(Ω\Σ) . ‖nk,h − nk‖L2(Ωhk,δ)
+ ‖nk,h − nk‖L2(Σk,2δ\Σ),

and ‖nk,h − nk‖L2(Ωhk,δ)
→ 0 as h→ 0 from Steps 2–3. Instead, for the second term

we have

‖nk,h − nk‖L2(Σk,2δ\Σ) ≤ 2|Σk,2δ \ Σ|1/2 → 0 as δ → 0 and k →∞.

The convergence of nk,h to n in L2(Ω \Σ) then follows from the triangle inequality.

Step 7: Convergence of energy. The previous steps yield

lim
h→0

Eh
1 [sk,h,nk,h] = E1[sk,nk] =

1

2

ˆ
Ω\Σk

κ|∇sk|2 + s2
k|∇nk|2.

To prove that E1[sk,nk]→ E1[s,n] as k →∞ we resort to (4.1.5), namely

E1[sk,nk] = Ẽ1[sk,uk] =
1

2

ˆ
Ω

(κ− 1)|∇sk|2 + |∇uk|2

→ 1

2

ˆ
Ω

(κ− 1)|∇s|2 + |∇u|2 = E1[s,n].

We now deal with E2. Since −1/(d − 1) + 1/k ≤ sk ≤ 1 − 1/k in Ω, assump-
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tion (4.1.15) guarantees that 0 ≤ ψ(sk,h) ≤ max{ψ(−1/(d− 1) + 1/k), ψ(1− 1/k)}.

Hence, the dominated convergence theorem implies that

lim
h→0

Eh
2 [sk,h] = lim

h→0

ˆ
Ω

ψ(Ihsk) =

ˆ
Ω

lim
h→0

ψ(Ihsk) =

ˆ
Ω

ψ(sk) = E2[sk].

Moreover, the monotonicity of ψ in (− 1
d−1

,− 1
d−1

+ δ0) and (1 − δ0, 1) translates

into ψ(sk) ≥ 0 increasing and converging pointwise to ψ(s), whence the monotone

convergence theorem gives

E2[sk] =

ˆ
Ω

ψ(sk)→
ˆ

Ω

ψ(s) = E2[s].

Consequently, the sequence (sh,nh,uh) := (sk,h,nk,h,uk,h) ∈ Ah,ε(gh, rh) for k suf-

ficiently large depending on h converges to (s,n,u) in H1(Ω)×L2(Ω \Σ)×H1(Ω)

as h→ 0 and satisfies

lim
h→0

Eh[sh,nh] = E[s,n].

This implies the lim-sup inequality (4.2.1) and concludes the proof.

4.2.2 Lim-inf inequality

To show the lim-inf inequality, we first prove that admissible discrete pairs

(sh,nh) with uniformly bounded energy are uniformly bounded in H1. In constrast

to [59], we do not need to assume that Th is weakly acute.

Lemma 4.2.4 (coercivity). Let {(sh,nh,uh)} ⊂ Vh×Vh×Vh satisfy uh = Ih[shnh]

and |nh(z)| ≥ 1 for all z ∈ Nh. Then, there exists a constant C > 0 depending only
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on the shape-regularity of {Th} and κ such that

C max
{
‖∇uh‖2

L2(Ω), ‖∇(shnh)‖2
L2(Ω), ‖∇sh‖

2
L2(Ω)

}
≤ Eh

1 [sh,nh].

Proof. Since ‖nh‖L∞(K) ≥ 1 for all K ∈ Th and ∇sh is piecewise constant, it holds

that

‖∇sh‖2
L2(Ω) ≤

∑
K∈Th

‖nh‖2
L∞(K)‖∇sh‖2

L2(K) =
∑
K∈Th

|K| ‖nh‖2
L∞(K)|∇sh|K |2

.
∑
K∈Th

|∇sh|K |2‖nh‖2
L2(K) = ‖nh ⊗∇sh‖2

L2(Ω) ≤
2

κ
Eh

1 [sh,nh],

where the hidden multiplicative constant depends only on the shape-regularity of

{Th}. Let ũh = shnh and use (4.2.3) for p > d in conjunction with an inverse

estimate to obtain for all K ∈ Th

‖∇Ihũh‖L2(K) . |K|
p−2
2p ‖∇Ihũh‖Lp(K) . |K|

p−2
2p ‖∇ũh‖Lp(K) . ‖∇ũh‖L2(K)

Consequently, for uh = Ihũh we deduce

‖∇uh‖2
L2(Ω) . ‖∇ũh‖

2
L2(Ω) . ‖nh ⊗∇sh‖

2
L2(Ω) + ‖sh∇nh‖2

L2(Ω) . Eh
1 [sh,nh].

This completes the proof.

We are now ready to extract convergent subsequences and characterize their

limits.
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Lemma 4.2.5 (characterization of limits). Let {(sh,nh,uh)} ⊂ Ah,ε(gh, rh) be a

sequence such that Eh
1 [sh,nh] ≤ C and ‖nh‖L∞(Ω) ≤ C, where C > 0 is a constant

independent of h. Then, there exist a triple (s,n,u) ∈ A(g, r) and a subsequence

(not relabeled) of {(sh,nh,uh)} satisfying the following properties:

• As h→ 0, (sh,uh, shnh) converges towards (s,u,u) weakly in H1(Ω)×H1(Ω)×

H1(Ω), strongly in L2(Ω)×L2(Ω)×L2(Ω), and pointwise a.e. in Ω;

• nh converges towards n strongly in L2(Ω \ Σ) and pointwise a.e. in Ω \ Σ as

h→ 0 and ε→ 0;

• n is L2-differentiable a.e. in Ω \Σ and the orthogonal decomposition |∇u|2 =

|∇s|2 + s2|∇n|2 is valid a.e. in Ω \ Σ,

where Σ ⊂ Ω is given by (4.1.2).

Proof. For the sake of clarity, we divide the proof into 3 steps.

Step 1: Convergence of {sh}, {uh}, and {shnh}. Since the energy Eh
1 [sh,nh]

is uniformly bounded, Lemma 4.2.4 (coercivity) gives uniform bounds in H1(Ω) ×

H1(Ω)×H1(Ω) for the the sequence {(sh,uh, shnh)}. With successive extractions

of subsequences (not relabeled), one can show that there exists a limit (s,u, ũ) ∈

H1(Ω) ×H1(Ω) ×H1(Ω) such that (sh,uh, shnh) converges to (s,u, ũ) weakly in

H1(Ω)×H1(Ω)×H1(Ω), strongly in L2(Ω)×L2(Ω)×L2(Ω), and pointwise a.e. in

Ω. Moreover, weak H1-convergence guarantees attainment of traces, namely s = g

and u = ũ = r on ΓD. To see this, note that gh = Ihg → g in W 1,p(Ω) for p > d,
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according to (4.2.4), and so in H1(Ω). Therefore sh − gh ∈ H1
0 (Ω) satisfies

sh − gh ⇀ s− g ∈ H1
0 (Ω),

because H1
0 (Ω) is closed under weak convergence. Hence s = g on ΓD in the sense

of traces, as asserted. Dealing with uh and ũh is identical. Since uh = Ih[shnh],

interpolation and inverse estimates, yield

‖uh − shnh‖2
L2(Ω) .

∑
K∈Th

h4
K‖D2(shnh)‖2

L2(K)

.
∑
K∈Th

h2
K‖∇(shnh)‖2

L2(K) . h2Eh
1 [sh,nh] ≤ Ch2.

This shows that shnh and uh converge strongly in L2(Ω) towards the same limit

i.e., ũ = u. Moreover, shnh converges to u weakly in H1(Ω) and pointwise a.e. in

Ω.

Step 2: |s| = |u| a.e. in Ω. The triangle inequality yields

‖|uh|2 − |sh|2‖L1(Ω) ≤ ‖|uh|2 − Ih
[
|uh|2

]
‖L1(Ω)

+ ‖Ih
[
|uh|2 − |sh|2

]
‖L1(Ω) + ‖|sh|2 − Ih

[
|sh|2

]
‖L1(Ω).

For the first and third terms on the right-hand side, standard interpolation estimates

yield

‖|sh|2 − Ih
[
|sh|2

]
‖L1(Ω) . h2‖∇sh‖2

L2(Ω), ‖|uh|2 − Ih
[
|uh|2

]
‖L1(Ω) . h2‖∇uh‖2

L2(Ω).
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On the other hand, since {sh} is uniformly bounded in L∞(Ω), we infer that

‖Ih
[
|uh|2 − |sh|2

]
‖L1(Ω) = ‖Ih

[
|sh|2(|nh|2 − 1)

]
‖L1(Ω)

≤ ‖sh‖2
L∞(Ω)‖Ih

[
|nh|2 − 1

]
‖L1(Ω) ≤ ε‖sh‖2

L∞(Ω) → 0,

as ε→ 0. As |sh| → |s| and |uh| → |u| a.e. in Ω, we conclude that |s| = |u| a.e. in

Ω.

Step 3: Convergence of {nh}. We now define n : Ω → R3 as n := s−1u in

Ω \ Σ and as an arbitrary unit vector in Σ. Step 2 implies, by construction, that

|n| = 1 a.e. in Ω. This shows that (s,n,u) satisfies the structural condition (4.1.6),

i.e., (s,n,u) ∈ A.

We now observe that s(x) 6= 0 for a.e. x ∈ Ω \ Σ by definiton of Σ. Since

sh(x)→ s(x) as h→ 0, if h is sufficiently small (depending on x), then sh(x) 6= 0 is

valid. Consequently,

nh(x) =
sh(x)nh(x)

sh(x)
→ u(x)

s(x)
= n(x),

i.e., nh → n pointwise a.e. in Ω \ Σ. Since {nh} is uniformly bounded in L∞(Ω),

the Lebesgue dominated convergence theorem yields nh → n strongly in L2(Ω \Σ).

Finally, the L2-differentiability of n and the orthogonal decomposition of ∇u,

both valid a.e. in Ω \ Σ, follow from Proposition 4.1.1 (orthogonal decomposition).

This concludes the proof.

We are now in the position to prove the lim-inf inequality.
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Proof of Theorem 4.2.1(ii). The sequence {(sh,nh,uh)} ⊂ Ah,ε(gh, rh) satisfies

the assumptions of Lemma 4.2.5 (characterization of limits). Hence, we can apply it

to obtain subsequences (not relabeled) converging to the respective limits (s,n,u) ∈

A(g, r). Moreover, since also the sequences {nh⊗∇sh} and {sh∇nh} are uniformly

bounded in L2(Ω), there exist subsequences (not relabeled) and functions M ,N in

L2(Ω) such that nh ⊗ ∇sh ⇀ M and sh∇nh ⇀ N weakly in L2(Ω). Combining

the equality sh∇nh = ∇(shnh)− nh ⊗∇sh, which is valid in every element of Th,

with shnh ⇀ u weakly in H1(Ω), helps identify the limits N = ∇u−M .

Let Φ ∈ C∞c (Ω \ Σ) be an arbitrary d× d tensor field. We can thus write

〈nh ⊗∇sh − n⊗∇s,Φ〉Ω\Σ = 〈(nh − n)⊗∇sh,Φ〉Ω\Σ + 〈n⊗ (∇sh −∇s),Φ〉Ω\Σ.

We note that nh → n strongly in L2(Ω \ Σ) implies

〈(nh − n)⊗∇sh,Φ〉Ω\Σ ≤ ‖nh − n‖L2(Ω\Σ)‖∇sh‖L2(Ω)‖Φ‖L∞(Ω\Σ) → 0

whereas sh ⇀ s weakly in H1(Ω) yields

〈n⊗ (∇sh −∇s),Φ〉Ω\Σ → 0.

Hence, we infer that

〈nh ⊗∇sh − n⊗∇s,Φ〉Ω\Σ → 0,
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whence nh ⊗∇sh ⇀ n⊗∇s weakly in L2(Ω \ Σ). This in turn identifies the limit

M = n⊗∇s and gives the equality a.e. in Ω \ Σ

N = ∇u− n⊗∇s ⇒ ∇n =
N

s

where ∇n is understood in the L2-sense according to Proposition 4.1.1. Exploiting

the fact that norms are weakly lower semicontinuous, along with |n⊗∇s|2 = |∇s|2

a.e. in Ω \ Σ, and ∇s = 0 a.e. in Σ, it holds that

lim inf
h→0

Eh
1 [sh,nh] = lim inf

h→0

{κ
2
‖nh ⊗∇sh‖2

L2(Ω) +
1

2
‖sh∇nh‖2

L2(Ω)

}
≥ lim inf

h→0

{κ
2
‖nh ⊗∇sh‖2

L2(Ω\Σ) +
1

2
‖sh∇nh‖2

L2(Ω\Σ)

}
≥ κ

2
‖n⊗∇s‖2

L2(Ω\Σ) +
1

2
‖s∇n‖2

L2(Ω\Σ) = E1[s,n].

Since sh → s a.e. in Ω and ψ is continuous, ψ(sh) → ψ(s) a.e. in Ω. The Fatou

lemma yields

E2[s] =

ˆ
Ω

ψ(s) =

ˆ
Ω

lim
h→0

ψ(sh) ≤ lim inf
h→0

ˆ
Ω

ψ(sh) = lim inf
h→0

Eh
2 [s]

Altogether, we thus obtain the lim-inf inequality (4.2.2). This finishes the proof.

4.3 Iterative scheme

In this section, we propose an effective algorithm to compute discrete local

minimizers of (4.1.16). The method is based on a discretization of the energy-

196



decreasing dynamics driven by the system of gradient flows

∂tn+ δnE
h[s,n] = 0,

∂ts+ δsE
h[s,n] = 0,

where δnE
h[s,n] and δsE

h[s,n] denote the Gâteaux derivatives of the energy with

respect to the order parameters, i.e.,

〈
δnE

h[s,n],φ
〉

=
〈
δnE

h
1 [s,n],φ

〉
= κ〈n⊗∇s,φ⊗∇s〉 + 〈s∇n, s∇φ〉,〈

δsE
h[s,n], w

〉
=
〈
δsE

h
1 [s,n], w

〉
+
〈
δsE

h
2 [s,n], w

〉
= κ〈n⊗∇s,n⊗∇w〉 + 〈s∇n, w∇n〉 + 〈ψ′(s), w〉.

Let us introduce the ingredients of the scheme. First, let

Vh,D := {vh ∈ Vh : vh(z) = 0 for all z ∈ Nh ∩ ΓD} and Vh,D := (Vh,D)d

be the spaces of discrete functions satisfying homogeneous Dirichlet conditions on

ΓD. Given nh ∈ Vh, we consider the subspace of Vh,D consisting of all discrete

functions with nodal values orthogonal to those of nh at all vertices:

Kh[nh] := {φh ∈ Vh,D : nh(z) · φh(z) = 0 for all z ∈ Nh} .

For the treatment of the double well potential, we follow a convex splitting approach

(see, e.g., [78]): we assume the splitting ψ = ψc − ψe, where ψc and ψe are both
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convex, and ψc is quadratic.

The time discretization of the gradient flow for the director and the degree of

orientation are based on the constant time-step sizes τn > 0 and τs > 0, respectively.

Moreover, we consider the difference quotient dts
i+1
h := (si+1

h − sih)/τs.

In the following algorithm, we state the proposed numerical scheme for the

computation of discrete local minimizers of (4.1.16). We assume that assump-

tion (4.1.14) is satisfied so that imposing Dirichlet boundary conditions directly

for the director is allowed. Let tol > 0 denote a tolerance.

Algorithm 4.3.1 (alternating direction discrete gradient flow). Input: s0
h ∈ Vh,

n0
h ∈ Vh such that |n0

h(z)| = 1 for all z ∈ Nh, n0
h(z) = rh(z)/gh(z) and s0

h(z) =

gh(z) for all z ∈ Nh ∩ ΓD.

Outer loop: For all i ∈ N0, iterate (i)–(ii):

(i) Inner loop: Given (nih, s
i
h), let ni,0h = nih. For all ` ∈ N0, iterate (i-a)–(ii-b):

(i-a) Compute ti,`h ∈ Kh

[
ni,`h
]

such that

〈ti,`h ,φh〉∗ + τn κ〈ti,`h ⊗∇s
i
h,φh ⊗∇sih〉 + τn〈sih∇t

i,`
h , s

i
h∇φh〉

= −κ〈ni,`h ⊗∇s
i
h,φh ⊗∇sih〉 − 〈sih∇n

i,`
h , s

i
h∇φh〉

(4.3.1)

for all φh ∈ Kh

[
ni,`h
]
;

(i-b) Update ni,`+1
h := ni,`h + τn t

i,`
h ;

until ∣∣Eh
1 [sih,n

i,`+1
h ]− Eh

1 [sih,n
i,`
h ]
∣∣ < tol. (4.3.2)
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If `i ∈ N0 denotes the smallest integer for which the stopping criterion (4.3.2)

is satisfied, define ni+1
h := ni,`i+1

h .

(ii) Compute si+1
h ∈ Vh such that si+1

h (z) = gh(z) for all z ∈ Nh ∩ ΓD and

〈dtsi+1
h , wh〉 + κ〈ni+1

h ⊗∇si+1
h ,ni+1

h ⊗∇wh〉 + 〈si+1
h ∇ni+1

h , wh∇ni+1
h 〉

+ 〈ψ′c(si+1
h ), wh〉 = 〈ψ′e(sih), wh〉

(4.3.3)

for all wh ∈ Vh,D.

Output: Sequence of approximations {(sih,nih)}i∈N0
.

In Algorithm 4.3.1, 〈·, ·〉∗ denotes the scalar product of the metric used in the

discrete gradient flow (4.3.1) for the director. In this work, we consider the following

two choices for 〈·, ·〉∗:

〈φ,ψ〉∗ = 〈φ,ψ〉 (L2-metric), (4.3.4)

〈φ,ψ〉∗ = 〈hα∇φ,∇ψ〉, with 0 < α ≤ 2. (weighted H1-metric), (4.3.5)

Note that in (4.3.5) the choice α = 0 corresponds to a full H1-gradient flow, which is

not appropriate since the director does not belong to H1(Ω) in general (e.g., in the

presence of defects). On the other hand, if α = 2, the resulting metric is equivalent

to the L2-metric in (4.3.4). In addition, both (4.3.1) and (4.3.3) are linear SPD

systems in the unknowns ti,`h and si+1
h .

Although in most of our numerical experiments we will set τn = τs, we observed
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that in some situations the flexibility of choosing of different time-step sizes in (4.3.1)

and (4.3.3) is decisive in order to move defects in numerical simulations.

In the following proposition, we prove well-posedness and an energy-decreasing

property of Algorithm 4.3.1.

Proposition 4.3.1 (properties of Algorithm 4.3.1). Algorithm 4.3.1 is well-posed

and energy-descresing. Specifically, for all i ∈ N0, the following assertions hold:

(i) For all ` ∈ N0, (4.3.1) admits a unique solution ti,`h ∈ Kh

[
ni,`h
]
;

(ii) The inner loop terminates in a finite number of iterations, i.e., there exists

` ∈ N0 such that the stopping criterion (4.3.2) is met;

(iii) (4.3.3) admits a unique solution si+1
h ∈ Vh such that si+1

h (z) = gh(z) for all

z ∈ Nh ∩ ΓD.

(iv) There holds

Eh[si+1
h ,ni+1

h ]− Eh[sih,n
i
h] ≤ −

(
τs‖dtsi+1

h ‖
2
L2(Ω) + τn

`i∑
`=0

‖ti,`h ‖
2
∗

)

−

(
τ 2
s E

h
1 [dts

i+1
h ,ni+1

h ] + τ 2
n

`i∑
`=0

Eh
1 [sih, t

i,`
h ]

)
.

(4.3.6)

In particular, Eh[si+1
h ,ni+1

h ] ≤ Eh[sih,n
i
h] and equality holds if and only if

(si+1
h ,ni+1

h ) = (sih,n
i
h) (equilibrium state).

Proof. Let i ∈ N0 and ` ∈ N0. For fixed sih ∈ Vh (resp., ni+1
h ∈ Vh), the left-

hand side of (4.3.1) (resp., of (4.3.3)) is a coercive and continuous bilinear form on
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Vh,D (resp., on Vh,D). Therefore, the variational problem admits a unique solution

ti,`h ∈ Kh[n
i,`
h ] (resp., si+1

h ∈ Vh). This shows part (i) and (iii) of Proposition 4.3.1.

Choosing the test function φh = τn t
i,`
h = ni,`+1

h − ni,`h ∈ Kh[n
i,`
h ] in (4.3.1)

yields

τn‖ti,`h ‖
2
∗+κ〈n

i,`+1
h ⊗∇sih, (n

i,`+1
h −ni,`h )⊗∇sih〉Ω+〈sih∇n

i,`+1
h , sih∇(ni,`+1

h −ni,`h )〉Ω = 0.

Using the identity 2a(a− b) = a2− b2 + (a− b)2, valid for all a, b ∈ R, we obtain the

identity

τn‖ti,`h ‖
2
∗ +

κ

2
‖ni,`+1

h ⊗∇sih‖2
L2(Ω) −

κ

2
‖ni,`h ⊗∇s

i
h‖2
L2(Ω) +

κ

2
‖τnti,`h ⊗∇s

i
h‖2
L2(Ω)

+
1

2
‖sih∇n

i,`+1
h ‖2

L2(Ω) −
1

2
‖sih∇n

i,`
h ‖

2
L2(Ω) +

1

2
‖sih∇(ni,`+1

h − ni,`h )‖2
L2(Ω) = 0,

which can be rewritten in more compact form as

Eh
1 [sih,n

i,`+1
h ]− Eh

1 [sih,n
i,`
h ] + τn‖ti,`h ‖

2
∗ + τ 2

nE
h
1 [sih, t

i,`
h ] = 0. (4.3.7)

In particular, Eh
1 [sih,n

i,`+1
h ] ≤ Eh

1 [sih,n
i,`
h ] is valid. Since Eh

1 [sih,n
i,`
h ] ≥ 0 for all i ∈

N0, the sequence {Eh
1 [sih,n

i,`
h ]}`∈N0 is convergent (as it is monotonically decreasing

and bounded from below). In particular, it is a Cauchy sequence, which entails that

the stopping criterion (4.3.2) is met in a finite number of iterations. This shows

part (ii) of the proposition.

Let `i ∈ N0 be the smallest integer for which the stopping criterion (4.3.2)

is satisfied. Recall that ni+1
h = ni,`i+1

h and nih = ni,0h . Summation of (4.3.7) over
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` = 0, . . . , `i yields that

Eh
1 [sih,n

i+1
h ]− Eh

1 [sih,n
i
h] + τn

`i∑
`=0

‖ti,`h ‖
2
∗ + τ 2

n

`i∑
`=0

Eh
1 [sih, t

i,`
h ] = 0. (4.3.8)

Choosing the test function wh = τsdts
i+1
h = si+1

h −sih ∈ Vh,D in (4.3.3) and performing

the same algebraic computation as above, we arrive at

Eh
1 [si+1

h ,ni+1
h ]− Eh

1 [sih,n
i+1
h ]

+ τs‖dtsi+1
h ‖

2
L2(Ω) + τ 2

s E
h
1 [dts

i+1
h ,ni+1

h ] + 〈ψ′c(si+1
h )− ψ′e(sih), si+1

h − sih〉Ω = 0.

Applying [59, Lemma 4.1], which yields the inequality

Eh
2 [si+1

h ]− Eh
2 [sih] ≤ 〈ψ′c(si+1

h )− ψ′e(sih), si+1
h − sih〉Ω,

we obtain

Eh
1 [si+1

h ,ni+1
h ]− Eh

1 [sih,n
i+1
h ] + τs ‖dtsi+1

h ‖
2
L2(Ω) + τ 2

s E
h
1 [dts

i+1
h ,ni+1

h ]

+ Eh
2 [si+1

h ]− Eh
2 [sih] ≤ 0.

Adding the latter with (4.3.8), and exploiting cancellation of Eh
1 [sih,n

i+1
h ], we deduce

Eh[si+1
h ,ni+1

h ]− Eh[sih,n
i
h]

≤ −τs‖dtsi+1
h ‖

2
L2(Ω) − τ 2

sE
h
1 [dts

i+1
h ,ni+1

h ]− τn
`i∑
`=0

‖ti,`h ‖
2
∗ − τ 2

n

`i∑
`=0

Eh
1 [sih, t

i,`
h ] ≤ 0.

This shows (4.3.6) and concludes the proof.
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Remark 4.3.1 (energy decrease). The right-hand side of (4.3.6) characterizes the

energy decrease guaranteed by each step of Algorithm 4.3.1 and comprises two con-

tributions: The term

−

(
τs‖dtsi+1

h ‖
2
L2(Ω) + τn

`i∑
`=0

‖ti,`h ‖
2
∗

)

is the energy decrease due to the gradient-flow nature of Algorithm 4.3.1. The term

−

(
τ 2
s E

h
1 [dts

i+1
h ,ni+1

h ] + τ 2
n

`i∑
`=0

Eh
1 [sih, t

i,`
h ]

)

is the numerical dissipation due to the backward Euler methods used for the time

discretization.

In practical implementations of Algorithm 4.3.1, the outer loop is terminated

when ∣∣Eh[si+1
h ,ni+1

h ]− Eh[sih,n
i
h]
∣∣ < tol. (4.3.9)

Since the algorithm fulfills a monotone energy decreasing property (see Proposi-

tion 4.3.1(iv)), the stopping criterion is met in a finite number of iterations.

The approximations ni+1
h of the director generated by Algorithm 4.3.1 do not

satisfy the unit-length constraint at the vertices of the mesh, as in [59, 60]. However,

the following proposition shows that violation of this constraint can be controlled by

the time-step size τn, independently of the number of iterations. Moreover, the uni-

form boundedness in L∞(Ω) of the sequence can be guaranteed if the discretization

parameters are chosen appropriately.
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Proposition 4.3.2 (properties of discrete director field). Let j ≥ 1. The following

holds.

(i) Suppose that the norm induced by the metric 〈·, ·〉∗ used in (4.3.1) is an upper

bound for the L2-norm, i.e., there exists C∗ > 0 such that

‖φh‖L2(Ω) ≤ C∗‖φh‖∗ for all φh ∈ Vh,D. (4.3.10)

Then, the approximations generated by Algorithm 4.3.1 satisfy

‖Ih
[
|njh|

2 − 1
]
‖L1(Ω) ≤ C1τnE

h[s0
h,n

0
h], (4.3.11)

where C1 > 0 depends only on C∗ and the shape-regularity of {Th}.

(ii) Suppose τn fulfills the following CFL-type condition:

τnh
−d
min ≤ C∗ if 〈·, ·〉∗ is chosen as (4.3.4),

τnh
2−d−α
min (log h−1

min)2 ≤ C∗, if 〈·, ·〉∗ is chosen as (4.3.5),

(4.3.12)

where hmin := minK∈Th hK and C∗ > 0 is arbitrary. Then, the approximations

generated by Algorithm 4.3.1 satisfy

‖njh‖L∞(Ω) ≤ C2(1 + Eh[s0
h,n

0
h]), (4.3.13)

where C2 > 0 is proportional to C∗ > 0 in (4.3.12) with proportionality con-

stant depending on the shape-regularity of {Th}.
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Proof of Proposition 4.3.2. Let j ≥ 1. Summation of (4.3.6) over i = 0, . . . , j − 1

yields that

Eh[sjh,n
j
h]− E

h[s0
h,n

0
h]

≤ −
j−1∑
i=0

(
τs‖dtsi+1

h ‖
2
L2(Ω) + τ 2

sE
h
1 [dts

i+1
h ,ni+1

h ] + τn

`i∑
`=0

‖ti,`h ‖
2
∗ + τ 2

n

`i∑
`=0

Eh
1 [sih, t

i,`
h ]

)
.

In particular, omitting some nonnegative terms, it follows that

τn

j−1∑
i=0

`i∑
k=0

‖ti,`h ‖
2
∗ ≤ Eh[s0

h,n
0
h]. (4.3.14)

Moreover, for all z ∈ Nh, the tangential update ti,`h (z) is perpendicular to ni,`h (z),

whence ni,`+1
h (z) = ni,`h (z) + τnt

i,`
h (z) satisfies |ni,`+1

h (z)|2 = |ni,`h (z)|2 + τ 2
n|t

i,`
h (z)|2.

Iterating in ` and i gives

|njh(z)|2 = |n0
h(z)|2 + τ 2

n

j−1∑
i=0

`i∑
`=0

|ti,`h (z)|2 = 1 + τ 2
n

j−1∑
i=0

`i∑
`=0

|ti,`h (z)|2 ≥ 1.

Then, using the equivalence of the Lp-norm of a discrete function with the weighted

`p-norm of the vector collecting its nodal values (see, e.g., [11, Lemma 3.4]), for hz

being the diameter of the nodal patch associated with z ∈ Nh, we see that

‖Ih[|njh|
2]− 1‖L1(Ω) .

∑
z∈Nh

hdz
(
|njh(z)|2 − 1

)
≤ τ 2

n

∑
z∈Nh

hdz

j−1∑
i=0

`i∑
`=0

|ti,`h (z)|2

. τ 2
n

j−1∑
i=0

`i∑
`=0

‖ti,`h ‖
2
L2(Ω).
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Combining (4.3.10) with (4.3.14) leads to

‖Ih[|njh|
2]− 1‖L1(Ω) . C∗τ

2
n

j−1∑
i=0

`i∑
`=0

‖ti,`h ‖
2
∗ ≤ C∗τnE

h[s0
h,n

0
h],

which turns out to be (4.3.11).

It remains to estimate ‖njh‖L∞(Ω). Let us consider first the case of the weighted

H1-metric (4.3.5). Using a global inverse estimate (see, e.g., [11, Remark 3.8]) and

the Poincaré inequality, we obtain that

‖njh‖
2
L∞(Ω) = max

z∈Nh
|njh(z)|2 ≤ 1 + τ 2

n

j−1∑
i=0

`i∑
`=0

max
z∈Nh
|ti,`h (z)|2

. 1 + τ 2
n

j−1∑
i=0

`i∑
`=0

‖ti,`h ‖
2
L∞(Ω) . 1 + τ 2

n h
2−d
min (log h−1

min)2

j−1∑
i=0

`i∑
`=0

‖ti,`h ‖
2
H1(Ω)

. 1 + τ 2
n h

2−d−α
min hα(log h−1

min)2

j−1∑
i=0

`i∑
`=0

‖∇ti,`h ‖
2
L2(Ω)

≤ 1 + τn h
2−d−α
min (log h−1

min)2Eh[s0
h,n

0
h].

Therefore, (4.3.13) is satisfied if τn h
2−d−α
min | log hmin|2 ≤ C∗ with C∗ arbitrary. For

the L2-metric (4.3.4), the result follows analogously, provided that τn h
−d
min ≤ C∗.

To conclude this section, we discuss the structure of Algorithm 4.3.1 with

special emphasis on its nested structure and distinct roles of τn and τs. Obviously,

τn controls the violation of the unit length constraint according to (4.3.11), but the

roles of subiterations in (4.3.1) and τs in (4.3.3) is more subtle and deserves further

elaboration. The presence of defects is associated with values sih(xj) close to zero

at nodes xj, which in turn act as weights in the equation (4.3.1) for the tangential
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updates ti,`h of the director field ni,`h . The fast decrease to zero of sih(xj), relative to

the growth of ∇nih in its vicinity, impedes further changes of nih(xj) because they

are not energetically favorable: the defect is thus pinned at the same location xj for

many interations. Experiments with Algorithm 4.3.1 reveal defect pinning if τn = τs

and one step of (4.3.1) per step of (4.3.3) is utilized. The subiterations within the

inner loop (4.3.1) allow ni,`h to adjust to the current value of sih. This mimics an

approximate optimization step but with unit length and max norm control dictated

by Proposition 4.3.2. In contrast, full optimization has been proposed in [59, 60, 77]

instead of (4.3.1), followed by nodal projection onto the unit sphere, whereas one

step of a weighted gradient flow (4.3.1) has been advocated in [26] for the Q-tensor

model. On the other hand, since τs penalizes changes of sih, smaller values of τs

relative to τn delay changes of sih in favor of changes of nih. This does not fix the

stiff character of (4.3.1), studied in [31], but does remove defect pinning. Several

numerical experiments in Section 4.4 document this finding.

4.4 Numerical experiments

In this section, we present a series of numerical experiments that explore the

accuracy of Algorithm 4.3.1 and its ability to approximate rather complex defects

of nematic LCs in 2d and 3d. In both cases, these results complement the theory

and extend it.

We have implemented Algorithm 4.3.1 within the high performance multi-

physics finite element software Netgen/NGSolve [69]. To solve the constrained vari-
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ational problem (4.3.1), we adopt a saddle point approach. The ensuing linear

systems are solved using the built-in conjugate gradient solver of Netgen/NGSolve,

while the visualization relies on ParaView [6].

All pictures below obey the following rules. The vector field depicts the di-

rector n, whereas the color scale refers to the degree of orientation s. Blue regions

indicate areas with values of s close to zero, which signify the occurrence of de-

fects, while the red ones indicate regions with largest values of s (s ≈ 0.75 in our

simulations), where the director encodes the local orientation of the LC molecules.

We generate unstructured, generally non-weakly acute, meshes within Netgen with

desirable meshsize h0 but the effective maximum size h of tetrahedra in 3d may only

satisfy h ≈ h0. We will specify h0 when dealing with unstructured 3d meshes.

We stress that, unlike FEMs proposed in previous works [59, 60], the energy-

decreasing property of Algorithm 4.3.1 does rely on meshes being weakly acute

(cf. Proposition 4.3.1). Except for simple 3d geometries, such meshes are hard, to

impossible, to construct. This is the case of the cylinder domain in Section 4.4.4

and the Saturn ring configurations in Section 4.4.6, for which mesh flexibility is of

fundamental importance to capture topologically complicated defects.

Throughout this section, we consider the double well potential

ψ(s) = cdw(ψc(s)− ψe(s))

with

ψc(s) := 63s2, ψe(s) := −16s4 +
64

3
s3 + 57s2 − 0.5625, (4.4.1)
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where cdw ≥ 0. Note that, for cdw > 0, ψ has a local minimum at s = 0 and a

global minimum at s = ŝ := 0.750025 such that ψ(ŝ) = 0. Moreover, in view of

Proposition 4.3.2 (properties of discrete director field), we measure the violation of

the unit-length constraint in terms of the quantity

errn := ‖Ih
[
|nNh |2 − 1

]
‖L1(Ω), (4.4.2)

where nNh denotes the final approximation of the director field generated by Algo-

rithm 4.3.1. Furthermore, unless otherwise specified, we choose the L2-metric (4.3.4)

in (4.3.1), and we set the tolerance tol = 10−6 in both (4.3.2) and (4.3.9).

4.4.1 Lagrange multipliers

Note that in each step of the step (i) of Algorithm 4.3.1 (the inner loop),

it requires to solve ti,`h in the admissible set Kh(n
i,`
h ). We realize this node-wise

constraint by the method of Lagrange multiplier. Indeed, if we rewrite (4.3.1) as

〈ti,`h ,φh〉∗ + τnah(s
i
h; t

i,`
h ,φh) = −ah(sih;n

i,`
h ,φh),

then in each step of the inner loop, one needs to solve ti,`h ∈ Vh,D and λ`+1
h ∈ Vh,D

such that

〈ti,`h ,φh〉∗ + τnah(s
i
h; t

i,`
h ,φh) + bh(n

i,`
h ;λ`+1

h ,φh) = −ah(sih;n
i,`
h ,φh), (4.4.3)

bh(n
i,`
h ;µh, t

i,`
h ) = 0,
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for any φh ∈ Vh,D and µh ∈ Vh,D. Here,

ah(s
i
h; t

i,`
h ,φh) := κ〈ti,`h ⊗∇s

i
h,φh ⊗∇sih〉 + 〈sih∇t

i,`
h , s

i
h∇φh〉, (4.4.4)

and

bh(n
i,`
h ;λ`+1

h ,φh) :=

ˆ
Ω

Ih[λ
`+1
h (ni,`h · φh)]. (4.4.5)

Note that the bilinear form ah(s
i
h; ·, ·) accounts for the variation of energy Eh

1 with

respect to nh, and the bilinear form bh(n
i,`
h ; ·, ·) encodes the constraint. We use a

conjugate gradient solver to solve the saddle point system (4.4.3).

4.4.2 Point defect in 2D

In striking contrast with the Oseen–Frank model, the Ericksen model allows

point defects to have finite energy in 2D: the blow-up of |∇n| near a defect is com-

pensated by infinitesimal values of s for the energy E[s,n] (1.3.1) to stay bounded.

We examine this basic mechanism with simulations of a point defect in 2D and study

the influence of the discretization parameters on the performance of Algorithm 4.3.1.

We consider the unit square Ω = (0, 1)2, and set κ = 2 in (1.3.1) as well as

cdw = 0.1(0.3)−2 in (4.4.1). We impose Dirichlet boundary conditions for s and n

on ∂Ω, namely

g = ŝ and q = r/g =
(x− 0.5, y − 0.5)

|(x− 0.5, y − 0.5)|
on ∂Ω. (4.4.6)

To initialize Algorithm 4.3.1, we consider a constant degree of orientation s0
h = ŝ
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in Ω and a director n0
h exhibiting an off-center point defect located at (0.24, 0.24).

Due to the imposed boundary conditions and for symmetry reasons, we expect that

an energy-decreasing dynamics moves the defect to the center of the square; see

Figure 4.2.

Figure 4.2: Point defect experiment of Section 4.4.2: Plot of the approximation
(s1
h,n

1
h) after the first iteration (left) and of the final approximation (sNh ,n

N
h ) (right).

The gradient flow algorithm moves the defect to the center of the domain.

In our first experiment, we consider a uniform mesh Th of the unit square

consisting of 2048 right triangles. The resulting mesh size is h =
√

2 2−5. Moreover,

we set τn = τs = 0.1 and compare the results obtained for different choices of the

metric 〈·, ·〉∗ in (4.3.1); cf. (4.3.4)–(4.3.5). Table 4.1 displays the outputs for each

run. On the one hand, we observe that using the L2-metric leads to the fastest

dynamics in terms of both number of iterations and CPU time. On the other hand,

the violation of the unit-length constraint is smaller for the weighted H1-metrics.

For smaller values of α in the weighted H1-metric, Algorithm 4.3.1 terminates with

a configuration exhibiting defect pinning at an off-center location. The expected

equilibrium state, depicted in Figure 4.2(b), can be restored when reducing the

time-step size τs.
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metric Eh[sNh ,n
N
h ] N min(sNh ) errn CPU time (s)

L2 2.984 60 0.0757 0.0404 64.83
weighted H1, α = 2.0 2.944 67 0.0750 0.0370 98.65
weighted H1, α = 1.9 2.938 65 0.0754 0.0362 111.69
weighted H1, α = 1.8 2.932 67 0.0755 0.0353 130.17
weighted H1, α = 1.7 2.926 80 0.0760 0.0342 154.92

Table 4.1: Point defect experiment of Section 4.4.2: Final outputs of Al-
gorithm 4.3.1 for different choices of metric 〈·, ·〉∗, namely value of the energy
Eh[sNh ,n

N
h ] for the equilibrium state, total number of iterations N , smallest value

of the final sNh , error in the unit-length constraint in (4.4.2), and the CPU time.

In our second set of experiments, we investigate the effect of mesh refinements

and changes of time steps on the results. To this end, we first repeat the simulation

using three uniform meshes with h =
√

2 2−5−` (` = 0, 1, 2); we set τn = 0.1 2−2`, in

agreement with the first CFL condition in (4.3.12) for d = 2. We collect the results

of computations in Table 4.2 (upper), and observe that both min(sNh ) and errn

decrease about linearly with h whereas the energy Eh[sNh ,n
N
h ] also decreases and

converges asymptotically. We next consider a fixed mesh with h =
√

2 2−5 and study

the decay of errn in (4.4.2) as the time-step size τn decreases; see Table 4.2 (lower).

In this third set of experiments, we let τn = (0.1)2−5−` (` = 0, 1, 2), and tol = 10−5τn

in both (4.3.2) and (4.3.9). The computational results in Table 4.2 (lower) confirm

the first-order convergence with respect to τn established in Proposition 4.3.2; see

(4.3.11) that bounds errn in terms of τnE
h[s0

h,n
0
h]. This explains the behavior of

errn in Table 4.2 (upper) upon refinement, which increases Eh[s0
h,n

0
h] because n0

h

has a point defect while s0
h is constant and does not compensate the blow up of

∇n0
h.
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h Eh[sNh ,n
N
h ] N min(sNh ) errn CPU time (s)√

2 2−5 2.984 60 0.0757 0.0404 64.83√
2 2−6 2.940 61 0.0422 0.0232 592.23√
2 2−7 2.939 133 0.0289 0.0100 7919.25

τn errn
(0.1)2−5 0.00610
(0.1)2−6 0.00346
(0.1)2−7 0.001927

Table 4.2: Point defect experiment of Section 4.4.2: Final outputs of Algorithm 4.3.1
for different uniform meshes with meshsize h and time steps τn = Ch2 (upper) and
different time step sizes τn with fixed meshsize h =

√
2 2−5 (lower).

4.4.3 Plane defect in 3D

We simulate a plane defect in the unit cube Ω = (0, 1)3 located at {z = 0.5},

according to [76, Section 6.4]. We set κ = 0.2 in (1.3.1) and cdw = 0 in (4.4.1). We

impose Dirichlet boundary conditions on the top and bottom faces ΓD of the cube

g = ŝ, q = (1, 0, 0) on ∂Ω ∩ {z = 0}, g = ŝ, q = (0, 1, 0) on ∂Ω ∩ {z = 1}.

The exact solution is n(z) = (1, 0, 0) for z < 0.5 and n(z) = (0, 1, 0) for z >

0.5, while s(z) = 0 on z = 0.5 and linear on (0, 0.5) ∪ (0.5, 1) [76, Section 6.4].

Our numerical results are consistent with reproduce those in [59, Section 5.3]. To

initialize Algorithm 4.3.1, we set s0
h = ŝ and n0

h to be a regularized point defect away

from the center of the cube. Figure 4.3 displays the three components of nkh and skh

evaluated along the vertical line (0.5, 0.5, z) for iterations k = 1, 31, 79 computed on

a uniform mesh with h =
√

3 0.05 and τn = τs = 0.01.
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Figure 4.3: Plane defect of Section 4.4.3: Plots of the three components of nkh
(first row) and plots of skh (second row) for iterations k = 1, 31, 79. In the final
configuration (k = 79), the energy is Eh[sNh ,n

N
h ] = 0.247, min(sNh ) = 0.0101, and

errn = 0.0556. Moreover, there is a transition layer between about z = 0.4 and
z = 0.6, and sh is almost linear in (0, 0.4) and (0.6, 1).

4.4.4 Effect of κ on equilibria

The value of constant κ > 0 in (1.3.1) plays a crucial role in the formation

of defects. For large values of κ, the dominant term in E1[s,n] is
´

Ω
κ|∇s|2 that

prevents variations of s. Typically s tends to be close to a (usually positive) constant

and the model behaves much like the simpler Oseen–Frank model, where defects are

less likely to occur (and no defects with finite energy beyond point defects are

allowed). On the other hand, for small values of κ, the energy is dominated by

´
Ω
s2|∇n|2, which allows s to become zero to compensate large gradients of n, and

defects are then more likely to occur. In this section, we investigate this dichotomy

numerically.
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We consider a cylindrical domain Ω in 3D with lateral boundary ΓD

Ω = {(x, y, z) ∈ R3 : (x− 0.5)2 + (y − 0.5)2 < 0.52, 0 < z < 1},

ΓD = {(x, y, z) ∈ R3 : (x− 0.5)2 + (y − 0.5)2 = 0.52, 0 < z < 1},

and impose the Dirichlet conditions on ΓD

g = ŝ and q = r/g =
(x− 0.5, y − 0.5, 0)

|(x− 0.5, y − 0.5, 0)|
, (4.4.7)

The top and bottom faces of Ω are treated as free boundaries and the double well

potential ψ is neglected, i.e., cdw = 0 in (4.4.1). The analysis in [76, Section 6.5]

predicts that minimizers of the energy exhibit a line defect along the central axis of

the cylinder if κ is sufficiently small, whereas they are smooth (no defects) if κ is

sufficiently large.

Figure 4.4 displays the final configurations obtained for κ = 0.2 and κ = 2. To

discretize Ω, we consider an unstructured mesh generated by Netgen with h0 = 0.05.

For both values of κ, we set ŝ as initial condition of the degree of orientation. For

κ = 0.2, we set τn = 0.1 and τs = 10−3 and take as initial condition for the director

field an off-center point defect located at the slice z = 0.5. For κ = 2, we set

τn = τs = 0.01 and initialize n0
h as an off-center point defect located at the slice

z = 0.25. These computational results are consistent with those in [59] and confirm

the predicted effect of κ [76, Section 6.5].
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Figure 4.4: Effect of κ in Section 4.4.4: Equilibria for κ = 0.2 (left) and κ = 2
(right). Both pictures show sNh and nNh on the slices z = 0.2, 0.5, 0.8. If κ = 0.2,
the final configuration exhibits a line defect along the central axis of the cylinder;
the final energy is Eh[sNh ,n

N
h ] = 0.806, min(sNh ) = −7.33×10−4, errn = 0.0778, and

the total number of iterations N is 226. If κ = 2, the z-component of the director
is not zero. This behavior is usually referred to as fluting effect or escape to the
third dimension [76]. Moreover, the degree of orientation is bounded well away from
zero; the final energy is Eh[sNh ,n

N
h ] = 2.635, min(sNh ) = 0.224, errn = 0.044, and

the total number of iterations N is 17.

4.4.5 Propeller defect

In this section, we investigate a new defect discovered in [59, Section 5.4].

We consider a setup similar to the one discussed in Section 4.4.4, except that the

domain is the unit cube Ω = (0, 1)3, and we again set cdw = 0 in (4.4.1). The top

and bottom faces of the cube are treated as free boundary, while the same strong

anchoring conditions as in (4.4.7) are imposed on the vertical faces ΓD of the cube

(lateral boundary). The initial conditions are s0
h = ŝ for the degree of orientation and

an off-center point defect located on the slice z = 0.5 for the director. The domain

is discretized using an unstructured mesh generated by Netgen with h0 = 0.025, and

we set τn = 0.02. We consider the values κ = 2 and κ = 0.1. For κ = 2 and τs = 0.2,

the computational results agree with those of Section 4.4.4: the equilibrium state is
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smooth and is characterized by a nonzero z-component (fluting effect).

For κ = 0.1, the final configuration reported in [59, Section 5.4, Figure 5]

consists of two plane defects intersecting at the vertical symmetry axis of the cube,

the so-called propeller defect. Whether this was a numerical artifact due to the

inherent symmetries of the structured uniform weakly acute meshes used in [59]

for simulation was an intriguing open question that we now answer. Owing to

the flexibility of our approach regarding meshes, we repeated the experiment using

an unstructured non-symmetric mesh with τs = 10−4. Our computational results

confirm the emergence of the propeller defect in Figure 4.5, which in turn displays

the director field nkh at iterations k = 0, 1, 2766 with colors indicating the size of skh.

Figure 4.5: Propeller defect of Section 4.4.5: Evolution of the order parameters on
the top face of the cube (z = 1). Plots of the initial state (s0

h,n
0
h) (left), of the

intermediate approximation (s1
h,n

1
h) obtained after the first iteration (middle), and

of the equilibrium state (sNh ,n
N
h ) after 2766 iterations (right). In the initial state,

due to the off-center point defect at z = 0.5, there is a corresponding region on the
slice for z = 1 where n is aligned with z-direction. After the first iteration, in which
n is minimized for fixed s = ŝ, by symmetry the defect has moved to the center
on z = 0.5. Correspondingly, on the top surface of the cube, the region where n
is aligned with the z-axis has moved to the center. The final state is a propeller
defect consisting of a planar X-like configuration extruded in the z-direction. The
final energy is Eh[sNh ,n

N
h ] = 0.592, min(sNh ) = −1.575 × 10−4, errn = 0.0265, and

the total number of iterations N is 2766.
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4.4.6 Colloidal effects in nematic LCs

Colloidal particles suspended in a nematic LC can induce interesting topo-

logical defects and distortions [44, 74]. One prominent example is the so-called

Saturn ring defect, a director configuration characterized by a circular ring singu-

larity surrounding a spherical particle and located around its equator. Such defects

are typically nonorientable and captured within the Landau - de Gennes Q-tensor

model [25, 26], but the Ericksen model yields similar orientable defects under suit-

able boundary conditions [60, 77]. We confirm the ability of Algorithm 4.3.1 to

produce similar configurations.

In this section, we exploit the flexibility of Algorithm 4.3.1 regarding meshes,

together with the built-in Constructive Solid Geometry (CSG) approach of Net-

gen/NGSolve, to explore numerically the formation of Saturn-ring-like defects in-

duced by nonspherical or multiple particles.

4.4.6.1 One ellipsoidal particle

Let Ωc = (0, 1)3 be the unit cube and let Ωs ⊂ Ωc be an ellipsoid centered at

(0.5, 0.5, 0.5) with axes parallel to the coordinate axes and semiaxis lengths equal

to 0.3 (x-direction), 0.075 (y-direction), and 0.075 (z-direction); Ωs has an aspect

ratio 1 : 4. The computational domain is then Ω := Ωc \Ωs. We set κ = 1 in (1.3.1)

as well as cdw = 0.2 in (4.4.1). On ∂Ω = ∂Ωc ∪ ∂Ωs, we impose strong anchoring
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conditions

g = ŝ on ∂Ω, q = r/g = ν on ∂Ωs, and q = r/g = nsr on ∂Ωc, (4.4.8)

where ν : ∂Ωs → Sd−1 denotes the outward-pointing unit normal vector of Ωs and

nsr : ∂Ωs → Sd−1 smoothly interpolates between the constant values (0, 0,−1) on

the bottom face and (0, 0, 1) on the top face of the cube. (see [60, Figure 11]).

These boundary conditions are essential in order to induce the defect. The initial

conditions for Algorithm 4.3.1 are given by

s0
h = ŝ in Ω and n0

h(z) =



(0, 0, 1) z ∈ Ω and z3 ≥ 0.5,

(0, 0,−1) z ∈ Ω and z3 < 0.5,

q(z) z ∈ ∂Ω,

(4.4.9)

for z = (z1, z2, z3) ∈ Nh. Figure 4.6 displays cuts of the final configuration obtained

using Algorithm 4.3.1 with an unstructured mesh with h0 = 0.05 and time-step sizes

τn = τs = 0.01.

4.4.6.2 Multiple spherical particles

We conclude this section with two novel and challenging simulations involving

multiple spherical colloidal particles. In both cases, the domain has the form Ω :=

Ωc \ Ωs, where Ωc ⊂ R3 denotes a simply connected domain (representing the LC

container), whereas Ωs ⊂ Ωc denotes the region occupied by spherical colloidal
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Figure 4.6: Saturn ring experiment of Section 4.4.6.1. Three different perspectives
of the Saturn ring defect around an ellipsoidal particle: slice z = 0.5 (left), a 3D
view clipped at y = 0.5 (middle), and a 3D view clipped at x = 0.5 (right). The
blue ring surrounding the particle, the iso-surface for s = 0.15, provides a good
approximation of the defect. We stress that neither the distance between the defect
and the particle nor the defect diameter are constant, which is a consequence of
the anisotropic shape of the particle. The final energy is Eh[sNh ,n

N
h ] = 7.263,

min(sNh ) = 0.0128, errn = 0.145, and the total number of iterations N is 33.

particles. We set κ = 1 in (1.3.1) and cdw = 0.2 in (4.4.1). Moreover, boundary

and initial conditions are suitable extensions to the multiple particle case of (4.4.8)

and (4.4.9) considered in Section 4.4.6.1.

Figure 4.7 shows the equilibrium state corresponding to Ωc = (0, 1)3 and a

pair of disjoint spherical colloids Ωs with radii 0.1 and centered at (0.3, 0.5, 0.5) and

(0.7, 0.5, 0.5). Algorithm 4.3.1 employs an unstructured mesh with h0 = 0.025 and

time-step sizes τn = τs = 0.0025. A novel fat figure eight defect forms.

Figure 4.8 depicts the equilibrium state corresponding to Ωc = (−0.1, 1.1)3

and a colloidal region consisting of six spheres. The latter have radii 0.1 and cen-

ters located at (0.2, 0.5, 0.5), (0.8, 0.5, 0.5), (0.5, 0.2, 0.5), (0.5, 0.8, 0.5), (0.5, 0.5, 0.2),

and (0.5, 0.5, 0.8) distributed symmetrically with respect to the cube center. Al-

gorithm 4.3.1 utilizes an unstructured mesh with h0 = 0.025 and time-step sizes
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τn = τs = 0.0025.

Figure 4.7: Two-particle experiment of Section 4.4.6.2. Fat figure “8” defect around
two spherical colloids viewed from different perspectives: slice y = 0.5 (left), slice z =
0.5 (middle), and a 3D view clipped at y = 0.5 (right). The blue ring surrounding the
particle is the iso-surface for s = 0.12, which provides a good approximation of the
defect. The final energy is Eh[sNh ,n

N
h ] = 7.656, min(sNh ) = 0.0146, errn = 0.0972,

and the total number of iterations N is 57.
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Figure 4.8: Six-particle experiment of Section 4.4.6.2. Defect around six spherical
colloids viewed from different perspectives: slice y = 0.5 (left), slice z = 0.5 (middle),
and a 3D view clipped at y = 0.5 (right); the slice x = 0.5 is similar to y = 0.5.
The blue ring surrounding the particles (in the right picture) is the iso-surface
for s = 0.15, which provides a good approximation of the defect. Therefore the
defect appears to be a combination of a large Saturn ring defect around particles
with center in the plane z = 0.5 and a planar X-like configuration rotating with
axis x = 0.5, y = 0.5,−0.1 < z < 1. The final energy is Eh[sNh ,n

N
h ] = 14.703,

min(sNh ) = 0.00355, errn = 0.160, and the total number of iterations N is 72.
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